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Percolation on sparse networks
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We study percolation on networks, which is widely used as a model of the resilience of networked
systems such as the Internet to attack or failure and as a simple model of the spread of disease
over human contact networks. We reformulate percolation as a message passing process and use
the resulting equations to show, among other things, that for sparse networks, which includes most
networks observed in the real world, the percolation threshold is given by the inverse of the leading
eigenvalue of the so-called non-backtracking matrix. Like most message passing calculations, our
results are exact on networks that have few small loops but, as we show, they also provide bounds
on the percolation behavior of networks that do contain loops.

Percolation, the random occupation of sites or bonds
on a lattice or network, is one of the best-studied pro-
cesses in statistical physics. It is used as a model of
porous media [1, 2], granular and composite materials [3–
6], resistor networks [7], forest fires [8], polymers [9], and
many other systems of scientific interest. In this paper we
study the bond (or edge) percolation process on general
networks or graphs, which is used to model the spread
of disease [10, 11] and network robustness [12–14] in so-
cial and technological networks, among other things. Al-
though percolation has been studied extensively on sim-
ple model networks such as random graphs, there are
few analytic results for real-world networks, whose struc-
ture is typically more complicated. One important and
powerful result has been demonstrated recently by Bol-
lobás et al. [15], who show that in the limit of large net-
work size the threshold occupation probability for bond
percolation on a dense network is equal to the reciprocal
of the leading (most positive) eigenvalue of the adjacency
matrix. “Dense” in this case means that a nonzero frac-
tion of all possible edges are present in the network in
the limit of large size, or equivalently that the number of
edges increases as n2 in a network of n nodes. Unfortu-
nately, few real-world networks satisfy this requirement.
Most real-world networks are sparse, meaning that a van-
ishing fraction of possible edges is present, and many net-
works are arguably in the category that might be called
“extremely sparse,” where the number of edges increases
only linearly with n. It is plausible, for instance, that the
average number of friends a person has remains roughly
constant even as the population of the world increases, so
that the total number of edges in the network of friend-
ships increases linearly with n.
One might hope that the result of Bollobás et al. would

still remain true, at least approximately, for sparse net-
works, but a simple counterexample demonstrates that
this is not the case. Consider the classic sparse model
network known as the (Poisson) random graph [16], in
which n nodes are connected by edges placed indepen-
dently at random between every distinct node pair with
probability c/(n− 1) for some constant c. It is straight-
forward to demonstrate that the threshold occupation

probability for percolation on such a graph falls at 1/c in
the limit of large n [12, 13, 17]. The leading eigenvalue
of the adjacency matrix, on the other hand, is bounded
below by the square root of the largest degree [18], which
goes as

√

logn/ log logn and hence diverges as n → ∞,
so that the dense-graph result of [15] is in error by an
infinitely wide margin in the limit.
Clearly then, a different result must hold for sparse

graphs. In this paper we give such a result. We show
that the equivalent of the result of Bollobás et al. for
sparse graphs is that the threshold occupation probabil-
ity is equal to the inverse of the leading eigenvalue of the
so-called Hashimoto or non-backtracking matrix [19, 20],
an alternative matrix representation of network structure
that has found recent use in studies of community detec-
tion and localization in networks [20, 21]. This result is
exact for locally tree-like networks, which includes ran-
dom graphs and many others, and applies not only for
ensemble models of networks, such as the random graph,
but also for individual networks, such as networks mea-
sured in empirical studies. For networks that are not
locally tree-like the calculation does not give an exact
figure for the percolation threshold, but we show that it
provides a lower bound, which can still be of substantial
use.
Our analysis is based on a formulation of the perco-

lation problem as a message passing process. Message
passing methods, also called cavity methods, are widely
used in statistical physics and computer science for the
solution of problems on networks [22, 23]. In the most
common “belief propagation” formulation, the messages
are single numbers representing probabilities, which are
passed among the nodes of the network. In our approach
the messages are instead generating functions of a single
independent variable. The derivation is as follows.
Consider a bond percolation process on an arbitrary

undirected network of n nodes and m edges. Edges are
occupied uniformly at random with probability p or un-
occupied with probability 1− p. The primary entities of
interest are the percolation clusters, sets of nodes con-
nected by occupied edges. Since percolation is a random
process, one cannot know with certainty the identity of
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the clusters ahead of time, or even their size or num-
ber, but some things are known. In general there will
(with high probability) be at most one percolating clus-
ter, a cluster that fills a non-vanishing fraction of the
network in the limit of large n, plus an extensive number
of small clusters of finite average size. The percolating
cluster appears only for sufficiently large values of p and
the percolation threshold pc is the value above which it
appears; below pc there are only small clusters.
Let us define πi(s) to be the probability that node i be-

longs to a small cluster of exactly s nodes, averaged over
many realizations of the random percolation process. If
the network is a perfect tree—if it contains no loops—
then the size s of the cluster is equal to one (for node i
itself) plus the sum of the numbers of nodes reachable
along each edge attached to i, which is zero if the edge is
unoccupied or nonzero otherwise. If, on the other hand,
there are loops in the network then this calculation will
not in general give the exact value of s, since it may be
possible to reach the same node along two different occu-
pied edges, which leads to overcounting. If the network
satisfies the weaker condition of being locally tree-like,
however, meaning that in the limit of large network size
an arbitrarily large neighborhood around any node takes
the form of a tree, then our calculation gives a good ap-
proximation, which becomes exact in the n→∞ limit.
Working in the large n limit then and assuming the net-

work to be locally tree-like, the probability πi(s) is equal
to the probability that the numbers of nodes reachable
along each edge from i add up to s − 1, which we can
write as

πi(s) =
∏

j∈Ni

∞
∑

sj=0

πi←j(sj) δ

(

s− 1,
∑

j∈Ni

sj

)

, (1)

where πi←j(s) is the probability that exactly s nodes are
reachable along the edge connecting i and j, Ni is the
set of immediate network neighbors of node i, and δ(a, b)
is the Kronecker delta. The delta function ensures that
only those terms in which the number of reachable nodes
add up to exactly s− 1 are included in the sum.
We now introduce a probability generating function

Gi(z) =
∑∞

s=1
πi(s) z

s, whose value is given by

Gi(z) =

∞
∑

s=1

zs
∏

j∈Ni

∞
∑

sj=0

πi←j(sj) δ

(

s− 1,
∑

j∈Ni

sj

)

= z
∏

j∈Ni

∞
∑

sj=0

πi←j(sj) z
sj , (2)

which can be conveniently written as

Gi(z) = z
∏

j∈Ni

Hi←j(z), (3)

whereHi←j(z) =
∑∞

s=0
πi←j(s) z

s is the generating func-
tion for πi←j(s).

To calculate the πi←j(s), we note that πi←j(s) is zero
if the edge between i and j is unoccupied (which happens
with probability 1− p) and nonzero otherwise (probabil-
ity p), which means that πi←j(0) = 1− p, and for s ≥ 1

πi←j(s) = p
∏

k∈Nj\i

∞
∑

sk=0

πi←j(sk) δ

(

s− 1,
∑

k∈Nj\i

sk

)

,

(4)
where the notation Nj\i denotes the set of neighbors
of j excluding i. Substituting this expression into the
definition of Hi←j(z) above, we then find that

Hi←j(z) = 1− p+ pz
∏

k∈Nj\i

Hj←k(z). (5)

This self-consistent equation for the generating func-
tion Hi←j(z) suggests a message-passing algorithm for
calculating the distribution of percolation cluster sizes:
for any chosen value of z one guesses (for instance at ran-
dom) an initial set of values for the Hi←j and feeds them
into the right-hand side of Eq. (5), giving a new set of
values on the left. Repeating this process to convergence
gives a solution for the generating functions, which can
then be substituted into Eq. (3) to give the generating
function for the cluster probabilities πi(s), from which
we can recover the probabilities themselves by differenti-
ating.
As an example application of the method, note that,

since πi(s) is the probability that i belongs to a small
(non-percolating) cluster of size s, the probability that it
belongs to a small cluster of any size is

∑

s πi(s) = Gi(1)
and the probability that it belongs to the percolating
cluster is one minus this. Then the expected fraction S
of the network occupied by the entire percolating cluster
is given by the average over all nodes:

S =
1

n

n
∑

i=1

[

1−Gi(1)
]

= 1− 1

n

n
∑

i=1

∏

j∈Ni

Hi←j(1). (6)

Setting z = 1 in Eq. (5) we have

Hi←j(1) = 1− p+ p
∏

k∈Nj\i

Hj←k(1), (7)

and the solution of this equation, for instance by itera-
tion from a random initial guess, allows us to calculate
the size of the percolating cluster. Note that the num-
ber of quantities Hi←j(1) is 2m—twice the number of
edges m because Hi←j is distinct from Hj←i—which is
small enough to allow the numerical iteration of Eq. (7)
quickly on the sparse networks that are our primary fo-
cus.
There do of course exist other algorithms for calcu-

lating the distribution of cluster sizes for percolation on
networks, but these algorithms all calculate clusters for
only a single realization of the randomness inherent in
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the percolation process. The method described here re-
turns the probability distribution of cluster sizes over all
realizations of the randomness. To calculate this quan-
tity by standard methods would require many runs of
a traditional algorithm for different realizations, which
could take a long time and would ultimately return only
a stochastic approximation to the average and not an
exact result.
In addition to providing an algorithm for calculating

average percolation properties, however, our method also
allows us to derive new fundamental results for network
percolation by analyzing the expected behavior of the
algorithm. In particular, we can calculate the exact po-
sition of the percolation threshold on an arbitrarily large,
locally tree-like network, as follows.
The first derivative H ′i←j(z = 1) =

∑∞
s=0

sπi←j(s) is
the expected number of (non-percolating-cluster) nodes
reachable along the edge from i to j. Differentiat-
ing Eq. (5) and assuming we are below the percolation
threshold p < pc, we have

H ′i←j(1) = p+ p
∑

k∈Nj\i

H ′j←k(1), (8)

where we have made use of the fact that Hi←j(1) = 1 for
all edges i, j below the threshold. Defining a 2m-element
vector h whose elements are equal to H ′i←j(1), Eq. (8)

can be written in matrix form as h =
√
2mp1+ pBh, or

equivalently h =
√
2m

(

p−1I − B
)−1

1, where 1 is the

properly normalized uniform vector (1, 1, 1, . . .)/
√
2m,

I is the identity, and B is a 2m × 2m non-symmetric
matrix with rows and columns indexed by directed edges
i ← j and elements Bi←j,k←l = δjk(1 − δil). Then the
average number of nodes reachable along any edge in the
network is

1

2m

∑

i

∑

j∈Ni

H ′i←j(1) =
1√
2m

1
T
h

= 1
T
(

p−1I−B
)−1

1 =

2m
∑

ν=1

1
T
vνu

T
ν 1

p−1 − λν

, (9)

where λν is the νth eigenvalue of B and uν and vν are
the corresponding left and right eigenvectors. The ma-
trix B is known as the non-backtracking matrix and has
been a focus of recent attention for its role in community
detection and centrality calculations on networks [20, 21].
As we approach the percolation threshold from below,

the average number of reachable nodes grows because the
small clusters are growing, and it diverges precisely at
the percolation threshold where the average cluster size
diverges. From Eq. (9) we see that this happens when
p−1 equals the largest eigenvalue of the non-backtracking
matrix and hence we conclude that the critical percola-

tion probability pc of a sparse, locally tree-like network

is equal to the reciprocal of the leading eigenvalue of the

non-backtracking matrix.

As a simple example consider a random k-regular
graph, i.e., a network in which every node has exactly
k edges but connections are otherwise made at random.
For such a graph the non-backtracking matrix has k − 1
nonzero elements in each row and column and hence its
largest eigenvalue is exactly k− 1, giving pc = 1/(k− 1),
which can easily be confirmed to be the correct answer
using other methods [12, 13]. The leading eigenvalue of
the adjacency matrix on the other hand, which gives the
percolation threshold for dense graphs as described in
the introduction, is k in this case, and hence would give
a lower, and incorrect, result of pc = 1/k.
In fact, the leading eigenvalue of the adjacency ma-

trix is never less than the leading eigenvalue of the non-
backtracking matrix. To see this, we define Fj(z) =
1− p+ pz

∏

k∈Nj
Fk(z), which differs from the equation

for our generating function Hi←j(z), Eq. (5), only in that
node i is not omitted from the product. Differentiating
as we did in Eq. (8) we see that

F ′j(1) = p+ p
∑

k∈Nj

F ′k(1) = p+ p
∑

k

AjkF
′
k(1), (10)

where Ajk is an element of the adjacency matrix. In
matrix notation this can be written as F

′ = p1 + pAF
′

and hence F
′ = (p−1I − A)−11, which diverges when

p equals the reciprocal of the leading eigenvalue of the
adjacency matrix. On the other hand, if we solve
Eq. (10) by iteration starting from an initial value of
F ′j(1) = maxi H

′
i←j(1), it is straightforward to see that

F ′j(1) can never decrease, and hence F ′j(1) ≥ H ′i←j(1)
always, for all i, j. If we imagine therefore increasing
the value of p slowly from zero towards the percolation
threshold, F ′j(1) must diverge at or before the point at
whichH ′i←j(1) diverges, and hence the leading eigenvalue
of the adjacency matrix is greater than or equal to that of
the non-backtracking matrix. This in turn implies that
the dense-matrix result for the percolation threshold based

on the adjacency matrix is a lower bound on the percola-

tion threshold of a sparse graph.

An interesting special case is that of a perfect tree, a
network with no loops at all. Percolation, in the sense
of a percolating cluster that fills a nonzero fraction of
the network in the large-n limit, never occurs on such a
network—for all p < 1 the largest cluster occupies only a
vanishing fraction of the network and our formalism gives
this result correctly. The diagonal elements of powers
of the non-backtracking matrix count numbers of closed
non-backtracking walks on a graph [20, 24] (hence the
name “non-backtracking matrix”), but a perfect tree has
no such walks, so the trace of every power of the matrix
is zero and hence so also are all the eigenvalues. Thus the
reciprocal of the largest eigenvalue diverges and there is
no percolation threshold. The leading eigenvalue of the
adjacency matrix, on the other hand, is nonzero on a tree.
On a k-regular tree, for instance, the leading eigenvalue
of the adjacency matrix for large n is k again, implying
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a percolation threshold of 1/k. This is, indeed, a lower
bound on the true percolation threshold, as it must be,
but it is in error by a wide margin.
In practical situations one can calculate the leading

eigenvalue of the non-backtracking matrix numerically
and invert to determine the percolation threshold, but
the 2m× 2m matrix can be quite large, making the cal-
culation cumbersome. It can be sped up by using the
so-called Ihara (or Ihara-Bass) determinant formula [20].
Let v be a right eigenvector ofB as previously, and define
xi =

∑

j∈Ni
vi←j . Then we can show that the n-element

vector x = (x1, x2, . . .) satisfies the quadratic eigenvector
equation

(λ2 − 1− λA+D)x = 0, (11)

where λ is an eigenvalue of the non-backtracking matrix
and D is the diagonal matrix with the degrees of the
nodes on the diagonal. Defining w = λx, we then have

Aw + (I−D)x = λw, (12)

which can be rewritten as Mz = λz where z = (w|x)
and M is the 2n× 2n matrix

M =

(

A I−D

I 0

)

. (13)

For a sparse network this matrix is sparse with only
2m + 2n nonzero elements—far fewer than the non-
backtracking matrix itself—which permits rapid numeri-
cal calculation of the leading eigenvalue.
All of our results so far have been for tree-like net-

works, but most real-world networks are not trees. We
can nonetheless use the techniques developed here to say
something about the non-tree-like case. On a tree the
number of nodes reachable along the edge from i to j is
one (for node i itself) plus the sum of the numbers nj←k

reachable along every other edge attached to j. On a
non-tree, on the other hand, this sum overestimates the
number of reachable nodes because some nodes are reach-
able along more than one edge from j. This means that
the generating function Hi←j(z) for the true number of
reachable nodes will be larger than the value given by a
naive estimate calculated by a simple average over the
randomness:

Hi←j(z) ≥ 1− p+ pz
〈

z
∑

k∈Nj\i
nj←k

〉

= 1− p+ pz

〈

∏

k∈Nj\i

znj←k

〉

≥ 1− p+ pz
∏

k∈Nj\i

〈

znj←k
〉

,

(14)

where the second inequality follows by an application of
the Chebyshev integral inequality [25]. But

〈

znj←k
〉

=
Hj←k(z) by definition, so we find that on a non-tree-like
network the exact equality of Eq. (5) is replaced with an

Percolation threshold
Network Adjacency Non-backtracking Actual
Random graph 0.161 0.200 0.200
Block model 0.140 0.167 0.173
Circuit 0.200 0.340 0.47
Internet 0.0140 0.0155 0.0231
Gnutella 0.0759 0.0871 0.097
Amazon 0.0426 0.0562 0.10

TABLE I: Percolation thresholds estimated from the eigenval-
ues of the adjacency and non-backtracking matrices, and mea-
sured directly in numerical simulations (or calculated exactly
in the case of the random graph). The networks are: a Pois-
son random graph with average degree 5 and 100 000 nodes; a
stochastic block model with 100 000 nodes, four groups, and
an average of 4 in-group and 2 out-group edges per node; elec-
tronic circuit 838 from the ISCAS 89 benchmark set [26]; a
snapshot of the Internet autonomous system peering struc-
ture; a Gnutella peer-to-peer filesharing network [27]; and a
copurchasing network of items on Amazon.com [28].

inequality:

Hi←j(z) ≥ 1− p+ pz
∏

k∈Nj\i

Hj←k(z). (15)

Suppose, however, that we nonetheless decide to use the
exact equality of (5), iterating to estimate the generat-
ing functions. If we start from an initial value of Hi←j

equal to the true answer we are looking for (which we
don’t know, but let us suppose momentarily that we do),
then it is straightforward to see from (15) that the value
of Hi←j will never increase under the iteration, imply-
ing that the value we calculate will be a lower bound on
the true value for all z. As we approach the percolation
threshold from above in the large size limit, the true value
of Hi←j(1), which represents the probability that the
edge from i to j connects to a small cluster, approaches 1,
while the value calculated from Eq. (5), which is less than
or equal to the true value, must reach 1 later, i.e., at a
lower or equal value of p but never higher. Thus the
percolation threshold estimated from (5) is never higher
than the true percolation threshold. Equivalently, we can
say that for any network, pc is always greater than or

equal to the inverse of the leading eigenvalue of the non-

backtracking matrix. Thus the leading eigenvalue gives
us a bound on the percolation threshold.
We can also combine this result with our earlier obser-

vation that the leading eigenvalue of the adjacency ma-
trix is never less than that of the non-backtracking matrix
to make the further statement that pc for any network is

always greater than or equal to the inverse of the leading

eigenvalue of the adjacency matrix. Thus, both eigenval-
ues place lower bounds on pc, but the bound given by
the non-backtracking matrix is better (or at least never
worse) than the one given by the adjacency matrix.
Table I shows tests of these result on a range of sparse

networks. For each network we have computed (an ap-
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proximation to) the true percolation threshold by re-
peated numerical simulations and the bounds given by
the leading eigenvalues of the non-backtracking and ad-
jacency matrices. As the table shows, in each case the
non-backtracking matrix does indeed give a lower bound
on the true threshold, and in each case it gives a more
accurate estimate than the adjacency matrix.
In summary, we have in this paper studied the problem

of percolation on an arbitrary network and shown that
for locally tree-like networks percolation can be reformu-
lated as a message passing process, allowing us to solve
for average percolation properties such as the size of the
percolating cluster. In addition, by analyzing the mes-
sage passing equations themselves, we have shown that
the position of the percolation threshold is given by the
inverse of the leading eigenvalue of the non-backtracking
matrix. On non-tree-like networks the message passing
approach is not exact, but it gives bounds on the exact
results.
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After this work was completed we learned of unpub-
lished work by Hamilton and Pryadko [29] that indepen-
dently demonstrates some of the same results.
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