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Abstract – Many methods have been proposed for community detection in networks. Some of
the most promising are methods based on statistical inference, which rest on solid mathematical
foundations and return excellent results in practice. In this paper we show that two of the most
widely used inference methods can be mapped directly onto versions of the standard minimum-cut
graph partitioning problem, which allows us to apply any of the many well-understood partitioning
algorithms to the solution of community detection problems. We illustrate the approach by
adapting the Laplacian spectral partitioning method to perform community inference, testing
the resulting algorithm on a range of examples, including computer-generated and real-world
networks. Both the quality of the results and the running time rival the best previous methods.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – The problem of community detection
in networks has received wide attention [1,2]. It has proved
to be a problem of remarkable subtlety, computation-
ally challenging and with deep connections to other areas
of research including machine learning, signal process-
ing, and spin-glass theory. A large number of algorith-
mic approaches to the problem have been considered,
but interest in recent years has focused particularly on
statistical inference methods [3–5], partly because they
give excellent results, but also because they are mathe-
matically principled and, at least in some cases, provably
optimal [5,6].
In this paper we study two of the most fundamental

community inference methods, based on the so-called
stochastic block model or its degree-corrected variant [7].
We show that it is possible to map both methods onto
the well-known minimum-cut graph partitioning problem,
which allows us to adapt any of the large number of
available methods for graph partitioning to solve the
community detection problem. As an example, we apply
the Laplacian spectral partitioning method of Fiedler [8,9]
to derive a community detection method competitive with
the best currently available algorithms in terms of both
speed and quality of results.

Likelihood maximization for the stochastic block
model. – The first method we consider is based on the
stochastic block model, sometimes also called the planted

partition model, a well-studied model of community struc-
ture in networks [7,10]. This model supposes a network
of n vertices divided into some number of groups or
communities, with different probabilities for connections
within and between groups. We will initially focus on the
simplest case of just two groups (of any size, not necessar-
ily equal). In the commonest version of the model edges are
placed independently at random between vertex pairs with
probability pin for pairs in the same group and pout for
pairs in different groups. In this paper we use the slightly
different Poisson version of the model described in [7], in
which we place between each pair of vertices a Poisson-
distributed number of edges with mean ωin for pairs in
the same group and ωout for pairs in different groups. In
essentially all real-world networks the fraction of possible
edges that are actually present in the network is extremely
small (usually modeled as vanishing in the large-n limit),
in which case the two versions of the model become indis-
tinguishable, but the Poisson version is preferred because
its analysis is more straightforward.
At its heart, the statistical inference of community

structure is a matter of answering the following question: if
we assume an observed network is generated according to
our model, what then must the parameters of that model
have been? In other words, what were the values of ωin
and ωout used to generate the network and, more impor-
tantly, which vertices fell in which groups? Even though
the model is probably not a good representation of the
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process by which most real-world networks are generated,
the answer to this question often gives a surprisingly good
estimate of the true community structure.
To answer the question, we make use of a maximum

likelihood method. Let us label the two groups or commu-
nities in our model group 1 and group 2, and denote by gi
the group to which vertex i belongs. The edges in the
network will be represented by an adjacency matrix having
elements

Aij =

{
1, if there is an edge between vertices i, j,
0, otherwise.

(1)
Then the likelihood of generating a particular network or
graph G, given the complete set of group memberships,
which we will denote by the shorthand g, and the Poisson
parameters, which we will denote by ω, is

P (G|g, ω) =
∏
i<j

ω
Aij
gigj

Aij !
exp(−ωgigj ), (2)

where ωgigj denotes the expected number of edges between
vertices in groups gi and gj —either ωin or ωout, depending
on whether the groups are the same or different. We are
assuming there are no self-edges in the network —edges
that connect vertices to themselves— so Aii = 0 for all i.
Given the likelihood, one can maximize it to find the

most likely values of the group labels and parameters,
which can be done in a number of different ways. In
ref. [7], for example, the likelihood was maximized first
with respect to the parameters ωin and ωout by differen-
tiation. Applying this method to eq. (2) gives most likely
values of

ωin =
2min
n21+n

2
2

, ωout =
mout

n1n2
, (3)

where min and mout are the observed numbers of edges
within and between groups, respectively, for a given
candidate division of the network, and n1 and n2 are
the numbers of vertices in each group. Substituting these
values back into eq. (2) gives the profile likelihood, which
depends on the group labels only. In fact, one typically
quotes not the profile likelihood itself but its logarithm,
which is easier to work with. Neglecting an unimportant
additive constant, the log of the profile likelihood for the
present model is

Q=min ln 2min
n21+n

2
2

+mout ln
mout

n1n2
. (4)

The communities can now be identified by maximizing this
quantity over all possible assignments of the vertices to
the groups. This is still a hard task, however. There are
an exponentially large number of possible assignments, so
an exhaustive search through all of them is unfeasible for
all but the smallest of networks. One can apply standard
heuristics like simulated annealing to the problem, but in
this paper we take a different approach.

In the calculation above, the likelihood is maximized
over ω first, for fixed group assignments, then over the
group assignments. But we can also take the reverse
approach, maximizing first over the group assignments,
for given ω, and then over ω at the end. This approach is
attractive for two reasons. First, as we will show, the prob-
lem of maximizing with respect to the group assignments
when ω is given is equivalent to the standard problem
of minimum-cut graph partitioning, a problem for which
many excellent heuristics are already available. Second,
after maximizing with respect to the group assignments
the remaining problem of maximizing with respect to ω is
a one-parameter optimization that can be solved trivially.
The net result is that the problem of maximum-likelihood
community detection is reduced to one of performing
a well-understood task —graph partitioning— plus one
undemanding extra step. The resulting algorithm is fast
and, as we will see, gives good results.
So consider the problem of maximizing the likelihood,

eq. (2), with respect to the group labels gi, for given values
of the parameters ωin and ωout. We will actually maximize
the logarithm L of the likelihood,
L= lnP (G|g, ω) =

∑
i<j

[
Aij lnωgigj −ωgigj − lnAij !

]
, (5)

which gives the same result but is usually easier.
To proceed we write ωgigj and lnωgigj as

ωgigj = δgigjωin+(1− δgigj )ωout, (6)

lnωgigj = δgigj lnωin+(1− δgigj ) lnωout, (7)

where δij is the Kronecker delta. Substituting these into
eq. (5) and dropping overall additive and multiplicative
constants, which have no effect on the position of the
maximum, the log-likelihood can be rearranged to read

L=
∑
i<j

(1− δgigj )(γ−Aij), (8)

where

γ =
ωin−ωout

lnωin− lnωout , (9)

which is positive whenever ωin >ωout, meaning we have
traditional community structure in our network. (It is
possible to repeat the calculations for the case ωin <ωout
and derive methods for detecting such structure as well,
although we will not do that here.)
The quantity

∑
i<j(1− δgigj )Aij is the cut size of the

network partition represented by our two communities,
i.e., the number of edges connecting vertices in different
communities, which we previously denoted mout, and∑

i<j

(1− δgigj ) = n1n2, (10)

where as previously n1 and n2 are the numbers of vertices
in communities 1 and 2. Thus, we can also write the log-
likelihood in the form

L=−mout+ γn1n2. (11)
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The maximization of this log-likelihood corresponds to the
minimization of the cut size, with an additional penalty
term γn1n2 that favors groups of equal size. This is similar,
though not identical, to the so-called ratio cut problem,
in which one minimizes the ratio mout/n1n2, which also
favors groups of equal size, although the nature of the
penalty for unbalanced groups is different.
The catch with maximizing eq. (11) is that we do not

know the value of γ, which depends on the unknown
quantities ωin and ωout via eq. (9), but we can get
around this problem by the following trick. We first
perform a limited maximization of (11) in which the
sizes n1 and n2 of the groups are held fixed at some
values that we choose. This means that the term γn1n2
is a constant and hence drops out of the problem and
we are left to maximize −mout only, or equivalently
minimize the cut-size mout. This problem is now precisely
the standard minimum-cut problem of graph partitio-
ning —the minimization of the cut size for divisions of
a graph into groups of given sizes1.
There are n+1 possible choices of the sizes of the two

groups, ranging from putting all vertices in group 1 to
all vertices in group 2, and everything in between. If we
solve the minimum-cut problem for each of these n+1
choices we get a set of n+1 solutions and we know that
one of these must be the solution to our overall maximum
likelihood problem. It remains only to work out which one.
But choosing between them is easy, since we know that
the true maximum also maximizes the profile likelihood,
eq. (4). So we can simply calculate the profile likelihood
for each solution in turn and find the one that gives the
largest result.
In effect, this approach narrows the exponentially large

pool of candidate divisions of the network to a one-
parameter family of just n+1 solutions (parametrized by
group size), from which it is straightforward to pick the
overall winner by exhaustive search. Moreover, the indi-
vidual candidate solutions are all themselves solutions of
the standard minimum-cut partitioning problem, a prob-
lem that has been well studied for many years and about
which a great deal is known [11,12]. Although partition-
ing problems are, in general, hard to solve exactly, there
exist many heuristics that give good answers in practical
situations. The approach developed here allows us to apply
any of these heuristics directly to the maximum-likelihood
community detection problem.
Although we have concentrated here on the case of a

network with just two communities, our results generalize
in straightforward fashion to more than two. The funda-
mental equations (5)–(9) are unchanged for more than two

1Not to be confused with the similarly named, but quite different,
maximum-flow/minimum-cut problem, which is the problem of
finding the minimum cut that separates two given vertices in a
network.

communities and eq. (10) generalizes to

∑
i<j

(1− δgigj ) =
∑
r<s

nrns. (12)

Then the likelihood takes the form

L=−mout+ γ
∑
r<s

nrns. (13)

If we fix the sizes of the communities, the second term
again becomes constant and the maximization of the
log-likelihood is equivalent to a minimum-cut partition-
ing, leading once more to a polynomial-sized family of
candidate solutions to the community detection problem.
Among these, the correct overall solution is the one that
maximizes the profile likelihood, which for an arbitrary
number of communities is given by

Q=
∑
rs

mrs log
mrs

nrns
, (14)

where mrs is the number of edges running between groups
r and s, or twice that number when r= s [5,7].

Spectral algorithm. As an example of our approach,
we demonstrate a fast and simple spectral algorithm for
the two-community case based on the Laplacian spectral
bisection method for graph partitioning introduced by
Fiedler [8,9]. A description of this method can be found,
for example, in [13], where it is shown that a good
approximation to the minimum-cut division of a network
into two parts of specified sizes can be found by calculating
the Fiedler vector, which is the eigenvector of the graph
Laplacian matrix L corresponding to the second smallest
eigenvalue. (The graph Laplacian is the n×n symmetric
matrix L=D−A, where A is the adjacency matrix and D
is the n×n diagonal matrix with Dii equal to the degree
of vertex i.) Having calculated the Fiedler vector, one
divides the network into groups of the required sizes n1
and n2 by inspecting the vector elements and assigning
the n1 vertices with the largest (most positive) elements
to group 1 and the rest to group 2. Although the method
gives only an approximation to the global minimum-cut
division, practical experience (and some rigorous results)
show that it gives good answers under commonly occurring
conditions [9].
A nice feature of this approach is that, in a single

calculation, it gives us the entire one-parameter family of
minimum-cut divisions of the network. We need calculate
the Fiedler vector only once, sort its elements in decreasing
order, then cut them into two groups in each of the
n+1 possible ways and calculate the profile likelihood
for the resulting divisions of the network. The one with
the highest score is (an approximation to) the maximum-
likelihood community division of the network.

Degree-corrected block model. These developments are
for the standard stochastic block model. As shown in
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ref. [7], however, the standard block model gives poor
results when applied to most real-world networks because
the model fails to take into account the broad degree
distribution such networks possess. This problem can be
fixed by a relatively simple modification of the model
in which the expected number ωgigj of edges between
vertices i and j is replaced by kikjωgigj where ki is the
degree of vertex i. All the developments for the standard
block model above generalize in straightforward fashion
to this “degree-corrected” model. The log-likelihood and
log-profile likelihood become

L=−mout+ γκ1κ2, Q=min ln 2min
κ21+κ

2
2

+mout ln
mout

κ1κ2
,

(15)

where κ1 and κ2 are the sums of the degrees of the vertices
in the two groups. In other words, the expressions are
identical to those for the uncorrected model except for
the replacement of the group sizes n1, n2 by κ1, κ2.
The maximization of L is thus once again reduced to

a generalized minimum-cut partitioning problem, with a
penalty term proportional to κ1κ2, which again favors
balanced groups. Although we do not know the value
of γ, we can reduce the problem to a variant of the
minimum-cut problem by the equivalent of our previous
approach, holding κ1 and κ2 constant. And again we
can derive a spectral algorithm for this problem based
on the graph Laplacian. By a derivation analogous to
that for the standard spectral method we can show that
a good approximation to the problem of minimum-cut
partitioning with fixed κ1, κ2 (as opposed to fixed n1, n2)
is given not by the second eigenvector of L but by the
second eigenvector of the generalized eigensystem Lv=
λDv, where, as previously, D is the diagonal matrix of
vertex degrees. Once again we calculate the vector and
split the vertices into two groups according to the sizes
of their corresponding vector elements and once again
this gives us a one-parameter family of n+1 candidate
solutions from which we can choose an overall winner by
finding the one with the highest profile likelihood, eq. (15).

Results. – We have tested this method on a variety of
networks, and in practice it appears to work well. Figure 1
shows results from tests of the degree-corrected algorithm
of the previous section on a large group of synthetic
(i.e., computer-generated) networks. These networks were
themselves generated using stochastic block models (which
are commonly used as a benchmark for community detec-
tion [1,10]). Panels (a) and (b) in the figure show the
profile likelihood for the families of n+1 candidate solu-
tions generated by the spectral calculation, for networks
drawn from the ordinary (not degree-corrected) block
model with two equally sized groups (a) and unequal
groups (b). In each case there is a clear peak in the profile
likelihood at the correct group size, suggesting that the
algorithm has correctly identified the group membership
of most vertices. Panel (c) shows results for networks
generated using the degree-corrected block model with
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Fig. 1: Results from tests of the method developed here on
computer-generated benchmark networks. (a) Profile likelihood
as a function of group size for candidate solutions generated
by the spectral method described in the text, for single
networks of n= 10000 vertices drawn from the (uncorrected)
stochastic block model with two equally sized groups of 5000
vertices each and a range of strengths of the community
structure. Defining cin = nωin and cout = nωout, the curves
are (top to bottom) cin = 80, 75, 70, 65, and 60, and cout =
100− cin. The dashed vertical line indicates the true size of
the planted communities. The curves have been displaced
from one another vertically for clarity. The vertical axis units
are arbitrary because additive and multiplicative constants
have been neglected in the definition of the log-likelihood.
(b) Profile likelihoods for the same parameter values but
groups of unequal sizes 3000 and 7000. (c) Profile likelihoods
for single networks of n= 10000 vertices generated using the
degree-corrected stochastic block model with an expected
degree distribution following a power law with exponent −2.5,
minimum degree 10, and ωin, ωout chosen to give a 10 : 1 ratio
of within-group edges to between-group edges. The two curves
are, respectively, for networks with equally sized groups and
with groups of size 3000 and 7000. (d) The average fraction
of vertices classified correctly for networks generated from the
uncorrected block model with 10000 vertices and two equally
sized groups. Each point is an average over 100 networks.
Statistical errors are smaller than the points in all cases. The
vertical dashed line indicates the position of the “detectability
threshold” at which the community structure becomes formally
undetectable [6,14–20].

a power-law degree distribution. Networks with broad
degree distributions similar to those seen in real-world
networks present a more realistic challenge to the algo-
rithm, but again the peaks in the curves fall at the correct
points, suggesting that the algorithm has correctly deter-
mined the group membership of most vertices.
Panel (d) in fig. 1 quantifies the success rate of the

algorithm, plotting the fraction of correctly identified
vertices as a function of the strength of community
structure for the ordinary block model in the case of
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Fig. 2: Division into two groups of two well-known networks
from the literature. Top: the karate club network of
Zachary [21]. Bottom: the network of political blogs compiled
by Adamic and Glance [22]. Shades and shapes of vertices indi-
cate group membership and both divisions are qualitatively
similar to the accepted ones.

equally sized groups (which is the most difficult case).
As the figure shows, the algorithm correctly identifies
most vertices over a large portion of the parameter space.
The vertical dashed line represents the “detectability
threshold” identified by previous authors [6,14–20], below
which every method of community detection must fail.
Our algorithm fails below this point also, as it must, but
appears to work well essentially all the way down to the
transition, and there are reasons to believe this result to
be exact, at least for networks that are not too sparse [16].
Figure 2 shows the results of applications of the algo-

rithm to two well-studied real-world networks, Zachary’s
“karate club” network [21] and Adamic and Glance’s
network of political blogs [22]. Both are known to have
pronounced community structure and the divisions found
by our spectral algorithm mirror closely the accepted
communities in both cases.
In additionto being effective, the algorithm is also fast.

The computation of the eigenvector can be done using, for
instance, the Lanczos method, an iterative method which
takes time O(m) per iteration, where m is the number of
edges in the network. The number of iterations required is
typically small, although the exact number is not known
in general. The search for the division that maximizes the
profile likelihood can also be achieved in O(m) time. Of
the n+1 different divisions of the network that must be
considered, each one differs from the previous one by the

movement of just a single vertex from one group to the
other. The movement of vertex i between groups causes
the quantities appearing in eq. (15) to change according to

κ1→ κ1− ki, κ2→ κ2+ ki, (16)

min→min−∆m, mout→mout+∆m, (17)

where ∆m equals the number of edges between i and
vertices in group 1 minus the number between i and
vertices in group 2. These quantities and the resulting
change in the profile likelihood can be calculated in time
proportional to the degree of the vertex and hence all n
vertices can be moved in time proportional to the sum of
all degrees in the network, which is equal to 2m. Thus,
to leading order, the total running time of the algorithm
goes as m times the number of Lanczos iterations, the
latter typically being small, and in practice the method
is about as fast as the best competing algorithms and
should be feasible for networks of millions of vertices or
more.

Conclusions. – In this paper we have shown that the
widely studied maximum likelihood method for commu-
nity detection in networks can be reduced to a search
through a small family of candidate solutions, each of
which is itself the solution to a minimum-cut graph parti-
tioning problem, which is a well-studied problem about
which much is known. This mapping allows us to use
trusted partitioning heuristics to solve the community
detection problem. As an example we have adapted the
method of Laplacian spectral partitioning to derive a
spectral likelihood maximization algorithm and tested its
performance on both synthetic and real-world networks. In
terms of both accuracy and speed we find the algorithm
to be competitive with the best current methods.
A number of extensions of our approach would be

possible, including extensions with more general forms for
the parameters ω, such as different values of ωin and ωout
for different groups, but we leave these for future work.
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