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ABSTRACT
The best current estimates of the thresholds for the exis-
tence of solutions in random constraint satisfaction prob-
lems (‘CSPs’) mostly derive from the first and the second
moment method. Yet apart from a very few exceptional
cases these methods do not quite yield matching upper and
lower bounds. According to deep but non-rigorous argu-
ments from statistical mechanics, this discrepancy is due to
a change in the geometry of the set of solutions called con-
densation that occurs shortly before the actual threshold
for the existence of solutions (Krzakala, Montanari, Ricci-
Tersenghi, Semerjian, Zdeborová: PNAS 2007). To cope
with condensation, physicists have developed a sophisticated
but non-rigorous formalism called Survey Propagation (Mé-
zard, Parisi, Zecchina: Science 2002). This formalism yields
precise conjectures on the threshold values of many random
CSPs. Here we develop a new Survey Propagation inspired
second moment method for the random k-NAESAT prob-
lem, which is one of the standard benchmark problems in
the theory of random CSPs. This new technique allows us
to overcome the barrier posed by condensation rigorously.
We prove that the threshold for the existence of solutions
in random k-NAESAT is 2k−1 ln 2 − ( ln 2

2
+ 1

4
) + εk, where

|εk| ≤ 2−(1−ok(1))k, thereby verifying the statistical mechan-
ics conjecture for this problem.
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1. INTRODUCTION
Over the past decade, physicists have developed sophisti-

cated but non-rigorous techniques for the study of random
constraint satisfaction problems (‘CSPs’) such as random k-
SAT or random graph k-coloring [27, 29]. This work has
led to a remarkably detailed conjectured picture, according
to which various phase transitions affect both the combina-
torial and computational nature of random problems. By
now, some of these predictions have been turned into rigor-
ous theorems. Examples include results on the “shattering”
of the solution space [1, 7], work on (non-)reconstruction and
sampling [18, 24, 30], and even new algorithms for random
CSPs [9, 19]. Many of these contributions have led to the
development of new rigorous techniques. Indeed, it seems
fair to say that, combined, these results have advanced our
understanding of random CSPs quite significantly.

However, thus far substantial bits of the statistical me-
chanics picture have eluded all rigorous attempts. Perhaps
most importantly, apart from a very few special cases, the
thresholds for the existence of solutions in random CSPs
have not been pinned down exactly. While rigorous upper
and lower bounds can be derived via the first and the sec-
ond moment method [5], these bounds do not quite match
in most examples, including prominent ones such as random
k-SAT or random graph k-coloring. In fact, the statistical
mechanics techniques suggest a striking explanation for this
discrepancy, namely the existence of a condensation phase
shortly before the threshold for the existence of solutions. In
this phase, a crucial necessary condition for the success of
the (standard) second moment method is violated. Indeed,
in statistical mechanics a deep formalism called Survey Prop-
agation (‘SP’) has been developed expressly to deal with
condensation. While SP is primarily an analysis technique, a
spin-off has been the SP guided decimation algorithm, which
seems highly successful at solving random CSPs experimen-
tally.

In this paper we propose a new SP-inspired second mo-
ment method that allows us to overcome the barrier posed
by condensation. The specific problem that we work with is
random k-NAESAT, one of the standard benchmark prob-
lems in the theory of random CSPs. Random k-NAESAT
is technically a bit simpler than random k-SAT due to a
certain symmetry property, but computationally and struc-
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turally both problems have strong similarities. We deter-
mine the threshold for the existence of solutions in random
k-NAESAT up to an additive error that tends to zero expo-
nentially with k. This is the first time that the threshold in
any random CSP of this type can be calculated with such
accuracy. While from a technical viewpoint k-NAESAT is
perhaps the simplest example of a random CSP that exhibits
condensation, our proof technique rests on a rather generic
approach. Therefore, we believe that with additional techni-
cal work our approach can be extended to many other prob-
lems, including random k-SAT or random graph k-coloring.

To define random k-NAESAT formally, let k ≥ 3 and
n > 0 be integers and let V = {x1, . . . , xn} be a set of
Boolean variables. For a fixed real r > 0 we let m = m(n) =
drne. Further, let Φ = Φk(n,m) be a propositional for-
mula obtained by choosing m clauses of length k over V
uniformly and independently at random among all (2n)k

possible clauses. We say that an assignment σ : V → {0, 1}
is an NAE-solution (a “solution”) if each clause has both a
literal that evaluates to ‘true’ under σ and one that eval-
uates to ‘false’. In other words, both σ and its inverse
σ̄ : xi 7→ 1−σ(xi) are satisfying assignments of the Boolean
formula Φ. We say that an event occurs with high probability
(“w.h.p.”) if its probability tends to one as n→∞.

Friedgut [22] proved that for any k there exists a sharp
threshold sequence rk−NAE = rk−NAE(n) such that for any
fixed ε > 0 w.h.p. Φ has a NAE-solution if r < rk−NAE − ε,
while w.h.p. Φ fails to have one if r > rk−NAE + ε. It is
widely conjectured but as yet unproven that the threshold
sequence converges for any k ≥ 3. The best previous bounds
on rk−NAE were derived by Achlioptas and Moore [3] and
Coja-Oghlan and Zdeborová [12] via the first/second mo-
ment method:

rsecond = 2k−1 ln 2− ln 2 + ok(1)

≤ rk−NAE

≤ rfirst = 2k−1 ln 2− ln 2

2
+ ok(1),

(1)

where ok(1) hides a term that tends to 0 for large k. This
left an additive gap of 1

2
ln 2 ≈ 0.347, which our main result

closes.

Theorem 1. There is a sequence εk = 2−(1−ok(1))k such
that ∣∣∣∣rk−NAE −

(
2k−1 ln 2−

(
ln 2

2
+

1

4

))∣∣∣∣ ≤ εk. (2)

While the numerical improvement obtained in Theorem 1
may seem modest, we are going to argue that the result is
conceptually quite significant for two reasons. First, we ob-
tain (virtually) matching upper and lower bounds for the
first time in a random CSP of this type. Second, and per-
haps even more importantly, we devise a rigorous method
for taming the condensation phenomenon. Indeed, conden-
sation has been the main obstacle to determining the precise
thresholds in random CSPs for the past decade. To un-
derstand why, we need to discuss the statistical mechanics
picture and its relation to the second moment method.

2. CONDENSATION AND THE SECOND
MOMENT METHOD

The statistical mechanics perspective. We follow [27]
to sketch the non-rigorous statistical mechanics approach
on random k-NAESAT. Let S(Φ) ⊂ {0, 1}n denote the
set of NAE-solutions of Φ, and let Z(Φ) = |S(Φ)| be the
number of solutions. We turn S(Φ) into a graph by con-
sidering two solutions σ, τ adjacent if their Hamming dis-
tance is o(n). According to [27], the ‘shape’ of S(Φ) un-
dergoes two substantial changes w.h.p. at certain densities
0 < rsh < rcond < rk−NAE.

The first transition occurs at rsh ∼ 2k−1 ln(k)/k, almost
a factor of k below rk−NAE. Namely, for r < rsh, S(Φ) is
(essentially) a connected graph. But in the shattering phase
rsh < r < rcond, S(Φ) splits into connected components
S1, . . . , SN(Φ) called clusters that are mutually separated by
a linear Hamming distance Ω(n). Each cluster Si only com-
prises an exponentially small fraction of S(Φ). In particular,
the total number N(Φ) of clusters, the so-called complexity,
is exponential in n. This “shattering” of S(Φ) was indeed
established rigorously in [1].

As the density r increases beyond rsh, both the overall
number Z(Φ) of solutions and the number and sizes of the
clusters shrink. However, the cluster sizes decrease at a
slower rate than Z(Φ), until at density rcond = 2k−1 ln 2 −
ln 2 + ok(1) the largest cluster has size essentially Ω(Z(Φ))
w.h.p., and thus constitutes a significant fraction of the en-
tire solution space. In effect, in the condensation phase
rcond < r < rk−NAE, the set S(Φ) still decomposes into
an exponential number of clusters S1, . . . , SN(Φ), each of
tiny diameter and all mutually separated by Hamming dis-
tance Ω(n). But in contrast to the shattered phase, now the
largest cluster contains a constant fraction of the entire set
S(Φ). Indeed, w.h.p. a bounded number of clusters contain
a 1− o(1)-fraction of all solutions.

The dominance of a few large clusters in the condensa-
tion phase complicates the probabilistic nature of the prob-
lem dramatically. To see why, consider the experiment of
first choosing a random formula Φ, and then picking two
solutions σ, τ ∈ S(Φ) uniformly and independently. For
rsh < r < rcond, σ, τ likely belong to different clusters, and
hence can be expected to have a “large” Hamming distance.
In fact, it is implicit in the previous work on the second
moment method that dist(σ, τ ) ∼ n/2 w.h.p. [3, 12]. In-
tuitively, this means that the two random solutions “decor-
relate”. By contrast, for rcond < r < rk−NAE both σ, τ
belong to the same large cluster with a non-vanishing prob-
ability. In effect, with a non-vanishing probability their dis-
tance dist(σ, τ ) is tiny, reflecting that solutions in the same
cluster are heavily correlated.

The purpose of the physicists’ Survey Propagation tech-
nique is precisely to deal with this type of correlation. The
basic idea is to work with a different, non-uniform proba-
bility distribution on S(Φ). This SP distribution is induced
by first choosing a cluster Si uniformly at random among
S1, . . . , SN(Φ), and then selecting a solution in that cluster
Si uniformly. Since the number N(Φ) of clusters is (thought
to be) exponential in n throughout the condensation phase,
two solutions σ′, τ ′ chosen independently from the SP dis-
tribution are expected to lie in distinct clusters and thus to
decorrelate w.h.p.

Starting from this (appropriately formalized) decorrela-
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tion assumption, the SP formalism prescribes a sequence of
delicate (non-rigorous) steps to reduce the computation of
the precise threshold rk−NAE to the solution of a continuous
variational problem for any k ≥ 3 [14, 31]. This variational
problem is itself highly non-trivial, but heuristic numerical
techniques yield plausible approximations for small values of
k [28]. Moreover, asymptotically for large k the variational
problem can be solved analytically. This led to the conjec-
ture that rk−NAE = 2k−1 ln 2−

(
ln 2
2

+ 1
4

)
+ok(1) [14], which

Theorem 1 resolves.
Is Theorem 1 “optimal”? Of course, it would be interest-

ing to prove that for any k, the precise threshold rk−NAE

equals the solution to the variational problem that the SP
formalism spits out. However, given that this continuous
problem itself appears difficult to solve analytically (to say
the very least), it seems that such a result would merely es-
tablish the equivalence of two hard mathematical problems.
Thus, we believe that Theorem 1 marks the end of the line
as far as an analytic/explicit computation of rk−NAE is con-
cerned. However, our results strongly suggest that these two
problems really are equivalent, at least in the limit of large
k.

The first and the second moment method. The above
statistical mechanics picture holds the key to understand-
ing why the previous arguments did not suffice to pin down
rk−NAE precisely. The best previous bounds (1) were ob-
tained by applying the first/second moment method to the
number Z(Φ) of solutions, or a closely related random vari-
able.

With respect to the upper bound, if for some density r
the first moment E [Z(Φ)] tends to 0 as n gets large, then
Z(Φ) = 0 w.h.p. by Markov’s inequality. Thus, rk−NAE ≤ r.
Indeed, it is not difficult to verify that E [Z(Φ)] = o(1) for
r = rfirst [3]. This gives the upper bound in (1).

The purpose of the second moment method is to bound
rk−NAE from below. The general approach is this: suppose
we can define a random variable Y = Y (Φ) ≥ 0 such that
Y > 0 only if Φ has a NAE-solution. Moreover, assume that
for some density r, the second moment E[Y 2] satisfies

E[Y 2] ≤ C · E [Y ]2 (3)

with C = C(k) ≥ 1 dependent on k but not on n. Then the
Paley-Zygmund inequality P [Y > 0] ≥ E [Y ]2 /E[Y 2] implies
that

P [Φ has a NAE-solution] ≥ P [Y > 0]

≥ E[Y 2]/E [Y ]2 ≥ 1/C > 0.
(4)

Because the k-NAESAT threshold is sharp, and as C is in-
dependent of n, (4) implies that rk−NAE ≥ r.

The obvious choice of random variable is the number Z(Φ)
of solutions. Since Z(Φ)2 is just the number of pairs of
NAE-solutions, the second moment can be written as

E[Z(Φ)2] =
∑
σ,τ∈{0,1}n P [both σ, τ are NAE-solutions] .

(5)
Indeed, Achlioptas and Moore [3] proved that (3) is satisfied
for Y = Z(Φ) if r ≤ 2k−1 ln 2 − (1 + ln 2) /2. Improving
upon [3], Coja-Oghlan and Zdeborová [12] obtained the best
previous lower bound (1) by considering a slightly modified
random variable Z′(Φ). Namely, Z′(Φ) = Z(Φ) · 1Φ∈A,
where A is a certain event such that Φ ∈ A w.h.p. In other
words, Z′(Φ) is equal to Z(Φ) for almost all formulas, but
a small fraction of “bad” formulas (that would blow up the

second moment) are excluded. Still, Z′(Φ) admits a similar
decomposition as (5) (one just has to condition on A).

As (5) shows, the second moment analysis of either Z(Φ)
or Z′(Φ) boils down to studying the correlations amongst
pairs of solutions. In fact, it was observed in [3, 12] that a
necessary condition for the success of this approach is that
two independently and uniformly chosen σ, τ ∈ S(Φ) satisfy
dist(σ, τ ) ∼ n/2 w.h.p. But according to the statistical me-
chanics picture, this decorrelation condition is violated for
r > rcond due to the presence of large clusters. Therefore,
it is not surprising that the best previous lower bound (1)
on rk−NAE coincides with the (conjectured) condensation
threshold rcond. Indeed, it was verified in [12] that a certain
“weak” form of condensation sets in at r ∼ rcond.

The statistical mechanics prescription to overcome these
correlations is to work with the Survey Propagation distri-
bution (first select a cluster uniformly, then choose a random
solution from that cluster) rather than the uniform distribu-
tion over S(Φ). This is precisely the key idea behind our new
SP-inspired second moment argument. Roughly speaking,
we are going to develop a way to apply the second moment
method to the number N(Φ) of clusters, rather than the
number of solutions. More precisely, we introduce a param-
eter β that allows us to work with clusters of a prescribed
size. A specific choice of β (namely, β = 1/2) corresponds to
the SP distribution and thus to working with Y (Φ) = N(Φ).

This new technique allows us to obtain various further
results. For instance, we can pin down the typical val-
ues of both Z(Φ) and N(Φ) throughout the condensation
phase (details omitted). Furthermore, our proof entails the
following result that confirms the physics conjecture that
pairs of solutions drawn from the SP distribution decorre-
late throughout the condensation phase.

Corollary 1. Suppose that

rcond ≤ r ≤ 2k−1 ln 2−
(

ln 2

2
+

1

4

)
− εk.

Let σ′, τ ′ be drawn independently from the SP distribution.
Then dist(σ′, τ ′) = ( 1

2
+ ok(1))n w.h.p.

3. RELATED WORK
Rigorous work. The k-NAESAT problem is well-known to
be NP-complete in the worst case for any k ≥ 3. In fact, the
NP-complete problem of 2-coloring a k-uniform hypergraph
(with k ≥ 3) simply is the special case of k-NAESAT with-
out negations. The results in [12] are actually phrased in
terms of hypergraph 2-coloring but carry over to k-NAESAT
directly.

The main contribution of Theorem 1 is the improved lower
bound. In fact, the upper bound in (2) can be obtained
in several different ways. Achlioptas and Moore [3] state
without proof that the (quite intricate) enhanced first mo-
ment argument from [16, 26] can be used to show that
rk−NAE ≤ 2k−1 ln 2 − ( ln 2

2
+ 1

4
) + ok(1). This is indeed

plausible as, in terms of the statistical mechanics intuition
(which was unknown to the authors of [16, 26]) this argu-
ment amounts to computing the first moment of the num-
ber of clusters. Alternatively, generalizing work of Franz
and Leone [21], Panchenko and Talagrand [31] proved that
the variational problem that results from the SP formalism
yields a rigorous upper bound on rk−NAE, which is conjec-
tured to be tight for any k ≥ 3. The variational problem can
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be solved asymptotically in the large-k limit (unpublished),
yielding the upper bound stated in Theorem 1. In this pa-
per we obtain the upper bound by a relatively simple third
argument that has a neat combinatorial interpretation.

The proofs of the lower bounds in [3, 12] and in the present
paper are non-constructive in the sense that they do not en-
tail an efficient algorithm for finding a NAE-solution w.h.p.
The best current algorithm for random k-NAESAT is known
to succeed for r ≤ Ok(2k/k), thus being a factor of Ωk(k)
below rk−NAE [2].
>From a statistical mechanics point of view, many ran-

dom CSPs are similar to random k-NAESAT. In particular,
the physics methods suggest the existence of a condensation
phase in most random CSPs (e.g., random k-SAT/graph
k-coloring). While [3] provided the prototype for the sec-
ond moment arguments in these and other problems, the
technical details in random graph k-coloring [4] or random
k-SAT [6] are quite a bit more intricate than in random k-
NAESAT.

For instance, random k-NAESAT is simpler than ran-
dom k-SAT because for any NAE-solution σ the inverse
σ̄ : x 7→ 1− σ(x) is a NAE-solution as well. This symmetry
of the solution space under inversion simplifies the second
moment calculations significantly. To cope with the absence
of symmetry in random k-SAT, Achlioptas and Peres [6]
weighted satisfying assignments cleverly in order to recover
the beneficial analytic properties that symmetry induces.
Our new second moment method is quite different from this
weighting approach, since the asymmetry that called for the
weighting scheme in [6] is absent in k-NAESAT.

None of the (few) random CSPs in which the threshold
for the existence of solutions is known precisely has a con-
densation phase. The most prominent example is random
k-XORSAT (random linear equations mod 2) [17, 32]. In
this case, the algebraic nature of the problem precludes con-
densation: all clusters are simply translations of the kernel.
Similarly, the condensation phase is empty in the uniquely
extendible problem from [13]. Also in random k-SAT with
k = k(n) > log2 n (i.e., the clause length grows as a function
of n), where the precise threshold has been determined by
Frieze and Wormald [23] via the second moment method,
condensation does not occur [11]. Nor does it in random
2-SAT [8, 25].

Parts of our proof require a precise analysis of geometry
of the solution space S(Φ). This analysis harnesses some
of the ideas that were developed in previous work [1, 7, 12,
15] (e.g., arguments for proving the existence of clusters or
of “rigid variables”). However, we need to go beyond these
previous arguments significantly in two respects. First, we
need to generalize them to accommodate the parameter β
that controls the cluster sizes. Second, we need rather pre-
cise quantitative information about the cluster structures.

Survey Propagation guided decimation. The SP formal-
ism has given rise to an efficient message passing algorithm
called Survey Propagation guided decimation (‘SPD’) [29].
Experimentally, SPD seems spectacularly successful at solv-
ing, e.g., random k-SAT for small values of k. Unfortunately,
no quantitative analysis of this algorithm is currently known
(not even a non-rigorous one). The basic idea behind SPD is
to approximate the marginals of the SP distribution (i.e., the
probability that a given variable is ‘true’ in a solution drawn
from the SP distribution) via a message passing heuristic.
Then a variable x is selected according to some rule and

is assigned a value based on the (approximate) marginal.
The entire procedure is repeated on the “decimated” prob-
lem instance where x has been eliminated, until (hopefully)
a solution is found.

The decorrelation of random solutions chosen from the
SP distribution is a crucial assumption behind the message
passing computation of the SP marginals. Corollary 1 estab-
lishes such a decorrelation property rigorously. However, in
order to actually analyze SPD, one would have to generalize
Corollary 1 to the situation of a“decimated”random formula
in which a number of variables have already been eliminated
by previous steps of the algorithm. Still, we believe that the
techniques developed in this paper are a (necessary) first
step towards a rigorous analysis of SPD.

4. HEAVY SOLUTIONS AND THE FIRST
MOMENT

In the rest of the paper we sketch the SP-inspired second
moment method on which the proof of Theorem 1 is based.
Aiming for an asymptotic result, we may assume that k ≥ k0

for some (large) constant k0 > 3. We also assume r =
2k−1 ln 2−ρ for some 1

2
ln 2 ≤ ρ ≤ ln 2. Let Φi denote the ith

clause of the random formula Φ so that Φ = Φ1 ∧ · · · ∧Φm.
Furthermore, let Φij signify the jth literal of clause Φi; thus,
Φi = Φi1 ∨ · · · ∨ Φik. For a literal ` we let |`| denote the
underlying variable.

As we discussed earlier, the demise of the “standard” sec-
ond moment method in the condensation phase is due to the
dominance of few large clusters. The statistical mechanics
prescription for circumventing this issue is to work with a
non-uniform distribution over solutions that favors “small”
clusters. To implement this strategy, we are going to ex-
hibit a simple parameter that governs the size of the cluster
that a solution belongs to. Formally, we define the cluster
of σ ∈ S(Φ) as

C(σ) = CΦ(σ) = {τ ∈ S(Φ) : dist(σ, τ) ≤ 0.01n} .

This definition is vindicated by the following observation
from [12], which shows that any two solutions either have
the same cluster or are well-separated.

Proposition 1. Assume 2k−1 ln 2 − ln 2 ≤ r ≤ rk−NAE.
W.h.p. any two σ, τ ∈ S(Φ) either satisfy

dist(σ, τ) ≤ 0.01n

or

dist(σ, τ) ≥ (1/2− 2−k/3)n.

To proceed, we need to get an idea of the“shape”of the clus-
ters C(σ). According to the SP formalism, each cluster has
a set R(σ) of Ω(n) rigid variables on which all assignments
in C(σ) coincide, while the values of the non-rigid variables
vary. Formally, we have τ(x) = σ(x) for all x ∈ R(σ) and
all τ ∈ C(σ), while for each x 6∈ R(σ) there is τ ∈ C(σ)
such that τ(x) 6= σ(x). This implies an immediate bound

on the size of C(σ), namely |C(σ)| ≤ 2n−|R(σ)|. Indeed, we
are going to prove that every cluster has a rigid set of size
Ω(n) w.h.p., and that for all clusters w.h.p.

log2 |C(σ)| = (1− ok(1))(n− |R(σ)|). (6)

With |C(σ)| controlled by the number of rigid variables,
it might seem promising to perform first/second moment
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arguments for the number of solutions with a suitably chosen
number of rigid variables. The problem with this is that
there is no simple way to tell whether a given variable is
rigid: deciding this is NP-hard in the worst case. Intuitively,
this is because rigidity emerges from the “global” interplay
of variables and clauses. In effect, parametrizing by the
number of rigid variables appears technically infeasible.

Instead, we are going to work with a simple“local”param-
eter that turns out to be a good substitute. Suppose that
x ∈ R(σ). Then x must occur in some clause Φi that would
be violated if x was assigned the opposite value 1 − σ(x)
(with all other variables unchanged). By the definition of
k-NAESAT, this means that the other k − 1 literals of Φi

take the opposite value of the literal whose underlying vari-
able x is. In this case we say that x supports Φi under σ,
and we call Φi a critical clause. Moreover, we call a variable
that supports a clause blocked, while all other variables are
free. While every rigid variable is blocked, the converse is
not generally true. Nonetheless, we will see that the number
of variables that are blocked but not rigid is small enough
so that we can control the cluster sizes in terms of blocked
variables.

As a first step, we are going to estimate the expected num-
ber of solutions with a given number of blocked variables.
Let λ = kr

2k−1−1
= k ln 2 + Ok(k/2k) and let us say that

σ ∈ S(Φ) is β-heavy if exactly (1 − β) exp(−λ)n variables
are free. Let Sβ(Φ) be the set of all β-heavy solutions and
let Zβ = |Sβ(Φ)| denote their number.

Proposition 2. For any β ≤ 1 we have

lnE [Zβ ]

=
n

2k

(
2ρ− ln(2)− (1− β) ln(1− β)− β +Ok(k 2−k)

)
.

(7)

In particular, Zβ = 0 for all β < −3/2 w.h.p.

Proof. The computation of E [Zβ ] is instructive because
it hinges upon the solution of an occupancy problem that
will play an important role in the second moment computa-
tion. Let 1 denote the assignment that sets all variables to
true. By the linearity of expectation and by symmetry, we
have

E [Zβ ] =
∑

σ∈{0,1}n
P [σ is a β-heavy solution]

= 2n P [1 is a β-heavy solution]

= 2n P [1 is β-heavy |1 is solution] P [1 is solution] .

Clearly, 1 is a solution iff each clause of Φ contains both
a positive and a negative literal. A random clause has this
property with probability 1−21−k. Since the m ∼ rn clauses
are chosen independently, we get

2n · P [1 is a solution] = 2n(1− 21−k)m

= exp
[ n

2k

(
2ρ− ln 2 +Ok(2−k)

)]
.

Working out the conditional probability that 1 is β-heavy
is not so straightforward. Whether 1 is β-heavy depends
only on the critical clauses of Φ. Let X be their number.
Given that 1 is a solution, each clause Φi is critical with
probability k/(2k−1−1) independently (as there are 2k ways
to choose the literal signs to obtain a critical clause). Hence,

X has a binomial distribution Bin(m, k/(2k−1 − 1)) with
mean

E [X | 1 ∈ S(H)] =
km

2k−1 − 1
= λn.

Since the supporting variable of each critical clause is uni-
formly distributed, given 1 ∈ S(H) the expected number
of clauses that each variable supports equals λ. Thinking
of the variables as bins and of the critical clauses as balls,
standard results on the occupancy problem show that the
number of free variables is (1 + o(1)) exp(−λ)n w.h.p. Thus,
E [Zβ ] is maximized for β = 0.

By contrast, values β 6= 0 correspond to atypical outcomes
of the occupancy problem. Values β < 0 require an excess
number of “empty bins”, while β > 0 means that fewer bins
than expected are empty. To determine the precise (ex-
ponentially small) probability of getting (1 − β) exp(−λ)n
empty bins, we need to balance large deviations of X against
the probability that exactly (1 − β) exp(−λ)n bins remain
empty for a given value of X. The result of this com-
bined large deviations analysis is the expression (7), see be-
low. The analysis also shows that E [Zβ ] = exp(−Ω(n)) for
β < −3/2, whence Zβ = 0 w.h.p. for β < −3/2, as claimed.

Let, as above, X ∼ Bin(m, k/(2k−1 − 1)). We throw X
balls into n bins uniformly at random. Let Bi denote the
number of bins that receive i balls. Then, we will show that
for any −3/2 ≤ β ≤ 1

n−1 ln Pr
[
B0 = (1− β)e−λn

]
= n−1 ln Pr

[
Bin(n, e−λ) = (1− β)e−λn

]
+Ok(k4−k).

(8)

The statement of the proposition follows the from the fact
that for any −3/2 ≤ β ≤ 1

n−1 ln Pr
[
Bin(n, e−λ) = b(1− β)e−λnc

]
=− (1− β) ln(1− β)− β +Ok(4−k).

This can be verified by simple algebraic manipulations using
the exact expression for the density of the binomial distri-
bution, which are omitted from this extended abstract.

We shall estimate the probability in the (8) by condi-
tioning on any specific value x of X. Let Fi be the num-
ber of balls in the ith bin, and let P1, . . . , Pn be indepen-
dent Poisson distributed random variables with mean λ. It
is well-known and easy to verify that the distribution of
(F1, . . . , Fn) is the same as the distribution of (P1, . . . , Pn),
conditioned on the event A(x) = “

∑
1≤i≤n Pi = x”. So, if

we denote by N0 the number of Pi’s that are equal to 0, we
infer that

Pr
[
B0 = (1− β)e−λn | X = x

]
= Pr

[
N0 = (1− β)e−λn

∣∣∣ A(x)
]
.

By the law of total probability this equals

Pr
[
B0 = (1− β)e−λn | X = x

]
= Pr

[
N0 = (1− β)e−λn

]
· Pr[A(x) | N0 = (1− β)e−λn]

Pr[A(x)]
.

Note that N0 ∼ Bin(n, e−λ). Furthermore, if we denote by
P ′1, . . . , P

′
ξn, where ξ = 1− (1− β)e−λ, independent Poisson

variables that are conditioned on being at least 1, then the
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above equation implies that

Pr
[
B0 = (1− β)e−λn

]
Pr [Bin(n, e−λ) = (1− β)e−λn]

=

m∑
x=ξn

Pr[
∑ξn
i=1 P

′
i = x]

Pr[Po(λn) = x]
· Pr

[
Bin(rn, k/(2k−1 − 1)) = x

]
.

(9)

In order to complete the proof of (8) we will derive in the se-
quel appropriate bounds for the right-hand side of the above
equation. First, to obtain a lower bound, note that ξ < λ,
since ξ < 1 and λ = k ln 2 +Ok(k2−k), which is > 1 for suf-
ficiently large k. Thus, we can obtain a lower bound for (9)
by considering only the term in the sum that corresponds to
x = λn. Since E[Po(λn)] = E[Bin(rn, k/(2k−1 − 1))] = λn,
we infer by applying a local limit theorem that

Pr[Po(λn) = λn] = Θ(n−1/2)

and

Pr[Bin(rn, k/(2k−1 − 1)) = λn] = Θ(n−1/2).

It remains to bound Pr[
∑ξn
i=1 P

′
i = λn]. Note that E[P ′1] =

λ
1−e−λ . If we write N = ξn, then

Pr

[
ξn∑
i=1

P ′i = λn

]
= Pr

[
N∑
i=1

P ′i =

(
E[X1] +

βλe−λ

ξ(1− e−λ)

)
N

]
,

i.e., we require that the sum of the P ′i ’s deviates from the
expected value by Ok(k2−kn). Since the sums of indepen-
dent random variables with finite moments have quadratic
exponential tails, we conclude that the right-hand side of (9)
is at least exp{−Ok(k4−kn)}. This shows the lower bound
in (8).

In the remainder of this proof we will show an upper
bound for the right-hand side of (9). To this end, we will
argue that the ratio

Pr[Bin(rn, k/(2k−1 − 1)) = γλn]

Pr[Po(λn) = γλn]

is essentially bounded for all x in the given range, from which
the claim immediately follows. More specifically, let us write
x = γ λn, where ξ/λ ≤ γ ≤ r/λ. By applying Stirling’s

Formula N ! = (1 + o(1))
√

2πN(N/e)N we infer that

Pr[Po(λn) = γλn] = Θ(1)n−1/2 exp{λn(−1 + γ − γ ln γ)}.
(10)

Moreover, by abbreviating p = k/(2k−1 − 1) we get

Pr[Bin(rn, k/(2k−1 − 1)) = γλn]

=

(
rn

(γp) rn

)
p(γp) rn(1− p)(1−γp)rn.

Since
(
N
αN

)
≤ eH(α)N , where H denotes the entropy func-

tion, we obtain after some elementary algebra

Pr[Bin(rn, p) = γλn]

≤ exp

{
λn

(
−γ ln γ − 1− γp

p
ln

(
1− γp
1− p

))}
.

By combining this with (10) we obtain the estimate

Pr[Bin(rn, k/(2k−1 − 1)) = γλn]

Pr[Po(λn) = γλn]
≤ Θ(

√
n) ef(γ)λn,

where

f(γ) = 1− γ − 1− γp
p

ln

(
1− γp
1− p

)
.

Recall that 0 < ξ/λ ≤ γ ≤ r/λ = 1/p, and note that both
f(0) and f(1/p) are < 0. Moreover, f has an extremal
point at γ = 1, where f(1) = 0. Thus, for all γ in the
considered range we have that f(γ) ≤ 0, which implies that
the right-hand side of (9) is bounded from above by at most
a polynomial in n. This completes the proof.

As a next step, we need to estimate the cluster size of a
β-heavy solution.

Proposition 3. W.h.p. for all −3/2 ≤ β ≤ 1 all β-heavy
σ ∈ S(Φ) satisfy

log2 |C(σ)| = n

2k
[1− β + ok(1)] . (11)

Proof. The crucial thing to show is that all but a very
few blocked variables are rigid. The proof of this builds upon
arguments developed in [1] to establish rigidity. Suppose
that x is blocked in σ ∈ Sβ(Φ), i.e., x supports some clause,
say Φ1. In any solution τ with τ(x) 6= σ(x) there must
be another variable x′ that occurs in Φ1 such that τ(x′) 6=
σ(x′). Given that x supports Φ1, the other k − 1 variables
of Φ1 are uniformly distributed. Since σ has no more than
(1 − β) exp(−λ)n = (1 − β + ok(1))2−kn free variables, the
probability that x′ is free is bounded by (1− β+ ok(1))(k−
1)/2k. In fact, since the expected number of clauses that
each variable supports is λ = (1 + ok(1))k ln 2, it is quite
likely that x′ supports several clauses and that therefore
“flipping” x′ necessitates several further flips. Continuing
this argument, we see that the number of flips follows a
branching process with (initial) successor rate λ. A detailed
analysis shows that for all but Ok(k4−k)n blocked initial
variables x this process will lead to an avalanche of more
than 0.01n flips, whence τ 6∈ C(σ). This shows that all but
ok(2−k)n blocked variables are rigid.

We are ready to prove that rk−NAE ≤ 2k−1 ln 2 − ( ln 2
2

+
1
4
) + ok(1), which is (almost) the upper bound promised in

Theorem 1. (Some additional technical work is needed to re-
place the ok(1) by an error term that decays exponentially.)
Let Nβ = |{C(σ) : σ ∈ S(Φ) is β-heavy}| be the number of
clusters centered around β-heavy solutions. By Proposi-

tion 3, each such cluster has size |C(σ)| = 2n(1−β+ok(1))/2k

w.h.p. Hence, once more by Proposition 3, any solution τ ∈
C(σ) is β′-heavy for some β′ satisfying |β′ − β| ≤ δk = ok(1)
w.h.p. Letting Z∗β be the total number of β′-heavy solutions
with |β′ − β| ≤ δk, we conclude that

Nβ · 2n(1−β+ok(1))/2k ≤ Z∗β w.h.p. (12)

Clearly, Z∗β ≤ E[Z∗β ] · exp(o(n)) w.h.p. by Markov’s inequal-
ity. Furthermore, as the total number of free variables in
each cluster is an integer between 0 and n, we have E[Z∗β ] ≤
(n+1) ·maxβ′ E[Zβ′ ]. Combining these inequalities with the
estimate of E[Zβ′ ] from Proposition 2, we find

Z∗β ≤ exp [o(n)] E[Z∗β ]

≤ exp
( n

2k
[2ρ− ln(2)− (1− β) ln(1− β)− β + ok(1)]

)
(13)

with high probability. Combining (12) and (13), we obtain
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Fact 1. W.h.p. we have Nβ ≤ exp
[
η(β) · n/2k

]
for all

β, with

η(β) = 2ρ− ln(2)− (1− β) ln(2− 2β)− β + ok(1). (14)

Finally, it is a mere exercise in calculus to verify that at
density r∗ = 2k−1 ln 2− ( ln 2

2
+ 1

4
) + ok(1) the exponent η(β)

is negative for all β. Therefore, Fact 1 implies that r∗ is an
upper bound on rk−NAE.

Remark 1. The exponent η(β) attains its maximum at
β = 1

2
+ ok(1). Together with our second moment bound

below, this implies that for β = 1
2

+ ok(1) we have N(Φ) =

exp(ok(1)n) ·Nβ(Φ) w.h.p., i.e., setting β = 1
2

+ ok(1) cor-
responds to the uniform distribution over clusters and thus
to the SP distribution.

5. THE SECOND MOMENT
A first attempt. The obvious approach to proving a match-
ing lower bound on rk−NAE seems to be a second moment
argument for the number Zβ of β-heavy solutions, for some
suitable β. There is a subtle issue with this, but exploring
it will put us on the right track.

We already computed E [Zβ ] in Proposition 2. As E[Z2
β ]

is the expected number of pairs of β-heavy solutions, the
symmetry properties of the random formula Φ imply that

E[Z2
β ] = E [Zβ ] · E [Zβ |σ ∈ Sβ(Φ)] for any fixed σ ∈ {0, 1}n .

Thus, the second moment condition (3) that we would like
to establish for Y = Zβ becomes

E [Zβ |σ ∈ Sβ(Φ)] ≤ C · E [Zβ ] . (15)

What value of β should we go for? By Fact 1 a necessary
condition for the existence of β-heavy solutions is that the
exponent η(β) from (14) is positive. Let us call β feasible for
a density r if it is. An elementary calculation shows that for
r > rcond = 2k−1 ln 2− ln 2 + ok(1), any feasible β is strictly
positive.

However, (15) turns out to be false for any β > 0, for any
density r > 0. To understand why, let us define the degree
dx of a variable x ∈ V as the number of times that x occurs
in the formula Φ. Let d = (dx)x∈V be the degree sequence
of Φ. It is well known that in the “plain” random formula
Φ (without conditioning on σ ∈ Sβ(Φ)), the degree of each
variable is asymptotically Poisson with mean km/n. On the
other hand, if we condition on σ ∈ Sβ(Φ) for some β > 0,
then the degrees are not asymptotically Poisson anymore.
Indeed, the degree dx is the sum of the number sx of clauses
that x supports, and the number d′x of times that x appears
otherwise. While d′x is asymptotically Poisson with mean
< km/n as the non-critical clauses do not affect the number
of blocked variables at all, sx is not. More precisely, we
saw in the proof of Proposition 2 that for β > 0, sx is the
number of “balls” that x receives in an atypical outcome of
the occupancy problem. The precise distribution of sx is
quite non-trivial, but it is not difficult to verify that sx does
not have a Poisson distribution. Fleshing this observation
out leads to the sobering

Lemma 1. For any β > 0 and any r > 0 we have

E[Zβ |σ ∈ Sβ(Φ)] ≥ exp(Ω(n)) · E [Zβ ] .

In summary, conditioning on σ ∈ Sβ(Φ) with β > 0 im-
poses a skewed degree distribution that in turn boosts the
expected number of β-heavy solutions beyond the uncondi-
tional expectation.

Making things work. We tackle the issue of degree fluc-
tuations by separating the choice of the degree sequence
from the choice of the actual formula. More precisely, for
a sequence d = (dx)x∈V of non-negative integers such that∑
x∈V dx = km we let Φd denote a k-CNF with degree

sequence d chosen uniformly at random amongst all such
formulas. Fixing a “typical” degree sequence d, we are go-
ing to perform a second moment argument for Φd, thereby
preventing fluctuations of the degrees.

How do we define “typical”? Ideally, we would like d to
enjoy all the properties that the degree sequence of the (un-
conditioned) random formula Φ is likely to have. Formally,
we let D = Dk(n,m) be the distribution of the degree se-
quence of Φ. What we are going to show is that our second
moment argument succeeds for a random degree sequence
chosen from the distribution D w.h.p.

Definition 1. A β-heavy solution σ ∈ S(Φd) is good if
the following conditions are satisfied.

• We have |C(σ)| ≤ E [Zβ(Φd)].

• There does not exist τ ∈ S(Φd) with

0.01n ≤ dist(σ, τ) ≤ (1/2− 2−k/3)n.

• No variable supports more than 3k clauses under σ.

The first two items mirror our analysis of the solution space
from Section 4. The third one turns out to be useful for a
purely technical reason.

Let Sg,β(Φd) be the set of good β-heavy solutions and
set Zg,β(Φd) = |Sg,β(Φd)|. We perform a second moment
argument for Zg,β(Φd), with d chosen randomly from the
distribution D. The result is

Proposition 4. Suppose that β > 0 is feasible. There is
C = C(k) such that for a degree sequence d chosen from the
distribution D w.h.p. E

[
Zg,β(Φd)2

]
≤ C · E [Zg,β(Φd)]2 .

Proposition 4 shows that the second moment method for
Zg,β(Φd) succeeds for feasible β. As we observed in Sec-
tion 4, a feasible β > 0 exists so long as r ≤ 2k−1 ln 2 −
( ln 2

2
+ 1

4
)−Ok(k4/2k). Hence, Proposition 4 and the Paley-

Zygmund inequality show that Φd is NAE-satisfiable for all
such r with a non-vanishing probability for d chosen ran-
domly from D. Consequently, the same is true of the un-
conditioned formula Φ (because we could generate Φ by first
choosing d from D and then generating Φd). Since the k-
NAESAT threshold is sharp [22], we obtain the lower bound
in Theorem 1.

Proving Proposition 4. As a first step, we need to work
out E [Zg,β(Φd)]. Suppose β > 0 is feasible. Recall that ρ
is such that r = 2k−1 ln 2− ρ.

Lemma 2. W.h.p. the degree sequence d chosen from D
is such that

E [Zg,β(Φd)] ∼ E [Zβ(Φd)]

= exp

[
n

2k

(
2ρ− ln 2− (1− β) ln(1− β)− β +Ok

( k
2k

))]
.
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Proof. Choose and fix a degree sequence d. We need to
compute the probability that some σ ∈ {0, 1}V is a good
β-heavy solution. By symmetry, we may assume that σ = 1
is the all-true assignment. Then σ is a solution iff every
clause contains both a positive and a negative literal. Since
the signs of the literals are chosen for all m clauses indepen-
dently, we see that

P [σ ∈ S(Φd)] = (1− 21−k)m. (16)

Given that σ is a solution, the number X of critical clauses
has distribution Bin(m, k/(2k−1 − 1)), because whether a
clause is critical depends on its signs only. As in the proof
of Proposition 2, to determine the probability that σ is β-
heavy we need to solve an occupancy problem: X balls rep-
resenting the critical clauses are tossed randomly into n bins
representing the variables. However, this time the bins have
capacities: the bin representing x ∈ V can hold no more
than min {3k, dx} balls in total. Thus, we need to com-
pute the probability that under these constraints, exactly
(1− β)2−kn bins are empty. This amounts to a rather non-
trivial counting problem, but for a random degree sequence
d the probability differs from the formula obtained in Propo-
sition 2 only by an error term that decays exponentially in
k. More precisely,

P [σ ∈ Sβ(Φd)|σ ∈ S(Φd)]

= exp
(
− n

2k

[
(1− β) ln(1− β)− β −Ok(k/2k)

])
.

(17)

Let us provide some intuition why this is. The bin ca-
pacities are such that w.h.p. most bins can hold about kr =
k2k−1 ln 2+Ok(k) balls. By comparison, the total number of
balls is X ∼k mk/(2k−1− 1) ∼k nk ln 2 w.h.p. In effect, the
expected number of balls that a typical bin receives is about
k ln 2, way smaller than the capacity of that bin. Indeed,
since the number of balls that are received by a typical bin
is approximately Bin(kr, nk ln 2

km
) ≈ Bin(kr, 2−k+1), the num-

ber of balls can be approximated well by a Po(λ) distribution
(with λ = kr/(2k−1 − 1) ∼k k ln 2). Thus, the probability
that a bin remains empty is close to exp(−λ), which was
the probability of the same event in the experiment with-
out capacities. The technical details of this argument are
quite delicate, as the fluctuations of the capacities need to
be controlled very carefully.

Finally, similar arguments as in the proof of Proposition 3
yield P [σ ∈ Sg,β(Φd)|σ ∈ Sβ(Φd)] = 1 − o(1). Thus, the
assertion follows from (16)–(17).

We now turn to the second moment. Fix some σ ∈ {0, 1}V ,
say σ = 1. Let Zg,β(t, σ) denote the number of good τ ∈
S(Φd) at distance t from σ. Using the linearity of expecta-
tion and recalling that the set of NAE-solutions is symmetric
with respect to inversion, we obtain

E [Zg,β(Φd)|σ ∈ Sg,β(Φd)]

≤ 2
∑

0≤t≤n/2

E [Zg,β(t, σ)|σ ∈ Sg,β(Φd)] . (18)

Let I =
{
t ∈ Z : ( 1

2
− 2−k/3)n ≤ t ≤ n/2

}
. The first two

conditions from Definition 1 ensure that given that σ is good,
so with certainty we have∑

t≤0.01n

Zg,β(t, σ) ≤ |C(σ)| ≤ E [Zβ(Φd)]

and ∑
0.01n<t<( 1

2
−2−k/3)n

Zg,β(t, σ) = 0.

Hence, Lemma 2 and (18) yield

E [Zg,β(Φd)|σ ∈ Sg,β(Φd)]

≤(2 + o(1))E [Zg,β(Φd)] + 2
∑
t∈I

E [Zg,β(t, σ)|σ ∈ Sg,β(Φd)] .

(19)

This reduces the proof to the analysis of the “central terms”
with t ∈ I. The result of this is

Lemma 3. There is a constant C′ = C′(k) ≥ 1 such that
for a random d we have w.h.p.∑

t∈I E [Zg,β(t, σ)|σ ∈ Sβ,g(Φd)] ≤ C′ · E [Zg,β(Φd)] . (20)

Proof sketch. This is technically the most challenging
bit of this work. The argument boils down to estimat-
ing the probability that two random σ, τ ∈ {0, 1}n with

dist(σ, τ )/n = α ∈ [ 1
2
− 2−k/3, 1

2
] simultaneously are good

β-heavy solutions. To compute this probability, we need to
analyze the interplay of two occupancy problems as in the
proof of Lemma 2 with respect to the same degree sequence
d.

More precisely, let B =
⋃
x∈V {x} × {1, . . . , dx} be a set

of km “balls”. Generating Φd is equivalent to drawing a
random bijection π : [m]× [k]→ B, with π(i, j) = (x, l) in-
dicating that x is the underlying variable of the jth literal of
clause i, and independently choosing a map s : [m]× [k]→
{±1} indicating the signs. Further, we represent the occu-
pancy problems for σ, τ by two “colorings” gσ, gτ : B →
{red, blue}, with gσ(x, l) = red indicating that the lth po-
sition in bin x is occupied under σ (and analogously for τ).
We compute the probability p(α, gσ, gτ ) that π, s induce a
formula in which

• literal (i, j) supports clause i under σ iff gσ ◦ π(i, j) =
red, and similarly for τ .

• both σ, τ are good β-heavy solutions.

The result is that for any gσ, gτ the “success probability” is
minimized at α = 1/2. Quantitatively,

p(α, gσ, gτ )

p(1/2, gσ, gτ )
= exp

[
Ok(k4/2k)(α− 1/2)2n

]
for any gσ, gτ .

(21)
On the other hand, the total number of assignment pairs
satisfies

|{(σ, τ) : dist(σ, τ) = αn}|
|{(σ, τ) : dist(σ, τ) = n/2}|

=

(
n

αn

)
/

(
n

n/2

)
= exp(−(4− ok(1))(α− 1/2)2n),

(22)

which is maximized at α = 1/2. Combining (21) and (22),
we see that for any two colorings gσ, gτ the dominant contri-
bution to the second moment stems from α = 1

2
+O(1/

√
n),

i.e., from “perfectly decorrelated” σ, τ . The assertion fol-
lows by evaluating the contribution of such α explicitly and
summing over gσ, gτ .
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