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We present a continuous formulation of epidemic spreading on multilayer networks using a tenso-
rial representation, extending the models of monoplex networks to this context. We derive analytical
expressions for the epidemic threshold of the SIS and SIR dynamics, as well as upper and lower
bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasi-stationary
state (QS) method we numerically show the existence of disease localization and the emergence of
two or more phase transitions, which are characterized analytically and numerically through the
inverse participation ratio. Furthermore, when mapping the critical dynamics to an eigenvalue
problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor
as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a
layer is comparable to the spreading rate across layers, the individual spectra of each layer merge
with the coupling between layers. The formalism introduced here provides a unifying mathemat-
ical approach to disease contagion in multiplex systems opening new possibilities for the study of
spreading processes. Finally, our findings show the importance of considering the multilayer nature

of many real systems, as this interdependency usually gives raise to new phenomenology.

I. INTRODUCTION

Epidemic like spreading processes are paradigmatic, as
they can describe not only the temporal unfolding and
evolution of diseases, but also of ideas, information and
rumors in fields as diverse as biological, information and
social sciences [I]. Due to their fundamental nature and
simplicity, two particular models have received special
attention by the scientific community, the Susceptible-
Infected-Susceptible (SIS) and the Susceptible-Infected-
Recovered (SIR). In both models, an infected individual
spreads the disease to its neighbors at a given (spread-
ing) rate and infected individuals recovers at some other
rate. The difference between both scenarios is that in the
SIS case, once recovered, infected individuals are consid-
ered to be able to catch the disease again, and therefore,
they go back to the susceptible state. On the contrary,
in the SIR model, recovered individuals are supposed to
acquire permanent immunity -hence why they are also
referred to as removed- and they do not play any active
role in the spreading process anymore. There are many
other variations of these two models, including more re-
alistic and intricate compartmental models [I], however,
these two schemes are sufficient to capture the main phe-
nomenology of disease dynamics -and many other con-
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tagion like processes-, including the onset of epidemics,
while remaining simple.

Originally, the modeling of diseases was confined to ho-
mogeneous systems, where any pair of individuals have
the same probability of being in contact [2,B]. As shown
since early 2000’s, this is not in general a realistic assump-
tion, and therefore, previous results were re-examined
considering non-trivial patterns among individuals, such
as power law degree distributions [4H6]. In [7], the au-
thors presented the heterogeneous mean-field approach
(HMF), showing that the epidemic threshold tends to
zero in the thermodynamic limit on scale-free networks.
This observation that the network structure radically in-
fluences basic but fundamental pillars of epidemiology -
like the epidemic threshold and immunization protocols-
changed completely our previous understanding of how
disease outbreaks should be modeled, placing the focus
of attention not only into new ways to model disease
dynamics, but also to the incorporation of real contact
patterns into the dynamical settings [3, BHIT].

Since then, many computational and theoretical frame-
works have been proposed, which undoubtedly had made
the modeling of disease contagion an active area of re-
search and have provided new phenomenological insights
to, and accurate methods for the study of real outbreaks.
For instance, instead of the HMF approach, one can
adopt the quenched mean field (QMF) method, where
an specific network is fixed and the dynamics is modeled
in terms of nodal probabilities [I2] [I3]. The results ob-
tained with the latter approach show that the epidemic
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threshold depends on the inverse of the leading eigen-
value of the adjacency matrix [12) [I3] -a similar result
was also obtained using a discrete Markov Chain Ap-
proach [I4]. Other scenarios explored recently include
the case of temporal networks [I5, [16], competing and
interacting diseases [I7H23] as well as the inclusion of hu-
man behavioral responses [24H26].

However, the vast majority of the works so far deal
with single-layered networks, despite the fact that many
real systems exhibits a large degree of interconnectiv-
ity and hence should be modeled as layers of coupled
networks. Such systems represent multimodal, different
categorical or temporal interactions, as for instance social
relations, the ecosystem formed by different online social
networks or modern transportation systems [27]. With
this in mind, in Ref. [28], the authors showed that disre-
garding the multilayer structure can lead to misleading
conclusions, missing fundamental aspects of the critical
dynamics of spreading like processes. Such findings rein-
force the importance of a more detailed investigation of
contagion processes on multilayer networks. In this work,
we develop a theoretical and computational framework
for the analysis of disease spreading, generalizing the re-
sults of Ref. [I3] to multilayer networks. In doing so, we
provide a continuous counterpart to the model presented
in [28] in terms of the tensorial notation introduced in
[29]. The methodology introduce here allows for several
new results: first, we are able to write down in a compact
form the equations describing the disease dynamics in a
multilayer system. Secondly, we derive the correspond-
ing epidemic thresholds for the SIS and SIR case as well
as establish bounds for the prevalence of the disease in
the SIS scenario. We also identify previously unnoticed
multiple transitions and disease localization, which are
traced back to the very topological nature of the system
and described in terms of the eigenvalue spectra of the
supra-contact tensor and the localization of eigenstates.

The rest of the paper is organized as follows: we first
formally define a multilayer network, introducing the ten-
sorial notation. Next we derive the equations describing
the dynamics of the disease for the SIS scheme, calcu-
lating the upper and lower bounds for the prevalence of
the disease in the steady state, followed by the analyti-
cal expression for the epidemic threshold -which is also
derived for the SIR model. Furthermore, we use the re-
sults in [30] to define some constraints on the critical
point. In addition, we explore the notion of localization
of eigenstates, formerly applied on epidemic spreading
in [3I], in order to inspect multiple phase transitions.
Finally, we also present results from extensive numerical
simulations considering multiplex networks with scale-
free and scale-rich structures, computing their respective
epidemic thresholds. Finally, we present our conclusions
in the last Section.

II. CONTINUOUS FORMULATION FOR
MULTILAYER EPIDEMIC SPREADING

A. Tensorial representation

We use here the tensorial representation, formerly pre-
sented in [29]. We also adopt the Einstein summation
convention, in order to have more compact equations: If
two indices are repeated, where one is a superscript and
the other a subscript, then such operation implies a sum-
mation. Aside from that, the result is a tensor whose
rank lowers by 2. For instance, AFA] = > AZAY. In
our notation we use greek letters to indicate the compo-
nents of a tensor. In addition, we use tilde (*) to denote
the components related to the layers, with dimension m,
while the components without tilde have dimension n and
are related to the nodes.

A multilayer network is represented as the fourth-order
adjacency tensor M € R™*nxmxm [9g]

oF _
Mgs =

where Eg(ﬁl;) € Rrxmxmxm
indicate the tensor in its respective canonical basis. Ob-
serve that we can extract one layer by projecting the

R™ ™ and €99 (ijhk) €

tensor Mg "‘5 to the canonical tensor E (7). Formally,
from [29] We have
Mg B (77) = C§ (iF) = A(7), (2)

where 7 € {1,2,...,m} is the selected layer and Af() is
the adjacency matrix (rank-2 tensor). Moreover, aiming
at having more compact and clear equations we define
the all-one tensors u, € R™ and UP? € R™*™. Here, we
restrict our analysis to multilayer networks with a diago-
nal coupling [27]. In other words, each node can have at
most one counterpart on the other layers. In addition, for
simplicity, we focus on unweighted and undirected con-
nected networks, in which there is a path from each node
to all other nodes.

Besides the adjacency tensor, the network of layers [30]
also characterizes the topology of the system. In this
reduced network representation, each node represents one
layer and the edges between them codify the number of
edges connecting those two layers. Formally we have,

v
vy =M Us, (3)
where U7 € R™*™_ Note that such a network presents
self-loops, which are weighted by the number of edges on
the layer. Additionally, since we assume that the layers
have the same number of nodes, the edges of the network
of layers have weights equal to the number of nodes n.



Another important reduction of the multilayer network
is the so-called projection [29]. Such network aggregates
all the information into one layer, including self-loops
that stand for the number of layers in which a node ap-
pears. Mathematically, we have

Pg = ad 173 (4)

’Y§’

where Pﬁo‘ € R**",

B. The Susceptible-Infected-Susceptible (SIS)
model

Next, we define the SIS disease dynamics, which is
modeled as follows. We associate a Poisson process to
each of the elementary dynamical transitions: intra and
inter layer spreading and the recovery from the infected
state. The first two processes are associated to the edges
of the graph and are characterized by the parameters
A and 7, respectively. The latter transition is modeled
in the node, also via a Poisson process with parameter §.
Using the tensorial notation defined above, the equations
describing the systems dynamics read as

dXﬁ(; ay
2 — X5+ (1= X5) ARG A Xass (5)

where the supra contact tensor is defined as

Rgg()\,n) MﬁnE”( 6)67—1- MB"E"( 6)(Ug—5g),
(6)
which encodes the contacts. It has a similar role as the
matrix R in [28]. Important enough, note that we have
implicitly assumed that the random variables X ;5 are

independent. Formally, if the state variable .S 55 18 such

A

that S 55 = 1 when the node £ on layer 4 is an spreader
and Sgz = 0 otherwise, then P[S;; = 1] = = Xg;- In
this way, the independence of randﬂ om varlables 1mphes
that P[Sﬁé =1,8s =1] = P[SM = 1]P[Say = 1] =
X45Xa5. Cator and Van Mieghem [32] proved rigorously
that the states of any two nodes in the SIS model are
non-negatively correlated for all finite graphs. This re-
sult can be easily extended to our case, since we are con-
sidering constant rates and Markovian processes. Due to
the positive contribution of the infected nodes we have
P[Sg; = 11Sa5 = 1] > P[Sy; = 1], implying that the
model is always overestlmated A similar conclusion was
also obtained in [I3] for the monolayer model.
Moreover, we define the macro-state variable as

1 ~
= — X ;UP 7
p nm~ P9 ’ ( )

which is the average of the individual probabilities. Note
that the steady state is not an absorbing state in the
Markov sense, since there is a set of possible states where
the system remains trapped and there is a stochastic vari-
ation over time. Moreover, there are many different con-
figurations for which the fraction of infected nodes is the

same. More formally, there is a set of states above the
threshold which have finite probability larger than zero,
configuring a meta-state. The only absorbing state of
this set of equations is thus the disease-free state, since
when it is reached the (micro and macro) dynamics stops.

1. Upper and lower bounds for the steady-state

Let us first obtain some bounds for the epidemic in-
dX .z
cidence considering the steady state, where 5 —

For a monolayer system those bounds were calculated
in [I3]. We consider a multilayer network without self
loops and denote the steady state of each node as X% s

dX gz
Then, imposing 755 = 0 to Eq. 5| we have

nXas 1

)\Ra7()\,
X% = - .
PARGI(N XS +u ARGIO XS +1
(8)

3 Is then obtained by iterating the above

oo

The value of X

equation from an 1n1t1al value, until convergence. Upper
and lower bounds can be obtained by considering only
the first iteration of Eq.[8] For the upper bound we have

1

X<l — (9)
Bé — A ~
(2) dys +1
where
dg5 = ai@\ MUaz = w0)
(6% /)7 o v
= MﬁfE;(dd) XMng5 (BB)us

As can be noticed, there are two different contribu-
tions to the upper bound coming from intra and inter-
layers connectivity. Both of them tend to increase the
probability of a node being infected. Furthermore, the
higher is the degree, the higher is this upper bound.
On the other hand, for the lower bound, let us denote
Mln{X 3} = X™in - Then, substituting Xmm in Eq Iwe

have

. 1
xmin 5 1 )
- Apay _ Y min (11)
MRB(S (A, M)Uqps X™in 41

Denoting Min{d,;} = d™ | we obtain

; 1
Xmlll 2 1 - (12)

O

which can be inserted into Eq. [8| to give,

) 1
X0 > xmin > ] : . (13)
Bo 1+ ;n/::; [(%) dmin _ 1]




Finally, combining Egs. [9] and [I3] the bounds of Eq.

are

1 1
- d .- N < Xﬁ <1- N,
B3 min A ~
1+ g |(3) e 1] (%) dss+ 1
_ (14)
Note that the higher ™™, the closer the lower and upper

bounds. In the extreme case (%)

8

1

O

— oo the bounds ap-

proach each other and all nodes tend to be infected. Phe-
nomenologically, the latter parameter configuration mod-
els the limiting case of a Sl-like scenario, where p = 0.
In such a dynamical process all individuals are infected
in the steady state.

2. FEigenvalue problem

As we will show below, the epidemic threshold is
closely related to the leading eigenvalues of the supra-
contact tensor. Here we describe the eigenvalue problem
in general, and then in the following section we show the
connection with the epidemic threshold.

The eigenvalue problem can be generalized to the case
of a rank-4 tensor leading to

Rggfoz’y(A) = AfﬁS(A)7 (15)

where A is an eigenvalue and fﬁg(A) is the correspond-
ing eigentensor. In addition, we are assuming that the
eigentensors form an orthonormal basis. Importantly,
the supra-contact matrix, R, in [28] can be understood
as a flattened version of the tensor ’Rg;f()\,n). Conse-

quently, all the results for R also apply to the tensor
R. As argued in [29], that supra-adjacency matrix cor-
responds to unique unfolding of the fourth-order tensor
m yielding square matrices. Following this unique map-
ping we have the correspondence of the eigensystems.
Here, we consider that the eigenvalues are ordered as
Ay > As > ... A, and denote the individual layer eigen-
values as Al.

8. The epidemic threshold

Assuming g > 0 and that the dynamics has reached

X5 .
the steady state, - 0, we can write eq. |5 as
X A
B _ () ROT X2 (16)
_ Y™ 67t
1 XﬁS I B
Expanding the left-hand term following the geometrical
X% k
series, where 177% = > e (X;g) for X725 < 1, we
obtain
lu’ > o0 k _ OL’_Y o0
(X) 3 (Xﬁg) = REI\ )X, (17)
k=1

In addition, similarly to [I3], suppose XEE = €fg5
where € is an arbitrary small constant and fB 5 > 0. Sub-

stituting in eq. and dividing by ¢ we have

RZ;(/\vn)faa = (%) fo5 e (%) (fﬁg)2 + O(e?). (18)

Considering a sufficiently small € > 0 this expression re-
duces to the eigentensor equation

RO for = (5) £ (19)

leading to the critical point

(5), o

where A; is the largest eigenvalue of R, which is the
same as the largest eigenvalue of R in [28]. Moreover,
if nME1EY(B) < AMggEg(SS), the threshold of the
system is dominated by the individual layer behavior and
the epidemic threshold is approximated to that of a SIS
model on monolayers, when considering the union of m
disjoint networks. Consequently, the epidemic threshold
is determined by the largest eigenvalue, considering all
layers. The same conclusion was reached in [28] using
perturbation theory on the supra-contact matrix.

C. The Susceptible-Infected-Recovered (SIR)
Model

Aside from the SIS epidemic model, we can also con-
sider the SIR model. The recovered and susceptible
states are denoted here as Yﬁ sand Z 85> respectively. Us-
ing a similar notation as in the latter section and associ-
ating Poisson processes to nodes and edges, we have the
dynamical set of equations

W55 X 2 AR (OX
dt =K 55"’ B4 Rﬁg( a77) oF
dY .z
Wﬂé = nX g (21)
dZ,BS B o
W - _Zﬂs)\ngS (Aan)Xa;/‘

Note that the Poisson processes on the nodes model the
recovering, whereas on the edges, model the spreading.

1.  Epidemic threshold

Since there is no dynamic steady state in the SIR
model, the epidemic threshold has a different interpre-
tation from that of the SIS model. Above the threshold
the total number of recovered individuals reaches a fi-
nite fraction of the population, when the dynamic starts
with a small fraction of infected individuals. Formally,
the initial condition are: X45(0) = =, Y35(0) = 0 and

n’



TABLE I: Structure and spectra of the normalized network
of layers <I>:§’ (A,m). The eigenvalues assumes that the average

degree of each layer, (k'), is the same, i.e. (k') = (k), V.

Network @I\ m) Eigenvalues
<kl:1> n <k> - g
Line with 2 nodes [ . Ao ] (k) + 3
T ET
- . )
<kl 1> n O <
. . . A , k) — V21
Line with 3 nodes 2 (k= 2 { A
R LRSS
G NG
i n =2 n R
Multiplex 3 (kﬂ ) i (k) + 22
L A A |
Z45(0) = 1 — £, where ¢ is a small constant, ¢ < n.
Neglecting higher order terms, we have
dX g5 o
g = HXps T AR (A )Xoy (22)
After a proper factorization,
dX 55 . -
Bs o _ My )
A (RGIOWm) — E5T) Xas, (23)

where (5;‘;’ is a tensor analogous to the identity matrix,

whose elements are one if the indices are the same. The
epidemic threshold is as in eq. [20] which is the critical
value for both SIR and SIS dynamics.

III. SPECTRA OF R(\,n)

Since the epidemic dynamics is expressed as a function
of the supra adjacency tensor R(\,n), studying the spec-
tral properties of the latter could give further insights
about the whole process, especially the critical point. In
this section, we generalize the spectral results of inter-
lacing, obtained in [30, B3], to the tensorial description
adopted here. In addition, we also make use of the in-
verse participation ratio, IPR(A), as a measurement of
eigenvalue localization. Such ratio was firstly applied to
epidemic spreading in [3I], here we extend such metric
to the tensorial formalism.

A. Interlacing properties

Invoking the unique mapping and considering the re-
sults of [30, B3], we can use the interlacing properties
to relate the spectra of the multilayer network with the
spectra of the network of layers. First of all, we define
the normalized network of layers in terms of the supra
contact tensor as

- 1A
(I)g(Aan) = ﬁRﬁg()‘vn)Ugv (24)

where we are implicitly assuming a multilayer network
in which the layers have the same number of nodes and
a dependency on the spreading rates (the demonstration
that such tensor is an unfolding of the matrix exposed
in [30] is shown on Appendix A). Additionally, let’s de-
note by p1 > p2 > ... > py, the ordered eigenvalues of
<I>g(/\,77). Following [30], the interlacing properties imply

Aner—m+j < Hj < Aj7 (25)

for j = m, ..., 1. As examples, Table[[|shows the spectrum
of three simple networks of layers that can be computed
analytically: a line with two and three nodes and a tri-
angle. Figure [I| shows an schematic illustration of those
3 multilayer networks.

Furthermore, using similar arguments we can also ob-
tain results for the normalized projection, formally given
as

1 __ .5 5
Pg = ER[;;(AJﬂUgu (26)

whose ordered eigenvalues, denoted by v1 > vy > ... >
Vm, also interlace with the supra contact tensor satisfying

Apm—ntj Sv; <A, (27)

for j = n,...,1. Finally, the adjacency tensor of an ex-
tracted layer also interlaces, yielding to

AnmfnJrj < Aé < Aj7 (28)

for j =mn, ..., 1. These results show that the eigenvalue of
the multilayer adjacency tensor is always larger than or
equal to all of the eigenvalues of the individual isolated
layers as well as the network of layers.

The interlacing properties presented here imply some
constraints to the epidemic threshold. As advanced
in [30], let A;(M) be the i-th eigenvalue of the tensor
M and consider that the set of eigenvalues is ordered as
before. Moreover, for simplicity, we suppress the argu-
ment when referring to the supra-contact matrix. First of
all, assuming a fixed ratio of spreading rates, we observe
that the eigenvalue of the multilayer follows

(2) B A1<Alz<f>> Ai

7
where (%) is the critical point for the single layer 7 and

<2>¢ N A1(1<I> = Ail (30)

@
where (%) denotes the critical point of the network of

v

Vi€ 1,2,....,m, (29)

SN

layers. Finz;lly, considering the projection
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FIG. 1: (color online)Schematic Illustration of the 3 multilayer networks cases considered as examples. Top panels represent
the original networks which give rise to three distinct configurations for the networks of layers. See the text for more details.

P
where (%) is the critical point of the normalized pro-

jection. Thils, the spreading process on the whole system
is at least as efficient as it is on the layers and on the net-
work of layers. Note that efficiency is understood here in
terms of the position of the critical point, and not re-
garding the fraction of infected individuals in the steady
state.

B. Localization and spreading of diseases

Next, we investigate using the analysis of Section[[TB2]
the behavior of the system near the phase transition and
whether the phenomenon of disease localization shows
up. These two issues were explored for monoplex net-
works in  [10] and [3T], respectively, but have not been
addressed for the case of multilayer systems. The nodal
probabilities can be written as a linear combination of
the eigenbasis of R as

Xg5= > c(A)fg5(0), (32)

where ¢(A) are the projections of X 5 on the eigentensors
f. Similarly to [31I], substituting such expression on the
middle term of eq. [§] we obtain

)‘Z / A/ Alfa'y(Al)fa'y( )
B> R, ®

Considering only the contributions of the first eigen-
value and eigentensor, for A > A, the first order approx-
imation of the macro state parameter is p &~ a;7, where

= (%Al - 1), which yields

fﬁS(Al)Uﬁg
o] =

 nm(f5(A0)3UP 3

Such expression is exact if there is a gap between the first
two eigenvalues, as exposed in [I0] 31]. Furthermore,
considering two eigentensors we have p ~ a7 + ao7?.
Besides, following a similar approach as in [3I] we can

use the inverse participation ratio:

IPR(A) = ( fﬁg(A))4 Uss., (35)

In the limit of nm — oo, if IPR(A) is of order O(1) the
eigentensor is localized and the components of fﬁg(A)
are of order O(1) only for a few nodes. On the other
hand, if IPR(A) — 0 then this state is delocalized and

the components of fg5(A) ~ O (\/rlTn>

IV. MONTE CARLO SIMULATIONS

In order to compare with analytical results, we have
performed extensive numerical simulations using a Monte
Carlo method from [IT], [34] adapted to the case of
multilayer networks, which we describe in what fol-
lows. At each time step the time is incremented by
At = WM’ where N, is the number of in-
fected nodes, and N; and NN, are the number of intra-
layer and inter-layer edges emanating from them, re-
spectively. With probability WJ\W, one ran-
domly chosen infected individual becomes susceptible.
On the other hand, with probability m, one
infected individual, chosen with a probability propor-
tional to its intra-layer degree, spreads the disease to an
edge chosen uniformly random. Finally, with probabil-
ity m\?% one infected individual, chosen with a
probability proportional to its inter-layer degree, propa-
gates the disease to an edge chosen uniformly. If an edge
between two infected individuals is selected during the
spreading, nothing happens, only time is incremented.



The process is iterated following this set of rules, simu-
lating the continuous process described by the SIS sce-
nario.

The quasi-stationary state (QS) method [I1} B4] re-
stricts the dynamics to non-absorbing states. Every time
the process tries to visit an absorbing state, it is substi-
tuted by an active configuration previously visited and
is stored on a list with M configurations, constantly up-
dated. With a probability p, a random configuration on
such a list is replaced by the actual configuration. In or-
der to extract meaningful statistics from the quasi-static
distribution, denoted by P(n'), where n! is the num-
ber of infected individuals, the system must be on the
stationary state and a large number of samples must be
extracted. In this way we let the simulations run during
a relaxation time ¢, and extract the distribution P(nf)
during a sampling time t,. The threshold can be esti-
mated using the modified susceptibility [11], given by

()~ <<<pQS>2> - <pQS>2> 0)

(p9%)

where p@° is the quasi-stationary distribution P(n’). As
argued in [I1, B4] the susceptibility presents a peak at
the phase transition on finite systems. Such measure is
the coefficient of variation of the temporal distribution
of states over time on the steady state. Note that the
magnitude of the susceptibility x is not of primary inter-
est to us, but rather the position of its maximum value
with respect to u/\, since it will coincide with the critical
threshold for sufficiently large systems.

In addition, after obtaining the curves of x x A by
the QS method, we also apply a moving average filter in
order to get rid of the noise. Such an approach improves
the visual quality of the plots and does not interfere on
the results, since the epidemic spreading presents only
second order (i.e. continuous) phase transitions, and the
order of magnitude of the noise is smaller than those of
the peaks corresponding to the phase transitions.

The parameters used in the QS method are p, = 0.01,
to = 10% and ¢, varies from 10% to 3 x 10° in order to
obtain a smoother curve. The QS method demands a
large sample size, since it is estimating the variance of a
distribution. Moreover, we construct the y x A curves in
steps of A\ = 1073 and the moving average window has
5 points.

V. 2-LAYER MULTIPLEX SYSTEMS

In this section we numerically study 2-layer multiplex
systems. First, we focus on the phase diagram of the
spreading process as a function of the inter and intra
layer spreading rates for both, SIS and SIR scenarios.
Next, we analyze the spectral properties of such systems,
comparing with results of Section[[T]] Finally, we perform
Monte Carlo simulations that show the existence of mul-
tiple phase transitions on multiplex networks. The latter
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FIG. 2: Phase diagrams over a 2-Layer multiplex system,
where each layer has n = 10* for a fixed value of p = 1.
(a) Density of spreaders as a function of the parameters n
and A. (b) Density of recovered individuals as a function
of the parameters n and A. Colors represent the fraction of
spreaders and the white line is the threshold calculated using

equation [20]

results are analyzed in terms of the spectral properties of
R(A,m).

A. Numerical solution

Results shown in this section are the numerical solu-
tions of the ODE systems [ and [21] using a Runge-Kutta
(4,5) algorithm [35]. We consider a 2 layer multiplex net-
work (m = 2), where each layer has n = 10* nodes. In
order to build a multiplex network where the epidemic
thresholds associated to the individual layers are well
separated, we must guarantee that A! > AL. There-
fore, we chose the degree distribution of the first layer
to be P(k) ~ k=2 whereas that of the second layer is
P(k) ~ k=*5. Both layers are created using the uncorre-
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lated configuration model [36]. Moreover, we consider a
multilayer network in which every node has its counter-
part on the other layer. This pairing of nodes of different
layers is made randomly. Each result is the solution con-
sidering one single (and fixed) multiplex network.

Figure[2]shows the phase diagram considering the aver-
age fraction of spreaders for the SIS dynamics (or recov-
ered for the SIR dynamics) as the macro-state variable
as a function of the spreading parameters A and 7 for
a given recovering rate y = 1. The dashed white line
denotes the epidemic threshold obtained from eq. 20] In
(a) we show the SIS scenario, while in (b) corresponds to
the SIR model. In both cases, it is possible to observe
two changes on the system’s behavior. The first on the
epidemic threshold, while the second near the epidemic
threshold of the second layer. In addition, we note the
agreement between the theoretical epidemic thresholds
and the numerical results. Furthermore, the higher the
7, the lower the epidemic threshold tends to be, which
is a consequence of the eigentensor problem. Also note
that p increases, for a fixed A\ as 7 increases, even for
A ~ 0, which means that in such extreme cases, the dis-
ease spreads mainly on the interlayer edges.

Figure[3|shows the phase diagram for ; = 1 and differ-
ent values of the parameter n for the SIS dynamics. For
7 = 0 we have no inter-layer spreading, while for n = 0.5
we have a fixed spreading rate, independent of the intra-
layer rates. In addition, we also evaluated cases where
the ratio ¥ is constant. In Fig. 3] (a) we have the global
behavior of the system, which is an average of the indi-
vidual behavior of the layers, represented in panels (b)
and (c), since both layers have the same number of nodes.
Furthermore, we also observe that the two individual net-
works show different behaviors near the epidemic thresh-
old [I0]. The first layer (Fig. [3[ (b)) has a lower epidemic
threshold than the second. However p grows (as a func-
tion of A) slower than in the second. This feature can
be observed clearly in Fig.[3| (b) and (c), where we show
results for n = 0, that is, when there is no spreading

between the layers.

Considering the discrete system [28], Cozzo et al. ver-
ified the shifting on the dominated layer (the largest
amongst all individual eigenvalues) as the ratio i in-
creases. Here we observe the same effect, as can be seen
in Fig. 3| (c). Additionally, we can also note another
global change approximately beyond A > (A)~!. Our
findings suggest the possibility of multiple phase transi-
tions due to the multiplex structure of the network. It
is noteworthy that in spite of the similarities between
our continuous model and the discrete model [28], both
represent slightly different processes. On the continuous
case, two events cannot happen at the same time. On the
other hand, on the discrete model, every node contacts
its neighbors on one discrete time step. Despite these dif-
ferences, the results show that both the continuous and
discrete formulations are phenomenologically similar.

B. Spectral analysis

In this section we focus on the spectral analysis of the
tensor R(A,n) as a function of the ratio §. Here we focus
on three special cases in increasing order of complexity:
(i) the identical case, where both layers are exactly the
same. Thus, there is a high correlation between the de-
gree on each layer; (ii) the non-identical case, where both
layers present the same degree distribution, but different
configurations and (iii) different layer structures, so that
their corresponding eigenvalues are spaced.

1. Identical layers

We consider a multiplex network made up of two layers
with the same configuration. Each layer of the multiplex
is a network composed by n = 1000, (k) ~ 6, A' = 14.34,
with degree distribution P(k) ~ k=27. Aside from the
intra-edge configuration, we also impose that inter-edges
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connect a node with its counterpart on the other layer,
i.e., every node has the same intra-degree on all layers.
Such a constraint imposes a high correlation between the
degrees on each layer.

Figure [] shows the spectral behavior of such a mul-
tiplex as a function of the parameter (%) On the top
panel, we represent the inverse participation ratio of the
first three eigenvalues, while on the bottom panel, we
plot the first ten eigenvalues. When the ratio § = 0 the
eigenvalues have multiplicity two, as can be seen on the
left side of the bottom panel (approximately, since the
figure starts from 10~2). More importantly, those eigen-

values tend to behave differently: one increases, while

the other tends to decrease. This behavior leads to the
eigenvalue crossing (see Appendix B). The inset of the
bottom panel zooms out the region where the crossing
takes place. Note that the eigenvalues cross at the same
value for which the inverse participation ratio shows an
abrupt change. Indeed, the jump in the IPR(A) has its
roots in the interchange of the eigenvectors associated to
each of the eigenvalues that are crossing. Moreover, we
stress that the abrupt change observed for IPR(A) is al-
ways present in such scenarios, but it could be either from
the lower to the higher values or vice versa depending on
the structure of the layers.

2. Similar layers

In addition to the identical case, we have also consid-
ered a multiplex network composed by two layers with the
same degree distribution (i.e. the same degree sequence),
with P(k) ~ k=27, but different random realizations of
the configuration model. Furthermore, the inter-edges
follow the same rule as before, connecting nodes with
their counterparts on the other layer assuring that ev-
ery node has the same intra-degree on all layers. Each
layer of the multiplex network is composed by n = 1000
and (k) = 6. Since each layer is a different realization of
the configuration model, both present a slightly different
leading eigenvalue, the first Al = 15.21 and the second
A2 =14.34.

Figure [5] shows the spectral behavior of such a multi-
plex in terms of the largest eigenvalues, on the bottom
panel, and the IPR(A), on the top panel. Here, in ad-
dition to the global inverse participation ratio, we also
present the contribution of each layer to this measure.
Such analysis is meaningless on the identical case, since
the contribution is the same. As shown in the figure,
we observe that for small values of ¥, in regard to the
first eigenvalue, the system is localized on the first layer
and delocalized on the second. On the other hand, the
picture changes when we focus on the second eigenvalue,
as it is localized on the second layer, but delocalized on
the first. For larger values of ¥, both layers contribute
equally to IPR(A). Analogously to the identical case,
there is a change on IPR(Az2), which seems to be related
to the changes on Ay, as one can see on the bottom panel
and in the inset. Note that for this case, there is no cross-
ing, i.e., the eigenvalues avoid the crossing -also referred
to as near-crossing.

3. Different layers

Although the two cases evaluated previously present
interesting spectral behaviors, both represent scenarios
in which the eigenvalues of each layer are similar, if not
the same. Next, we study a multiplex network made up
of two scale-free networks with v ~ 2.2 and v ~ 2.8. Such
a configuration imposes a distance between the leading
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eigenvalues of each layer, and therefore we expect a com-
pletely different behavior with respect to the previous
setups. Both layers have (k) ~ 8 and n = 10® nodes on
each layer and the leading eigenvalues are A] = 42.64 for
the first and A? = 21.29 for the second.

Figure [6] shows the spectral properties of the tensor
R(A,n) as a function of the ratio {. In contrast to the
identical and similar cases, figures [4] and [f] where some
eigenvalues increase while others decrease, here all the
observed eigenvalues always increase. Moreover, we do
not observe any crossing or near-crossing behavior. Re-

garding IPR(A), the same pattern as for the similar case
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is found: for small values of i and considering the first
eigenvalue, the system appears localized on the first layer
and delocalized on the second, while for IPR(As), it is the
contrary. For larger values of ¥, both layers contribute
equally to the IPR(A). The only difference that we ob-
serve for the current setup with respect to the two similar
networks (see Figure[p)), is that now no drastic change on
the inverse participation ratio is found, as expected, since
there is no near-crossing.

From figure |§| we can also extract an important nu-
merical result regarding the perturbation theory. We
observed that in our case, considering a two spaced-
individual layer eigenvalues problem, the leading eigen-
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value can be approximated by the largest leading eigen-
value of the individual layers for ¥ < 1, such approx-
imation becomes poorer as i increases, but it can be
acceptable up to ¥ < 10, within a certain error. Apart
from that, note that both eigenvalues tend to increase,

while its difference tends to decrease.

C. Multiple phase transitions

In [34] Mata and Ferreira showed that it is possible to
have multiple transitions on monoplex networks. They
studied the behavior of a SIS model on networks with
v > 3. Here we show that such phenomena also appear,
in a natural way, on multilayer networks. Motivated by
the findings reported in the latter sections, especially by
the presence of a second transition as observed in Fig-
ures [2 and [3] we have performed extensive Monte Carlo
simulations using the QS-method with the aim of deter-
mining as accurately as possible the points at which the
phase transition takes place for a 2-layer multiplex net-
work. Here we use the mutiplex built up in Section[VB 3]
since the leading eigenvalues of each layer are spaced.
Note that our numerical simulations are performed on a
fixed network, since we follow the quenched formalism.

Figure [ shows that for low values of the ratio ¥, both
networks are weakly coupled and the system exhibits two
well-defined critical points (vertical dotted lines). How-
ever, as this ratio increases the peak signaling the pres-
ence of the second critical point decreases and eventually
vanishes. In our simulations, we have observed that up

to % ~ 1, the second peak, although less defined, is still
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present. Beyond the latter point, only one peak remains.
As { further increases, the position of the remaining crit-
ical point remains the same, and the peak is even more
well defined. Interestingly enough, if the ratio 3 contin-
ues to increase -in our numerics beyond i 2 10- the crit-
ical point shift to the left to values that are even smaller
than the smallest critical point of the individual layers.
It is worth highlighting that a similar qualitative behav-
ior can be seen in the results shown in Fig. [2| (a), where
one can also observe a second phase transition -note the
change in the slope of p near the leading eigenvalue of
the second layer. This transition also vanishes as the
intra-layer spreading increases.

Since the tensor R(A,n) plays a major role on the
spreading process, our spectral results can help under-
stand the observed critical dynamics. In epidemiological
terms -or in general for contagion processes-, the local-
ization of the disease on a certain layer means that most
of the spreading is expected to take place on the nodes
of that layer. Moreover, in addition to the localization
on the layers, one can also have localization effects on
specific nodes or groups of nodes for instance.

In order to analytically explain this phenomenon, we
evaluate IPR(A) for the two leading eigenvalues, as this
measure indicates the localization of an eigenstate, see
Section (results shown in Figure @ Comparing
the susceptibility and IPR(A), we observe that IPR(Az2)
starts decaying for { ~ 1 and crosses the value ﬁ, at

which the associated eigenvector delocalizes, for ¥ ~ 10,
that compares well with the point at which the second
peak in the susceptibility decays and finally disappears.
Moreover, IPR(A1) decays from 3 < ¥ < 10, which co-
incides with the range where the remaining maximum
in the susceptibility reaches higher values and is bet-
ter defined. More interestingly, note that TPR(A;) is
mainly composed by the contributions of the first layer
for a lower spreading ratio, suggesting that it is localized
on such layer. Therefore, our results suggest that the
IPR(A) is a proper measure to detect and predict the
observed two phase transitions in the system’s behavior
and potentially for m-phase transitions, as we will show
in the next section.

VI. 3-LAYER INTERCONNECTED SYSTEMS

Following the main ideas of the last sections, we next
explore what happens for multilayers networks with are
made by more of two layers. Specifically, we have car-
ried out numerical simulations for a 3-layer system. We
generate multiplex networks using three scale-free net-
works, with v ~ 2.3, v & 2.6 and v =~ 2.9, with (k) ~ 8
and n = 102 nodes on each layer. Note that we consider
three layers with spaced individual leading eigenvalues in
order to investigate whether multiple phase transitions is
a generic phenomenon of multilayer systems. Note that
we have two possible topologies for the network of lay-
ers: (i) a line graph and (ii) a triangle (which is a node-



aligned multiplex). In its turn, the first can be arranged
in three possible configurations by changing the central
layer. That is, we have four possible systems. We per-
form our numerical simulations as in the last Section.

First, we evaluate the spectrum of R(\,n) for all the
networks described. In the following, we apply the local-
ization theory in order to get insights on the dynamical
behavior, similarly to Section [V .C|

A. Spectral analysis

Since the epidemic process is described through the
supra adjacency tensor R(\,7), its spectral properties
give us some insights about the whole process, especially
about the critical properties of the systems under analy-
sis. Moreover, as the structure of the network of layers is
not trivial anymore, we shall find important differences
regarding the spectra of such tensors for the different
topologies of the network of layers.

1. Spectrum

Figure[8|shows the spectrum of the four configurations
of networks when varying the ratio ¥ = 1,10,100 and
1000. Observe that we do not show the ratio ¢ = 0 since
it is just the union of the individual layers’ spectrum.
For § = 1, the four configurations are very similar, espe-
cially the line graphs. In such case, the inter-layer edges
are treated in the same way as the intra-layer ones. In
other words, they are ignored and the network can be in-
terpreted as a monoplex network. As the spreading ratio
increases the spectrum tends to be clustered near the val-
ues of the eigenvalues of the network of layers. Such spec-
tra was analytically calculated in Section [[I] and shown
in Table [

Regarding the triangle configuration, the clustering of
the spectrum as 7 increases is even clear. Triangles
present the lowest eigenvalue with multiplicity two. On
the extreme case of ¥ > 1, see Figure (8, we have 2/3
of the values near the left extreme value while 1/3 is
near the leading eigenvalue. On the other hand, for the
line configurations, the frequencies of the eigenvalues dis-
tribution is related to the position of the central layer.
However, on the limiting cases such differences are re-
duced. This pattern is naturally related to the increase of
the spreading ratio: When i increases, so does the role
of the inter-layer edges relative to the intra-layer ones.
Consequently, the structure of the network of layers im-
poses itself more strongly on the eigenvalues of the entire
interconnected structure. This comes as a consequence
of the interlacing theorems shown in Section [[IB?2}

Our findings can be related to the structural tran-
sition shown in [37], where the authors evaluated the
supra-Laplacian matrix as a function of the inter-layer
weights. Their main result is an abrupt structural tran-
sition from a decoupled regime, where the layers seem
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to be independent, to a coupled regime where the lay-
ers behave as one single system. Here, we are interested
in the supra-adjacency tensor, however, we found a simi-
lar phenomenological behavior and a structural change of
the system as a function of the inter-layer weights, which
in our case are determined by a dynamical process.

2. Localization on interconnected networks

Apart from the eigenvalues distribution, it is also im-
portant to analyze the eigentensors. Such an analysis
is performed in terms of the inverse participation ratio,
similarly to what we did for the 2-Layer multiplex case.

Figure [9] shows the 10th larger eigenvalues of the 3-
layer multiplex case. The dashed lines represent the lead-
ing eigenvalue of each layer. Note that the leading eigen-
value of the layer with P(k) ~ k=29 is the Tth larger
on the network spectrum when 3§ = 0. We observe that
there is no crossings on the observed eigenvalues, which is
an expected result, since the layers have different struc-
tures. Furthermore, it is important to remark that all
networks of layers evaluated also show similar qualitative
behaviors. The topology of the network of layers does
not lead to qualitative differences on the dependence of
A; on { for the first ten eigenvalues. We also notice that
although it is only an approximation, the perturbation
theory would be valid roughly up to ¥ < 10.

Figure [10| shows the IPR(A1). On the main panel we
present the individual contribution of each layer, while
on the insets we have the total IPR(A1). An interest-
ing phenomenon can be observed comparing the different
line configurations of the network of layers. The largest
eigenvalue of the whole system, Ay, has its associated
eigenvector localized in the dominant layer, that is, in
the layer generated using v = 2.3. Depending on the po-
sition of that layer in the whole system — i.e., central or
peripheral layer —, the contribution of the non-dominant
layers to IPR(A;) varies. In particular, when the dom-
inant layer corresponds to an extreme node of the net-
work of layers, the contribution of the other two layers
will ordered according to the distance to the dominant
one. Consequently, when the dominant layer is in the
center of the network of layers, the contributions of the
non-dominant ones are comparable -note that in panel c)
of Figure there is no difference in the contribution to
IPR(A;) of layers generated using v = 2.6 and v = 2.9.

As for the first eigenvalue, which is usually enough
to analyze the localization as a first order approxima-
tion, we observe that the layer with the largest eigen-
value dominates the dynamics. In addition, note the sim-
ilarities between the multiplex and the line configuration
(2.6 4+ 2.3 4 2.6), where the non-dominant layers behave
similarly. This is because for small values of 3, the effect
of the extra edge in the network of layers (closing the tri-
angle) is of order n? and so the similar behavior observed
in panel ¢) and d) of Figurefor the two configurations.
As 3 grows, the symmetry in the node-aligned multiplex
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dominates the eigenvector structure and the contribu-
tions of all layers are comparable. As we next show, the
different contributions of the layers to the total IPR(Aq)
are at the root of the multiple transitions observed.

B. Multiple phase transitions

Figure|l1|shows the susceptibility as a function of A for
different ratios of {. We observe three well defined peaks
on such curves when the ratio 3 is small. In addition,
similar to the 2-layer case, such peaks tend to become
less defined and vanish as the ratio { increases. The
third peak is less defined than the others because the
average number of infected nodes is larger in this case.
Consequently the susceptibility tend to be lower, since it
measures the variance in relation to the average. Such

observation suggests that it could be harder to observe

A

peaks for non-dominating layers that have an individual
critical point too far from the dominating layer.

Except for the line (2.3 4 2.9 4 2.6) all figures are sim-
ilar and present similar peaks, implying that the phase
transitions occur approximately at the same point. On
the other hand, the line (2.3 +2.9 +2.6) shows a slightly
different behavior for the second peak, that is found for
a larger value of A\ than for the other cases. Such result
suggests that when the layer with the largest eigenvalue
is located at the center of the line, it can effectively act
as a barrier to the disease. In addition, it is verified that
the extra inter-edges of the multiplex case does not lead
to radical changes on the transition points. We remark
that the susceptibility does not measure the fraction of
spreaders in the steady state, thus, despite of the similar-
ities of those curves, the phase diagrams for the incidence
of the disease are different.

Coming back to what is observed for the network of
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It is noteworthy that such plot is visually equivalent for all
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represents the individual layer leading eigenvalues.

layers described by the line (2.3 + 2.9 4+ 2.6), an interest-
ing phenomenon arises, namely, the formation of barriers
to the epidemic spreading. Since the middle layer has the
lowest individual eigenvalue among the layers, it creates a
barrier effect “delaying” the second transition. Moreover,
we observe that such transition also vanishes for higher
values of the ratio ¥, if compared to the other cases.
This can be related to the inverse participation ratio of
Ay, IPR(A4), shown in Figure Note that, for the line
(2.3 4 2.9 4 2.6), the contribution of the layer v = 2.6 is
the lowest. As shown in Section [VA] (and in [28]), for a
2-layer multiplex, the non-dominant layer has its critical
point shifted to a lower value of the spreading rate, which
means that the outbreak takes place before it would have
happened if that layer were isolated. However, here such
shifting is compromised by the fact that the central layer
is unable to sustain the epidemic process, acting effec-
tively as a barrier for disease contagion. Apart from this
new effect, the system behaves qualitatively similar to
the 2-layer scenario.

VII. CONCLUSIONS

In this paper, we have generalized and extended pre-
vious analysis to the case of multilayer networks. To this
end, we have made use of the tensorial representation in-
troduced in [29], which allows to extract upper and lower
bounds for the disease incidence of a SIS model and the
critical points for both, the SIS and the SIR dynamical
processes. We have also validated our analytical insights
with extensive numerical simulations, recovering results
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like those presented in [28| regarding the shifting of the
global epidemic threshold to lower values of the spreading
rate and the role of the so-called dominant layer. Fur-
thermore, we have observed a transition on the spectra
of the supra-contact tensor, from the spectra resulting
from the union of the individual layers to the spectra
of the network of layers. Such a behavior suggests that
other dynamics and more complex structures can also
be significantly affected by the interconnected nature of
the system. In addition, we also have characterized an-
alytically the phenomenon of eigenvalue crossing on the
supra-contact tensor for two identical layers case. It is
worth noticing that any dynamical process that is de-
scribed by the same matrix will be affected by this effect.

Our main results concern the emergence and vanish-
ing of multiple transitions as a function of the ratio be-
tween the inter-layer and intra-layer spreading rates and
their relation to the spectral properties of the multilayer,
which also reveal the phenomenon of disease localization,
in particular, its relation with the existence of crossings
or near-crossings of eigenvalues. Using the QS-Method
and Monte Carlo simulations, we have been able to pre-
cisely determine the transition points. Our results show
that it is possible to have multiple phase transitions in
multilayer networks, as previously claimed for monoplex
systems [34]. Additionally, we have proposed an analyt-
ical approach based on the use of the inverse participa-
tion ratio to characterize such transitions as a localization
phenomenon, thus also connecting with [3I]. A detailed
exploration of the parameter space show that as the ratio
between the inter-layer and intra-layer spreading rates in-
creases, the peaks of the susceptibility measured for the
non-dominat layers tend to occur at lower values of A
and vanish as 3 increases up to a point in which only
one phase transition is observed. Interesting enough, our
results point out that such a transition can take place
for even lower values of A than the inverse of the largest
leading eigenvalue among all individual layers. Finally,
another important finding presented here is the opposite
effect, namely, the fact that a phase transition can take
place for a larger value of A than expected as a conse-
quence of the multiplex topology. Specifically, if the lay-
ers are arranged in such a way that one with the smallest
leading eigenvalue is at the center of the network of lay-
ers (for instance, as happens for the line (2.3 4 2.9+ 2.6)
configuration), then the corresponding transition could
be delayed due to a barrier effect. Summarizing, our re-
sults emphasize the importance of studying multilayer
systems as they are and not only their individual layers.
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Appendix A: Proof of Equation

Considering the matricial representation of a multi-
layer network, given by

Ay Chia
Co1 A

. Cvlm
: CQm
A= A+ C = . (37)

Cri Cmz - Ap

On the inset we show the behavior of IPR(A;1). Such eigenvalue is related

where A € R"m>nm - A% ¢ R™*™ ig the adjacency matrix
of the layer o € {1,2,...m} and C is a coupling matrix.
Since we assume multilayer network in which the lay-
ers have the same number of nodes we have Cj; = 1.
Assuming a partition of such network, represented by
S € R™*™  which is the characteristic matrix of such
partition, where S;; = 1 if ¢ € V; and zero otherwise,
where V; is the network of layers partition.

In order to use the results of [30, B3] we have to prove
that our tensor <I>g (\,n) is an unfolding of the network

of layers matrix R [30 [33], formally given by
R=T71574s, (38)

where I' is a diagonal matrix with normalizing constants
(for more, see references [30] [33]). In words, the prod-
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FIG. 11: Susceptibility x as a function of A considering all three layer configurations and many different ratios i, which is

represented by the color of the lines. The recovering rate is u = 1. The simulated values are { = 0.05, 0.06, 0.07, 0.08, 0.09,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20.

uct AS is a summation over the blocks of the matrix A, Rr™mX™m - Then,
resulting in a matrix with the degree of each node. The
subsequent left product with ST impose another summa-
tion, whose result is a matrix composed by the sum of

11 12 1m
all elements of the blocks. Finally, the product by I'"! 2k kS Yk

21 22 2
normalize the result by % Formally we have, ST A4S — Zk Ek ) Zk " (40)
FlOp12 L pim Sokmb STEm2 oL S pmm
k‘21 k‘22 k,2m
AS=1| . . . (39)
kr.nl k7'n2 k.m:m where Zkij € R are scalars with the number of edges

)

that connect a node on layer ¢ to a node on layer j. Fi-
nally, the product by I'~! introduce the average degree
where k% € R"*! is a vector with the number of edges instead of the summation, producing the same results as
emanating from each node on layer i to layer j and AS € Equation



Appendix B: Eigenvalue crossing

Let us analyze the spectra of a simple setup: multiplex
networks composed by [ identical layers. Such class of
networks provides insights about the spectral behavior as
a function of (%) Although they are not very realistic a
priori, there are situations in which this representation is
helpful: for instance, in the context of disease contagion,
one might think of a multi-strain disease in which each
strain propagates in a different layer allowing co-infection
of the host population.

The adjacency tensor can be written as

RS m) = 4567 + g(ngg, (41)
where Af is the 2-rank layer adjacency tensor, K,‘-i is
the adjacency tensor of the network of layers, which is
a complete graph on the multiplex case, and 62‘ is the
Kronecker delta. Observe that it is the unfolding of a
sum of two Kronecker products, A = I,,, @ A+ YK @I,
where I,, is the identity matrix of size n and K, is the
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adjacency matrix of the complete graph with m nodes.
In this way, the eigenvalue problem can be written as
~ ~ 77 ~
Rggfa’y = Agégfoﬁ/ + X(SgKgfa’yv (42)

where the sum of the eigenvalues of A, AL, and K, p;, are
also eigenvalues of the adjacency tensor, hence Rgg fosy =

(Aé + gﬂj) faz,1=1,2,..mand j =1,2,..m. Then,
(Aﬁ + guj) = (Ai + gu) : (43)

The eigenvalues of the complete graph are yy = m—1,
and p; = —1, Vi > 1, yielding to

n_ A A
X = km ’ (44)

which imposes crossings on the eigenvalues of the adja-

cency tensor for identical layers, since ( g) is a continuous

parameter.
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