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Abstract

Learning dependence relationships among variables of mixed types provides insights in a variety 

of scientific settings and is a well-studied problem in statistics. Existing methods, however, 

typically rely on copious, high quality data to accurately learn associations. In this paper, we 

develop a method for scientific settings where learning dependence structure is essential, but data 

are sparse and have a high fraction of missing values. Specifically, our work is motivated by 

survey-based cause of death assessments known as verbal autopsies (VAs). We propose a Bayesian 

approach to characterize dependence relationships using a latent Gaussian graphical model that 

incorporates informative priors on the marginal distributions of the variables. We demonstrate such 

information can improve estimation of the dependence structure, especially in settings with little 

training data. We show that our method can be integrated into existing probabilistic cause-of-death 

assignment algorithms and improves model performance while recovering dependence patterns 

between symptoms that can inform efficient questionnaire design in future data collection.
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1 Introduction

In many parts of the world, deaths are not systematically recorded, meaning that there is 

massive uncertainty about the distribution of deaths by cause (Horton, 2007; Jha, 2014). 

Knowing why individuals are dying is essential for both rapid, acute public health actions 

(e.g. responding to an infectious disease outbreak) and for longer term monitoring (e.g. 

encouraging behavior change to head off an obesity epidemic). In many such areas, a 

survey-based tool called Verbal Autopsy (VA) are routinely used to collect information 

about the causes of death when medical autopsies cannot be performed. VAs consist of an 

zehang.li@yale.edu. 

Supplementary Material
Supplementary Material to “Using Bayesian Latent Gaussian Graphical Models to Infer Symptom Associations in Verbal Autopsies” 
(DOI: 10.1214/19-BA1172SUPP; .pdf). PDF document of supplementary material. The replication R and Java codes to implement the 
proposed method can be found in the repository at https://github.com/richardli/LGGM.

HHS Public Access
Author manuscript
Bayesian Anal. Author manuscript; available in PMC 2020 December 02.

Published in final edited form as:
Bayesian Anal. 2020 September ; 15(3): 781–807. doi:10.1214/19-ba1172.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/richardli/LGGM


interview with a caregiver or relative of the decedent and contain questions about the 

decedent’s medical history and the circumstances surrounding the death. Collecting VA 

surveys is a time-consuming and resource intensive enterprise. A community informant 

alerts a health official of a recent death and then, after a period of months, a survey team 

returns to administer the VA survey with the relative or caregiver. VA surveys are taxing for 

the relative or caregiver both because they typically consist of over a hundred questions and 

because they require a person recall a traumatic time in depth. What’s more, VA surveys 

themselves do not reveal the cause of death, but only the circumstances and symptoms. 

Assigning cause of death requires either coding directly by a clinician or using one of 

several statistical and machine learning algorithms.

The majority of the existing statistical or algorithmic methods to assign cause of death using 

VA surveys make the assumption that VA symptoms are independent from one another 

conditional on cause of death (Byass et al., 2003; James et al., 2011; Miasnikof et al., 2015; 

McCormick et al., 2016). This assumption simplifies computation and is efficient in settings 

with limited training data. The ignored associations, however, provide valuable information 

that could be used to improve cause of death classification. Knowing that a person lives in a 

Malaria-prone area and had a fever before dying, for example, gives substantially more 

information than knowing only that the person presented with a fever before dying. One 

previous method by King and Lu (2008) does account for associations using a regression 

model on stochastic samples of combinations of symptoms taken from a gold-standard 

training dataset. This computation, however, is extensive for even moderately large symptom 

sets. Moreover, in order to account for symptom dependence, both the classic regression 

method (King and Lu, 2008) and the recently developed latent factor approach by Kunihama 

et al. (2018) relies on the existence of high-quality training data, which is typically 

unavailable in practice.

In this paper, we propose a latent Gaussian graphical model to infer associations between 

symptoms in VA data. In developing our model for associations between symptoms on VA 

surveys, we must address three statistical challenges that arise from the VA data. First, the 

VA data are of mixed types. That is, survey questions are a mixture of binary (e.g. Was the 

decedent in an auto accident?), continuous (e.g. How long did the decedent have a fever?), 

and count (e.g. How many times did the decedent vomit blood?) outcomes. The data are then 

usually pre-processed into a standard set of binary indicators for which many methods have 

been proposed to automatically assign cause(s) of death. Instead of dichotomize the many 

continuous variables, we develop a (latent) Gaussian graphical model and introduce new 

spike-and-slab prior for inverse correlation matrices to mitigate the risk of inferring spurious 

associations. We also develop an efficient Markov chain Monte Carlo algorithm to sample 

from the resulting posterior distribution.

A second challenge is that we want to not only learn the dependence structures among the 

symptoms given causes of death, but also to use them to improve prediction for unknown 

cause of death. As shown by a numerical example in the supplementary material (Li et al., 

2019b), violations of the conditional independence assumption can substantially bias the 

prediction of the cause of death. In practice, researchers are typically interested in both the 

accuracy of the method in assigning cause of death for a specific individual as well as the 
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overall fraction of deaths due to each cause in the sample, in order to understand disease 

epidemiology and inform public policies. We address this challenge by extending the latent 

Gaussian model to a Gaussian mixture models framework so that it can be integrated into 

existing VA methods for both cause-of-death assignment and estimation of population 

cause-specific mortality fractions.

Lastly, a fundamental challenge we face in building such predictive model is that there is 

typically very limited training data available. “Gold standard” training data typically consists 

of physical autopsies with pathology reports. Obtaining such data is very expensive in low 

resource settings where they are not common practice, requires physicians commit time to 

performing autopsies rather than treating patients, and is generally only possible for the 

selected set of deaths that happen in a hospital. To date there is only one single “gold 

standard” dataset that is widely available to train VA algorithms (Murray et al., 2011a). This 

dataset, described in further detail in subsequent sections, contains cases from six different 

geographic areas. Using the binary symptoms from this dataset, Clark et al. (2018) show that 

the empirical marginal probabilities (or conditional probabilities given a cause-of-death) of 

observing a symptom can vary significantly across training sites. The lack of reliable 

training data in the VA context limits the applicability of currently available statistical 

approaches. A standard approach to joint modeling of mixed variables, for example, is 

through characterizing the vector of observed variables by latent variables that follow some 

parametric models. However, when the data contains only a small number of observations 

and a high proportion of missing values, sometimes even the marginal distribution of the 

variables cannot be reliably estimated and thus it may lead to erroneous inference of the 

joint distribution of variables.

We address this challenge by incorporating expert knowledge, a common strategy in VA 

cause of death classification. In the VA context, expert knowledge consists of information 

about the marginal likelihood of seeing symptom given that the person died of a particular 

cause. This type of information is widely used in the VA literature (Byass et al., 2003) and is 

substantially less costly to obtain than in person autopsies. Only marginal propensities can 

be obtained since asking experts about all possible symptom combinations would be 

laborious and time consuming. A small number of joint probabilities could be solicited from 

experts, but there is currently no means available to guide researchers about which 

combinations are most influential. Our work provides one such approach for choosing 

combinations to elicit.

We incorporate information about the marginal propensity of seeing each symptom by 

decoupling the correlation matrix from the marginal variances and allow researchers to 

incorporate marginal informative priors through hierarchical models. This differs from many 

existing work on Gaussian copula models. Gaussian copula graphical models typically 

proceed by estimating the latent precision matrix while treating the marginal distributions as 

nuisance parameters (e.g., Hoff, 2007; Dobra et al., 2011). Since only the ranks of the 

observations within the same variable enter the likelihood, any available prior information 

on the marginal distributions of different variables is not straightforward to incorporate. Our 

approach also contributes to the literature on inference of correlation matrices from mixed 

data, where several related ideas have been explored previously in other context. For 
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instance, Talhouk et al. (2012) proposed a Bayesian framework for latent graphical models 

with decomposable graphs. Our shrinkage prior provides a more flexible approach to allow 

also non-decomposable graphs with a rejection-free sampling strategy. The recent work from 

Fan et al. (2016) studied semiparametric approaches for structure learning and provided a 

two-step procedure to obtain sparse graph structures. Our approach also yields improved 

estimation of the latent correlation matrices and is more robust to missing data, as illustrated 

in Section 5. Our work also incorporates a different kind of expert knowledge, the marginal 

distribution of variables, rather than the interactions between variables, such as reference 

network structure among variables (Peterson et al., 2013) or distance metrics measuring 

‘closeness’ of variables (Bu and Lederer, 2017).

The rest of the paper is structured as follows. In Section 2 we describe the proposed latent 

Gaussian graphical model to characterize the dependence structure in mixed data and present 

two different prior choices of the latent correlation matrix, reflecting different types of prior 

beliefs. In Section 3 we describe the details of the posterior sampling algorithms. In Section 

4 we show how the latent Gaussian model could be extended to Gaussian mixture models 

and integrated into existing VA methods for cause-of-death assignment. Section 5 examines 

the performance of correlation matrix estimation, structure learning, and prediction 

performance with extensive numerical simulation. In Section 6 we apply our methods to a 

gold standard dataset and data from a health and demographic surveillance system (HDSS) 

site where only physician coded causes are available. Finally, in Section 7 we discuss the 

remaining limitations of the approach and some future directions for improvement.

2 Latent Gaussian graphical model for mixed data

We begin by considering the characterization and estimation of dependence structures in 

mixed data. Let X = (X1, . . . , Xn)T denote the data with n observations of p-dimensional 

random variables. In survey data, for example, Xij may represent the response of respondent 

i on question j. We use a latent Gaussian representation to encode the dependence between 

the variables by assuming that the observed data matrix X can be represented by a set of 

multivariate Gaussian random variables Z under some monotone transformation:

Xij = fj(Zij) Zi ∼ Normal(μ, R),

where R is a correlation matrix, and fj(·)’s are non-decreasing functions. When the marginal 

transformation functions are unknown, this formulation is usually referred to as the Gaussian 

copula model (e.g., Xue et al., 2012). For continuous variables, a popular strategy to deal 

with the marginal transformation fj is to first estimate it by f j(z) = F j
−1(Φ(z)), where F j is 

typically taken to be the empirical marginal cumulative distribution function of the j-th 

variable (e.g. Klaassen and Wellner, 1997; Liu et al., 2009). Inference on R is then 

performed with pseudo-data Zij = f j
−1(Xij). However, this strategy is problematic for 

discrete data, since directly applying monotonic marginal transformations changes only the 

sample space instead of the distribution of the observed data (Hoff, 2007). Therefore, for 

data with mixed variable types, it is common to adopt the semi-parametric marginal 

likelihood approach (Hoff, 2007). Inference on the correlation matrix is then carried out 
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based on the marginal likelihood of the observed ordering of the variables, with the marginal 

transformation functions considered as nuisance parameters.

Moving now to binary variables, the marginal distribution can be characterized by the 

marginal probability, a single parameter. Thus direct estimation of the transformation 

functions can be reduced to estimating cutoffs of the latent Gaussian variables (Fan et al., 

2016). Conceptually, we can fix the marginal transformation, and estimate only the latent 

mean variable μ. That is, we can write the data generating process as

Xij = fj(Zij) =
I(Zij > 0) if Xij binary,
Zij if Xij continuous, (1)

Zi ∣ μ, R ∼ Normal(μ, R), (2)

μ ∣ μ0 ∼ Normal(μ0, σ2Ip), (3)

μ0j = Φ−1(pj), (4)

R = ΛRΛ, (5)

where Λ is a diagonal matrix that contains marginal standard deviations for the continuous 

variables and fixed at 1 for the binary variables, and R is a correlation matrix. The marginal 

prior probabilities for binary variables pj = Pr(Xij = 1) are specified though the priors for μ, 

since the expectation of Xij given μ is Pr(Xij = 1) = Pr(Zij > 0) = 1 − Φ(−μj) = Φ(μj).

For simplicity, throughout this paper we assume the continuous variables are marginally 

Gaussian, similar to the scenario considered in Fan et al. (2016). The extension to the case 

where the continuous variables exhibit non-Gaussian marginal patterns is straightforward by 

first preprocessing the raw continuous variables into pseudo-data using their marginal prior 

distributions (Liu et al., 2009), F j, so that Xij = Φ−1(F j(Xij
(raw))). Specifying priors on their 

marginal variances, i.e., Λ, usually depends on the context. In this paper we adopt the 

improper prior on the marginal standard deviations suggested in Gelman (2006), so that Λjj 

∝ 1.

The latent Gaussian distribution provides a simplistic description of the conditional 

independence relationship for Z. Zeros in off-diagonal elements of the inverse correlation 

matrix, R−1, correspond to pairs of latent variables that are conditionally independent given 

other latent variables. Thus for high-dimensional problems, we typically favor priors on R 
where elements in R−1 are shrunk to zero. The conditional independence relationships 

among latent variables do not imply conditional independence of the observed binary 

variables (Fan et al., 2016; Bhadra et al., 2018). Thus the adoption of this latent Gaussian 

strategy should be done with care when the dichotomous variables cannot be easily 

interpreted as binary manifestations of some continuous latent process. In our case, 
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modeling symptoms collected from verbal autopsy surveys, many symptoms are natural 

truncations of some continuous variables (e.g. durations, frequencies, and severity of 

symptoms). While the latent Gaussian model does not aim to recover the actual continuous 

variables as if they were collected, the dependence between the latent variables more provide 

some insights into the relationship among such underlying processes.

The transformation of the marginal prior probabilities to μ0 in the proposed model requires 

R to have unit variance for the binary variables, or equivalently, the submatrix of R
corresponding to binary variables to be a correlation matrix. This complication prohibits 

standard graphical model problem to apply since posterior sampling on the space of the 

correlation matrices is generally more difficult than from the covariance matrices due to the 

constraint of unit diagonal elements. Next, we propose new class of priors and describe a 

parameter expansion (PX) scheme (Liu and Wu, 1999; Meng and Van Dyk, 1999) where the 

correlation matrix R is first expanded to a covariance matrix and updated, and then projected 

back to the space of correlation matrices.

2.1 Prior specification for the correlation matrix

We discuss two classes of priors for R = Λ−1RΛ−1 that lead to efficient posterior inference: 

one with the standard conjugate priors for the covariance matrix and uniform marginal priors 

for R, and one with a sparse structure in R−1. Similar priors for marginally uniform R were 

proposed in Talhouk et al. (2012) for the multivariate probit model. Their direct 

generalization to sparse R−1 uses a Metropolis-Hasting algorithm that is computationally 

expensive and imposes an additional decomposability constraint on the graph structure. A 

major advantage of the proposed model, summarized in Section 3, is the computational 

simplicity of posterior sampling, as well as the removal of the decomposability constraint.

Marginally uniform prior for the correlation matrix—First, we review a marginally 

uniform prior on the correlation matrix, and the corresponding parameter expansion scheme. 

Without any additional knowledge about the structure of the latent correlation matrix, the 

marginal uniform prior on all the elements of R (Barnard et al., 2000) is

p(R) ∝ ∣ R ∣−(p + 1) ∏
j

(rjj)−
p + 1

2 , rjj = {R−1}jj .

For the model Zi ~ Normal(μ, R), sampling from the posterior distribution p(R∣Z, μ) is not 

straightforward. However, with parameter expansion, we can expand the correlation matrix 

into the covariance matrix by Σ = DRD, where D = diag(d1, . . . , dp), and the observed data 

model into DZi ~ Normal(Dμ, Σ). By carefully constructing the augmentation of the 

expansion parameters, the expanded covariance or precision matrix can be much easier to 

sample from. Following Talhouk et al. (2012), we put an inverse gamma prior on the 

expansion parameters,

dj2 ∣ R ∼ InvGamma((p + 1) ∕ 2, rjj ∕ 2),
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that induces an inverse Wishart prior on the expanded precision matrix Ω = Σ−1 ~ Wishart(p
+1, Ip). The conjugacy allows easy posterior updating of Σ. This marginally uniform prior 

does not directly impose any sparsity constraints on the precision matrix. To summarize the 

conditional independence structure in a more concise manner, one option would be to 

estimate a sparse representation of R−1
 using a two-stage procedure similar to Fan et al. 

(2016) with the posterior mean R as input. Alternatively, we could incorporate sparsity 

directly into the prior, which we describe in the next section.

Spike-and-slab prior for the inverse correlation matrix—The marginally uniform 

prior for R is sometimes inappropriate for settings where sparse structure in R−1
 is strongly 

suspected a priori. For example, we may expect only small groups of symptoms in a VA 

survey, say, all pregnancy-related symptoms, would be correlated but are conditionally 

independent of other clusters of symptoms. Several priors for sparse precision matrices have 

been proposed. The G-Wishart prior (Roverato, 2002) extends the Wishart distribution by 

restricting cells in the precision matrix that correspond to non-edges in a graph to be exact 

zeros, and has been extensively studied in existing literature (Jones et al., 2005; Lenkoski 

and Dobra, 2011; Mohammadi et al., 2017). More recently shrinkage priors have become 

more popular, in part due to their computational simplicity. Bayesian analogies to penalized 

precision matrix estimators have been proposed for lasso (Wang et al., 2012; Peterson et al., 

2013), horseshoe (Li et al., 2017) and spike-and-slab mixture penalties (Wang, 2015; Li and 

McCormick, 2019; Deshpande et al., 2017). In this work we adapt the spike-and-slab prior 

idea proposed in Wang (2015) and propose a mixture prior for the inverse correlation matrix. 

The supplement material contains a brief introduction to Wang’s original proposal and its 

relationship to Wishart priors. The spike-and-slab framework is appealing because it 

performs graph selection and parameter inference simultaneously, in contrast to other 

shrinkage priors that require a further thresholding step after shrinkage. We put Gaussian 

priors on each off-diagonal element of the inverse correlation matrix, R−1, i.e.

p(R, πδ) = ∣ R ∣−(p + 1) ∏
j < k

Normal(rjk ∣ 0, vδjk
2 )∏

j
Exp(rjj ∣ λ ∕ 2)1R ∈ R+ ∏

j < k
πδ

δjk(1 − πδ)1 − δjk,

where R+ denotes the space of correlation matrices, and δjk is the binary indicator for the (j, 
k)-th element in R−1 being drawn from the slab distribution. The prior distribution of δ is 

parameterized by πδ ∈ (0, 1). We show in the supplementary material that this joint 

distribution can be factored into two conditional distributions with a finite normalizing 

constant that cancels out, similar to the prior used in Wang (2015). The proposed setup 

differs from current literature on shrinkage priors in two ways. First, we restrict the support 

of R to the space of the correlation matrix, so that working with latent variables that cannot 

be normalized does not create identifiability issues. In the next section we show that this 

additional restriction does not increase computational cost by much. Second, we add a ∣R∣
−(p+1) term to ensure that the prior assigns no weight to degenerate R−1. This term also 

allows the marginal distribution of Ω after parameter expansion to be in a form similar to the 

spike-and-slab prior defined in Wang (2015). Finally, we complete the parameter expansion 
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scheme by defining the expansion parameter D such that dj
2 ~ InvGamma((p+1)/2, 1/2). The 

expanded precision matrix Ω = (DRD)−1 has the following marginal prior distribution:

p(Ω, πδ) ∝ ∏
j < k

πδ
δjk)(1 − πδ)1 − δjk ∏

j < k
exp( −

ωjk
2

2vδjk
2 ∕ σj2σk

2 )∏
j

exp( − λσj2

2 ωjj

− 1
2σj2

)1Ω ∈ M+,
(6)

where σj2 is the j-th diagonal element of Ω−1. This expanded prior can be derived with a 

standard change of variables, as described in more detail in the supplementary material. The 

dependence between Ω and {σj2}j = 1, …, p makes the posterior sampling seem complicated. 

However, it turns out that it can be efficiently sampled with a block update. We fully 

describe our sampling scheme in detail in Section 3.1.

Choosing the shrinkage parameters—The proposed prior for R has several 

hyperparameters, v0, v1, λ, and πδ, that jointly determine the prior scales and sparsity of R
−1. The relationship between the implied prior sparsity, i.e., p(δ = 1) and the 

hyperparameters, however, cannot be easily obtained, because of the constrained space of R+ 

and the intractable normalizing constant Cδ. We follow a similar practice to Wang (2015) in 

choosing the hyperparameters by simulating the implied prior edge probabilities from 

different combination of hyperparameters. We use the sampler in Section 3 and choose the 

values that lead to the desired prior sparsity.

Generally, v1/v0 needs to be large so that it gives enough separation between the spike-and-

slab densities. The choice of v0 also needs to be carefully considered: an extremely small v0 

leads to a density that approaches the point-mass and thus can slow the mixing of the 

Markov chain, while a larger v0 may absorb many elements of R−1 and assigns a heavy 

portion of prior mass on the ‘sparse’ models with many small values. The choice of v0 may 

be roughly guided by comparing the marginal distributions implied by the prior to a pre-

specified threshold for practical significance. We let v0 = 0.01 in our experiments, as it can 

be seen from the prior simulation in Figure 1 that it assigns reasonable weights to graphs 

with edge probability between 0.05 to 0.2 under various choices of v1 and πδ. Because of 

the linear constraints on the elements of R−1 imposed by the space of R+, the 

hyperparameter πδ typically differs from the implied marginal edge probability significantly, 

and also needs to be determined from numerical simulation. From Figure 1, the prior 

sparsity is relatively consistent for v0 = 0.01 when v1/v0 > 50 and πδ < 0.001 We chose v1/

v0 = 100 and πδ = 0.0001 in our experiments.

It is also worth noting that λ also contributes to the prior sparsity directly, as it regularizes 

the diagonal elements of R−1. Since the support of diagonal elements of R−1 are (1, ∞), 

large λ restricts rjj to be closer to 1, leading the correlation between the j-th variable and 

other variables to be closer to 0, and thus sparser models. From our prior simulation, we 

found the choice of λ = 10 usually leads to reasonable prior sparsity. We include more 

discussion of the relationships between the proposed prior and that of Wang (2015) in the 

supplementary material.
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3 Sampling from the posterior

Inference using the full model can be performed using Markov Chain Monte Carlo with 

mostly Gibbs steps and elliptical slice sampling (ESS), a rejection-free MCMC technique 

(Murray et al., 2010). We first describe in detail the sampling procedure with the spike-and-

slab prior, and then describe how this step fits into the full inference procedure in Section 

3.2.

3.1 Posterior sampling with the spike-and-slab prior

We begin by describing sampling with the spike-and-slab prior. We update Ω with the prior 

defined in (6) in a column-wise fashion. Consider the j-th row and column of Ω, if we denote 

u = Ω[j,−j] and the Schur complement v = Ω[j, − j] − Ω[j, − j]
T Ω[ − j, − j]

−1 Ω[j, − j], then given the 

expanded sample covariance matrix, S = ∑i = 1
n D(Zi − μ)′(Zi − μ)D, and the variance 

specified by the latent indicators, V = {vδjk
2 }jk, the joint distribution of u and v can be 

calculated as

p(u, v ∣ S, V ) ∝ v
n
2 exp − 1

2(u′V u + 2sj, − j]′ u + (sjj + λσj2)(v + u′Ω[ − j, − j]u)) ,

where V = {vδjk
2 ∕ σj2σk

2}jk. Notice that σj2 = 1 ∕ v, and for all k ≠ j, σk
2 depends on both u and 

v, rendering the block Gibbs update scheme in Wang (2015) inapplicable. However, the full 

conditional distribution for u and v can both be written as the product of a standard 

distribution and an additional correction term. We let

D = diag({
dk

2

vδjk
2 }k ≠ j) and D(u, v) = diag({

σk
2 − dk

2

vδjk
2 }k ≠ j),

then we have the full conditional distributions

p(u ∣ v, S, V ) ∝ Normal(u; − CS[j, − j], C) exp − 1
2vu′D(u, v)u − 1

2 ∑
k ≠ j

1
σk

2 ,

p(v ∣ u, S, V ) ∝ Gamma(v; n
2,

sjj + 1
2 ) exp − 1

2vu′(D + D(u, v) + λΩ[ − j, − j]
−1 )u ,

where C = ((sjj + λ ∕ v)Ω[ − j, − j]
−1 + D)−1. To sample from p(u∣·), we use elliptical slice 

sampling (ESS) (Murray et al., 2010) to sample from both distributions by treating the 

normal distribution part as “prior” and the later term as “likelihood.” For u, ESS first 

generates an elliptical locus from the normal prior and then searches for acceptable points 

for slice sampling. ESS typically sticks to the same posterior region when strong signals are 

provided in the “prior” Gaussian distribution, as is the case here. Additionally when Ω−1 is 

sparse, σk
2 and dk

2 should be close to each other, and thus the signal from the “prior” part is 

typically much stronger. The sampling of v can be performed using the generalized ESS 

Li et al. Page 9

Bayesian Anal. Author manuscript; available in PMC 2020 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Nishihara et al., 2014) or other techniques as it does not involve a Gaussian part in the 

likelihood. However, since sjj is typically much smaller than n because the expansion 

parameters are drawn from invGamma((p + 1)/2, 1/2), placing much of its prior mass close 

to 0. We can, therefore, reasonably approximate the Gamma likelihood in p(v∣·) by Normal

(v; n
sjj + 1 , 2n

(sjj + 1)2
), which again allows easy use of ESS. The effect of this approximation 

on the posterior distributions are evaluated in the supplementary material. Furthermore, the 

added computational burden of ESS over the block Gibbs sampler in Wang (2015) is 

minimal, as the {σk
2}’s can be easily calculated by the fact that 

Σ[ − j, − j] = Ω[ − j, − j]
−1 + 1

vΩ[ − j, − j]
−1 u′uΩ[ − j, − j]

−1 , and σj2 = 1 ∕ v, without any additional 

computation of a matrix inversion. It is also worth noting that at each iteration of the update, 

the sampled precision matrix maintains to be positive definite because det(Ω) = vdet(Ω[−j,−j]) 

> 0.

Finally, each time a block update is performed, all latent indicators can be updated with the 

corresponding conditional posterior inclusion probabilities,

Pr(δjk = 1 ∣ R) =
πδϕ(rjk ∣ 0, v1

2)

πδϕ(rjk ∣ 0, v1
2) + (1 − πδ)ϕ(rjk ∣ 0, v0

2)
.

3.2 Full posterior sampling steps

Given suitable initial values, the full sampling scheme updates each parameter in turn.

Update Z The conditional posterior distributions of the latent variables conditional on the 

observed data are truncated Normal(μ, R) distributions with the truncation defined by 

domain Iij where Iij = (−∞, 0) if Xij binary and Xij = 0, (0, +∞) if Xij binary and Xij = 1, 

and (−∞, +∞) if Xij is missing or continuous. To sample from the multivariate truncated 

normal posterior, we draw approximate samples by iteratively sampling Zij∣Zi,−j by

Zij ∣ Z[i, − j], R, μ, X ∼ TruncNorm(μ0, σ , Iij),

where μ0 = μj + (Z[i, − j] − μ−j)(R[j, − j]R[ − j, − j]
−1 )T , σ = 1 − R[j, − j]R[ − j, − j]

−1 R[ − j, j], 

and the truncated domain Iij is defined above.

Update Λ We perform the conditional update of Λ by sampling from 

p(Λjj
−1 ∣ Λ[ − j, − j], Z, μ, R) iteratively. The improper uniform prior on Λjj is equivalent to 

p(Λjj
−1) ∝ Λjj

2 , leading to the conditional posterior distribution

p(Λjj−1 ∣ Λ[ − j, − j], Z, μ, R) ∝ Λjj
−(n − 2)Normal(Λjj−1;

∑ibi(zij − μj)
∑i (zij − μj)2

, c
∑i (zij − μj)2

),

where the constant terms are
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bi = Λ[ − j, − j]R[ − j, j]R[ − j, − j]
−1 (zi, − j − μ−j)

c = Λ[ − j, − j]R[ − j, j]R[ − j, − j]
−1 R[j, − j]Λ[ − j, − j] .

These conditional distributions can be efficiently sampled with ESS (Murray et al., 2010).

Update μ The conditional posterior distribution for the mean parameters is also multivariate 

normal,

μ ∣ R, X ∼ Normal ( 1
σ2Ip + nR−1)−1( 1

σ2μ0 + nR−1z̄), ( 1
σ2Ip + nR−1)−1 .

Update R To update the latent correlation matrix, we first draw the working expansion 

parameter with dj
2 ∣ R ~ InvGamma((p+1)/2, β), where β = rii/2 for the marginally uniform 

prior, and β = 1/2 for the spike-and-slab prior. The inverse Gamma distribution is 

parameterized with shape and scale. We then construct the expanded observation W = ZD, 

where D = diag(d1, d2, . . . , dp), and compute the sample covariance matrix 

S = ∑i = 1
n (W i − Dμ)′Λ−2(W i − Dμ). For the marginally uniform prior, the posterior 

conditional distribution of the expanded precision matrix Ω takes the conjugate form, Ω∣W,μ 
~ Wishart(Ip + S, n + p + 2). For the spike-and-slab prior, we sample the expanded precision 

matrix Ω∣W, γ using ESS as described in Section 3.1.

After a new Ω is sampled, we can then compute the induced expansion parameter 

D = diag(σ1
2, …, σp2)

1
2  and the induced correlation matrix R = D−1Ω−1D−1. For problems with 

very large p, it may also be sometimes useful to perform the posterior sampling in two 

stages, where the first stage updates all the parameters, while in the second stage, δ is fixed 

to be the posterior median graph estimated from the first stage. The two-stage procedure 

may improve the mixing of the chain by reducing the dimension of discrete parameters in 

the second stage, especially in the mixture model case discussed in the next section. For all 

the numerical examples used in this paper, adding an extra post-selection stage does not 

change the posterior mean estimators of interest by much and thus all results are reported 

using MCMC with a single stage.

4 Cause-of-death assignment using latent Gaussian mixture model

In this section we extend the latent Gaussian graphical models to model data from a mixture 

of underlying distributions. This extension allows us to complete our model to 

simultaneously estimate the latent correlation matrix and assign causes of death using VA 

data. Before we describe our model, it is worth noting that for many existing automated VA 

methods such as InSilicoVA (McCormick et al., 2016), InterVA (Byass et al., 2003), and the 

Naive Bayes Classifier (Miasnikof et al., 2015), the classification rule is closely related to 

the naive Bayes classifier under the assumption of (conditional) independence between 

symptoms, i.e.
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Pr(yi = c ∣ Xi) =
πc∏j p(Xij ∣ yi = c)

∑c = 1
C πc∏j p(Xij ∣ yi = c)

.

For algorithms using this conditional independence assumption, the information provided by 

training data (aside from a prior guess of πc) can be summarized by the conditional 

relationships between a single sign/symptom and causes. In contexts without training data, 

expert clinicians provide the same information in the form of informative prior beliefs (e.g. 

Byass et al., 2003; McCormick et al., 2016). Thus to extend the latent Gaussian graphical 

model to the context of cause-of-death assignment, we hope to incorporate such conditional 

relationships as well, in order to make full use of the existing information. This can be 

achieved similarly as before. We let yi denote the categorical indicator from a set of C causes 

of death for person i. A key goal of VA analysis is to associate unlabeled data with cause-of-

death assignments. With a generative model similar to Section 2, we let the mean of the 

latent variable Zi depend on the class of the i-th observation. The complete data generating 

mechanism can be written as

Xij = f(Zij),
Zi ∣ yi = c ∼ Normal(μc, R), c = 1, 2, …, C,

μc ∼ Normal(μ0c, σc2Ip),

where the priors for μ and R are the same as in Section 2. Following the setup presented in 

McCormick et al. (2016), we treat the causes of death for unlabeled observations as missing 

data, and the relationship between symptoms and causes are iteratively re-estimated until the 

distributions of individual cause-of-death probabilities are compatible with the population 

cause-specific mortality fractions (CSMF). We model the distribution of the class 

assignment indicator given the CSMF with a multinomial distribution and adopt an over-

parameterized normal prior for the CSMF introduced in McCormick et al. (2016). 

Specifically, we let yi∣π ~ Multi(π) and πc = expθc/∑cθc with θ ~ Normal(μθ, σθ
2Ic). We put 

diffuse uniform prior on μθ and σθ
2.

To account for the different strength of prior information for each mixture, we can also put 

an additional hyper-prior on σc2. In our experiments with unspecified σc2, we use weak 

independent priors such that σc2 ~ InvGamma(0.001, 0.001), for c = 1, . . . , C. Although not 

presented here, if marginal information on the continuous variable distributions is available 

in practice, we may also let Xij∣yi = c to be fcj(z) = F cj
−1(Φ(z)), where F cj is the fixed 

marginal distribution function, and inference can be similarly carried out with one additional 

step to update the observed continuous variables each time an assignment changes.

The mixture model approach allows the joint distribution of symptoms in the data to further 

guide the estimation of the latent correlation matrix. The proposed model is ideally suited 

for settings with some, but not extensive, training data. In verbal autopsy this typically 

happens when a small subset of deaths is assigned a cause either by a traditional medical 

autopsy or, more commonly, when clinicians review the verbal autopsy data and assign a 
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cause of death, so-called ‘physician-coded’ VAs. In most settings physician-coded VAs are 

comparatively (very) rare because physician coding is costly in terms of physician time and 

opportunity costs, e.g. physicians not seeing living patients. The informative prior setup we 

propose allows researchers to combine prior or clinician-derived expert information with 

training data. Conceptually, in the extreme case when no training data exist, the latent 

Gaussian mixture model can still be estimated given strong informative priors on μ, i.e. the 

conditional probabilities of symptoms, and the latent correlation matrix will be estimated 

dynamically based on cause assignments in each iteration. In the following sections we show 

the advantages of combining both strong priors and limited training data using both 

simulated and observed data.

Finally, if the labeled and unlabeled deaths come from different populations (e.g. the labeled 

deaths occur in a high Malaria region whereas the unlabeled deaths do not), then one could 

let the labeled and unlabeled deaths follow two multinomial distributions with different π, or 

further include additional subpopulation-specific π. Posterior inference of π, μ and R can be 

similarly carried out as in Section 3.2 with minor modifications. The posterior assignment 

distribution for each death can then be obtained by averaging over B draws from the 

MCMC, i.e., 1
B ∑b = 1

B Pr(yi = c ∣ Zi
(b), μc(b), R(b), π(b)). We leave the detailed algorithms in the 

supplementary material.

5 Simulation evidence

In this section we conduct simulation experiments to characterize the performance of the 

proposed method for both the estimation of R under the latent Gaussian framework and 

classification under the mixture framework. We describe our data generation process and 

provide results for correlation matrix estimation and graph recovery. Additional simulation 

results for classification accuracy are included in the supplementary material.

To examine the performance of our method in recovering the latent correlation matrix under 

different scenarios, we follow a data generating procedure similar to those in Liu et al. 

(2012) and Fan et al. (2016). In all our simulations, we generate the sparse precision matrix 

Ω so that ωjj = 1, and ωjk = tajk, where ajk ~ Bernoulli((2π)−0.5 exp(∥zj − zk∥2)/(2c)) and zj’s 

are independent bivariate uniform random variables sampled from [0, 1]2. We set c = 0.2 so 

that on average each node has 6.4 edges in the graph, and set t so that the precision matrix is 

positive definite. In all our examples we further rescale Ω so that its inverse is a correlation 

matrix. We consider the following two scenarios using the assumed generative model:

i. Assume X contains 10% continuous Gaussian variables and the marginal means 

for the latent variables μj ~ Unif[−1, 1], and let the marginal prior mean μ0 be the 

true μ.

ii. Same as before, except the marginal prior μ0j is misspecified to be sign(μ0j) * 

μ0j
2 , and we further generate continuous variables from the misspecified marginal 

distribution so that Xij
3  is marginally Gaussian.
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The misspecified case reflects the practical scenario where more extreme marginal 

probabilities are relatively easier to solicit but may be provided on a different scale 

compared to the truth. In all our simulations we set n = 200, p = 50, and randomly remove m
% of the entries in the data matrix to represent m% missing data. We repeat the simulation 

under each scenario 100 times. The results are similar for synthetic data with only binary 

variables and thus are omitted from reporting here. For both proposed models, we run the 

MCMC 3,000 iterations and report the mean estimator for R from the second half of the 

posterior draws. In this simulation study, we found 3,000 iterations is sufficient for the chain 

to converge, which takes our Java implementation about 5 minutes to compute on a 

MacBook Pro with 2.6 GHz Intel Core i7 processor.

To benchmark the performance of our method in recovering the true correlation matrix, we 

compare our method with the semi-parametric estimator proposed in Fan et al. (2016). To 

obtain a fair comparison with our method that uses marginal priors, we calculate the rank-

based estimator with the prior marginal probabilities, instead of the empirical marginal 

probabilities calculated from data. In our experiments described above, this approach leads 

to better estimation of R. We note that this substitution may harm the estimator performance 

when marginal priors are misspecified significantly. We also compare our methods with 

other Bayesian Gaussian copula graphical models with the G-Wishart prior, estimated using 

the birth-death MCMC (Mohammadi et al., 2017) and reversible jump MCMC (Dobra et al., 

2011). Marginal priors cannot be used in these two approaches since they are treated as 

nuisance parameters and do not enter the likelihood. Both sampling methods were 

implemented with the BDgraph package (Mohammadi and Wit, 2017). We drew 10,000 

samples with the first half discarded, and calculated the induced correlation matrix from the 

posterior mean of the latent precision matrix. We compare the estimated correlation matrix 

error R − R in terms of the matrix element-wise maximum norm, spectral norm, and 

Frobenius norm. The results are shown in Table 1. The posterior mean estimator R from the 

proposed approach consistently outperforms the rank-based estimator for all three norms and 

is more robust to missing data and model misspecification.

To evaluate performance for graph recovery under the spike-and-slab prior and the G-

Wishart models, we can directly threshold the marginal posterior inclusion probabilities, 

p(δjk = 1 ∣ X), calculated by the proportion of iterations where an edge is selected. We define 

the false positive rate and true positive rate by

FPR = FP
p(p − 1) ∕ 2 − ∣ E ∣ , TPR = TP

∣ E ∣ ,

where E is the number of edges in the graph. Table 1 shows the comparison of the receiver 

operating characteristic (ROC) curve using Area Under Curve (AUC) and maximum F1 

score. Under all scenarios our estimator yields better AUC and F1 scores, especially when 

the fraction of missing data is high.
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6 Analysis of verbal autopsy data

In this section we present results comparing the proposed model and all of the widely 

adopted algorithms for cause-of-death assignment using VA data in two contexts. First, in 

Section 6.1, we compare the different methods using a set of gold standard data. In this 

scenario, we have sufficient labeled data to obtain good estimates of the conditional 

distribution of each symptom given each cause. This setting mimics a scenario where 

informative prior information is available and of high quality, which is common but not 

ubiquitous in practice. In Section 6.2, we evaluate our methods using data from health and 

demographic surveillance system (HDSS) sites where the missing data proportion is much 

higher and the sample sizes are smaller. We compare different methods with physician-

coded causes of death and show that the proposed approach is able to improve classification 

accuracy compared to both InterVA and the Naive Bayes classifier with noisy marginal 

priors that are poorly specified, in the scenarios where no or little labeled data are available. 

In both scenarios, we also explore the possibility of supplementing the model with labeled 

data that potentially come from a different cause-of-death distributions, in order to improve 

the estimation of the latent dependence structures. However, in all experiments, we do not 

assume the labeled data follow the same cause-of-death distribution in order to achieve fair 

comparisons with other methods.

6.1 PHMRC gold standard data

We first evaluate the performance of the proposed methods using the Population Health 

Metrics Research Consortium (PHMRC) ‘gold standard’ VA dataset (Murray et al., 2011a). 

The PHMRC dataset consists of about 7,000 deaths recorded in six sites across four 

countries (Andhra Pradesh, India; Bohol, Philippines; Dar es Salaam, Tanzania; Mexico 

City, Mexico; Pemba Island, Tanzania; and Uttar Pradesh, India). Gold standard causes are 

assigned using a set of specific diagnostic criteria that use laboratory, pathology, and 

medical imaging findings. All deaths occurred in a health facility. For each death, a blinded 

verbal autopsy was also conducted. We removed all deaths due to external causes, e.g., 

homicide, road traffic, etc., since the conditional probabilities of many symptom given an 

external cause is less meaningful, and external causes are also much easier to identify with a 

deterministic screening procedure in practice. For the rest of the deaths from 26 causes, we 

randomly selected 1,000 deaths as testing data, additional 1,000 deaths as labeled data, and 

used the rest of the dataset to calculate the conditional probability matrix of each symptom 

given each cause as the informative prior. Several VA algorithms can be fit using this 

conditional probability matrix only, including InterVA (Byass et al., 2003), Naive Bayes 

Classifier (Miasnikof et al., 2015), and InSilicoVA (McCormick et al., 2016). For InterVA 

and InSilicoVA, we use the exact same conditional probability matrix described above, 

without truncating them into discrete levels or reestimating them in InSilicoVA. We also 

compared the performance with the Tariff method (James et al., 2011; Serina et al., 2015) 

implemented in the openVA package (Li et al., 2019a). The Tariff method is fitted with the 

labeled deaths as training data as it does not directly utilize the conditional probabilities as 

the other methods above. We fit the proposed model with both the unlabeled and the labeled 

data, assuming that the cause distributions are independent between the two datasets. In this 

way, the additional information provided by the labeled data is restricted to only the 
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conditional distribution of symptoms given causes. The comparison is implemented in the R 

statistical programming environment (R Core Team, 2018). For InSilicoVA, we drew 10,000 

posterior samples with the first half discarded.

We repeated this experiment 50 times. For the proposed model, we ran the MCMC chains 

for 20,000 iterations with the first half discarded as a burn-in period, and every 10th sample 

was saved. To assess the performance in estimating class probability, as is a main goal in VA 

analysis, we also compared the estimation of π with the truth using ‘CSMF accuracy’ 

(Murray et al., 2011b) defined as ACCcsmf = 1 −
∑c = 1

C ∣ πctrue − πc ∣
2(1 − min πtrue)

. We put the hyper-prior 

described in Section 4 on σ2. We compared with the truth in terms of the accuracy of most 

likely cause, top three most likely causes, and CSMF accuracy. Figure 2 shows clear 

improvements of the proposed method over alternatives that assume conditional 

independence.

6.2 HDSS sites

In this section, we apply our method to a dataset from the Karonga HDSS (Crampin et al., 

2012). The Karonga site monitors a population of about 35,000 in northern Malawi near the 

port village of Chilumba. The current system began with a baseline census from 2002–2004 

and has maintained continuous demographic surveillance with verbal autopsy on all deaths 

since 2002. To validate the proposed method, we use 1,900 adult deaths from Karonga that 

occurred to people of both sexes from 2002–2014. All deaths have both a VA interview and 

a physician-assigned causes of death. The distribution of the deaths by cause and year can be 

found in the supplementary material.

The Karonga VA data were first coded by two physicians, and if they disagreed, a third 

physician adjudicated and determined the final cause assignment. These assignments were 

originally coded into 88 cause categories. We removed the small fraction of deaths due to 

external causes (such as traffic accident and suicide) from this dataset since they are in 

practice easy to classify and may be conditionally independent from most of the symptoms. 

Given the limited sample size, we further aggregated the remaining causes into broader 

groups. We aggregated the assignments into 16 subcategories. We remove the symptoms that 

are missing for over 90% of the data which reduces the size of the symptom list to 92. 

Finally, we formed a “prior” dataset by taking all the deaths (VA symptoms and the 

physician-assigned causes) during 2002–2007 – about 50% of the entire dataset. Because the 

physician-provided conditional probabilities, P(symptom∣cause), used in InterVA and 

InSilicoVA are defined with respect to a different cause list, we calculated the empirical 

P(symptom∣cause) matrix from the training data so that P(symptom s∣cause c) = (number of 

s = 1 occurring with c)/(number of c), and replace 0 and 1 in the prior probabilities with 

0.5pmin and 1 − 0.5(1 − pmax).

We first explore the performance of the proposed method with only a small number of 

labeled data. We randomly selected α% of the data after 2007 and reveal their labels, for α = 

5, 10, 20. Unlike the random split in the previous example, now we use the smaller fraction 

of labeled data that are from the same period as the testing data; thus, we may have more 
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accurate estimates of P(symptom s∣cause c). However, models trained on the labeled data 

ignoring prior information may suffer from high variance due to the small size of the labeled 

data that determine the classification rule. Figure 3 illustrates the comparison of various 

methods using either the prior information or the labeled data, based on the accuracy of the 

top-cause assignment and CSMF accuracy. As more labeled data are available, models 

trained on the labeled data show similar performance to models trained on less relevant prior 

information. However, the proposed methods, by combining both sources of information, 

consistently outperform models using only one source of information.

Finally, we fit the model on all the data from 2008–2014 using this empirical conditional 

probability matrix. We used the same hyperparameter setup as the previous subsection. In 

the VA questionnaires, there are several groups of questions probing different aspects of the 

same symptom, for example “fever of any kind” and “fever lasting less than 2 weeks”, or 

“male” and any pregnancy-related symptoms. Such questions are expected to be conditional 

dependent due to the structure of the questionnaire, and thus we fix the corresponding 

selection indices to be 1 in the inverse correlation matrix. We compare our method with the 

other methods using the same “prior” information. Table 2 summarizes the performance of 

each algorithm, and Figure 4 shows the estimated CSMF compared to the truth.

In addition to the structure induced by the questionnaire, we also recover interesting 

symptom pairs with conditionally dependent latent factors. For example, the latent variable 

underlying history of high blood pressure is strongly positively associated with that of 

paralysis of one side of the body, which is expected given the relatively high prevalence of 

cardiovascular diseases in the data. In our experiment, there are 3874 potential edges 

excluding the ones known from the survey. Table 3 summarizes the list of symptom pairs 

with posterior inclusion probability, p(δjk = 1 ∣ X), greater than 0.5.

7 Discussion

Understanding the correlation structure among high dimensional mixed data in the presence 

of missing data is a challenging task. In this work we propose a method that models the joint 

distribution of variables of mixed types and leverages marginal prior information. Using 

both simulation, gold-standard, and physician-coded VA data, we demonstrate that our new 

framework can significantly improve estimation of the latent correlation structure, graph 

recovery, and classification performance. The estimation of sparse inverse correlation 

matrices proposed in this paper allows us to decouple the parameterization of the marginal 

distributions of variables from their dependence structures. It is, however, important to 

notice that the dependence structures the model learns are between the latent variables rather 

than the binary observations. In understanding VA data, the interpretation of conditional 

dependence of underlying latent processes driving the presence of symptoms are usually of 

more interest than the binary symptoms themselves, since the latter are sometimes subject to 

somewhat arbitrary cutoffs. In future research, it may also be interesting to explore other 

parsimonious representations (e.g. Murray et al., 2013; Gruhl et al., 2013; Jin and Matteson, 

2018) in the context of analyzing VA data. In particular, Bhadra et al. (2018) recently 

proposed a conditionally Gaussian density formulation in which the joint distribution of the 

observed mixed variables can be represented as a scale mixture of multivariate normals. This 
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formulation may provide another useful direction in characterizing the conditional 

independence relationship of the observed binary and continuous indicators more explicitly, 

without relying on the latent representation of copula models.

The proposed model can be extended in a few different ways. First, estimating the mixture 

model using MCMC may suffer from slow mixing when the sampler gets trapped in local 

modes. This is especially problematic with strong prior information on the extreme values, 

i.e. conditional probabilities close to 0 and 1. An alternative approach would be to target the 

posterior modes directly with deterministic EM-type algorithms (e.g. Ročková and George, 

2014; Li and McCormick, 2019; Gan et al., 2018). Second, symptom reduction in VA 

analysis is of key interest as a shorter set of symptoms can both reduce the cost as well as 

improve the quality of data collection. There has been active research on variable selection 

in Gaussian mixture models (Andrews and McNicholas, 2014), and consequently the 

proposed framework may also be extended to perform symptom selection in a data-driven 

way. Third, the model presented in this paper focuses mostly on binary and continuous data. 

Extensions to ordinal data are also possible by specifying priors on additional cut-off points. 

With a normal prior on the logscale differences between consecutive cutoffs, the proposed 

model can easily incorporate prior information on marginal probabilities of more than two 

levels. Finally, in this paper we only consider the case where all mixtures follow the same 

correlation matrix. Direct extension to group-specific correlation matrices would be 

straightforward, but estimating several correlation matrices independently in the context of 

VA can be problematic since mixture probabilities are highly unbalanced. Priors on joint 

distribution of multiple correlation matrix that allow them to borrow information needs to be 

developed.

Finally, we would like to draw attention to the fact that using marginal information to guide 

the modeling of joint associations is strongly related to stratified sampling. If we consider 

cause of death as an unknown stratification variable, the marginal informative prior helps 

smooth the potentially noisy estimates of the stratum effects from small samples. Thus the 

proposed approach might also be extended to improve inference with disproportionate 

samples, e.g. VA data collected from an HIV study site might have better samples of HIV 

deaths compared to deaths from other causes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Implied prior edge probability with λ = 10 for p = 100 graph.
The dots represent the median prior probabilities and the error bars represent the 0.025 and 

0.975 quantiles. The densities are derived from sampling 1,000 draws using MCMC from 

the prior distribution after 1,000 iterations of burn-in.
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Figure 2: CSMF and classification accuracy for PHMRC cross-validation study.
The metrics are evaluated on 1,000 randomly selected deaths for Tariff, InterVA, Naive 

Bayes classifier, InSilicoVA, and the proposed Gaussian mixture model. An additional 1,000 

randomly selected labeled death is used as input in the proposed model, but are not assumed 

to have the same distribution of causes.
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Figure 3: CSMF accuracy (Top row) and Classification accuracy (Bottom rule) for Karonga 
physician coded data from cross-validation.
The five different methods are plotted with different colors. Except the proposed Gaussian 

mixture approach, results using only the prior information are filled in white, and results 

trained on only the labeled data on filled in light gray. Tariff can only be fitted with labeled 

data. The proposed method uses both information. Methods using the prior information 

typically show higher accuracy in this experiment, as the size of the labeled data is small. 

The proposed method consistently outperforms alternative methods.

Li et al. Page 24

Bayesian Anal. Author manuscript; available in PMC 2020 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Scatter plot of the estimated CSMF against true CSMF for Karonga data from 2008 to 
2014 using different methods.
Causes with true fractions larger than 0.05 are labeled in the plot. The vertical bars 

correspond to the 95% posterior credible intervals estimated for InSilicoVA and the 

proposed method. The proposed Gaussian mixture model shows smaller bias.
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Table 1:
Simulation results under different scenarios.

The proposed latent Gaussian graphical model approach (Spike-and-Slab prior) outperforms the semi-

parametric alternatives, the marginal uniform prior (Uniform prior), and G-Wishart Gaussian copula graphical 

models, sampled using birth-death MCMC (G-Wishart BD) and reversible jump MCMC (G-Wishart RJ), in 

almost all scenarios.

Bias: ‖R − R‖ Structure: R−1

Case Missing Estimator M norm S norm F norm AUC max F1

(i) 0% Semi-parametric 0.45 6.13 6.35 0.70 0.70

Uniform prior 0.32 4.39 4.63 – –

G-Wishart RJ 0.30 3.74 3.94 0.48 0.66

G-Wishart BD 0.30 3.70 3.93 0.61 0.67

Spike-and-Slab prior 0.27 3.30 3.57 0.74 0.70

20% Semi-parametric 0.53 7.11 7.33 0.61 0.67

Uniform prior 0.35 4.93 5.25 – –

G-Wishart RJ 0.31 4.04 4.36 0.44 0.65

G-Wishart BD 0.32 4.06 4.39 0.56 0.67

Spike-and-Slab prior 0.29 3.64 3.96 0.67 0.68

50% Semi-parametric 0.64 9.35 9.45 0.44 0.65

Uniform prior 0.46 6.49 7.04 – –

G-Wishart RJ 0.34 4.37 4.81 0.38 0.64

G-Wishart BD 0.34 4.43 4.90 0.51 0.67

Spike-and-Slab prior 0.35 4.63 5.09 0.56 0.67

(ii) 0% Semi-parametric 0.42 5.61 5.90 0.72 0.70

Uniform prior 0.32 4.39 4.62 – –

G-Wishart RJ 0.30 3.75 3.96 0.47 0.66

G-Wishart BD 0.30 3.70 3.92 0.61 0.67

Spike-and-Slab prior 0.26 3.36 3.76 0.73 0.70

20% Semi-parametric 0.49 6.59 6.87 0.63 0.67

Uniform prior 0.35 4.92 5.25 – –

G-Wishart RJ 0.31 4.04 4.37 0.44 0.65

G-Wishart BD 0.32 4.04 4.42 0.56 0.67

Spike-and-Slab prior 0.27 3.58 4.05 0.66 0.68

50% Semi-parametric 0.61 8.79 8.95 0.46 0.65

Uniform prior 0.46 6.46 7.01 – –

G-Wishart RJ 0.34 4.36 4.81 0.38 0.63

G-Wishart BD 0.34 4.43 4.85 0.51 0.67

Spike-and-Slab prior 0.29 3.92 4.54 0.55 0.67
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Table 2:
CSMF accuracy, Top 1 to 3 cause assignment accuracy for Karonga physician coded data.

The marginal probabilities are calculated with data from 2002 to 2007. The training data consist of all the data 

from 2002 to 2007. The testing data are the rest of the data from 2008 to 2014. The proposed Gaussian 

mixture model achieves the highest CSMF and Top 1 cause assignment accuracy and also high Top 2 and 3 

cause assignment accuracy.

CSMF Top1 Top2 Top3

Tariff 0.626 0.375 0.538 0.695

InterVA 0.744 0.512 0.625 0.703

Naive Bayes 0.774 0.442 0.641 0.733

InSilicoVA 0.839 0.501 0.689 0.767

Gaussian Mixture 0.887 0.533 0.674 0.745
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