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The dynamics of ecosystem collapse are fundamental to determining
howandwhybiological communities change through time, aswell as
the potential effects of extinctions on ecosystems.Here,we integrate
depictions of mammals from Egyptian antiquity with direct lines of
paleontological and archeological evidence to infer local extinctions
and community dynamics over a 6,000-y span. The unprecedented
temporal resolution of this dataset enables examination of how the
tandem effects of human population growth and climate change can
disrupt mammalian communities. We show that the extinctions of
mammals in Egypt were nonrandom and that destabilizing changes
in community composition coincidedwith abrupt aridification events
and the attendant collapses of some complex societies.We also show
that the roles of species in a community can change over time and
that persistence is predicted by measures of species sensitivity,
a function of local dynamic stability. To our knowledge, our study
is the first high-resolution analysis of the ecological impacts of
environmental change on predator–prey networks over millennial
timescales and sheds light on the historical events that have shaped
modern animal communities.
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Modern biological communities are vestiges, with rich eco-
logical ancestries shaped by evolutionary, climatic, and more

recently anthropogenic effects. Determining the consequences of
past ecological disturbance will inform predictions of how modern
communities may respond to ongoing anthropogenic or climatic
pressures. Of particular importance are extinction cascades (1, 2),
which can lead to trophic downgrading and community collapse by
altering the structure (2) and relative strengths of interactions be-
tween species (3). Examining the long-term effects of extinctions on
communities can only be accomplished by studying past ecosystems
(4). The paleontological record and the remarkable historical re-
cord of species occurrences in Egypt document a biological com-
munity changing in the face of increasing aridification and human
population densities (5). The timing and pattern of animal extinc-
tions in Egypt are thus well suited to illuminate our understanding
of how the structure and functioning of biotic communities are
altered by changing climatic and anthropogenic impacts.
The Nile Valley north of Aswan is known for its intense heat,

low rainfall, and relatively sparse vegetation. In fact, the last
2,750 km of the Nile is devoid of water-bearing tributaries and
surrounded by desert with an average rainfall of 3.4 cm/y. The
Egyptian landscape in the Late Pleistocene/early Holocene was
very different; during the African Humid Period (AHP) (14,800–
5,500 y B.P.), the region had a cooler, wetter climate driven by
heavy monsoonal rains (5). These factors contributed to a di-
verse assemblage of mammals that bears a strong resemblance
to communities in East Africa today.
Termination of the AHP was associated with increasingly weak

summer monsoons (6) and the disappearance of many Egyptian
species, including spotted hyenas, warthogs, zebra, wildebeest,
and water buffalo (7–10), as well as the onset of dense human
settlements in the region (11). A sharp increase in aridification

∼5,000 y B.P. (5, 11) attended the fall of the Uruk Kingdom in
Mesopotamia (5, 12), but it might have catalyzed the rise of the
Egyptian Phaoronic state (12, 13). Another aridification pulse
∼4,170 ± 50 y B.P. (5) coincided with the Egyptian First In-
termediate Period (∼4,140 y B.P.), an interval that is distinguished
by failed flooding of the Nile (14) and rapid dynastic successions
(15). Other potential aridity-induced political instabilities are evi-
dent at this time, including the collapse of the Akkadian empire
(16) and the decline of urban centers in the Indus Valley (17). Fi-
nally, a third aridification pulse is evident in easternMediterranean
sediments at ∼3,000 y B.P. (5). This event is associated with wide-
spread famines in Egypt and Syria (18, 19) and the end of the New
Kingdom in Egypt (14) and the Ugarit Kingdom in Babylon (18).
The historical consequences of these aridification events are an

enduring, and often contentious, topic of debate (14, 17, 20–22). At
the same time, the historical ecology of Egyptian animal commu-
nities has been documented extensively (7, 23–25). These parallel
efforts include descriptions of animal occurrences in paleonto-
logical, archeological, and historical records, as well as their artistic
representations on tombs (26), knife blades (27), and funerary
palettes (28), compiled by D. J. Osborn and J. Osbornovà (8).
Artistic representations of mammals are identifiable at the species
taxonomic level (8, 27), with historical sources noting whether
fauna were native or imported, or even domesticated (8). For ex-
ample, Late Predynastic ceremonial palettes depict lions, wild
dogs, and many species of ungulates including oryx, hartebeest,
and giraffe (Fig. 1), none of which exist in Egypt today. Here, we
combine these records of species occurrence with mathematical
modeling to examine the patterns and consequences of extinctions
during 6,000 y of Egyptian history (Fig. 2; see Supporting In-
formation, section I, for detailed species occurrence information).
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The composition of animal communities directly impacts the
stability of ecosystems. Here, we use historical information of
species extinctions in Egypt over 6,000 years to reconstruct
predator–prey interactions and determine to what extent ob-
served changes in species composition influence predictions of
community stability. Our study reveals that the roles of species
and the stability of the community have fundamentally
changed throughout the Holocene, and provides compelling
evidence that local dynamic stability is informative of species
persistence over time.
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Patterns of Extinction
A total of 37 large-bodied (>4-kg) mammalian species are docu-
mented in Late Pleistocene/early Holocene Egypt, whereas only 8
remain today (24). Here, we focus on ungulates and their potential
mammalian predators, as these animals are known to form a dy-
namically cohesive component of many food webs (3, 29–31), and
binned their occurrences in the time periods shown in Fig. 2. To
determine whether the extinction of species in the historical record
could be predicted by random removal, we conducted randomized
extinction simulations (5 × 105 replicates), where the number of
extinctions at each time interval was conserved. Our analysis shows
that changes in predator and prey richness—summarized by cal-
culating the predator–prey ratio—are not predicted by random
extinction trajectories until recent history (Fig. 3A). The ratio of
predators to prey increased gradually from the Late Pleistocene to
the end of the New Kingdom (part of the observed increase in the
predator–prey ratio after 4,140 y B.P. is due to the appearance of

cheetah Acinonyx jubatus; Figs. 2 and 3A), followed by a decline
from ∼3,035 y B.P. to 100 y B.P.
To evaluate the effects of uncertainty in the timing of extinctions

on the predator–prey ratio, we allowed the first and last occurrence
of each species to vary probabilistically according to two different
treatments: (i) the first/last occurrence could vary among the time
bins directly before and after the recorded event; (ii) the first/last
occurrence could vary among two time bins directly before and after
the recorded event (illustrated in Fig. 2). To determine how un-
certainty influenced the predator–prey ratio, we simulated the ex-
tinction trajectories of species over time, where the occurrence of
each species was drawn randomly and independently according to
each extinction probability treatment (5,000 replicates; Fig. 3A).
This uncertainty introduces error in the timing of extinctions of
±286 and ±580 y (averaged across time bins), for treatments i and
ii, respectively. Importantly, we find that this added uncertainty does
not alter the qualitative nature of the predator–prey ratio over time.
The loss of large-bodied herbivores, such as elephants, giraffes,

native camels, oryx, and two species of kob, characterizes the earli-
est documented extinctions in Egypt. Some of these extinctions
could have been caused by competitive displacement; for in-
stance, Churcher (7) suggested that wild asses (Equus asinus), which
appeared in the early-mid Holocene, might have supplanted zebras
(Equus grevyi and Equus quagga, the latter formerly Equus
burchelli). Predator extinctions follow a similar pattern, with larger-
bodied species disappearing earlier. Egyptian artisans depicted two
distinct lionmorphotypes (possibly subspecies) (32) before theThird
Dynasty: a short-maned and a larger long-maned lion, whichwe treat
separately. The long-maned lion was depicted until the end of the
Second Dynasty (∼4,645 y B.P.), and the short-maned lion until the
end of the Twentieth Dynasty (∼3,035 y B.P.; a span that excludes
depictions of tame or imported lions). Compellingly, this latter date
predates accounts of diminishing lion populations in classical an-
tiquity. For example, lions reportedly attacked Xerxes and his con-
sort in 2,430 y B.P., a time when lions were common in Greece
(according to Herodotus, 2,434–2,375 y B.P.). A little over a century
later (2,250 y B.P.), Aristotle reported that lions were rare (33).
The most dramatic shifts in the predator–prey ratio occurred

∼5,050, 4,140, 3,520, 3,035, and 100 y B.P. (Fig. 3A). Although the
direction of the shift at 100 y B.P. is prone to observational error,
it is coincident with population growth and industrialization in
Egypt (Fig. S1). Three of the remaining four shifts are contem-
poraneous with extreme environmental and historical events: (i)
the aridification pulse associated with beginning of the Dynastic
Period in Egypt (5, 12) (∼5,000 y B.P.); (ii) the aridification pulse
associated with the collapse of the Old Kingdom in Egypt
(∼4,170 ± 50 y B.P.); (iii) the aridification pulse associated with
the fall of the New Kingdom in Egypt (19) (∼3,000 y B.P.).
Shifts in the predator–prey ratio reveal a long-term change in

community structure: the reduction of herbivore richness beginning
∼5,000 y B.P. followed by a decline in predator richness beginning
∼3,035 y B.P. Although we cannot identify the causes of extinction
at any single time interval, the co-occurring changes in climate,
community composition, and human societies suggest three po-
tential mechanisms that could have resulted in the observed pat-
terns. First is the potential decline in herbivore richness due to
human overkill followed by an indirect impact on predator richness.
Egyptian peoples shifted frommobile pastoralism after the AHP to
agriculture (12, 34), and subsistence hunting subsidized by agri-
culture (25, 35) may have increased overall mortality risks. Dif-
ferences in species-specific traits and hunting preferences (cf. ref.
36) would then have contributed to shape patterns of extinction.
Second, herbivore and carnivore richness may have been negatively
impacted by bottom-up forcing due to climate-driven limitation in
primary productivity. Third, resource or habitat competition with
humans in the Nile floodplain, driven by an increased reliance on
agriculture (34), and potentially exacerbated by decreased nutrient
transport from species extinctions (35), might have resulted in

A B

C

Fig. 1. Ancient Egyptian depictions of familiar predator–prey interactions.
The (A) obverse and (B) reverse surfaces of a siltstone ceremonial palette
accessioned (no. E.3924) in the Ashmolean Museum of Art and Archaeology,
University of Oxford. The palette (known informally as the Ashmolean or
two dog palette) was recovered from the main deposit at Hierakonpolis
(∼5,150 y B.P.). The object is surmounted and framed by two wild dogs
(Lycaon pictus) clasping one another’s paws. Other unambiguous species
include ostrich, hartebeest, wildebeest, ibex, oryx, and giraffe. Some ficti-
tious animals are also depicted, including serpent-necked panthers, or
“serpopards”, and a plausible griffin; these animals were excluded from our
analysis. Photographs reproduced with permission (Copyright, Ashmolean
Museum). (C) Line drawing of a mudstone ceremonial palette accessioned
(no. EA20790) in the British Museum. The provenance of this Late Predynastic
palette (known informally as the hunters’ palette) is uncertain. The reliefs
depict human hunters stalking and capturing lions, gazelles, hartebeest, and
an ostrich with bows, spears, throwsticks, and lariat. For recent scholarship
on, and interpretation of, these images, see Davis (57).
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declining herbivore richness, precipitating a cascading impact on
the predator community.

The Dynamics of Collapse
As the composition of an ecosystem is altered, the potential dy-
namics of the community are bound to change (37). To un-
derstand how historical extinctions impacted the dynamics of
Egyptian communities, we used predator–prey body mass ratios to
calculate both the probability and strength of trophic interactions,
thus reconstructing predator–prey interaction networks for each
time bin (38) (Materials and Methods and Supporting Information,
sections II–IV). We used generalized dynamical models to de-
termine dynamic stability over time, thus requiring only basic
assumptions of the functional relationships governing interspecific
and intraspecific interactions between and among species (37, 39).
Across all time bins, 2 × 105 predator–prey networks were con-
structed (for parameter values and ranges, see Table S1), thus ac-
counting for potential variability in species interactions, interaction
strengths, and intraspecific and interspecific functional responses
(37). We then calculated the proportion of dynamically stable webs
(PSW), the impact of a given species i’s presence on PSW, and
the magnitude of species-specific responses to perturbations.
Because predator–prey interactions are a function of body size,

the structure of the Egyptian trophic network is relatively robust
to changes in species presence/absence over time (Fig. S2; cf. ref.
40). Despite the robustness of network structure, our results show
that dynamic stability, measured as PSW, was highly sensitive to
changes in the animal community, and reveal that extinctions in
Egypt were inherently destabilizing (Fig. 3B). Moreover, the loss
of species in the last 150 y had a disproportionately large impact

on PSW (Fig. 3B), which is a compelling indication that the
effects of recent disturbances on animal communities may be
more destabilizing relative to those before the modern era. Sta-
bility analyses of random food webs (41) have generally shown
that the loss of species richness increases PSW (37, 42), fueling
the diversity–stability debate (43). In contrast, our analyses com-
bining generalized modeling with a realistic interaction network
structure reveal that stability decreases with species loss, and this
pattern is robust against uncertainty in the timing of both his-
torical and recent extinctions (Fig. 3B).
In the modern Egyptian predator–prey network, there are a

small number of crucial species (44) whose presence strongly and
positively impacts stability, which is determined by calculating the
difference in PSW (ΔPSWi) for the system with and without each
species i (2 × 108 replicates). Stabilizing species include gazelles,
ibex, and Barbary sheep, all of which are smaller-bodied herbivores
serving as important prey resources for the remaining predators
(Fig. 4A and Fig. S3). Some of these species (e.g., Gazella
leptoceros) are critically endangered (45). Although the impact of
species i’s presence on PSW is correlated with body size (Fig. S4),
as we observe the community earlier in time, the presence of all
species has less impact on PSW (such thatΔPSWi is closer to zero),
suggesting that the historical community was more robust, pre-
sumably due to greater redundancy in prey species. Importantly,
the decline in PSW essentially mirrors deviations in ΔPSWi away
from zero, meaning that earlier communities were more stable and
less impacted by species removal, whereas recent communities are
less stable and more impacted by species removal. Together, these
findings indicate an increase in vulnerability over time (Fig. S5).
We hypothesize that the vulnerability of many contemporary
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Fig. 2. The presence/absence of large-bodied mammalian species across six millennia of Egyptian history. All dates are in years before present, thus “years
before 1950 A.D.,” such that we distinguish 0 y B.P. (1950 A.D.) from “today” (established as 2010 A.D.). The first time bin does not have a definitive starting
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animal communities (3) may be exacerbated by recent erosion of
species richness, which our data suggest eliminates the functional
redundancy of lower trophic-level species.
The primary productivity needed to support a diverse animal

community is expected to have diminished as the Nile Valley be-
came increasingly arid throughout the Holocene (14). Because
changes in productivity can alter population-level responses to
species interactions, we performed a sensitivity analysis to de-
termine whether and to what extent changes in primary produ-
ctivity influence estimates of PSW. We address changing habitat
productivity by incorporating the following assumptions: (i) when
productivity is high, the per-capita contribution of herbivores to
population growth increases, such that the impact of herbivore
density on growth is elevated; (ii) because prey are plentiful, the
growth of predator populations is not limited by prey density (46).
Conversely, when primary productivity decreases (as is assumed to
have occurred over the Holocene), herbivore population growth
becomes nutrient limited, such that changes in herbivore density
have a smaller impact on population growth, whereas predator
population growth becomes limited by herbivore density. This
formalization allows us to explore how our results are impacted by
changes in the functional relationships between population growth
and its drivers due to changes in primary productivity at every time
period by instituting the following constraints: as productivity
decreases, the sensitivity of herbivore population growth to herbi-
vore density (ϕ in the generalized modeling framework; Supporting

Information, section V) goes to 0, whereas the sensitivity of pred-
ator population growth to herbivore density (γ = 1 − ϕ) goes to
unity; for increases in productivity, this relationship is reversed.We
find that increasing productivity is always destabilizing, which is
expected in accordance with the well-known “paradox of enrich-
ment” (47). Ofmore interest here is that lowering productivity does
not have a qualitative impact on estimates of PSW (Fig. 4B), sug-
gesting that changes in PSW over time were not solely driven by
changes in productivity itself, but were chiefly influenced by
changes in community composition and species interactions.

Predicting Persistence
Understanding the reciprocal feedbacks between a changing
environment on the structure and functioning of ecosystems is
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a primary goal in modern ecological research (48). For instance,
short-term environmental changes may be responsible for alter-
ing community structure in both limnetic invertebrate (40) and
terrestrial vertebrate food webs (49), whereas shifting thermal
baselines and mismatches in phenology have been observed to
directly alter the composition of terrestrial communities (50, 51).
Theoretical work suggests that climate warming may have a large
impact on trophic chain length and top-down vs. bottom-up dy-
namics, where higher trophic species are predicted to be at
greatest risk (52). However, to what extent the dynamical con-
sequences of perturbed ecological communities impact species
persistence is largely unknown, and this is partly due to a lack of
knowledge regarding how animal assemblages and species
interactions change over time (53).
Although we cannot ascribe causality to any single extinction

event, because the persistence of each species over time is known,
we can determine whether extinction is predictable. Perturbations
are by definition disruptive, and their effects can be explored with
respect to the system as a whole (PSW), or with respect to each
species in the system. In general, we would assume that species
strongly reactive to external perturbations would have lower per-
sistence, thus being prone to extinction. Here, we determine
whether the sensitivities of species to external perturbations can be
used to predict persistence, defined as the period after the Pleis-
tocene–Holocene transition (11.7 ky B.P.) of Egyptian occupation.
Wedefine the sensitivity of a species i (Sei) (44) by themagnitude of
its response to a press perturbation, introduced by altering the
community steady state (54) (see Supporting Information, section
VI, for a formal derivation). Our results show that sensitivity is
strongly predictive of persistence, and therefore extinction risk:
species less sensitive to change are more likely to survive longer
periods of time (Fig. 4C and Fig. S6). Of note are two outliers for
which temporal persistence is greater than predicted by Sei (sil-
houettes in Fig. 4C): hippopotamus (Hippopotamus amphibius),
which rely primarily on river resources that are not included in the
dynamic model, and wild cattle (Bos primigenius), potentially fa-
cilitated by association with domesticates (55). Our results confirm
the generally accepted expectation of higher extinction risks for
larger-bodied mammalian species (56) and indicate that measures
derived from local stability analysis are predictive of these risks over
millennial timescales.
The trajectory of extinctions over 6,000 y of Egyptian history is

a window into the influence that both climatic and anthropogenic

impacts have on animal communities. The atypically strong
effects that species extinctions have had on the stability of the
contemporary Egyptian predator–prey network is due to the
nonrandom but steady erosion of species richness over time. Our
results directly fuel hypotheses on whether and to what extent
cascading extinctions, changes in the sensitivity to perturbations,
and the consequent decline of community stability as the result
of both climate change and human impact, have contributed to
the collapse of modern animal communities.

Materials and Methods
We compiled data on species occurrences from paleontological, archeological,
and historical information spanning the last 6,000 y of Egyptian history. All dates
are in years before present (y B.P.), thus “years before 1950 A.D.,” such that we
distinguish 0 y B.P. (1950 A.D.) from “today” (established as 2010 A.D.). We used
body mass ratios between predators and prey to determine the probability that
a trophic link exists between species i and j [Pr(ℓij = 1)], where Pr(ℓij = 1) = p/(1 +p),
given p = exp{a1 + a2 log(MR) + a3 log

2(MR)}, and MR is the log-transformed
ratio of predator to prey biomass (38). We established this model on the
Serengeti food web (a1 = 1.41, a2 = 3.73, and a3 = −1.87), from which 74% of
trophic links (both presence and absence) were predicted accurately. We cap-
ture the dynamics of an N species food web by N equations of the following
form: _Xi = SiðXiÞ+ ηiFiðX1, . . . ,XNÞ−MiðXiÞ−

PN
n=1Ln,iðX1, . . . ,XNÞ, for i = 1. . .N,

where ηi is the transfer efficiency of predator growth from prey consumption;
and Si, Fi, Mi, and Ln,i are unspecified functions that describe the growth of
species i by primary production, the growth of species i by predation, the loss of
species i due to natural mortality, and the loss of species i due to predation
by species n, respectively. Local stability is computed by linearizing the non-
linear equation-system around the steady state in question. The result is the so-
called Jacobian matrix that captures the system’s response to perturbations in
the vicinity of the steady state. For the generalized model, one formally com-
putes the linearization for all feasible steady states (37). We thereby obtain
a Jacobian matrix that captures the dynamical stability of every steady state in
the whole class of models under consideration, as a function of a number of
unknown, but directly interpretable ecological parameters. For additional
details, see Supporting Information, sections II–IV.
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