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Interaction networks are of central importance in postgenomic
molecular biology, with increasing amounts of data becoming
available by high-throughput methods. Examples are gene regu-
latory networks or protein interaction maps. The main challenge in
the analysis of these data is to read off biological functions from
the topology of the network. Topological motifs, i.e., patterns
occurring repeatedly at different positions in the network, have
recently been identified as basic modules of molecular information
processing. In this article, we discuss motifs derived from families
of mutually similar but not necessarily identical patterns. We
establish a statistical model for the occurrence of such motifs, from
which we derive a scoring function for their statistical significance.
Based on this scoring function, we develop a search algorithm for
topological motifs called graph alignment, a procedure with some
analogies to sequence alignment. The algorithm is applied to the
gene regulation network of Escherichia coli.

The vast amount of sequence data collected over the past two
decades is at the heart of quantitative molecular biology.

Biological information is extracted from these data mainly by
analyzing similarities between sequences. This approach is based on
efficient sequence alignment algorithms and a statistical theory to
assess the significance of the results (see ref. 1). Its ultimate goal is
to infer functional relationships from correlations between se-
quences. Over the last few years, however, it has become clear that
functions in many cases cannot be identified at the level of single
genes. A given function may require the cooperative action of
several genes, and conversely, a given gene may play a role in quite
different functional contexts. The genome is thus a highly interac-
tive system and the expression of a gene depends on the activity of
other genes. The pathways of these interactions are encoded in
so-called regulatory networks. Similarly complex networks govern
signal transduction, that is, the influence of external signals on gene
expression, or protein interactions, that is, the ability of two or more
proteins to enter a bound state in a living cell.

A few exemplary cases of gene networks have been studied in
much detail, such as the regulation of early development in the sea
urchin Strongylocentrotus purpuratus (2) or in Drosophila (3). In
some approximation, these structures can be understood as logical
networks: the expression level of a gene is reduced to a binary
variable (on or off) and is specified in terms of binary input data,
i.e., the expression levels of its ‘‘upstream’’ genes.

On the other hand, a large amount of data on molecular
interaction networks is now obtained by high-throughput experi-
ments, for example protein interaction maps in yeast (4) or gene
expression arrays (5). In these arrays, one probes the activity of an
entire genome, rather than of just a few genes. However, the
detailed logical connection of interaction pathways is typically lost.
The information is reduced to a topological network, that is, a set of
nodes (representing, e.g., genes or proteins) and links representing
their pairwise interactions. These links can be directed as in the case
of regulatory interactions or undirected as for protein–protein
binding. The amount of topological data on molecular networks is
expected to increase rapidly in the next few years, paralleling the
earlier explosion of sequence data.

What can be learned from these data? Using the network
topology alone, can we distinguish patterns of biological function

from random background? The purpose of this article is to develop
a ‘‘bioinformatics’’ approach to the search for local modules in
networks. We discuss a heuristic search algorithm and its statistical
grounding in a stochastic model of network evolution. This approach
is designed to complement experiments in specific organisms by
large-scale database searches.

Two seminal studies (6, 7) recently have shown that topological
networks indeed contain statistically significant patterns indicative
of biological functions. These motifs are patterns that occur more
frequently in the observed network than expected in a suitable null
ensemble. The motifs found so far have been identified because
they occur identically at different positions in a network.

If network evolution is a stochastic process, however, functionally
related motifs do not need to be topologically identical. Hence, the
notion of a motif has to be generalized to a stochastic one as well.
Variations arise because of uncertainties in the network data, or,
more importantly, because some of the interactions can change
without affecting the functionality of the motif. This ‘‘noise’’ is an
important characteristic of biological systems, familiar from se-
quence analysis, where one searches for local sequence similarities
blurred by mutations and insertions�deletions, rather than for
identical subsequences. It leads us to the notion of a probabilistic
motif in which each link occurs with a certain likelihood. Probabi-
listic motifs arise as consensus from finding a family of ‘‘sufficiently’’
similar subgraphs in a network. The search for mutually similar
subgraphs and their probabilistic motifs is the central issue of this
article.

The motifs of interest here are nonrandom in two ways: they have
an enhanced number of internal links, associated, e.g., with feed-
back, and they appear in a significant number of subgraphs.
Identifying these local deviations from randomness in networks
requires a statistical theory of local graph structure, which we
establish in this article. This is a complementary approach to the
global statistics measured by the connectivity distribution (8) or
connectivity correlations (9, 10) of a network.

Our approach leads to an algorithmic procedure termed local
graph alignment, which is conceptually similar to sequence
alignment. It is based on a scoring function measuring the
statistical significance for families of mutually similar subgraphs.
This scoring involves quantifying the significance of the individ-
ual subgraphs as well as their mutual similarity, and is thus
considerably more complicated than for families of identical
motifs. Our scoring function is derived from a stochastic model
for network evolution. There is indeed evidence that network
evolution can be described as a stochastic process. For example,
the comparison of the regulatory networks for early develop-
ment in several Drosophila species has revealed the continuous
buildup and loss of gene interactions following an approximate
molecular clock (11). Yet little is known about the specific
pathways of network evolution. Our scoring function is compat-
ible with divergent evolution of subgraphs but also with conver-
gent evolution toward a common functional motif. These path-
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ways can be illustrated by a comparison with sequence evolution.
An example of convergent evolution is the formation of se-
quence motifs serving as binding sites of specific enzymes (12,
13). An example of divergent evolution is a set of sequences
stemming from a common ancestor undergoing mutations in-
dependently. The probabilistic grounding of graph alignment
allows us to infer optimal scoring parameters by a maximum-
likelihood procedure (14).

As a computational problem, graph alignment is more challeng-
ing than sequence alignment. Sequences can be aligned in polyno-
mial time by using dynamic programming algorithms. For graph
alignment, a polynomial-time algorithm probably does not exist.
Already simpler graph matching problems such as the subgraph
isomorphism problem (deciding whether a graph contains a given
subgraph) (15, 16) or finding the largest common subgraph of two
graphs (17) are NP-complete and NP-hard, respectively. Thus, an
important issue for graph alignment is the construction of efficient
heuristic search algorithms. Here we solve this problem by mapping
graph alignment onto a spin model familiar in statistical physics,
which can be treated by simulated annealing.

This article is structured as follows. In the first part, we discuss
the statistics of local subgraphs based on a probabilistic model. This
is done in three steps: (i) an individual subgraph with an enhanced
number of internal links, (ii) a subgraph in the presence of a
template motif specifying the functional importance of each link,
and (iii) correlated subgraphs, whose common pattern is to be
inferred from the data instead of being given as a template. We then
construct a scoring function designed to distinguish sets of statis-
tically significant network motifs with an enhanced number of links
from a background of other patterns. High-scoring motifs are found
by an alignment algorithm, details of which are described in
Supporting Text, which is published as supporting information on
the PNAS web site. In the second part of the paper, we apply this
method to the regulatory network of Escherichia coli and discuss the
probabilistic motifs found. The statistics of these motifs is used to
test the assumptions of our probabilistic model.

Graphs and Patterns
A topological network or graph is a set of nodes and links. Labeling
the nodes by an index r � 1, . . . , N, the network is described by the
adjacency matrix C, which has entries Crr� � 1 if there is a directed
link from node r to node r� and Crr� � 0 otherwise. Graphs with a
generic adjacency matrix are called directed. The special case of a
symmetric adjacency matrix can be used to describe undirected
graphs. The in and out connectivities of a node, kr

� � �r�Cr�r and
kr

� � �r�Crr�, are defined as the number of in- and outgoing links,
respectively. The total number of links is denoted by K � �r,r�Crr�.
The networks considered here are sparse, i.e., their average con-
nectivity K�N is of order 1.

A subgraph G is given by a subset of n vertices {r1, . . . , rn} and
the resulting restriction of the adjacency matrix. More precisely, we
define the matrix c(G, A) with the entries cij � Crirj

(i, j � 1, . . . , n)
specifying the internal links of the subgraph for a given order A of
the nodes. This matrix c is called a pattern, which is contained in the
subgraph. The definition of a pattern used here implies that two
patterns are counted as separate if the matrices c and c� are
different. This assumes that nodes are distinguishable by their
biochemical identity and their functional role even if they are at
symmetric positions, i.e., if c and c� differ only by the labeling of the
nodes. An alternative definition would count two matrices c and c�
related by a relabeling as defining an identical pattern. Which
definition is more appropriate depends on the particular biological
application.

The most important characteristic of patterns for what follows is
their number of internal links,

L�c� � �
i, j

c ij. [1]

Fig. 1 shows two subgraphs that differ in the values of L.

Graph Alignments and Motifs
A graph alignment is defined by a set of several subgraphs G� (� �
1, . . . , p) and a specific order of the nodes {r1

�, . . . , rn
�} in each

subgraph; this joint order is again denoted by A. For simplicity, we
assume here that the subgraphs are of the same size n, but it is not
difficult to generalize our approach to include subgraphs of differ-
ent size. For a given set of p mutually disjoint subgraphs, there are
(n!)p different alignments. An alignment associates each node in a
subgraph with exactly one node in each of the other subgraphs. This
association can be visualized by n ‘‘strings,’’ each connecting the p
nodes with the same index i as shown in Fig. 1c.

A given alignment A specifies a pattern in each subgraph; we
write c� � c(G�, A). The consensus pattern of this alignment is given
by the matrix

c� �
1
p �

��1

p

c�. [2]

This is a probabilistic pattern, the entry c�ij denoting the likelihood
that a given link is present in the aligned subgraphs. For any two
aligned subgraphs G� and G�, we can define the pairwise mismatch

M�c�, c�� � �
i, j�1

n

	cij
��1 � cij

�� � �1 � cij
��cij

�
 . [3]

The mismatch is 0 if and only if the matrices c� and c� are equal,
and is positive otherwise. It can be considered as a Hamming
distance for aligned subgraphs. The average mismatch over all pairs
of aligned subgraphs, M� � M(c�, c�), is termed the fuzziness of the
consensus pattern c�. Analogously, the average number of internal
links is denoted by L� � L(c�).

We now define network motifs as statistically significant consen-
sus patterns of graph alignments, which are distinguished by a high
number of internal links and low fuzziness. Clearly, this definition

Fig. 1. Motifs and alignment in topological networks. (a) A randomly chosen
connected subgraph is likely to be a tree; i.e., it has the number of internal links
equal to its number of nodes minus 1. (b) Putatively functional subgraphs are
distinguished by internal loops, i.e., by a higher number of internal links. (c) An
alignment of three subgraphs with four nodes each. Each node carries an
index � � 1, 2, 3 labeling its subgraph and an index i � 1, 2, 3, 4 given by the
order of nodes within the subgraph. Nodes with the same index i are joined
by dashed lines, defining a one-to-one mapping between any two subgraphs.
Network links are shown as solid lines (with their arrows suppressed for
clarity). (d) The consensus pattern of this alignment. Each link occurs with a
likelihood c�ij indicated by the gray scale.
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is mathematically loose before we quantify the statistical signifi-
cance. This quantification will be done in the next three sections.

Guided by the results of refs. 6 and 7, we take an enhanced
number of internal links as a topological indicator of possible
functional modules in networks. The additional links beyond a
treelike topology can be associated with feedback or feed-forward
loops in transcription networks, or clusters in protein interaction
networks. For example, the triangle shown in Fig. 1b can be
interpreted (6) as a low-frequency bandpass filter: the central node
is activated if both top nodes are active. However, the right-hand
node is activated by that on the left with a small delay, so the central
node is activated provided the left node is active for a time longer
than this delay. The nontreelike nature of this motif is crucial for its
function. On the other hand, most randomly chosen connected
subgraphs would be treelike. Clearly, an enhanced number of
internal links is but the simplest topological indicator of putative
functionality, and more detailed ways of identifying network motifs
are likely to emerge in the future.

Statistics of Individual Subgraphs
To quantify the statistical significance of a given number of internal
links, we first compute the relevant probability distribution in a
suitable random graph ensemble, which is generated by an unbiased
sum over all graphs with the same number of nodes and the same
connectivities kr

�, kr
� (r � 1, . . . , N) as in the data set but randomly

chosen links (10, 18). This null ensemble is appropriate for biological
networks, whose connectivity distribution generally differs mark-
edly from that of a random graph with uniformly distributed links.
In the null ensemble, the probability of finding a directed link from
node ri to node rj is in good approximation given by wij � kri

�krj

��K
(19). Hence, a given subset of nodes {r1, . . ., rn} forms a subgraph
G with probability

P0�G� � �
i, j�1

n

�1 � wij�
1�cijwij

cij. [4]

This expression neglects double links, which can be included as in
ref. 19. The probability P0(G) depends on the pattern c(G) of the
subgraph, as well as on its environment given by the connectivities
ki

�, ki
� (i � 1, . . . , n). In this ensemble, the expected number of

internal links per node is small, �L�0�n  n�N, where we denote the
average over a given ensemble by ��. Hence, most random sub-
graphs in a large and sparse graph are disconnected. Within the
subset of connected subgraphs, most are treelike. (Later we will be
interested in the subset of nontreelike subgraphs, and this will
require a modification of the null ensemble.)

We now assume that subgraphs containing network motifs are
generated by a different ensemble P�(G). The probability that a
given pair of nodes carries a link is enhanced by a factor e� relative
to the null ensemble 4, leading to

P��G�/P0�G� � Z�
�1exp	�L�c�
 . [5]

Again the probability P�(G) that a given subset of nodes {r1, . . . ,
rn} forms a subgraph G depends on the matrix c(G). We have
introduced the normalization factor Z� � �ij�cij�0,1
exp[�L(c)]P0(G), which ensures that P�(G) summed over all ma-
trices c gives unity. The quantity �, called the link reward, is
multiplied by the total number L of internal links given by Eq. 1. The
ensemble 5 is a statistically unbiased way to describe that functional
motifs are distinguished by a large number of internal links.
(Technically, it is the ensemble of maximal information entropy
with a given average link number �L�, which is determined by the
value of �.) This ensemble may be thought of as resulting from an
evolutionary process favoring the formation of links due to selection
pressure; such a process has recently been studied for regulatory
networks (20). Here we focus on the detection of evolved motifs

rather than on the reconstruction of evolutionary histories. Hence,
we do not need to make assumptions on dynamical details of motif
formation but only on its outcome, which is described by the
ensemble P�(G). We have tested the form of this ensemble for the
regulatory network of E. coli as discussed in Results and Discussion
below. Moreover, the value of the link reward � can be inferred
from the data. One finds e�  N�n, which results in a finite expected
number �L��n of internal links per node within a motif.

Statistics in the Presence of a Template
The distribution 5 describes an ensemble with an enhanced number
of links, which is appropriate for scoring individual subgraphs in the
absence of further knowledge. Consider now an evolutionary
process directed toward a given network motif represented by a
template adjacency matrix t. An alignment A between the motif t
and the subgraph G is specified by a given ordering of the nodes {r1,
. . . , rn} in G. The outcome of this evolutionary process can be
modeled by an ensemble Qt(G, A) with a bias against links that do
not occur in the template,

Qt�G ,A� /P0�G� � Z t
�1exp� �L�c� �

�

2
M�c, t�� . [6]

This expression denotes the probability that a given subset of nodes
{r1, . . . , rn} forms an aligned subgraph (G, A), with the definition
3 of the pairwise mismatch of the subgraph G and the template t
in a given alignment A. Again, Zt is given by normalization. This is
a hidden Markov model: the outcome of the stochastic process is an
aligned subgraph (G, A), whereas only G is observed. The likeli-
hood of observing G is then a sum over all alignments,

Qt�G� � �
A

Q t�G ,A� . [7]

This ensemble has two free parameters, the link reward � and the
mismatch penalty � (with a factor 1�2 introduced for later conve-
nience). It is conceptually similar to hidden Markov models for the
alignment of sequences with gaps.

Statistics of Correlated Subgraphs
Now we turn to the case where a network motif is not given as a
template but has to be inferred from a family of suitably aligned
subgraphs. The underlying evolutionary process can be regarded as
a biased link formation as in the previous section, with the
consensus pattern c� as ‘‘template.’’ Assuming the link formation is
independent for each subgraph, we obtain an ensemble given by

Q�,��G1,. . . ,Gp, A���
��1

p

P0�G��

� Z�,�
�1 exp� � �

��1

p

L�c�� �
�

2 �
��1

p

M�c�,c���
� Z�,�

�1 exp� � �
��1

p

L�c�� �
�

2p �
�,��1

p

M�c�,c��� , [8]

where A specifies an alignment of all subgraphs and we have used
the definition 2 of the consensus pattern. The normalization is
given by

Z�,� � �
A

�
c1,. . .,cp

exp�� �
��1

p

L�c�� �
�

2p �
�,��1

p

M�c�,c��� �
��1

p

P0�G�� .

[9]
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The Scoring Function
We now construct a scoring function designed to select a set of
(putatively) functional subgraphs, characterized by a consensus
motif with a high number of internal links and low fuzziness, from
the background of random subgraphs in a large network.

Based on the preceding discussion, we assume that the statistics
of functional motifs is described by an ensemble Q(G1, . . . , Gp,
A) � Q�,�(G1, . . . , Gp, A), where the scoring parameters � and �
remain to be determined from the data.

For the biological applications described above, where internal
links are associated with feedback loops, it is clearly useful to restrict
the motif search to the set of all connected subgraphs that contain
internal loops, i.e., that are nontreelike. For connected subgraphs
of size n, this set is given by the constraint L � n on the internal link
number. A large random graph typically contains a number of order
one of such subgraphs, and these define the relevant null ensemble
for motif search. We model these subgraphs by using the ensemble
P�0

with an enhanced number of links defined in Eq. 5. The
parameter �0 will be adjusted such that the average number of
internal links in the null ensemble equals that found in the
nontreelike subgraphs of a suitable randomized graph. Comparing
with the ensemble P0 of random subgraphs introduced earlier, it is
clear that the constraint L � n corresponds to a link reward �0 � 0.

Given these two ensembles, we define the log-likelihood score

S�G1, . . . ,Gp, A� � log�Q�,��G1, . . . ,Gp, A�

P�0
�G1, . . . ,Gp, A� 	

� �� � �0� �
��1

p

L�c�� �
�

2p �
�,��1

p

M�c�,c��

� log�Z�,�/Z�0
� , [10]

which is positive if a set of subgraphs G1, . . . , Gp and an alignment
A between them is more likely to occur in the ensemble Q�,� than
in the null ensemble P�0

. The term log(Z�,��Z�0
) acts as a threshold

assigning a negative score to alignments with too large fuzziness or
a too small number of internal links.

As is clear from the form of the scoring function, graph alignment
is a nontrivial optimization problem, the statistical weight of each
subgraph G� depending on the scoring parameters as well as on the
other subgraphs included in the alignment. We address this prob-
lem in two steps. First we find the maximum-score alignment(s) for
given score parameters, which is essentially an algorithmic search
problem. Then we discuss the parameter dependence of high-
scoring alignments and obtain the optimal values of � and � for a
given data set from a maximum-likelihood procedure.

Maximum Score Alignments and Parametric Optimization
Finding the maximum score alignments involves a huge search
space of possible alignments. The number of alignments is of order
(np)N for given p and the computational expense grows further
when the optimization over p is performed. Here we use a heuristic
algorithm, which can be described by a mapping to a discrete spin
model. First we enumerate all nontreelike subgraphs of n nodes,
which is feasible for modest values of n, and label them by the index
� � 1, . . . , pmax. Next we evaluate the internal link numbers L� �
L(c�) and the pairwise mismatches M��, defined as the minimum
of M(c�, c�) over all pairwise alignments of the subgraphs G� and
G�. High-scoring multiple alignments are then found by a simulated
annealing algorithm in the space (s1, . . . , spmax), where each ‘‘spin’’
s� takes the value 1 if G� is included in the alignment and 0
otherwise. The resulting Hamiltonian H is

� H � �� � �0� �
��1

pmax

L�s� �
�

2p �
�,��1

pmax

M̃��s�s� � log�Z�,�/Z�0
� ,

[11]

where p � �� s�. The coupling between s� and s� is given by M̃��,
which is equal to the pairwise mismatch M�� if subgraphs � and �
do not overlap, and a large positive constant if they do. (Two
subgraphs overlap if they have more than one node in common.
According to this definition, links in nonoverlapping subgraphs
form independently as assumed in Eq. 8.) The threshold term
log(Z�,��Z�0

) is evaluated by saddle-point integration; details are
given in Supporting Text. Simulated annealing using the Hamilto-
nian 11 will then yield high-scoring alignments of nonoverlapping
subgraphs (22).

For fixed values of the scoring parameters, the algorithm is
expected to produce well defined maximum-score alignments. This
can be understood as follows. For a (hypothetical) alignment of
subgraphs with equal number of internal links and equal pairwise
mismatches, the score 10 scales linearly with p, the number of
aligned subgraphs. This behavior is consistent with the interpreta-
tion of Eq. 10 as a log-likelihood score, because the aligned
subgraphs occur independently. A high-scoring alignment in a
realistic network may consist of a limited number of identical or
very similar motifs. As we extend this alignment to include more
subgraphs, subgraphs with increasing mutual mismatches are in-
cluded. Hence, we expect the total mismatch to increase faster than
linearly with p, leading to a maximum S*(�, �) of the total score at
some intermediate value of p*(�, �).

The properties of the maximum-score alignments depend
strongly on the parameters � and �. With increasing �, the number
of internal links L*(�, �) per subgraph is expected to increase. With
increasing �, both the number of graphs p*(�, �) and the fuzziness
M� *(�, �) decrease. In this way, the maximum-score alignment
varies between a set of independent subgraphs for � � 0 and a set
of identical subgraphs with identical motifs for � 3 �.

A maximum-likelihood approach can be used to infer the optimal
scoring parameters �*, �* for a given data set, which we obtain as
the point of the global score maximum S* � max�,�S*(�, �).

Results and Discussion
In this section, we discuss the application of local graph alignment
to motif search in the gene regulatory network of E. coli, taken from
www.weizmann.ac.il�mcb�UriAlon�Network�motifs�in�coli�
ColiNet-1.1�, containing 424 nodes and 577 directed links. Each
labeled node in this network represents a gene. A directed link
between two nodes signifies that the product of the gene repre-
sented by the first node acts as a transcription factor on the gene
represented by the second. Throughout we consider motifs with a
fixed number of nodes n � 5.

First we show that our algorithm indeed produces well defined
alignments of maximal score (i.e., of maximal relative likelihood).
For fixed parameters � � 3.8 and � � 4.0, this is illustrated by Fig.
2a, which shows the score S and the fuzziness M� for the highest-
scoring alignment with a prescribed number p of subgraphs, plotted
against p. As expected, the fuzziness increases with increasing p, and
the total score reaches its global maximum S*(�, �) at an inter-
mediate value p*(�, �). It is lower for p � p*(�, �) because the
alignment contains fewer subgraphs and for p � p*(�, �) because
the subgraphs have higher mutual mismatches. Fig. 2b shows the
score S*(�, �) as a function of � and �. This function has a unique
global maximum S*, which defines the maximum-likelihood point
(�* � 3.8, �* � 2.25, p* � 24).

The scoring parameter �0 of the null ensemble P�0
is determined

as follows: the data set is randomized by generating a network with
the same connectivities as in the data set but randomly chosen links
(10, 18). Again, the nontreelike subgraphs are extracted and their
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average number of internal links is determined. The value of �0 is
uniquely determined by the condition that the expected number of
links in the null ensemble 5 equals the average number of internal
links found in the nontreelike subgraphs. One obtains �0 � 2.45. As
expected, �0 � �*, which shows that the data set has an enhanced
number of internal links relative to the randomized network.

At the maximum-likelihood scoring parameters, we can, more-
over, verify the functional form of the ensembles used to construct
the score function 10. To test the model 5 for individual subgraphs,
we enumerate all subgraphs with n � 5 that have nontreelike
patterns (i.e., a link number L � 5). All ordered pairs of nodes i,
j are then binned according to the probability wij of a directed link
existing between them in the ensemble P0(G). In Fig. 3a the fraction
of these pairs i, j carrying a link is plotted against w (�). The
expectation value of this fraction is given by Eq. 5 as e�w�(1 � w
� e�w), shown as a solid line with a fit value �* � 3.8.

Our model (Eq. 8) for generic alignments can be tested in a
similar way. From this ensemble, the marginal probability that a
given ordered pair of nodes specified by �, i, j is linked can be
computed. We group all such pairs with the same expectation value
�cij

���*,�* according to Eq. 8 to build a histogram. For each group,
the average of cij

� over node pairs in the actual maximum-likelihood
alignment is computed and plotted against the model prediction
(see Fig. 3b). The same procedure is repeated for the two-point
correlations �cij

�cij
���*,�* between associated nodes in different sub-

graphs � and � as also shown in Fig. 3b. In both histograms, the data
points cluster well around the straight line equating expectation
values in the model 8 and averages in the actual alignment. The
fluctuations seen reflect the limited size of the data set and the
small number of fitting parameters in the model. For such data,
more detailed models can hardly be tested because they would lead
to overfitting.

We now turn to the probabilistic consensus motifs found in the
data for different number of nodes n � 4 and n � 5. Fig. 4a shows
the n � 4 consensus motif c�ij at consecutive values of � � �* � 3.6,
� � 8, and � � 15. The gray scale encodes the average number of

links c�ij between a given pair of nodes. As expected, the fuzziness
decreases with increasing values of the mismatch penalty � and c�ij

tends either to zero (no link present) or one (link present with
certainty) as �3 �. The consensus motif is a layered structure, in
this case with two input and two output nodes.

A similar motif is found for n � 5. Fig. 4b shows the n � 5
consensus motif at consecutive values of � � 2.25, 5, and 12. As in
the case of n � 4, a layered structure is clearly discernible: the motif
consists of 2 � 3 nodes forming an input and an output layer, with
links largely going from the input to the output layer. The left node
of the input layer has an average number of about 30 outgoing links.
These connectivities are exceptional because the average out-
connectivity of the network is 1.36.

Comparing the alignments of subgraphs of n � 4 nodes with
those of n � 5 nodes in Fig. 4, one finds that many of the subgraphs
found in the n � 4 alignments also are a part of the subgraphs found
in the n � 5 alignments. This finding immediately leads to the
question of how to identify larger patterns in the network from
which the subgraphs at a given value of n are taken. Obviously any
scoring scheme operating at a fixed number of nodes n will be blind
to the combinatorial possibilities of selecting subgraphs from a
larger pattern. The phenomenon is exemplified in Fig. 4c. From the
3-by-4 pattern two nonoverlapping layered subgraphs with n � 4
and n � 5 can be generated (nonoverlapping subgraphs have at
most one node in common, see above). Larger patterns generate
correspondingly more nonoverlapping subgraphs. In the supporting
information, we discuss a simple scheme that allows one to identify
larger patterns as in Fig. 4c from smaller subgraphs. The pattern of
Fig. 4c is found twice in the data, contributing in total four
nonoverlapping subgraphs to the alignments with n � 4 and n � 5.
The statistics of these patterns at the level of identical patterns has

Fig. 2. Maximum score alignment and parametric optimization. (a) Score
optimization at fixed scoring parameters � � 3.8 and � � 4.0. The total score
S (thick line) and the fuzziness M� (thin line) are shown for the highest-scoring
alignment of p subgraphs, plotted as a function of p. (b) The score S*(�, �)
plotted against the parameters � and �. The unique maximum S* defines the
maximum-likelihood parameters �* � 3.8 and �* � 2.25.

Fig. 3. Statistics of motif ensembles. (a) Testing the statistical model for
single subgraphs (Eq. 5). Nontreelike subgraphs are enumerated and node
pairs i, j are binned according to wij. The fraction of such pairs carrying a link
is shown against wij. The solid line results from fitting the model with en-
hanced number of links (Eq. 5) to these data, giving � � 3.8. (b) Testing the
statistical model for alignments (Eq. 8). (Upper) The average value of cij

� over
all �, i, j with a given expectation value of cij

� according to Eq. 8 at � � �* � 3.8
and � � �* � 2.25 against the corresponding expectation value (�). For a
perfect fit between model and data a straight line is expected (shown solid).
(Lower) The same procedure is used averaging the two-point function cij

�cij
�

over all �, �, i, j with a given expectation value �cij
�cij

��.
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recently been analyzed in ref. 23, their treatment using probabilistic
patterns remains a future development.

Fig. 4d shows details of the alignments producing the consensus
motifs at n � 5, namely, the number of subgraphs p*(� � �*, �) and
the fuzziness M� *(� � �*, �) plotted as a function of �. For � � 12
the fuzziness reaches zero and the alignment contains 10 identical
nonoverlapping motifs. This layered pattern has been found by the
approach of ref. 6, which is based on counting identical motifs.
However, the maximum-likelihood alignment occurs at �* � 2.25
and contains a much larger number of p* � 24 nonoverlapping
subgraphs, leading to the probabilistic consensus motif shown on
the left in Fig. 4a. The same effect is found in the consensus motif
of size n � 4. Furthermore, at arbitrary nonzero fuzziness the
probability that a given pair of subgraphs have identical motifs
decreases with subgraph size. As a result, counting identical motifs,
rather than following a probabilistic approach as the one presented
here, will miss a fraction of relevant subgraphs present in the data
that increases with the size of the subgraph.

The probabilistic grounding of motif search is also indispensable
for estimating the quantitative significance of the results obtained.

Here we compare the maximum-likelihood alignment in the E. coli
data set with suitable random graph ensembles. We do this in two
steps, to disentangle the significance of the number of internal links
and of the mutual similarity of patterns found in the data.

(i) To assess the significance of the number of internal links, we
consider the ensemble of graphs with the same in- and out-
connectivities as the data set but randomly chosen neighbors (18,
10) and compute the distribution of the score with scoring param-
eters � � �*, � � 0. The null distribution of scores from the
randomized graph has the average and standard deviation given by
S* � 5.7 � 2.1. The score S* � 73.1 found from the data is thus
significantly higher, indicating an enhanced link number with
respect to the random graph ensemble. (ii) The significance of the
mutual similarity of the aligned patterns is assessed by comparing
the data to mutually independent random subgraphs with the same
average density of links. (This null ensemble is generated by
randomizing the internal links of each subgraph independently.)
We then compute the score with parameters � � �0 � �* and � �
�* (thereby focusing only on the fuzziness of the data relative to that
found in the ensemble of uncorrelated subgraphs). This null
distribution of scores has average and standard deviation given by
S* � 27.1 � 6.3; the corresponding score S* � 50.1 found from the
data is thus significantly higher. We note that the assessment of
subgraph similarity is quite subtle. Subgraphs taken from a large but
finite random graph may show a ‘‘spurious’’ mutual similarity with
respect to independent random subgraphs because of a prevalence
of internal loops. The statistical significance of the results can be
formulated more precisely by using so-called p values, which involve
the tail of the score distribution in the random graph ensemble. Fast
and reliable p-value estimates are crucial for searching large data-
bases, as is well known for sequence alignment (21). This approach
can be carried over to the graph alignments discussed here.

The statistical framework presented is very flexible. For example,
as large-scale data on the logic of gene regulation become available,
the definition of the pairwise mismatch, Eq. 3, can be extended to
reward aligning sets of nodes performing the same logical function.
In this way, features of motifs going beyond their topology can be
explored. Similarly, simple modifications of the mismatch score
allow the analysis of undirected networks, networks whose links
have a specific function (repressive or enhancing) or whose inter-
action strength is quantified by a real number.

The prospect of a sizable amount of new data on biological
networks becoming available over the next few years through
high-throughput methods opens exciting opportunities to identify
the building blocks of molecular information processing in a wide
range of organisms, and even build phylogenetic histories of reg-
ulation from transcription network data.
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Fig. 4. Probabilistic motifs in the E. coli transcription network. (a) Consensus
motifs with n � 4 nodes at different values of �. From left to right, � � �* �
3.6, � � 8, and � � 15. The gray scale of the links indicates the likelihood that
a given link is present in the aligned subgraphs; the five gray values corre-
spond to c� in the ranges 0.1–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–0.9, and
links with c� � 0.9 are shown black. The link reward is kept fixed at � � �* �
3.6 and �0 takes on the value 3.15. (b) Consensus motifs with n � 5 for different
� � �* � 2.25, � � 5, and � � 12 (left to right) at � � �* � 3.8. (c) This pattern
with n � 7 is found twice in the data set. From each such subgraph two
nonoverlapping layered subgraphs with n � 4 and n � 5 can be generated. (d)
The number p*(�*, �) of subgraphs in the maximum score alignment (thick
line) and the fuzziness M� *(�*, �) (thin line) as a function of � for n � 5.
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