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Abstract. We apply the Bethe–Peierls approximation to the inverse Ising
problem and show how the linear response relation leads to a simple method
for reconstructing couplings and fields of the Ising model. This reconstruction
is exact on tree graphs, yet its computational expense is comparable to those
of other mean-field methods. We compare the performance of this method
to the independent-pair, naive mean-field, and Thouless–Anderson–Palmer
approximations, the Sessak–Monasson expansion, and susceptibility propagation
on the Cayley tree, SK model and random graph with fixed connectivity. At
low temperatures, Bethe reconstruction outperforms all of these methods, while
at high temperatures it is comparable to the best method available so far (the
Sessak–Monasson method). The relationship between Bethe reconstruction and
other mean-field methods is discussed.
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The enormous and ongoing growth of data in molecular biology has led to a surge of
interest in inverse problems. Examples include the reconstruction of gene regulatory
networks from expression levels [1], the identification of neural interactions from
neural spike recordings [2], and the prediction of protein–protein interactions from the
evolutionary correlation between amino acids [3]. The paradigm for such inverse problems
is the inverse Ising problem, where the parameters of the Ising model Hamiltonian
(couplings and fields) are to be inferred from a set of spin configurations drawn
independently from the equilibrium measure. The goal is to use correlations observed
between spins to infer the underlying, unknown couplings and fields. This problem is
intrinsically hard, as pairs of spins can exhibit correlations without interacting directly
with each other.

In this note, we consider the inverse Ising model at the level of the Bethe–Peierls
approximation (BP) and show how the linear response approach [4]–[6] leads to a
reconstruction of the Ising model that is efficient and straightforward, and outperforms
currently available mean-field-like methods on benchmarks for strong couplings (and does
as well as they do at weak couplings).

Consider the Boltzmann measure

p[s] =
1

Z
e−H[s] (1)

of the Ising model with H [s] = −∑
i hisi −

∑
(ij) Jijsisj, specifying the statistical weight

of a configuration s = (s1, s2, . . . , sN) given couplings Jij and local fields hi (at inverse
temperature β = 1), where Z is the partition function. The indices (ij) run over all
pairwise interactions. The inverse Ising problem is then to recover the couplings and
fields from a given set of M spin configurations D = {s1, s2, . . . , sM} drawn independently
from (1). The log-likelihood of couplings and fields given such a set of observations,
normalized by M , is

L({sμ
i }|{hi, Jij}) = − ln Z[{hi, Jij}] +

∑

i

hi
1

M

∑

μ

sμ
i +

∑

(ij)

Jij
1

M

∑

μ

sμ
i sμ

j . (2)

Maximizing the log-likelihood with respect to the Ising model parameters Jij and hi

leads to

mi({hi, Jij}) = mD
i , Cij({hi, Jij}) = CD

ij , (3)

where mi = 〈si〉 and Cij = 〈sisj〉 − 〈si〉〈sj〉 are the magnetizations and connected
correlations under the Boltzmann distribution (1). The right-hand sides are the
corresponding quantities estimated from data, mD

i = (1/M)
∑

μ sμ
i and CD

ij =

(1/M)
∑

μ sμ
i sμ

j − mD
i mD

j [7].
Many different approaches to finding the couplings Jij and fields hi by maximizing

the log-likelihood (2) or by directly solving the self-consistent equations (3) have been
taken, including those based on gradient descent with Monte Carlo simulation [7],
independent-pair approximation (IP) [8], naive mean-field (MF) [4], Thouless–Anderson–
Palmer approximation (TAP) [4, 9], Sessak–Monasson expansion (SM) [10], susceptibility
propagation (SusP) [11, 12] and more recently an adaptive cluster expansion [13]
and pseudo-likelihood maximization [14, 15]. The canonical way to use a mean-field
approximation for the inverse problem is to calculate the correlations through the linear
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response of the magnetizations mi to changes of the local fields hi to yield the connected
correlations and solve for the couplings. In the same way, our approach is based on the
Bethe–Peierls approximation [16] combined with the linear response relation.

We begin by deriving the connected correlation for a system of spins in a tree graph,
where the Boltzmann distribution (1) can be written exactly in terms of the Bethe ansatz,
that is the combination of the one-point marginals bi at the spins and the two-point
marginals bij at the bonds:

pBP[s] =
∏

i

bi(si)
1−zi

∏

(i,j)

bij(si, sj), (4)

where zi is the number of non-zero bonds connected to spin i [16]–[20]. The marginals bi

and bij , which are still unknown, can be parameterized with local magnetizations mi and
correlation parameters C̄ij as

bi(si) = 1
2
(1 + misi), bij(si, sj) = 1

4
[(1 + misi)(1 + mjsj) + C̄ijsisj], (5)

with constraints

−1 ≤ mi ≤ +1, −1 + |mi + mj | − mimj ≤ C̄ij ≤ +1 − |mi − mj | − mimj . (6)

Instead of single spins coupled to effective fields in naive mean-field theory, the Bethe
ansatz is based on bonds. It is thus a natural approximation to take in the context of the
inverse problem, where it is bonds that are to be determined, not the statistics of spins.

The self-consistent equations for the parameters mi and C̄ij describing the statistics
of spin pairs in equation (5) can be found by minimizing the Kullback–Leibler divergence
D between the Bethe ansatz (4) and the Boltzmann measure (1), D(pBP[s], p[s]) =∑

s pBP[s] ln(pBP[s]/p[s]), giving

hi +
∑

j∈∂i

Jijmj = (1 − zi)arctanh(mi)

+
∑

j∈∂i

∑

si,sj

si + mjsisj

4
ln

(1 + misi)(1 + mjsj) + C̄ijsisj

4
, (7)

Jij =
∑

si,sj

sisj

4
ln

(1 + misi)(1 + mjsj) + C̄ijsisj

4
, (8)

where ∂i stands for the boundary set containing all spins that are connected to spin i by
a bond.

The self-consistent equation (8) is quadratic in C̄ij, but only one of its solutions is
compatible with the constraint (6), which is

C̄ij =
(1 − m2

i − m2
j)tij + 2mimj

1 +
√

Dij

− mimj, (9)

where Dij = 1 − 2mimjtij − (1 − m2
i − m2

j )t
2
ij and tij = tanh(2Jij).

The correlation parameters C̄ij give the connected correlation for pairs of spins that
interact with each other in the tree. To find the connected correlation Cij between
any pair of spins, we follow a route based on the linear response relation [4, 5, 20].

doi:10.1088/1742-5468/2012/03/P03004 3

http://dx.doi.org/10.1088/1742-5468/2012/03/P03004


J.S
tat.M

ech.
(2012)

P
03004

Bethe–Peierls approximation and the inverse Ising problem

Differentiating the self-consistent equations (7) and (9) with respect to the fields hi yields
a set of equations for the susceptibilities ∂mi/∂hj . The general linear response relation
Cij = ∂mi/∂hj then directly gives the connected correlations, for which we obtain

(C−1)ij = −Jij + J̃ij +
C̄ij

(C̄ij)2 − (1 − m2
i )(1 − m2

j )
, (i �= j), (10)

(C−1)ii =
1 − zi

1 − m2
i

−
∑

j∈∂i

1 − m2
j

(C̄ij)2 − (1 − m2
i )(1 − m2

j )
, (11)

with

J̃ij =
1

4
ln

{
[(1 + mi)(1 + mj) + C̄ij][(1 − mi)(1 − mj) + C̄ij]

[(1 + mi)(1 − mj) − C̄ij][(1 − mi)(1 + mj) − C̄ij ]

}

, (12)

where the coupling matrix Jij was extended to every pair of spins such that Jij = 0 if i
and j are not connected by a bond.

Note that the first two terms in the right-hand side of equation (10) cancel exactly due
to (8); we however keep them to relate the expression to the Sessak–Monasson expansion
later on.

An equivalent version of equations (10)–(12) was derived by Welling and Teh in the
context of the forward problem [5], and was used to estimate the data evidence in Bayesian
inference [21]. These equations can be also used to estimate the couplings and local fields
in the inverse Ising problem. To do so, we first assume a fully connected model without
self-interactions. It follows that zi = N − 1, where N is the number of spins. The
Bethe ansatz, together with the equations (7), (8), (10) and (11), is exact only in tree
graphs; using it as an approximation in loopy graphs is usually referred to as Bethe–Peierls
approximation. In loopy graphs, the correlation between interacting spins estimated using
the linear response relation (10) is different from the correlation parameter (9), which is,
in general, of lower accuracy [6]. In equation (10), we identify the magnetizations mi

and the connected correlations Cij with the values mD
i and CD

ij estimated from data.

Inserting the solution (9) for the correlation parameters C̄ij , equation (10) is solved for
the couplings Jij. To calculate the local fields hi, the solutions Jij are fed into the self-
consistent equation (7). Its solution in closed form completes the Bethe reconstruction.

The Bethe–Peierls approximation is related to a number of previous approaches.
Expanding equation (10) to first and second order in Jij recovers the naive mean-field and
TAP reconstructions, respectively. Calculating the couplings and local fields using the self-
consistent equations (7) and (8) with mi = mD

i and C̄ij = CD
ij estimated from data leads

to the independent-pair approximation [8]. On the other hand, inserting the estimated
values mD

i and CD
ij into the places of mi and Cij as well as C̄ij in equation (10) (without

using the solution (9) for C̄ij), one obtains the Sessak–Monasson reconstruction [8, 10].
And lastly, since the extrema of Bethe–Peierls free energy are the fixed points of belief
propagation [22], susceptibility propagation is expected to have a fixed point at the
solution of the Bethe reconstruction.

Interestingly, for a tree at zero field, the magnetizations mi are zero for finite
system, and equations (10) and (11) take on a particularly simple form: (C−1)ij =
−sinh(Jij)cosh(Jij) for i �= j, and (C−1)ii = 1+

∑
j∈∂i sinh2(Jij) (see [23] for the discussion

on symmetry breaking in Cayley trees in the thermodynamic limit). This result can
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be understood as a geometrical relation, where the connected correlation has a simple
interpretation: for any two nodes i and j in a tree there is a unique path Pij connecting
them, and the correlation function can be written as Cij =

∏
Lk∈Pij

tanh(JLk
) for i �= j,

and Cii = 1, where Lk denotes links in this path. Note that in the expression for Cij,
if one replaces the multiplication by summation over the links, the correlation matrix
then becomes the distance matrix in the weighted tree with weight Wij = tanh(Jij). A
similar expression for the inverse of the distance matrix is already well known in graph
theory [24]. Bethe reconstruction then turns out to be particularly simple:

Jij = −1
2
arcsinh[2(C−1)ij], (i �= j). (13)

It is clear from the above description that the computational expense of Bethe
reconstruction is mostly due to the inversion of the correlation matrix, as is the case for
MF, TAP and SM approaches. These methods are low computational expense methods,
which are convenient to apply to systems of large sizes. The expense of inversion of the
correlation matrix is of the order of N3 for methods such as Gaussian elimination. On
the other hand, the computation in a single update of SusP is already of the order of N3,
which makes SusP slower due to the multiple iterative steps.

In the remainder of this note, we discuss the performance of Bethe reconstruction
compared to MF, TAP, SM and SusP approaches, which we refer to as the mean-field
family. Although IP is faster than those methods, it usually leads to estimates of couplings
inferior to those from all of these methods, so no comparison with IP is made.

We will first compare the performance of these methods for a tree and for the
Sherrington–Kirkpatrick (SK) model [25] in the absence of sampling noise (effectively an
infinite number of patterns). Then the effect of sampling noise is considered for a particular
case of sparse random graphs. The comparisons proceed as follows. We first construct a
graph of N nodes, on which spins are located. Random values of couplings J0

ij are assigned

to each edge, and random local fields h0
i are assigned at each spin. Two distributions for

the random variables, the normal distribution with zero mean and standard deviation σ
(N (0, σ2)) and the uniform distribution on the interval [a, b] (U(a, b)), will be used (see the
corresponding figure captions). The magnetizations mD

i and connected correlations CD
ij

are calculated either by enumerating all the spin configurations (infinite sampling) or by
performing Monte Carlo simulation of the model at inverse temperature β to generate a
finite number of M samples (finite sampling). The observed magnetizations and the
connected correlations then serve as inputs for estimating the model parameters βhi

and βJij (where we explicitly reintroduced the inverse temperature). Concentrating on
the reconstruction of the couplings, we measure the deviation of each solution from the
underlying couplings by means of the relative deviation

d(Jij, J
0
ij) =

[∑
i<j(Jij − J0

ij)
2

∑
i<j(J

0
ij)

2

]1/2

. (14)

Figure 1(a) shows the reconstructions of the Ising model on a Cayley tree of
connectivity z = 3 with N = 22 spins. Here, the quality of Bethe reconstruction is limited
only by the precision of numerical computations, confirming its exactness on a tree if the
magnetizations mD

i and the connected correlations CD
ij are known exactly. SusP is also

exact in this case, but fails at low temperatures [12]. On the other hand MF, TAP, and
SM are all approximate, as seen particularly when the couplings are strong.
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Figure 1. Benchmarking in the infinite sampling limit. Performance of the naive
mean-field (MF), TAP (the same as the MF method in these cases), Sessak–
Monasson (SM), susceptibility propagation (SusP) and Bethe reconstruction
(Bethe) method, measured by means of the relative deviation d (see the main text)
between the reconstructed couplings and the underlying couplings. (a) Cayley
tree of connectivity z = 3 over N = 22 spins, J0

ij ∼ U(−1,+1), h0
i = 0. (b) SK

model of N = 20 spins, J0
ij ∼ N (0, 1/N), h0

i = 0.

In figure 1(b) we turn to loopy graphs, and consider a particularly extreme case: the
fully connected SK model of N = 20 spins. At weak couplings (small β), the differences
between the reconstructions of all the methods and the underlying couplings are small, and
in practice the differences between the methods will be obscured by sampling noise (see
below). On the other hand, at strong couplings (larger β), Bethe reconstruction clearly
outperforms all the other methods of the mean-field family. Interestingly, even inside
the glassy regime, a finite overlap between the Bethe-reconstructed couplings and the
underlying couplings persists. Note that SusP also follows the line of Bethe reconstruction
closely at weak couplings, but at strong couplings it fails to converge to the Bethe solution.

We now consider the Ising model with N = 50 spins placed on the vertices of a
random graph with fixed connectivity z = 3 [26]. Such graphs typically contain loops of
length ln(N) [27, 28], but retain a locally tree-like structure. Figure 2(a) shows the results
for a finite number of M = 5000 samples, where we omit SusP from the comparison
due to its numerical instability. At weak couplings (corresponding to high temperatures),
reconstruction by any method is limited by sampling noise. Remarkably, the sampling
noise tends to smear out the small difference between SM and Bethe reconstructions for
the entire weak coupling regime. Again, the deviation d of Bethe reconstruction increases
only slowly through the strong coupling region, making it the best candidate for large
couplings. Figure 2(b) probes the performances of the different methods at β = 1.5
with varying number of samples. The results show that all the reconstruction methods
from the mean-field family are sensitive to the sampling noise. For the present system,
it requires more than 700 samples to obtain a good reconstruction and to see a clear
difference between the different methods.
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Figure 2. Benchmarking in the case of finite sampling. Performance of the
naive mean-field (MF), TAP, Sessak–Monasson (SM) and Bethe reconstruction
(Bethe) methods on a random graph with fixed connectivity z = 3, N = 50
spins, J0

ij ∼ U(−1,+1), h0
i ∼ U(−0.1,+0.1). (a) The deviation d versus the

inverse temperature β, with M = 5000 samples. (b) The deviation d versus the
number of samples M at β = 1.5.

In conclusion, we showed that the Bethe–Peierls approximation and linear response
can serve as the basis for a method of the mean-field family for solving the inverse Ising
problem. This Bethe reconstruction is not only computationally efficient but also stable
through a wide range of couplings. While MF and TAP can be considered as expansions
of low order in the couplings of Bethe reconstruction, the Sessak–Monasson reconstruction
can be recovered by treating the parametric correlations in a particular manner. Although
our observations suggest that susceptibility propagation and Bethe reconstruction are
closely related, further work is needed to probe their relationship, in particular in the
regime of strong couplings.

Since the Bethe–Peierls approximation works well for locally tree-like graphs, the
extension of Bethe reconstruction to short-loop graphs, possibly resulting from the linear
response applied to the Kikuchi approximation [17, 19, 29], is an interesting direction for
future research. Another direction is extending the method to non-binary degrees of
freedom, for which the linear response relation has been already studied [11].
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