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Preface

Over the past 20 years or so, Markov Chain Monte Carlo (MCMC) methods have 
revolutionized statistical computing, They have impacted the practice of Bayesian statistics 
profoundly by allowing intricate models to be posited and used in an. astonishing array of 
disciplines as diverse as fisheries science and economics, Of course, Bayesians are not the 
only ones to benefit from using MCMC, and there continues to be increasing use of MCMC 
in other statistical settings. The practical importance of MCMC has also sparked expan
sive and deep investigation into fundamental Markov chain theory. As the use of MCMC 
methods mature, we see deeper theoretical questions addressed, more complex applica
tions undertaken and their use spreading to new fields of study. It seemed to us that it was 
a good time to try to collect an overview of MCMC research and its applications.

This book is intended to be a reference {not a text) for a broad audience and to be of 
use both to developers and users of MCMC methodology. There is enough introductory 
material in the book to help graduate students as well as researchers new to MCMC who 
wish to become acquainted with the basic theory, algorithms and applications. The book 
should also be of particular interest to those involved in the development or application 
of new and advanced MCMC methods. Given the diversity of disciplines that use MCMC, 
it seemed prudent to have many of Hie chapters devoted to detailed examples and case 
studies of realistic scientific problems. Those wanting to see current practice in MCMC will 
find a wealth of material to choose from here.

Roughly speaking, we can divide the book into two parts. The first part encompasses 12 
chapters concerning MCMC foundations, methodology and algorithms. Hie second part 
consists of 12 chapters which consider the use of MCMC in practical applications. Within 
the first part, the authors take such a wide variety of approaches that it seems pointless to 
try to classify the chapters into subgroups. For example, some chapters attempt to appeal to 
a broad audience by taking a tutorial approach while other chapters, even if introductory, 
are either more specialized or present more advanced material Yet others present original 
research, hi the second part, the focus shifts to applications. Here again, we see a variety of 
topics, but there are two basic approaches taken by the authors of these chapters. The first 
is to provide an overview of an application area with the goal of identifying best MCMC 
practice in the area through extended examples. The second approach is to provide detailed 
case studies of a given problem while dearly identifying the statistical and MCMC-related 
issues encountered in the application.

When we were planning this book, we quickly realized that no single source can give 
a truly comprehensive overview of cutting-edge MCMC research and applications—there 
is just too much of it and its development is moving too fast. Instead, the editorial goal 
was to obtain contributions of high quality that may stand the test of time. To this end, 
all of the contributions (induding those written by members of the editorial panel) were 
submitted to a rigorous peer review process and many underwent several revisions. Some 
contributions, even after revisions, were deemed unacceptable for publication here, and 
we certainly welcome constructive feedback on the chapters that did survive our editorial 
process. We thank all the authors for their efforts and patience in this process, and we ask 
for understanding from those whose contributions are not indude din this book. Webelieve 
the breadth and depth of the contributions to this book, induding some diverse opinions 
expressed, imply a continuously bright and dynamic future for MCMC research We hope
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this book inspires further work—theoretical, methodological, and applied—in this exciting 
and rich area.

Finally, no project of this magnitude could be completed with satisfactory outcome with
out many individuals' help. We especially want to thank Robert Calver of Chapman & 
Hall/CRC for his encouragements, guidelines, and particularly his patience during the 
entire process of editing this book. We also offer our heartfelt thanks to the numerous 
referees for their insightful and rigorous review, often multiple times. Of course, the ulti
mate appreciation for all individuals involved in this project comes from your satisfaction 
with the book or at least a part of it. So we thank you for reading it.
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Introduction to Markov Chain Monte Carlo

Charles J. Geyer

1.1 H isto ry

Despite a few notable uses of simulation of random processes in the pre-computer era 
(Hammersley and Handscomb, 1964, Section 1.2; Stigler, 2002, Chapter 7), practical 
widespread use of simulation had to await the invention of computers. Almost as soon as 
computers were invented, they were used for simulation (Hammersley and Handscomb, 
1964, Section 1.2). The name "Monte Carlo" started as cuteness—gambling was then 
(around 1950) illegal in most places, and the casino at Monte Carlo was the most famous in 
the world—but it soon became a colorless technical tenn for simulation of random 
processes.

Markov chain Monte Carlo (MCMC) was invented soon after ordinary Monte Carlo at 
Los Alamos, one of the few places where computers were available at the time. Metropolis 
et a l (1953)* simulated a liquid in equilibrium with its gas phase. Hie obvious way to find 
out about the thermodynamic equilibrium is to simulate the dynamics of the system, and 
let it run until it reaches equilibrium. The tom tie force was their realization that they did 
not need to simulate the exact dynamics; they only needed to simulate some Markov chain 
having the same equilibrium distribution. Simulations following the scheme of Metropolis 
et al. (1953) are said to use the Metropolis algorithm. As computers became more widely 
available, the Metropolis algorithm was widely used by chemists and physicists, but it did 
not become widely known among statisticians until after 1990. Hastings (1970) general
ized the Metropolis algorithm, and simulations following his scheme are said to use the 
M etropolis—Hastutgs algorithm. A special case of the Metropolis-Hastings algorithm was 
introduced by Genian and Geman (1984), apparently without knowiedge of earlier work. 
Simulations following their scheme are said to use the Gibbs sampler. Much of Geman and 
Geman (1984) discusses optimization to find the posterior mode rattier than simulation, 
and it took some time for it to be understood in the spatial statistics community that the 
Gibbs sampler simulated the posterior distribution, thus enabling full Bayesian inference 
of all kinds. A methodology that was later seen to be very similar to the Gibbs sampler was 
introduced by Tanner and Wong (1987), again apparently without knowledge of earlier 
work. To this day, some refer to the Gibbs sampler as "data augmentation" following these 
authors. Gelfand and Smith (1990) made the wider Bayesian community aware of the Gibbs 
sampler, which up to that time had been known only in the spatial statistics community 
Then it took off; as of this writing, a search for Gelfand and Smith (1990) on Google Scholar 
yields 4003 links to other works. It was rapidly realized that most B ayesian inference could

* The fifth author was Edward Teller the "father of the hydrogen bomb."
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be done by MCMC, whereas very little could be done without MCMC. It took a while for 
researchers to properly understand the theory of MCMC (Geyer, 1992; Tierney 1994) and 
that all of the aforementioned work was a special case of the notion of MCMC. Green (1995) 
generalized the Metropolis-Hastings algorithm, as much as it can be generalized. Although 
this terminology is not widely used, we say that simulations following his scheme use Hie 
Metropolis-Hastings-Green algorithm MCMC is notused only for Bayesian inference. Like
lihood inference in cases where the likelihood cannotbe calculated explicitly due to missing 
data or complex dependence can also use MCMC (Geyer, 1994,1999; Geyer and Thompson, 
1992, 1995, and references dted therein).

1.2 M a rk o v  C h ain s

A sequence Xi, X?, . . .  of random elements of some set is a Markov chain if the conditional 
distribution of X?I+i given X i , .. . ,X r, depends on X„ only. The set in which the X, take 
values is called the state space of the Markov chain.

A Markov chain has stationary tiwisition probabilities if the conditional distribution of X„+i 
given X„ does not depend on n. This is the main kind of Markov chain of interest in MCMC. 
Some kinds of adaptive MCMC (Chapter 4, this volume) have nonstationary transition 
probabilities, hi this chapter we always assume stationary transition probabilities.

The joint distribution of a Markov chain is determined by

• The marginal distribution of X i, called the initial, distribution
• The conditional distribution of X„+i given X„, called the transition probability dis

tribution (because of the assumption of stationary transition probabilities, this does 
not depend on n)

People introduced to Markov chains through a typical course on stochastic processes have 
usually only seen examples where the state space is finite or countable. If the state space 
is finite, written {.ici,. . . ,  Jt„}, then the initial distribution can be assodated with a vector 
X =  (Xi, defined by

Pr(Xi =  *,■) = XE, i =  1 , . . . ,  n,

and the transition probabilities can be associated with a matrix P having elements p,y 
defined by

PrfX^+i = Xj | X„ =  Xi) = p;j, i =  and j  =  l , . . . ,n .

When the state space is countably infinite, we can think of an infinite vedor and matrix. 
But most Markov chains of interest in MCMC have uncountable state space, and then we 
cannot think of the initial distribution as a vedor or the transition probability distribution 
as a matrix. We must think of them as an unconditional probability distribution and a 
conditional probability distribution.
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1.3 C o m p u ter P rogram s and M ark ov  C h ain s

Suppose you have a computer program

Initialize x 
r e p e a t  {

Generate pseudorandom change to x 
Output x

}

If is the entire state of the computer program exclusive of random number generator seeds 
{which we ignore, pretending pseudorandom is random), this is MCMC. It is important 
that x must be the entire state of the program. Otherwise the resulting stochastic process 
need not be Markov

There is not much structure here. Most simulations can be fit into this format. Thus 
most simulations can be thought of as MCMC if the entire state of the computer program 
is considered the state of the Markov chain. Hence, MCMC is a very general simulation 
methodology.

1.4 S ta tio n a rity

A sequence X i, X 2, . . .  of random elements of some set is called a stochastic process (Markov 
chains are a special case). Astochastic process is stationary if for every positive integer h the 
distribution of the /r-tuple

■ ■ ■ 1

does not depend on/i. A Markov chain is stationary if it is a stationary stochastic pro cess, hi a 
Markov chain, the conditional distribution of (X„+2, . . . ,  X„ ) given X„+1 does not depend 
on 11. It follows that a Markov chain is stationary if and only if the marginal distribution of 
X„ does not depend on 11.

An initial distribution is said to be stationary ot invariant or equilibrium for some transition 
probability distribution if the Markov chain specified by this initial distribution and transi
tion probability distribution is stationary. We also indicate this by saying that the transition 
probability distribution preserves the initial distribution

Stationarity implies stationary transition probabilities, but not vice versa. Consider an 
initial distribution concentrated at one point. The Markov chain can be stationary if and 
only if all iterates are concentrated at the same point, that is, X i = X? = .. . ,  so the chain 
goes nowhere and does nothing. Conversely, any transition probability distribution canbe 
combined with any initial distribution, including those concentrated at one point. Such a 
chain is usually not stationary (even though the transition probabilities are stationary).

Having an equilibrium distribution is an important property of a Markov chain tran
sition probability. In Section 1.8 below, we shall see that MCMC samples the equilibrium 
distribution, whether the chain is stationary or not. Not all Markov chains have equilibrium 
distributions, but all Markov chains used in MCMC do. The Metropolis-Hastings-Green 
(MHG) algorithm (Sections 1.12.2, 1.17.3.2, and 1.17.4.1 below) constructs transition 
probability mechanisms that preserve a specified equilibrium distribution.
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1.5 R e v e rsib ility

A transition probability distribution is reversible with respect to an initial distribution if, for 
the Markov chain X ^ X z,. . .  they specify, the distribution of pairs (X„ X(+i)is  exchangeable.

A Markov chain is reversible if its transition probability is reversible with respect to its 
initial distribution. Reversibility implies stationarity, butnot vice versa. Areversible Markov 
chain has the same laws running forward or backward in time, that is, for any i and k the 
distributions of (XI+i , . . . ,  X,+i:) and (Xi+Jt , . . .  ,X i+i) are the same. Hence the name.

Reversibility plays two roles in Markov chain theory. All known methods for construct
ing transition probability mechanisms that preserve a specified equilibrium distribution 
in non-toy problems are spedal cases of the MHG algorithm, and all of the elementary 
updates construded by the MHG algorithm are reversible (which accounts for its other 
name, the "reversible jump" algorithm). Combining elementary updates by composition 
(Section 1.12.7 below) may produce a combined update mechanism that is not reversible, 
but this does not diminish the key role played by reversibility in constructing transition 
probability mechanisms for MCMC. The other role of reversibility is to simplify the Markov 
diain central limit theorem (CLT) and asymptotic variance estimation. In the presence of 
reversibility the Markov chain CLT (Kipnis and Varadhan, 1986; Roberts and Rosenthal, 
1997) is much sharper and the conditions are much simpler than without reversibility. 
Some methods of asymptotic variance estimation (Section 1.10.2 below) only work for 
reversible Markov chains but are much simpler and more reliable than analogous methods 
for nonreversible chains.

1.6 F u n ctio n als

If Xi, X 2, . . .  is a stochastic process and g is a real-valued function on its state space, then 
the stochastic process g(X i),g(X 2) , . . .  having state space ffi is said to be a functional of 
X i ,X 2, . . . .

If X i, X 2, . . .  is a Markov chain, then a functional g (X i),£(X 2) , . . .  is usually not a 
Markov chain. The conditional distribution of XTI+i given X\, . . . ,X „  depends only on 
X,„ but this does not, in general, imply that the conditional distribution of £(X?,+i) given 
£ (X i) , .. . ,g(X„) depends only on^(X„). Nevertheless, functionals of Markov chains have 
important properties not shared by other stochastic processes.

1.7 The T h eo iy  of O rd in ary  M onte C arlo

Ordinary Monte Carlo (OMC), also called "independent and identically distributed {i.i.d.) 
Monte Carlo" or "good old-fashioned Monte Carlo," is the spedal case of MCMC in which 
Xi, X2, . . .  are independent and identically distributed, in which case the Markov chain is 
stationary and reversible.

Suppose you wish to calculate an expectation

\i =  E{£(X)}, ( 1.1)
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where g  is a real-valued function on the state space, but you cannot do it by exact 
methods (integration or summation using pencil and paper, a computer algebra system, 
or exact numerical methods). Suppose you can simulate X i, X?,. .. i.i.d. having the same 
distribution as X. Define

1 71 

“ i=i

If we introduce the notation Y, = £(X,), then the Y) are i.i.d. with mean |i and variance

a2 =  var{g(X)}, (1.3)

|1„ is the sample mean of the Yu and the CLT says that

The variance in the CLT can be estimated by

1
a- = 7 ;E te < x ‘> - M 2' <I 5 >

i=i

which is the empirical variance of the Y, . Using the terminology of Section 1.6, we can also
say that jl„ is the sample mean of the functionalg (X i),  g (X ?), . . .  of X i ,  X ?, _______

The theory of OMC is just elementary statistics. For example, |i„ ±  1.96 ■ a„ j  ̂ /Ti is an 
asymptotic 95% confidence interval for |i. Note that OMC obeys what an elementary statis
tics text (Freedman et al., 2007) calls the square root Imv: statistical accuracy is inversely 
proportional to the square root of the sample size. Consequently, the accuracy of Monte 
Carlo methods is limited. Each additional significant figure, a tenfold increase in accuracy, 
requires a hundredfold increase in the sample size.

The only tricky issue is that the randomness involved is the pseudorandomness of com
puter simulation, rather than randomness of real-worid phenomena. Thus it is a good idea 
to use terminology that emphasizes the difference. We call Equation 1.2 the Monte Carlo 
approximation or Monte Carlo aticiilatiot i of n, rattier than the "point estimate" or '’'■point esti
mator" of n, as we wotdd if not doing Monte Carlo. We call n the Monte Carlo sample size, 
rather than just the "sample size." We call 5„/.v/j7 the Monte Carlo standard error (MCSE), 
rather than just the "standard error." We also do not refer to Equation 1.1 as an unknown 
parameter, even though we do not know its value. It is simply the expectation we are trying 
to calculate, known in principle, although unknown in practice, since we do not knowhow 
to calculate it other than by Monte Carlo approximation 

It is especially important to use this terminology wThen applying Monte Carlo to statistics. 
When the expectation (Equation 1.1) arises in a statistical application, there may already be 
a sample size in this application, which is unrelated to the Monte Carlo sample size, and 
there may already be standard errors unrelated to MCSEs. It can be hopelessly confusing 
if these are not carefully distinguished.
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1.8 The T h eory  of M C M C

The theory of MCMC is just like the theory of OMC, except that stochastic dependence 
in the Markov chain changes the standard error. We start as in OMC with an expectation 
(Equation 1.1) that we cannot do other than by Monte Carlo. To begin the discussion, sup
pose that Xi, X zf. . .  is a stationary Markov chain having initial distribution the same as the 
distribution of X. We assume that the Markov chain CLT (Equation 1.4) holds, where now

OO
<t2 = var(g(X,)j + 2 ^ov{^fX,),^{X!+jt)j (1.6)

t=i

(this formula is correct only for stationary Markov chains; see below for nonstationary 
chains). Since the asymptotic variance (Equation 1.6) is more complicated than the i.id. 
case (Equation 1.3), it cannot be estimatedby Equation 1.5. It can, however, be estimated in 
several ways discussed belowT (Section 1.10). Conditions for the Markov chain CLT to hold 
(Chan and Geyer, 1994; Jones, 2004; Roberts and Rosenthal, 1997, 2004; Tierney, 1994) are 
beyond the scope of this chapter.

Now we come to a somewhat confusing issue. We never use stationary Markov chains in 
MCMC, because if we could simulate X i so that it has the invariant distribution, then we 
could also simulate X?, X3, . . .  in the same wTay and do OMC. It is a theorem, however, that, 
tinder a condition (Harris recurrence) thatis easier to verify than the CLT (Chan and Geyer, 
1994; Tierney, 1994), if the CLT holds for one initial distribution and transition probability, 
then it holds for all initial distributions and that same transition probability (Meyn and 
Tweedie, 1993, Proposition 17.1.6), and the asymptotic variance is the same for all initial 
distributions. Although the the oretical a symptotic variance formula (Equation 1.6) contains 
variances and covariances for the stationary Markov chain, it also gives the asymptotic 
variance for nonstationary Markov chains having the same transition probability distribu
tion (but different initial distributions). In practice, this does not matter, because we can 
never calculate (Equation 1.6) exactly except in toy problems and must estimate it from our 
simulations.

1.8.1 Multivariate Theory

Suppose that we wish to approximate by Monte Carlo (Equation 1.1) where we change 
notation so that n is a vector with components [ir and g(x) is a vector with components 
gr(x). Our Monte Carlo estimator is still given by Equation 1.2, which is now also a vector 
equation because eadig(X ,j is a vector. Then the multivariate Markov chain CLT says that

tU ^  N(|i,jj- 1E),

where
CC

E =  var{g(X;)} + 2 oav(^(XI-),x(Xf+l)}, (1.7)
ic=l

and where, although the right-hand sides of Equations 1.6 and 1.7 are the same, 
they mean different things: in Equation 1.7 var{g(X;)} denotes the matrix with com
ponents oovJgj-fXiOjgstX,-)} and cov{^(X,),g(Xi+t)} denotes the matrix with components 
cov {g, (X,), gs (XI+t) J.
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Conditions for the multivariate CLT to hold are essentially the same as for the univariate
T>CLT. By the Cramfir-Wold theorem, the multivariate convergence in distribution Z„ — * Z

T>holds if and only if the univariate convergence in distribution f'Z,, — i'Z holds for every 
nonrandom vector t Thus the lmdtivariate CLT essentially follows from the univariate 
CLT, and is often not discussed. It is important, however, for users to understand that the 
multivariate CLT does hold and can be used when needed.

1.8.2 Th e Autocovariance Functi on

We introduce terminology for the covariances that appear in Equation 1.6:

yk = cov{g(Xi),g(X;+.k)} (1.8)

is called Hieing^ nntocovnriai tee of the functional^ (X i ), g  (X j) ,___ Recall that in Equation 1.8
as in Equation 1.6 the covariances refer to the stationary chain with the same transition 
probability distribution as the chainbeing used. Hie variance that appears in Equation 1.6 
is then yo. Hence, (Equation 1.6) can be rewritten

CO

a2 = yo + 2 E yt'
t=i

The function k i-> is called the anfocomriwice function of the functional g(X i),g  (X ?),. . . ,  
and the function k m- vt/Yo is called the au tocorrelation function of this functional.

The natural estimator of the auto covariance function is

 ̂ n— J:
vt =  -  -  W te tx ,-* )  - 1An] d-io)

" ,=i

It might be thought that one should divide by u —k instead of it, but the large k terms are 
already very noisy so dividing by n -  k only makes a bad situation worse. Tlie function 
k i—>■ -ft is called the empirical antocoimriivice function of the functionalg(Xi),g(XV),. . . ,  and 
the function/r m» yt /yo is called Hie empirical antocorrelatioii ftmcfioii of this functional.

1.9 A R (1) Exam p le

We now look at a toy problem for which exact calculation is possible. An AR(1) process (AR 
stands for autoregressive) is defined recursively by

X „+ i =  pXr i+ Y „ ,  (1.11)

where Y„ are ii.d. N(0, i 2) and X i may have any distribution with finite variance. From 
Equation 1.11 we get

cov(X ri+Jt,X „ )  =  p cov(XJI_|_j-_!, X „) =  . . .  =  p*-1 C O V IX V ^ X ,, ) =  p* var(X„). (1.12)
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If the process is stationary, then

var(X„) = var(X„+i) = p2var(X„) + var(Y„)

so
T2

var(X„) =  -------? (1.13)
1 -  f>2

and since variances are nonnegative, we must have P2 < 1. Since a linear combination of 
independent normal random variables is normal, we see that the normal distribution with 
mean zero and variance (Equation 1.13) is invariant. Define v 2 to be another notation for 
the right-hand side of Equation 1.13 so the invariant distribution is N(0, u2).

It can be shown that this is the unique invariant distribution and this Markov chain obeys 
the CLT. The variance in the CLT is

cr2 =  var(X, ) + 2 ^ 2  covfX,, XI+t)

-A H S ')
2p \ (1.14)

P/

i 2 1 +  P
1  -  p 2  1  -  p

2 1 + P
v ' 1----- '1 -  p

1.9.1 A Digression oil Toy Problems

It is hard to know wThat lessons to learn from a toy problem Unless great care is taken to 
point out which features of the toy problem are like real applications and which unlike, 
readers may draw' conclusions that do not apply to real-world problems.

Here we are supposed to pretend that we do not know the invariant distribution, and 
lienee we do not know' that the expectation we are trying to estimate, |x =  E(X), where 
X has the invariant distribution, is zero.

We cannot be interested in any functional of the Markov chain other than the one induced 
by the identity function, because w'e caimot do the analog of Equation 1.14 for any function 
g  other than the identity function, and thus w'ould not have a closed-form expression for 
the variance in the Markov chain CLT, which is the whole point of this toy problem

Observe that Equation 1.14 goes to infinity as p 1. Thus in order to obtain a specified 
accuracy for ft,, as an approximation to |i, say o f- Jh  =  e, we may need a very large Monte 
Carlo sample size n. How large u must be depends on howT dose p is to one. When we 
pretend that we do not know the asymptotic variance (Equation 1.14), which we should do 
because the asymptotic variance is never known in real applications, all wTe can conclude 
is that we may need the Monte Carlo sample size to be very large and have no idea how 
large.
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We reach the same conclusion if we are only interested in approximation error relative to 
the standard deviation v of the invariant distribution, because

1 +  P 

1 -  P
(1.15)

also goes to infinity as p —> 1.

1.9.2 Supporting Technical Report

In order to avoid including laborious details of examples w7hile still making all examples 
fully reproducible, those details are relegated to a technical report {Geyer, 2010a) or the 
vignettes for the R package nicnic (Geyer, 2010b). All calculations in this technical report or 
those package vignettes are done using the R function s weave, so all results in them are 
actually produced by the code shown therein and hence are fully reproducible by anyone 
who has R. Moreover, anyone can download the sweave source for the technical report 
from the URL given in the references at the end of this chapter or find the s we ave source for 
the package vignettes in the doc directory of any installation of the mcmc package, separate 
the R from the LTeX using the s t  an gl e function, and play with it to see how the examples 
work.

1.9.3 The Example

For our example, we choose p = 0,99 and Monte Carlo sample size n =  104. This makes the 
MCSE about 14% of the standard deviation of the invariant distribution, which is a pretty 
sloppy approximation, To get the relative MCSE down to 10%, we would need u = 2 x 104. 
To get the relative MCSE down to 1%, we would need n =  2 x 10s.

Figure 1.1 show's a time series plot of one MCMC run for this AR(1) process. From this 
plot we can see that the series seems stationary—there is no obvious trend or change in 
spread. We can also get a rough idea of how much dependence there is in the chain by

20-

10-

-10-

- 2 0 -

2000 4000 6000
Time

8000 10,000

FIGURE 1.1
Time series plot for AR(1) example.
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H

FIGURE 1.2
Running averages plot for AR(1) example.

counting large wiggles. The ratio of the variance in the CLT to the variance of the invariant 
distribution (Equation 1.15) is 199 for this example. Hence, this MCMC sample is about as 
useful as ani.i.d. sample with the same marginal distribution of sample size 104/199 50.

Figure 1.2 shows a running averages plot for the same run shown in Figure 1.1. For 
some reason, these running averages plots seem popular among MCMC users although 
they provide no useful information We know that MCMC, like OMC, obeys the square 
root law A plot like Figure 1.2 does illustrate that l/ v'77 is a decreasing function of it, but 
not much else. Elementary statistics texts (Freedman et al., 2007, p. 276) often include one 
(and only one) figure like our Figure 1.2 to illustrate to naive students how the law of 
averages works. We have included Figure 1.2 only as an example of what not to do. In 
particular, such running averages plots should never be used to illustrate talks, since they 
tell the audience nothing they do not already know. Show a time series plot, like Figure 1.1, 
instead.

Figure 1.3 shows an autocorrelation plot for the same run shown in Figure 1.1. The black 
bars show the empirical autocorrelation function (ACF) defined in Section 1.8.2. We could 
let the domain of the ACF be zero to u -  1, but the R function ac f  cuts the plot at the 
argument lag .m ax. Hie a c f  function automatically adds the horizontal dashed lines, 
which the documentation for p i o t . a c  f  says are 95% confidence intervals assuming white 
noise input. The dotted curve is the simulation truth autocorrelation function pfc derived 
from Equation 1.12. In the spirit of this toy problem, we are supposed to pretend we do not 
know the dotted curve, since we would not have its analog in any real application. We can 
see, however, how well (not very) the empirical ACF matches the theoretical ACF.

It should come as no surprise that the empirical ACF estimates the theoretical ACF less 
well than |iT; estimates |i. E ven in iid . sampling, the mean is always much better estimated 
than the variance.

The ACFis well enough estimated, however, to give some idea how far significant autocor
relation extends in our Markov chain. Of course, the theoretical autocorrelation is nonzero 
for all lags, no matter how large, but we know (although we pretend we do not) that they 
decrease exponentially fast. They are not practically significantly different from zero past 
lag 500.
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Lag

FIGURE 1.3
Autocorrelation plot for AR(1) Example. Dashed lines: 95% confidence intervals assuming white noise input. 
Dotted curve: simulation truth autocorrelation function.

1.10 V ariance E stim atio n

Many methods of variance estimation have been proposed. Most come from the time series 
literature and are applicable to arbitrary stationary stochastic processes, not just to Markov 
chains. We will cover only a few very simple, but very effective, methods.

1.10.1 Nonoverlapping Batch Means

Abatch is simply a subsequence of consecutive iterates of the Markov chain Xjt+i , .. .,X jt+b. 
The number b is called the batch length. If we assume the Markov chain is stationary, then 
all batches of the same length have the same joint distribution, and the CLT applies to each 
batch. The batch mean

/=!

is a Monte Carlo approximation of the expectation (Equation 1.1) we are trying to calculate, 
and its distribution is approximately N([i, o 2/b), where, as before, a2 is given by Equa
tion 1.6. Abatch of length b is just like the entire run of length n, except for length. The 
sample mean of a batch of length b is just like the sample mean of the entire run of length 
n, except that the asymptotic variance is a 2/b  instead of o 2/n..

Suppose b divides n evenly. Divide the whole run into m nonoverlapping batches of 
length b. Average these batches:

&b,k = t X! ^ Xi)- (1.16)
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Then
 ̂ H i 

t=l

estimates a2/l>.
It is important to understand that the stochastic process |i{, i, [Ij, ^ . . .  is also a functional 

of a Markov chain, not the original Markov chain but a different one. If S is the state space 
of the original Markov chain X i, X i , . . . ,  then the batches

(X ^ jt-u + ^ .-.fX ji), k = 1 ,2 ,. ..

also form a Markov chain with state space S![, because the conditional distribution of one 
batch (Xil(jfc_ 1)+1/. . . ,  X13, ) given the past history actually depends only on X ^ .^ ,  which is 
a component of the immediately preceding batch. The batch means are a functional of this 
Markov chain of batches.

Figure 1.4 shows a batch mean plot for the same run shown in Figure 1.1. The batch length 
is 500, the run length is 104, so the number of batches is 20. Like the running averages plot 
(Figure 1.2), we do not recommend this kind of plot for general use, because it does not 
show anything a sophisticated MCMC user should not already know It is useful to show 
such a plot (once) in a class introducing MCMC, to illustrate the point that the stochastic 
process shown is a functional of a Markov chain It is not useful for talks about MCMC.

Figure 1.5 shows the autocorrelation plot of the batch mean stochastic process for the 
same run shown in Figure 1.1, which shows the batches are not significantly correlated, 
because all of the bars except the one for lag 0 are inside the dashed lines. In this case, a 
confidence interval for the unknown expectation (Equation 1.1) is easily done using the R 
function t . test:

> t .test(batch)
One Sample t-test

data: batch
t = -1.177, df = 19, p-value = 0.2537
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-2.5184770 0.7054673

sample estimates: 
mean of x 
-0 .9065049

Here, batch is the vector of batch means which is plotted in Figure 1.4.
If this plot had shown the batches to be significantly correlated, then the method of batch 

means should not have been used because it would have a significant downward bias. 
However, the time series of batches can still be used, as explained in Section 1.10.2 below 

How does one choose the batch length? The method of batch means will work well 
only if the batch length b is large enough so that the infinite sum in Equation 1.9 is well 
approximated by the partial stun of the first l> terms. Hence, when the method of batch 
means is used blindly with no knowledge of the ACF, b should be as large as possible. Tlie 
only restriction on the length of batches is that the number of batches should be enough to
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FIGURE 1.4
Batch m ean plot for AR(1) example. Batch length 500.

get a reasonable estimate of variance. If one uses a t test, as shown above, then the t critical 
value corrects for the number of batches being small {Geyer, 1992; Schmeiser, 1982), but 
there is no point in the number of batches being so small that that the variance estimate 
is extremely unstable: 20-30 batches is a reasonable recommendation. One sometimes sees 
assumptions that the number of batches "goes to infinity" in theorems, but this is not 
necessary for simple MCSE calculation {Geyer, 1992, Section 3.2). If one is using estimated 
variance in a sequential stopping rule (Glynn and Whitt, 1991, 1992), then one does need 
the number of batches to go to infinity.

Meketon and Schmeiser (1984) pointed out that the batch means estimator of variance 
(Equation 1.17) is still valid if the batches are allowed to overlap, and a slight gain in 
efficiency is thereby achieved. For reasons explained in the following section, we do not

i.o -
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FIGURE 1.S
Autocorrelation plot of batch means for AR(1) example. Batch length 500.
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recommend overlapping batch means, not because there is anything wrong with it, but 
because it does not fit together well with other methods we recommend.

1.10.2 Initial Sequence Methods

Another approach to variance estimation is to work directly with the representation 
(Equation 1.9) of the asymptotic variance. One cannot simply plug the empirical esti
mates (Equation 1.10) into Equation 1.9 because the variance of the high-lag terms does 
not decrease with lag, so as n goes to infinity an infinite amount of noise swamps the finite 
signal. Many solutions for this problem have been proposed in the time series literature 
(Geyer, 1992, Section 3.1 and references dted therein). But reversible Markov chains permit 
much simpler methods. Define

rjt = y a  + Y 2Jt+i' (1.18)

Geyer (1992, Theorem 3.1) showed that the function ft m> is strictly positive, strictly 
decreasing, and strictly convex, and proposed three estimators of the asymptotic variance 
(Equation 1.9) thatuse these three properties, called the initial positive sequence, initial mono
tone sequence, and initial convex sequence estimators. Each is a consistent overestimate of 
the asymptotic variance (meaning the probability of underestimationby any fixed amount 
goes to zero as the Monte Carlo sample size goes to infinity) under no regularity conditions 
whatsoever (Geyer, 1992, Theorem 3.2). The initial convex sequence estimator is the best, 
because the smallest and still an asymptotic overestimate, but is a bit difficult to calculate. 
Fortunately, the R contributed package me me now has a function i n i t s e q  that calculates 
all three estimators. We will only discuss the last. It forms

I"* =  Y7k + Y2t+i,

where yk is given by Equation 1.10, then finds the largest index in such that

f  j. > 0, ft =  0, . . . ,  m,

then defines r„,+i =  0, and then defines k. h> 1̂  to be the greatest convex minorant of 
k  m- Tt over the range 0 ,...,/ »  + 1. Finally, it estimates

m

£ L v  =  -Y 0 +  2 X ;r V  (1.19)
Jt=0

Figure 1.6 show's a plot of the function k i-» r* for the same run shown in Figure 1.1 com
pared to its theoretical value. When comparing this plot to Figure 1.3, remember that each 
index value in Figure 1.6 corresponds to two index values in Figure 1.3because of the way 
Equation 1.18 is defined. Thus Figure 1.6 indicates significant autocorrelation out to about 
lag 300 (not 150).

The estimator of asymptotic variance (Equation 1.19) is calculated very simply in R:

> in i t s e q ( o u t ) $ v a r . con 
[1] 7467.781

assuming the mcmc contributed package has already been loaded and o u t is the functional 
of the Markov chain for which the variance estimate is desired.
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Index (half lag)

FIGUREM.6
Plot of T for AR(1) example. Solid line: initial convex sequence estimator of Equation 1.18. Dotted line: theoretical 
value.

1.10.3 Initial Sequence Method; and Batch Means

When the original Markov chain is reversible, so is the chain of batches. Hence, initial 
sequence methods can be applied to a sequence of nonoverlapping batch means derived 
from a reversible Markov chain.

This means that the method of nonoverlapping batch means canbe used without testing 
whether the batches are large enough. Simply process them with aninitial sequence method, 
and the result is valid regardless of the batch length.

Here is how that works. Suppose we use a batch length of 50, which is too short.

> blen * var(batch)
[1] 2028.515
> blen * initseq(batch)$var.con
[ 1 ]  7 5 7 5 . 5 0 6

The naive batch means estimator is terrible, less than a third of the size of the initial convex 
sequence estimator applied to the batch means (7575.506), but this is about the same as 
the initial convex sequence estimator applied to the original output (7467.781). So nothing 
is lost when only nonoverlapping batch means are output, regardless of the batch length 
used.

Partly for this reason, and partly because nonoverlapping batch means are useful for 
reducing the size of the output, whereas overlapping batch means are not, we do not 
recommend overlapping batch means and will henceforth always use the term batch means 
to mean nonoverlapping batch means.

1.11 The P ractice  of M C M C

The practice of MCMC is simple. Set up a Markov chain having the required invariant 
distribution, and run. it on a computer. The folklore of simulation makes this seem more



18 Handbook o f  Markov Chain Monte Carlo

complicated than itreally is. None of this folklore is justified by theory and none of it actually 
helps users do good simulations, but, like other kinds of folklore, it persists despite its lack 
of validity.

1.11.1 Black Box MCMC

There is a great deal of theory about convergence of Markov chains. Unfortunately none 
of it can be applied to get useful conveigence information for most MCMC applications. 
Thus most users find themselves in the following situation we call black box MCMC:

1. You have a Markov chain having the required invariant distribution.
2. You know nothing other than that. The Markov chain is a "black box" that you 

cannot see inside. When run, it produces output. That is all you know. You know 
nothing about the transition probabilities of the Markov chain, nor anything else 
about its dynamics.

3. You know nothing about the invariant distribution except what you may learn from 
running the Markov chain.

Point 2 may seem extreme. You may know a lot about the particular Markov chain being 
used—for example, you may know that it is a Gibbs sampler—but if whatever you know 
is of no help in determining any convergence information about the Markov chain, then 
whatever knowledge you have is useless. Point 3 may seem extreme. Many examples in 
the MCMC literature use small problems that can be done by OMC or even by pencil and 
paper and for which a lot of information about the invariant distribution is available, but 
in complicated applications point 3 is often simply true.

1.11.2 Pseudo-Convergence

A Markov chain can appear to have converged to its equilibrium distribution wThen it has 
not. This happens when parts of the state space are poorly connected by the Markov chain 
dynamics: it takes many iterations to get from one part to another. When the time it takes to 
transition between these parts is much longer than the length of simulated Markov chain, 
then the Markov chain can appear to have converged but the distribution it appears to have 
converged to is the equilibrium distribution conditioned on the p art in which the chain was 
started. We call this phenomenon pseudo-cot tvi'tgciice.

This phenomenon has also been called "inultimodalLty" since it may occur when the equi
librium distribution is multimodal. But multimodality does not cause pseudo-convergence 
when the troughs between modes are not severe. Nor does pseudo-convergence only hap
pen when there is multtmodality. Some of the most alarming cases of pseudo-convergence 
occur when the state space of the Markov chainis discrete and "modes" are not well defined 
(Geyer and Thompson, 1995). Hence pseudo-convergence is a better term.

1.11.3 One Long Run versus Many Short Runs

When you are in the black box situation, you have no idea how long runs need to be to 
get good mixing (convergence rather than pseudo-convergence). If you have a run that is 
already long enough, then an autocovariance plot like Figure 1.6 gives good information 
about mixing, and you know that you need to run a large multiple of the time it takes the
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autocovariances to decay to nearly zero. Butif all the runsyou have done so far are nowhere 
near long enough, then they provide no inf omiation about how long is long enough

The phenomenon of pseudo-convergence has led many people to the idea of comparing 
multiple runs of the sampler started at different points. If the multiple runs appear to 
converge to the same distribution, then—according to the multistart heuristic—all is well. 
But this assumes that you can arrange to have at least one starting point in each part of the 
state space to which the sampler can pseudo-conve^ge. If you cannot do that—and in the 
black box situation you never can—then the multistart heuristic is worse than useless: it 
can give you confidence that all is well when in fact your results are completely erroneous.

Worse, addiction to many short runs can keep one from running the sampler long enough 
to detect pseudo-convergence or other problems, such as bugs in the code. People who have 
used MCMC in complicated problems can tell stories about samplers that appeared to be 
converging until, after weeks of running, they discovered a new part of the state space 
and the distribution changed radically. If those people had thought it necessary to make 
hundreds of runs, none of them could have been several weeks long.

Your humble author has a dictum that the least one can do is to make an overnight run. 
What better way for your computer to spend its time? In many problems that are not too 
complicated, this is millions or billions of iterations. If you do not make runs like that, you 
are simply not serious about MCMC. Your humble author has another dictum (only slightly 
facetious) that one should start a run when the paper is submitted and keep running until the 
referees' reports arrive. This cannot delay the paper, and may detect pseudo-convergence.

1.11.4 Burn-In

Burn-in is a colloquial term that describes the practice of throwing away some iterations at 
the beginning of an MCMC run. This notion says that you start somewhere, say at x, then 
you run the Markov chain f or 11 steps (the burn-in. period) during which you throw away all 
the data (no output). After the burn-in you run normally, using each iterate inyour MCMC 
calculations.

The name "burn-in" comes from electronics. Many electronics components fail quickly. 
Those that do not are a more reliable subset. So a burn-in is done at the factory to eliminate 
the worst ones.

Markov chains do not work the same way. Markov chain "failure" (nonconvergence or 
pseudo-convergence) is different from electronic component failure. Running longer may 
cure the first, but a dead transistor is dead forever. Thus "burn-in" is a bad term ill MCMC, 
but there is more wrong than just the word, there is something fishy about the whole 
concept.

Figure 1.7illustrates the issue thatbum-in addresses. It shows anAR(l) time series with all 
parameters except starting position the same as Figure 1.1 so the equilibrium distribution, 
normal with mean zero and variance (Equation 1.13), is the same for both hi Figure 1.7the 
starting position is far out in the tail of the equilibrium distribution, 10 standard deviations 
from the mean hi Figure 1.1 the starting position is the mean (zero). It takes several hundred 
iterations before the sample path in Figure 1.7 gets into the region containing the whole 
sample path in Figure 1.1.

The naive idea behind bum-in is that if we throw away several hundred iterations from 
Figure 1.7 it will be just as good as Figure 1.1. Overgeneralizing examples like Figure 1.7 
leads to the idea that every MCMC run should have bum-in. Examples like Figure 1.1 show 
that this is not so. A Markov chain started anywhere near the center of the equilibrium 
distribution needs no burn-in
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Time

FIGURE 1.7
Time series plot for AR(1) example. Differs from Figure 1.1 only in the starting position.

Burn-i n is only one m ethod, and no t a particu 1 arly good m e th od, of h nding a go o d starti ng 
point.

There are several methods other than burn-in lor finding a good starting point. Cue rule 
that is unarguable is

Any point you don't mind having in a sample is agood  starting point,

hi a typical application, one has no theoretical analysis of the Markov chain dynamics 
that tells where the good starting points are (nor how much burn-in is required to get 
to a good starting point). All decisions about starting points are based on the output of 
some preliminary runs that appear to have "converged." Any point of the parts of these 
preliminary runs one believes to be representative of the equilibrium distribution is as good 
a starting point as any oilier.

So a good rule to follow is to start the next run where the last run ended. This is the rule 
most authorities recommend for random number generator seeds and the one used by R. 
It is also used by functions in the R package mcmc as discussed in Section 1.13 below.

Another method is to start at a mode of the equilibrium distribution (which can sometimes 
be found by optimizationbefore doing MCMC) if itis known to be in a region of appreciable 
probability

None of the examples in this chapter use burn-in. All use an alternative method of finding 
starting points. Burn-in is mostly harmless, which is perhaps why the practice persists. But 
everyone should understand that it is unnecessary, and those who do not use it are not 
thereby making an error.

Burn-in has a pernicious interaction with the multistart heuristic. If one believes in mul
tistart, then one feels the need to start at many widely dispersed, and hence bad, starting 
points. Thus all of these short runs need be shortened some more by burn-in. Thus an 
erroneous belief in the virtues of multistart leads to an erroneous belief in the necessity of 
burn-in.

Another erroneous argument for burn-in is unbiasedness. If one could start with a 
realization from the equilibrium distribution, then the Markov chain would be stationaiy
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and the Monte Carlo approximation (Equation 1.2) would.be an unbiased estimator of what 
it estimates (Equation 1.1). Bum-iii does not produce a realization from the equilibrium dis
tribution, hence does not produce tmbiasedness. At best it produces a small bias, but the 
alternative methods also do that. Moreover, the bias is of order i r l, where n is the Monte 
Carlo sample size, whereas the MCSE is of order n-1/2, so bias is negligible in sufficiently 
long runs.

1.11.5 Diagnostics

Many MCMC diagnostics have been proposed in the literature. Some work with one run 
of a Markov chain, but tell little that cannot be seen at a glance at a tune series plot like 
Figure 1.1 or an autocorrelation plot like Figure 1.3. Others with multiple runs of a Markov 
chain started at different points, what we called the multistart heuristic above. Many of these 
come with theorems, but the theorems never prove Hie prop erty y ou really want a diagnostic 
to have. These theorems say that if the chain convenes, then the diagnostic will probably say 
that the chain converged, but they do not say that if the chain pseudo-converges, then the 
diagnostic will probably say that Hie chain did not converge. Theorems that claim to reliably 
diagnose pseudo-convergence have unveiifiable conditions that make them useless. For 
example, as we said above, it is dear that a diagnostic based on Hie multistart heuristic will 
reliably diagnose pseudo-convergence if there is at least one starting point in each part of 
the state space to which the sampler can pseudo-conveage, but in practical applications one 
has no way of arranging that,

There is only one perfect MCMC diagnostic: perfect sampling (Propp and Wilson, 1996; 
Kendall and Meller, 2000; see also Chapter S, this volume). This is best understood as not 
a method of MCMC but rather a method of Markov-chain-a s sisted l i. d. sampling. Since it 
is guaranteed to produce a n iid . sample from the equilibrium distribution of the Markov 
chain, a sufficiently large sample is guaranteed to not miss any parts of the state space 
having appredable probability. Perfect sampling is not effective as a sampling scheme, If 
it works, then simply running the underlying Markov chain in MCMC mode will produce 
more accurate results in the same amount of computer time. Thus, paradoxically, perfect 
sampling is most useful when it fails to produce an ii.d. sample of the requested size in 
the time one is willing to wait. This shows that Hie underlying Markov chain is useless for 
sampling, MCMC or perfect,

Perfect sampling does not work on black box MCMC (Section 1.11.1 above), because 
it requires complicated theoretical conditions on the Markov chain dynamics. No other 
diagnostic ever proposed wTorks on black box MCMC, because if you know nothing about 
the Markov chain dynamics or equilibrium distribution except what you leam from output 
of the sampler, you can always be fooled by pseudo-convergence.

There are known knowns. These are things we know that we know. There are known 
unknowns. That is to say, there are things that w e now know we don't know, But there 
are also unknown unknowns. These are things w e do not know we don't know.

Donald Rumsfeld
US Secretary o f  Defense

Diagnostics can find the known unknowns. They cannotfind the unknown unknowns. They 
cannot find out wThat a black box MCMC sampler will do eventually Only suffidently long 
runs can do that.
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1.12 E le m e n ta ry  T h eory  of M CM C

We say that a bit of computer code that makes a pseudorandom change to its state is an update 
mechanism. We are interested in update mechanisms that preserve a specified distribution, 
that is, if the state has the specified distribution before the update, then it has the same 
distribution after the update. From them we can construct Markov chains to sample that 
distribution.

We say that an update mechanism is elementary if it is not made up of parts that are 
themselves update mechanisms preserving the specified distribution.

1.12.1 The Metropolis-Hastings Update

Suppose that the specified distribution (the desired stationary distribution of the MCMC 
sampler we are constructing) has iiiinoniial.ized density h. This means that 7/ is a positive 
constant times a probability density Thus h is a nonnegative-valued function thatintegrates 
(for continuous state) or sums (for discrete state) to a value that is finite and nonzero. The 
Metropolis-Hastings update does the following:

• When the current state is x, propose a move to y, having conditional probability 
density given x denoted q(x, ■).

.  Calculate the Hastings ratio

n x ,y) = (120)
 ̂ h{x)<](x,y)

• Accept the proposed move y  with probability

a(.x,y) =  min(l,r(jc,i/)), (1.21)

that is, the state after the update ls y  with probability a.(x, y), and the state after the 
update is x with probability 1 -  a{x,y).

The last step is often called Metropolis rejection. The name is supposed to remind one of 
"rejection sampling" in OMC, but this is a misleading analogy because in OMC rejection 
sampling is done repeatedly until some proposal is accepted (so it always produces a new 
value of the state), hi contrast, one MetropoEs-Hastings update makes one proposal y, 
which is the new state with probability a(x,y)f but otherwise the new state the same as 
the old state x. Any attempt to make Metropolis rejection like OMC rejection, destroys the 
property that this update preserves the distribution with density h.

The Hastings ratio (Equation 1.20) is undefined if h (jt) = 0, thus we must always arrange 
that li(x) > 0 in the initial state. There is no problem if ?/(i/) = 0. All that happens is that 
r(x, y) =  0 and the proposal y is accepted with probability zero. Thus the Metropolis- 
Hastings update can never move to a new state x having //(.if) = 0. Note that the proposal 
y must satisfy q(x, y) > 0 with probability one because q(x, ■) is the conditional density of 
y given x. Hence, still assuming It (.ic) > 0, the denominator of the Hastings ratio is nonzero 
with probability one, and the Hastings ratio is well defined. Note that either term of the 
numerator of the Hastings ratio can be zero, so the proposal is almost surely rejected if
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either h(ij) =  0 or q(y, x) =  0, that is, if y  is an impossible value of the desired equilibrium 
distribution or if x is an impossible proposal wheni/ is the current state.

We stress that nothingbad happens if the proposal]/ is an impossible value of the desired 
equilibrium distribution. The Metropolis-Hastings update automatically does the right 
tiling, almost surely rejecting such proposals. Hence, it is not necessary to arrange that 
proposals are always possible values of the desired equilibrium distribution; it is only 
necessary to assure that one's implementation of the uimonnahzed density function h works 
when given any possible proposal as an argument and gives U(y) =  0 when y  is impossible.

If uni f rand is a function with no arguments that produces one 11(0,1) random variate 
and the Hastings ratio has already been calculated and stored in a variable r, then the 
following computer code does the Metropolis rejection step:

if (unifrandO < r) { 
x = y

}

The variable x, which is considered the state of the Markov chain, is set to y (the proposal) 
when a uniform random variate is less than the Hastings ratio r and left alone otherwise. 

The following computer code works with the log Hastings ratio logr to avoid overflow:

if (logr >= 0 | | unifrandO < exp(logr)) { 
x = y

1

It uses the "short circuit" property of the | | operator in the R or C language. Its second 
operand uni f rand () < exp (1 o g r ) is only evaluated whenits first operand logr > = o 
evaluates to false. Thus exp (logr) can never overflow.

1.12.2 The Metropolis-Hastings Theorem

We now prove that the Metropolis-Hastings update is reversible with respect to h, meaning 
that the transition probability that describes the update is reversible with respect to the 
distribution having umiomialized density h.

If X„ is the current state and Y„ is the proposal, we have X„ = X„+i whenever the proposal 
is rejected. Clearly, the distribution of (X,„X„+i) given rejection is exchangeable.

Hence, it only remains to be shown that (X„,Y„) is exchangeable given acceptance. We 
need to show that

Ef/fX^YnM X^Y,,)} =  E{/(Y„,X„)«(X„,Y„)}

for any function/ that has expectation (assuming X„ has desired stationary distribution). 
That is, we must show we can interchange arguments of / hi

/(■*, V )1t(x)a(x, y)q(x, y) dx dy (1.22)

(with integrals replaced by sums if the state is discrete), and that follows if we can 
interchange x and y  in

U(x)a(x,y)q(x,y) (1.23)
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because we can exchange* andy  in Equation 1.22, * and)/ being dununy variables. Clearly 
only the set of and y  such that h(x) > 0, q(x,y) > 0, and a(x, y) > 0 contributes to the 
integral or {in the discrete case) sum (Equation 1.22), and these inequalities further imply 
that/iO/) > 0 and q(y, x) > 0. Thus we may assume these inequalities, in which case we have

1

lor all such x and y  
Suppose that r(x, y) < 1, so r{x, y) =  n{x,y ) and ai\f, jc) =  1. Then

h(x)a{x,y)q{x,y) = h{x)r{x,y)q{x,y)

= h(y)(]{y,x)

= li(y)(]{y,x)a(y,x).

Conversely, suppose that r(x,y) > 1, so n{x,y) =  1 and n(if, x) — r{y,x). Then

h(xW x,yuj{x,y) = h(x)(j(xfy)

= h{y)riy,x)qiy,x)

= U(y)a(y,x)q<y,x).

In either case we can exchange x and y  in Equation 1.23, and the proof is done,

1.1 2.3 The Metropolis Update

The special case of the Metropolis-Hastings update when q(x,y) — q(y, x) for all x and y  is 
called the Metropolis update. Then the Hastings ratio (Equation 1.20) simplifies to

(1 .24 )

andis called the Metropolis ratio or the odds ratio. Thus Metropolis updates save a little time 
in calculating r(x, y) but otherwise have no advantages over Metropolis-Hastings updates.

One obvious way to arrange the symmetry property is to make proposals of the form 
y =  x + e, where e is stochastically independent of x and symmetrically distributed about 
zero. Then q(x, y) = f( i/  -  x), where / is the density of e. Widely used proposals of this 
type have e normally distributed with mean zero or e uniformly distributed on a ball or a 
liypercube centered at zero (see Section 1.12.10 below for more on such updates).

1.12.4 The Gibbs Update

hi a Gibbs updttfe the proposal is from a conditional distribution of the desired equilibrium 
distribution. It is always accepted.

The proof of the theorem that this update is reversible with respect to the desired equilib
rium distributionis trivial. Suppose thatX,, has the desired stationary distribution. Suppose 
that the conditional distribution of X,1+1 given/(XJ;) is same as the conditional distribution 
of X„ given/(XJ;). Then the pair (X„, X„+1) is conditionally exchangeable given/(XJ?), hence 
unconditionally exchangeable.
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In common parlance., a Gibbs update uses the conditional distribution of one component 
of Hie state vector given the rest of the components, that is, the special case of the update 
described above where/(X„) is X„ with one component omitted. Conditional distributions 
of this form are called "full conditionals." There is no reason other than tradition why such 
conditional distributions should be preferred.

hi fact oilier conditionals have been considered in the literature. If/(X„) is X„ with several 
components omitted, this is called "block Gibbs." Again, there is no reason oilier than 
tradition why such conditional distributions should be preferred.

If one insists that Gibbs update only apply to full conditionals, then one could call the 
updates described here "generalized Gibbs." But the "generalized" here is not much of a 
generalization. Simply do a change of variable so that/(X„) is a group of components of 
the new state vector and "generalized Gibbs" is "block Gibbs." Also Hie argument for all 
these updates is exactly the same.

Gibbs updates have one curious property not shared by oilier Metropolis-Hastings 
updates: they are idem potent, meaning the effect of multiple updates is the same as the 
effect of just one. This is because the up date never changes/(X„), hence the result of many 
repetitions of the same Gibbs update results in X„+i having the conditional distribution 
given/(X„) just like Hie result of a single update, hi order for Gibbs elementary updates to 
be useful, they must be combined somehow with other updates.

1.12.5 Variable-at-a-Time Metropolis-Hastings

Gibbs updates alter only part of the state vector; when using "full conditionals" the part is 
a single component. Metropolis-Hastings updates can be modified to do Hie same.

Divide the state vector into two parts, x = (u,v). Let the proposal alter //.but not y. Hence, 
theproposal density has the fomi/j(jt, //) instead of the q(x, y) we had inSection 1.12.1. Again 
let Ji(:x) =  h(ii,v) be the imnomialized density of the desired equilibrium distribution. The 
variable-at-a-time Metropolis-Hastings update does the following:

* When the current state is jt =  (n,v), propose a move to y  =  (//*, v), where ii* has 
conditional probability density given x denoted <](x, ■) = q( u, v, ■).

* Calculate the Hastings ratio

h(ii*,v)q(ii*,v,ii.)
r(x, it) =  ---------------------- .

‘ h(n,v)qtii,v,n*)

* Accept the proposed move y with probability (Equation 1.21), that is, the state 
after the update is y  with probability a(x, y), and the state after the update is x with 
probability 1 -  a(x,y).

We shall not give a proof of the validity of variable-at-a-time Metropolis-Hastings, which 
would look veiy similar to the proof in Section 1.122.

The term "variable-at-a-time Metropolis-Hastings" is something of a misnomer. The 
sampler run in Metropolis et a l (1953) was a "variable-at-a-time" sampler. For histori
cal accuracy, the name "Metropolis algorithm" should indude the updates described in 
Section 1.12.1 and in this section Current usage, however, seems otherwise, naming the 
samplers as we have done here.



26 Handbook o f  Markov Chain Monte Carlo

1.12.6 Gibbs Is a Special Case of Metropolis-Hastings

To see that Gibbs is a spedal case of Metropolis-Hastings, do a change of variable so 
that the new state vector can be split = (ii., v) as we did in the preceding section, and 
v is the part of the state on which the Gibbs update conditions. Thus we are doing block 
Gibbs updating n from its conditional distribution given v. Factor the unnormalized density 
h(n, v ) =  g(v)q(v, u), where g(v) is an mmomialized marginal off? and q(v, u) is the (properly 
normalized) conditional of it given v. Now do a Metropolis-Hastings update with q as the 
proposal distribution. The proposal is y =  (ft*, v), where a* has the distribution q(v, ■). The 
Hastings ratio is

r(j[ . j v) _ g(v)<](v, v) _ 1
h(ii,v)q(v, ii* ) g(v)q(v,ii)(f(vrit*) '

Hence the proposal is always accepted.

1.12.7 Combining Updates

1.12.7.1 Composition

Let P i, . ..,P'K be update mechanisms (computer code) and let P 1P2 ■ ■ - Pt denote the com
posite update that consists of these updates done in that order with Pi first and P* last. If 
each P, preserves a distribution, then obviously so does P 1P2. . .  Pt- 

If P i , . . . ,  Pk are the Gibbs updates for the "full conditionals" of the desired equilibrium 
distribution, then the composition update is often called a fixed scan Gibbs sampler.

As a simple example, suppose that the desired equilibrium distribution is exchangeable 
and multivariate normal. Then the conditional distribution of one component of the state 
vector given the rest is univariate normal with mean that is a symmetric linear function of 
the rest of the components and constant variance, hi the special case where there are just 
two components, the fixed scan Gibbs sampler is just consecutive pairs of an AR(1) process 
(Section 1.9 above).

1.12.7.2 Palindromic Composition

Note that P 1P2 . . .  P* is not reversible with respect to the distribution it preserves unless the 
transition probabilities associated with P 1P2 . . .  Pt and PkPk-i ■ ■ - Pi are the same.

The most obvious way to arrange reversibility is to make P, = Pk-;, for 1 =  1 ,. , . ,k .  
Then wTe call this composite update paliiidi'otiiic. Palindromic compositions are reversible, 
nonpalindromic ones need not be.

1.12.8 State-Independent Mixing

LetPybe update mechanisms (computer code) and let E(Py) denote the update that consists 
of doing a random one of these updates: generate Y from some distribution and do Py.

If Y is independent of the current state and each P,, preserves the same distribution, then 
so does E(Py). If XTI has the desired equilibrium distribution, thenitalso has this distribution 
conditional on Y, and X„ +1 also has this distribution conditional on Y. Since the conditional 
distribution of X„+i does not depend on Y, these variables are independent, and X„+i lias 
the desired equilibrium distribution unconditionally.

Furthermore, the Markov chain with update E(Py) is reversible if each Py is reversible.
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"Mixture" is used here in the sense of mixture models. The update E(Py) is the mixture 
of updates Py.

The most widely used mixtures use a finite set of y  values. For example, one popular way 
to combine the "full conditional" Gibbs updates, one for each component of the state vector, 
is by state-independent mixing using the uniform distribution on the set of full conditionals 
as the mixing distribution. This is often called a random scan Gibbs sampler. The choice of the 
uniform distribution is arbitrary. It has no optimality properties. It does, however, make a 
simple default choice.

Mixing and composition can be combined. Suppose we have elementary update mecha
nisms P i , .. .,Pk, and let y  be a set of functions from { 1 , . . . ,  ut\ to { 1 , . . . ,  k\. For)/ e y ,  let 
Qy denote the composition PyUtP^zi. . .  Pytm)- Now consider the update E(Qy), where Y is 
a random element of y  independent of the state of the Markov chain.

If m =  k and the P, are the "full conditional" Gibbs updates and Y has the uniform distri
bution on>', which consists of all permutations of 1, ,  k, then this mixture of compositions 
sampler is often called a random sequence scan Gibbs sampler.

We are not fond of this "scan" terminology, because it is too limiting. It focuses attention 
on a very few special cases of combination by composition and mixing, special cases that 
have no optimality properties and no reason other than tradition for their prominence.

State-independent mixing with the mixing distribution having an infinite sample space 
has also been used. Belisle et al. (1993) and Chen and Schmeiser (1993) investigate the "hit 
and run algorithm" which uses elementaiy updates Py where the state space of the Markov 
chain is Eudidean and]/is a direction in the state space. Doa change of coordinates so that 
y  is a coordinate direction, and do a Gibbs or other variable-at-a-time Metropolis-Hastings 
update of the coordinate in the y  direction. The mixture update E(Py ) is called a "hit and 
run sampler" when Y has the uniform distribution on directions.

Again there is no particular reason to use a "hit and rim" sampler. It is merely one of an 
infinite variety of samplers using composition and state-independent mixing.

State-dependent mixing is possible, but the argument is very different (Section 1.17.1 
below).

1.12.9 Subsampling

Another topic that is not usually discussed in terms of composition and mixing, although 
it is another spedal case of them, is subsampling of Markov chains.

If P is an update mechanism, we write Pk to denote the Jt-fold composition of P with 
itself. If Xi, X i, . . .  is a Markov chain with update mechanism P, then X i, Xk+y X ^ i , . . .  is 
a Markov chain with update mechanism Pk.

The process that takes every M i element of a Markov chain Xi, Xi, . . .  forming a new 
Markov chain X i, Xt+1, X?t+i , . . .  is called subsampling the original Markov chain at spacing 
k. As we just said, the result is another Markov chain Hence, a subsampled Markov chain 
is just like any other Markov chain

According to Elizabeth Thompson, "You don't get a better answer by throwing away 
data." This was proved as a theorem about Markov chains by Geyer (1992) for reversible 
Markov chains and by MacEachem and Berliner (1994) for nonreversible Markov chains. 
Subsampling cannot improve the accuracy of MCMC approximation; it must make things 
worse.

The original motivation for subsampling appears to have been to reduce autocorrelation 
in the subsampled chain to a negligible level. Before 1994 the Markov chain CLT was not 
well understood by statistidans, so appeal was made to a non-theorem: the central limit
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almost-but-not-quite theorem for almost-but-not-quite i.i.d. data. Now that the Markov 
chain CLT is well understood, this caimotbe a justification for subsampling.

Sub sampling may appear to be necessary just to reduce the amount of output of a Markov 
chain sampler to manageable levels. Billions of iterations may be needed for convergence, 
but billions of iterations of output may be too much to handle, especially when using R, 
which chokes on veiy large objects. But nonoverlapping batch means (Section 1.10.1) can 
reduce the size of the output withno loss of accuracy of estimation Moreover, one does not 
need to know Hie batch length necessary to make the empirical variance of the batch means 
a good estimate of the asymptotic variance in the Markov chain CLT in order to use batches 
to reduce the size of output. The method of Section 1.10.3 allows one to use batches that 
are too short and still obtain accurate estimates of the asymptotic variance in the Markov 
chain CLT. Hence, if the objective is to reduce the size of output, batching is better than 
subsampling.

Hence, the only reason to use subsampling is to reduce Hie size of output when one 
cannot use batching. Good MCMC code, for example the functions m etrop and tem per 
in the R contributed package mcmc (Geyer, 2010b), allow an arbitrary function# supplied 
by the user as an R function to be used in calculation of the batch means in Equation 1.16. 
Other MCMC code that does not allow this may not output batch means for required 
functionals of the Markov chain, hi this case the only way to reduce the size of output and 
still calculate the required functionals is subsampling. Another case where one caimot use 
the batch means is when the required functionals are not known when the sampling is done. 
This occurs, for example, in Monte Carlo likelihood approximation (Geyer and Thompson, 
1992).

Geyer (1992) gave another justification of subsampling based on the cost of calculating 
the function# in a functional (Section 1.6 above). If the cost in computing time of calculating 
#(X,) is much more than the cost of sampling (producing X, given X, _i), then subsampling 
may be justified. This is rarely Hie case, but it does happen.

1.12.10 Gibbs and Metropolis Revisited

Our terminology of "elementary updates" combined by "composition" or "mixing" or both 
is not widespread. The usual terminology for a much more limited class of samplers is the 
following:

• A GibVs sampler is an MCMC sampler in which all of the elementary updates are 
Gibbs, combined either by composition (fixed scan), by mixing (random scan), 
or both (random sequence scan), the "scan" terminology being explained in 
Section 1.12.8 above.

.  AMetropdis algorithm is an MCMC sampler in which all of the elementary updates 
are Metropolis, combined either by composition, mixing, or both (and the same 
"scan" terminology is used).

• AMetropol.is—Hastings algorithm is an MCMC sampler in which all of the elementaiy 
updates are Metropolis-Hastings, combined either by composition, mixing, or both 
(and the same "scan" terminology is used).

.  A Metropolis-wifliiii-Gibbs sampler is the same as the preceding item. This name 
makes no sense at all since Gibbs is a special case of Metropolis-Hastings 
(Section 1.12.6 above), but it is widely used.
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* Ail independence Metropolis-Hastings algorithm (namedby Tiemey, 1994) is a spedal 
case of the Metropolis-Hastings algorithm in which the proposal distribution does 
not depend on the current state: q(x, ■) does not depend on x.

.  A rnjidoui-wdk Metropolis-Hastings algorithm (mined by Tiemey, 1994) is a spedal 
case of the Metropohs-Hastings algorithm in which the proposal has the form 
x. +  e, where e is stochastically independent of Hie current state x, so t](x,y) has the 
fomi/Ci/ — x).

The Gibbs sampler became very popular after the paper of Gelfand and Smith (1990) 
appeared. The term MCMC had not been coined (Geyer, 1992). It was not long, however, 
before the limitations of the Gibbs sampler were recognized. Peter Clifford (1993), dis
cussing Smith and Roberts (1993), Besag and Green (1993), and Gilks et al. (1993), 
said:

Currently, there are m any statisticians trying to reverse out of this historical c ul-de-sac, To 
use the Gibbs sampler, we have to be good at manipulating conditional distributions . . . 
this rather brings back the mystique of the statisticians.

The American translation of "reverse out of this cul-de-sac'' is "back out of this blind alley." 
Despite this, many naive users still have a preference for Gibbs updates that is entirely 
unwarranted. If I had a nickel for every time someone had asked for help with slowly 
converging MCMC and the answer had been to stop using Gibbs, I would be rich Use 
Gibbs updates only if the resulting sampler works well. If not, use something else.

One reason sometimes given for Hie use of Gibbs updates is that they are "automatic." 
If one chooses to use a Gibbs sampler, no other choices needbe made, whereas if one uses 
the Metropolis-Hastings algorithm, one must choose the proposal distribution, and even 
if one's choice of Metropolis-Hastings algorithm is more restarted, say to normal random- 
walk Metropolis-Hastings, there is still the choice of the variance matrix of the normal 
proposal distribution. This "automatidty" of the Gibbs sampler is illusory, because even 
if one only knows about "scans" one still must choose between fixed and random scan. 
Moreover, one should consider "block Gibbs" or even the more general Gibbs updates 
described in Section 1.12.4 above.

Nevertheless, Gibbs does seem more automatic than Metropolis-Hastings to many users. 
The question is whether this lack of options is a good thing or a bad thing. It is good if it 
works well and bad otherwise.

1.13 A M etro p o lis  E xam p le

We now turn to a realistic example of MCMC, taken from the package vignette of the mcmc 
contributed R package (Geyer, 2010b). The function m etrop in this package runs a normal 
random-walk Metropolis sampler in the terminology of Section 1.12.10 having equilibrium 
distribution for a continuous random vector specified by a user-written R function that 
calculates its log unnormalized density. Amajor design goal of this package is that there be 
veiy little opportunity for user mistakes to make the simulation incorrect. For the m etrop 
function, if the user codes the log unnormalized density function correctly, then the function 
will run a Markov chain having the correct stationary distribution (specified by this user- 
written function). There is nothing other than incorrectly writing the log unnormalized



30 Handbook o f  Markov Chain Monte Carlo

density function that the user can do to make the Markov chain have the wrong stationary 
distribution.

It may seem that this is a very weak correctness property. There is no guarantee that 
the Markov chain mixes rapidly and so produces useful results in a reasonable amount of 
time. But nothing currently known can guarantee that for arbitrary problems. Methods of 
proving rapid mixing, although they are applicable in principle to arbitrary problems, are 
so difficult that they have actually been applied only to a few simple examples. Moreover, 
they are entirely pendl-and-paper proofs. There is nothing the computer can do to assure 
rapid mixing of Markov chains for arbitrary user-specified equilibrium distributions. Thus 
this weak correctness property (having the correct equilibrium distribution) is the most one 
can expect a computer program to assure.

Thus this "weak" correctness property is the strongest property one canreasonably assert 
for an MCMC program All MCMC programs should guarantee it, but how many do? 
The functions in the mcmc package have been exhaustively tested using the methodology 
explained in Section 1.16 below and further described in the package vignette debug . pdf 
that comes with every installation of the package. All of the tests are in the te s ts directory 
of the source code of the package, which is available from CRAN (http: // www.cranr- 
project.org/).

hi addition to an R function that specifies the log unnomialized density of the equilibrium 
distribution, the user may also provide an R function that specifies an arbitrary functional 
of the Markov chain to be output. If the Markov chain is X i, X 2, . . .  and this user-supplied R 
function codes the mathematical function#, then g(Xi),#{X2) , . . .  is output. Alternatively, 
batch means of g(Xi),#(X2) , . . .  are output.

Finally, the user must specify the variance matrix of the multivariate normal distribution 
used in the "random-walk" proposal. There is nothing else the user can do to affect Hie 
Markov chain simulated by the m etrop function

Let us see how it works. We use the example from the package vignette demo. pdf that 
conies with every installation of the package. This is a Bayesian logistic regression problem 
that uses the data set logit in the package. There are five variables in this data frame, Hie 
response y and four quantitative predictor variables xi, x2, x3, and x4.

Afrequentist analysis of these data is done by the following R statements:

library(mcmc) 
data (logit)
out <- glm(y “ xl + x2 + x3 + x4, data = logit, 

family = binomial(), x = TRUE) 
summary(out)

We wish to do a Bayesian analysis where the prior distribution for the five regression 
coefficients (one for each predictor and an intercept) makes them i.i. d. normal with mean 0 
and standard deviation 2.

The log unnormalized posterior (log likelihood plus log prior) density for this model is 
calculated by the R function lupost defined as follows:

X <- out $x 
y <- o u t$y

lupost <- function(beta, x, y, ...) {
eta <- as.numeric(x %*% beta)
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l°gp <- ifelse(eta < 0, eta - loglp(exp(eta)),- loglp 
(exp(- eta)))

l°gq <- ifelse(eta < 0, - loglp(exp(eta)), - eta - loglp
(exp(- eta))) 

logl <- sura(logp[y == 1]) + sum(logq[y == 0])
return(logl - sum(beta“2) / 8)

}

This assumes that out is the result of the call to glm shown above, so y is the response 
vector and x is the model matrix for this logistic regression.

The tricky calculation of the log likelihood avoids overflow and catastrophic cancelation 
in calculation of log(p) and log(7/), where

_  exp(ti)
P ~  1 + exp(ti)

_  1 

 ̂~~ 1 + exp(ti)

so taking logs gives

log(p) = r| -  log(l + exp(ri)) = - lo g ( l  +  exp(-ii)}, 

log(rp =  - log(l + exp(r|)} = -Ti -  log(l + exp(-ti)).

To avoid overflow, we always chose the case where the argument of exp is negative. We 
have also avoided catastrophic cancelation when |r|| is large. If t] is large and positive, then

1,

q 0,

log(jp) _ e x p (-n ), 

log(7) -n  -  exp(-n),

and our use of the R function lo g lp , which calculates the function x log(l + jc) correcfly 
for small x, avoids problems with calculating log(l + exp(—t|)) here. The case where r| 
is large and negative is similar. The above definitions having been made, the following 
statements do an MCMC ran:

b e t a . i n i t  <- a s .n u m e r ic ( c o e f f i c i e n t s ( o u t ) )
out < -  m e tr o p (lu p o s t , b e t a . i n i t ,  l e 3 ,  x = x , y  =  y )

where b e t a . i n i t  is the initial state of the Markov chain (it would be more natural to 
a Bayesian to use the posterior mode rather than the maximum likelihood estimate, but 
the starting position makes no difference so long as it is not too far out in the tails of 
the equilibrium distribution) and where i e 3 is the MCMC sample size. The default batch 
length is one, so there is no batching here. The component out $ ac ce p t of the result gives 
the acceptance rate (the fraction of Metropolis updates in which the proposal is accepted) 
and the component o u t$ b a tc h  gives the output of the Markov chain, as an n x p matrix, 
where n is the number of iterations here where there is no batching (although in general

1

l  +  exp(—ii)'

exp(-n)
1 +  exp (-ii)'
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n is the number of batches) and where p is the dimension of the state space here where 
no functional of Hie Markov chain is specified and the default is the identity functional 
(although in general p is the dimension of the result of the user-supplied output function).

The functions in the mcmc package are designed so that li given the output of a preceding 
run as their first argument they continue the run of the Markov chain where the other run 
left off. For example, if we were to say

o u t2 <- m e tro p (o u t, x  = x ,  y  = y)

here, then rb in d  (out $ b a tc h , o u t 2 $ b a tch ) would be a run of Hie Markov chain. The 
second invocation of the me t  rop function starts with the seed of R's randomnumber gener
ator (RNG) and the state of the Markov chain setto what they were when the first invocation 
finished. Thus there is no difference between rb in d  (o u t$ b a tch , o u t2$b atch ) and the 
result of one invocation starting at the same RNG seed and initial state and running for 
twice as many iterations as the two shown here did.

This "restart" property obviates any need for bum-in. If the first run "converged" in the 
sense that any part of the run was in a high-probability part of the state space, then the sec
ond run starts in a good place and needs no bum-in. Since the first run started at the 
maximum likelihoo d estimate, which is in a high-probability part of the state space, the first 
run needed no bum-in either.

Using this function is not quite this simple. We need to adjust the normal proposal to 
achieve a reasonable acceptance rate. It is generally accepted (Gelman et al., 1996) that an 
acceptance rate of about 20% is right, although this recommendation is based on the asymp
totic analysis of a toy problem (simulating a multivariate normal distribution) for winch 
one would never use MCMC and is very unrepresentative of difficult MCMC applications. 
Geyer and Thompson (1995) came to a similar conclusion* that a 20% acceptance rate is 
about right, in a very different situation. But they also warned that a 20% acceptance rate 
could be very wrong, and produced an. example where a 20% acceptance rate was impossi
ble and attempting to reduce the acceptance rate below 70% would keep the sampler from 
ever visiting part of the state space. So the 20% magic number must be considered like 
other rules of thumb we teach in introductory courses (such as ii > 30 means the normal 
approximation is valid). We know these rules of thumb can fail. There are examples in the 
literature where they do fail. We keep repeating them because wre want something simple 
to tell beginners, and they are all right for some problems.

The s c a le  argument to the m etrop function specifies the variance matrix for the pro
posal. The default is the identity matrix This results in too low an acceptance rate in this 
problem (0.008). A little bit of trial and error (shown in the vignette) shows that

o u t <- m e tro p (o u t, s c a le  = 0 . 4 ,  x = x ,  y = y)

gives about 20% acceptance rate, so this scaling, which specifies proposal variance matrix 
0.4 times the identity matrix, is wThat we use. More complicated specification of the proposal 
variance is possible; see the help for the me tro p  function for details.

Now we do a longer run

o u t <- m e tro p (o u t, n b a tch  = le 4 ,  x = x ,  y  = y)

and look at time series plots and autocorrelation plots (shown in the vignette), which show 
that Hie Markov chain seems to mix well and that autocorrelations are negligible after
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lag 25. We use batch length 100 to be safe. We are interested here in calculating both posterior 
means and posterior variances. Variances are not functionals of the Markov chain, but 
squares are, and we can use the identity var(Z) =  E(Z2) — E(Z)2 to calculate variances 
from means and means of squares. Thus we run the following:

out <- metrop(out, nbatch = le2, blen = 100,
outfun = function(z, ...) c(z, z~2), x = x ,  y = y)

Here the user-specified output function (argument out fun of the metrop function) maps 
the state z, a vector of length 5, to c (z , z “ 2) ,  a vector of length 10. So now out $batch 
isa 100 x 10 matrix, lOObeing the number of batches (argument nbatch) and lObeingthe 
length of the result of out fun).

Now

foo <- apply(out$batch, 2, mean)
foo.mcse <- apply(out$batch, 2, sd) / sqrt(out$nbatch)

are estimates of the posterior means of the components of the vector returned by out fun 
(the regression coefficients and their squares) and the MCSE of these estimates, respectively 
The first five components are useful directly:

mu <- foo [1:5]
mu.mcse <- foo.mcse[1:5]

These are estimates of the posterior means of the regression coefficients and their MCSE 
(see the vignette for actual numbers).

Monte Carlo estimates of theposteriorvariances arefoundusingvar(Z) =  E(Z2) — E(Z)2,

sigmasq <- foo[6:10] - foo[1:5]“2

but to calculate the MCSE we need the delta method. Let iit denote the sequence of batch 
means for one parameter and Ft the grand mean of this sequence (the estimate of the posterior 
mean of that parameter), let u, denote the sequence of batch means for the squares of the 
same parameter and u the grand mean of that sequence (the estimate of the posterior second 
absolute moment of that parameter), and let [i = E(») and v = E{u). Then the delta method 
linearizes the nonlinear function

g(H.,’u) = w -  |i2

as

Ag{|i.,u) = Aw -  2|i A|i,

saying that

g(Ti.,v) -  g(\L,v) 

has the same asymptotic normal distribution as

( u - d )  -  2(jl(h -  |i)
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which, of course, has variance i  / out$nbatch times that of

(Vi - v) - 2|i(U i -  \i),

and this varknce is estimated by

2 7?bciteh
-------  [(l’i -  v) ~ -  »)]2
" b a tc h  “

1 = 1

So

u <- out$batch[ , 1:5]
v <- out$batch[ , 6:10]
ubar <- apply (u, 2, mean.)
vbar <- apply(v, 2, mean)
deltau <- sweep(u, 2, ubar)
deltav < - sweep(v, 2, vbar)
foo <- sweep(deltau, 2, ubar, "*")
sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)"2,
2, mean) / out$nbatch)

does the MCSE for the posterior variance (see the vignette for actual numbers).
Another application of the delta method gives MCSE for posterior standard deviations 

{see the vignette for details).

1.14 C h eck p oin tin g

The "restart" property of the me t r op and terape r functions is also useful for checkpointing. 
If one ■wants to do very long runs, they need not be done with one function invocation. 
Suppose that out is the result of an invocation of metrop and that the log unnormalized 
density function and output function (if present) do not take additional arguments, getting 
any additional data from the R global environment, and suppose that any such additional 
data has been set up. Let ncheck be the number of repetitions of out we want to make. 
Then

for (icheck in l:ncheck) { 
out <- metrop(out)
save (out, file = sprintf (r,check%03d . rda" , icheck))

}

does them and saves them on disk, unless the computer crashes for some reason. After a 
crash, only the work not done and saved is left to do. Set up any required global variables 
and ncheck as before, and restart with

files <- system("Is check*.rda", intern = TRUE) 
kcheck <- length(files)
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load(file = files [kcheck]) 
if (kcheck < ncheck) {

for (icheck in (kcheck + 1):ncheck) { 
out <- metrop(out)
save(out, file = sprintf("check%03d.rda", icheck))

}
}

(this is for UNIX, e.g., Linux or MAC OS X, and would have to be modified for Microsoft 
Windows), When finished collect the results with

files <- system("Is check*.rda", intern = TRUE)
ncheck <- length(files)
batch <- NULL
for (icheck in 1 :ncheck) {

load(file = files[icheck])
batch <- rbind(batch, out$batch, deparse.level = 0)

}

and batch is the same as out $batch from one long run. This idiom allows very long runs 
even with unreliable computers.

1.15 D esig n in g  M C M C  C ode

Nothing is easier than designing MCMC algorithms. Hundreds have been introduced into 
the literature under various names, All that are useful in non- toy problems are special cases 
of the Me trop oHs-Hastings Green algorithm.

Wlien one invents a new sampler, how does one argue that it is correct? One proves a 
theorem: the new sampler is a special case of the MHG algorithm. The proof is usually not 
difficult but does require tight reasoning like all proofs. One common error is sloppiness 
about what is the state of the Markov chain. Many have made the mistake of having propos
als depend on some variables in the computer program that are not considered part of the 
state in calculating the Hastings ratio, that is, the state space is considered one tiling in one 
part of the argument and another thing in another part—a dear error if one thinks about it.

One does not have to call this theorem a theorem, but one does need the care in proving 
it that any theorem requires. Afew hours of careful thought about what is and what is not a 
special case of the MHG algorithm can save weeks or months of wasted work on a mistake. 
This notion that you have to prove a theorem eveiy time you invent an MCMC algorithm 
came to your humble author from the experience of humbling mistakes committed by 
himself and others. If you think you have to prove a theorem, you will (hopefully) exerdse 
appropriately careful argument. If you think you can use your intuition, many sad stories 
could be told about failure of intuition. The MHG algorithm is not difficult but is also not 
very intuitive.

B ef ore one can prove a theorem, one must state the theorem, and here too care is required. 
The theorem must state precisely how one's MCMC algorithm works, with no vagueness,
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This is very important. One cannot correctly implement an MCMC algorithm in com
puter code when one has to guess what the algorithm actually is. Most erroneous MCMC 
algorithms (just like most erroneous attempts at theorems) result from vagueness.

These general remarks having been made, we now turn to some desirable features of 
MCMC code that few computer packages have but the mcmc package has shown to be very 
useful.

The first is the "restart" property discussed in Sections 1.13 and 1.14 above and possessed 
by both the metrop and temper functions. This is the property that the R object output 
by a function doing MCMC (or the equivalent object for computer languages other than 
R) should contain the RNG seeds and the final state of the Markov chain, so the next 
run can simply continue this run. A sampler with the "restart" property needs no burn-in 
(Section 1.11.4 above) and is easily checkpointed (Section 1.14).

The second is the property of outputting batch means forbatches of a possibly sub sampled 
chain, also possessedbyboth the me t  rop and t  empe r  functions, spedfiedby the arguments 
b le n  and nspac. This property allows very long runs without overly voluminous output. 
If nspac = i  (the default, meaning no subsamplitig) is used, then no information is lost 
by the batching. The batches can be used for valid inference—regardless of whether the 
batchlengthis long enough for the ordinary method of batch means to work—as described 
in Section 1.10.3 above.

The third is the property of outputtingbatchmeans (forbatches of a possibly sub sampled 
chain) for an arbitrary functional of the Markov chain. The mcmc and tem per functions do 
this via a user-specified function supplied as their out fun argument, This allows users to 
make the inferences they want without rewriting the R package. This makes statistical com
puter languages in which functions are not first-dass objects (like they are in R) unsuitable 
for MCMC.

1.16 V alid atin g  and D eb u ggin g  M C M C  C ode

Along with "black box" MCMC (Section 1.11.1) above we introduce Hie notion of "black 
box" testing of MCMC code. Black box testing is widely used terminology in software 
testing. It refers to tests that do not look inside the code, using only its ordinary input 
and output. Not looking at the code means it cannot use knowledge of the structure of the 
program or the values any of its internal variables. For MCMC code black box testing means 
you run Hie sampler and test that the output has the expeded probability distribution.

Since goodness-of-fit testing for complicated multivariate probability distributions is very 
difficult, black box testing of MCMC code is highly problematic. It is even more so when Hie 
sampler is itselfblackbox, so nothing is known about the expeded equilibrium distribution 
except what we may learn from the sampler itself. Thus your humble author liasbeen driven 
to the condusion that black box testing of MCMC code is pointless.
Lltstead testing of the functions metrop and temper in the mcmc package uses a "white 

box" approach that exposes all important internal variables of the program when the 
optional argument debug = TRUE is specified. In particular, all uniform or normal ran
dom variates obtained from R's RNG system are output. This means that, assuming 
we can trust R's normal and uniform RNG, we can test whether metrop and temper 
behave properly as deterministic functions of those pseudorandom numbers obtained 
from R.
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Testing whether a program correctly implements a deterministic function is much easier 
than testing whether it correctly simulates a specified probability distribution, In addition, 
when debug = t r u e these programs also output proposals, log Hastings ratios, and deci
sions in the Metropolis rejection step, making it easy to check whether these are correct and 
hence whether the Metropolis-Hastings algorithm is implemented correctly.

Itmustbe admitted that, although this "white box" testing methodology it much superior 
to anything your humble author has previously used, it is not guaranteed to find conceptual 
problems. That is why a dearly written specification (what we called the "theorem" in the 
preceding section) is so important. During the writing of this chapter just such a conceptual 
bug was discovered in the temper function in versions of the mcmc package before 0.8. The 
terms q ( i j )  and q(j, i) in the Hastings ratio for serial tempering (Equation 11.11 in Chapter
11, this volume) were omitted from the code, and the tests of whether the Hastings ratio 
was calculated correctly were implemented by looking at the code rather than Hie design 
document (the file temper.pdf in the doc directory of every installation of the mcmc 
package), which was corred.

Ideally, Hie tests should be implemented by someone other than Hie programmer of the 
code, a well-recognized prindple in software testing. We know of no statistics code that 
conforms to this practice, perhaps because there is no tradition of refereeing computer code 
as opposed to papers. The most we can daim is that the "white box" testing methodology 
used for the mcmc would at least make such referring possible.

1.17 The M e tro p o lis -H a s tin g s -G re e n  A lg orith m

There are so many ideas in Green (1995) it is hard to know where to start. They indude the 
following:

> State- dep endent mixing of up dates
• Measure-theoretic Metropolis-Hastings using Radon-Nikodym derivatives 
» Per-update augmentation of the state space
> Metropolis-Hastings with Jacobians

any one of which would have been a major contribution by itself.
We have deferred discussion of the MHG algorithm till nowbecause we wanted to avoid 

measure theory as long as we could. The MHG algorithm cannot easily be discussed without 
using measure-theoretic terminology and notation.

A kernel K(x, A) is a generalization of regular conditional probability. For a fixed point 
x in the state space, K(x, •) is a countably-additive real signed measure on the state space. 
For a fixed measurable set A in the state space, K( ■, A) is a measurable real-valued function 
on the state space. If

K(x, A ) > 0, for all x and A, 

then we say that K  is uoiiuegatroe. If K is noimegative and

K(x,A) < 1, for all x and A,
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then we say that K  is sub-Markov. It K is sub-Markov and

K(x, S) =  1, for all x,

where S is the state space, then we say that K is Markov. A Markov kernel is a regular 
conditional probability and can he used to describe an elementary update mechanism for 
a Markov chain or a combined update, hi widely used sloppy notation, we write

= Pr(Xf+i e A | Xf = *)

to describe the combined update (the sloppiness is the conditioning on an event of measure 
zero).

A kernel K is reversible with respect to a signed measure tu if

g(x)h(y)iit(dx)K(x, dy) = h(x)g{y)m(dx)K{x,dy)

for all measurable functions g  and h such that the expectations exist. A Markov kernel P 
pres ernes a probability measure tt if

g(y)-K(dx)P(x,dy) = g(x)n(dx)

for every bounded function g. Reversibility with respect to it implies preservation of n.

1.17.1 State-Dependent Mixing

Suppose we have a family of updates represented by Markov kernels P„ i e I. Choose one 
at random with probability ce(jc) that depends on the current state x, and use it to update 
the state. The kernel that describes this combined update is

P(x,A) =
eg!

It is not a  theorem that if each P, preserves n, then P preserves t x .  The aigunient in 
Section 1.12.8 above does not work.

Define

Ki(x,A)  =  Ci(x)Pi{x,A).

If each Kj is reversible with respect to tt, then the mixture kernel

P(x, A) =  ^ r c I(x)P[ix,A) =  ^  K,{x, A)
iel iel

is reversible witli respect to jt and lienee preserves n. Hiis is how state-dependent mixing 
works.

It is often convenient to allow the identity kernel defined by
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to be among the P} The identity kernel is a Markov kernel that describes a do-nothing 
update (the state is the same before and after).

Sometimes state-dependent mixing involving the identity kernel is described differently. 
We insist that

Q(.TC) > 0, for all i and x,

and

^ C i(Jt) < 1, for all x.
i'ef

Then when x. is the current state the mixture update chooses the /th update with probability 
q(jc) and performs the update described by P,. With the remaining probability

1 - ^ q ( . t )
iel

the mixture update does nothing (which is the same as doing the update described by the 
identity kernel).

1.17.2 Radon-Nikodym Derivatives

Suppose that in is a finite signed measure and n a sigma-finite positive measure defined on 
the same space. We say that tit is dominated by n or that in is absolutely continuous with respect 
to n if

ii(A) =  0 implies iii(A) =  0, for all events A.

We say that m is concentrated on a set C if

itt(A) = m(A n C), for all events A.

We say that measures mi and in? are timtualh/ singular if they are concentrated on disjoint 
sets.

The Lebesgue-Radon-Nikodym theorem {Riidni, 1987, Theorem 6.10) says the following 
about in and u as defined above. Firstly there exist unique finite signed measures ma and 
/j;B such that ttts and n are mutually singula^ ma is dominated by it, and m = tna + uts (this 
is called the Lebesgue decomposition). Secondly, there exists a real-valued function/, which 
is unique up to redefinition on a set of 11 measure zero, such that

ma(A) = f(x)ii.(dx), for all events A.
A

(1.25)

We say that/ is the density or Radon—Nikodytti derivative of m with respect to u and write

_  d '11
f = du.

If u is Lebesgue measure and m is dominated by n, then/ is an ordinary probability density 
function. If it is counting measure and m is dominatedby /1, then/ is an ordinary probability
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mass function. Hence, the Radon-Nikodym derivative generalizes these concepts. When 
in is not dominated by n, we have

dm diiia 
du du

so the Radon-Nikodyni derivative only determines the part of in that is absolutely contin
uous with respect to //.and says nothing about the part of in that is singular with respect to 
i i ,  but that is enough for many applications.

That the Radon-Nikodym derivative / is unique only up to redefinition on a set of n 
measure zero would cause a problem if we made a different choice of / every time we used 
it, but it causes no problem if we fix one choice of/ and use it always. (The same issue arises 
with ordinary probability density functions.)

Radon-Nikodym derivatives are often calculated using ratios. Suppose that in and tt are 
as above and that >. is a measure that dominates both, for example, \ = in + it. Then we 
have

dm diit/d'k 
du at tfdh

where the right-hand side is interpreted as ordinary division when the denominator is 
nonzero and an arbitrary choice when the denominator is zero.

To see this, let/,,, =  dni/d'h and/, = dtt/dX, let C = { r : f„(x) 0}, let h be an arbitrary
measurable real-valued function, and define

r, , \fnAx}/%W, x e C ,

/W = |"«< me-
By the Lebesgue-Radon-Nikodym theorem, it is concentrated on C. Define a measure nis

iiie(A) =  ni(A \ C), for all events A,

and let ma = m -  tns. It remains to be shown that iua is dominated by n and / =  diun/dtt. 
Both are shown by verifying (Equation 1.25) as follows. For any event A,

tlla(A) = tll(A n C) = fm d"k — f  -fndk = fd u  = fd n

(the last equality being that n is concentrated on C).

1.17.3 Measure-Theoretic Metropolis-Hastings

1.17.3.1 Metropoiis-Hastings-Green Elementary Update

We now describe the MHG elementary update with state-dependent mixing. For / e I 
we have proposal mechanisms described by kernels Q,. When the current state is x, we 
choose the /th proposal mechanism with probability c, (jr), generating a proposal!/ having 
distribution Q, (Jt, ■).
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The tumormalized measure to preserve is n (the analog of the unnormalized density h in 
the ordinary Metropolis-Hastings algorithm). Define measures in and iuiev by

iu(B) =

^isv(®) =

\B (x,y) n utx)c, (x) 0, (*, dy), (1.27a)

lsU/,^)ri (dx)Ci (x) O, (X , dy), (1.27b)

where lg(x,y) is equal to one if (x,y) e B and zero otherwise, so ttt and miev are measures 
on the Cartesian product of the sample space with itself and each £ is a measurable subset 
of that Cartesian product. Define

r = ^ .  (1.27c)
am

Then accept the proposal with probability min( 1, r(xJy)).
Note the similarity of this MHG update to the Metropolis-Hastings update (Section 1.12.1 

above). It differs in the incorporation of state-dependent mixing so that r,(.r) appears. It 
also differs in that the Green ratio (Equation 1.27c) is actually a Radon-Nikodym derivative 
rather than a simple ratio like the Hastings ratio (Equation 1.20). Hie "Metropolis rejection" 
step—accept the proposal with probability min( 1, r)—is the same as in the Metropolis and 
Metropolis-Hastings algorithms.

As we saw in Equation 1.26, a Radon-Nikodym derivative is often calculated as a ratio, so 
the terminology "Green ratio" for Equation 1.27c is not so strange. But our main reason for 
introducing this terminology is the analogy between the Metropolis ratio (Equation 1.24), 
Hie Hastings ratio (Equation 1.20), and the Green ratio (Equation 1.27c). People often write 
things like

t1! (1/11| (r/1/) Q, (v. dx)
=  7  J s X ,  a (1.28)

as a sloppy shorthand for actual definition via Equations 1.27a through 1.27c, but 
Equation 1.28 lias no mathematical content other than as a mnemonic for the actual 
definition.

Green (1995) described a specific recipe for calculating the Green ratio (Equation 1.27c) 
using the ratio method (Equation 1.26) in the particular case wThere X is symmetric in the 
sense that

\E(x/y)Udx,(iy) = ^ lB(y,x)U(1x,dy) (1.29)

for any measurable set B in the Cartesian product of the state space with itself. Such X 
always exist. For example, X = in +  miev works. Then if / =  dm/dX and

C = { ( x ,y ) : f ( x ,y ) ^ 0 )  (1.30)

we have

( f( jj,x )/f(x ,y ), x g C,
7  "  y ' (131)
o, x 4

It does not matter whether or not we use Green's recipe for calculating (Equation 1.27c). 
Radon-Nikodym derivatives are unique up to redefinition on sets of measure zero, hence 
are the same no matter how we calculate them.
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Note that the proposal distributions can be anything, described by arbitrary kernels Q, . 
Thus the MHG algorithm generalizes the Metropolis-Hastings algorithm about as far as 
it can go. The only way your humble author can think to generalize this would be to 
allow state-dependent mixing over a continuum rather than a countable set of Q, (the way 
state-independent mixing works; Section 1.12.8 above).

Ordinary Metropolis-Hastings samplers avoid forever the set of x such that h(x) — 0, 
where h is the unnormalized density of the equilibrium distribution (Section 1.12.1 above). 
Now thinking measure-theoretically we are reminded that we may redefine // arbitrarily 
on sets of measure zero under the equilibrium distribution, so the set avoided depends on 
our choice of h. The MHG algorithm has a similar property. Suppose there is a set N  that 
must be avoided, and ti(N) = 0. Then u t^ iA  x N) = 0 for any set A, and we may choose 
a version of the Green ratio such that r(x,y) = 0 for y  g N. Then no proposal in N can be 
accepted, and the chain forever avoids N.

All MCMC ideas discussed above are special cases of the MHG algorithm. Variable-at- 
a-tinie Metropolis-Hastings updates are special cases where proposals only change one 
coordinate. Gibbs updates are special oases where the MHG ratio is always one and the 
proposal is always accepted.

1.17.3.2 The MHG Theorem 

Tefine

a(x,y)  =  m in fl, r{x,y)),  

b(.Tc) =  1 — a(xf y)Qi(x!dy).

The kernel describing the MHG elementary update is

Pi(x,A) =  bix)I(x,A) +

and the kernel that we must verify is reversible with respect to r| is

Ki(x,A) =c; (x)Pi {x,A),

that is, we must verify that

a.(xly)Qi(x/ dy)f
A

g(x)h{y)r\ (rix)Ci (jc) P, (x, dy) 

is unchanged when g  and h are swTapped. Since

g(x)h(i/)Ci(x)r\(dx)Pi(x,dy) =  j' (̂jt)//(jt)&(.T)cI-(jt)n((it)

+ g(x)%)<i(.r, y)C{ (Jt)ii (rfaOQ,' (jc, dy),

it dearly is enough to show last tenn is unchanged when £  and It are swapped.
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Suppose we have calculated the Green ratio (Equation 1.27c) using Green's recipe 
{Equation 1.31) with/ = din/d'k and "k satisfying Equation 1.29. Then

g(.x)h(y)a(x,y)Ci(x)T\((h)Qi(x,(hf) = gty)h(x)a(y, ^)cI(i/)ii(ffj/)Q!{y, dx)

g{y)h(x)a(y, x)mi:ev{dx,dy)

g(y)h(x)a(y,x)m rev (dx.dy)

g(y)h(x)a(y,x)r(x,y)ttr(dx,dy)

g(y)li(x)a(y,x)r(xfy)in(dx,fty)

g<y)h(x)n(y,x)r(xri/)ci(x)xi(dx)Qi(xl dij)r

where C is defined by Equation 1.30, the first equality being the interchange of the dummy 
variables x and y, the second and sixth equalities being the definitions of in and /Hrew the 
third and fifth equalities being a{y,x) =  0 wrhen U,y) e C, and the fourth equality being 
r = dmvev/dm  and the fact that the part of wiev that is dominated by in is concentrated on 
C, as we sawT in our discussion of Equation 1.26.

Comparing the expressions at the ends of this chain of equalities, we see that it is enough 
to sliowT that

n(y,x)r{x,y) = ti(x,y), whenever (x/y) e C, {1.32)

because the integrals are the same whether or not they are restricted to C. If {x,y) £ C and 
r(je,y) < 1, thena{x,y) =  r(x,y) anda(y,x) =  1, in w7hich case (1.32) holds. If (x,y) e C and 
1 < r(x/y), tlien/j(j, ;/) = 1 and

1
a(y,x) = r{y,x) =

r{x,y)

by Equation 1.31, in which case (Equation 1.32) holds again.

Example; Spatial Point Processes

All of this is veiy abstract That is the pointl But Radon-Nikodym derivatives are nothing to be 
frightened of. W e look at some simple examples to show how the M H C  algorithm works m 
practice.

One only needs the M H C  algorithm when proposals are singular with respect to the equilibrium 
distribution of the Maikov chain (otherwise Metropolis-Hastings would do). This often happens 
when the state space is the union of sets of different dimension. One example of this is spatial 
point processes. CeyerandMoller(1994) proposed the sampler described here independently of 
Green (1995), but in hindsight it is a special case of the M H G  algorithm.

A spatial point process is a random pattern of points in a region A havingfinite measure (length, 
area, volume, ...), both the number of points and the positions of the points being random. A 
homogeneous Poisson process has a Poisson distributed number of points and the locations of the
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points are in dependent and identically and uniformly distributed conditional on the number. We 
consider processes having unnormalized densities h$ with respect to the Poisson processes.

The state space of the Poisson process is

OO
A = U  A",

n = G

where A ° denotes a set consisting of one point, representing the spatial pattern with no points. 
The probability measure of the Poisson process is defined by

P (B ) = --- ;—  ■ — , , — > for measurable B c A,
J7 = 0

a.(A )"

where X is Lebesgue measure on A and n is an adjustable parameter(the mean number of points). 
To say that /19 is an unnormalized density with respect to P  means that the probability measure of 
the non-Poisson process is defined by

W ) = W )

1
= —  y  

c<e> h Bn,A"
bd(x)\n(dx)

for measurable B c .4, where

C ( 9 )  =  Y ,  

n=0

1
MA)n

ha(x)kn(dx).

Note that the dimension of x, which is n, is different in different terms of these sums.
Let n(x) denote the number of points in x. W e use state-dependent mixing over a set of updates, 

one for each nonnegative integer /. The ith update is only valid when n(x) = i, in which case we 
propose to add one point uniformly distributed in A to the pattern, or when /j ( y ) =  / +  1, in which 
case we propose to 'delete a point from the pattern. (For definiteness, suppose we add or delete 
the last pointJThe state-dependent mixing probabilities are

c,-(x) =
1 j l ,  n(x) =  i,
1/2, n(x) = / + 1, 
0, otherwise.

For fixed x have c,-(x) = 1 except when n(x) = 0. In that case, we do nothing (perform the 
identity update) with probability 1 — c i(x ) — V- following the convention explained at the 
end of Section 1.17.1.

In order to apply Green's recipe for calculating Radon-Nikodym derivatives for the /th update, 
we need a symmetric measure on

(A' x A '-1"1) U (A'+1 x A') (1.33)

that dominates the joint distribution m of the current state x and the proposal y or its reverse mrev. 
This symmetric measure cannot be Lebesgue measure on Equation 1.33, because m and m rev are 
degenerate, their first i coordinates being equal. Thus we choose the symmetric measure A that is 
the image of X'+1 onto the subset of Equation 1.33 where the first i coordinates of the two parts 
are equal.
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On the part of Equation 1,33 where x e A1 and y e /V+1, we have

, dm (x'e u-ho(x)
t (x , y) =  - r -  (x, y) = ------ :—

v dA ,r> i'MA)’ MA)'

the first part on the right-hand side being the unnormalized density of the equilibrium distribution, 
unnormalized because we left out c (6), which we do not know how to calculate, and the second 
part being the proposal density. On the part of Equation 1.33 where x e -A'"1-1 and y e A1, we 
have

f(x,y) = ^ l< s,y ) =
H/+1 e" v-he{x)
(/ + 1)!)l(A)'+1

the first part on the right-hand side being the unnormalized density of the equilibrium distribution, 
and the second part being the proposal density (which is one because deleting the fast point 
involves no randomness). Thus the Green ratio is

r(x, y) =
; + 1 fje(x)
i + 1 My)

\x M * )

x e A' and y  e ^ '+1, 

, x e A!+1 and y e A '.

W e hope readers feel they could have worked this out themselves.
Since point patterns are usually considered as unordered, it is traditional to use h$(x) that is 

symmetric under exchange of points in pattern. In this case, the update that reorders the points 
randomly also preserves the stationary distribution. The composition of this random reordering 
with the update specified above (which deletes the last point) is equivalent to pickings random 
point to delete.

Example; Bayesian Model Selection

W e consider an example done by other means in Chapter 11 of this volume. If we use MHG, 
there is no need for "padding" parameter vectors. W e can just use the parameterization from 
the problem statement. If, like the ST/US sampler in Section 11.3, we only make jumps between 
models whose dimensions differ by one, then a very simple M HG proposal simply deletes a 
component of the parameter vector when moving down in dimension and adds a component 
distributed normally with mean zero and variance t- independently of the current state when 
movingup in dimension. lf/j(0) denotes the unnormalized posterior, then a move up in dimension 
from current state 0 to proposed state iji, which adds a component z to the c u rrent state, has Green 
ratio

c(-(0)/j(8)0{z/i)/i

where <J> is the probability density function of the standard normal distribution, and a move down 
in dimension from current state ip to proposed state 9, which deletes a component z from the 
current state, has Green ratio that is the reciprocal of the right-hand side of Equation 1.34.

1.17.4 MHG with jacobians and Augmented State Space

Green (1995) also proposed what is in some respects a spedal case of MHG and in other 
respeds an extension. We call it Metropolis-Hastings-Green with Jacobians (MHGJ). This
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versionis so widely used that many users think that MHGJis the general version. This form 
of elementary update moves between parts of the state space that are Euclidean spaces of 
different dimension, hence it is often called "dimension jumping"—although that name 
applies to other examples, such as the preceding one, that do not involve Jacobians, 

Suppose that the state space is a disjoint union

S — Sm,
meM

where Sm is a Euclidean space of dimension rtm. We assume that the equihbrium distri
bution of the Markov chain is specified by an unnormalized density /((X) with respect to 
Lebesgue measure on S. MHGJ elementary updates move from one S,„ to another. Say the 
rth elementary update moves between Sm{l} and Thus it only makes sense to have 
A t*) > 0 when x e S,,,^ U 

Let [Z,„( and Unu) be Eudidean spaces such that x is the same dimension as 
Sn(i) x [J,;;,,. We specify a proposal density (/, (.*, ■}, which describes the conditional distri
bution of the proposal u given the current state „r such that u g Um{!} when x g S,,iU) and 
n g (I,,*;,) when, x g We also specify a function#, that maps points in x to 
points in 5,,,;,') x and vice versa and which is its own inverse.

The MHGJ proposal is a combination of two steps, First generate a random u from the 
distribution r/, (.T, •). Then propose giix, tt) =  (y, i>). The MHG ratio is

Ci(y)h{y)qi{y,v) 
a.■ i’) = , , , , , ,  , ■ detV^U ', u)),‘ Ci(x)h(x)qi{x,ti) v ° 7

the lastfactorbeing the Jacobian of the mapping#,. This is followed by the usual Metropolis 
rejection; accept the proposal with probability m in(l, r)

For examples of the MHGJ algorithm, see Chapter 3 (this volume).

1.17.4.1 The MHGJ Theorem

The MHGJ algorithm, because of its per-update augmentation of and does not 
exactly fit in the pattern of the MHG algorithm described above. Thus we give a separate 
proof.

The proof starts just like the one in Section 1.17.3.2. We see that we can deal with one 
arbitrary elementary update, and consequently only one pair of state augmentations. When
ever one augments the state, there are two issues: ■what is the equilibrium distribution on 
the augmented state space, and how does it relate to the distribution of interest on the 
original state? Here the augmented state is (x, a), the equilibrium distribution on the aug
mented state space has unnormalized density with respect to Lebesgue measure h (x)ql (x, //.). 
The original state is x and the distribution of interest with unnormalized density h{x) is a 
marginal of it. The proposal (y, v) =  g(x, is) is deterministic.

We now determine the Radon-Nikodym derivative of the distribution of (y, v) with 
respect to (x, u). We use the ratio method, determining first the Radon-Nikodym derivatives 
of each with respect to Lebesgue measure >, on the space where (x, tt.) lives. We have
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where in the latter the Jacobian arises from the multivariate change-of-variable theorem, 
because we are differentiating with respect to (x, ti) rather than (y, v ).

A ck n o w led g m en ts

This chapter benefited from detailed comments by Christina Knudson, Leif Johnson, Galin 
Jones, and Brian Shea.
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2
A Short History of MCMC: Subjective Recollections 
from Incomplete Data

Christian Robert and George Casella

2.1 In tro d u ctio n

Markov chain Monte Carlo (MCMC) methods have been around for almost as long as Monte 
Carlo techniques, even though their impact on statistics was not truly felt until the very 
early 1990s, except in the specialized fields of spatial statistics and image analysis, where 
those methods appeared earlier. The emergence of Markov based techniques in physics is 
a story that remains untold within this survey {see Landau and Binder, 2005). Also, we will 
not enter into a description of MCMC techniques, unless they have some historical link, as 
the remainder of this volume covers the technical aspects. A comprehensive treatment with 
further references can also be found in Robert and Casella (2004).

We will distinguish between the introduction of Metropolis-Hastings based algorithms 
and those related to Gibbs sampling, since they each stem from radically different origins, 
even though their mathematical justification via Markov chain theory is the same. Tracing 
the development of Monte Carlo methods, we will also briefly mention what we might 
call the "second-generation MCMC revolution," Starting in the mid to late 1990s, this 
includes the development of p article filters, reversible jump and perfect sampling, and con
cludes with more current wTork on population or sequential Monte Carlo and regeneration 
and the computing of "honest" standard errors.

As mentioned above, the realization that Markov chains could be used in a wide variety 
of situations only came (to mainstream statisticians) with Gelfand and Smith (1990), despite 
earlier publications in the statistical literature such as Hastings (1970), Geman and Genian 
(1984), and Tanner and Wong (1987). Several reasons can be advanced: lack of computing 
machinery (think of the computers of 19701), or background on Markov chains, or hesitation 
to trust in the practicality of the method. It thus required visionary researchers like Gelfand 
and Smith to convince the community, supported by papers that demonstrated, through 
a series of applications, that the method was easy to understand, easy to implement and 
practical (Gelfand et a l, 1990, 1992; Smith and Gelfand, 1992; Wakefield et al., 1994). The 
rapid emergence of the dedicated BUGS (Bayesian inference using Gibbs sampling) soft
ware as early as 1991, when a paper on BUGS was presented at the Valencia meeting, was 
another compelling argument for adopting., at large, MCMC algorithms.*

* Historically speaking, the development of BUGS can be traced back to Geman and Geman (1984) and Pearl 
(1987), alongside developments in the artificial intelligence community, and it pre-dates Gelfand and Smith 
(19905.
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2.2 B efore the R ev o lu tio n

Monte Carlo methods were bom  in Los Alamos, New Mexico, during World War II, even
tually resulting in the Metropolis algorithm in the early 1950s. While Monte Carlo methods 
were in use by that time, MCMC was brought closer to statistical practicality by the work 
of Hastings in the 1970s.

What can be reasonably seen as the first MCMC algorithm is what we now call the 
Metropolis algorithm, published by Metropolis et al. (1953). It emanates from the same 
group of scientists who produced the Monte Carlo method, namely the research scientists 
of Los Alamos, mostly physicists working on mathematical physics and the atomic bomb.

MCMC algorithms therefore date back to the same time as the development of regular 
(MC only) Monte Carlo methods, which are usually traced to Ulam and von Neumann in 
the late 1940s. Stanislaw Ulam associates the original idea with an intractable combinatorial 
computation he attempted in 1946 (calculating the probability of winning at the soEtaire 
card game). This idea was enthusiastically adopted by John von Neumann for implementa
tion with direct applications to neutron diffusion, the name "Monte Carlo" being suggested 
by Nidiolas Metropolis. Eckhardt (1987) describes these early Monte Carlo developments, 
and Hitchcock (2003) gives a brief history of the Metropolis algorithm.

These occurrences very dosely coindde with the appearance of the very first general- 
purpose digital computer, the ENIAC, which came to life in February 1946, after three years 
of construction. The Monte Carlo method was set up by von Neumann, who was using 
it on thermonudear and fission problems as early as 1947. That same year, Ulam and 
von Neumann invented inversion and accept-reject techniques (also recounted in Eckhardt, 
1987) to simulate from nonuniform distributions. Without computers, a rudimentary ver
sion invented by Fermi in the 1930s went unrecognized (Metropolis, 1987). Note also that, 
as early as 1949, a symposium on Monte Carlo was supportedby Rand, the National Bureau 
of Standards, and the Oak Ridge laboratory and that Metropolis and Ulam (1949) published 
the very first paper about the Monte Carlo method.

2.2.1 The Metropolis etal. (1953) ft»per

The first MCMC algorithm is assodated with a second computer, called MANIAC,* built 
in Los Alamos under the direction of Metropolis in early 1952. Both a physidst and a 
mathematidan, Nicholas Metropolis, came to Los Alamos in April 1943, and was to die 
there in 1999. The other members of the team also came to Los Alamos during those years, 
including the controversial Edward Teller. As early as 1942, tins physidst became obsessed 
with the hydrogen bomb, whidi he eventually managed to design with Stanislaw Ulam, 
using the improved computer facilities of the early 1950s.

Published in June 1953 in the Journal ofChemicd. Physics, the primary focus of Metropolis 
et a l (1953) is the computation of integrals of the form

W )  exp | — J d0 j  exp |i - £(6) 1 ^  
eX p 1_^ J  '

* MANIAC stands for Mathematical Analyser, Numerical Integrator and Computer.
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on R 2̂  6 denoting a set of N partides on R2, with the energy E being defined as

where V a potential function and <1,, the Eudidean distance between partides i and j  in 0. 
The Bolfziinviii distribu tion exp {—E(0) /kT } is parameterized by the temperature T, k  being the 
Boltzmann constant, with a normalization factor,

that is not available in dosed form, except in trivial cases. Since 0 is a 2N'-dimensional 
vector, numerical integration is impossible. Given the large dimension of the problem, 
even standard Monte Carlo techniques fail to correctly approximate 3, since exp{ - E ( 6)/kT} 
is very small for most realizations of the random configurations of the parhde system 
{uniformly in the 2N square). In order to improve the effidency of the Monte Carlo method, 
Metropolis et al. (1953) propose a random-walk modification of the N  partides. That is, for 
each partide i (1 < i < N), values

are proposed, where both and %2i are uniform U(—1,1). The energy difference AE 
between the new configuration and the previous one is then computed and the new 
configuration is accepted with probability

and otherwise the previous configuration is replicated, in the sense that its counter is 
increased by one in the final average of the F(0f)s over the i  moves of the random walk 
(1 < t < t). Note that Metropolis et al. (1953) move one partide at a time, rather than mov
ing all of them together, which makes the initial algorithm appear a primitive kind of Gibbs 
sampler!

The authors of Metropolis et al. (1953) demonstrate the validity of the algorithm by first 
establishing irredudbility, which they call ergodicity, and second proving ergodicity, that is, 
convergence to the stationary distribution. Hie second part is obtained via a discretization of 
the space: they firstnote that the proposal move is reversible, then establish that exp{-E /kT ]  
is invariant. Hie result is therefore proven in its full generality, minus the discretization. 
The number of iterations of the Metropolis algorithm used in the paper seems to be limited: 
16 steps for burn-in and 48-64 subsequent iterations, which required 4-5 hours on the Los 
Alamos computer.

An interesting variation is the simulated annealing algorithm, developed by Kirkpatrick 
et al. (1983), who connected optimization with oj mealing, the cooling of a metal. Their 
variation is to allow the temperature T in Equation 2.1 to decrease as the algorithm runs, 
according to a "cooling schedule." The simulated annealing algorithm can be shown to find 
the global maximum with probability 1, although the analysis is quite complex due to the 
fact that, with varying T, the algorithm is no longer a time-homogeneous Markov chain.

N N

i=l j=l

jcJ =  j +  <j$h- and y] =  y, +  cr ̂

{2.1)
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2.2.2 The Hastings (1970) ftiper

The Metropolis algorithm was later generalized by Hastings {1970) and his student Peskun 
{1973,1981) as a statistical simulation tool that could overcome the curse of dimensionality 
met by regular Monte Carlo methods, a point already emphasized in Metropolis et al, 
(1953)*

In his Biometrika paper/ Hastings (1970) also defines his methodology for finite and 
reversible Markov chains, treating the continuous case by using a discretization analogy. 
The generic probability of acceptance for a move from state j to state j  is

Ctij —

1 +

where s = s(I is a positive quantity ensuring that oi,y < 1, n; denotes the target and qtj the 
proposal. This generic form of probability encompasses the forms of both Metropolis et al. 
(1953) and Barker (1965). At this stage, Hastings says that "Little is known about the relative 
merits of these two choices [even though] Metropolis' s method may be preferable." He also 
warns against "high rejection rates as indicative of a poor choice of . . .  transition matrix," 
but does not mention the opposite pitfall of low rejection rates, associated with a slow 
exploration of the target.

The examples in the paper include a Poisson target with a ±1 random-walk proposal 
and a normal target with a uniform random-walk proposal mixed with its reflection, that 
is, a uniform proposal centered at -Of rather than at the current value 0f of the Markov 
chain. On a multivariate target, Hastings introduces a Gibbs sampling strategy, updating 
one component at a time and defining the composed transition as satisfying the stationary 
condition because each component does leave the target invariant. Hastings (1970) actu
ally refers to Erlunan et al. (1960) as a preliminary, if specific, instance of this sampler. 
More precisely, this is Metropohs-within-Gibbs except for the name. This first introduc
tion of the Gibbs sampler has thus been completely overlooked, even though the proof 
of convergence is completely general, based on a composition argument as in Tierney
(1994), discussed in Section 2.4.1. Hie remainder of the paper deals with (a) an impor
tance sampling version of MCMC, (b) general remarks about assessment of the error, 
and (c) an application to random orthogonal matrices, with another example of Gibbs 
sampling.

Three years later, Peskun (1973) published a comparison of Metropolis' and Barker's 
forms of acceptance probabilities and showed in a discrete setup that the optimal choice is 
that of Metropolis, where optimality is to be understood in terms of the asymptotic variance 
of any empirical average. The proof is a direct consequence of a result by Kemeny and Snell 
(1960) on the asymptotic variance. Peskun also establishes that this asymptotic variance can 
improve upon the independently and identically distributed (i.i.d.) case if and only if the 
eigenvalues of P — A are all negative, whenAis the transition matrix corresponding to i.id. 
simulation and P the transition matrix corresponding to the Metropolis algorithm, but he 
concludes that the trace of P -  A is always positive, therefore that the uniform improvement 
is impossible.

* In fact, Hastings starts by mentioning a decomposition of the target distribution into a product of one
dimensional conditional distributions, but this falls short of an early Gibbs sampler.

+ Hastings (1970) is one of the ten Biomdiika papers reproduced in Titterington and Cox (2001).
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2.3 S eed s of the R ev o lu tio n

A number of early pioneers had brought forward the seeds of Gibbs sampling; in particular, 
Hammersley and Clifford had produced a constructive argument in 1970 to recover a joint 
distribution from its conditionals, a result later called the Haiiiinersley-Clifford. theorem by 
Besag (1974, 1986). Besides Hastings (1970) and Geman and Geman (1984), already men
tioned, other papers that contained the seeds of Gibbs sampling are Besag and Clifford
(1989), Broniatowski et a l (1984), Qian and Titteiington (1990), and Tanner and Wong (1987).

2.3.1 Besag and the Fundamental (Missing! Theorem

In the early 1970s, Hammersley, Clifford, and Besag were working on the specification of 
joint distributions from conditional distributions and on necessary and sufficient condi
tions for the conditional distributions to be compatible with a joint distribution. What is 
now known as the Hatinuersley-Clifford theorem states that a joint distribution for a vector 
associated with a dependence graph (edge meaning dependence and absence of edge con
ditional independence) must be represented as a product of functions over the cliques of 
the graphs, that is, of functions depending only on the components indexed by the labels 
in the clique. *

From a historical point of view, Hammersley (1974) explains why the Hammersley- 
Clifford theorem was never published as such, but only through Besag (1974). Hie reason 
is that Clifford and Hammersley were dissatisfied with the positivity constraint the joint 
density could be recovered from the full conditionals only when the support of the joint 
was made up of the product of the supports of the full conditionals. While they strived to 
ninke the theorem independent o f  any positivity condition, their graduate student published a 
counterexample that put a full stop to their endeavors (Moussouris, 1974).

While Besag (1974) can certainly be credited to some extent with the (re)discoveiy of 
the Gibbs sampler, Besag (1975) expressed doubt about the practicality of his method, 
noting that "the technique is unlikely to be particularly helpful in many other than binary 
situations and the Markov chain itself has no practical interpretation," clearly understating 
the importance of his wTork.

A more optimistic sentiment was expressed earlier by Hammersley and Handscomb 
(1964), in their textbook on Monte Carlo methods. There they cover such topics as "crude 
Monte Carlo," importance sampling, control variates, and "conditional Monte Carlo/' 
which looks surprisingly like a simulation approach to missing-data models (see Section 
2,3,2). Of course, they do not cover the Hammersley-Clifford theorem but they do state in 
the Preface: "We are convinced nevertheless that Monte Carlo methods will one day reach 
an impressive maturity." Well said!

2.3.2 EM and Its Simulated Versions as Precursors

Due to its connection with missing-data problems, the EM algorithm (Dempster et al., 1977) 
has early connections with Gibbs sampling."1" For instance, Broniatowski et al. (1984) and 
Celeux and Diebolt (1985) had tried to overcome the dependence of EM methods on the

* A clique is a maximal subset of the nodes of a graphs such that every pair of nodes within the clique is connected 
by an edge (Cressie, 1993).

+ This is especially relevant when considering the early introduction of a Gibbs samplerby data augmentation in 
Tanner and Wong {1987).
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starting value by replacing the E step with a simulation step, the missing data zm being 
generated conditionally on the observation x and on the current value of the parameter 
6m. The maximization in the M step is then carried out on the simulated complete-data 
likelihood, L(0 | x, zm), producing a new value Bm+i, and this appears as a predecessor to 
the Gibbs step of Gelman and King (1990) and Diebolt and Robert (1994) for mixture esti
mation.11 Unfortunately, the theoretical convergence results for these methods are limited. 
Celeux and Diebolt (1990) have, however, solved the convergence problem of stochastic 
EM (SEM) by devising a hybrid version called SAEM (for simulated auueating EM), where 
the amount of randomness in the simulations decreases with the iterations, ending up with 
an EM algorithm."1"

2.3.3 Gibbs and Beyond

Although somewhat removed from statistical inference in the classical sense and based on 
earlier techniques used in statistical physics, the landmark paper by Geman and Geman 
(1984) brought Gibbs sampling into the arena of statistical application. This paper is also 
responsible for the name Gibbs sampling, because it implemented this method for the 
Bayesian study of Gibbs random fields which, in turn, derive their name from the physi
cist Josiah Willard Gibbs (1839-1903). This original implementation of the Gibbs sampler 
was applied to a discrete image processing problem and did not involve completion as in 
Section 23.2. But this was one more spark that led to the explosion, a s it had a dear influence 
on Green, Smith, Spiegellialter, and others.

The extent to which Gibbs sampling and Metropolis algorithms were in use within the 
image analysis and pointprocess communities is actually quite large, as illustratedin Ripley 
(1987) where Section 4.7 is entitled "Metropolis' method and random fields" and describes 
the implementation and validation of the Metropolis algorithm in a finite setting with 
an application to Markov random fields and the corresponding issue of bypassing the 
normalizing constant. Besag et al. (1991) is another striking example of the activity in the 
spatial statistics community at the end of the 1980s.

2.4 The R ev o lu tio n

The gap of more than 30 years between Metropolis et a l (1953) and Gelfand and Smith (1990) 
can still be partially attributed to the lack of appropriate computing power, as most of the 
examples now processed by MCMC algorithms could not have been treated previously, 
even though the hundreds of dimensions processed in MetropoEs et al. (1953) were quite 
formidable. However, by the mid 1980s, the pieces were all in place.

After Peskun, MCMC in the statistical world was dormant for about 10 years, and then 
several papers appeared that highlighted its usefulness in specific settings such as pattern 
recognition, image analysis or spatial statistics. In particular, Geman and Geman (1984) 
influenced Gelfand and Smith (1990) to write a paper that is the genuine starting point for an 
intensive use of MCMC methods by the mainstream statistical community It sparked new

* The achievement in the farmer paper remained unnoticed far several years due to the low-key and off-hand 
use of the Gibbs sampler at a time when it was unknown to most of the community 

 ̂ Other and better-known connections between EM and MCMC algorithms can be found in the literature (Liu 
and Rubin, 1994; Me ng and Rubin, 1992; Wei and Tanner, 19900, but the connection with Gibbs sampling is mo re 
tenuous in that the simulation methods there are used to approximate quantities in aMonte Carlo fashion.
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interest in Bayesian methods, statistical computing, algorithms, and stochastic processes 
through the use of computing algorithms such as the Gibbs sampler and the Metropolis- 
Hastings algorithm Casella and George {1992) wrote an elementary introduction, to the 
Gibbs sampler* in The American Statistician that disseminated the technique to a wider 
community while explaining in simple terms why the algorithm is valid.

Interestingly, the earlier paper by Tanner and Wong {1987) had essentially the same ingre
dients as Gelfand and Smith (1990), namely the fact that simulating from the conditional 
distributions is sufficient to asymptotically simulate from the joint. This paper was con
sidered important enough to be a discussion paper in the Jo/murf o f  the American Statistical 
Association, but its impact was somehow limited, compared with Gelfand and Smith (1990). 
There are several reasons for this: one is that the method seemed to apply oidy to missing- 
data problems, this impression being reinforced by the name data augmentation' another 
is that the authors were more focused on approximating the posterior distribution They 
suggested an MCMC approximation to the target tt (6 | x) at each iteration of the sampler, 
based on

^  m
-  V  71 (0 I xr ztk), ztJc ~  V  i(z I x), k  =  m, 
in t—1

k=l

that is, by replicating m times the simulations from the current approximation n t_ i(z | at) 
of the marginal posterior distribution of the missing data. This focus on estimation of 
the posterior distribution connected the original data augmentation algorithm to EM, as 
pointed out by Dempster in the discussion Although the discussion by Morris gets very 
dose to the two-stage Gibbs sampler for hierarchical models, he is still concerned about 
doing m iterations, and wonies about how costly that would be. Tanner and Wong mention 
taking in =  1 at the end of the paper, referring to this as an "extreme case."

hi a sense, Tanner and Wong (1987) was still too dose to Rubin's (1978) multiple impu
tation to start a new revolution Yet another reason for this may be that the theoretical 
background was based on functional analysis rather than Markov chain theory, which 
needed, in particular, the Markov kernel to be uniformly bounded and equicontinuous. 
This may have discouraged potential users as requiring too much mathematics.

The authors of this review were fortunate enough to attend many focused conferences 
during this time, where we were able to witness the explosion of Gibbs sampling. In the 
summer of 1986 in Bowling Green, Ohio, Smith gave a series of ten lectures on hierarchical 
models. Although there was a lot of computing mentioned, the Gibbs sampler was not 
yet fully developed. (Interestingly, Smith commented that the limiting factor, at that time, 
for the full exploitation of hierarchical models in statistical problems was the inability to 
compute high-dimensional integrals,) In another lecture in June 1989 at a Bayesian work
shop in Sherbrooke, Quebec, he revealed for the first time the generic features of Gibbs 
sampler, and we still remember vividly the shock induced in ourselves and in the whole 
audience by the sheer breadth of the method: this development of Gibbs sampling, MCMC, 
and the resulting seminal paper of Gelfand and Smith (1990) was an epiphany^ in the world 
of statistics.

* On a humorous note, the original Technical Report of this paper was called Gibbs for Kids, which was changed 
because a referee did not appreciate the humor. However, our colleague Dan Gianola, an animal breeder at 
Wisconsin, liked the title. In using Gibbs sampling in his work, he gave a presentation in 1993 at the 44th 
Annual Meeting of the European Association for Animal Production, Aarhus, Denmark. The title: Gibbs fo r  Pigs.

+ Epiphany n. A spiritual event in which the essence of a given object of manifestation appears to the subject, as 
in a sudden flash of recognition.
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The explosion had begun, and just two years later an MCMC conference at Ohio 
State University, organized by Gelfand, Go el, and Smith, consisted of three full days of 
talks. Many of the talks were to become influential papers; including Albert and Chib 
(1993), Gelman and Rubin (1992), Geyer (1992), Gilks (1992), Liu et al. (1994, 1995), and 
Tierney (1994).

Approximately one year later, in May 1992, there was a meeting of the Royal Statistical 
Society on "The Gibbs sampler and other Markov chain Monte Carlo methods," where four 
papers were presented followed by much discussion. The papers appear in the first issue 
of the Jot m id  o f  the Roi/d Statistical Society, Series B, in 1993, together with 49 (!) pages of 
discussion. The excitement is dearly evident in the writings, even though the theory and 
implementation were not always perfectly understood.

Looking at these meetings, we can see the paths that Gibbs sampling would lead us down, 
hi the next two sections we will summarize some of the advances from the early to mid 
1990s.

2.4.t Advances in MCMC Theory

Perhaps the most influential MCMC theory paper of the 1990s is Tierney (1994), which 
carefully laid out all of the assumptions needed to analyze the Markov chains and then 
developed their properties, in particular, convergence of eagodic averages and central limit 
theorems, hi one of the discussions of that paper, Chan and Geyer (1994) were able to relax 
a condition on Tierney's central limit theorem, and this new condition plays an important 
role in research today (see Section 2.5.4). Apair of very influential, and innovative, papers 
is the work of Liu et al. (1994, 1995), who very carefully analyzed the covariance structure 
of Gibbs sampling, and were able to formally establish the validity of Rao-Bladcwellization 
in Gibbs sampling. Gelfand and Smith (1990) had used Rao-Blackwellization, but it was not 
justified at that time, as the original theorem was only applicable to i.i.d. sampling, which 
is not the case in MCMC, Another significant entry is Rosenthal (1995), who obtained one 
of the earliest results on exact rates of convergence.

Another paper must be singled out, namely Mengersen and Twee die (1996), for setting 
the tone for the study of the speed of convergence of MCMC algorithms to the target distri
bution Subsequent ■works in this area by Richard Tweedie, Gareth Roberts, Jeff Rosenthal 
and co-authors are too numerous tobe mentioned here, although the paper by Roberts et al. 
(1997) must be dted for setting explidt targets on the acceptance rate of the random-walk 
Metropolis-Hastings algorithm, as well as Roberts and Rosenthal (1999) for obtaining an 
upper bound on the number of iterations (523) needed to approximate the target up to 1% 
by a slice sampler. The untimely death of Richard Tweedie in 2001 also had a major impact 
on the book about MCMC convergence he was contemplating with Gareth Roberts.

One pitfall arising from the widespread use of Gibbs sampling was the tendency to 
spedfy models only through their conditional distributions, almost always without refer
ring to the positivity conditions in Section 2.3. Unfortunately, it is possible to specify a 
perfectly legitimate-looking set of conditionals that do not correspond to any joint distribu
tion, and the resulting Gibbs chain cannot converge. Hobert and Casella (1996) were able 
to document the conditions needed for a convergent Gibbs chain, and alerted the Gibbs 
community to this problem, which only arises when improper priors are used, but this is a 
frequent occurrence.

Much other work followed, and continues to grow today. Geyer and Thompson (1995) 
describe how to put a "ladder" of chains together for both "hot" and "cold" exploration, 
followed by Neal's (1996) hitroduction of tempering; Athreya et al. (1996) gave more easily



A Short History o f MCMC 57

verifiable conditions for convergence; Meng and van Dyk (1999) and Liu and Wu (1999) 
developed Hie theory of parameter expansion in the data augmentation algorithm, leading 
to construction of chains with faster convergence, and to the work of Hobert and Marchev 
(2008), who give precise constructions and theorems to show how parameter expansion 
can uniformly improve over the original chain.

2.4.2 Advances in MCMC Applications

The real reason for the explosion of MCMC methods was the fact that an enormous number 
of problems that were deemed to be computational nightmares now cracked open like eggs. 
As an example, consider this very simple random effects model from Gelfand and Smith
(1990). Observe

Yij =  6 ;  + i j  =  1 , (2.2)

where

0; -  N(|a, cf|)

E,y — N(0, Oj), independent of 6,.

Estimation of the variance components canbe difficult for a frequentist (restricted maximum 
likelihood is typically preferred) but it was a nightmare for a Bayesian, as the integrals 
were intractable. However, with the usual priors on \i, <r|, and <jg, the full conditionals are 
trivial to sample from and the problem is easily solved via Gibbs sampling. Moreover, we 
can increase the number of variance components and the Gibbs solution remains easy to 
implement,

During the early 1990s, researchers found that Gibbs, or Metropolis-Hastings, algorithms 
would crack almost any problem that they looked at, and there was a veritable flood of 
papers applying MCMC to previously intractable models and getting good solutions. For 
example, building on Equation 2.2, it was quickly realized that Gibbs sampling was an 
easy route to getting estimates in the linear mixed models (Wang et a l, 1993, 1994), and 
even generalized linear mixed models (Zeger and Karim, 1991). Building on the experience 
gained with the EM algorithm, similar arguments made itpossible to analyze probitmodels 
using a latent variable approach in a linear mixed model (Albert and Chib, 1993) and in 
mixture models with Gibbs sampling (Diebolt and Robert, 1994). It progressively dawned 
on the community that latent variables could be artificially introduced to run the Gibbs 
sampler in just about every situation, as eventually published in Damien et al. (1999), the 
mam example being the slice sampler (Neal, 2003). A very incomplete list of some other 
applications indudes change-point analysis (Carlin et al., 1992; Stephens, 1994), genomics 
(Churchill, 1995; Lawrence et al., 1993; Stephens and Smith, 1993), capture-recapture 
(Dupuis, 1995; George and Robert, 1992), variable selection in regression (George and 
McCulloch, 1993), spatial statistics (Raftery and Banfield, 1991), and longitudinal studies 
(Lange et al., 1992).

Many of these applications were advanced though other developments such as the adap
tive rejection sampling of Gilks (1992) and Gilks et al. (1995), and the simulated tempering 
approaches of Geyer and Thompson (1995) or Neal (1996).
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2.5 A fte r the R ev o lu tio n

After the revolution comes the "second" revolution, but now we have a more mature field. 
The revolution has slowed, and. the problems are being solved in, perhaps, deeper and more 
sophisticated ways, even though Gibbs sampling also offers the amateur the possibility of 
handling Bayesian analysis in complex models at little cost, as exhibited by the widespread 
use of BUGS, which mostly focuses on this approach* But, as before, the methodology 
continues to expand the set of problems for which statisticians can provide meaningful 
solutions, and thus continues to further the impact of statistics.

2.5.1 A Brief Glimpse at Particle Systems

The realization of the possibilities of iterating importance sampling is not new: in fact, 
it is about as old as Monte Carlo methods themselves. It can be found in the molecular 
simulation literature of the 1950s, for example Hammersley and Morton (1954), Rosenbluth 
and Rosenbluth (1955), and Marshall (1965). Hammersley and colleagues proposed such a 
method to simulate a self-avoiding random walk (see Madras and Slade, 1993) on a grid, due 
to huge inefficiencies in regular importance sampling and rejection techniques. Although 
this early implementation occurred in particle physics, the use of the term "particle" only 
dates back to Kitagawa (1996), while Carpenter et al. (1997) coined the term "particle filter." 
hi signal processing, early occurrences of a particle filter can be traced back to Handschin 
and Mayne (1969).

More hi connection with our theme, the landmark paper of Gordon et a l (1993) introduced 
the bootstrap filter which, while formally connected with importance sampling, involves 
past simulations and possible MCMC steps (Gilks and Berzuini, 2001). As described in the 
volume edited by Doucet et al. (2001), partide filters are simulatioii methods adapted to 
sequential settings where data are collected progressively in time, as in radar detection, 
telecommunication correction or finandal volatility estimation. Taking advantage of state- 
space representations of those dynamic models, partide filter methods produce Monte 
Carlo approximations to the posterior distributions by propagating simulated samples 
whose weights are actualized against the incoming observations. Since the importance 
weights have a tendency to degenerate, that is, all weights but one are dose to zero, addi
tional MCMC steps canbe introduced at times to recover the variety and representativeness 
of the sample. Modem connections with MCMC in the construction of the proposal kernel 
are to be found, for instance, in Doucet et al, (2000) and Del Moral et al, (2006). In paral
lel, sequential imputation was developed hi Kong et al. (1994), while Liu and Chen (1995) 
first formally pointed out the importance of resampling hi sequential Monte Carlo, a term 
corned by them.

The re cent literature on the topicmore dosely bridges the gap between sequential Monte 
Carlo and MCMC methods by making adaptive MCMC a possibility—see, for example, 
Andrieu et al. (2004) or Roberts and Rosenthal (2005).

2.5.2 Perfect Sampling

Introduced in the seminal paper of Propp and Wilson (1996), perfed sampling, namely the 
ability to use MCMC methods to produce an exact (or perfect) simulation from the target,

* BUGS now uses both Gibbs sampling and Metropolis-Hastings algorithms.
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has a unique place in the history of MCMC methods. Although this ex a  ting discovery led 
to an outburst of papers, in particular in the large body of work of MeUer and coauthors, 
inducting the book by Moller and Waagepetersen (2004), as well as many reviews and 
introductory materials, such as Casella et al. (2001), Fismen (1998), and Dimakos {2001), 
the exdtement quickly died down. The major reason for this ephemeral lifespan is that the 
construction of perfect samplers is most often dose to impossible or unpractical, despite 
some advances in implementation (Fill, 1998a,b).

There is, however, ongoing activity in the area of point processes and stochastic 
geometry, much from the work of M0ller and Kendall, hi particular, Kendall and 
Moller (2000) developed an alternative to the coupling from the past (CFTP) algorithm, of 
Propp and Wilson (1996), called horizon tal CFTP, which mainly applies to point processes 
andisbased on continuous-time birth-and-death processes. See also Fernandez et al. (1999) 
for another horizontal CFTP algorithm for point processes. Berthelsen and Mailer (2003) 
exhibited a use of these algorithms for nonparametricBayesianinference onpointprocesses.

2.5.3 Reversible Jump and Variable Dimensions

From many viewpoints, the invention of the reversible jump algorithm in Green (1995) can 
be seen as the start of the second MCMC revolution: the formalization of a Markov chain 
that moves across models and parameter spaces allowed for the Bayesian processing of 
a wide variety of new models and contributed to the success of Bayesian model choice 
and subsequently to its adoption in other fields. There exist earlier alternative Monte Carlo 
solutions such as Gelfand and Dey (1994) and Carlin and Chib (1995), the latter being very 
dose in spirit to reversible jump MCMC (as shown by the completion scheme of Brooks 
et al., 2003), but the definition of a properbalance condition on cross-model Markov kernels 
in Green (1995) gives a generic setup for exploring variable dimension spaces, even when 
the number of models under comparison is infinite. The impact of this new idea was clearly 
perceived when looking at the First European Conference on highly structured stochastic 
systems that took place in Rebild, Denmark, the next year, organized by Stephen Latuitzen 
and Jesper Mailer: a large majority of the talks were aimed at dired implementations of 
RJMCMC to various inference problems. The application of RJMCMC to mixture order 
estimation in the discussion paper of Richardson and Green (1997) ensured further dis
semination of the technique. More recently, Stephens (2000) proposed a continuous-time 
version of RJMCMC, based on earlier ideas of Geyer and M0ller (1994), but with similar 
properties (Cappe et a l, 2003), while Brooks et a l (2003) made proposals for increasing the 
efficiency of the moves, hi retrosped, while reversible jump is somehow unavoidable in the 
processing of very large numbers of models under comparison, as for instance hi variable 
selection (Marin and Robert, 2007), the implementation of a complex algorithm such as 
RJMCMC for the comparison of a few models is somewhat of an overkill since there exist 
alternative solutions based on model-specific MCMC chains (e.g. Chen et al., 2000).

2.5.4 Regeneration and the Central Limit Theorem

While the central limit theorem (CLT) is a central tool in Monte Carlo convergence assess
ment, its use in MCMC setups took longer to emerge, despite early signals by Geyer {1992), 
and it is only recently that suffidently dear conditions emeig,ed. We recall that the ergodic 
theorem {see, e.g. Robert and Casella, 2004, Theorem 6,63) states that, if (0j)f is a Markov 
chain with stationary distribution ti, and h( ■) is a function with finite variance, then under
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fairly mild conditions,

»OC //(0 ) t [ ( O )  r/ 9  =

almost everywhere, where //,, =  (l//()5^"=1J/(0i). For tlie CLT to be used to monitor this 
convergence,

V'varp/te)]
N<0,1), (2.3)

there are two roadblocks. First, convergence to normality is strongly affected by the lack 
of independence. To get CLTs for Markov chains, we can use a result of Kipnis and Varad- 
han (1986), which requires the chain to be reversible, as is the case for Metropolis-Ha stings 
chains, or we must delve into mixing conditions (Billingsley, 1995, Section 27), wThich are typ
ically not easy to verify. However, Chan and Geyer (1994) showed how the condition of geo
metric ergodidty couldbe used to establish CLTs for Markov chains. But getting the conver
gence is only half of the problem, hi order to use Equation 2.3, we mustbe able to consistently 
estimate the variance, which turns out to be another difficult endeavor. The "naive" estimate 
of the usual standard error is not consistent in the dependent case and the most promising 
paths for consistent variance estimates seem to be through regeneration and batch means.

The theory of regeneration uses the concept of a split chain (Athreya and Ney, 1978), and 
allows us to independently restart the chain while preserving the stationary distribution 
These independent "tours" then allow the calculation of consistent variance estimates and 
honest monitoring of convergence through Equation 2.3. Early work on applying regener
ation to MCMC chains was done by Mykland et al, (1995) and Robert (1995), who showed 
how to construct the chains and use them for variance calculations and diagnostics (see also 
Guihenneuc-Jouyaux and Robert, 1998), as well as deriving adaptive MCMC algorithms 
(Gilks et al., 199S). Rosenthal (1995) also showed how to construct and use regenerative 
chains, and much of this work is reviewed hi Jones and Hobert (2001). The most interesting 
and practical developments, however, are in Hobert et a l (2002) and Jones et al. (2006), 
where consistent estimators are constructed for var[/i(6)], allowing valid monitoring of 
convergence hi chains that satisfy the CLT. Interestingly, although Hobert et al. (2002) uses 
regeneration, Jones et a l (2006) get their consistent estimators thorough another technique, 
that of consistent batch means.

2.6 C o n clu sion

The impact of Gibbs sampling and MCMC on Bayesian statistics was to change our entire 
method of thinking about and attacking problems, representing a pamdigm shift (Kuhn, 
1996). Now, the collection of real problems that we could solve grew almost without 
bound. Markov chain Monte Carlo changed our emphasis from "dosed form" solutions 
to algorithms, expanded our impact to solving "real" applied problems and to improving 
numerical algorithms using statistical ideas, and led us into a world where "exad" now 
means "simulated."

This has truly been a quantum leap in the evolution of the field of statistics, and the 
evidence is that there are no signs of a slowdown, Although the "explosion" is over, the
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current work is going deeper into theory and applications, and continues to expand our 
horizons and influence by increasing our ability to solve even bigger and more important 
problems, The size of the data sets, and of the models, for example in genomics or clima
tology, is something that could not have been conceived 60 years ago, when Ulam and von 
Neumann invented the Monte Carlo method. Now we continue to plod on, and hope that 
the advances that we make here will, in some way help our colleagues 60 years in the future 
solve problems that we cannot yet conceive.
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3
Reversible Jump MCMC

Yanan Fan and Scott A. Sisson

3.1 In tro d u ctio n

The reversible jump Markov chain Monte Carlo (MCMC) sampler (Green, 1995) provides 
a general framework for Markov chain Monte Carlo simulation hi which the dimension of 
the parameter space can vary between iterates of the Markov chain. The reversible jump 
sampler can be viewed as an extension of the Metropolis-Hastings algorithm onto more 
general state spaces.

To understand this in a Bayesian modeling context, suppose that for observed data x we 
have a countable collection of candidate models M  = [M  i, M i , . . . }  index edby a parameter 
k e K. Hie index k can be considered as an auxiliary model indicator variable, such that ,A1 i.- 
denotes the model where k = k'. Eadi model Alt has an ̂ -dimensional vector of unknown 
parameters, 0i;: e  R"*, where nk can take different values for different models k e fC. The 
joint posterior distribution of (k, %) given observed data, x, is obtained as the product of 
the likelihood, L(x | k, 8t ), and the joint prior, pik, 0*) =  p(Qk \ k)p(k), constructed from the 
prior distribution of 0* tinder model M kr and the prior for the model indicator k (i.e. the 
prior for model ). Hence, the joint posterior is

^  _  i(x  I I ^
J [  \ K j  fljfc X )  ----- „  | ■* J J\/ . | - i f  .+  f .

Ere/c JV ‘* 'L(x I I W pW W k'

The reversible jump algorithm uses the joint posterior distribution in Equation 3.1 as the 
target of an MCMC sampler over the state space 0  = U.tecU^l x H71*), where the states of 
the Markov cham are of the form (k, fit), the dimension of which can vary over the state 
space. Accordingly, from the output of a single Markov chain sampler, the user is able to 
obtain a full probabilistic description of the posterior probabilities of each model having 
observed the data, x, in addition to the posterior distributions of the individual models.

This chapter aims to provide an overview of the reversible jump sampler. We will outline 
tlie sampler's theoretical underpinnings, present the latest and most popular techniques 
for enhancing algorithmperfonnance, and discuss the analysis of sampler output. Through 
tlie use of numerous worked examples it is hoped that the reader will gam a broad appre
ciation of the issues involved in multi-model simulation, and the confidence to implement 
reversible jump samplers in the course of their own studies.

3.1.1 From Metropolis-Hastings to Reversible jump

The standard formulation of the Metropolis-Hastings algorithm (Hastings, 1970) relies on 
tlie construction of a time-reversible Markov chain via die detailed hdwice condition. This
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condition means that moves from state 0 to 0' are made as often as moves from 6' to 0 
with respect to the target density, This is a simple way to ensure that the equilibrium 
distribution of the chain is the desired target distribution, The extension of the Metropolis- 
Hastings algorithm to the setting where the dimension of the parameter vector varies is 
more challenging theoretically, but the resulting algorithm is surprisingly simple to follow.

For the construction of a Markov chain on a general state space 0  with invariant or 
stationary distribution n, the detailed balance condition can be written as

7i<rfO)P(M9') =  3t<rfe')P(0',dfl) (3.2)

for all Borel sets .4 x B  c  ©, where P is a general Markov transition kernel (Green, 2001).
As with the standard Metropolis-Hastings algorithm, Markov chain transitions from 

a current state G = (k, Of.) s  A  m model M t are realized by first proposing a new state 
6 = (k‘, 0J-') e B in model M x  from a proposal distribution ^(0,6'). The detailed balance 
condition (Equation 3.2) is enforced through the acceptance probability, where the move to 
the candidate state 0' is accepted with probability a (0 ,6'). If rejected, the chain remains at 
the current state 9 in model Mk- Under this mechanism (Green, 2001, 2003), Equation 3.2 
becomes

ji (0 | x)/7(0,e ')a (0,e')rifftrif0' =
(e,e,)e^x6

tt(0' i x)f/(0',0)a(e',0)rferfe', (3.3)
(e,e')g,4>;e

where the distributions tt(0 | x) and tt(0' | x) are posterior distributions with respect to 
model Mk <uid Mk'r respectively.

One way to enforce Equation 3.3 is by setting the acceptance probability as

a (0, O') = min * e i W O
'71(6' |XVJ(0' , 0) ‘ '

where a (0', 0) is shnilarly defined. This resembles the usual Metropolis-Hastings acceptance 
ratio (Green, 1995; Tierney, 1998). It is straightforward to observe that this formulation 
includes the standard Metropolis-Hastings algorithm as a special case.

Accordingly, a reversible jump sampler with N iterations is commonly constructed as 
follows:

Step 1. Initialize k and at iteration t =  1.
Step 2. For iteration t. > 1 perform

-  Wifhiu-tiiodel move: with a fixed mo del ft, update the parameters 0̂  according 
to any MCMC updating scheme.

-  Betweeu-inaleh move: simultaneously update model indicator k and the 
parameters % according to the general reversible proposal/acceptance 
mechanism (Equation 3.4).

Step 3. Increment iteration f = t +  1. If t < N, go to Step 2.

3.1.2 Application Areas

Statistical problems in which the number of unknown model parameters is itself unknown 
are extensive, and as such the reversible jump sampler has been implemented hi analyses
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Enzyme data

I n ____iflTL-n-rfl n

0 2 3 4 -1 0 2 3 4

FIGURE 3.1
Examples of (a) change-point modeling and (b) mixture models, (a) With the Stylos tombs data set (crosses), a 
piecewise log-linear curve can be fitted be tween unknown change points. Illustrated are 2 (solid line) and 3 (dashed 
line) change points, (b) The histogram of the enzymatic activity data set suggests dear groupings of metabolizers, 
although the number of such groupings is not clear. (From Sisson, S. A. and Fan, Y. 2007. Staffs#cs and Computing, 
17:357-367. With permission.)

throughout a wide range of scientific disciplines over the last 15 years, Within the statistical 
literature, these predominantly concern Bayesian model determination problems (Sisson, 
2005). Some of the commonly recurring models in this setting are described below.

Chtuige-poini models One of the original applications of the reversible jump sampler was 
in Bayesian change-point problems, where both the number and location of change points 
in a system is unknown a priori. For example. Green (1995) analyzed mining disaster count 
data using a Poisson process with the rate parameter described as a step function with an 
unknown numb er and location of steps. Fan and Brooks (2000) applied the reversible jump 
sampler to model the shape of prehistoric tombs, where the curvature of the dome changes 
an unknown number of times. Figure 3. la shows the plot of depths and radii of one of the 
tombs from Crete in Greece. The data appear to be piecewise log-linear, with possibly two 
or three change points.

Finite mixture models Mixture models are commonly used where each data observa
tion is generated according to some underlying categorical mechanism. This mechanismis 
typically unobserved, so there is uncertainty regarding which component of the resulting 
mixture distribution each data observation was generated from, in addition to uncertainty 
over the number of mixture components. A mixture model with k  components for the 
observed data x takes the form

k
{3.5)
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withOfc = (4>i,. . . where Wj is the weight of the yth mixture component^, whose param
eter vector is denoted by <J>jV and where 2^=11f>j =  1- The number of mixture components, 
k, is also unknown.

Figure 3. lb illustrates the distribution of enzymatic activity in the blood for 245 individu
als. Richardson and Green (1997) analyzed these data using a mixture of normal densities to 
identify subgroups of slow or fastmetabolizers. The multimodal nature of the data suggests 
the existence of such groups, but the number of distinct groupings is less dear. Tadesse et al. 
(2006) extend this normal mixture model for the purpose of clustering high-dimensional 
data.

Variable selection The problem of variable selection arises when modeling the relation
ship between a response variable/ Y, and p potential explanatory variables :i'i, . . . ,  xp. The 
multi-model setting emerges when attempting to identify the most relevant subsets of pre
dictors,, making it a natural candidate for the reversible jump sampler. For example, under 
a regression model with, normal errors we have

Y =  Xy |3y + e with € -  N( 0, <r2I), (3.6)

where y = (yi, . . . ,  yp) is a binary vedor indexing the subset of . . . ,  xp to be induded in 
the linear model, X y is the design matrix whose columns correspond to the indexed subset 
given by y, and f3y is the corresponding subset of regression coeffidents. For examples and 
algorithms in this setting and beyond, see, for example, Geoige and McCulloch (1993), 
Smith and Kolm (1996), and Nott and Leonte (2004).

NoiiparaiMetrics Within Bayesian nonparametrics, many authors have successfully 
explored the use of the reversible jump sampler as a method to automate the knot selec
tion process wlien using a Mi-order spline model for curve fitting (Denison et al., 1998; 
DiMatteo et al., 2001). Here, a curve/ is estimated by

P k

f(x )  =  ao + Y  tyx? +  X !  %(■* -  Ki)+' *  G H
/=l ;=i

where z+ = max(0, z) and k,, i =  1 , . . .  ,k, represent the locations of k knot points (Hastie 
and Tibshirani, 1990). Under this representation, fitting the curve consists of estimating 
the unknown number of knots k, the knot locations k, and the corresponding regression 
coeffidents ay and for j  — 0 , . . . ,  P and i — 1 , . . . ,  k.

Time series models In the modeling of temporally dependent data, x\,. multiple 
models naturally arise under uncertainty over the degree of dependence. For example, 
under a Mi-order autoregressive process

k

X, = with f = Jr + 1 , . . . ,  X, (3.7)
i=i

where e t ~  WN (0, a2), the order, k, of the autoregression is commonly unknown, in addition 
to Hie coeffidents «T. Brooks et al. (2003c), Ehlers and Brooks (2003), and Vermaak eta l (2004) 
each detail descriptions on the use of reversible jump samplers for this dass of problems.

The reversible jump algorithm has had a compelling influence in the statistical and main
stream sdentific research literatures. In general, the large majority of application areas have 
tended to be computationally or biologically related (Sisson, 2005). Accordingly a large
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number of developmental and application studies can be found in the signal processing 
literature and the related fields of computer vision and image analysis. Epidemiological 
and medical studies also feature strongly.

This chapter is structured as follows: In Section 3,2 we present a detailed description 
of how to implement the reversible jump sampler and review methods to improve sam
pler performance. Section 3.3 examines post-simulation analysis, induding label switching 
problems when identifiability is an issue, and convergence assessment. In Section 3.4 we 
review related sampling methods in the statistical literature, and condude with discussion 
onpossible future research directions for the field. Other useful review's of reversible jump 
MCMC can be found in Green (2003) and Sisson (2005).

3.2 I m p l e m e n t a t i o n

In practice, the construction of proposal moves between different models is achieved via 
the concept of "dimension matching." Most simply, under a general Bayesian mo del deter
mination setting, suppose that we are currently in state (A, 0t ) in model M k, and we wish 
to propose a move to a state (A', 0[, ) in model M k', which is of a higher dimension, so that 
nk> > nk. In order to "match dimensions" between the two model states, a random vector 
u of length = u k' ~ n k is generated from a known density (u). The current state
0i: and the random vector u are then mapped to the new state 0jL, = gk^k' (Mfc/u) through 
a one-to-one mapping function^jt_»jt' : R75* x M”*'. The acceptance probability of tins
proposal, combined with the joint posterior expression of Equation 3.1, becomes

9(6*,u)
<3.8)

where q(k -*■ A') denotes the probability of proposing a move from model M t  to model 
M k’i and the final term is the determinant of the Jacobian matrix, often referred to in the 
reversible jump literature simply as the Jacobian. This term arises through the change of 
variables via the function gk^ t ,  which is required when used with respect to the integral 
equation (Equation 3.3). Note that the normalization constant in Equation 3.1 is not needed 
to evaluate the above ratio. The reverse move proposal, from model M p  to M k, is made 
deterministically in this setting., and is accepted with probability

a [(A', (A, fl*)] = a [(A, 6k), (A', <£,)] - l

More generally, we can relax the condition on the length of the vedor u by allowing
> i‘kr ~ nk- hi this case, nondeterministic reverse moves can be made by generat

ing a ^-dim ensional random vedor u' ~  <74-^  (u )̂̂  such that the dimension matching 
condition, itk +  dk^  =  nk' +  is satisfied, Then a reverse mapping is given by 0̂  =  

such that 0k =  gk^ k(gk^ k'(Qk, u),u') and e£, =  The
acceptance probability corresponding to Equation 3.8 then becomes

.  [(*, W , -  -  1, 3(6*, u)
(3.9)
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Example: Dimension Matching

Consider the illustrative example given in Green [ 1 9 9 5 )  and Brooks [ 1 9 9 8 } .  Suppose that model 
,M-| has states [k = 1, 6 R 1) and model has states (k = 2, e R-). Let (1,9*) denote
the current state in M-\ and (2, (0(1) ,Q ^ ))  denote the proposed state in A ^ . Under dimension 
matching, we might generate a random scalar u, and let 0^ = 6* + u a n d S ^  = 6* — u, with the 
reverse move given deterministically by 9* = ^ ( 6^  +

Example: Moment Matching in a Finite Mixture of Univariate Normals

Under the finite mixture of univariate normals model, the observed data, x, has density given 
by Equation 3.5, where the yth mixture component fj(x | <(>y) = c|>(x | M-y.cry) is the 
density. For between-model moves, Richardson and Green (19S7) implement a split (one 
component into two) and merge (two components into one) strategy which satisfies the 
dimension matching requirement. (See Dellaportas and Papageorgiou (2006) for an alternative 
approach.)

When two normal components /| and/] are merged into one,/*, Richardson and Green [1997) 
propose a deterministic mapping which maintains the zeroth, first, and second moments:

Wj* =  W j: +  w-r .

W j* IL j* =  Wp  +  W j, |Xy, . [ 3 .1 0 )

HJ* + o?  ) = wh (yi]t + a7i j  + wh .

The split move is proposed as

W jt =  Wj* *  U |, Wjn =  Wj* *  (1  — 1/1 )

[L u  =  f lf*  ~b Of* — —  [3 ,1  1 )J V wr
T / T \  "I W j *

a y  =  Lf-i ( 1 — Lin cf-* — —Z1 V -)  I wji

t  /  -i \  n W j *

<̂  = (1 - m > ( 1 - u ; ) ^ — ,

where the random scalars u-|,U2 Beta(2,2) and u3 Beta(1, 1). In this manner, dimension
matching is satisfied, and the acceptance probability for the split move is calculated according to 
Equation 3.B, with the acceptance probability of the reverse merge move given by the reciprocal 
of this value.

3.2.1 Mapping Functions and Proposal Distributions

While the ideas behind dimension matching are conceptually simple, their implementation 
is complicated by the arbitrariness of the mapping function and the proposal distri
butions, <7rfJt_ fc, (u), for the random vectors u. Since mapping functions effectively express
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functional relationships between the parameters of different models, good mapping func
tions will dearly improve sampler performance in terms of between-model acceptance 
rates and chain mixing. The difficulty is that even in the simpler setting of nested models, 
good relationships can be hard to define, and in more general settings, parameter vectors 
between models may not be obviously comparable.

The only additional degree of freedom to improve between-model proposals is by choos
ing the form and parameters of the proposal distribution (u). However, there are 
no obvious criteria to guide this choice. Contrast this to within-1110del, random-walk 
Metropolis-Hastings moves on a continuous target density, whereby proposed moves 
dose to the current state can have an arbitrarily large acceptance probability, and pro
posed moves far from the current state have low acceptance probabilities. This concept 
of "local" moves may be partially translated on to model space (h e K): proposals from 
6:. in model to 0̂ , in model will tend to have larger acceptance probabilities if 
their likelihood values are similar, that is, L(x | k, Ht ) % L(x | k', 0',). For example, in the 
analysis of Bayesian mixture models, Richardson and Green (1997) propose "birth/ death" 
and "split/ merge" mappings of mixture components for the between-model move, while 
keeping other components unchanged. Hence, the proposed moves necessarily will have 
similar likelihood values to the current state. However, in general the notion of "local" 
move proposals does not easily extend to the parameter vectors of different models, unless 
considering simplified settings (e.g. nested models), hi the general case, good mixing prop
erties are achieved by the alignment of regions of high posterior probability between 
models.

Notwithstanding these difficulties, reversible jump MCMC is often associated with poor 
sampler performance. However, failure to realize acceptable sampler performance should 
only be considered a result of poorly construdedbetween-modelmappings or inappropri
ate proposal distributions. It should even be antidpated that implementing a multi-model 
sampler may result in unproved chain mixing, even when the inferential target distribu
tion is a single model. In this case, sampling from a single model posterior with an "overly 
sophisticated" machinery is loosely analogous to the extra performance gained with aug
mented state space sampling methods. For example, in the case of a finite mixture of normal 
distributions, Richardson and Green(1997) report markedly superior sampler mixing when 
conditioning on there being exactly three mixture components, in comparison with the out
put generated by a fixed-dimension sampler. George et al. (1999) similarly obtain unproved 
chain performance in a single model, by performing "birth-then-death" moves simultane
ously so that the dimension of the model remains constant. Green (2003) presents a short 
study on which inferential circumstances determine whether the adoption of a multi-model 
sampler may be benefidal in this maimer. Conversely, Han and Carlin (2001) provide an 
argument to suggest that multi-model sampling may have a detrimental effect on effidency.

3.2.2 Marginalization and Augmentation

Depending on the aim or the complexity of a multi-model analysis, it may be that use 
of reversible jump MCMC would be somewhat heavy-handed, when reduced- or fixed
dimensional samplers may be substituted, hi some Bayesian model selection settings, 
between-model moves can be greatly simplified or even avoided if one is prepared to 
make certain prior assumptions, such as conjugacy or objective prior specifications, hi such 
cases, it may be possible to analytically integrate out some or all of the parameters % in the 
posterior distribution (Equation 3.1), reducing the sampler either to fixed dimensions, for 
example on model space k e fC only, or to a lower-dimensional set of model and parameter
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space (Beiger and Pericchi, 2001; DiMatteo et al., 2001; George and McCulloch, 1993; Tadesse 
et al,, 2005). In lower dimensions, the reversible jump sampler is often easier to implement, 
as the problems associated with mapping function specification are conceptually simpler 
to resolve.

Example: Marginalization in Variable Selection

In Bayesian variable selection for normal linear models (Equation 3.6), the vectory = ( y i , . . . ,  yp) 
is treated as an auxiliary [model indicator) variable, where

(1, if predictor X/ is included in the regression,
0,. otherwise.

Under certain prior specifications for the regression coefficients p and error variance o~, 
the f  coefficients can be analytically integrated out of the posterior. A Gibbs sampler directly 
on model space is then available for y [George and McCulloch, 1993; .Mott and Green, 2004; 
Smith and Kohn, 1 996).

Example: Marginalization in Finite Mixture of Multivariate Normal Models

Within the context of clustering, the parameters of the normal components are usually not of 
interest Tadesse et al. (2005) demonstrate that by choosing appropriate prior distributions, the 
parameters of the normal components can be analytically integrated out of the posterior. The 
reversible jump sampler may then run on a much reduced parameter space, which is simpler and 
more efficient.

In a general setting, Brooks et al. [2003c) proposed a class of models based on augmenting 
the state space of the target posterior with an auxiliary set of state-dependent variables, v^, so 
that the state space of n(kr | x) = n(k, 0 .̂ | x)t^.(vj^) is of constant dimension for all models 
Mfc e M .  By updating vk via a (deliberately) slowly mixing Markov chain, a temporal memory is 
induced that persists in the from state to state. In this manner, the motivation behind the aux
iliary variables is to improve between-model proposals, in that some memory of previous model 
states is retained. Brooks et al. (2003c) demonstrate that this approach can significantly enhance 
mixingcomparedto an unassisted reversible jump sampler, Although the fixed dimensionality of 
(k, Vfc) is later relaxed, there is an obvious analogue with product space sampling frameworks 
(Carlin and Chib, 1995; Godsill, 2001); see Section 3.4.2.

An alternative augmented state space modification of standard MCMC is given by Liu et al. 
(2001). The dynamic weighting algorithm augments the original state space by a weighting factor, 
which permits the Markov chain to make large transitions not allowable by the standard transition 
rules, subject to the computation of the correct weighting factor. Inference is then made by using 
the weights to compute importance sampling estimates rather than simple Monte Carlo estimates. 
This method can be used within the reversible jump algorithm to facilitate cross-model jumps.

3.2.3 Centering and Order Methods

Brooks et al. (2003c) introduce a class of methods to achieve the automatic scaling of the 
proposal density, <ldk̂ k: (u),< based on "local" move proposal distributions, which are cen
tered around the point of equal likelihood values under current and proposed models. 
Under this scheme, it is assumed that local mapping functions are known, For a 
proposed move from (k, %) in Mk to model Mk'j the random vector "centering point"
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(Gi;) =  u) is defined such that, for some particular choice of proposal vec
tor u, the current and proposed states are identical in terms of likelihood contribution, 
that is, L(x | A, %) = L(x | f c ' , (0k)). For example, if Mk is an autoregressive model 
of order k (Equation 3.7) and M k' is an autoregressive model of order k' = k +  1, and if 

u) — (0i;:/ a) (e.g. a local "birth" proposal), then we have u = 0 and 
ck^ k> =  (ftjt, 0), as L(x | ft., 0t ) =  L(x | ft', (%, 0)).

Given the centering constraint on u, if the scaling parameter in the proposal (u) is 
a scalar, then the zeroth-order method (Brooks et al., 2003c) proposes to choose this scaling 
parameter such that the acceptance probability a[(ft,6* ) ,(ft'',Cjt_jt'(0i:))] of a move to the 
centering point hi model M t  is exactly one. The argument is then that move
proposals dose to will also have a laige acceptance probability.

For proposal distributions, (u), with additional degrees of freedom, a similar 
method based on a series of /ith-order conditions (for n > 1) requires that, for the pro
posed move, the v/th derivative (with resped to u) of the acceptance probability equals the 
zero vector at the centering point (0i: )

V M M ) ,  (* ',£W (efc))] =  0- (3.12)

Thatis, the in unknown parameters in the proposal distribution (u) are detenninedby 
solving the in simultaneous equations given by Equation 3.12 with 11 =  1 , . . . ,  in. The idea 
behind the /ith-order method is that the concept of doseness to the centering point under 
the zeroth-order method is relaxed. By enforcing zero derivatives of oi[(ft, %), (k !, ck^  (6*))], 
the acceptance probability will become flatter around c^k'Wk)- Accordingly this allows 
proposals further away from the centering point to stillbe accepted with a reasonably high 
probability. This will ultimately induce unproved chain mixing.

With these methods, proposal distribution parameters are adapted to the current state of 
the chain, (ft, 0*), rather than relying on a constant proposal parameter vector for all state 
transitions. It can be shown that for a simple two-model case, the /tth-order conditions are 
optimal hi terms of the capadtance of the algorithm (Lawler and Sokal, 1988). See also 
Ehlers and Brooks (2003) for an extension to a more general setting, and Ntzoufras et al. 
(2003) for a centering method in the context of linear models.

One caveat with the centering schemes is that they require specification of the between- 
model mapping function although these methods compensate for poor choices of
mapping functions by selecting the best set of parameters for the given mapping. Recently, 
Ehlers and Brooks (2008) suggest the posterior conditional distribution n(kr, u | 0̂ ) as the 
proposal for the random vedor u, side-stepping the need to construd a mapping function, 
hi this case, the full conditionals either must be known or need to be approximated.

Example; The Zeroth-Order Method for an Autoregressive Model

Brooks et al. (^00jc) consider the AR. model with unknown order k (Equation S.7), assuming 
Gaussian noise et ~  N(0, c j )  and a uniform prior on k, where k = 1, 1 , , kmax. Within each
model M i ,, independent N(0, a^) priors are adopted for the AR coefficients aT, i  = 1_____k, with
an inverse gamma prior for c j. Suppose moves are made from model M .t to model such 
that k' = k + 1. The move from Gj, to 0 ,̂ is achieved by generating a random scalar u ~  q(u) = 
N (0 ,1), and defining the mapping function as 0 ,̂ = u) = (0jt, ci/). The centering point

^en occurs at the point u = 0, or 0 ,̂ =  (0 ,̂ 0).
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Under the mapping jt', the Jacobian is a, and the acceptance probability (Equation 3.8) for 
the move from (k, 9̂ ,) to (k1, c^_j.£■■(•)Jt)) is given by (t[(k, 8^), (k't (6 ,̂ 0))] = min(1, A) where

Note that since the likelihoods are equal at the centering point, and the priors common to both 
models cancel in the posterior ratio, A  is only a function of the prior density for the parameter 
ajt+1 evaluated at 0, the proposal distributions and the Jacobian. Hence, we solve A = 1 to 
obtain

Thus in this case, the proposal variance is not dependent on the model parameter (Sfe) or data (x).
It depends only on the prior variance, o ,̂ and the model states, k, k!.

Example: The Second-Order Method for Moment Matching

Consider the moment matching in a finite mixture of univariate normals example of Section 3.2. 
The mapping functions gf'-s-fc and are respectively given by Equations 3.10 and 3.11,
with the random numbers u-\,u2 ,u^ drawn from independent beta distributions with unknown 
parameter values, so that qpii[ji(Uj): u,- ~  Beta(p,, q,-)r i = 1, 2, 3.

Consider the split move, Equation 3.11. To apply the second-order method of Brooks et al.
(2003c), we first locate a centering point, achieved by setting u-| = 1, u: = 0, and
1/3 = ui = 1 by inspection, Hence, at the centering point, the two new (split) components ji and 

will have the same location and scale as the j*  component, with new weights wjt = wj* and 
W j, = 0 and all observations allocated to component j-\. Accordingly this will produce identical 
likelihood contributions. Note that to obtain equal variances for the split proposal, substitute the 
expressions for and Wj, into those fora? = aj .

Following Richardson and Green [1997), the acceptance probability of the split move evaluated 
at the centering point is then proportional (with respect to u) to

t t (k, S j ,  | \)q(k - s -  k')q(0 )  q(k -» j t ' ) ( 2 n ) - 1 / -

t x  / j, logfw,-,)  +  tj,_ \og(W j2 ) -  ■

1 . , n
-  —  J 2  ( y i  -  V-j2 ) "  +  (8 -  1 +  / / , )  l o g O / , )  +  ( S  -  1 +  /;: )  log ( W j , )

-  -  %)2 - i ; ) 2] ■ — (a + I J I o g ^ c j J  +cr“ 2)

-  log[£Jpi,qi (U i)] -  -  log[qp3,g3(U3)] + logdM.j, -  [x;-, I)

+ l°g(<7,) + l° g ( crJ; )  -  log(u:) -  log 1̂ - u ; )  -  log(u3) -  log( 1 -  i/3), (3.13)

where and/y, respectively denote the number of observations allocated to components fa and 
) 2 , and where 5, a, (J, £ andK are hyperparameters as defined by Richardson andGreen (1997).
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Thus, for example, to obtain the proposal parameter values p-| and q-\ for u1, we solve the first- 
anti second-order derivatives of the acceptance probability (Equation 3.1 3) with respect to iv-|. This 
yields

aioga^Mj,) ,^ ' ,  _  S + -/y, -P i  q-\ -
()«! “  I/! (1 -U l)

3 -  l o g o t [ ( f r , % ) , ( / t ' ,  _  a +  - ^/ i  ~ P I <71 - !h

dtr, ~ uy ( l -u - i ) 2 '

Equating these to zero and solving forpi andtyi at the centeringpoints (with /y, = /y* and/y, = 0) 
gives p-| = & + 2/y* and q-\ = &. Thus the parameter pi depends on the number of observations 
allocated to the component being split. Similar calculations to the above give solutions for p2, qi, 
p3, and q3.

3.2.4 Multi-Step Proposals

Green, and Mira (2001) introduce a procedure for learning from rejected between-model 
proposals based on an extension of the splitting rejection idea of Tierney and Mira (1999). 
After rejecting a between-model proposal, the procedure makes a second proposal, usu
ally under a modified proposal mechanism, and potentially dependent on the value of the 
rejected proposal. In this maimer, a limited form of adaptive behavior may be incorporated 
into the proposals. The procedure is implemented via a modified Metropolis-Hastings 
acceptance probability and may be extended to more than one sequential rejection (Trias 
et al., 2009). Delayed-rejection schemes can reduce the asymptotic variance of ergodic aver
ages by reducing the probability of the chain remaining in the same state (Peskun, 1973; 
Tierney 1998), however there is an obvious tradeoff with the extra move construction and 
computation required.

For darity of exposition, in the remainder of this section we denote the current state of 
the Markov chain in model .M* by x = (k, Oj-), and the first and second stage proposed states 
in model Mk> by y and z, Let y = (x, ui) and z =  gf^k, (x, ui, 112) be the mappings of
the current state and random vedors ui — q ^  (ui) and U2 ~  q ^   ̂(u? ) into the proposed 
new states. For simplidty, we again consider the framework where the dimension of model 
M ,t is smaller than that of model M p  (i.e. 11.̂  > fit) and where the reverse move proposals 
are deterministic. The proposal from x to y is accepted with the usual acceptance probability

cti(x, y) =  min 1,
71 ( y )q(k' k)

n(x)<j{k k1) ^  (ui)

Ul)
a(x, ui)

If y is rejeded, detailed balance for the move from x to z is preserved with the acceptance 
probability

ot2(x,z) =  mill V
tt(z)q(k' -> k )[l -  a i f y * ^ ) - 1]

n(x)q(k -> ? f ')^ ^ ,(u i)< j^ jt,(u2)[l -  cti(x,y)](2)

, (2)
b  “ 2)

9(x,ui,u2)

where y* =  (z, ui). Note tliat the second stage proposal z = g [̂ \k, (x, ui, U2) is permit
ted to depend on the rejected first stage proposal y (a function of x and ui).
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In a similar vein, Al-Awadhi et al. (2004) also acknowledge that an initial between-model 
proposal x  =  u) may be poor, and seek to adjust the state x' to a region of higher
posterior probability before taking the decision to accept or reject the proposal, Specifically, 
Al-Awadhi et al, (2004) propose to initially evaluate the proposed move to x' in model M^  
through a density rather than the usual jt (x ') . The authors suggest taking n *  to be
some tempered distribution n* =  ny, y > 1, such that the modes of :i* and n are aligned.

The algorithm then implements k > 1 fixed-dimension MCMC updates, generating states 
x' —>■ x 1 ■ ■ ■ —» xK = x*, with each step satisfying detailedbalance with respect ton*. This 
provides an opportunity for x* to move closer to the mode of n* (and therefore n) thanx'. 
The move from x in model Mk to the final state x* in model Mk' (with density tt(x* )) is 
finally accepted with probability

,  * .  . L k) 9gjt^jt'(x,u) 1
a(x, x ) =  nun i 1, ------------------ — —-------------- —-------------- 1 .

| n(x)n*(x*)q(k ^  k')(]dk̂ k,(u) 3(x,u) J

The hnphed reverse move from model M t  to model model Mk is conducted by taking the 
k moves with respect to Tt* first, followed by the dimension-changing move.

Various extensions can easily be incorporated into this framewTork, such as using a 
sequence of ji* distributions, resulting in a slightly modified acceptance probability 
expression. For instance, the standard simulated annealing framework, Kirkpatrick (1984), 
provides an example of a sequence of distributions which encourage moves toward pos
terior mode. Clearly the choice of the distribution n* can be crucial to the success of this 
strategy. As with ah multi-step proposals, increased computational overheads are traded 
for potentially enhanced betwTeen-model mixing.

3.2.5 Generic Samplers

The problem of efficiently constructing betwTeen-model mapping templates, gk-^k'/ with 
associated random vector proposal densities, may be approached from an alter
native perspective. Rather than relying on a user-specified mapping, one strategy would be 
to move toward a more generic proposal mechanism altogether. A clear benefit of generic 
between-model moves is that they may be equally be implemented for nonnested mod
els. While the ideal of "hlack-box" between-model proposals is attractive, they currently 
remain on the research horizon, However, a number of automatic reversible jump MCMC 
samplers have been proposed.

Green (2003) proposed a reversible jump analogy of the random-wTalk Metropolis sampler 
of Roberts (2003). Suppose that estimates of the first- and second-order moments of flj- are 
available, for each of a small number of models, k e )C, denoted by |xt andB^Bj respectively, 
where is an /ij. x jtj. matrix, hi proposing a move from (k, 0j j  to model Mk', a new 
parameter vector is proposed by

M-jt' +  %  -  m )] * ,■ if < "-kf

|x*, +B^RB^ 1(flfc -  p.*), if n t = ukr

where [ ]™ denotes tlie first m components of a vector, R is a orthogonal matrix of order 
m a x iii-}, and u ~  Qnk, - n k (u) is an (/itr -  >i i )-dimensional random vector (only utilized
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if 11̂  > ,lk/ or when calculating the acceptance probability of the reverse move from model 
M t  to model M k  if n k> <  « *)■  If n k r <  Irk ’ then the proposal is deterministic and the 
Jacobian is trivially calculated. Hence, the acceptance probability is given by

TT (k,Qk IX) <]{k -s. k1) |Bfe|

for ut - < nk ,
1, for i i f  -  n kl

1 ,
---------(u), for i i f  > nk.
‘h f-iv .

Accordingly, if the model-spedfic densities tt(k, Oj- | x) are unimodal with first- and second- 
order moments given by m  and then high between-model acceptance probabihties
maybe achieved. (Unitary acceptance probabilities are available if the nik, ft-1 x) are exactly 
Gaussian) Green (2003), Godsill (2003), and Hastie (2004) discuss a number of modifications 
to this general framework, including improving efficiency and relaxing the requirement of 
unimodal densities it (k, % |x) to realize high between-model acceptance rates. Naturally, 
the required knowledge of first- and second-order moments of each model density will 
restrict the applicability of these approaches to moderate numbers of candidate models if 
these require estimation (e.g. via pilot chains).

With a similar motivation to the above, Papathomas et al. (2009) put forward the multi
variate normal as proposal distribution for 6J., in the context of linear regression models, so 
that ~ The authors derive estimates for the mean and covariance
£jfc'iet such that the proposed values for will on average produce conditional posterior 
values under model M ?  similar to those produced by the vector 0;.- under model Mk- hi 
particular, consider the normal linear model in Equation 3.6, rewriting the error covariance 
as V, assuming equality under the two models such that V* =  V*' = V. The parameters of 
the proposal distribution for are then given by

H*' \ok = (Xj V-iXyO-^V" 1 [y + B - ' v - ^ i X y h  -  PtV)[,

_  ̂ ^
=  Qi'Jc' ~  Q.k'.k'Q k'^ Qk,kQk,k' Q i : ;,k' +

where y and y' are indicators corresponding to models M t  and M ^, B = (V +  
X Y T k^ kX j , ) - y 2/ P k = X y ( X ^ V - 1Xyr 1X j V - 1 , Q U - =  ( X ^ V - ^ r U . i s t h e u  X  /( iden
tity matrix and c > 0. Intuitively, the mean of this proposal distribution maybe interpreted 
as the maximum likelihood estimate of 8̂  for model M f  , plus a correction term based on 
the distance of the current chain state 6  ̂ to the mode of the posterior density in model M,t- 
The mapping between and 0̂  and the random number u is given by

0A:' = M-i'ie* +

where u ~  N ( Q , A c c o r d i n g l y  the Jacobian corresponding to Equation 3.9 is given by
y 1/2

fc'iet
Hie cali

y l/2 . Under this construction, the value c > 0 is treated as a tuning parameter for
^ration of the acceptance probability. Quite dearly, Hie parameters of the between- 

model proposal do not require a priori estimation, and they adapt to the current state of 
the chain. The authors note that in some instances, this method produces similar results 
in terms of effidency to Green (2003). One caveat is that the calculations at each proposal 
stage involve several inversions of matrices which can be computationally costly when 
the dimension is large, hi addition, the method is theoretically justified for normal linear
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models, but canbe applied to noimormal models when transformation of data to normality 
is available, as demonstrated in Papathomas et al. (2009).

Fail et al. (2009) propose to construct between-model proposals based on estimating 
conditional marginal densities. Suppose that it is reasonable to assume some structural 
similarities between the parameters % and Of., of models and respectively. 
Let c  indicate the subset of the vectors 0̂  =  (0J;,0p ) and 0fc, = < ,  6“ f) which can be 
kept constant between models, so that = 0|. The remaining ('-dimensional vector 6̂ f 
is then sampled from an estimate of the factorization of the conditional posterior of 
0“ c = (6* , , . . . ,  6jT,) under model M t '

| &£„x)ft i (e^,  | e^/. . . , 0̂ , 9j\,/x ) . . . 7Tr_ i ( 0̂ r1 | |0£,,x).

The proposal 0“c is drawn by first estimating Trr(0£, | 0£,, x) and sampling 0£„ and by then 
esthnatiiig | 0[,, 0£,, x) and sampling 0^71, conditioning on the previously sam
pled point, 0£,, and so on. Fan et al. (2009) construct the conditional marginal densities by 
using partial derivatives of the joint density, uik1, 0̂ ., | x), to provide gradient hifomiation 
within a marginal density estimator. As the conditional marginal density estimators are 
constructed using a combination of samples from the prior distribution and gridded val
ues, they canbe computationally expensive to construct, particularly if high-dimensional 
moves are attempted, for example 0^c =  0̂ ,. However, this approach canbe efficient, and 
also adapts to the current state of the sampler.

3.3 Post S im u latio n

3.3.1 Label Switching

The so-called "label switching" problem occurs when the posterior distribution is invariant 
under permutations in the labeling of the parameters. This results hi the parameters having 
identical marginal posterior distributions. For example, in the context of a finite mixture 
model (Equation 3.5), the parameters of each mixture component, 4>(/ are unidentifiable 
under a symmetric prior. This causes problems hi the interpretation of the MCMC output. 
While this problem is general, hi that it is not restricted to the multi-model case, as many 
applications of the reversible jump sampler encounter this type of problem, we discuss 
some methods of overcoming this issue below

The conceptually simplest method of circumventing nonidentihabihty is to impose arti
ficial constraints on the parameters. For example, if \ij denotes the mean of thejth Gaussian 
mixture component, then one such constraint could be [n < ■ ■ ■ < ^  (Richardson and 
Green, 1997). However, the effectiveness of this approach is not always guaranteed (Jasra 
et al., 2006). One of the mam problems with such constraints is that they are often artificial, 
being imposed for inferential convenience rather than as a result of genuine knowledge 
about the model. Furthermore, suitable constraints canbe difficult or almost impossible to 
find (Frithwirth-Sdmatter, 2001).

Alternative approaches to handling nonidentifiabihty involve the post-processing of 
MCMC output. Stephens (2000b) gives ail inferential method based on the relabeling of 
components with respect to the permutation which minimizes the posterior expected loss. 
Celeux et al. (2000), Hum et al. (2003), and Sisson and Hum (2004) adopt a fully dedsion- 
theoretic approach, where for every posterior quantity of interest, an appropriate (possibly



Reversible Jump MCMC 8 1

multi-model) loss function is constructed and minimized. Each of these methods can be 
computationally expensive.

3.3.2 Convergence Assessment

Under the assumption that an acceptably efficient method of constructing a reversible jump 
sampler is available, one obvious pre-requisite to inference is that the Markov chain con
verges to its equilibrium state. Even hi fixed dimension problems, theoretical convergence 
bounds are hi general difficult or impossible to determine, hi the absence of such theo
retical results, convergence diagnostics based on empirical statistics computed from the 
sample path of multiple chains are often the only available tool. An obvious drawback 
of the empirical approach is that such diagnostics invariably fail to detect a lack of con
vergence when parts of the target distribution are missed entirely by all replicate chains. 
Accordingly, these are necessaiy rattier than sufficient indicators of chain conveigence; see 
Mengersen et al. (1999) and Cowles and Carlin (1996) for comparative reviews under fixed 
dimension MCMC.

The reversible jump sampler generates additional problems hi the design of suitable 
empirical diagnostics, since most of these depend on the identification of suitable scalar 
statistics of the parameters' sample paths. However, hi the multi-model case, these param
eters may no longer retain the same interpretation, hi addition, convergence is required 
not only within each of a potentially large number of models, but also across models with 
respect to posterior model probabilities.

One obvious approach would be the implementation of independent sub-chain assess
ments, both within models and for the model indicator k e 1C. With focus purely on model 
selection, Brooks et a l (2003b) propose various diagnostics based on the sample path 
of the model indicator, k, including nonparametric hypothesis tests such as the x 2 and 
Kohnogorov-Smimov tests, hi this manner, distributional assumptions of the models (but 
not the statistics) are circumvented at the price of associating marginal convergence of 
k with convergence of the full posterior density.

Brooks and Giudid (2000) propose the monitoring of functionals of parameters which 
retain their interpretations as the sampler moves between models. The deviance is sug
gested as a default choice hi the absence of superior alternatives. A two-way ANOVA 
decomposition of the variance of such a functional is formed over multiple chain replica
tions, from which the potential scale reduction fador (PSRF) (Gelman and Rubin, 1992) 
canbe construded and monitored. Castelloe and Zimmerman (2002) extend this approach 
firstly to an unbalanced (weighted) two-way ANOVA, to prevent the PRSF being domi
nated by a few visits to rare models, with the weights being specified hi proportion to the 
frequency of model visits. Castelloe and Zimmerman (2002) also extend their diagnostic to 
the multivariate (MANOVA) setting on the observation that monitoring several functionals 
of marginal parameter subsets is more robust than monitoring a single statistic. This gen
eral method is dearly reliant on the identification of useful statistics to monitor, but is also 
sensitive to the extent of approximation induced by violations of the ANOVA assumptions 
of independence and normality

Sisson and Fan (2007) propose diagnostics when the underlying model can be formu
lated hi the marked point process framework (Higgle, 1983; Stephens, 2000a). For example, 
a mixture of an unknown number of univariate normal densities (Equation 3.5) can be 
represented as a set of k events = (if/, |i„ o j), j  =  1 , . . . ,  k, hi a region A c  K3. Given a 
reference point v e /I, in the same space as the events %j (e.g. v =  (to, |.u a2)), then the point- 
to-nearest-event distance, y, is the distance from the point (y) to the nearest event (| ,) in A 
withrespedto some distance measure. One can evaluate distributional aspeds of the events
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{ } ,  through y, as observed from different reference points v. A diagnostic can then be con
structed based on comparisons between empirical distribution functions of the distances y, 
constructed from Markov chain sample paths. Intuitively, as the Markov chains converge, 
(he distribution functions fory constructed from replicate chains should.be similar.

This approach permits the direct comparison of full parameter vectors of varying dimen
sion and, as a result, naturally incorporates a measure of across-model convergence. Due 
to the manner of their construction, Sisson and Fan (2007) are able to monitor an arbitrarily 
large number of such diagnostics. However, while this approach may have some appeal, it 
is limited by the need to construct the model in the marked point process setting. Common 
models which may be formulated in this framework indude finite-mixture, change-point 
and regression models.

Example: Convergence Assessment for Finite Mixture Univariate Normals

W e consider the reversible jump sampler of Richardson and Green (1997) implementing a finite 
mixture of normals model (Equation 3.5) using the enzymatic activity data set (Figure 3.1b). For 
the purpose of assessing performance of the sampler, we implement five independent sampler 
replications of length 400,000 iterations.

Figure 3.2a,b illustrates the diagnostic of Brooks et al. (2003 b) which provides a test for between- 
chain convergence based on posterior model probabilities. The pairwise Kolmogorov-Smirnov 
and x_ (all chains simultaneously) tests assume independent realizations. Basedon the estimated 
convergence rate (Brooks et al., 2003b), we retain every 400th iteration to obtain approximate 
independence. The Kolmogorov-Smirnov statistic cannot reject immediate convergence, with all 
pairwise chain comparisons well above the critical value of 0.05. The y- statistic cannot reject 
convergence after the first 10,000 iterations.

Figure 3.2c illustrates the two multivariate PSRFs of Castelloe and Zimmerman (2002) using 
the deviance as the default statistic to monitor. The solid line shows the ratio of between- and 
within-cham variation; the broken line indicates the ratio of within-model variation, and the 
within-model, within-chain variation. The mPSRFs rapidly approach 1, suggesting convergence, 
beyond 166,000 iterations. This is supported by the independent analysis of Brooks andGiudici
(2000) who demonstrate evidence for convergence of this sampler after around 1 50,000 iterations, 
although they caution that their chain lengths of only 200,000 iterations were too short for certainty.

Figure 3.2d, adapted from Sisson and Fan (2007), illustrates the PSRF of the distances from each 
of 100 randomly chosen reference points to the nearest model components, over the five replicate 
chains. Up to around 100,000 iterations, between-cham variation is still reducing; beyond300,000 
iterations, differences between the chains appear to have stabilized The intervening iterations mark 
a gradual transition between these two states. This diagnostic appears to be the most conseivative 
of those presented here.

This example highlights that empirical convergence assessment tools often give varying esti
mates of when convergence may have been achieved. As a result, it may be prudent to follow the 
most conseivative estimates in practice. While it is undemablethat the benefits forthe practitioner 
in implementing reversible jump sampling schemes are immense, it is arguable that the practical 
importance of ensuring chain convergence is often overlooked. However, it is also likely that cur
rent diagnostic methods are insufficiently advanced to permit a more rigorous default assessment 
of sampler convergence.

3.3.3 Estimating Bayes Factors

One of the useful by-produds of the reversible jump sampler is the ease with which Bayes 
fadors can be estimated, Explidtly expressing marginal or predictive densities of x under
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(a) KS statistic O) Chisq statistic

Iteration (thousands) Iteration (thousands)

(c) Vhat./Wc and Wm/WmWc (deviance) (d)
GeJman and Rubin

Iteration (thousands)
100 200 300

Iteration (thousands)
400

FIGURE 3.2
Convergence assessment for the enzymatic activity data set. (a) Kolmogorov-Smirnov and (b) x - tests of Brooks 
et al. (2003b). Horizontal line denotes an a =  0.05 significance level for test of different sampling distributions, 
(c) Multivariate PSEFs of Castelloe and Zimmerman (2002) and (d) PSEFvs of Sisson and Fan (2007). Horizontal 
lines denote the value of each statistic under equal sampling distributions, (From Sisson, 5. A. and Fan, Y. 2007. 
Statistics and Cotnjntting, 17:357-367. With permission.)

model M k as

">kW = LfxlMjOpte* I * )f% ,
R”*

-1

the normalized posterior probability of model Mk is given by

where =  iii^ix)/iii^ix) is the Bayes factor of model M t  to Mk, and p(k) is the prior 
probability of model Mk- For a discussion of Bayesianmodel selection, techniques, see Chip- 
man et al. (2001), Berger and Pericchi (2001), Kass and Raftery (1995), Ghosh and Samanta
(2001), Berger and Pericchi (2004), and Barbieri and Berger (2004). The usual estimator of 
the posterior model probability,, p(k \ x), is given by the proportion of chain iterations the 
reversible jump sampler spent in model M-k- 

However, when the number of candidate models ,A-1| is large, the use of reversible jump 
MCMC algorithms to evaluate Bayes factors raises issues of efficiency. Suppose that model
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Mk accounts for a large proportion of posterior mass. In attempting a between-model 
move from model the reversible jump algorithm will tend to persist in this model and 
visit others models rarely Consequently, estimates of Bayes factors based on model-visit 
proportions will tend to be inefficient (Bartolucd and Scacda, 2003; Han and Carlin, 2001), 

Bartolucd et al. (2006) propose enlarging the parameter space of the models under 
comparison with the same auxiliary variables, u — (u) and u' ~  <74.-̂ * (u/) (see Equa
tion 3.9), defined under the between-model transitions, so that the enlarged spaces, (6 ,̂ u) 
and (fit-, u'), have the same dimension. In this setting, an extension to the bridge estimator 
for the estimation of the ratio of normalizing constants of two distributions (Meng and 
Wong, 1996) can be used, by integrating out the auxiliary random process (i.e. u and u ) 
involved in the between-model moves. Accordingly, the Bayes factor of model Mk' to Mk 
can be estimated using the reversible jump acceptance probabilities as

.  E L  o V K iK Q k h W ^ V h ̂ x__________  ___

k ’k ~  E / = io ^ K ^ e ',),(ft,e *>]//*,'

where a^[(fc, 6 )̂, (k’, Hfc,)] is the acceptance probability (Equation 3.9) of the )th attempt to 
move from model Mk to M p, and where Jk and Jy  are the number of proposed moves from 
model . VI;- to and vice versa during the simulation. Further manipulation is required to 
estimate if the sampler does not jump between models and M f  directly (Bartolucd
et al., 2006). This approach can provide a more effident way of postprocessing reversible 
jump MCMC with minimal computational effort.

3.4 R elated  M u lti-M o d el S am p lin g  M eth od s

Several alternative multi-model sampling methods are available. Some of these are closely 
related to the reversible jump MCMC algorithm, or indude reversible jump as a spedal 
case.

3.4.1 Jump Diffusion

Before Hie development of the reversible jump sampler, Grenander and Miller (1994) 
proposed a sampling strategy based on continuous-time jump-diffusion dynamics. This 
process combines jumpsbetweenmodels at random times, and within-model updatesbased 
011 a diffusion process according to a Langevin stochastic differential equation indexed by 
time, t, satisfying

= dBk +  (e[) *■

where dBlk denotes anincrement of Brownian motion and V the vedor of partial derivatives. 
This method has found some application in signal processing and other Bayesian analyses 
(Miller et al., 1995; Phillips and Smith, 1996), but lias in general been superseded by the 
more accessible reversible jump sampler. In practice, the continuous-time diffusion must 
be approximated by a discrete-time simulation If the time discretization is corrededforvia 
a Metropolis-Hastings acceptance probability, the jump-diffusion sampler actually results 
in an implementation of reversible jump MCMC (Besag, 1994).
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3.4.2  Product Space Formulations

As an alternative to samplers designed for implementation on unions of model spaces, 
0  =   ̂ number of "supennodel" product-space frameworks have been
developed, with a state space given by 0 * = ®jtejt;((fr}, M,!fc). This setting encompasses all 
model spaces jointly, so that a sampler needs to simultaneously track Hj. for all k e 1C. The 
composite parameter vector, 6* e 0 \ consisting of a concatenation of all parameters under 
all models, is of fixed dimension, thereby circumventing the necessity of between-model 
transitions. Clearly product-space samplers are limited to situations where the dimension 
of 0* is computationally feasible. Carlin and Chib (1995) propose a posterior distribution 
for the composite model parameter and model indicator given by

n(k, 6* | x) oc L(x | M V P(«Z* I I

where l k and I _ k are index sets respectively identifying and excluding the parameters 0  ̂
from 0*. Here Ij. n l k> =  0 for all k ^ k', so that the parameters for each model are distinct. 
It is easy to see that the term /j(6J  | 6̂ ,  k), cahed a "pseudo-prior" by Carlin and Chib
(1995), has no effect on Hie joint posterior i t (k,  0 ^  | x) = ntk,  %  | x), and its form is usually 
chosen for convenience. However, poor choices may affect the efficiency of the sampler 
(Godsill, 2003; Green, 2003).

Godsill (2001) proposes a further generalization of the above by relaxing the restriction 
that If: n =  0 for all k ^  k .  That is, individual model parameter vectors are permitted 
to overlap arbitrarily which is intuitive for, say, nested models. Hus framework can be 
shown to encompass the reversible jump algorithm, in addition to the setting of Carlin 
and Chib (1995). hi theory this allows for direct comparison between the three sam
plers, although this has not yet been fully examined. However, one dear point is that the 
information contained within would be useful hi generating effidentbetween-model
transitions when in model M t, under a reversible jump sampler. This idea is exploited by 
Brooks et a l (2003c).

3.4.3 Point Process Formulations

Adifferentperspective on the multi-model sampler is based on spatial birth-and-death pro
cesses (Preston, 1977; Ripley, 1977). Stephens (2000a) observed that particular multi-model 
statistical problems canbe represented as continuous-tinie, marked point processes (Geyer 
and Mailer, 1994). Cue obvious setting is finite-mixture modeling (Equation 3.5) where 
the birth and death of mixture components, fy, indicate transitions between models. The 
sampler of Stephens (2000a) may be interpreted as a particular continuous-thiie, limiting 
version of a sequence of reversible jump algorithms (Cappe et al., 2003).

A number of illustrative comparisons of the reversible jump, jump diffusion, produd 
space and point process frameworks can be found in the literature. See, for example, 
Andrieu et al. (2001), Dellaportas et al. (2002), Carlin and Chib (1995), Godsill (2001, 2003), 
Cappe et al. (2003), and Stephens (2000a).

3.4.4 Multi-Model Optimization

The reversible jump MCMC sampler maybe utilized as the underlying random mechanism 
within a stochastic optimization framework, given its ability to traverse complex spaces 
efhdently (Andrieu et al., 2000; Brooks et a l, 2003a). hi a simulated annealing setting, the
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sampler would define a stationary distribution proportional to the Boltzmann distribution

where T > 0 and f(k , Ht ) is a model-ranking fimction to be minimized. A stochastic 
annealing framework will then decrease the value of T according to some schedule 
while using the reversible jump sampler to explore function space. Assuming adequate 
chain mixing, as T -> 0 the sampler and the Boltzmann distribution will converge to 
a point mass at (k*, 9^) = are, max/(^Oi ). Specifications for the model-ranking func
tion may include the Akaike information criterion or Bayesian information criterion 
(Ring and Brooks, 2004; Sisson and Fan, 2009), the posterior model probability (Clyde, 
1999) or a nonstandard loss function defined on variable-dimensional space (Sisson and 
Hum, 2004) for the derivation of Bayes rules.

3.4.5 Population MCMC

The population Markov chain Monte Carlo method (Liang and Wong, 2001; Liu, 2001) 
may be extended to the reversible jump setting (Jasra et al., 2007). Motivated by sim
ulated annealing (Geyer and Thompson, 1995), N parallel reversible jump samplers are 
implemented targeting a sequence of related distributions {tt,}, i =  1 , . . . ,  N, which may be 
tempered versions of the distribution of interest, tt i =  0;: | x). The chains are allowed
to interact, in that the states of any two neighboring (in terms of the tempering parameter) 
chains maybe exchanged, thereby improving the mixing across the population of samplers 
both within and b etwe en models. Jasra et al. (2007) demonstrate superior convergence rates 
over a single reversible jump sampler. For samplers that make use of tempering or parallel 
simulation techniques, Gramacy et al. (2010) propose efficient methods of utilizing samples 
from all distributions (ie. including those not from n i) using importance weights, for the 
calculation of given estimators.

3.4.6 Multi-Model Sequential Monte Carlo

The idea of running multiple samplers over a sequence of related distributions may also 
considered under a sequential Monte Carlo (SMC) framework (Del Moral et al., 2006). Jasra 
et al. (2008) propose implementing N separate SMC samplers, each targeting a different 
subset of model space. At some stage the samplers are allowed to interact and are combined 
into a single sampler. This approach permits more accurate exploration of models with 
lower posterior model probabilities than would be possible under a single sampler. As 
with population MCMC methods, the benefits gained in implementing N samplers must 
be weighed against the extra computational overheads.

3.5 D i s c u s s i o n  and F u tu re  D i r e c t i o n s

Given the degree of complexity associated with Hie implementation of reversible jump 
MCMC, a major focus for future research is in designing simple but efficient samplers, 
with the ultimate goal of automation Several authors have provided new insights into the



Reversible Jump MCMC 87

reversible jump sampler which may contribute toward achieving such goals. For example, 
Keith et al. (2004) present a generalized Markov sampler, which.indud.es the reversible jump 
sampler as a special case. Petris and Tardella (2003) demonstrate a geometric approach for 
sampling from nested models, formulated by drawing from a fixed-dimension auxiliary 
continuous distribution on the largest model sub space, and then using transformations 
to recover model-specific samples. Walker (2009) has recently provided a Gibbs sampler 
alternative to the reversible jump MCMC, using auxiliary variables. Additionally, as noted 
by Sisson (2005), one does not need to work only with reversible Markov chains, and 
nonreversible chains may offer opportunities for sampler improvement (Diacoms et al., 
2000; Mira and Geyer, 2000; Neal, 2004).

An alternative way of increasing sampler efhdency would be to explore the ideas intro
duced in adaptive MCMC. As with standard MCMC, any adaptations mustbe implemented 
with care—transition kernels dependent on the entire history of the Markov chain can 
only be used under diminishing adaptation conditions (Haario et al., 2001; Roberts and 
Rosenthal, 2009). Alternative schemes permit modification of the proposal distribution at 
regeneration times, when the next state of the Markov chain becomes completely indepen
dent of the past (Brodcwell and Kadane, 2005; Gilks et al., 199S). Under the reversible jump 
framework, regeneration canbe naturally achieved by incorporating an additional model, 
from which independent samples can be drawn. Under any adaptive scheme, however, 
how best to make use of historical chain information remains an open question. Addition
ally, effidenty gains through adaptations should naturally outwdgh the costs of handling 
chain history and modification of the proposal mechanisms.

Finally, two areas remain underdeveloped in the context of reversible jump simula
tion, Hie first of these is perfed simulation, which provides an MCMC framework for 
producing samples exactly from the target distribution, circumventing convergence issues 
entirely (Propp and Wilson, 1996). Some tentative steps havebeenmade hi this area (Brooks 
et al., 2006; Meller and Nidiolls, 1999). Secondly, while the development of "likelihood- 
free" MCMC has received much recent attention (Chapter 12, this volume), implementing 
the sampler hi the multi-model setting remains a challenging problem, in terms of both 
computational effidency and bias of posterior model probabilities.

A c k n o w l e d g m e n t s

This work was supp orted by the Austr alian Re se arch Council through the D iscovery Pro j ect 
scheme (DP0664970 and DP0877432),

R e f e r e n c e s

Al-Awadhi, F., Hum, M. A., and Jennison, C. 2004. Improving the acceptance rate of reversible jump 
MCMC proposals. Statistics and Probability Letters, 69:189-198.

Andrieu, C., de Freitas, J., and Doucet, A. 2000. Reversible jum p MCMC simulated annealing for 
neural networks. In C. Boutilier and M. Goldszmidt (eds), Proceedings o f  the 16th Conference on 
Uncertainty in Artificial Intelligence, pp. 11-18. Morgan Kaufmann, San Francisco.

Andrieu, C., Djuric, P  M., and Doucet, M. 2001. Model selection by MCMC computation. Signal 
Processing, 81:19-37.



88 Handbook o f  Markov Chain Monte Carlo

Barbieri, M. M. and Berger, J. O. 2004. Optimal predictive model selection. Annals o f  Statistics, 
32:870-897. "

Bartolucd, F. and Scaccia, L. 2003. A new  approach for estimating the Bayes factor. Technical report, 
University of Perugia.

Bartolucd, F., Scaccia, L., and Mira, A. 2006. Efficient Bayes factors estimation from reversible jump 
output. Biometrika, 93(l):41-52.

Berger,J. O. and Peri cchi, L. R. 2001. ObjectiveBayesianmethods for mod el selection: Introduction and 
comparison (with discussion). In E  Lahiri (eel.), Model Selection, IMS Lecture Notes— Monograph 
Series, 38, pp. 135-207. Institute of Mathematical Statistics, Beachwood, OH.

Berger, J. O. and Peri cchi, L. R. 2004. Training samples in objective Bayesian model selection. Annals 
o f  Statistics, 32:841-869.

Besag, J. 1994. Contribution to the discussion of a paper by Grenander and Miller. Journal o f  the Royal 
Statistical Society, Series B, 56:591-592.

Brockwell, A. E. and Kadane, J. B. 2005. Identification of regeneration times in MCMC simulation, 
with application to adaptive schemes. Journal o f  Computational and Graphical Statistics, 14(2): 
436-458. '

Brooks, S. E  1998. Markov chain Monte Carlo method and its application. The Statistician, 47: 
69-100.

Brooks, S. E  and Giudid, P  2000. MCMC convergence assessment via two-way ANOVA Journal o f  
Computational and Graphical Statistics, 9:266-285.

Brooks, S. P., Fan, Y., and Rosenthal, J. S. 2006. Perfect forward simulation via simulated tempering. 
Communications in Statistics, 35:683-713.

Brooks, S. E , Friel, N., and King, R. 2003a Classical model selection via simulated annealing. Journal 
o f  the Royal Statistical Society, Series B, 65:503-520.

Brooks, S. P., Giudid, P , and Philippe, A. 2003b, On non-parametric convergence assessment for 
MCMC model selection. Journal o f  Computational and Graphical Statistics, 12:1-22.

Brooks, S. E , Guidici, E , and Roberts, G. O. 2003c. Efficient construction of reversible jump Markov 
chain Monte Carlo proposal distributions (wi th discusion). Journal o f  the Royal Statistical Society, 
Series B, 65:3-39.

Cappe, O., Robert, C. E , and Ryden, T. 2003. Reversible jump MCMC converging to birth-and-death 
MCMC and more general continuous time samplers. Journal o f  the Royal Statistical Society, Series
B, 65:679-700.

Carlin, B. E  and Chib, S. 1995. Bayesian model choice via Markov chain Monte Carlo, Journal o f  the 
Royal Statistical Society, Series B, 57:473-464,

Castelloe, J. M. and Zimmerman, D. L. 2002. Convergence assessment for reversible jump MCMC 
samplers. Technical Report 313, Department of Statistics and Actuarial Science, University of 
Iowa.

Celeux, G .,H urn,M . A., and Robert, C. P  2000. Computational and inferential difficulties with mixture 
posterior distributions. Journal o f  the American Statistical Association, 95:957-970.

Chipman, H., George, E., and McCulloch, R. E. 2001. The practical implementation of Bayesian model 
selection (with discussion). In P. Lahiri (ed.), M odel Selection, IM S Lecture Notes— Monograph 
Series, 38, pp. 67-134. Institute of Mathematical Statistics, Beachwood, OH.

Clyde, M. A  1999. Bayesian model averaging and model search strategies. In  J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith (eds), Bayesian Statistics 6: Proceedings o f  the Sixth. Valencia 
International Meeting, pp. 157-185. Oxford University Press, Oxford.

Cowles, M. K. and Carlin, B. R 1996. Markov chain Monte Carlo convergence diagnostics: A 
comparative review. Journal o f  the American Statistical Association, 91:883-904.

Del Moral, P , Doucet, A., and Jasra, A. 2006. Sequential Monte Carlo samplers. Journal o f  the Royal
Statistical Society, Series B, 68:411-436.

Dellaportas, E  and Papageorgiou, I. 2006, Multivariate mixtures of normals with unknown number 
of components. Statistics and Computing, 16:57—68.

Dellaportas, E , Forster, }. T., and Ntzoufras, I. 2002. On Bayesian model and variable selection using 
MCMC. Statistics and Computing, 12:27-36.



Reversible Jump MCMC 89

Denison, D. G. T., Mallick, B. K., and Smith, A. F. M. 1998. Automatic Bayesian curve htting. Journal 
o f  iheR oyal Statistical Society, Series B, 50:330-350.

Diaconis, P , Holmes, S., and Neal, R. M. 2000. Analysis of a non-reversible Markov chain sampler.
Annals o f  Applied Probability, 10:726-752.

Diggle, P  T. 1963. Statistical Analysis o f  Spatial Point Patterns. Academic Press, London.
DiM atteo, I., Genovese, C. R., and Kass, R. E. 2001. Bayesian curve-fitting with free-knot splines. 

Biametrika, 88:1055-1071.
Ehlers,R, S. and Brooks, S.P. 2003. Constructinggeneralefhcientproposalsforreversiblejum pM CM C.

Technical report, Department of Statistics, Federal University of Parana.
Ehlers, R. S. and Brooks, S. P  200S. Adaptive proposal construction for reversible jump MCMC.

Scandinavian Journal o f  Statistics, 35:677-690.
Fan, Y. and Brooks, S. E  2000. Bayesian modelling of prehistoric corbelled domes. T he Statistician, 

49:339-354.
Fan, Y , Peters, G. W., and Sisson, S. A. 2009. Automating and evaluating reversible jump MCMC 

proposal distributions. Statistics and Computing, 19(4):409-421.
Fruhwirth-Schnatter, S. 2001. Markov chain Monte Carlo estimation of classical and dynamic 

switching and mixture models. Journal o f  the American Statistical Association, 96:194-209, 
Gelman, A. and Rubin, D. B. 1992. Inference from iterative simulations using multiple sequences.

Statistical Science, 7:457-511.
George, A. W., Mengersen, K. L., and Davis, G. P  1999. ABayesian approach to ordering gene markers. 

Biometrics, 55:419-429.
George,E. I. and McCulloch, R. E. 1993. Variable selection via Gibbs sampling. Journal o f  the American 

Statistical Association, 88:881-889.
Geyer, C. J. and Mailer, J. 1994. Simulation procedures and likelihood inference for spatial point 

processes. Scandinavian Journal o f  Statistics, 21:359-373.
Geyei; C. T. and Thompson, E. A. 1995. Annealing Markov chain Monte Carlo w ith applications to 

ancestral inference. Journal o f  the American Statistical Association, 90:909-920.
Ghosh, J. K. and Samanta, T. 2001. Model selection: An overview. Current Science, 60:1135-1144. 
Gilks, W. R., Roberts, G. O., and Sahu, S. K. 1998. Adaptive Markov chain Monte Carlo through 

regeneration. Journal o f  the American Statistical Association, 93:1045-1054.
Godsill, S. 2001. On the relationship between Markov chain Monte Carlo methods for model 

uncertainty Journal o f  Computational and Graphical Statistics, 10:1-19.
Godsill, S, 2003. Discussion of Trans-dimensional Markov chain M onte Carlo by  R J. Green. In R T. 

Green, N, L, Hjort, and S. Richardson (eds), Highly Structured Stochastic Systems, pp. 199-203. 
Oxford University Press, Oxford.

Gramacy, R. B., Samworth, R. J., and King, R. 2010. Importance tempering. Statistics and Computing, 
20:1-7.

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model 
determination. Biametrika, 82:711-732.

Green, P  J. 2001. A primer on Markov chain Monte Carlo. In O. E. Barndorff-Nielsen, D. R. Cox, and
C. Kluppelberg (eds), Complex Stochastic Systems, Monographs on Statistics and Probability, 87, 
pp. 1-62. Chapman &  Hall/CRC, Boca Raton, FL,

Green, P. J. 2003. Trans-dim ensional Markov chain Monte Carlo. In P  T. Green, N. L. Hjort, and
S. Richardson (eds), Highly Structured Stochastic Systems, pp. 179-198. Oxford University Press, 
Oxford.

Green, P  J. and Mira, A. 2001. Delayed rejection in reversible jump Metropolis-Hastings. Biometrika, 
88:1035-1053.

Grenander, U. and Miller, M. 1 .1994. Representations of knowledge in complex systems. Jo urnal o f  the 
Royal Statistical Society, Series B, 56:549-603.

Haario, H., Saksman, E., and Tamminen, T. 2001. An adaptive Metropolis algorithm. Bernoulli, 7: 
223-242. '

Han, C. and Carlin, B. P  2001. MCMC methods for computing Bayes factors: A comparative review. 
Journal o f  the American Statistical Association, 96:1122-1132.



90 Handbook o f  Markov Chain Monte Carlo

Hastie, D. 2004. Developments in Markov chain Monte Carlo. PhD thesis, University of 
Bristol.

Hastie, T. J. and Tibshirani, R. J. 1990. Generalised Additive Models. Chapman & Hall, London.
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. 

Biometrika, 57:59-109.
Hum, M., Justel, A., and Robert, C. E  2003. Estimating mixtures of regressions. Journal o f  Computational 

and Graphical Statistics, 12:55-79.
Jasra, A., Doucet, A., Stephens, D. A,, and Holmes, C. 2008, Interacting sequential Monte Carlo 

samplers for trans-dimensional simulation. Computational Statistics and Data Analysis, 52(4): 
1765-1791.

Jasra, A., Holmes, C., and Stephens, D. A. 2005. MCMC methods and the label switching problem. 
Statistical Science, 20(l):50-67.

Jasra, A., Stephens, D. A., and Holmes, C. C. 2007. Population-based reversible jump Markov chain 
Monte Carlo. Biometrika, 94:787-807.

Kass, R. E. and Raftery, A  E. 1995. Bayes factors. Journal o f  the American Statistical Association, 
90:773-796. '

Keith, J. M., Kroese, D, P., and Bryant, D. 2004. A  generalised Markov sampler. Methodology and 
Computing in Applied Probability, 6:29-53.

King, R. and Brooks, S. E  2004. Aclassical study of catch-effort models for H ector's dolphins. Journal 
o f  the American Statistical Association, 99:325-333.

Kirkpatrick, S. 1984. Optimization by simulated annealing: Quantitative studies. Journal o f  Statistical 
Physics, 34:975-986.

Lawler, G. and Sokal, A. 1988. Bounds on the l?~ spectrum for Markov chains and Markov processes. 
Transactions o f  the American Mathematical Society, 309:557-580.

Liang, F. and Wong, W. H. 2001. Real parameter evolutionary Monte Carlo with applications to 
Bayesian mixture models. Journal o f  the American Statistical Association, 96:653—666,

Liu, J. S. 2001. M onte Carlo Strategies in Scientific Computing. Springer, New York.
Liu, J. S., Liang, F., and Wong, W. H. 2001. A theory for dynamic weighing in M onte Carlo computation. 

Journal o f  the American Statistical Association, 96(454):561-573.
Meng, X. L. and Wong, W. H. 1996. Simulating ratios of normalising constants via a simple identity: 

A  theoretical exploration. Statistica Sinica, 6:831-860.
Mengersen, K. L., Robert, C. P , and Guihenneuc-Joyaux, C. 1999. MCMC convergence diagnostics: 

A  review. In J. M. Bernardo, J. O. Berger, A. E  Dawid, and A. F. M. Smith (eds), Bayesian Statistics
6, pp. 415—140. Oxford University Press, Oxford.

Miller. M  I,, Srivastava, A., and Grenander, U, 1995. Conditional-mean estimation via jump-diffusion 
processes in multiple target tracking/ recognition. IEEE Transactions on Signal Processing, 
43:2678-2690.

Mira, A. and Geyer, C. J. 2000. On non-reversible Markov chains. In N. Madras (ed.), M onte Carlo 
Methods, pp. 93-108. American Mathematical Society, Providence, RI.

Mailer, J. and Nicholls, G. K. 1999. Perfect simulation for sample-based inference. Technical report, 
Aalborg University.

Neal, R. M. 2004. Improving asymptotic variance of MCMC estimators: Non-reversible chains are 
better. Technical Report 0406, Department of Statisics, University of Toronto,

Nott,D . J, and Green, E J, 2004. Bayesian variable selection and the Swendsen- Wang algorithm. Journal 
o f  Computational and Graphical Statistics, 13(1):141-157.

Nott,D . J. andLeonte, D. 2004. Sampling schemes for Bayesian variable selection ingeneralised linear 
models. Journal o f  Computational and Graphical Statistics, 13(2):362-382.

Ntzoufras, I., Dellaportas, P., and Forster, J. T. 2003. Bayesian variable and link determination for 
generalised linear models. Journal o f  Statistical Planning and Inference, 111:165-180.

Papathomas, M , Dellaportas, P , and Vasdekis, V. G. S. 2009. A general proposal construction for 
reversible jump MCMC. Technical report, Athens University of Economics and Business,

Peskun, E  1973. Optimum Monte Carlo sampling using Markov chains. Biometrika; 60:607-612.



Reversible Jump MCMC 91

Petris, G. and Tardella,L. 2003. A geometric approach to transdim ensional Markov chain Monte Carlo. 
Canadian journal o f  Statistics, 31.

Phillips,D. B. and Smith, A. F. M. 1996. Bayesian model comparison via jump diffusions. In W. R. Gilks, 
S. Richardson, and D. J, Spiegelhalter (eds), Markov Chain M onte Carlo in Practice, pp. 215-239. 
Chapman & Hall, London.

Preston, C. J. 1977. Spatial birth-and-death processes. Bulletin o f  the International Statistical Institute, 
46:371-391. '

Propp, J. G. and Wilson, D. B. 1996. Exact sampling with coupled Markov chains and applications to 
statistical mechanics. Random Structures and Algorithms, 9:223-252.

Richardson, S. and Green, P  J. 1997. On Bayesian analysis of mixtures w ith an unknown 
number of components (with discussion). Journal o f  the Royal Statistical Society, Series B, 59: 
731-792. '

Ripley, B. D. 1977. Modelling spatial patterns (with discussion), journal o f  the Royal Statistical Society, 
Series B, 39:172-212. '

Roberts, G. O. 2003. Linking theory and practice of MCMC. In P. J. Green, N. Hjort, and S. Richardson 
(eds), Highly Structured Stochastic Systems, pp. 145-166. Oxford University Press.

Roberts, G. O. and Rosenthal, J. S. 2009. Examples of adaptive MCMC, Journal o f  Computational and 
Graphical Statistics, 18:349-367.

Sisson, S. A. 2005. Trans-dim ensional Markov chains: A decade of progress and future perspectives. 
journal o f  the American Statistical Association, 100:1077-1089.

Sisson, S. A. and Fan, Y. 2007. A distance-based diagnostic for trans-dim ensional Markov chains. 
Statistics and Computing, 17:357-367.

Sisson, S. A. and Fan, Y. 2009. Towards automating model selection for a mark-recapture-recovery 
analysis. Applied Statistics, 58(2):247-266.

Sisson, S, A. and Hurn, M. A. 2004. Bayesian point estimation of quantitative trait loci, Biometrics, 
60:60-68.

Smith, M. and Kohn, R. 1996. Nonparametric regression using Bayesian variable selection, journal o f  
Econometrics, 75:317-344.

Stephens, M. 2000a. Bayesian analysis of mixture models with an unknown number of components—  
an alternative to reversible jump methods. Annals o f  Statistics, 28:40-74.

Stephens, M. 2000b. Dealing with label switching in mixture models, journal o f  the Royal Statistical 
Society, Series B, 62:795-809.

Tad esse, M., Sha, N., and Vannucci, M, 2005. Bayesian variable selection in clustering high
dimensional data. Journal o f  the American Statistical Association, 100:602-617.

Tierney, L. 1998. A note on M etropolis-H astines kernels for general state spaces. Annals o f  Applied 
Probability, 8 :1-9.

Tierney, L. and Mira, A. 1999. Some adaptive Monte Carlo methods for Bayesian inference. Sf/ifrsfics 
in M edicine, 18:2507-2515.

Trias, M., Vecchio, A., and Vetich, J. 2009. Delayed rejection schemes for efficient Markov chain Monte 
Carlo sampling of multimodal distributions. Technical report, Universitat de les Illes Balears.

Vermaak, J., Andrieu, C., Doucet, A,, and Godsill, S. J. 2004. Reversible jum p Markov chain Monte 
Carlo strategies for Bayesian model selection in autoregressive processes. Journal o fT im e Series 
Analysis, 25(6):785-809.

Walker, S. G. 2009. A  Gibbs sampling alternative to reversible jump MCMC. Technical report, 
University of Kent.





4
Optimal Proposal Distributions 
and Adaptive MCMC

Jeffrey S. Rosenthal

4.1 In tro d u ctio n

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) requires choice 
of proposal distributions, and it is well known that some proposals work much better than 
others. Determining which proposal is best for a particular target distribution is both very 
important and very difficult. Often this problem is attacked in an mi hoc maimer involving 
much trial and error. However, it is also possible to use theory to estimate optimal proposal 
scalings and/or adaptive algorithms to attempt to find good proposals automatically. This 
chapter reviews both of these possibilities.

4.1.1 Ih e  Metropolis-Hastings Algorithm

Suppose that our target distribution has density n with respect to some reference measure 
(usually (f-dimensional Lebesgue measure). Then, given X„, a "proposed value" \„+i is 
generated from some pre-specified density q(Xn, y), and is then accepted with probability

a(x, y) =
1,

n(x)q(x,y) > 0, 

:i(x)/j(x,y) = 0.
{4.1)

If the proposed value is accepted, we set X,i+i =  Y„+i; otherwise, we set X,;+i =  X„. The 
function a(x, y) is chosen, of course, precisely to ensure that the Markov chain Xo, X i , . . .  is 
reversible with respect to the target density n (y), so that the target density is stationary for 
the chain If the proposal is symmetric, that is q(x, y) = q(y, x), then this reduces to

a(x,y) 7l(X)

I

n(x)t](x,y) > 0, 

n(x)q(x,y) =  0.

4.1.2 Optimal Scaling

It has long been recognized that the choice of the proposal density q(x, y) is crucial to 
the success (e.g. rapid convergence) of the Metropolis-Hastings algorithm. Of course, the
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fastest-converging proposal density would be (/(x, y) =  ji(y) (in which case a(x, y) = l,and 
the convergence is immediate), but in the Markov chain Monte Carlo (MCMC) context we 
assume that n cannot be sampled directly. Instead, the most common case (which we focus 
on here) involves a symmetric rat iriout-walk Metropolis algorithm (RMW) hi which the proposal 
value is given by Y„+i = X„ + Z„+i, where the increments {Z„} are i.i.d. from some fixed 
symmetric distribution (e.g. N(0, c 2!^)}. hi this case, the crucial issue becomes how to scale 
the proposal (e.g. how to choose a): too small and the chain will move too slowly; too 
large and the proposals will usually he rejected. Instead, we must avoid both extremes (we 
sometimes refer to this as the "Goldilocks principle").

Metropolis et a l (1953) recognized this issue early on, when they considered the case 
Z„ ~ ll[—01, a] and noted that "the maximum displacement ot must be chosen with some 
care; if too large, most moves wall be forbidden, and if too small, the configuration will not 
change enough, hi either case it will then take longer to come to equilibrium."

hi recent years, significant progress has been made in identifying optimal proposal 
scalings, hi terms of such tangible values as asymptotic acceptance rate. Under certain con
ditions, these results can describe the optimal scaling precisely. These issues are discussed 
in Section 4.2 below.

4.1.3 Adaptive MCMC

The search for improved proposal distributions is often done manually, through trial and 
error, though this canbe difficult, especially hi high dimensions. An alternative approach 
is adaptive MCMC, which asks the computer to automatically "learn" better parameter 
values "on the fly"—that is, while an algorithm runs. Intuitively, this approach is attrac
tive since computers are getting faster and faster, while human speed is remaining about 
the same.

Suppose { P y l y t v  is a  family of Markov chains, each having stationary distribution t t .  

(For example, perhaps Py corresponds to an RW M  algorithm with increment distribution 
N(0, y 2I(i).) An adaptive M C M C  algorithm would randomly update the value of y  at each 
iteration, hi an attempt to find the best value. Adaptive M C M C  has been applied hi a variety 
of contexts (e.g. Haario et a l, 2001; Giordani and Kohn, 2006; Roberts and Rosenthal, 2009), 
induding problems in statistical genetics (Turro et al., 2007).

Counterintuitively, adaptive MCMC algorithms may not always preserve the stationarity 
of t t .  However, if the adaptations are designed to satisfy certain conditions, then station
arity is guaranteed, and significant speed-ups are possible. These issues are discussed hi 
Section 4.3 below.

4.1.4 Comparing Markov Chains

Since much of what follows will attempt to find "better" or "best"' MCMC samplers, we 
pause to consider what it means for one Markov chain to be better than another.

Suppose Pi and P2 are two Markov chains, each with the same stationary distribution 
n . Then Pi converges faster th<m P? if supA |P"(.*,A) — n(A)| < supA | P j (x, A) — n (A) | for all
11 and x. This definition concerns distributional conveigence (hi total variation distance) 
as studied theoretically in, for example, Rosenthal (1995, 2002) and Roberts and Tweedie 
(1999).

Alternatively, Pi has smaller variance than. P? if Var( ̂  V ’Li£(^7)) is smaller when {X, ] fol
lows Pi than when it follows P?. This definition concerns the variance of a functional £, and 
may depend on which# is chosen, and also perhaps on it and/ or the starting distribution,
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Usually we assume that the Markov chain {X„J is in stationaiity, so Pr(X, e A) =  n(A), and 
Pr(X,-|-i e A | Xi = Jt) =  P(x, A) where P is the Markov chain kernel being followed.

If the Markov chain {Xr,} is in stationaiity, then, for large it, V a r ( - ^ =1g(X,)) ^  
jVar^ig) ig/ where ig =  corr(g(X0),£(X t )) = 1 + 2 eorr& tX o),#^)) is the
integrated autocorrelation time. So, a related definition is that Pi has smaller asymptotic 
variai ice flimi P2 if is smaller under P 1 than under P2. (Under strong conditions involving 
the so-called Peskun. ordering, this improvement is sometimes uniform over choice of g; see, 
e.g. Mira, 2001.)

Another perspective is that a Markov chain is better if it allows for faster exploration 
of the state space. Thus, Pi mixes faster than P i if E[(X„ — X„_i)2] is laiger under Pi than 
under P?, where again {X,,} is in stationaiity. (Of course, E[(Xr, — X„_ 1)2] would usually be 
estimated by  ̂E l 'L l^  -  X,_i )2, or perhaps by V ”=g(X/ -  X,_i)2 to allow a burn-in B
to approximately converge to stationaiity.) Note that the evaluation of E[(X?? — X „_i)2] is 
over all proposed moves, including rejected ones where (X„ -  X „_i)2 =  0. Thus, rejected 
moves slow down the chain, but small accepted moves do not help very much either. 
Best is to find reasonably large proposed moves which are reasonably likely to be 
accepted.

Such competing definitions of "better" Markov chain mean that the optimal choice of 
MCMC may depend on the specific question being asked. However, we will see in Sec
tion 4.2 that in some circumstances these different definitions are all equivalent, leading to 
uniformly optimal choices of algorithm parameters.

4.2 O p tim al S calin g  o f R an d om -W alk  M etro p o lis

We restrict ourselves to the RWM algorithm, where the proposals are of the form Y„+i =  
X„ +  Z,!+i, where {Zf} are i i d ,  with fixed symmetric density, with some scaling parameter 
a > 0, for example Z, ~  N (0, <y2I,i) , To avoid technicalities, we assume that the target density 
tt is a positive, continuous function. The task is to choose <7 in order to optimize the resulting 
MCMC algorithm.

4.2.1 Basic Principles

A first observation is that if a is very small, then virtually all proposed moves will be 
accepted, but they will represent very small movements, so overall the chain will not mix 
well (Figure 4.1). Similarly, if a is very large, then most moves willbe rejected, so the chain 
will usually not move at all (Figure 4.2). What is needed is a value of o between the two 
extremes, thus allowing for reasonable-sized proposal moves together with a reasonably 
high acceptance probability (Figure 4.3).

A simple wTay to avoid the extremes is to monitor the acceptasice rale of the algorithm, that 
is, the fraction of proposed moves which are accepted. If this fraction is very dose to 1, this 
suggests that a is too small (as in Figure 4.1). If this fraction is very close to 0, this suggests 
that o is too large (as in Figure 4.2). But if this fraction is far from 0 and far from 1, then we 
have managed to avoid both extremes (Figure 4.3).

So, this provides an easy rule of thumb for scaling RMW algorithms: choose a scaling a 
so that the acceptance rate is far from 0 and far from 1, However, this still allowTs for a wide 
variety of choices. Under some conditions, much more can be said,
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FIGURE 4.1
Tl'ace plot with small a, large acceptance rate, and poor mixing.

4.2.2 Optimal Acceptance Rate as d  —* oo

Major progress about optimal scalings was made by Roberts et al. (1997). They considered 
RWM on Rrf for very special target densities, of the form

■n(xi,x2, . . . , x d) = f ( x i ) f ( x 2) . .  . f(x d), (4.2)

for some one-dimensional smooth density/. That is, the target density is assumed to consist 
of ii.d. components. Of course, this assumption is entirely unrealistic for MCMC, since it 
means that to sample from Tt it suffices to sample each component separately from the 
one-dimensional density / (which is generally easy to do numerically).

Under this restrictive assumption, and assuming proposal increment distributions of the 
iormN(0, o 2!^), Roberts et a l (1997) proved the remarkable result that as d -> x>, the optimal 
acceptance rate is precisely 0.234. This is clearly a major refinement of the general principle 
that the acceptance rate should be far from 0 and far from 1.

More precisely, theirresultis the following. Suppose thata = t'/v'Sfor s°me t > 0. Then, as 
d —>■ d o ,  if time is speeded up by a factor of d, and space is shrunk by a factor of \'d, then each 
component of the Markov chain converges to a diffusion having stationary distribution/,
and speed function givenby h (£) — 2 i 2<t> ( — \/F(-/2 ], where is the cumulative distribution

FIGURE 4.2
Ti'ace plot with large o, small acceptance rate, and poor mixing.
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FIGURE 4.3
Ttace plot with medium tr, medium acceptance rate, and good mixing.

function of a standard normal, and I  is a constant depending on /, given in fact by I  =

( m ) . f(x )"x '

It follows that this diffusion is optimized (in terms of <vn/ of the criteria of Section 4.1.4) 
when t  is chosen to maximize hi t). It is computed numerically that this optimal value of t 
is given by fopt = 2.38/V7.

Furthermore, the asymptotic (stationary) acceptance rate is given by A{£) =
2<t> . Hence, the optimal acceptance rate is equal to A (fopt) =  2<i>(—2.3S/2) =
0.234, which is where the figure 0.234 comes from.

Figure 4.4 plots lt(l) versus t, and Figure 4.5 plots hit) versus /!(£)■ (We take 1 = 1  for 
definiteness, but any other value of I would simply multiply all the values by a constant.) 
hi particular, the relative speed h(t) remains fairly dose to its maximum as long as £ is 
within, say, a fador of 2 of its optimal value. Equivalently, the algorithm remains relatively 
efficient as long as the asymptotic acceptance rate A(T) is between, say, 0.1 and 0.6.

Of course, the above results are all asymptotic as d -» co. Numerical studies (e.g. Gelman 
et al., 1996; Roberts and Rosenthal, 2001) indicate that the limiting results do seem to well 
approximate finite-dimensional situations for rf as small as 5. On the other hand, they

Parameter t

FIGURE 4,4
Algorithm relative speed Ji(£) as a function of the parameter £.
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FIGURE 4,S
Algorithm relative speed h (t ) as a function of acceptance rate A(f).

do not apply to one-dimensional increments, for example; numerical studies on normal 
distributions show that when d =  1, the optimal acceptance rate is approximately 0.44. 
Finally, these results are all on continuous spaces, but there have also been studies of optimal 
scaling for discrete Metropolis algorithms (Neal et al,, 2007).

4.2.3 Inhomogeneous Target Distributions

The above result of Roberts et al. (1997) requires the strong assumption that tt( x ) =  

n t j d O ,  that is, that the target distribution has ii.d . components, hi later work, this 
assumption was relaxed hi various ways.

Roberts and Rosenthal (2001) considered inhomogeneous target densities of the form

where the [C,} are themselves i.i.d. from some fixed distribution. (Thus, Equation 4.2 cor
responds to the special case where the Q are constant.) They proved that hi this case, 
the result of Roberts et al. (1997) still holds (inducting the optimal acceptance rate of 
0.234), except that the limiting diffusion speed is divided by an "inhomogeneity factor" 
of b =  E(Cf)/ (E(Ci))2 > 1. hi particular, the more inhomogeneous the target distribution 
(i.e. the greater the variability of the C,), the slower the resulting algorithm.

As a spedal case, if the target distribution is N(0, £ ) for some ri-dimensional covariance 
matrix £ , and the increment distribution is of the form N (0, ), then by change of basis this
is equivalent to the case of proposal increment N (0, 1,{) and target distribution N (0, Y, E " 1). 
hi the corresponding eigenbasis, this target distribution is of the form (Equation 4.3) where 
now C, = with {M jLi the eigenvalues of the matrix Y E " 1. For large d, this approx

imately corresponds to the case where the {C, J are random with E(C;) =   ̂ l y'"V 

E(C?) =  ̂12*1= i V  The inhomogeneity factor b thenbecomes

(4.3)
i=i

(4.4)
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with {>„,} the eigenvalues of E  E p This expression is maximized when the jXyJ are con
stant, that is, when E  E " 1 is a multiple of the identity, or in other words, when E f3 is 
proportional to E.

We conclude that with increment distribution N(0, E p), and target distribution N(0, E ), 
it is best if E p is approximately proportional to E , that is, E p «  k E  for some k > 0. If not, 
this will lead to additional slowdown by the factor b.

Once we fix E p =  k  E  , then we can apply the original result of Roberts et al., to conclude 
that the optimal constants is then (2.3S)2/(f That is, it is optimal to have

E p =
(2.38)2

E. {4.5)

In a related direction, Bedard (2007, 2008a,b; see also Bedard and Rosenthal, 2008) con
sidered the case where the taiget distribution n has independent coordinates with vastly 
different scalings (ie. different powTers of d as d —> oo). She proved that if each individual 
component is dominated by the sum of all components, then the optimal acceptance rate 
of 0.234 still holds. In cases where one component is comparable to the sum, the optimal 
acceptance rate is in general less (not more!) than 0.234. Sherlock (2006) did explicit finite
dimensional computations for the case of normal target distributions, and came to similar 
conclusions.

4.2.4 Metropolis-Adjusted Langevin Algorithm

Finally, Roberts and Tweedie (1996) and Roberts and Rosenthal (1998) considered the more 
sophisticated Metropolis-Adjusted Lrvigeviit algorithm (MALA). This algorithm is similar to 
RWM, except that the proposal increment distribution Z, ~  N (0, a2Jrf) is replaced by

Z i ~  N ^ V l o g i r t X , , ) , ^

2
Here the extra term y V  log n(Xn), corresponding to the discrete-time approximation to the 
continuous-tiine Langevin diffusion for tt, is an attempt to move in the direction in which 
the (smooth) target density tt is increasing.

Roberts and Rosenthal (1998) proved thatinthis case, under the same rid , target assump
tion {Equation 4.2), a similar optimal scaling result holds, This time the scaling is a = £ fd l‘ 6 

(as opposed to £/Vri), and the optimal value £opt has the optimal asymptotic acceptance 
rate A(£opt) =  0.574 (as opposed to 0.234).

This proves that the optimal proposal scaling o and the acceptance rate are both signifi
cantly laiger for MALA than for RWM, indicating that MALA an improved algorithm with 
faster convergence. The catch, of course, is that the gradient of tt must be computed at each 
new state reached, which could be difficult and/or time-consuming. Thus, RWM is much 
more popular than MALA in practice.

4.2.5 Numerical Examples

Here we consider some simple numerical examples in dimension d =  10. In each case, the 
target density tt is that of a ten-dimensional normal with some covariance matrix E, and 
we consider various forms of the RMW algorithm.
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4.2.5.1 Off-Diagonal Covariance

Let M be Hie d x d matrix having diagonal elements 1, and off-diagonal elements given by 
the product of the row and column number divided by d2, that is, mu =  1, and /«,, =  ij/d2 

for j ^ /. Then let E_1 = M 2 (since M is symmetric, E is positive-definite), and let the target 
density jt be that of N(0, E). (Equivalently, ji is such that X ~  n if X = MZ, where Z is a 
10-tuple of i.i.d. univariate standard normals.)

We compute numerically that the top-left entry of E is equal to 1.0305. So, if h is the 
functional equal to the square of the first coordinate, then hi stationarity the mean value of 
h should be 1.0305.

We consider an RWM algorithm for this taiget ti(-), with initial value Xo = (1 ,0 ,0 , . . . ,  0), 
and with increment distribution given by N  (0, o 2I,i) for various choices of a. For each choice 
of a, we run the algorithm for 100,000 iterations, and average all the values of the square 
of the first coordinate to estimate its stationary mean. We repeat this 10 thnes for each <r, to 
compute a sample standard error (over the 10 independent runs) and a root mean squared 
error (RMSE) for each choice of a. Our results are as follows:

<J MeanAcc. Rate Estimate RMSE

0.1 0.836 0.992 ±  0.066 0.074
0.7 0.230 l.D 32±  0.019 0.018
3.0 0.00(2. l.DD0± 0.083 0.085

We see from this table that the value a = 0.1 is too small, leading to an overly high accep
tance rate (S3.6%), a p o or estimate (0.992) of the mean functional value with large standard 
error (0.066) and large RMSE (0.074). Similarly, the value o = 3.0 is too high, leading to an 
overly low a cceptance r a te (0.2%), a p oor estimate (1.000) of the me an functional value with 
large standard error (0.083) and large RMSE (0.0S5). On the other hand, the value <r = 0.7 
is just right, leading to a nearly optimal acceptance rate (23.0%), a good estimate (1,032) of 
the mean functional value with smaller standard error (0.019) and smaller RMSE (0,085).

This confirms that, when scaling the increment covariance as oI,t, it is optimal to find <j 
to make the acceptance rate dose to 0.234.

4.2.5.2 Inhomogeneous Covariance

To consider Hie effect of nondiagonal proposal increments, we agahi consider a case where 
the target density ti is that of N(0, E), agahi hi dimension d =  10, but now we take E = 
diag(l2,2 2,3 2, . . . ,  102). Thus, the individual covariances are now highly variable. Since the 
last coordinate now has the highest variance and is thus most "interesting, " we consider 
the functional given by the square of the last coordinate. So, the functional's true mean is 
now 100. We again start the algorithms with the initial value Xo = (1, 0 ,0 , . . . ,  0).

We first consider a usual RWM algorithm, withproposalincrement distribution N (0, o 2Ir{), 
with a = 0.7 chosen to get an acceptance rate dose to the optimal value of 0.234. The result 
(agahi upon running the algorithm for 100,000 iterations, repeated 10 times to compute a 
sample standard error) is as follows:

<5 Mean Acc. Rate Estimate RMSE

0.7 0.230 114.S ±  28.2 30.5
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We thus see that, even though a was well chosen, the resulting algorithm still con
verges poorly, leading to a poor estimate (114.8) with large standard error {28.2) and large 
RMSE (30.5).

Next we consider running the modified algorithm where now the increment proposal is 
equal to iV(0, a 2E) where £  is the target covariance matrix as above, but otherwise the run 
is identical. In this case, we find the following:

a Mean Ace. Rate Estimate RMSE

0.7 0.29i 100.25 ±  1.91 1.83

Comparing the two tables, we can see that the improvement from using an increment 
proposal covariance proportional to the target covariance (rattier than the identity matrix) 
is very dramatic. The estimate (100.25) is much closer to the true value (100), with much 
smaller standard error (1.91) and much smaller RMSE (1.83). {Furthermore, the second 
simulation was simply run with a =  0.7 as in the first simulation, leading to slightly too 
laige an acceptance rate, so a slightly larger c would make it even better.) This confirms, 
as shown by Roberts and Rosenthal (2001), that when running a Metropolis algorithm, 
it is much better to use increment proposals which mimic the covariance of the target 
distribution if at all possible.

Of course, in general the target covariance matrix will not be known, and it is not at 
all dear {especially in high dimensions) howT one could arrange for proposal increment 
covariances to mimic the target covariance. One promising solution is adaptive MCMC, 
discussed in the next section. In particular, Section 4.3.2 considers the adaptive Metropolis 
algorithm and shows how it can successfully mimic the target covariance without any 
a  priori knowledge about it, even in hundreds of dimensions.

4.2.6 Frequently Asked Questions

Isn't a larger acceptance rate always preferable?

No. For RWM, if the acceptance rate is dose to 1, this means the proposal increments are 
so small that the algorithm is highly ineffident despite all the acceptances.

Is it essential that the acceptance rate be exactly 0.234?

No. As shown in Figure 4.5, the algorithm's effidency remains liigh whenever the acceptance 
rate is between about 0.1 and 0.6.

Are these asymptotic results relevant to finite-dimensional problems?

Yes. While the theorems are only proven as d -> oo, it appears that in many cases the 
asymptotics approximately apply whenever d > 5, so the infinite-dimensional results are 
good approximations to finite-dimensional situations.

Do these results hold for all target distributions?

No. They are only proved for very spedal cases involving independent target components. 
HowTever, within that dass they appear to be fairly robust (albeit sometimes with an even 
lower optimal acceptance rate than 0.234), and simulations seem to suggest that they approx
imately hold in other cases too. Furthermore, by change of basis, the results apply to all
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normal target distributions, too. And the general principle that the scaling should be nei
ther too large nor too small applies much more generally, to virtually all "local" MCMC 
algorithms.

Do these results hold for multimodal distributions?

hi principle, yes, at least for distributions with independent (though, perhaps multimodal) 
components. However, the asymptotic acceptance rate is by definition the acceptance rate 
with respect to the entire target distribution. So, if a sampler is stuck in just one mode, it 
may misrepresent the asymptotic acceptance rate, leading to an incorrect estimate of the 
asymptotic acceptance rate, and a misapplication of the theorem

In high dimensions, is the proposal scaling parameter a the only quantity of interest?

No. The entire proposal distribution is of interest, hi particular, it is best if the covariance 
of the proposal increment distribution mimics the covariance of the target distribution as 
much as possible. However, often significant gains can be realized simply by optimizing a  
according to the theorems.

Doesn't optimality depend on which criterion is used?

Yes, in general, but these asymptotic diffusion results are valid for any optimality measure. 
That is because in the limit the processes each represent precisely the same diffusion, just 
scaled with a different speed factor. So, running a suboptimal algorithm for n steps is 
precisely equivalent {in the limit) to running the optimal algorithm for in steps, where 
in < ii. In other words, with a suboptimal algorithm you have to run for longer to achieve 
precisely the same result, which is less efficient by any sensible efficiency measure at all, 
including all of those in Section 4.1.4.

Do these results hold for, say, Metrop olis-within-Gibbs algorithms?

No, since they are proved for full-dimensional Metropolis updates only. Indeed, the 
Metropolis-within-Gibbs algorithm involves updating just one coordinate at a time, and 
thus essentially corresponds to the case d =  1. In that case, it appears that the optimal 
acceptance rate is usually doser to 0.44 than 0.234.

Isn't it too restrictive to scale u specifically as 0(A~^2) for RWM, or 0(<i-1/6) for MALA? 
Wouldn't other scalings lead to other optimality results?

No, a smaller scaling would correspond to letting I  0, while a larger scaling would 
correspond to letting t —► d o , either of which would lead to an asymptotically zero- 
effidency algorithm (cf. Figure 4.5). The 0(d~ ^ 2) or 0 (d ~1/fl) scaling is the only 
one that leads to a nonzero limit, and thus the only scaling leading to optimality
as d -> oo.

4.3 A d ap tiv e  M C M C

Even if we have some idea of what criteria make an MCMC algorithm optimal, this still 
leaves the question of how to find  this optimum, that is, how to run a Markov chain with
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{approximately) optimal characteristics. For example, even if we are convinced that an 
acceptance rate of 0,234 is optimal, how do we find the appropriate proposal scaling to 
achieve this?

Gtie method, commonly used, is trial and error: if the acceptance rate seems too high, 
then we reduce the proposal scaling <j and try again {or if it seems too low, then we increase 
the scaling). This method is often successful, but it is generally thne-consuming, requiring 
repea ted manual intervention by the user. Furthermore, such a method caimot hope to find 
more complicated improvements, for example making the proposal covariance matrix 
approximately proportional to the (unknown) target covariance matrix E as in Equation 4.5 
(which requires choosingri(rf — l )/2 separate covariance matrix entries). Itis possible to use 
more refined versions of this, for example with increasing trial run lengths to efficiently 
zero in on good proposal scale and shape values (Fasarica and Gehnan, 2010), but this is 
still not sufficient hi difficult high-dimensional problems.

As an alternative, we consider algorithms which themselves try to improve the Markov 
chain. Specifically, let {PyJyeV be a family of Markov chain kernels, each having the same 
stationary distribution -n. Let r„ be the chosen kernel choice at the wth iteration, so

Pr(X„-i-i € A I X„ =  x, r„ =  y, X„_ 1, . . . ,  Xo, r„_ 1, . . . ,  To) = Py(x,A),

for it — 0,1,2, ... .  Here the [r ?iJ are updated according to some adaptive updat
ing algorithm, hi principle, the choice of r„ could depend on the entire history 
X „ _ i,. . .  ,Xo, r „ _ i , . . . ,  To, though in practice it is often the case that the pairs process 
{(X„, ) }^l0 is Markovian, hi general the algorithms are quite easy to implement, requiring
only moderate amounts of extra computer programming—and there are even some efforts 
at generic adaptive software, such as Rosenthal (2007).

Whether such an adaptive scheme will improve convergence depends, obviously, on the 
adaptive algorithm selected. An even more fundamental question, which we now consider, 
is whether the adaptation might destroy convergence.

4.3.1 Ergodicity of Adaptive MCMC

One might think that, as long as each individual Markov chain Py conveiges to n, any 
adaptive mixture of the chains must also converge to n. However, this is not the case. For 
a simple counterexample (illustrated interactively by Rosenthal, 2004; see also Atchade 
and Rosenthal, 2005; Roberts and Rosenthal, 2007), let y  =  {1,2}, let X  =  {1,2,3,4}, let 
tt(1) =  ji(3) =  7i(4) = 0.333 and n il) =  0.001. Let each Py be an RWM algorithm, with 
proposal Y,1+i — U(X„ -  1, X„ + 1} for Pi, or Y„+i — 1Z{XJ; — 2, X„ -  1, X„ + 1,X„ +  2} for 
Pj. (Of course, any proposed moves out of X  are always rejected, i.e. ir(X) = 0 for x £  X.) 
Define the adaptation by saying that r„+i =  2 if the «th proposal was accepted, otherwise 
r„+i = 1. Then each PY is reversible with respect to tt. However, the adaptive algorithm 
can get "stuck" with X„ =  r„ = 1 for long stretches (and only escape with probability
0.001/0.333), so the limiting distribution of X;, is weighted too heavily toward 1 (and too 
lightly toward 3 and 4).

hi light of such counterexamples, it is important to have sufficient conditions to guaran
tee convergence hi distribution of [X„} to tt. hi recent years, a number of authors (Haario et 
al., 2001; Atchade and Rosenthal, 2005; Andrieu and Moulines, 2006; Giordani and Kolui, 
2006, Atidrieu and Atchade, 2007, Roberts and Rosenthal, 2007) have proved ergodidty of 
adaptive MCMC under various assumptions.
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In particular, Roberts and Rosenthal (2007) proved that supAc  ̂||Pr(X„ e A) —
tt ) || =  0 (asymptotic convergence), and also liin,,^ ac  ̂T^',Lig(Xj) =  jt (£j for all bounded 
g  : X  —> R (WLLN), assuming only the diminishing (a.k.a. vanishing) adnpt/ition condition

lini sup ||Pr1!+1 (x, ■) -  Pr„U',-)|| =  0 in probability, (4.6)
11—»OO xXG.V

and also the coiitiiiument (a k a  bounded convergence) condition

{Mt(X„, r „)} ^ 0 is bouuded in probability, e > 0, (4.7)

where Me (:*, y) =  inf{/t > 1 : 1^  ( * , - ) - n(-)I £  e} is the convergence time of the kernel Py 
when beginning in state e X.

Now, Equation 4.7 is a technical condition which is satisfied for virtually all reason
able adaptive schemes. For example, it holds whenever X  x y  is finite, or is compact in 
some topology in which either the transition kernels Py, or the Metropolis-Hastings pro
posal kernels Q-,,, have jointly continuous densities. It also holds for adaptive RWM and 
Metropolis-within-Gibbs algorithms under very general conditions (Bai et al,, 2008). (It is, 
however, possible to construct pathological counterexamples, where containment does not 
hold; see Yang, 2008b and Bai et al., 2008.) So, in practice, the requirement (Equation 4.7) 
can be largely ignored.

By contrast, condition (Equation 4.6) is more fundamental It requires that the amount of 
adapting at the /nth iteration goes to 0 as n oo. (Note that the sum of the adaptations can 
still be infinite, i.e. an infinite total amount of adaptation is still permissible, and it is not 
necessarily required that the adaptive parameters {I",,} convene to some fixed value.) Since 
the user can choose the adaptive updating scheme, Equation 4.6 can be ensured directly 
through careful planning. For example, if the algorithm adapts at the /ith iteration only 
with probability p (».), then Equation 4.6 is automatically satisfied if p(n) —> 0. Alternatively, 
if the choice of y depends on an empirical average over iterations 1 through n, then the 
influence of the /ith iteration is just 0 (l/n )  and hence goes to 0.

Such results allow us to update our parameters {r„ } in virtually any manner we wish, so 
long as (Equation 4.6) holds. So, what adaptations are beneficial?

4.3.2 Adaptive Metropolis

The first important modern use of adaptive MCMC was the adaptive Metropolis (AM) 
algorithm of Haario et al. (2001). This algorithm is motivated by the observation (Equa
tion 4.5) that, for RWM in R ̂ , at least with normal target distributions, it is optimal to have 
a proposal covariance matrix of the form (2.3S)2/rf times the target covariance matrix X. 
Since E is in general unknown, it is estimated by Y.„, the empirical covariance matrix of 
X q, . . . ,  X„.

Thus, the AM algorithm essentially uses a proposal distribution for the j/th iteration 
given by

(2.3S)

To ensure that the proposal covariances do not simply collapse to 0 (which could vio
late (Equation 4.7)), Haario et al. (2001) added e I,j to at each iteration, for some small
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FIGURE 4.6
Haee plot of first coordinate of AM in dimension 100.

e > 0. Another possibility (Roberts and Rosenthal, 2009) is to instead let the proposal be a 
mixture distribution of Hie form

for some 0 < p < 1 and some fixed nonsmgular matrix Ed (e.g. Eo = [(0.1)2/rf] Jrf). (With 
either version, it is necessary to use some alternative fixed proposal distribution for the 
first few iterations when the empirical covariance E?i is not yet well defined.)

Since empirical estimates change at the jjth iteration by only 0 {  1/n), it follows that the 
diminishing adaptation condition (Equation 4.6) willbe satisfied. Furthermore, Hie contain
ment condition (Equation 4.7) will certainly be satisfied if one restricts to compact regions 
{Haario et a l, 2001; Roberts and Rosenthal, 2009), and in fact containment still holds pro
vided the target density ji decays at least polynomiaUy in each coordinate, a very mild 
assumption (Bai et al., 2008), So, AM is indeed a valid sampling algorithm.

Computer simulations (Roberts and Rosenthal, 2009) demonstrate that this AM algorithm 
will indeed "learn" the target covariance matrix, and approadi an optimal algorithm, even 
in very high dimensions. While it may take many iterations before the adaptation sig
nificantly improves the algorithm, in the end it will converge considerably faster than a 
nonadapted RWM algorithm For an AM run in dimension d =  100 (where the target was 
a normal distribution with an irregular and highly skewed covariance matrix), Figure 4.6 
shows a trace plot of the first coordinate and Figure 4.7 a graph of the inhomogeneity factor b 
in Equation 4.4. These figures show that the run initially underestimates the variability of 
the first coordinate, which would lead to drastically incorrect estimates. However, after 
about 250,000 iterations, the algorithm has "found" a good proposal increment covariance 
matrix, so that b gets dose to 1, and the trace plot correctly finds the true variability of 
the first coordinate. Such adaptation could never have been done manually, because of 
the large dimension, but the computer eventually finds a good algorithm. This shows the 
potential of adaptive MCMC to find good algorithms that cannotbe found by hand.

4.3.3 Adaptive Metropolis-within-Gibbs

A standard alternative to the usual full-dimensional Metropolis algorithm is the 
"Metropolis-within-Gibbs" algorithm (arguably a misnomer, since the original work of
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FIGURE 4.7
Tl'ace plot of inhomogeneity factor b for AM in dimension 100.

Metropolis et al., 1953, corresponded to what we now call Metropohs-withhi-Gibbs). Here 
the variables are updated one at a time (in either systematic or random order), each using 
a Metropolis algorithm with a one-dimensional proposal

To be specific, suppose that the rth coordinate is updated using a proposal increment 
distribution N(0, e2 '), so Js, is the log of the standard deviation of the increment. Obviously, 
we would like to find optimal values of the lsL, which may of course be different for the 
different variables. We even have a rule of thumb from the end of Section 4.2.3, that each 
lsI should be chosen so that the acceptance rate is approximately 0.44. However, even with 
this information, it is very difficult (if not impossible) in high dimensions to optimize each 
fs; manually. Instead, an adaptive algorithm might be used.

One way (Roberts and Rosenthal, 2009) to adapt the hi values is to break up the run into 
"batches" of, say, 50 iterations each, After the wth batch, we update each Zs, by adding or 
subtracting an adaptation amount &(») The adapting attempts to make the acceptance rate 
of proposals for variable i as close as possible to 0.44. Specifically, we increase fs, by 8(/t) if 
the fraction of acceptances of variable i was more than 0.44 on the j/th batch, or decrease Is, 
by SO/) if it was less. (Arelated componentwise adaptive scaling method, a one-dimensional 
analog of the original AM algorithm of Haario et a l, 2001, is presented in Haario 
et al., 2005.)

To satisfy condition (Equation 4.6) we require Hu) —»■ 0; for example, we might take 
8 (/i.) =  min(0.01, n r 1;'2) As for Equation 4.7, it is easily seen to be satisfied if we restrict 
each /s, to a finite interval [—M,M], However, even this is not necessary, since it is 
proved by Bai et al. (2008) that Equation 4.7 is always satisfied for this algorithm, pro
vided only that the taiget density tt  decreases at least polynomially hi each direction (a 
very mild condition). Hence, the restriction (Equation 4.7) is once again not of practical 
concern.

Simulations (Roberts and Rosenthal, 2009) indicate that this adaptive Metropohs-withhi- 
Gibbs algorithm does a good job of correctly scaling the Is, values, even in dimensions as 
high as 500, leading to chains which mix much faster than those with pre-chosen proposal 
scalings. The algorithm has recently been applied successfully to high-dimensional infer
ence for statistical genetics (Turro et al., 2007). We believe it wall be applied to many more 
sampling problems hi the near future. Preliminary general-purpose software to implement 
this algorithm is now available (Rosenthal, 2007).
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4.3.4 Slate-Dependent Proposal Scalings

Another approach involves letting the proposal scaling depend on the current state X„, 
so that, for example, given X„ =  x, we might propose Y„+i ~  N(x, <r2). hi this case, the 
acceptance probability {Equation 4.1) becomes

a{x,\f) =  min {4.8)

The functional form of a* can be chosen and adapted in various ways to attempt to achieve 
efficient convergence.

For example, in many problems the target distribution becomes more spread out as we 
move farther from the origin In that case, it might be appropriate to let, say, ax =  e'Tl +  | jt |)*, 
where n and b are determined adaptively. For example, we could again divide the run into 
batches of 50 iterations as in the previous subsection. After each iteration, the algorithm 
updates a  by adding or subtracting Hn) in an effort to make the acceptance rate as dose 
as possible to, for example, 0.234 or 0.44. The algorithm also adds or subtrads h(u) to 
b in an effort to equalize the acceptance rates in the two regions j r e X : |jc| > C} and 
[x g X : |.r| < C} for some fixed C.

Qtice again, condition (Equation 4.6) is satisfied provided h(u) —► 0, and {Equation 4.7) 
is satisfied under very mild conditions. So, this provides a convenient way to give a useful 
functional form to ax, without knowing in advance what values of a and b might be appro
priate. Simulations (Roberts and Rosenthal, 2009) indicate that this adaptive algorithm 
works well, at least in simple examples,

Another approach, sometimes called the regional adaptive Metropolis algorithm 
(RAMA), use a finite partition of the state space: X = X\ U . . .  U Xm. The proposal scaling 
is then given by c* = e* whenever x e Xl: with the acceptance probability (Equation 4.8) 
computed accordingly. Each of the values a} is again adapted after each batch of iterations, 
by adding or subtracting h(ii) in an attempt to make the acceptance fraction of proposals 
from Xj close to 0.234. {As a spedal case, if there were no visits to A’ during the batch, then 
we always mid h(n) to nu to avoid the problem of becoming so low that proposed moves to 
X( are never accepted.) Once again, the algorithm will be valid under very mild conditions 
provided Mu) —* 0.

Recent work of Craiu et a l (2009) considers certain modifications of RAMA in which mul
tiple copies of the algorithm are run simultaneously in an effort to be sure to "leam " about 
all modes rather than getting stuck in a single mode, Their work also allows the proposal 
distribution to be a weighted mixture of the different N(x, ), to allow for the possibility
that the partition {Xi} was imperfectly chosen It appears that such greater flexibility will 
allow for wider applicability of RAMA-type algorithms.

Of course, Langevin {MALA) algorithms may also be regarded as a type of state- 
dependent scaling, and it is possible to study adaptive versions of MALA as well 
{Atchade, 2006).

4.3.5 Limit Theorems

Many applications of MCMC make use of such Markov chain limit theorems as the weaklaw 
of large numbers (WLLN), strong law of laige numbers (SLLN), and central limit theorem 
{CLT), in order to guarantee good asymptotic estimates and estimate standard errors {see, 
e.g. Tiemey, 1994; Jones and Hobert, 2001; Hobert et al., 2002; Jones, 2004; Roberts and
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Rosenthal,, 2004). So, it is natural to ask if such limit theorems hold for adaptive MCMC 
as well,

Under Hie assumptions of diminishing adaptation and containment, the WLLN does 
hold for ah bounded functionals (Roberts and Rosenthal, 2007, Theorem 23). So, this at least 
means that when using adaptive MCMC for estimating means of bounded functionals, one 
will obtain an accurate answer with high probability if the run is sufficiently long.

For unbounded functionals, the WLLN usually stih holds, but not always (Yang, 2008a, 
Theorem 2.1). Even for bounded functionals, the SLLN may not hold (Roberts and 
Rosenthal, 2007, Example 24), and that same example shows that a CLT might not hold 
as well. So, this suggests that the usual estimation of MCMC standard errors may be 
more challenging for adaptive MCMC if we assume only dhninishing adaptation and 
containment.

Under stronger assumptions, more canbe said. For example, Andrieu and Moulines (2006; 
see also Atidiieu and Atchade, 2007; Atchade, 2007)prove various limit theorems (including 
CLTs) for adaptive MCMC algorithms, assuming that the adaptive parameters converge 
to fixed values sufficiently quickly. They also prove that such adaptive algorithms will 
inherit many of the asymptotic optimality properties of the corresponding fixed-parameter 
algorithms. Such results facilitate further applications of adaptive MCMC, however, they 
require various technical conditions which may be difficult to check in practice.

4.3.6 Frequently Asked Questions

Can't I adapt my MCMC algorithm anyway I like, and still preserve convergence?

No. hi particular, if the dhninishing adaptation condition (Equation 4.6) does not hold, then 
there are simple counterexamples showing that adaptive MCMC can converge to the wrong 
answer, even though each individual Markov chain kernel would correctly converge to n .

Do I have to learn lots of technical conditions before I can apply adaptive MCMC?

Not really. As long as you satisfy diminishing adaptation (Equation 4.6), which is important 
but quite intuitive, then your algorithm will probably be asymptotically valid.

Have adaptive MCMC algorithms actually been used to speed up convergence on high
dimensional problems?

Yes, they have. Simulations on test problems involving hundreds of dimensions have been 
quite successful (Roberts and Rosenthal, 2009), and adaptive Metropolis-within-Gibbs has 
also been used on statistical genetics problems (Turro et al,, 2007).

Does adaptation have to be designed specifically to seek out optimal parameter values?

No. Hie ergodicity results presented herein do not require that the parameters (r„ } converge 
at all, only that they satisfy (Equation 4.6) which still allows for the possibility of infinite 
total adaptation. However, many of the specific adaptive MCMC algorithms proposed are 
indeed designed to attempt to converge to specific values (e.g. to proposal scalings which 
give an asymptotic acceptance rate of 0.234).

Why not just do the adaptation by hand, with trial runs to determine optimal parameter 
values, and then a long run using these values?

Well, if you can re ally determine optimal parameter values from a few trial runs, then that s 
fine, However; hi high dimensions, with many parameters to choose (e.g. a large proposal 
covariance matrix), it is doubtful that you can find good parameter values manually.
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Suppose I just have the computer adapt for some fixed, finite amount of time, and then 
continue the run without further adapting. Won't that guarantee asymptotic convergence 
to n?

Yes, it will (provided each individual kernel Py is ergo die), and this is a sensible method to 
try. However, it may be tmdear how much adaptation should be done before you stop. For 
example, with adaptive Metropolis in 200 dimensions, it took well over a million iterations 
(Roberts and Rosenthal, 2009) before a truly good proposal covariance matrix was found— 
and it was not dear a  priori that it would take nearly so long.

Can I use adaptation for other types of MCMC algorithms, like the Gibbs sampler?

In prindple, yes. For example, an adaptive Gibbs sampler could adapt such quantities 
as the order of update of coordinates (for systematic scan), or the probability weights 
of various coordinates (for random scan), or coordinate blockings for joint updates, or 
such rep arameteriza tions as rotations and centerings and so on. Only time will tell what 
adaptations turn out to be useful in what contexts.

A m lrestricted to the specific adaptive MCMC algorithms (adaptive Metropolis, adaptive 
Metropolis-within-Gibbs, R A M A ,...) presented herein?

Not at all! You can make up virtually any rules for how your Markov chain parameters {T,,} 
adapt over time, as long as the adaptation diminishes, and your algorithm will probably be 
valid, The challenge is then to find sensible/dever adaptation rules. Hopefully more and 
better adaptive methods will be found in the future!

Are any other methods, besides adaptive MCMC, available to help algorithms "learn" 
how to converge well?

Yes, there are many. For example, partide filters (e.g. Pitt and Sheppard, 1999), population 
Monte Carlo (e.g. Cappe et al., 2004), and sequential Monte Carlo (e.g. Del Moral etal., 2006), 
can all be considered as methods which attempt to "leam " faster convergence as they go. 
However, the details of their implementations are rather different than the adaptive MCMC 
algorithms presented herein,

4.4 C o n c lu s io n

We have reviewed optimal proposal scaling results, and adaptive MCMC algorithms,
While the optimal scaling theorems are all proved under very restrictive and unrealis

tic assumptions (e.g. target distributions with independent coordinates), they appear to 
provide useful guidelines much more generally, hi particular, results about asymptotic 
acceptance rates provide useful benchmarks for Metropolis algorithms in a wide variety of 
settings.

Adaptive MCMC algorithms appear to provide simple, intuitive methods of finding 
quickly-converging Markov chains without great effort on the part of the user—aside 
from the initial programming, and there is even some generic software available, such 
as Rosenthal, (2007). While certain conditions (notably diminishing adaptation) must be 
satisfied to guarantee asymptotic convergence, these conditions are generally not onerous 
or difficult to achieve.
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Overall, we feel that these results indicate the widespread applicability of both optimal 
scaling and adaptive MCMC algorithms to many different MCMC settings (Roberts and 
Rosenthal, 2009; Turro et al., 2007), induding to complicated high-dimensional distribu
tions, We hope that many MCMC users will be guided by optimal scaling results, and 
experiment with adaptive algorithms, in their future applications.
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5
MCMC Using Hamiltonian Dynamics

Radford M. Neal

5.1 In tro d u ctio n

Markov chain. Monte Carlo (MCMC) originated with the dassic paper of Metropolis et al. 
{1953), where it was used to simulate the distribution of states for a system of idealized 
molecules. Not long after, another approach to molecular simulation was introduced (Alder 
and Wamwright, 1959), in which the motion of the molecules was deterministic, following 
Newton's laws of motion, wThichhave an elegant formalization as Ham il tot i itv t di/t uwi ics. For 
finding the properties of bulk materials, these approaches are asymptotically equivalent, 
since even in a deterministic simulation, each local region of the material experiences 
effectively random influences from distant regions. Despite the large overlap in their appli
cation areas, the MCMC and molecular dynamics approaches have continued to coexist in 
the following decades (see Frenkel and Smit, 1996).

hi 1987, a landmark paper by Duane, Kennedy, Pendleton, and Roweth united the 
MCMC and molecular dynamics approaches. They called their method "hybrid Monte 
Carlo," which abbreviates to "HMC," but the phrase "Hamiltonian Monte Carlo," retain
ing the abbreviation, is more specific and descriptive, and I will use it here. Duane et al. 
apphed HMC not to molecular simulation, but to lattice held theory simulations of quan
tum chromodynamics. Statistical applications of HMC began with my use of it for neural 
network models (Neal, 1996a). I also provided a statistically-oriented tutorial on HMC in a 
review of MCMC methods (Neal, 1993, Chapter 5). There have been other applications 
of HMC to statistical problems (e.g. Ishwaran, 1999; Schmidt, 2009) and statistically- 
oriented reviews (e.g. Liu, 2001, Chapter 9), but HMC still seems to be underappredated 
by statisticians, and perhaps also by physidsts outside the lattice field theory community

This review begins by describing Hamiltonian dynamics. Despite terminology that may 
be unfamiliar outside physics, the features of Hamiltonian dynamics that are needed for 
HMC are elementary. The differential equations of Hamiltonian dynamics most be dis
cretized for computer implementation. The "leapfrog" scheme that is typically used is 
quite simple.

Following this introduction to Hamiltonian dynamics, I describe how to use it to con
struct an MCMC method. The first step is to define a Hamiltonian function in terms of the 
probability distribution we wish to sample from hi addition to the variables we are inter
ested hi (the "position" variables), we must introduce auxiliary "momentum" variables, 
which typically have independent Gaussian distributions. The HMC method alternates 
simple updates for these momentum variables with Metropolis updates hi which a new 
state is proposed by computing a trajedory according to Hamiltonian dynamics, imple
mented with the leapfrog method. A state proposed hi this way can be distant from the
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current state but nevertheless have a high probability of acceptance. This bypasses the slow 
exploration of the state space that occurs when Metropolis updates are done using a simple 
random-walk proposal distribution, {An alternative way of avoiding random walks is to use 
short trajectories but only partially replace the momentum variables between trajectories, 
so that successive trajectories tend to move in the same direction.)

After presenting the basic HMC method, I discuss practical issues of timing the leapfrog 
stepsize and number of leapfrog steps, as well as theoretical results on the scaling of HMC 
with dimensionality. I then present a number of variations on HMC. The acceptance rate 
for HMC can be increased for many problems by looking at "windows" of states at the 
beginning and end of the trajectory. For many statistical problems, approximate computa
tion of trajectories (e.g. using subsets of the data) may be beneficial Tuning of HMC can 
be made easier using a "short-cut" in which trajectories computed with a bad choice of 
stepsize take tittle computation time. Finally, "tempering" methods may be useful when 
multiple isolated modes exist.

5.2 H am ilto n ian  D yn am ics

Hamiltonian dynamics lias a physical interpretation that can provide useful intuitions, 
hi two dimensions, we can visualize the dynamics as that of a frictionless puck that slides 
over a surface of varying height. The state of this system consists of the position, of the puck, 
given by a two-dimensional vector q, and the momentum of the puck (its mass tunes its 
velocity), given by a two-dimensional vector p. The potent id  energy, U(q), of the puck is 
proportional to the height of the surface at its current position, and its kinetic energy, K(p), 
is equal to \p\2/ ( 2m), where m is the mass of the puck. Cn a level part of the surface, the 
puck moves at a constant velocity, equal to p/m. If it encounters a rising slope, the puck's 
momentum allows it to continue, with its kinetic energy decreasing and its potential energy 
increasing, until the kinetic energy (and hence p) is zero, at which point it will slide back 
down (with kinetic energy increasing and potential energy decreasing).

hi nonphysical MCMC applications of Hamiltonian dynamics, the position will cor
respond to the variables of interest. The potential energy will be minus the log of the 
probability density for these variables. Momentum variables, one for each position variable, 
will be introduced artificially.

These interpretations may help motivate the exposition below, but if you find otherwise, 
the dynamics can also be understood as simply resulting from a certain set of differential 
equations.

5.2.1 Hamilton's Equations

Hamiltonian dynamics operates on a ^-dimensional position vector, q, and a rf-dimensional 
momentum vector, p, so that the full state space has 2/7 dimensions. The system is described 
by a function of q and p known as the Hamiltonian, H(q,p).

5.2.1.1 Equations o f  Motion

The partial derivatives of the Hamiltonian determine how q and p change over tune, t, 
according to Hamilton's equations:
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dt dpi'

dpi _  SH
dt ~  ()(]('

{5.1)

{5.2)

for i — 1, <1 For any time interval of duration s, these equations define a mapping, Te,
from ttie state at any time t to the state at time f +  s. (Here, H, and hence TSr are assumed to 
not depend on t.)

Alternatively, we can combine the vectors q and p into the vector z =  (q,p) with 2d 
dimensions, and write Hamilton's equations as

where V H is the gradient of H  (i.e. [VH]k = dH/dzk), and

T 1-dxd , r
7 =  j n <5.3)

u rtxd_

is a 2ri x 2rf matrix whose quadrants are defined above hi terms of identity and zero matrices.

5.2.1.2 Potential and Kinetic Energy

For HMC we usually use Hamiltonian functions that canbe written as

Here U(q) is called the potential, energy, and willbe defined to be minus the log probability 
density of the distribution for q that we wish to sample, plus any constant that is convenient. 
K(p ) is called the kinetic energy, and is usually defined as

Here M is a symmetric, positive-definite "mass matrix," which is typically diagonal, and 
is often a scalar multiple of the identity matrix. This fonn for K(p) corresponds to minus 
the log probability density (plus a constant) of the zero-mean Gaussian distribution with 
covariance matrix M.

With these fortns for H  and K, Hamilton's equations 5.1 and 5.2 canbe written as follows, 
for / = d:

§= fvff(z)'

H(q,p) =  U (q)+K (p). {5.4)

K(p) = p TM ~1p/2. {5.5)

{5.6)

dp, _ _ $ U  
dt tiq;

(5 7)
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5.2.1.3 A One-Dimensional Example

Consider a simple example in one dimension (for which q and p are scalars and will be 
written without subscripts), in w7hich the Hamiltonian is defined as follows:

2 2
H(q,p) = U(q) + K(;p), U(q) =  y ,  K(p) =  V— . (5.8)

As we will see later in Section 5.3.1, this corresponds to a Gaussian distribution for q with 
mean zero and variance one. The dynamics resulting from this Hamiltonian (following 
Equations 5.6 and 5.7) is

dq dp
r f f = *  * = - " ■

Solutions have the following form, for some constants r and n\

q(t) — rcos(rz+ i), p(f) =  -j's in (fl+  t). (5.9)

Hence, the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p) 
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple 
periodic form, but this example does illustrate some importantproperties that we will look 
at next.

5.2.2 Properties of Hamiltonian Dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing MCMC 
updates.

5.2 .2 .1 Reversibility

First, Hamiltonian dynamics is reversible—themapping Te from the state attime t, (qit), pit)), 
to the state at time t +  s, (q(t +  s),p(t +  s)), is one-to-one, and hence has an inverse, T_£ 
This inverse mapping is obtained by simply negating the time derivatives in Equations
5.1 and 5.2. When the Hamiltonian lias the form in Equation 5.4, and Kip) = K {—p), as in 
the quadratic form for the kinetic energy of Equation 5.5, the inverse mapping can also be 
obtained by negating p, applying Ts, and then negating p again.

hi the simple one-dimensional example of Equation 5.8, T_s is just a counterclockwise 
rotation by s radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates 
that use the dynamics leave the desired distribution invariant, since this is most eas
ily proved by showing reversibility of the Markov chain transitions, which requires 
reversibility of the dynamics used to propose a state.

S.2.2.2 Conservation o f  the Hamiltonian

Asecond property of the dynamics is that it keeps the Hatiiillouitvt invariant (i.e. conserved). 
This is easily seen from Equations 5.1 and 5.2 as follows:

dt ~  dt d(]i +  dt Bp; . ~~ 
î = l

.  dpt dq;
m  dH 
H  dpi .

= 0. (5.10)
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With the Hamiltonian of Equation 5.8, the value of the Hamiltonian is hah the squared 
distance from the origin, and the solutions (Equation 5.9) stay at a constant distance from 
the origin, keeping H  constant.

For Metropolis updates using a proposal found by Hamiltonian dynamics, which form 
part of the HMC method, the acceptance probability is one if i f  is kept invariant. We will 
see later, however, that in practice we can only make H  approximately invariant, and hence 
we will not quite be able to achieve this.

5.2.2.3 Volume Preservation

A third fundamental property of Hamiltonian dynamics is that it preserves volume hi (q,p) 
space (a result known as Liouville's theorem). If we apply Hie mapping Ts to the points 
in some region R of (qrp) space, with volume V, the image of R under Ts will also have 
volume V.

With the Hamiltonian of Equation 5.8, the solutions {Equation 5.9) are rotations, which 
obviously do not change the volume. Such rotations also do not change the shape of a 
region, but this is not so in general—Hamiltonian dynamics might stretch a region hi one 
direction, as long as the region is squashed hi some other direction so as to preserve volume.

The significance of volume preservation for MCMC is that we need not account for any 
change hi volume hi the acceptance probability for Metropolis updates. If we proposed 
new states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute 
the determinant of the Jacobian matrix for the mapping Hie dynamics defines, which might 
well be infeasible.

The preservation of volume by Hamiltonian dynamics can be proved hi several ways. 
One is to note that the divergence of Hie vector held defined by Equations 5.1 and 5.2 is 
zero, which canbe seen as follows:

^  — ^Ei] -  v l " —  —  -  —  — 1 - Y "
L H  l1i +  dpt df \ ~  L H  J _

■dl H
dqidp;

=  0.

A vector held with zero divergence canbe shown to preserve volume (Arnold, 1989).
Here, I will show informally that Hamiltonian dynamics preserves volume more directly, 

without presuming this property of the divergence. I will, however, take as given that 
volume preservation is equivalent to the determinant of the Jacobian matrix of Ts having 
absolute value one, which is related to the well-known role of this determinant in regard 
to the effect of transformations on definite integrals and on probability density functions.

The 2rf x 2rf Jacobian matrix of Ts , seen as a mapping of z = (q,p), wall be written as Bs. hi 
general, Bs noil depend on the values of q and p before Hie mapping. When Bs is diagonal, 
it is easy to see that the absolute values of its diagonal elements are the factors by which 
Te stretches or compresses a region hi each dimension, so that Hie product of these factors, 
which is equal to the absolute value of det(Bs), is the factor by which the volume of the 
region changes. I will not prove the general result here, but note that if we were to (say) 
rotate the coordinate system used, Bs would no longer be diagonal, but the determinant 
of Bs is invariant to such transformations, and so would still give the factor by which the 
volume changes.

Let us first consider volume preservation for Hamiltonian dynamics hi one dimension 
{i.e. to tli d =  1), for which we can drop the subscripts on p and q. We can approximate T&
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for & near zero as follows:

T&(q,p) = + 8 dqjdt
dp/df

+  terms of order 52 or higher.

Taking the time derivatives from Equations 5.1 and 5.2, the Jacobian matrix canbe written as

B& =
1 + 8

- 8

d2H
BqBp
a 2H
dq2

r62H

1 - 8

Bp2

a 2h
+  terms of order S2 or higher. {5.11)

dpBq_

We can then write the determinant of this matrix as

det(£,s) =  1 + 8 — — — S— + terms of order S2 or higher 
BqBp dpdq

=  1 + terms of order &2 or higher.

Since log(l +  .*) x for x near zero, logdet(B&) is zero, except perhaps for terms of order 
82 or higher (though we will see later that it is exactly zero). Now consider log det(Bs) for 
some time interval s that is not close to zero. Setting S =  s/ti, for some integer it, we can 
write Ts as the composition of Tk appHed n times (from it points along the trajectory), so 
d etfiy  is the //-fold product of det(B^) evaluated at these points. We then find that

log det(Bs) = T > g  det(Bg)
i=i
71

= ^  | terms of order 1/n 2 or smaller J (5.12)
i=i

= terms of order l fu  or smaller,

Note that the value of Bj in the sum in Equation 5.12 might perhaps vary with i, since 
the values of q and p vary along the trajectory that produces TV However, assuming that 
trajectories are not singular, the variation in Bj must be bounded along any particular 
trajectory. Taking the limit as n -> oo, we conclude that log det(Bs ) = 0, so det(Bs) =  1, and 
hence Ts preserves volume.

Whenri > 1, the same argument applies. The Jacobian matrix will now have the following 
form {compare Equation 5.11), where each entry shown below is a d x d submatrix, with 
rows indexed by i and columns by j:

B ,=

1 + 8

- 5

"  a2n " £ "  32H  "

_Bq,dpi_
0

J P j $ P i _

' a 2h  ' I - 8 "  a2Jf "

+ terms of order S2 or higher,
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As for d =  1, the determinant of this matrix will be one plus terms of order or higher, 
since all the terms of order & cancel. The remainder of the argument above then applies 
without change.

5.2.2.4 Symplecticness

Volume preservation is also a consequence of Hamiltonian dynamics being sympleetic. Let
ting z = (q, p), and defining J  as in Equation 5.3, the symplecticness condition is that the 
Jacobian matrix, Bs/ of the mapping satisfies

This implies volume conservation, since det(Bj) det(/_1) det(£5) = det(/_1) implies that 
det(Bs) is one. Whend > 1/ the symplecticness condition is stronger than volume preserva- 
hon. Hamiltonian dynamics and the sym.plecticn.ess condition can be generalized to where 
J  is any matrix for which J T =  - ]  and det( /) ^ 0.

Crucially, reversibility, preservation of volume, and symplecticness can be maintained 
exactly even when, as is necessary in practice, Hamiltonian dynamics is approximated, as 
we will see next.

5.2.3 Discretizing Hamilton's Equations—The Leapfrog Method

For computer implementation, Hamilton's equations mustbe approximatedby discretizing 
time, using some small step size, 8 Starting with the state at time zero, we iteratively compute 
(approximately) the state at times e, 2e, 3e, etc.

hi discussing how to do this, I will assume that the Hamiltonian has the form H(q,p) =  
U(q) + K(p), as hi Equation 5.4. Although the methods below canbe applied with any form 
for the kinetic energy, I assume for simplicity thatK(p) = pTM ~1p /2, as in Equation5.5, and 
furthermore that M is diagonal, with diagonal elements i n so that

^ > = E 4  <5 - 1 3 >

5.2.3.1 Euler's Method

Perhaps Hie best-known way to approximate the solution to a system of differential equa
tions is Euler's method. For Hamilton's equations, this method performs the following
steps, for each component of position and momentum, indexed by i =  d:

Pi(t +  e) = pi(t) +  e ^ ( f )  = pi(t) -  e (5.14)

qi(t +  s) = < i i ( t ) + z ^ ( t ) = q i(t) +  £ — . (5.15)at nii

The time derivatives in Equations 5.14 and 5.15 are from the form of Hamilton's equa
tions given by Equations 5,6 and 5,7. If we start at t =  0 with given values for r/( (0) and 
/>,({)), we can iterate the steps above to get a trajectory of position and momentum values
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at times e, 2s, 3e,. . . ,  and hence find (approximate) values for ij(i) and p(i)  alter i/e steps 
{assuming i / e  is an integer).

Figure 5. la shows the result of using Euler's method to approximate the dynamics defined 
by the Hamiltonian of Equation 5. S, starting from^(O) = 0 and p (0) = 1, and using a stepsize 
of e =  0.3 for 20 steps (i.e. to i  = 0.3 x 20 = 6). The results are not good—Euler's method 
produces a trajectory that diverges to infinity, but the true trajectory is a drde. Using a 
smaller value of e, and correspondingly more steps, produces a more accurate result at 
i  = 6, but although the divergence to infinity is slower, it is not eliminated.

- 2 - 1 0  1 2 
Position (<7 }

(c) Leapfrog m ethod, stepsize 0 3

Position (q)

(b) M odified Euler’s m ethod, stepsize 0.3

2-

- 2-
H-------------- 1-------------- 1-------------- 1-------------- r
- 2 - 1  0 1 2

Position (<y)

(d) Leapfrog m ethod, stepsize L2

Position (̂ 7 }

FIGURE 5.1
Results using; three methods for approximating Hamiltonian dynamics, when + p2/2. The initial
state wast? =  0, =  1, The stepsize was £ =  0.3 for (a), (b), and{c), and e =  1.2 for (d), TWenty steps of the simulated 
trajectory are shown for each method, along with the true trajectory (in gray).
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5.2.3.2 A Modification o f  Euler's Method

Much better results can be obtained by slightly modifying Euler's method, as follows:

a U
ff.it +  e) =  p,-(f) -  e —  (q(t))r {5.16)

q[(t + t ) = q I(f) +  EPl(f + E). (5.17)
in.

We simply use the new value for the momentum variables, pL, when computing the new 
value for the position variables, q, Amethod with similar performance canbe obtainedby 
instead updating the first and using their new values to update the pt.

Figure 5.1b shows the results using this modification of Euler's method with e =  0.3. 
Though not perfect, the trajectory it produces is much doser to the true trajedory than
that obtained using Eider's method, with no tendency to diverge to infinity. This better
performance is related to the modified method's exad preservation of volume, which helps 
avoid divergence to infinity or spiraling into the origin, since these would typically involve 
the volume expanding to infinity or contracting to zero.

To see that this modification of Euler's method preserves volume exactly despite the 
finite discretization of time, note that both the transformation from (17(f),pit)) to (<](f)r 
f>(t +  £)) via Equation 5.16 and the transformation from (q(t),p(t +  «)) to (<](t + e),p(t +  e» 
via Equation 5.17 are "shear" transformations, in which only some of the variables change 
(either the pt or the <j,), by amounts that depend only on the variables that do not change, 
Any shear transformation will preserve volume, since its Jacobian matrix will have deter
minant one (as the only nonzero term in the determinant will be the produd of diagonal 
elements, which will all be one).

5.2.3.3 The Leapfrog Method

Even better results canbe obtained with the leapfrog method, which works as follows:

911
Pi (t +  s j 2 )  =  p t f)  -  ( e / 2 )  —  (17(f)), {5.18)

f)qi

+  s) =  qi (f) +  e Pl(f + e/2), (5.19)
in,

Pi(t +  e) =  p; (f +  e / 2) — ( e / 2) --— (q(t +  e )) .  (5.20)
<>q,

We start with a half step for the momentum variables, then do a full step for the position 
variables, using the new values of the momentum variables, and finally do another half step 
for the momentum variables, using the new values for the position variables. An analogous 
scheme canbe used with any kinetic energy function, with HK/'&pi replacing pi/ni; above.

When we apply Equations 5. IS through 5.20 a second time to go from time f + e to f + 2e, 
we can combine the last half step of the first update, from pL(t +  e/2) to p({t-\- s), with the
first lialf step of the second update, from pt(t +  e )  to pt(t +  e + s/2). The leapfrog method
then looks very similar to the modification of Euler's method in Equations 5.17 and 5.16, 
except that leapfrog performs half steps for momentum at the very beginning and very end 
of the trajectory, and the tune labels of the momenhmi values computed are shifted by e /  2.
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The leapfrog method preserves volume exactly, since Equations 5.18 through 5.20 are 
shear transformations, Due to its symmetry, it is also reversible by simply negating p, 
applying the same number of steps again, and then negating p again,

Figure 5. lc  shows the results using the leapfrog method with a step size of s = 0,3, which 
are indistinguishable from the true trajectory, at the scale of this plot, hi Figure 5. Id, the 
results of using the leapfrog method with e =  1.2 are shown (still with 20 steps, so almost 
four cydes are seen, rather than almost one). With this larger step size, the approximation 
error is clearly visible,but the trajedory still remains stable (and will stay stable indefinitely). 
Only when the stepsize approaches t = 2 do the trajedories become unstable.

5.2,3.4 Local and Global Error o f  Discretization Methods

I will briefly discuss how the error from discretizing the dynamics behaves in the limit as 
the stepsize, e, goes to zero; Leimktthler and Reich (2004) provide a mudi more detailed 
discussion. For useful methods, the error goes to zero as e goes to zero, so that any upper limit 
on the error will apply (apart from a usually unknown constant factor) to any differentiable 
function of state—for example, if the error for (rj, p ) is no more than order e2, the error for 
H(q, p) will also be no more than order t2.

The local error is the error after one step, that moves from time t to time t +  b. The glckal 
error is the error after simulating for some fixed time interval, s,  which will require s / e  

steps. If the local error is order ep, the global error will be order —the local errors of 
order ep accumulate over the s /e steps to give an error of order e^- 1 . If we instead fix 6 

and consider increasing the time, s, for which the trajedory is simulated, the error can in 
general increase exponentially with s. Interestingly, however, this is often not what hap
pens when simulating Hamiltonian dynamics with a sympledic method, as canbe seen in 
Figure 5.1.

The Euler method and its modification above have order e2 local error and order e global 
error. The leapfrog method has order e3 local error and order e2 global error. As shown by 
Leimkuhler and Reich (2004, Section 4.3.3), this difference is a consequence of leapfrogbeing 
reversible, since any reversible method must have global error that is of even order in e.

5.3 M CM C from  H am ilto n ian  D yn am ics

Using Hamiltonian dynamics to sample from a distribution requires translating the density 
function for this distribution to a potential energy function and introducing "momentum" 
variables to go with the original variables of interest (now seen as "position" variables). We 
can then simulate a Markov chain in which each iteration resamples the momentum and 
then does a Metropolis update with a proposal found using Hamiltonian dynamics.

5.3.1 Probability and the Hamiltonian: Canonical Distributions

The distribution we wish to sample can be related to a potential energy function via the 
concept of a canonical distribution from statistical mechanics. Given some energy function, 
£(:*), for the state, _r, of some physical system, the canonical distribution over states lias 
probability or probability density function

1 (~ E (x)\
P(jc) = -  exp I 1 (5.21)
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Here, T is the temperature of the system/ and Z is the normalizing constant needed for 
this function to suin or integrate to one. Viewing this the opposite way, if we are interested 
in some distribution, with density function P(.x ), we can obtain it as a canonical distribu
tion with T =  1 by setting Eix) =  -  log P(x) -  log Z, where Z is any convenient positive 
constant.

The Hamiltonian is an energy function for the joint state of "position," q, and "momen
tum," p, and so defines a joint distribution for them as follows:

Note that the invariance of H  under Hamiltonian dynamics means that a Hamiltonian 
trajectory will (if simulated exactly) move within a hypersurface of constant probability 
density

If H(q, p) — U(q) +  K(p), the joint density is

and we see that q and p are independent, and each have canonical distributions, with energy 
functions IZfij) and Kip). We will use q to represent the variables of interest, and introduce 
p just to allow7 Hamiltonian dynamics to operate.

hi Bayesian statistics, the posterior distribution for the model parameters is the usual 
focus of interest, and lienee these parameters will take the role of the position, q. We can 
express the posterior distribution as a canonical distribution (with T =  1) using a potential 
energy function defined as

where n(q) is the prior density, and L(q\D) is the likelihood function given data D.

5.3.2 The Hamiltonian Monte Carlo Algorithm

We now have the background needed to present the Hamiltonian Monte Carlo algorithm. 
HMC can be used to sample only from continuous distributions on R fl for which the den
sity function canbe evaluated (perhaps up to an unknown normalizing constant). For the 
moment, I will also assume that the density is nonzero everywhere (but this is relaxed in 
Section 5.5.1). We must also be able to compute the partial derivatives of the log of the 
density function. These derivatives must therefore exist, except perhaps on a set of points 
with probability zero, for which some arbitrary value could be returned.

HMC samples from the canonical distribution for q and p defined by Equation 5.22, in 
which q has the distribution of interest, as specified using the potential energy function 
U(q). We can choose the distribution of the momentum variables, p, which are independent 
of q, as wTe wish, specifying the distribution via the kinetic eneugy function, Kip). Current 
practice with HMC is to use a quadratic kinetic energy, as in Equation 5.5, which leads 
p to have a zero-mean multivariate Gaussian distribution Most often, the components of

U(tj) =  - l o g [ 7i((/)L(7 | D)],

* Note to physicists: I assume here that temperature is measured in units thatmake Boltzmann's constant unity.
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p are specified to be independent, with component i having variance mr  The kinetic energy 
function producing this distribution (setting T =  1) is

(5.23)
1= 1

We will see in Section 5,4 how the choice for the m, affects performance.

5.3.2.1 The Two Steps o f  the HMC Algorithm

Each iteration of the HMC algorithm has two steps. The first changes only the momentum; 
the second may change both position and momentum. Both steps leave the canonical joint 
distribution of (q, p) invariant, and hence their combination also leaves this distribution 
invariant.

hi the first step, new values for the momentum variables are randomly drawn from their 
Gaussian distribution, independently of the current values of the position variables. For the 
kinetic energy of Equation 5.23, the d momentum variables are independent, with p, having 
mean zero and variance in,. Since q is not changed, and p is drawnfromits correct conditional 
distribution given q (the same as its marginal distribution, due to independence), this step 
obviously leaves the canonical joint distribution invariant.

hi the second step, a Metropolis update is performed, using Hamiltonian dynamics to 
propose a new state. Starting with the current state, (q,p), Hamiltonian dynamics is simu
lated for L steps using the leapfrog method (or some other reversible method that preserves 
volume), with a stepsize of e. Here, I  and £ are parameters of the algorithm, which need to 
be tuned to obtain good performance {as discussed below in Section 5.4.2). The momentum 
variables atthe end of this L-step trajectory are thennegated, giving a proposed state (q*,p*). 
This proposed state is accepted as the next state of the Markov chain with probability

n iin [l, exp (—#(</*, p*) +  H(q,p))] =  min [l, ex^(-U (q*) + U(q) -  K(p*) + K(p))].

If the proposed state is not accepted (ie. itis rejected), the next state is the same as the current 
state (and is counted again when estimating the expectation of some function of state by 
its average over states of the Markov chain). The negation of the momentum variables at 
the end of the trajectory makes the Metropolis proposal symmetrical, as needed for the 
acceptance probability above to be valid. This negation neednotbe done in practice, since 
K(p) = K (—p), and the momentum will be replaced before it is used again, in the first step 
of the next iteration. (This assumes that these HMC updates are the only ones performed.)

If we look at HMC as sampling from the joint distribution of q and p, the Metropolis step 
using a proposal found by Hamiltonian dynamics leaves the probability density for (q, p) 
unchanged or almost unchanged. Movement to (q, p ) points with a different probability 
density is accomplished only by the first step in an HMC iteration, in which p is replaced 
by a new value. Fortunately, this replacement of p can change the probability density for 
{<],p) by a large amount, so movement to points with a different probability density is 
not a problem (at least not for this reason). Looked at in terms of q only, Hamiltonian 
dynamics for (//, p) can produce a value for q with a much different probability density 
(equivalently, a much different potential energy, U(<])). However, the resampling of the 
momenhmi variables is still crudal to obtaining the proper distribution for q. Without 
resampling, H{q,p) =  U(q) + K(p) will be {nearly) constant, and since K(p) and U(q) are
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HMC = function (U, grad_U, epsilon, L, current_q)
{

q = current_q
p = rnorm(length(q),0,1) # independent standard normal variates
current_p = p

# Make a. half step for momentum at the beginning 
p = p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum 

for (i in 1:L)
{

# Make a full step for the position 
q = q + epsilon * p
# Make a full step for the momentum, except at end of trajectory 
if {iJ=L} p = p - epsilon * grad_U(q)

}

# Make a half step for momentum at the end.
p = p - epsilon * grad_U(q) / 2
# Negate momentum at end of trajectory to make the proposal symmetric
p  =  - p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U (current_q) 
current_K = sum (current_p ** 2) / 2
proposed_U = U(q) 
proposed_K = sum(p''2} / 2

# Accept or reject the state at end of trajectory, returning either
# the position at the end of the trajectory or the initial position

if (runif(1) < exp|current_U-proposed_U+current_K-proposed_K})
{

return (q) # accept
}
else
{

return (current_q) # reject
}

}

FIGURE 5.2
The Hamiltonian Monte Carlo algorithm.

nomiegative, U(7/) could never exceed the initial value of H(q,p) if no resampling for p 
were done.

A function that implements a single iteration of the HMC algorithm, written in the R 
language,* is shown in Figure 5.2. Its first two arguments are functions: u, which returns

* R is available for free from www.r-project.org

http://www.r-project.org
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the potential energy given a value for q, and grad_u, which returns the vector of partial 
derivatives of II given, q. Other arguments are the stepsize, e p s ilo n , for leapfrog steps; the 
number of leapfrog steps in the trajectory, l ;  and the current position, c u rre n t_ q , that the 
trajectory starts from, Momentum variables are sampled within this function, and discarded 
at the end, with only the next positionbeing returned. The kinetic energy is assumed to have 
the simplest form, Kip) — ’T  ^/2 (i.e. all «/,■ are one). In this program, all components of p 
and of q are updated simultaneously, using vector operations. This simple implementation 
of HMC is available from my web page,* along with oilier R programs with extra features 
helpful for practical use, and that illustrate some of the variants of HMC in Section 5.5.

5.3.2.2 Proof That HMC Leaves the Canonical Distribution Invariant

The Metropolis update above is reversible with respect to the canonical distribution for q 
and p (with T = 1), a condition also known as "detailedbalance," and which canbe phrased 
informally as follows. Suppose that we partition the (q,p) space into regions At, each with 
the same small volume V. Let the image of Ak with respect to the operation of L leapfrog 
steps, plus a negation of the momentum, be Bfc. Due to the reversibility of the leapfrog steps, 
the fit will also partition the space, and since the leapfrog steps preserve volume (as does 
negation), each Bk will also have volume V. Detailedbalance holds if, for all i and j,

P(Ai)T(B/ | A;) =  PiBnTiA, | By), (5.24)

where P is probability under the canonical distribution, and T (X| Y) is the conditional prob
ability of proposing and then accepting a move to region X if the current state is in region 
Y. Clearly, when i /  j, T(A; \ Bj) =  T(By | Af) =  0 and so Equation 5.24 will be satisfied. 
Since the Hamiltonian is continuous almost everywhere, in the limit as the regions A* 
and Bfc become smaller, the Hamiltonian becomes effectively constant within each region, 
with value Hx in region X, and hence the canonical probability density and the transition 
probabilities become effectively constant within each region as well. We can now rewrite 
Equation 5.24 for i = j  (say, both equal to k) as

V V
— e x p m i n  [ 1, ex p f-ii^ -i-Ji^ )] = — exp(-H Bi)m iii[l, exp(-H j4,+ JfB, )] ,

which is easily seen to be true.
Detailedbalance implies that this Metropolis update leaves the canonical distribution for 

q and p invariant. This canbe seen as follows. LetR(X) be the probability that the Metropolis 
update for a state in the small region X leads to rejection of the proposed state. Suppose 
that the current state is distributed according to the canonical distribution. The probability 
that the next state is in a small region Bt is the sum of the probability that the current state is 
in Bfc and the update leads to rejection, and the probability that the current state is in some 
region from which a move to Bk is proposed and accepted. The probability of the next state

* www.cs.utoronto.ca/--radford

http://www.cs.utoronto.ca/--radford
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being in Bk can therefore be m itten  as

P(Bk)R(Bk) + J2 P (A ,m B k\ A ,) = P(Bk)R(Bk) + J 2 P ( B k)T(A[\Bk)
i i

= P(Bk)R(Bk)+ P (B k) J 2  T(AL\Bk)
I

= P(Bk)R(Bk) +  P(Bk) ( l - R ( B k))

= PiBk).

The Metropolis update within HMC therefore leaves the canonical distribution invariant.
Since both the sampling of momenhmi variables and the Metropolis update with a pro

posal found by Hamiltonian dynamics leave the canonical distribution invariant the HMC 
algorithm as a whole does as well.

5.3.2.3 Ergodicity o f  HMC

Typically the HMC algorithm will also be "eigodic"—it willnotbe trapped in some subset of 
the state space, and hence will asymptotically converge to its (unique) invariant distribution. 
In an HMC iteration, any value can be sampled for the momentum variables, which, can 
typically then affect the position variables in arbitrary ways. However, eigodirity can fail if 
the I  leapfrog steps in a trajectory produce an exact periodicity for some function of state. 
For example, with the simple Hamiltonian of Equation 5.8, the exact solutions {given by 
Equation 5.9) are periodic with period 2tt. Approximate trajectories found with L leapfrog 
steps with stepsize e may return to the same position coordinate when Le is approximately 
2tt . HMC with such values for L and e will notbe eigodic. For nearby values of I  and e, HMC 
may be theoretically eigodic, but take a very long time to move about the full state space.

This potential problem of nonergodidty can be solved by randomly choosing e or L 
(or both) from some fairly small interval {Mackenzie, 1989). Doing this routinely may be 
advisable. Although in real problems interactions betwTeen variables typically prevent any 
exact periodidties from occurring, near periodidties might still slowr HMC considerably.

5.3.3 Illustrations of HMC and Its Benefits

I will now illustrate some practical issues with HMC, and demonstrate its potential to 
sample much more effidently than simple methods such as random-walk Metropolis. I use 
simple Gaussian distributions for these demonstrations, so that the results canbe compared 
with known values, but of course HMC is typically used for more complex distributions.

5.3.3.1 Trajectories for a Two-Dimensional Problem

Consider sampling from a distribution for two variables that is bivariate Gaussian, with 
means of zero, standard deviations of one, and correlation 0.95. We regard these as 
"position" variables, and introduce two corresponding "momentum" variables, defined 
to have a Gaussian distribution with means of zero, standard deviations of one, and zero 
correlation. We then define the Hamiltonian as

t _i r „ 1 0.951H (tj,p )= q TS  1q/2 +  p Tp /2, with E =  Q ^   ̂ J
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Position coordinates M om entum  coordinates Value o f Hamiltonian

FIGURE S.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of 
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q  =  [—1.50, — 1.55]r  and 
V = [ - 1  i f -

Figure 5.3 shows a trajectory based on this Hamiltonian, such as mightbe used to propose 
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of 
e = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position 
coordinates and the two momentum coordinates in separate plots, while the third plot 
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from Hie 
lower left-hand comer, the position variables systematically move upward and to the right, 
until they reach the upper right-hand comer, at which point the direction of motion is 
reversed. The consistency of this motion results from the role of Hie momentum variables. 
The projection of p in the diagonal direction will change only slowly, since the gradient 
in that direction is small, and hence the direction of diagonal motion stays the same for 
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale 
oscillations occur, moving back and forth across the "valley" created by the high correlation 
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can 
be used. As can be seen in the rightmost plot in Figure 5.3, there are also osdllations in 
the value of the Hamiltonian (which would be constant if the trajectory were simulated 
exactly). If a larger stepsize were used, these osdllations would be larger. At a critical 
stepsize (e =  0.45 in this example), the trajedory becomes unstable, and the value of the 
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the 
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done. 
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for 
many distributions more complex than Gaussians, As can be seen, however, the error in 
the Hamiltonian along the trajedory does tend to be positive more often than negative, hi 
this example, the error is +0,41 at the end of the trajedory, so if this trajectory were used 
for an HMC proposal, the probability of accepting the endpoint as the next state would be 
exp (—0.41) = 0.66.

5.3.3.2 Sampling from  a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis 
method to sample from a bivariate Gaussian similar to the one just discussed, but with 
stronger correlation of 0,98.
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Random —walk M etropolis Ham iltonian M onte Carlo

FIGURE S.4
TWenty iterations of the random-walkMetropolis method (with 20 updates per iteration) and of the Hamiltonian 
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with 
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with 
ellipses drawn one standard deviation away from the mean.

In this example, as ill the previous one, HMC used a kinetic energy (defining the momen
tum distribution) of K(p) =  p Tp/2. The results of 20 HMC iterations, using trajectories of 
L =  20 leapfrog steps with stepsize e = 0.18, are sliown in the right plot of Figure 5.4. These 
values were chosen so that the trajectory length, (L, is sufficient to move to a distant point 
in the distribution, without being so large that the trajectory will often waste computation 
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis, 
with abivariate Gaussian proposal distribution with the current state as mean, zero correla
tion, and the same standard deviation for the two coordinates. The standard deviation of the 
proposals for this example was 0.18, which is the same as the stepsizeused for HMC propos
als, so that the change in state in these random-walk proposals was comparable to that for a 
single leapfrog step for HMC. The rejectionrate for these random-walk proposals was 0.37,

Random -w alk M etropolis H amiltonian M onte Carlo

FIGURE S S
TWo hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.
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One can see in Figure 5.4 how the systematic motion during an HMC traje ctory (illustrated 
in Figure 5.3) produces larger changes in state than a corresponding number of randoni- 
walk Metropolis iterations. Figure 5.5 illustrates this difference for longer runs of 20 x 200 
random-walk Metropolis iterations and of 200 HMC iterations.

5.3.3.3 The Benefit o f  Avoiding Random Walks

Avoidance of random-walk behavior, as illustrated above, is one major benefit of HMC. hi 
this example, because of the high correlation between the two position variables, keeping 
the acceptance probability for random-walk Metropolis reasonably high requires that the 
changes proposed have a magnitude comparable to the standard deviation in the most 
constrained direction (0.14 in this example, the square root of the smallest eigenvalue of 
the covariance matrix). The changes produced using one Gibbs sampling scan would be 
of similar magnitude. The number of iterations needed to reach a state almost independent 
of the current state is mostly detenninedby how long it takes to explore the less constrained 
direction, which, for this example has standard deviation 1.41—about ten times greater than 
the standard deviation hi the most constrained direction We might therefore expect that 
we would need around 10 iterations of random-walk Metropolis in which the proposal 
was accepted to move to a nearly independent state. But the number needed is actually 
roughly the square of this—around 100 iterations with accepted proposals—because the 
random-walk Metropolis proposals have no tendency to move consistently in the same 
direction

To see this, note that the variance of the position after u iterations of random-walk 
Metropolis from some start state will grow hi proportion to n (until this variance becomes 
comparable to the overall variance of the state), since the position is the stun of mostly 
independent movements for each iteration. The standard deviation of the amount moved 
(which gives the typical amount of movement) is therefore proportional to afn .

The stepsize used for the leapfrog steps is similarly limited by the most constrained 
direction, but the movement will be in the same direction for many steps. The distance 
moved after n steps will therefore tend to be proportional to h, until the distance moved 
becomes comparable to the overall width of the distribution. The advantage compared to 
movement by a random walk will be a factor roughly equal to the ratio of the standard 
deviations in the least confined direction and most confined direction—about 10 here.

Because avoiding a random walk is so beneficial, the optimal standard deviation for 
random-walk Metropolis proposals in this example is actually much larger than the value 
of 0.18 used here. A proposal standard deviation of 2.0 gives a very low acceptance rate 
(0.06), but this is more than compensatedf or by the large movement (to a nearly independent 
point) on the rare occasions when a proposalis accepted, producing a method thatis about 
as efficient as HMC. However, this strategy of making laige changes with a small acceptance 
rate wTorks only when, as here, the distribution is tightly constrained hi only one direction.

5.3.3.4 Sampling from a 100-Dimensional Distribution

More typical behavior of HMC and random-walk Metropolis is illustrated by a 100
dimensional multivariate Gaussian distribution in which the variables are independent, 
with means of zero, and standard deviations of 0.01, 0 .0 2 ,... ,  0.99, 1.00. Suppose that we 
have no knowledge of the details of this distribution, so wTe will use HMC with the same 
simple, rotationally symmetric kinetic energy function as above, K(p) =  p7p /2, and use 
random-walk Metropolis proposals in which changes to each variable are independent all
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with the same standard deviation. As discussed below in Section 5.4.1, the performance of 
both these sampling methods is invariant to rotation, so this example is illustrative of how 
they perform on any multivariate Gaussian distribution in which the square roots of the 
eigenvalues of the covariance matrix are 0.01, 0 .0 2 ,... ,  0.99, 1.00,

For this problem, the position coordinates, f/,, and corresponding momenhmi coordi
nates, pi, are all independent, so the leapfrog steps used to simulate a trajectory operate 
independently for each (i],,p,) pair. However, whether the trajectory is accepted depends 
on the total error in the Hamiltonian due to the leapfrog discretization, which is a sum of 
the errors due to each (/j„ pt) pair (for the terms in the Hamiltonian involving this pair). 
Keeping this error small requires limiting the leapfrog stepsize to a value roughly equal to 
the smallest of the standard deviations (0.01), which implies that many leapfrog steps will 
be needed to move a distance comparable to the largest of the standard deviations (1.00).

Consistent with this, I applied HMC to this distribution using trajectories with L =  150 
and with £ randomly selected for each iteration, uniformly from (0.0104, 0.0156), which 
is 0.013 ±  20%. I used random-walk Metropolis with proposal standard deviation drawn 
uniformly from (0.0176,0.0264), which is 0.022 ±20% . These are dose to optimal set
tings for both methods. Hie rejection rate was 0.13 for HMC and 0.75 for random-walk 
Metropolis.

Figure 5.6 shows results from runs of 1000 iterations of HMC (right) and of random- 
walk Metropolis (left), counting 150 random-walk Metropolis updates as one iteration, so 
that the computation time per iteration is comparable to that for HMC, The plot shows 
the last variable, with the largest standard deviation, The autocorrelation of these values 
is dearly much higher for random-walk Metropolis than for HMC. Figure 5.7 shows the 
estimates for the mean and standard deviation of each of the 100 variables obtained using 
the HMC and random-walk Metropolis runs (estimates were just the sample means and 
sample standard deviations of the values from the 1000 iterations). Except for the first few

f ig u r e  s.6
Values for the variable with largest standard deviation for the 100-dimensional example, from a random-walk 
Metropolis run and an HMC run with L =  150. To match computation time, 150 updates were counted as one 
iteration for random-walk Metropolis.
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Standard deviation o f coordinate Standard deviation o f coordinate

Standard deviation o f coordinate Standard deviation o f coordinate

FIGURE 5.7
Estimates of means (top) and standard deviations (bottom) for the 100-dimensional example, using random-walk 
Metropolis (left) and HMC (right). The 100 variables are labeled on the horizontal axes by the true standard 
deviaton of that variable. Estimates are on the vertical axes.

variables (with smallest standard deviations), the error in the mean estimates from HMC is 
roughly 10 times less than the error ill the mean estimates from random-walk Metropolis. 
The standard deviation estimates from HMC are also better.

The randomization of the leapfrog stepsize done in this example follows the advice dis
cussed at the end of Section 5.3.2. hi this example, not randomizing the stepsize (fixing 
s = 0.013) does in fact cause problems—the variables with standard deviations near 0.31 or
0.62 change only slowly, since 150 leapfrog steps with t = 0.013 produces nearly a full or 
half cyde for these variables, so an accepted trajedory does not make much of a change in 
the absolute value of the variable.
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5.4 H M C  in  P ra ctice  and T h eo ry

Obtaining the benefits from HMC illustrated in the previous section, including random- 
walk avoidance, requires proper tuning of L and e. I discuss tuning of HMC below, and 
also show how performance can be improved by using whatever knowledge is available 
regarding the scales of variables and their correlations. After briefly discussing what to do 
when HMC alone is not enough, I discuss an additional benefit of HMC—its better scaling 
with dimensionality than simple Metropolis methods.

5.4.1 Effect of Linear Transformations

Like all MCMC methods I am aware of, the p erfonnance of HMC may change if the variables 
being sampled are transformed by multiplication by some nonsingular matrix, A , However, 
performance stays the same {except perhaps in terms of computation time per iteration) if 
at the same time the corresponding momentum variables are multiplied by (AT)_1. These 
facts provide insight into the operation of HMC, and can help us improve performance 
when we have some knowledge of the scales and correlations of the variables.

Let the new variables be q = Aq. The probability density for q' will be given by P'(q') =  
P(A_ 1̂ ')/|det(J4)|, where P(t]) is the density for q. If the distribution for q is the canoni
cal distribution for a potential energy function IZ(ry) (see Section 5.3.1), we can obtain the 
distribution for q1 as the canonical distribution for Ll'(q') =  IKA^^q''). (Since det(/4)| is a 
constant, we need not include a log |det( A) | term in the potential energy.)

We can choose whatever distribution we wish for the corresponding momentum vari
ables, so we could decide to use the same kinetic energy as before. Alternatively, wTe can 
choose to transform the momentum variables by p' = (AT)~1pf and use a newT kinetic energy 
of JC'(p') = K(ATpl). If we were using a quadratic kinetic energy, Kip) = pTM ~1p/2  (see 
Equation 5.5), the newT kinetic energy will be

K Y )  = {ATpl)7M - l (ATp!)/2 =  (p’)T(A M -1A T)p ,/ 2 =  (f/)T( M 'r V  A  {5.25)

where M' =  (AM ~lAJ )~l = ( A ^ M A - 1.
If we use momentum variables transformed in this wTay, Hie dynamics for the new vari

ables, (<{,$), essentially replicates the original dynamics for (q,p), so the performance of 
HMC willbe the same. To see this, note that if we follow Hamiltonian dynamics for (q', p')r 
the result in tenns of the original variables will be as follows (see Equations 5 .6 and 5.7):

= A ~ ld^  = A - 1(M 'r 1p, = A - 1(A M -1A'T)(ATr 1p = M - l p/

^  = A t  ^  =  - A 7 VU1 (q ) =  - A t  (A-1 )t  V[J(A“ V )  =

which matches what would happen following Hamiltonian dynamics for (q,p).
If A is an orthogonal matrix (such as a rotation matrix), for which A~l =  A T, the per

formance of HMC is unchanged if we transform both q and p by multiplying by A (since 
(Ar)_1 =  A). If we chose a rotationally symmetric distribution for the momentum, withM =  
ml (i.e. the momentum variables are independent, each having variance tit), such an ortho
gonal transformation will not change the kinetic energy function {and hence not change the 
distribution of the momentum variables), since we will have M ' =  (A (ttd)~lAT)~l  = ml.
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Such an invariance to rotation holds also for a random-walk Metropolis method in which 
the proposal distribution is rotationally symmetric {e.g. Gaussian with covariance matrix 
ml), hi contrast, Gibbs sampling is not rotationally invariant, nor is a scheme in which the 
Metropolis algorithm is used to update each variable in turn (with a proposal that changes 
only that variable). However, Gibbs sampling is invariant to rescaling oi the variables (trans
formation by a diagonal matrix), which is not true for HMC or random-walk Metropolis, 
unless the kinetic energy or proposal distribution is transformed in a corresponding way.

Suppose that we have an estimate, E, of the covariance matrix for q, and suppose also that*7 
has at least a roughly Gaussian distribution. How can we use this inf ormationto improve the 
performance of HMC? Cue way is to transform the variables so that their covariance matrix 
is close to the identity, by finding the Cholesky decomposition, £  =  LLT, with L being lower- 
triangular, and letting q' =  L~lq. We then let our kinetic energy function be K(p) = pTp/2. 
Since the momentum variables are independent, and the position variables are dose to 
independent with variances dose to one (if our estimate E and our assumption that q 
is dose to Gaussian are good), HMC should perform well using trajedories with a small 
number of leapfrog steps, which will move all variables to a nearly independentpoint. More 
realistically, the estimate £  may no the very good, but this transformation could still improve 
performance compared to using the same kinetic energy with the original q variables.

A11 equivalent wTay to make use of the estimated covariance £  is to keep the original q 
variables, but us e the kinetic energy function K(p) = p TY.p/ 2—that is, we let the momentum 
variables have covariance E_1. The equivalence canbe seen by transforming this kinetic 
energy to correspond to a transformation to q1 =  I -1/j {see Equation 5.25), which gives 
Kip') =  (/0TM '- y  withM ' =  (Z.-1(LLT)(L- 1)^)-1 =  I.

Using such a kinetic energy function to compensate for correlations between position 
variables has a long history in molecular dynamics (Bennett, 1975). The usefulness of this 
technique is liniitedby the computational cost of matrix operations when the dimensionality 
is high.

Using a diagonal £  can be feasible even in high-dimensional problems. Gf course, this 
provides information only about the different scales of the variables, not their correlation. 
Moreover, when the actual correlations are nonzero, itis not clear what scales to use. Making 
an optimal choice is probably infeasible. Some approximation to the conditional standard 
deviation of each variable given all the others maybe possible—as I have done for Bayesian 
neural network models (Neal, 1996a). If this also is not feasible, using approximations to 
the marginal standard deviations of the variables may be better than using the same scale 
for them all.

5.4.2 Tuning HMC

One practical impediment to the use of Hamiltonian Monte Carlo is the need to seled 
suitable values for the leapfrog stepsize, e, and the number of leapfrog steps, I ,  which 
together determine the length of the trajectory in fictitious time, eL. Most MCMC methods 
have parameters that need to be timed, with the notable exception of Gibbs sampling when 
the conditional distributions are amenable to dired sampling. However, tuning HMC is 
more difficult in some respeds than tuning a simple Metropolis method.

5.4.2.1 Preliminary Runs and Trace Plots

Tuning HMC will usually require preliminary runs with trial values for s and L. In judg
ing howT well these runs wTork, trace plots of quantities that are thought to be indicative
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of overall convergence should be examined. For Bayesian inference problems, high-level 
hyperparameters are often among the slowest-moving quantities. The value of the potential 
energy function, U(q), is also usually of central significance. The autocorrelation for such 
quantities indicates liow well the Markov chain is exploring the state space. Ideally, we 
would like the state after one HMC iteration to be nearly independent of the previous state.

Unfortunately, preliminary runs canbe misleading, if they are not long enough to have 
reached equilibrium. It is possible that the best choices of e and I  for reaching equilibrium 
are different from the best choices once equilibrium is reached, and even at equilibrium, it 
ispossible that the best choices vary from one place to another. If necessary, at eachiteration 
of HMC, e and I  can be chosen randomly from a selection of values that are appropriate 
for different parts of the state space (or these selections and canbe used sequentially).

D oing several runs with different random starting states is advisable (for both preliminary 
and final runs), so thatproblems with isolated modes canbe detected. Note that HMC is no 
less (or more) vulnerable to problems with isolated modes than other MCMC methods that 
make local changes to the state. If isolated modes are found to exist, something needs to be 
done to solve this problem—just combining runs that are each confined to a single mode is 
not valid. A modification of HMC with "tempering" along a trajectory (Section 5.5.7) can 
sometimes help with multiple modes.

5.4.2.2 What Stepsize?

Selecting a suitable leapfrog stepsize, e, is crucial Too large a stepsize will result in a very 
low acceptance rate for states proposed by simulating trajectories. Too small a stepsize will 
either waste computation time, by the same factor as the stepsize is too small, or (worse) 
will lead to slow exploration by a random walk, if the trajectory length, sL, is then too short 
(i.e. L is not laige enough; see below).

Fortunately, as illustrated in Figure 5.3, the choice of stepsize is almost independent of 
how many leapfrog steps are done. The error in the value of the Hamiltonian (which will 
determine the rejection rate) usually does not increase with the number of leapfrog steps, 
provided that the stepsize is small enough that the dynamics is stable.

The issue of stability can be seen in a simple one-dimensional problem in winch the 
following Hamiltonian is used:

? 9<i V
* < » ( »  =  5 - 2  +  T

The distribution for q that this defines is Gaussian with standard deviation o. Aleapfrog step 
for this system (as for any quadratic Hamiltonian) willbe a linear mapping from (q</), p it)) 
to (q(t +  e),p(t +  e)). Referring to Equations 5. IS through 5.20, we see that this mapping can 
be represented by a matrix multiplication as follows:

'  1  -  e 2 / 2 ct2 e '(/(f)
p(t +  £) - e/<t2  +  s j / 4 c j 4 1 -  e 2 / 2 cj2 p(t)

Whether iterating this mapping leads to a stable trajectory, or one that diveiges to infinity, 
depends on the magnitudes of the eigenvalues of the above matrix, which are
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When e /u  > 2, these eigenvalues are real, and at least one will have absolute value greater 
than one. Trajectories computed using the leapfrog method with this e will therefore be 
unstable. Whene/<r < 2, the eigenvalues are complex, andbothhave squared magnitude of

Trajectories computed with e < 2a are therefore stable.
For multidimensional problems in whidithe kinetic energy used is Kip) = p Tp /2 (as in the 

example above), the stability limit for e willbe determined (roughly) by the width of the dis
tribution in the most constrained direction—for a Gaussian distribution, this would the 
square root of Hie smallest eigenvalue of the covariance matrix for q. Stability for more 
general quadratic Hamiltonians with K(p) = pTM ~1p/2  canbe determined by applying a 
linear transformation that makes K(p') = (p')Tp'/2, as discussed above in Section 5.4.1.

When a stepsize, e,  that produces unstable trajectories is used, the value of H  grows 
exponentially with L, and consequently the acceptance probability will be extremely small. 
For low-dimensional problems, using a value for e that is just a little below the stability limit 
is sufficient to produce a good acceptance rate. For high-dimensional problems, howTever, 
the stepsize may need to be reduced further than this to keep the error in H to a level that 
produces a good acceptance probability. This is discussed further in Section 5.4 4.

Choosing too large a value of £ can have very bad effects on the performance of HMC. 
hi this respect, HMC is more sensitive to tuning than random-walk Metropolis. Astandard 
deviation for proposals needs to be chosen for random-walk Metropolis, but performance 
degrades smoothly as this choice is made too large, without the sharp degradation seen 
with HMC when £ exceeds the stability limit. (However, in high-dimensional problems, the 
degradation in random-walk Metropolis with too large a proposal standard deviation can 
also be quite sharp, so this distinction becomes less dear.)

This sharp degradation in performance of HMC wThen the stepsize is too big would not 
be a serious issue if the stability limit were constant—the problem would be obvious from 
preliminary runs, and so could be fixed. The real danger is that the stability limit may differ 
for several regions of the state space that all have substantial probability. If the preliminary 
runs are started in a region where Hie stability limit is large, a choice of e a tittle less than this 
limit might appear to be appropriate. However, if this e is above the stability limit for some 
other region, the runs may never visit this region, even though it has substantial probability, 
producing a drastically wrong result. To see why this could happen, note that if the run 
ever does visit the region where the chosen £ would produce instability, it will stay there for 
a very long time, since the acceptance probability with that £ willbe very small. Since the 
method nevertheless leaves the corred distribution invariant, it follows that the run only 
rarely moves to this region from a region where the chosen e leads to stable trajectories. 
One simple context where this problem can arise is when sampling from a distribution with 
very light tails (tighter than a Gaussian distribution), for which the log of the density will 
fall faster than quadratically; hi the tails, the gradient of the log density will be large, and a 
small stepsize will be needed for stability. See Roberts and Tweedie (1996) for a discussion 
of this in the context of the Langevin method (see Section 5.5.2).

This problem canbe alleviatedby choosing £ randomly from some distribution. Evenif the 
mean of this distribution is too large, suitably small values for e may be chosen occasionally. 
(See Section 5.3.2 for another reason to randomly vary the stepsize.) The random choice of 
£ should be done once at the start of a trajedory, not for every leapfrog step, since even if
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all the choices are below the stability limit, random changes at each step lead to a random 
walk m the error for H, rather than the bounded error that is illustrated in Figure 5.3,

The "short-ait" procedures described in Section 5.5.6 can be seen as ways of saving 
computation time when a randomly chosen stepsize is inappropriate,

5.4.2.3 What Trajectory Length?

Choosing a suitable trajectory length is crudal if HMC is to explore the state space sys
tematically, rather than by a random walk. Many distributions are difficult to sample from 
because they are tightly constrained in some directions, but much less constrained in other 
directions. Exploring the less constrained directions is best done using trajectories that are 
long enough to reach a point that is far from the current point in that direction. Trajectories 
canbe too long, however, as is illustrated in Figure 5.3. The trajectory shown on the left of 
that figure is a bit too long, since it reverses direction and then ends at a point that might 
have been reached with a trajectory about half its length. If the trajectory were a little longer, 
the result could be even worse, since the trajectory would not only take longer to compute, 
but might also end near its starting point.

For more complex problems, one cannot expect to select a suitable trajedoiy length by 
looking at plots like Figure 5.3. Finding the linear combination of variables that is least 
confined will be difficult, and will be impossible when, as is typical, the least confined 
"direction" is actually a nonlinear curve or surface.

Setting the trajectory length by trial and error therefore seems necessary. For a problem 
thought to be fairly difficult, a trajectory with I  =  100 might be a suitable starting point. 
If preliminary runs (with a suitable e;  see above) show that HMC reaches a nearly inde
pendent point after only one iteration, a smaller value of L might be tried next. (Unless 
these "preliminary" runs are actually suffident, in w'hich case there is of course no need to 
do more runs.) If instead there is high autocorrelation in the run with L = 100, runs with 
L =  1000 might be tried next.

As discussed at the end of Sections 5.3.2 and 5.3.3, randomly varying the length of the tra
jedory (over a fairly small interval) may be desirable, to avoid choosing a trajedory length 
that happens to produce a near-periodidty for some variable or combination of variables.

5.4.2A Using Multiple Stepsizes

Using the results in Section 5.4.1, we can exploit information about the relative scales of 
variables to improve the performance of HMC. This canbe done in two equivalent wTays. If 
Si is a suitable scale for qt, we could transform q, by setting i/' = i/, /s„ or we could instead use 
a kinetic energy function of K ip) =  p JM ~lp, with M  being a diagonal matrix with diagonal 
elements ml =  1/s?.

A third equivalent way to exploit this information, which is often the most convenient, 
is to use different stepsizes for different pairs of position and momentum variables. To see 
howT this works, consider a leapfrog update (following Equations 5.18 through 5.20) with 
tiii =  1/s2:

Pi ( t+ e /2 )  =  Pi(t) -  ( e / 2 )  | ^ ( f ( t ) ) ,
dqi

q i ( t  + e )  =  qitf) +  s s f p i ( t + e / 2 ) ,

P i ( t  +  e )  =  p i  ( f  +  e/2) -  ( e / 2 )  +  e » .
dqi
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Define to be the state at the begmiung of the leapfrog step (i.e. {<]((),,p(t))),
define (V;1'11, ; '111) to be the final state (ie. (q(t + f),p (t  + e))), and define pll,,,2) to be half-way 
momentum (i.e. pi t +  e/2)). We can now rewrite the leapfrog step above as

=  , f  -  (e/2) f
aqi

If we now define rescaled momentum variables, p, =  Sipu and stepsizes e, = s,e, we can 
vwite Hie leapfrog update as

p!1/2, = p !“' - f e /
q(Ji

pf1} =  p f l7) -  (6;/2) ^ ( ^ (^).
0<]i

This is just like a leapfrog update with all m} =  1, but with different stepsizes for different 
(i/,,/',) pairs. Of course, the successive values for (q, p) can no longer be interpreted as 
following Hamiltonian dynamics at consistent time points, but that is of no consequence 
for the use of these trajectories in HMC. Note that when we sample for the momentum 
before each trajectory each />, is drawn independently from a Gaussian distribution with 
mean zero and variance one, regardless of the value of s*.

This multiple stepsize approach is often more convenient, especially when the estimated 
scales, s,, are not fixed, as discussed in Section 5.4.5, and the momentum is only partially 
refreshed (Section 5.5.3).

5.4.3 Combining HMC with Other MCMC Updates

For some problems, MCMC using HMC alone will be impossible or undesirable. Twto 
situations w'here non-HMC updates w illbe necessary are when some of the variables are 
discrete, and wThen the derivatives of the log probability density with respect to some of 
the variables are expensive or impossible to compute. HMC can then be feasibly applied 
oidy to the other variables. Another example is when spedal MCMC updates have been 
devised that may help convergence in ways that HMC does not—for example, by moving 
between otherwise isolated modes—but which are not a complete replacement for HMC. 
As discussed in Section 5.4.5 below, Bayesian hierarchical models may also be best handled 
with a combination of HMC and other methods such as Gibbs sampling.

hi such circumstances, one or more HMC updates for all or a subset of the variables can 
be alternated with one or more other updates that leave the desired joint distribution of 
all variables invariant. The HMC updates can be viewed as either leaving this same joint 
distribution invariant, or as leaving invariant the conditional distribution of the variables 
that HMC changes, given the current values of the variables that are fixed during the HMC 
up date, These are equivalent views, since the joint density canbe factored as this conditional 
density times the marginal density of the variables that are fixed, which is just a constant
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from the point of view of a single HMC update, and hence canbe left out of the potential 
energy function.

When both HMC and other updates are used, it may be best to use shorter trajectories 
for HMC than would be used if only HMC were being done. This allows the other updates 
to be done more often, which presumably helps sampling. Finding the optimal tradeoff is 
likely to be difficult however. A variation on HMC that reduces the need for such a tradeoff 
is described below in Section 5.5.3.

5.4.4 Scaling with Dimensionality

In Section 5.3.3, one of the main benefits of HMC was illustrated—its ability to avoid the 
inefficient exploration of the state space via a random walk. This benefit is present (to at 
least some degree) for mostpractical problems. For problems in which the dimensionality is 
moderate to high another benefit of HMC over simple random-walk Metropolis methods 
is a slower increase in the computation time needed (for a given level of accuracy) as the 
dimensionality increases. (Note that here I will consider only sampling performance after 
equiUbriumis reached, not the time needed to approach equilibrium from some initial state 
not typical of the distribution, which is harder to analyze.)

5.4.4.1 Creating Distributions o f  Increasing Dimensionality by Replication

To talk about how performance scales with, dimensionality we need to assume something 
about how the distribution changes with dimensionality, d.

I will assume that dimensionality increasesby adding independent replicas of variables— 
that is, the potential energy function for q = (q i,. . .  ,q d) has the form Uiq) =  Y. //, ((/, ), for 
functions //; drawn independently from some distribution. Of course, this is not what any 
real practical problem is like, but it may be a reasonable model of the effect of increas
ing dimensionality for some problems—for instance, in statistical physics, distant regions 
of large systems are often nearly independent. Note that the independence assumption 
itself is not crudal since, as discussed in Section 5.4.1, the performance of HMC (and of 
simple random-walk Metropolis) does not change if independence is removed by rotat
ing the coordinate system, provided the kinetic energy function (or random-walk proposal 
distribution) is rotationally symmetric.

For distributions of this form, in which the variables are independent, Gibbs sampling 
will perform very well (assuming it is feasible), producing an independent point after each 
scan of all variables. Applying Metropolis updates to each variable separately will also work 
well, provided the time for a single-variable update does not grow with d. However, these 
methods are not invariant to rotation, so this good performance may not generalize to the 
more interesting distributions for which we hope to obtain insight with the analysis below

5.4.4.2 Scaling o f  HMC and Random-Walk Metropolis

Here, I discuss informally how well HMC and random-walk Metropolis scale with 
dimension, loosely following Creutz (1988, Section III).

To begin, Cruetz notes that the following relationship holds when any Metropolis-style 
algorithm is used to sample a density P(.ir) =  (1 jZ) exp(-£(jc)):

1 = E[P(**)/P(ac)] = E[exp(—(E(jc*) -  E ( jc) » ]  = E[exp(-A )], (5.26)
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where x is the current state, assumed to be distributed according to P(x), x* is the proposed 
state, and A =  E(x*) -  E(x). Jensen's inequality then implies that the expectation of the 
energy difference is nonnegative:

E[A] > 0.

The inequality will usually be strict.
When U(q) =  E //,((/,), and proposals are produced independently for each/, we can apply 

these relationships either to a single variable {or pair of variables) or to the entire state. For a 
single variable (or pair), I will write A i for E(x*} -  E(x), with.* = q{ and E(x) =  u^q,), or x = 

andff.*) =  + p f l  2, For the entire state, I will write A  ̂for E(x*) -  £(.*), w ith* =
q and E(x) — U(q), o r*  = (q, p) and Eix) — U(q) +  Kip). For both random-walk Metropolis 
and HMC, increasing dimension by replicating variables will lead to increasing energy 
differences, since A^is the sum of A i for each variable, each of wThichhas positive mean. This 
will lead to a decrease in the acceptance probability—equal to m in(l, exp(—A^))—unless 
the width of the proposal distribution or the leapfrog stepsize is decreased to compensate.

More specifically, for random-walk Metropolis with proposals that change each variable 
independently, the difference in potential eneugy between a proposed state and the current 
state will be the sum of independent differences for each variable. If we fix the standard 
deviation, g for each proposed change, the mean and the variance of this potential energy 
difference will both grow linearly with d, which will lead to a progressively lower accep
tance rate. To maintain reasonable performance, q will have to decrease as d increases. 
Furthermore, the number of iterations needed to reach a nearly independent point will be 
proportional to g~2, since exploration is via a random walk.

Similarly, when HMC is used to sample from a distribution in which the components 
of ij are independent, using the kinetic energy K(p) =  E pf/2 , Hie different ( i j p a i r s  do 
not interact during the simulation of a trajectory—each (qu f',) pair follows Hamiltonian 
dynamics according to just the one term in the potential energy involving q, and the one 
term in the kinetic energy in v o lv in g T h e re  is therefore no need for the length in fictitious 
time of a trajectory to increase with dimensionality. However, acceptance of the endpoint of 
the trajectory is based on the error in H  due to the leapfrog approximation, which is the sum 
of the errors pertaining to each (q,r p, ) pair. For a fixed stepsize, e, andfixed trajectory length, 
cl, both the mean and the variance of the error in H  grow linearly with d. This will lead to 
a progressively lower acceptance rate as dimensionality increases, if it is not counteracted 
by a decrease in 8. The number of leapfrog steps needed to reach an independent point will 
be proportional to e-1 .

To see which method scales better, we need to determine how rapidly we must reduce 
5 and e as d increases, in order to maintain a reasonable acceptance rate. As d increases 
and 5 or e goes to zero, A i w il l  go to zero as w ell Using a second-order approximation of 
exp (-A i) as 1 -  Ai 4- A^/2, together with Equation 5.26, we find that

E [A?]
E[A i ] « - L - ^ .  (5.27)

It follows from this that the variance of Ai is twice the mean of Ai (when Ai is small), 
which implies that the variance of A,i is twice the mean of A,j (even when A  ̂is not small). 
To achieve a good acceptance rate, we must therefore keep the mean of A ̂  near one, since a 
large mean will not be savedby a similarly large standard deviation (which would produce 
fairly frequent acceptances as A  ̂occasionally takes on a negative value).

For random-walk Metropolis with a symmetric proposal distribution, we can see how q 
needs to scale by directly averaging Ai for a proposal and its inverse, Let the proposal for
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one variable be x* = x  +  c, and suppose that c =  a and c = —a  are equally likely. Approx
imating U(x*) to second order as (.to) +  cli'Oc) + c 2U"(x)/2, we find that the average of 
A i = IZCr*) — ll(.r) over c = a  and c = —a is a2U"(x). Averaging this over the distribution 
of a, with standard deviation 5, and over the distribution of x, we see that E [ Ai] is propor
tional to q2. It follows that E [A ]̂ is proportional to rf<;2, so we can maintain a reasonable 
acceptance rate by letting 5 be proportional to d~1/2. The number of iterations needed to 
reach a nearly independent point will be proportional to q~2, which will be proportional 
to 11. The amount of computation time needed will typically be proportional to d2.

As discussed at the end of Section 5.2.3, the error in H  when using the leapfrog discretiza
tion to simulate a trajectory of a fixed length is proportional to e2 (for sufficiently small e). 

The error in H  for a single (//„ p;) pair is the same as Ai, so we see that A  ̂is proportional 
to e4. Equation 5.27 then implies that E [Ai] is also proportional to e4. The average total 
error ill H  for all variables, E [A;J], will be proportional to dfA, and hence we must make e 
be proportional to rf-1 ' 4 to maintain a reasonable acceptance rate. The number of leapfrog 
updates to reach a nearly independent point will therefore grow as rf1' 4, and the amount of 
computation time will typically grow as d5/'4, which is much better than the d2 growth for 
random-walk Metropolis.

5.4A.3 Optimal Acceptance Rates

By extending the analysis above, we can determine what Hie acceptance rate of proposals 
is when the optimal choice of 5 or € is used. This is helpful when tuning the algorithms— 
provided, of course, that the distribution sampled is high-dimensional, and has properties 
that are adequately modeled by a distribution with replicated variables.

To find this acceptance rate, we first note that since Metropolis methods satisfy detailed 
balance, the probability of an accepted proposal with A,{ negative must be equal to the 
probability of an accepted proposal with A,{ positive. Since all proposals with negative 
A,i are accepted, the acceptance rate is simply twice the probability that a proposal has a 
negative Â . For large d, the central limit theorem implies that the distribution of A ̂  is 
Gaussian, since it is a stun of d independent A1 values. {This assumes that the variance 
of each Ai is finite.) We saw above that the variance of Ati is twice its mean, E [A;i] =  
(i. The acceptance probability can therefore be written as follows (Gupta et al., 1990), 
for large d\

= 2 4 .  (-V W 2) =  «(H>, (5-28)

where 4>(z) is the cumulative distribution function for a Gaussian variable with mean zero 
and variance one.

For random-walk Metropolis, the cost of obtaining an independent point will be propor
tional to l/(>7<;2), where nis the acceptance rate. We saw above that =  E [ A ,j] is proportional 
to g2, so the cost follows the proportionality

------------------------- .(fl(n)n)

P{ accept) = 2<4>

Numerical calculation shows that this is minimized when p = 2.8 and /i(|i) = 0,23,
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For HMC, the cost of obtaining ail independent point willbe proportional to l/(rre), and 
as we saw above, |a is proportional to e4. From this we obtain

Chmc0C (fltn)nV4)'

Numerical calculation shows that tlie minimum is when n = 0.41 and «(|i) = 0.65,
The same optimal 23% acceptance rate for random-walk Metropolis was previously 

obtained using a more formal analysis by Roberts et al. (1997). The optimal 65% accep
tance rate for HMC that I derive above is consistent with previous empirical results on 
distributions folio wing the model here (Neal, 1994, Figure 2), and on real high-dimensional 
problems (Creutz, 1988, Figures 2 and 3; Sexton and Weingarten, 1992, Table 1). Kennedy 
and Pendleton (1991) obtained explicit and rigorous results for HMC applied to multivariate 
Gaussian distributions.

5.4A.4 Exploring the Distribution o f  Potential Energy

The better scaling behavior of HMC seen above depends crucially on the resampling of 
momentum variables. We can see this by considering how well the methods explore the 
distribution of the potential eneigy, ilu/) =  I] ///(>/, ). Because lli/j) is a sum of d independent 
terms, its standard deviation will grow in proportion to d 

Following Caracdolo et al. (1994), we note that the expected change in potential energy 
from a single Metropolis update will be no more than order 1—intuitively, large upwards 
changes are unlikely to be accepted, and since Metropolis updates satisfy detailed balance, 
large downward changes must also be rare (in eqnilibmuii). Because changes in II will 
follow a random walk (due again to detailedbalance), it will take at least order (d 1̂ 1 / 1)2 =  d 
Metropolis updates to explore the distribution of LI.

hi the first step of an HMC iteration, the resampling of momentum variables will typically 
change the kinetic enejgy by an amount that is proportional to rf1'1' 2, since the kinetic energy 
is also a sum of d independent terms, and hence has standard deviation that grows as 111-2 
(more precisely, its standard deviation is d 1-12/ 1 1?2). If the second step of HMC proposes a 
distant point, this change in kinetic eneigy (and hence in H) will tend, by the end of the 
trajectory, to have become equally splitbetwTeenkinetic and potential energy. If the endpoint 
of this trajectory is accepted, the change in potential energy from a single HMC iteration 
will be proportional to d l-ri, comparable to its overall range of variation So, in contrast to 
random-wTalk Metropolis, wTe may hope that only a few HMC iterations will be suffident 
to move to a nearly independent point, even for high-dimensional distributions.

Analyzing how wTell methods explore the distribution of [I can also provide insight into 
their performance on distributions that are not well modeled by replication of variables, as 
we will see in the next section.

5.4.5 HMC for Hierarchical Models

Many Bayesian models are defined hierarchically A large set of low-level parameters have 
prior distributions that are determined by fewTer higher-level "hyperparameters," which in 
turn may have priors determined by yet-liigher-level hyperparameters. For example, in a 
regression model with many predidor variables, the regression coeffidents might be given 
Gaussian prior distributions, with a mean of zero and a variance that is a hyperparame
ter. This hyperparameter could be given a broad prior distribution, so that its posterior 
distribution is determined mostly by the data.
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One could apply HMC to thes e mo dels in an obvious way (after taking the log s of variance 
hyperparameters, so they willbe unconstrained). However, it maybe better to apply HMC 
only to the lower-level parameters, for reasons I will now discuss. (See Section 5.4,3 for 
general discussion of applying HMC to a subset of variables.)

I will use my work on Bayesian neural network models (Neal, 1996a) as an exam
ple. Such models typically have several groups of low-level parameters, each with an 
associated variance hyperparameter. The posterior distribution of these hyperparameters 
reflects important aspects of the data, such as which predictor variables are most rele
vant to the task. The efficiency with which values for these hyperparameters are sampled 
from the posterior distribution can often determine the overall efficiency of the MCMC 
method.

I use HMC only for the low-level parameters in Bayesian neural network models, with 
the hyperparameters being fixed during an HMC update. These HMC updates alternate 
with Gibbs sampling updates of the hyperparameters, which (in the simpler versions of 
the models) are independent given the low-level parameters, and have conditional distri
butions of standard form. By using HMC only for the low-level parameters, the leapfrog 
stepsizes used canbe set using heuristics that are based on Hie current hyperparameter val
ues. (I use the multiple stepsize approach described at the end of Section 5.4.2, equivalent 
to using different mass values, mu for different parameters.) For example, the size of the 
network "weights" on connections out of a "hidden unit" determine how sensitive the like
lihood function is to changes in weights on connections into the hidden unit; the variance of 
the weights on these outgoing connections is therefore useful in setting the stepsize for the 
weights on the incoming connections. If the hyperparameters were changed by the same 
HMC updates as change the lower-level parameters, using them to set stepsizes would not 
be valid, since a reversed trajectory would use different stepsizes, and hence not retrace the 
original trajectory. Without a good way to set stepsizes, HMC for the low-level parameters 
would likely be much less efficient.

Choo (2000) bypassed this problem by using a modification of HMC in which trajec
tories are simulated by alternating leapfrog steps that update only the hyperparameters 
with leapfrog steps that update only the low-level parameters. This procedure maintains 
both reversibility and volume-preservation (though not necessarily symplecticness), while 
allowing the stepsizes for the low-level parameters to be set using the current values of 
the hyperparameters (and vice versa). However, performance did not improve as hoped 
because of a second issue with hierarchical models.

hi these Bayesian neural network models, and many other hierarchical models, the joint 
distribution of both low-level parameters and hyperparameters is highly skewed, with 
the probability density varying hugely from one region of high posterior probability to 
another. Unless the hyperparameters controlling the variances of low-level parameters 
have very narrow posterior distributions, the joint posterior density for hyperparame
ters and low-level parameters will vary greatly from when the variance is low to when it 
is high.

For instance, suppose that in its region of high posterior probability, a variance hyperpa
rameter varies by a factor of 4, If this hyperparameter controls 1000 low-level parameters, 
their typical prior probability density will vary by a factor of 2100C =  1.07 x 10301, corre
sponding to a potential energy range of log(21000) = 693, with a standard deviation of 
693/121,2 = 200 (since the variance of a uniform distribution is one twelfth of its range). As 
discussed at the end of Section 5.4.4, one HMC iteration changes the energy only through 
the resampling of the momentum variables, which at best leads to a change hi potential 
energy with standard deviation of about d 1'2/ ! ^ 2. For this example, with 1000 low-level
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parameters, this is 11.2, so about (200/11.2)2 = 319 HMC iterations willbe needed to reach 
an independent point.

One might obtain similar performance for this example using Gibbs sampling. However, 
for neural network models, there is no feasible way of using Gibbs sampling for the pos
terior distribution of the low-level parameters, but HMC canbe applied to the conditional 
distribution of the low-level parameters given the hyperparameters. Gibbs sampling can 
then be used to update the hyperparameters. As we have seen, performance would not be 
unproved by trying to update the hyperparameters with HMC as well, and updating them 
by Gibbs sampling is easier.

Choo (2000) tried another approach that could potentially improve on this— 
reparameterizing low-level parameters 0,', ah with variance exp(K), by letting 0; =  
4); exp(K/2), and then sampling for k and the <t>r- using HMC. The reparameterization elim
inates the extreme variation in probability density that HMC cannot efficiently sample. 
However, he found that it is difficult to set a suitable stepsize for k, and that the error in H  
tended to grow with trajectory length, unlike the typical situation when HMC is used only 
for the low-level parameters. Use of "tempering" techniques (see Section 5.5.7) is another 
possibility.

Even though it does not eliminate all difficulties, HMC is very useful for Bayesian neural 
network mo dels—indeed, without it, they mightnotbe feasiblefor most applications. Using 
HMC for atleastthe low-level parameter can produce similar benefits for other hierarchical 
models (e.g. Ishwaran, 1999), especially when the posterior correlations of these low-level 
parameters are high As in  any application of HMC, however, careful tuning of the stepsize 
and trajectory length is generally necessary.

5.5 E xten sio n s of and V ariation s on  HM C

The basic HMC algorithm (Figure 5.2) canbe modified in many ways, either to improve its 
efficiency, or to make it useful for a wider range of distributions, hi this section, I will start 
by discussing alternatives to the leapfrog discretization of Hamilton's equations, and also 
show how HMC can handle distributions with constraints on the variables (e.g. variables 
that must be positive). I will then discuss a special case of HMC—when only one leapfrog 
step is done—and show how it canbe extended to produce an alternative method of avoid
ing random walks, which may be useful when not ah variables are updated by HMC. 
Most applications of HMC can benefit from using a variant in which "windows" of states 
are used to increase the acceptance probability. Another widely applicable technique is to 
use approximations to the Hamiltonian to compute trajectories, while still obtaining correct 
results by using the exact Hamiltonian when deciding whether to acceptthe endpoint of the 
trajectory. Tuning of HMC maybe assisted by using a "short-cut" method that avoids com
puting the whole trajectory when the stepsize is inappropriate. Tempering methods have 
potential to help with distributions having multiple modes, or which are highly skewed.

There are many other variations that I will not be able to review here, such as the use 
of a "shadow Hamiltonian" that is exactly conserved by the inexact simulation of the real 
Hamiltonian (Izagguirre and Hampton, 2004), and the use of symplectic integration meth
ods more sophisticated than Hie leapfrog method (e.g. Creutz and Gocksch, 1989), including 
a recent proposal by Girolami et al, (2009) to use a symplectic integra tor for a nonseparable
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Hamiltonian in which M in the kinetic energy of (Equation 5.5) depends on q, allowing for 
"adaptation" based on local information.

5.5,1 Discretization by Splitting: Handling Constraints and Other Applications

Hie leapfrog method is not the only discretization of Hamilton's equations that is reversible 
and volume-preserving, and hence can be used for HMC. Many "symplectic integration 
methods" have been devised, mostly for applications other than HMC (e.g. simulating the 
solar system for millions of years to test its stability). It is possible to devise methods that 
have a higher order of accuracy than the leapfrog method (see, e.g. McLachlan and Atela, 
1992). Using such a method for HMC will produce asymptotically better performance than 
the leapfrog method, as dimensionality increases. Experience has shown, however, that the 
leapfrog method is hard to beat in practice.

Nevertheless, it is worth taking a more general look at how Hamiltonian dynamics can 
be simulated, since this also points to how constraints on the variables canbe handled, as 
well as possible improvements such as exploiting partial analytic solutions.

5.5.1.1 Splitting the Hamiltonian

Many sympledic discretizations of Hamiltonian dynamics canbe derived by "splitting" 
the Hamiltonian into several terms, and then, for each term in succession, simulating the 
dynamics defined by that term for some small time step, then repeating this procedure 
until the desired total simulation time is reached. If the simulation for each term can be 
done analytically, we obtain a symplectic approximation to the dynamics that is feasible to 
implement.

This general scheme is described by Leimkuhler and Reich (2004, Section 4.2) and by 
Sexton and Weingarten (1992). Suppose that the Hamiltonian can be written as a sum of k 
terms, as follows:

H(q,p) = Hi(q,p) + H2(q,p) +  ■ ■ ■ + + Hk(q,p).

Suppose also that we can exactly implement Hamiltonian dynamics based on each H,, 
for i =  1, . . . ,  k, with TJj£: being the mapping defined by applying dynamics based on H, for 
time e. As shownby Leimkuhler and Reich, if the H, are twice differentiable, the composition 
of these mappings, T iiG o ° ° Tjfc-i,E ° Tk,s>1S a valid discretization of Hamiltonian
dynamics based on H, which will reproduce the exact dynamics in the limit as e goes to 
zero, with global error of order t: or less.

Furthermore, this discretization will preserve volume, and will be symplectic, since these 
properties are satisfied by each of the XijE mappings. The discretization will also be reversible 
if the sequence of H, is symmetrical—that is, H^q.p) = p). As mentioned at the end
of Section5.2.3, any reversible method must have global error of even order in s (Leimkuhler 
and Reich, 2004, Section 4.3.3), which means that the global error must be of order s2 or 
better.

We can derive the leapfrog method from a symmetrical splitting of the Hamiltonian. 
If H( q,p) = U(q) + K(p), we can write the Hamiltonian as
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which corresponds to a split with Hi(q,p) = H^(q,p) = U(q)/2 and =  K(p)
Hamiltonian dynamics based on Hi is (Equations 5.1 and 5,2):

%  _  3-Hi _  n
dt ~ apt ~  ' 

dp; _  dHi _  ia w
dt ~  city ~  Id qi '

Applying this dynamics for time £ just adds — (e/2) 3 U/Bqi to each p, , which is the first part 
of a leapfrog step (Equation 5.18). The dynamics based on H 2 is as follows:

_  dH2 _  BK 
dt dp; Bp/

dp; _  3H2 _
(1t <)q i '

If K(p) = pf/uii, applying this dynamics for time e results in adding epi/nii to each t
which is the second part of a leapfrog step Equation 5.19. Finally, H-_, produces the third
part of a leapfrog step (Equation 5.20), which is the same as the first part, since H3 = Hi.

5.5.1.2 Splitting to Exploit Partial Analytical Solutions

One situation where splitting can help is when the potential energy contains a term that 
can, on its own, be handled analytically. For example, the potential energy for a Bayesian 
posterior distribution will be the sum of minus the log prior density for the parameters 
and minus the log likelihood. If the prior is Gaussian, the log prior density term will be 
quadratic, and canbe handled analytically (see the one-dimensional example at the end of 
Section 5.2.1).

We can modify the leapfrog method for this situation by using a modified split. Suppose 
that = Uo(i7) +  Ui(q), with do being analytically tractable, in conjunction with the 
kinetic energy, Kip). We use the split

+  [ H o w  +  * ( * » ) ]  +  r̂-' <5 - 2 9 >

that is, H i(q,p) = H^,(q,p) = Ui(q)/2  and H 2(q,p) =  UqU]) + K(p). The first and last half 
steps for p are the same as for ordinary leapfrog, based on Ui alone. The middle full step 
for q, whidi in ordinary leapfrog just adds tp to q, is replaced by the analytical solution for 
following the exact dynamics based on the Hamiltonian + K(p) for time s.

With this procedure, it should be possible to use a larger stepsize (and hence use fewer 
steps in a trajectory), since part of the potential energy has been separated out and handled 
exactly. The benefit of handling the prior exactly may be limited, however, since the prior 
is usually dominated by the likelihood.

5.5.1.3 Splitting Potential Energies with Variable Computation Costs

Splitting can also help if the potential energy function can be split into two terms, one of 
which requires less computation time to evaluate than the other (Sexton and Weingarten,
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1992). Suppose that U(/j) = +  Ui(tj), with Uq being cheaper to compute than LIi, and
let the kinetic: energy be Kip). We can use the following split, for some M  > 1:

We label the k =  3M + 2 terms as HiU],p) = =  Ui{<])/2 and, for i =  I, .. ,,M,
— H?ll+i(q,p) — lZ0((/)/2M and H^(q,p) — K(p)/M. The resulting discretization 

canbe seen as a nested leapfrog method. The M  inner leapfrog steps involve only IZo, and 
use an effective stepsize of e/M. The outer leapfrog step takes half steps for p using only 
Ui, and replaces the update for (j in the middle with the M inner leapfrog steps.

If IZq is much cheaper to compute than IZi, we can use a large value for M without 
increasing computation time by much. The stepsize, e, that we can use will thenbe limited 
mostly by the properties of LZi, since the effective stepsize for [Jo is much smaller, e/M. 
Using a bigger e than with the standard leapfrog method wall usually be possible, and 
hence we will need fewTer steps in a trajectory, with fewer computations of IZi.

5.5.1.4 Splitting according to Data Subsets

When sampling from the posterior distribution for a Bayesian model of independent data 
points, it may be possible to save computation time by splitting the potential energy into 
terms for subsets of the data.

Suppose that we partition the data into subsets Sm, for m =  1, . . . ,  M, typically of roughly 
equal size. We can then write the log likelihood function as l(q) =  Y/!m=\ where ( m 
is the log likelihood function based on the data points in Sm. If 71(17) is the prior density for 
the parameters, we can let = — log(n(ij))/M -  i mi<]), and split the Hamiltonian as
follows:

that is, we let the k =  3M terms be p) =  Hjm(q,p) = II,„{(])/2 and H-,m_ iit],p) =
K(p)/itt. The resulting discretization with stepsize e effectively performs M  leapfrog steps 
with stepsize e/M, with the ///th step using MUm as the potential energy function.

This scheme canbe beneficial if the data set is redundant, with many data points that are 
similar. We then expect to be approximately the same as U(i]), and we might hope
that we could set e to be M  times larger than with the standard leapfrog method, obtaining 
similar results with M times less computation, hi practice, however, the error in H  at the 
end of the trajectory will be larger than with standard leapfrog, so the gain willbe less than 
this. I found (Neal, 1996a, Sections 3.5.1 and 3.5.2) that the method canbe beneficial for 
neural network models, especially when combined with the windowed HMC procedure 
described below in Section 5.5.4.

Note that unlike the other examples above, this split is not symmetrical, and hence the 
resulting discretization is not reversible. HowTever, it canstillbe used to produce a proposal 
for HMC as long as the labeling of the subsets is randomized for each iteration, so that the 
reverse trajectory has the same probability of being produced as the forwTard trajectory. (It 
is possible, however, that some symmetrical variation on this split might produce better 
results.)
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5.5.1.S Handiing Constraints

All argument based on splitting shows how to handle constraints on the variables being 
sampled. Here, I will consider only separate constraints on some subset of the variables, 
with the constraint on qt taking the form r/; < i/.,, or r/; > or both. A similar scheme can 
handle constraints taking the form GO/) > 0, for any differentiable function G.

We can impose constraints on variables by letting the potential energy be infinite for 
values of q that violate any of the constraints, which will give such points probabil
ity zero. To see how to handle such infinite potential energies, we can look at a limit 
of potential energy functions that approach infinity, and the corresponding limit of the 
dynamics.

To illustrate, suppose that Ll^(q) is the potential energy ignoring constraints, and that ij, 
is constrained to be less than iit. We can take the limit as r —>■ oo of the following potential 
energy function (which is one of many that could be used):

i 0, if (j, < //,,
,-+1 T ,

r  (Qi -  " J  , if<7i >  Hi

lt is easy to see that linv^co C,-(</,■, //,) is zero for any 17, < //, and infinity for any q} > For 
any finite r > 1, U(q) is differentiable, so we can use it to define Hamiltonian dynamics,

To simulate the dynamics based on this Iff//), with a kinetic energy K(p) =  \ we
can use the split of Equation 5.29, with UiO]) = Ut: (q) and = C, (/j„ iu):

H(q,p)  =  +  [C,-((7i,Hi) +  K ( p ) ]  +

This produces a variation on the leapfrog method in which the half steps for p (Equa
tions 5.18 and 5.19) remain the same, but the full step for q (Equation 5.19) is modified to 
account for the constraint on <],. After computing i/j' =  /j,(f) + sp,(t +  e/2)//H„ we check if 
ij' > //,. If not, the value of C,-(<j,-,»,) mustbe zero ah along the path from /j, to 1/', and we can 
set #7(f -I- s) to q[. But if 17' > //;, tlie dynamics based on the Hamiltonian //,) +  Kip) wall 
be affected by the Cr term. This term canbe seen as a steep liill, which willbe dimbed as 17, 
moves past ut, until the point is reached where C, is equal to the previous value of ^ if /til,, 
at which point pt will be zero. (If r is suffidently large, as it will be in the limit as r 00, 
this point will be reached before the end of the full step.) We will then fall down the hill, 
with pi taking on increasingly negative values, until we again reach 7, =  //,, when />, willbe 
just Hie negative of the original value of pL. We then continue, now moving in the opposite 
direction, away from the upper limit.

If several variables have constraints, we must follow this procedure for each, and if a vari
able has both upper and lower constraints, we must repeat the procedure until neither con
straint is violated. Hie end result is that the full step for q of Equation 5,19 is replaced by the 
procedure shownin Figure 5.8. Intuitively, the trajectory justbomices off the "walls" given 
by the constraints. If U^iq) is constant, these bounces are the only interesting aspect of Hie 
dynamics, and the procedure is sometimes referred to as "billiards" (see, e.g. RujAn, 1997).

5.5.2 Taking One Step at a Time—The Langevin Method

A spedal case of HMC arises when the trajectory used to propose a new state consists 
of only a single leapfrog step. Suppose that we use the kinetic energy K(p) = \ Ylpf- ^
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For each variable, i = l, ...,d:

1) Let p . =  p i ( t + t / 2)
2) Let q ' ^ q i  (t) +2.p'i /mi

3) If q± is constrained, repeat the following until satisfies 
all constraints:
a) If q^ has an upper constraint, and g'̂  > u±

Let g'j. = u i - a n d  p'. = -p:
b) If q± has a lower constraint, and q \  <

Let q ' ^ l i + i l i - q ' i )  and p ' ^ - p ' i

4) Let qi(t+E)=g,i and p i  { t + e / 2 )  = p!̂

FIGURE 5.8
Modification to the leapfrog update o tq  (Equation 5.19) to handle constraints of the fonnqj < ii; ortj,1 < /;■.

iteration of HMC with one leapfrog step canbe expressed in the following way. We sample 
values for the momentum variables, p, from their Gaussian distributions with mean zero 
and variance one, and then propose new values, i f  and p*, as follows:

e a n e h i

We accept q* as the new state with probability

lirni 1, exp

(5.30)

(5.31)

(5.32)

and otherwise keep q as the new state. Equation 5.30 is known in physics as one type of 
"Langevin equation," and this method is therefore known as Laiigevin Monte Carlo (LMC) 
in the lattice field theojy literature (e.g. Kennedy, 1990).

One can also remove any explicit mention of momentum variables, and view this method 
as performing a MetropoHs-Hastings update in which i f  is proposed from a Gaussian dis
tribution where the q* are independent, with means of qt — (e2/2 )[‘dU/'dqi](q) and variances 
of e2 . Since this proposal is not symmetrical, it must be accepted or rejected based both on 
the ratio of the probability densities of q* and q and on the ratio of the probability densities 
for proposing q from q* and vice versa (Hastings, 1970). To see the equivalence with HMC 
using one leapfrog step, we can write the Metropolis-Hastings acceptance probability as 
follows:

nun
1 exp(—U(<7*)) j - j  exp ( -  (q, -  q (£2/2){dU/d<]i](q*))2/2 e 2)

exp( Uiq)) ,=i - q l +  (e2/ 2) [ d l l / 3ql]{q)) / 2e2)
(5.33)
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To see that this is the same as Equation 5.32, note that using Equations 5.30 and 5.31, we 
can write

1
P = ~

* 1

After substituting these into Equation 5.32, it is straightforward to see the equivalence 
to Equation 5.33.

hi this Metropolis-Hasthigs form, the LMC method was first proposed by Rossky 
et al. (1978) lor use in physical simulations. Approximate Langevin methods without an 
accept/ reject step can also be used (for a discussion of this, see Neal, 1993, Section 5.3)— as, 
for instance, in a paper on statistical inference for complex models by Grenander and Miller 
(1990), where also an accept/ reject step is proposed hi the discussion by J. Besag (p. 591).

Although LMC canbe seen as a special case of HMC, its properties are quite different. 
Since LMC updates are reversible, and generally make only small changes to the state (since 
e typically cannotbe very large), LMC will explore the distribution via anineffidentrandom 
walk, just like random-walk Metropolis updates.

However, LMC has better scaling behavior than random-walk Metropolis as dimension
ality increases, as canbe seen from an analysis paralleling that hi Section 5.4.4 (Creutz, 1988; 
Kennedy, 1990). The local error of the leapfrog step is of order e3, so E[A 2], the average 
squared error in H  from one variable, wall be of order e6. From Equation 5.27, E [A] will also 
be of order e6, and with d  independent variables, E [ A ]̂ will be of order so that e must 
scale as d~1/6 in order to maintain a reasonable acceptance rate, Since LMC explores the dis
tribution via a random walk, the number of iterations needed to reach a nearly independent 
point will be proportional to e-2 , which grows as rf1̂ , and the computation time to reach 
a nearly independent point grows as rf4'' 3. This is better than the d 2 growth hi computation 
tune for random-walk Metropolis, but worse than the d5̂  growth when HMC is used with 
trajectories that are long enough to reach a nearly independent point.

We can also find whatthe acceptance rate for LMC willbe when the optimal e is used, wThen 
sampling a distribution withindependent variables replicated rf times. As for random- walk 
Metropolis and HMC, the acceptance rate is given in terms of |i =  E [ A ]̂ by Equation 5.28. 
The cost of obtaining a nearly independent point using LMC is proportional to 1/(rt(|i)e2), 
and since |i is proportional to s6, we can WTite the cost as

ClMC “  (rtlii )ii1'"3)'

Numerical calculation shows that this is minimized when n(]i) is 0.57, a result obtained 
more formally by Roberts and Rosenthal (1998). This may be useful for tuning, if the behav
ior of LMC for the distribution being sampled resembles its behavior when sampling for 
replicated independent variables.

5.5.3 Partial Momentum Refreshment: Another Way to Avoid Random Walks

The single leapfrog step used inthe LMC algorithm will usually not be sufficient to move to 
a nearly independent point, so LMC will explore the distribution via an inefficient random
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walk. This is why HMC is typically used with trajectories of many leapfrog steps. An alter
native that can suppress random-walk behavior even when trajectories consist of just one 
leapfrog step is to only partially refresh the momentum between trajectories, as proposed 
by Horowitz (1991).

Suppose that the kinetic energy has the typical form Kip) — p J M ~1p/2. The following 
update for p will leave invariant the distribution for the momentum (Gaussian with mean 
zero and covariance M):

p' =  ap  +  (1 -  a 2)1/2!!.. (5.34)

Here, a is any constant in the interval [—1, +1], and n is a Gaussian random vector with 
mean zero and covariance matrix M. To see this, note that if p has the required Gaussian 
distribution, the distribution of p' will also be Gaussian (since it is a linear combination of 
independent Gaussians), with mean 0 and covariance a 2M  +  (1 -  a 2)M =  M.

If a is only slightly less than one, p1 will be similar to p, but repeated updates of this 
sort will eventually produce a value for the momentum variables almost independent of 
the initial value. When a = 0, p' is just set to a random value drawn from its Gaussian 
distribution, independent of its previous value. Note that when M  is diagonal, the update 
of each momentum variable, p;, is independent of the updates of other momentum variables.

The partial momentum update of Equations. 34canbe substituted for the full replacement 
of the momentum in the standard HMC algorithm. This give s a generaliz ed HMC algorithm 
in wiiich an iteration consists of three steps:

1. Update the momentum variables using Equation 5.34 Let the new momentum 
be p'.

2. Propose a new state, Uf, p*), by applying L leapfrog steps with stepsize s, starting 
at (q,p‘), and then negating the momentum. Accept ( t fr p*) with probability

m in [l, exp (—U{q*) +  U(q) -  K(p*) +  K (p '))].

If O7*, p*) is accepted, let (>/'', p") =  (q*, p* ); otherwise, let {)/", p") = (q, p').
3. Negate the momentum, so that the newT state is Of'1, —p").

The transitions in each of these steps— (q, p) —> (q, p'), (q, p') -» (q", p"), and (q", p") -> 
(q", —p ")—leave the canonical distribution for it], p) invariant. The entire update there
fore also leaves the canonical distribution invariant. The three transitions also each satisfy 
detailed balance, but the sequential combination of the three does not satisfy detailedbal
ance (except when a = 0). This is crucial, since if the combination wTere reversible, it would 
still result in random-walk behavior when L is small.

Note that omitting step (3) above would result in a valid algorithm, but then, far from 
suppressing random wralks, the method (with a dose to one) would produce nearly back- 
and-forthmotion, since the direction of motion would reverse with every trajectory accepted 
in step (2). With the reversal in step (3), motion continues in the same direction as long as 
the trajedories in step (2) are accepted, since the two negations of p will cancel Motion 
reverses whenever a trajedory is rejeded, so if random-walk behavior is to be suppressed, 
the rejection rate must be kept small.

If a = 0, the above algorithm is the same as standard HMC, since step (1) will completely 
replace the momentum variables, step (2) is the same as for standard HMC, and step (3) will
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have 110 effect,, since the momentum will be immediately replaced anyway, in step (1) of 
the next iteration.

Since this algorithm canbe seen as a generalization of standard HMC, with an additional 
a  parameter, one might think it will offer an improvement provided that a is tuned for 
best performance. However, Kennedy and Pendleton {2001) show that when the method is 
applied to high-dimensional multivariate Gaussian distributions only a small constant fac
tor improvement is obtained, with no better scaling with dimensionality. Best performance 
is obtained using long trajectories (I large), and a value for a that is not very dose to one 
(but not zero, so the optimum choice is not standard HMC). If L is small, the need to keep 
the rejection rate very low (by using a small e ) ,  as needed to suppress random walks, makes 
the method less advantageous than standard HMC.

It is disappointing that only a small improvement is obtained with this generalization 
when sampling a multivariate Gaussian, due to limitations thatlikely apply to other distri
butions as well. However, the method may be more useful than one would think from this. 
For reasons discussed in Sections 5.4.3 and 5.4.5, we will often combine HMC updates with 
other MCMC updates (perhaps for variables not changed by HMC). There may then be a 
tradeoff between using long trajectories to make HMC more effident, and using shorter 
trajedories so that the other MCMC updates can be done more often If shorter-than- 
optimal trajectories are to be used for this reason, setting a greater than zero can reduce the 
random-walk behavior that would otherwise result.

Furthermore, rejection rates canbe reduced using the "window" method described next, 
An analysis of partial momentum refreshment combined with the window method might 
find that using trajedories of moderate length in conjunction with a value for a greater than 
zero produces a more substantial improvement.

5.5.4 Acceptance Using Windows of States

Figure 5.3 (right plot) shows how the error in H  varies along a typical trajedory computed 
with the leapfrog method. Rapid osdllations occur, here with a period of between 2 and 
3 leapfrog steps, due to errors in simulating the motion in the most confined direction (or 
directions, for higher-dimensional distributions). When a long trajectory is used to propose 
a state for HMC, it is essentially random whether the trajectory ends at a state where the error 
in H  is negative or dose to zero, and hence willbe accepted with probability dose to one, or 
whether it happens to end at a state with a large positive error in H, and a correspondingly 
lower acceptance probability. If somehow we could smooth out these oscillations, we might 
obtain a high probability of acceptance for all trajedories.

I introduced a method for achieving this result that uses "windows" of states at the 
beginning and end of the trajectory (Neal, 1994). Here, I will present the method as an 
application of a general technique in which we probabilistically map to a state in a different 
space, perform a Markov chain transition in this new space, and then probabilistically map 
back to our original state space (Neal, 2006).

Our original state space consists of pairs, (q, p), of position and momentum variables. We 
will map to a sequence of W pairs, [(^o,po), . . . ,  ( ^ w - i , i n  which each ((/,,, />,) for i > 0  
is the result of applying one leapfrog step (with some fixed stepsize, e ) to />,_ i ) . Note 
that even though a point in the new space seems to consist of W times as many numbers 
as a point in the original space, the real dimensionality of the new space is the same as the 
old, since the whole sequence of W pairs is determined by (qo,po)-

To probabilistically map from (<],p) to a sequence of pairs, [(/jo, po), ■ ■ (<]w- b  p w - i)L we 
seled s uniformly from {0, . . . ,  W -  1}, and set (qs,Ps) in the new state to our current state
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(q,p). The other (qu pi) pairs in the new state are obtained using leapfrog steps from (qs, ps), 
for i> s ,  or backwards leapfrog steps (ie. done with stepsize —t ) for i < s. It is easy to see, 
using the fact that leapfrog steps preserve volume, that if our original state is distributed 
with probability density P{q,p), then the probability density of obtaining the sequence 
l(qo,Po), ■ ■ ■, (qv f-L P w -1)] by this procedure is

since we can obtain this sequence from a iq,p) pair that matches any pair in the sequence, 
and the probability is 1/W that we will produce the sequence starting from each of these 
pairs (which happens only if the random selection of s puts the pair at the right place in the 
sequence).

Having mapped to a sequence of W pairs, we now perform a Metropolis update that 
keeps the sequence distribution defined by Equation 5.35 invariant, before mapping back 
to the original state space. To obtain a Metropolis proposal, we perform L — W +  1 leapfrog 
steps (for some L > W—1), starting from (qw -i,P w -i), producing pairs (qw,Pw)to(qL,pL)- 
We then propose the sequence [(qi, —pi,), ■ - ■, (</L-W+1, —/ 'L -W + l)]- We accept or reject this 
proposed sequence by the usual MetropoEs criterion, with the acceptance probability being

\vifiiPit],p) «  exp(—Jf((/,/j)). (Note here that H(q,p) =  H(q, —p), and that starting from the 
proposed sequence would lead symmetrically to the original sequence being proposed.)

This Metropolis updateleaves us with eitherthe sequence [(q^, p i)r . . . ,  (qi-w + i, P l-w +i )], 
called the "accept window," or the sequence [(//o,Pa), ■ ■ ■, (qw -l,P w -l)], called the "reject 
window" (Note that these windows will overlap if I  + 1 < 2W.) We label the pairs in 
the window chosen as [(</J,pJ), ■ - ■, (<7yy_i'Pw_i)]- now produce a final state for the 
windowed HMC update by probabilistically mapping from this sequence to a single pair, 
choosing {)/+, p f ) with probability

If the sequence in the chosen window was distributed according to Equation 5.35, the pair 
(q^,p^) chosen will be distributed according to P(q,p) oc exp(— H(q,p)), as desired. To see 
this, let p +̂rl) be the result of applying n leapfrog steps (backward ones if n < 0)
starting at (i/+, p~t ). The probability density that (q^, p^) will result from mapping from a 
sequence to a single pair can then be written as follows, considering all sequences that can 
contain (qj~, p^) and their probabilities:

The entire procedure therefore leaves the correct distribution invariant.
When W > 1, the potential problem with ergodicity discussed at the end of Section 5.3.2 

does not arise, since there is a nonzero probability of moving to a state only one leapfrog 
step away, where q may differ arbitrarily from its value at the current state,

(5.35)
i=0

min 1, (5.36)

Jt=£

it+W-1
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It might appear that the windowed HMC procedure requires saving all 2VV states in the 
accept and reject windows, since any one of these states mightbecome the new state when a 
state is selected from either the accept window or reject window. Actually, however, atmost 
three states need to be saved—the start state, so that forward simulation canbe resinned 
after the initial backward simulation, plus one state from the reject window and one state 
from the accept window, one of which will become the new state after one of these windows 
is chosen As states hi each window are produced in sequence, a decision is made whether 
the state just produced should replace the state presently saved for that window. Suppose 
that the sum of the probability densities of states seen so far is s; = p\ + ■ ■ ■ +  f',. If the state 
just produced has probability density p;+i, it replaces the previous state saved from this 
window with probability' /'n-1/ (s, + f i+i).

I showed (Neal, 1994) that, compared to standard HMC, using windows improves the 
performance of HMC by a factor of 2 or more, on multivariate Gaussian distributions hi 
which the standard deviation in some directions is much larger than hi other directions. 
This is because the acceptance probability hi Equation 5.36 uses an average of probability 
densities over states in a window, smoothing out the osdllations in H  from inexact sim
ulation of the trajectory. Empirically, the advantage of the windowed method was found 
to increase with dimensionality. For high-dimensional distributions, the acceptance proba
bility when using the optimal stepsize was approximately 0.S5, larger than the theoretical 
value of 0.65 for HMC (see Section 5.4.4).

These results for multivariate Gaussian distributions were obtained with a window size, 
W, much less than the trajectory length, L. For less regular distributions, it may be advanta
geous to use a much larger window. When W = L! 2, the a cceptance test determine s whether 
the new state is from the first half of the trajectory (which indudes the current state) or the 
second half; the new state is then chosen from one half or the other with probabilities 
proportional to the probability densities of the states hi that half. This choice of W guards 
against the last few states of the trajectory having low probability density (highiJ), as might 
happen if the trajectory had by then entered a region where the stepsize used was too big.

The windowed variant of HMC may make other variants of HMC more attractive. Cne 
such variant (Section 5.5.1) splits the Hainiltoniaiiinto many terms corresponding to subsets 
of the data, which tends to make errors in H  higher (while saving computation). Errors hi 
H  have less effect when averaged over windows. As discussed hi Section 5.5.3, very low 
rejectionrates are desirable when using partial momentum refreshment. It is easier to obtahi 
a low rejection probability using windows (i. e. a less drastic reduction in <e is needed), which 
makes partial momentum refreshment more attractive.

Qin and Liu (2001) introduced a variant on windowed HMC. hi their version, L leapfrog 
steps are done from the start state, with the accept window consisting of the states after the 
last W of these steps. A state from the accept window is then selected with probabilities 
proportional to their probability densities. If the state selected is k  states before the end, k 
backwards leapfrog steps are done from the start state, and the states found by these steps 
along with those up to W -  k -  1 steps forward of the start state form the reject window 
The state selected from the accept window then becomes the next state with probability 
given by the analog of Equation 5.36; otherwise the state remains the same.

Qin and Liu's procedure is quite similar to the original windowed HMC procedure. Cne 
disadvantage of Qin and Liu's procedure is that the state is unchanged wThen the accept 
window is rejected, whereas hi the original procedure a state is selected from the reject 
window (which mightbe the current state, but often will notbe). The only other difference 
is that the number of steps from the current state to an accepted state ranges from L -  
W + 1 to L (average L -  (W +  l)/2) with Qin and Liu's procedure, versus from L -  2W + 2
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to L {average L — W + 1) for the original windowed HMC procedure, while the number 
of leapfrog steps computed varies from I  to L +  W — 1 with Qin and Liu's procedure, 
and is fixed at I  with the original procedure. These differences are slight ii W <?; L. Qin 
and Lin claim that their procedure performs better than the original on high-dimensional 
multivariate Gaussian distributions, but their experiments are flawTed.*

Qin and Liu (2001) also introduce the more useful idea of weighting the states in the 
accept and reject window's nonuniformly, which canbe incorporated into the original pro
cedure as wTell. When mapping from the current state to a sequence of W weighted states, 
the position of the current state is chosen with probabilities equal to the weights, and when 
computing the acceptance probability or choosing a state from the accept or reject win
dow, the probability densities of states are multiplied by their weights. Qin and Liu use 
weights that favor states more distant from the current state, which could be useful by 
usually causing movement to a distant point, while allowing choice of a nearer point if the 
distant points have low7 probability density Alternatively, if one sees a window' as a wTay of 
smoothing the errors in H, symmetrical weights that implement a better "low pass filter" 
would make sense.

5.5.5 Using Approximations to Compute the Trajectory

The validity of HMC does not depend on using the correct Hamiltonian when simulating 
the trajectory. We can instead use some approximate Hamiltonian, as long as we sim
ulate the dynamics based on it by a method that is reversible and volume-preserving. 
HowTever, the exact Hamiltonian must be used wThen computing the probability of accept
ing the endpoint of the trajectory There is no need to look for an approximation to the 
kinetic energy, when it is of a simple form such as Equation 5,13, but the potential energy is 
often much more complex and costly to compute—for instance, it may involve the stun of 
log likelihoods based on many data points, if the data cannot be summarized by a simple 
sufficient statistic. When using trajectories of many leapfrog steps, we can therefore save 
much computation time if a fast and accurate approximation to Hie potential energy is avail
able, while still obtaining exact results (apart from the usual sampling variation inherent 
in MCMC).

Many ways of approximating the potential energy might be useful. For example, if its 
evaluation requires iterative numerical methods, fewTer iterations might be done than are 
necessary to get a result accurate to machine precision hi a Bayesian statistical application, 
a less costly approximation to the unnormalized posterior density (wrhose log gives the 
potential energy) may be obtainable by simply looking at only a subset of the data. This 
may not be a good strategy in general, but I have found it useful for Gaussian process 
models (Neal, 1998; Rasmussen and Williams, 2006), for which computation time scales 
as the cube of the number of data points, so that even a small reduction in the number of 
points produces a useful speedup.

Rasmussen (2003) has proposed approximating the potential energy by modeling it as a 
Gaussian process, inferred from values of the potential energy at positions selected during 
an initial exploratory pha se. This method a ssume s only a degre e of smo othne ss of the p oten- 
tial energy function, and so could be widely applied. It is limited, however, by the cost of

* In their first comparison, their method computes an average of 55 leapfrog steps per iteration, but the original 
only computes 50 steps, a difference in computation time which if properly accounted for negates the slight 
advantage they see for their procedure. Their second comparison has a similar problem, and it is also clear from 
an examination of the results (in their Table I) that the sampling errors in their comparison are too large for any 
meaningful conclusions to be drawn.
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Gaussian process inference, and so is mostuseful for problems of moderate dimensionality 
for which, exact evaluation of the potential energy is very costly.

An interesting possibility to my knowledge not yet explored, would be to express 
the exact potential energy as the sum of an approximate potential energy and the error 
in this approximation, and to then apply one of the splitting techniques described in 
Section5.5.1—exploiting either the approximation's analytic tractability (e.g. for a Gaussian 
approximation, with quadratic potential energy), or its low computational cost, so that its 
dynamics can be accurately simulated at little cost using many small steps. This would 
reduce the number of evaluations of the gradient of the exact potential energy if the vari
ation in the potential energy removed by the approximation term permits a large stepsize 
for the error term.

5.5.6 Short-Cut Trajectories: Adapting the Stepsize without Adaptation

One significant disadvantage of HMC is that, as discussed in Section 5.42, its performance 
depends critically on the settings of its tuning parameters—which consist of at least the 
leapfrog stepsize, 6, and number of leapfrog steps, L, with variations such as windowed 
HMC having additional tuning parameters as well. The optimal choice of trajectory length 
(iL) depends on the global extent of the distribution, so finding a good trajectory length 
likely requires examining a substantial number of HMC updates. In contrast, just a few 
leapfrog steps can reveal whether some choice of stepsize is good or bad, which leads to 
the possibility of trying to set the stepsize "adaptively" during an HMC run.

Recent work on adaptive MCMC methods is reviewed by Andrieu and Thoms (2008). As 
they explain, naively choosing a stepsize for each HMC update based on results of previ
ous up dates—for example, reducing the stepsize by 20% if the previous 10 trajectories were 
all rejected, and increasing it by 20% if less than two of the 10 previous trajectories were 
rejected—undermines proofs of correctness (inparticular, the process is no longer a Markov 
chain), and will in general produce points from the wrong distribution, However, correct 
results can be obtained if the degree of adaptation declines over time. Adaptive methods 
of this sort could be used for HMC, in much the same way as for any other tunable MCMC 
method.

An alternative approach (Neal, 2005, 2007) is to perform MCMC updates with various 
values of the tuning parameters, set according to a schedule that is predetermined or cho
sen randomly without reference to the realized states, so that the usual proofs of MCMC 
convergence and error analysis apply, but to do this using MCMC updates that have been 
tweaked so that they require little computation time when the tuning parameters are not 
appropriate for the distribution Most of the computation time will then be devoted to 
updates with appropriate values for the tuning parameters. Effectively the tuning param
eters are set adaptively from a computational point of view, but not from a mathematical 
point of view.

For example, trajectories that are simulated with a stepsize that is much too large can 
be rejected after only a few leapfrog steps, by rejecting whenever the change (either way) 
in the Hamiltonian due to a single step (or a short series of steps) is greater than some 
threshold—thatis, werejectif \H((](t + f), p it +  e)) — is greater than the thresh
old. If this happens early in the trajectory, little computation time will have been wasted 
on this unsuitable stepsize. Such early termination of trajectories is valid, since any MCMC 
update that satisfies detailed balance will still satisfy detailed balance if it is modified to 
eliminate transitions either way between certain pairs of states.
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With this simple modification, we can randomly choose stepsizes from some distribution 
without wasting much time on those stepsizes that turn outtobe much too large. However, 
if we set the threshold small enough to reject when the stepsize is only a little too large, 
we may terminate trajectories that would have been accepted, perhaps after a substantial 
amount of computation has already been done. Trying to terminate trajectories early when 
the stepsize is smaller than optimal carries a similar risk.

Aless drastic alternative to terminating trajectories when the stepsize seems inappropriate 
is to instead reverse the trajectory. Suppose that we perform leapfrog steps in groups of k 
steps. Based on the changes in H  over these k steps, we can test whether the stepsize is 
inappropriate—for example, the group may fail the test if the standard deviation of H  over 
the k +  1 states is greater than some upper threshold or less than some lower threshold 
(any criterion that would yield the same decision for the reversed sequence is valid). When 
a group of k leapfrog steps fails this test, the trajectory stays at the state where this group 
started, rather than moving k steps forward, and the momentum variables are negated. The 
trajectory will now exactly retrace states previously computed (and which therefore need 
not be recomputed), until the initial state is reached, at which point new states will again 
be computed. If another group of k steps fails the test, the trajectory will again reverse, 
after which the whole remainder of the trajectory will traverse states already computed, 
allowing its endpoint to be found immediately without further computation.

This scheme behaves the same as standard HMC if no group of k leapfrog steps fails the 
test, If there are two failures early hi the trajectory, little computation tune will have been 
wasted on this (most likely) inappropriate stepsize, Between these extremes, it is possible 
that one or two reversals will occur, but not early in the trajectory; the endpoint of the 
trajectory will then usually notbe close to the initial state, so the nonnegligible computation 
performed will not be wasted {as it would be if the trajectory had been terminated).

Such short-cut schemes can be effective at finding good values for a small number of 
tuning parameters, for which good values will be picked reasonably often when drawing 
them randomly. It will not be feasible for setting a laige number of tuning parameters, 
such as the entries in the "mass matrix" of Equation 5.5 when dimensionality is high since 
even if two reversals happen early on, the cost of using inappropriate values of the tuning 
parameters will dominate when appropriate values are chosen only very rarely.

5.5.7 Tempering during a Trajectory

Standard HMC and the variations described so far have as much difficulty moving between 
modes that are separated by regions of low probability as other local MCMC methods, 
such as random-walk Metropolis and Gibbs sampling. Several general schemes have been 
devised for solving problems with such isolated modes that involve sampling from a series 
of distributions that are more diffuse than the distribution of interest. Such schemes include 
parallel tempering (Geyer, 1991; Earl and Deem, 2005), simulated tempering (Marinari 
and Parisi, 1992), tempered transitions (Neal, 1996b), and annealed importance sampling 
(Neal, 2001). Most commonly, these distributions are obtained by varying a "temperature" 
parameter, T, as in Equation 5.21, with T =  1 corresponding to the distribution of interest, 
and larger values of T giving more diffuse distributions. Any of these "tempering" methods 
could be used in conjunction with HMC. However, tempering-like behavior can also be 
incorporated directly into the trajectory used to propose a new state in the HMC procedure.

hi the simplest version of such a "tempered trajectory" scheme {Neal, 1999, Section 6), 
each leapfrog step in the first half of the trajectory is combined with multiplication of the 
momentum variables by some factor a  slightly greater than one, and each leapfrog step
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m the second half of the trajectory is combined with division of the momentum by the 
same factor a, These multiplications and divisions can be done in various ways, as long 
as the result is reversible, and the divisions are paired exactly with multiplications. The 
most symmetrical scheme is to multiply the momentum by .v/a before the first half step for 
momentum {Equation 5. IS) and afterthe second half step for momentum (Equation 5.20), for 
leapfrog steps in the first half of the trajectory, and correspondingly, to divide the momen
tum by y a  before the first and after the second half steps for momentum in the second 
half of the trajectory. (If the trajectory has an odd number of leapfrog steps, for the middle 
leapfrog step of the trajectory the momentum is multiplied by s/a  before the first half step 
for momentum, and divided by yfct after the second half step for momentum.) Note that 
most of the multiplications and divisions by ^/a are preceded or followed by another such, 
and so can be combined into a single multiplication or division by a.

It is easy to see that the determinant of the Jacobian matrix for such a tempered trajectory 
is one, just as for standard HMC, so its endpoint can be used as a proposal without any 
need to indude a Jacobian fador in the acceptance probability.

Multiplying the momentum by an a that is slightly greater than one increases the value 
of H(q,p) slightly If H  initially had a value typical of the canonical distribution at T = 1, 
after this multiplication, H  will be typical of a value of T that is slightly higher.* Initially, 
the change in H(q,p) =  K(p) + U[q) is due entirely to a change in K(p) as p is made bigger, 
but subsequent dynamical steps will tend to distribute the increase in H  between K and 
U, producing a more diffuse distribution for q than is seen when X = 1. After many such 
multiplications of p by a, values for q canbe visited that are very unlikely in the distribution 
a t r  = 1, allowing movement b etwe en mo de s that are separated by low-prob ability regions. 
The divisions by a  in the second half of the trajedory restdt in H  returning to values that 
are typical for T — 1, but perhaps now in a different mode.

If a is too large, the probability of accepting the endpoint of a tempered trajedory will 
be small, since H  at the endpoint will likely be much larger than H  at the initial state. To 
see this, consider a trajedory consisting of oidy one leapfrog step. If e = 0 , so that this step 
does nothing, the multiplication by s /a  before the first half step for momentum would be 
exactly canceled by the division by yfct after the second half step for momentum, so H  
would be unchanged, and the trajedory would be accepted. Since we want something to 
happen, however, we will use a nonzero e, which will on average result in the kinetic energy 
decreasing when the leapfrog step is done, as the increase in H  from the multiplication by 
s/a  is redistributed from K alone to both K and II. Hie division of p by y a  will now not 
cancel the multiplication by v't*—instead, on average, it will reduce H  by less than the 
earlier increase. This tendency for H to be larger at the endpoint than at the initial state can 
be lessened by increasing the number of leapfrog steps, say by a fador of R, while reducing 
a  to a 1̂ ,  which (roughly) maintains the effective temperature reached at the midpoint of 
the trajectory.

Figure 5.9 illustrates tempered trajedories used to sample from an equal mixture of 
two bivariate Gaussian distributions, with means of [0 0] and [10 10], and covariances 
of I  and 21. Each trajedory consists of 200 leapfrog steps, done with e = 0.3, with tem
pering done as described above with a = 1,04, The left plots show how H  varies along 
the trajedories, the right plots show the position coordinates for the trajedories. The

* This assumes that the typical value of H  is a continuous function of T, which may not be true for systems that 
have a "phase transition." Where there is a discontinuity (in practice, a near-discontinuity) in the expected value 
of H  as a function of T, making small changes to H, as here, m aybe better than making small changes to T 
(which may imply big changes in the distribution}.
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Leapfrog step num ber Position coordinate 1

Leapfrog step num ber Position coordinate 1

FIGURE 5.9
Illustration of tempered trajectories on a mixture of two Gaussians. The trajectory shown in the top plots moves 
between modes; the one shown in the bottom plots ends in the same mode.

top plots are for a trajectory starting at q =  [—0.4 —0.9] and p =  [0.7 —0.9], which has 
an endpoint in the oilier mode around [10 10]. The bottom plots are for a trajectory 
starting at q =  [0.1 1.0] and p =  [0.5 0.8], which ends in the same mode it begins hi. 
The change hi H  for the top trajectory is 0.69, so it would be accepted with probabil
ity exp (-0.69) =  0.50. Hie change hi H  for the bottom trajectory is —0.15, so it would be 
accepted with probability one.

By using such tempered trajectories, HMC is able to sample these two well-separated 
modes— 11% of the trajectories move to the other mode and are accepted—whereas stan
dard HMC does very poorly, being trapped for a very long tune in one of the modes. 
The parameters for the tempered trajectories in Figure 5.9 were chosen to produce easily 
interpreted pictures, and are not optimal. More efficient sampling is obtained with a much 
smallernumberofleapfrog steps, larger stepsize, and larger a—for example,I = 20,€ =  0.6, 
and a  =  1.5 give a 6% probability of moving between modes.
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Afundamentallimitation of the tempering method described above is that (as for standard 
HMC) the endpoint of the tempered trajectory is unlikely to be accepted if the value for H  
there is much higher that for the initial state, This corresponds to the probability density 
at the endpoint being much lower than at the current state, Consequently, the method will 
not move well between two modes with equal total probability if one mode is high and 
narrow and the other low and broad, especially when the dimensionality is high. (Since 
acceptance is based on the joint density for q and p, there is some slack for moving to a 
point wThere the density for q alone is different, but not enough to eliminate this problem.) 
I have proposed (Neal, 1999) a modification that addresses this, in which the point moved 
to can come from anywhere along the tempered trajectory not just the endpoint. Such a 
point must be selected based both on its value for H and the accumulated Jacobian factor 
for that point, which is easily calculated, since the determinant of the Jacobian matrix for a 
multiplication of p by a is simply cid, where d is the dimensionality. This modified tempering 
procedure can not oidy move between modes of differing width, but also move back and 
forth between the tails and the central area of a heavy-tailed distribution 

More details on these variations on HMC canbe found in the R implementations available 
from my web page, at www.cs.utoronto.ca/ ~radford
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6
Inference from Simulations 
and Monitoring Convergence

Andrew Gelman and Kenneth Shirley

Constructing efficient iterative simulation algorithms can be difficult but inference and 
monitoring convergence are relatively easy We first give our recommended strategy 
{following Section 11.10 of Gelman et a l, 2003) and then explain the reasons for our rec
ommendations, illustrating with a relatively simple example from our recent research a 
hierarchical model fit to public opinion survey data.

6.1 Q u ick  S u m m ary of R eco m m en d atio n s

1. Simulate three or more chains in parallel. We typically obtain starting points by 
adding random perturbations to crude estimates based on a simpler model or 
approximation.

2. Check convergence by discarding the first part of the simulations—we discard 
the first hah, although that may be overly conservative—and using within-chain 
analysis to monitor stationaiity and between/ within chains comparisons to 
monitor mixing.

3. Once you have reached approximate convergence, mix all the simulations from the 
second halves of the chains together to summarize the target distribution. For most 
purposes there is no longer any need to worry about autocorrelations in the chains.

4 Adaptive Markov chain Monte Carlo {MCMC)—for example, tuning the jumping 
distribution of a Metropolis algorithm—can often be a good idea and presents no 
problems for convergence if you restart after adapting, For example, if you have 
already run 400 iterations and have not reached approximate convergence, you can 
adjust your algorithm and run another 400 steps, discarding the earlier simulations. 
At the next step of adaptation., you can run another 400, and so forth, possibly 
adapting the adaptation time itself to balance the goals of rapid convergence and 
computational efficiency. (Newer, more sophisticated algorithms have the promise 
of allowing continuous adaptation and do not necessarily require discarding early 
iterations.)

5. If you have run your simulations for a while and they are not dose to conver
gence, stop, look at plots of simulations from different chains, and go back and 
improve your algorithm, for example, by adding new kinds of jumps to get faster
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mixing (see, e.g., Sections 11.8 through 11.9 of Gelman et al., 2003, for some simple 
approaches, or some of the chapters in this handbook for more advanced ideas for 
tackling harder problems). It is not generally a good idea to wait hours for conver
gence, and in many practical examples there is a real gain from getting an answer 
in ten seconds, say, rattier than two minutes. Faster computation translates into the 
ability to fit more models and to do more real-time data analysis.

6. When all is done, compare inferences to those from simpler models or approxima
tions. Examine discrepancies to see whether they represent programming errors, 
poor convergence, or actual changes in inferences as the model is expanded. (Here 
we are talking about using these comparisons as a way to diagnose potential prob
lems in a simulation. Other chapters hi this handbook discuss ways of combining 
MCMC runs from different models to perform more efficient computations, using 
techniques such as parallel tempering and path sampling.)

Another useful debugging technique is the fake-data check: Choose or simulate some 
"true values" of the parameters and simulate data given these parameters. Then run the 
MCMC algorithm and check that it converges to a distribution consistent with the assumed 
true parameter values.*

To illustrate the concepts in this chapter, we introduce a model fit using MCMC that 
conies from a political science application: modeling state-level attitudes on the death 
penalty over time using national survey data (Shirley and Gelman, 2010). The model is a 
multilevel logistic regression for the binary response representing support (y = 1) or oppo
sition ( }/ =  0) to the death penalty for people convicted of murder (this is how the question 
was phrased in repeated polls given by Gallup and the National Opinion Research Center 
during the time span 1953-2006). Hie predictors hi the model include demographics such 
as race, sex, and age, as well as the state of residence of the respondent (nested within one 
of four regions of the United States), so that we can model opinion trends in different parts 
of the country.

6.2 K ey D ifferen ces b etw een  P o in t E stim a tio n  and M C M C  In feren ce

Markov chain Monte Carlo methods are wonderfully convenient and flexible but, compared 
to simpler methods of statistical computation, they involve two difficulties: nnming the 
Markov chains long enough for convergence, and having enough simulation draws for 
suitably accurate inference.

• The distribution of simulations depends on starting values of the algorithm. The 
user must correct for starting-value bias or else run simulations long enough that 
starting values have essentially been forgotten.

* Inferences are based on simulations rather than deterministic estimates, as a result 
the user must account f or Monte Carlo error or else average over enough simulation 
draws that such error is negligible.

* The basic idea is that, over many simulations, 50% of the 50% posterior intervals should contain the true value, 
95/o of the 95%  intervals should contain the true value, and so forth. Cook et al. (2006) provide a more formal 
procedure along these lines.
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The first item above is sometimes called the problem of monitoring convergence of 
the sampler and is commonly assessed in two ways: by studying time trends within 
chains (thus detecting movement away from the starting points) and by examining 
mixing behueni chains (thus detecting influence of the starting values of the different 
chains).

The second item above arisesbecause, even if all chains were started from random draws 
from the target distribution, we would still need to think about their speed of mixing: 
the iterative simulation must cycle through the distribution enough times to give us the 
equivalent of many independent draws. In practice, though, once chains have been run 
long enough that the distribution of each of them is dose to the distribution of all of them 
mixed together, we usually have created enough simulation draws that Monte Carlo error 
is not a problem So typically we simply monitor convergence and then stop. It can also be 
a good idea to examine movement within chains (via trace plots or time series summaries) 
to catch the occasional situation when a group of chains have mixed but still have not 
converged to a stable distribution.

Beyond this, there canbe convergence problems which are essentially undetedable from 
output analysis alone, for example if a target distribution has multiple, well-separated 
modes and all the chains are started from within a single mode. Here there may be specific 
workarounds for particular models, but in general the only solutionis the usual combination 
of subject-matter understanding, comparisons to previous fitted models, and mathemati
cal analysis: the usual set of tools we use in any data analysis, hi the words of Brooks et al,
(2003):

Diagnostics can only reliably be used to determine a lack of convergence and not detect 
convergence per se. For example, it is relatively easy for a sampler to become stuck in 
a  local mode and naively applied diagnostics would not detect that the chain had not 
explored the majority of the model/parameter space. Therefore, it is important to use a 
range of techniques, preferably assessing different aspects of the chains and each based 
upon independent chains started at a range of different starting points. If only a single 
diagnostic is used and it detects no lack of convergence, then this provides only mild 
reassurance that the sampler has performed well. However, if a range of diagnostics can 
be used and each detects no lack of convergence, then we can be far more confident that 
w e would gain reliable inference from the sampler output.

Ultimately, MCMC computation, and simulation in general, is part of a larger statistical 
enterprise.

hi the case of our example, we aim to summarize patterns and trends in public opinion 
on the death penalty for political sdentists by fitting a model to survey data. To see how 
knowledge of the problem leads to better decision-making regarding inferences via simula
tion, consider the situation in which we encounter multiple modes in the target distribution 
of some parameter, such as the time trend for the coeffident of a particular state, Given that 
we are modeling survey data, we might hypothesize that the multiple modes represent a 
mixture of distributions that correspond to different subgroups of the population in that 
state, and wTe would then want to add an interaction term in the model between state of res
idence and some demographic variable, such as sex, to see if the multimodaHty disappears. 
Such situations highlight that the convergence of MCMC algorithms depends strongly on 
whether the model actually fits the data: these are never totally separate, and convejgence 
problems are often related to modeling issues.
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6.3 In feren ce fo r F u n ctio n s o f th e P aram eters  vs. In feren ce  
fo r F u n ctio n s of the Target D istrib u tio n

It is sometimes said that simulation-based inference is all about the problem of estimating 
expectations E(0) under the target distribution, p(0).* This is not correct. There are actually 
two sorts of inferential or computational task:

Task 1. Inference about 0 or, more generally, about any quantity of interest ̂ {6). Such 
inference will typically be constructed using a collection of 1000 (say) simulations 
of the parameter vector, perhaps summarized by a mean and standard deviation, or 
maybe a 95% interval using the empirical distribution of the simulations that have 
been saved. Even if these summaries could be computed analytically, we would in 
general still want simulations because these allow us directly to obtain inferences 
for any posterior or predictive summary.

Task 2. Computation of E(0) or, more generally, any function of the target distribution. 
For example, suppose we are interestedin a parameter 0 and we plan to summarize 
our inference using a posterior mean and standard deviation. Then what we really 
want are E(0) and E(02), which indeed are expectations of functions of 0. Or suppose 
we plan to summarize our inference using a 95% central posterior interval. These 
canbe derived from posterior expectations; for example, the lower endpoint of the 
interval is the value L for which Pr(0 < L) =  0.025.

The precision we need depends on our inferential goals. Consider a scalar parameter 0 
whose posterior distribution happens to be approximately normal with mean and standard 
deviation estimated at 3.47 and 1.83, respectively. Suppose you are now told that the Monte 
Carlo standard deviation of the mean is estimated to be 0.1. If your goal is inference for
0—Task 1 above—you can stop right there: the Monte Carlo error is trivial compared to 
the inherent uncertainty about 0 in your posterior distribution, and further simulation will 
be a waste of time (at least for the purposes of estimating 50% and 95% intervals for 0).+ 
However, if your goal is to compute E(0)—Task 2—then you might want to go further: 
depending on your ultimate goal, you might want to learn that E{0) is actually 3.53 or 
3.53840 or whatever.

Task 1 is by far the more common goal in Bayesian statistics, but Task 2 arises in other 
application areas such as statistical physics and, in statistics, the computation of normalizing 
constants and marginal distributions. Much of the routine use of Markov chain simulation 
(e.g, inferences for hierarchical models using the Bayesian software package BUGS) culmi
nates in inferences for parameters and model predictions {i.e, Task 1). Many of the most 
technically demanding simulation problems have Task 2 as a goal,

* In Bayesian applications, the target distribution is the posterior distribution, | y), but more generally it can 
be any probability distribution. Our discussion of inference and convergence does not require that the MCMC 
be done for a Bayesian purpose, so we simply write the target distribution as fj(0), with the understanding that 
it might be conditional on data.

+ In this example, the standard deviation is only estimated, not known, but our point remains. If the standard 
deviation is estimated at 1.83, it is highly doubtful that adding further precision to the E{0) will tell us anything 
useful about 0 itself. If computation is free, it is fine to run longer, but to the extent that computation time 
is an issue and some stopping criterion must be used, it makes sense to tie the convergence to the estimated 
uncertainty in 0 rather than to keep going to get some arbitrary preset level of precision.
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It may be that much of the confusion of the statistical literature on MCMC convejgence 
involves methods being designed for Task 1 problems and applied to Task 2, and vice versa, 

One goal of our death penalty analysis is to measure the changes in attitudes during the 
past half-century ineach of the four regions of the United States (Northeast South, Midwest, 
and West). We model changes as being linear on the logistic scale, estimating a different 
slope parameter for each region, pNorthy pSautĥ  pMidwest̂  an(j  pWest̂  also estimating 
the standard deviation among regions, aregion. We will take the posterior distributions of 
these five parameters as our target distribution of interest, and our inferential goals are 
of the Task 1 variety. That is, we care about basic summaries of the distributions of these 
parameters, and not functions of them, such as their means.

6.4 In feren ce  from  N o n iterativ e  S im u latio n s

We first consider the simple problem of inference based on simulations taken directly from 
the target distribution. Let us consider spedficinstances of the two tasks mentioned above:

1. Inference about a parameter (or function of parameters) 6, to be represented by a 
set of simulations and possibly a 95% interval. We can. order our simulation draws 
and use the 2.5% and 97.5% quantiles of these simulations.

As pointed out by Raftejy and Lewis (1992), these extreme order statistics are numerically 
unstable. For example, Table 6.1 shows five replications of inferences from a unit normal 
distribution based on 100 simulations, then based on 1000 simulations. If the goal is to 
precisely determine the endpoints of the interval (e.g. to determine if a coeffident is sta
tistically significant, or simply to present a replicable value for publication), then many 
simulations are required—even in this extremely easy problem, 1000 independent draws 
are not enough to pin down the interval endpoints to one dedmal place. However, if the 
goal is to get an interval for 0 with approximate 95% coverage in the target distribution, 
even 100 draws are reasonable.

TABLE 6.1

Simple Examples of Inference from Direct Simulation

Inferences Based on 100 Random  

Draws

Inferences Based on 1000 Random  

Draws

[-1.79, 1.69] [-1.83, 1.97]
[-1.SD, 1.85] [-2.01, 2.04]
[-1.64, 2.15] [-2.10, 2.13]
[-2.08, 2.38] [-1.97, 1.95]
[ - 1 .68, 2.10] [-2.10, 1.97]

Simple examples of inference from direct simulation. Left column: five replications of 95% intervals for a 
hypothetical parameters that has a unit normal distribution, each based on 100 independent simulation 
draws. Right column: five replications of the same inference, each based on 1000 draws. For either column, 
the correct answer is [—1.96, 1.96]. From one perspective, these estimates are pretty bad: even with 1000 
simulations, either bound can easily be off by more than 0.1, and the entire interval width can easily be 
off by 10%, Qn the other hand, for the goal of inference about 0, even the far-off estimates above aren't 
so bad: the interval [—2.08, 2.38] has 97% probability coverage, and [—1.79, 1.69] has 92% coverage.
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Our practical advice is to use the estimated uncertainty in the target distribution to 
decide when simulations are sufficient; the purpose of this particular simple example is 
to demonstrate that an appropriate minimal number of simulations depends on inferential 
goals,

Many fewer draws are needed for everyday inference than for a final published result. 
And we see this even with direct simulations without even getting into the "Markov chain" 
part of MCMC.

2. Inference about the mean, E(6). We can divide our simulations of 0 into k  groups, 
compute the sample mean for each group, and then get a standard error for the 
grand me an by taking the standard deviation of the k group means, dividedby y'fc

Dividing into groups is an arbitrary choice—presumably it wouldbe better to use a tool such 
as the jadcknif e (Efron and Tibshirani, 1993)—but we go with a simple batch means approach 
here because it generalizes so naturally to MCMC with blocking and parallel chains, hi any 
case, the appropriate number of simulation draws will depend on the inferential goal. For 
example, lOOOrandom draws from a unitnonnal distribution allowits mean to be estimated 
to within a standard error of approximately 0.03.

6.5 B u m -In

It is standard practice to discard the initial iterations of iterative simulation as they are 
too strongly influenced by starting values and do not provide good information about the 
target distribution. We follow this "bum-in'' idea ourselves and generally discard the first 
half of simulated sequences. Thus, if we run MCMC for 100 iterations, we keep only the 
iterations 51-100 of each chain. If wTe then run another 100 iterations, we discard the 50 we 
have already kept, now keeping only iterations 101- 200, and so forth.

Bum-inis convenient,but discarding early iterations certainly caimotbe themost efficient 
approach; see Geyer (1998) for a general argument and Liu and Rubin (1996, 2002) for 
specific methods for output analysis accounting for the dependence of the simulations on 
the starting values. That said, we typically go with the simple bum-in approach, accepting 
the increased Monte Carlo error involved hi discarding half the simulations.

There has been some confusion on this point, however. For example, we recentiy received 
the following question by email:

I was wondering aboutM CM C bum -in and whether the oft-cited emphasis on this in the 
literature might not be a bit overstated. M y thought was that the chain is Markovian. In  a 
Metropolis (or M etropolis-Hastings) context, once you establish the scale of the proposal 
distribution(s), successful burn-in gets you only a starting location inside the posterior—  
nothing else is remembered, by definition] However, there is nothing really special about 
this particular starting point; it would have been just as valid had it been your initial 
guess and the burn-in would then have been superfluous. Moreover, the sampling phase 
will eventually reach the far outskirts of the posterior, often a lot more extreme than the 
sampling starting location, yet it will still (collectively) describe the posterior correctly.
This implies thatflrty valid starting point is just as good as any other, burn-in or no burn-in.

The only circumstance that I can think of in which a bum -in would be essential is in 
the case in which prior support regions for the parameters are not all jointly valid (inside



Inference from Simulations and Monitoring Convergence 169

the joint posterior), if that is even possible given the min/max limits set for the priors.
Am I missing something?

Indeed, our correspondent was missing the point that any inference from a finite number 
of simulations is an approximation, and the starting point can affect the quality of the 
approximation Consider an extreme example in which your target distribution is normal 
with mean n and standard deviation a; and your sampler takes independent draws directly 
from the target distribution, but you pick a starting value of X . The average of it. simulations 
will then have the value, in expectation, of (l//i}X  +  ((». — l)//f)li, instead of the correct 
value of (a . If, for ex ample, X  =  100, 11 =  100, and |.i =  1, you are in trouble! But a bum-in of 
1 will solve all your problems in this example. True, if you draw a few million simulations, 
the initial value willbe forgotten, but why run a few million simulations if you do not have 
to? That will just take time away from your more important work.

More generally, the starting distribution will persist for a while, basically as long as it 
takes for your chains to converge. If your starting values persist for a time T, then these 
will pollute your inferences for some time of order T, by which time you can already have 
stopped the simulations if you had discarded some early steps, hi this example, you might 
say that it would be fine to just start at the center of the distribution. One difficulty, though, 
is that you do not know where the center of the distribution is before you have done your 
simulations. More realistically, we start from estimates ±  uncertainty as estimated from 
some simpler model that was easier to fit.

We illustrate with our example. Figure 6. la contains a trace plot of [iSDUth, the slope coeffi
cient for the Southern region. We initialized three chains at values that were overdispersed 
relative to the estimate of this parameter from a simpler model (a linear model of the differ
ences in the sample percentages of supporters in the South relative to the national average). 
The crude estimate of p3outh from the simple model was 0.33, with a standard error of about
0.03, so we started our three chains at -0.7, 0.3, and 1.3, which are roughly centered at 
the crude estimate, but widely dispersed relative to the crude estimate's standard error,

(a) Trace plot: south slope (b) Trace plot: south slope (zoom )
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FIGURE 6.1
(a) Ttace plots of (JSduU\ the time trend in the logistic regression coefficients for death penalty support (per decade) 
for the Southern states. Three chains were initialized at -0.7, 0.3, and 1.3, respectively and they converge to the 
target distribution within about 20 or 30 iterations, (b) The first 50 iterations, showing the movement away from 
the starting values.
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so that we would be unlikely to miss a local mode in the potentially multimodal poste
rior distribution. The model converges very quickly, so that the initial values have been 
essentially forgotten after about 25 iterations (see Figure 6. lb). We ran the MCMC for 2000 
iterations, because not every parameter converged as quickly as pSauth, and also because 
it only took a few minutes to obtain chains of this length. Had the algorithm been much 
slower, we could have stopped partway through inspected trace plots, and then made a 
decision about continuing the algorithm.

6.6 M o n ito rin g  C o n v ergen ce  C o m p arin g  b etw een  and w ith in  C hain s

We never reach exact convergence; as a result it does not make sense to try to check con
vergence using statistical hypothesis tests of the null hypothesis of perfect mixing. Instead, 
we use statistical estimation—postprocessing of simulation results—to estimate how far 
current simulations are from perfect mixing.

We typically monitor the convergence of all the parameters and other quantities of interest 
separately. There have also been some methods proposed for monitoring the convergence 
of the entire distribution at once (see, e.g. Brooks and Gelman, 1998), but these methods 
may sometimes represent overkill: individual parameters canbe well estimated even while 
approximate convergence of simulations of a multivariate distribution can take a very long 
time.

Our usual approach is, for each parameter or quantity of interest, to compute the vari
ance of the simulations from each chain (after the first halves of each have been discarded, 
as explained in our discussion of burn-in), to average these within-chain variances, and 
compare this to the variances of all the chains mixed together. We take the mixture variance 
divided by the average within-chain variance, compute the square root of this ratio, and 
call it R.hat or the "potential scale reduction factor" (Gelman and Rubin, 1992, following 
ideas of Fosdick, 1959). R.hat is calculated in various MCMC software induding BUGS 
(Spiegelhalter et a l, 1994, 2003) and the R2WinBUGS and coda packages {Plummer et al,, 
2005; Sturtz et al., 2005) in R, and the underlying idea has also been applied to transdimen- 
sional simulations—mixture of models with different parameter spaces (see Brooks and 
Giudid, 2000; Brooks et al., 2003).

At convergence, the chains will have mixed, so that the distribution of the simulations 
between and within chains will be identical, and the ratio R.hat should equal 1. If R.hat 
is greater than 1, this implies that the chains have not fully mixed and that further sim
ulation might increase the precision of inferences. In practice we typically go until R.hat 
is less than 1.1 for all parameters and quantities of interest; however, we recognize that 
this rule can dedare convergence prematurely, which is one reason why we always recom
mend comparing results to estimates from simpler models. It can also be useful to check 
other convergence diagnostics (Cowles and Carlin, 1996). In our death penalty example, 
Figure 6.2a illustrates that convergence happens quickly—if we recompute R.hat eveiy 50 
iterations, discarding the first half of the iterations as bum-in in our computations, we see 
that it is less than 1.05 for every batch of such samples after 200 iterations and is less than
1.02 for every batch of such samples after about 500 iterations.

When problems show up, we typically look at time series plots of simulated chains to 
see where the poor mixing occurs and get insight into how to fix the algorithm to ran more 
effidently. Multivariate visual tools can make this graphical process more effective (Veima 
et al., 2003; Peltonen et al., 2009).
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FIGURE 6.2
(a) R h a t, the potential scale reduction factor for pSoulh  ̂ ca]culate<J repeatedly every 50 iterations using only the 
last half of each set of iterations. That is, it was calculated using iterations 26-50, then using iterations 51-100, then 
using iterations 76-150, and so on. R h a t  w as less than 1.06 for all batches of samples after 200 iterations and was 
less than 1.02 for all batches of samples after about 500 iterations, (b) The 900 posterior samples formed b y  taking 
iterations 301-600 from each of the three chains, w ith a density estimate overlain.

Mixing of chains can also he monitored nonparametrically, for ex ample by computing the 
80% (say) central interval from each chain and then determining its coverage with respect 
to the empirical distribution of all the other chains combined together (as always, after 
discarding the early burn-in iterations). At convergence, the average coverage of these 80% 
intervals should be 80%; a much lesser value indicates poor mixing. Brooks and Gelman 
(1998) and Brooks et al. (2003) discuss this and other methods for monitoring conveigence 
by measuring mixing of multiple sequences, along with problems that can arise.

6.7 In fe re n c e  fro m  S im u la tio n s  a f te r  A p p ro x im a te  C o n v e rg e n c e

hi considering inferential summaries from our simulations, we again separately consider 
our two tasks:

1, Inference about a parameter (or function of parameters) 0, to be summarized by a 
set of simulations and possibly a 95% interval

Here we can use the collection of all our simulation draws (after discarding burn-in), or 
we can "thin" them by saving every jjth iteration. The purpose of thinning (ie. setting n 
to some integer greater than 1) is computational, not statistical If we have a model with 
2000 parameters and we are running three chains with a million iterations each, we do not 
want to be carrying around 6 billion numbers in our simulation. The key is to realize that, 
if we really needed a million iterations, they must be so highly autocorrelated that little is 
gamed by saving them all. hi practice, we find it is generally more than enough to save 
1000 iterations in total, and so we thin accordingly. But ultimately this will depend on the 
size of the model and computational constraints.

2, Inference about an expectation, E{0).
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To estimate expectations, we can use the batch means method, dividing the chains (again, 
after discarding burn-in) into k batches and then computing the mean and standard error 
based on the average of the batch means, Each chain should be divided into batches, so 
that is the number of chains multiplied by the number of batches per chain. The number 
of batches per chain should be set large enough that the standard error can be estimated 
reasonably precisely (the precision is essentially that of a chi-squared distribution with 
k  — 1 degrees of freedom) while still having the batch means be approximately statistically 
independent (so that the 1/ ^fk standard error formula is applicable). If necessary, the stan
dard error canbe adjusted upwTard to correct for any autocorrelation remaining even after 
batching.

hi the death penalty example, our inference for pSouth/ as noted above, is of the Task 1 
variety. According to Figure 6.2a, we can assume that the three chains have converged after 
300 iterations, and we can use the next 300 iterations from each of the three chains to form a 
posterior sample of size 900 for our inference. From this we estimate the posterior mean of 
pSouth be 0.363 and the standard deviation of pSouth to be 0.029. A 95% interval for (13outh 
is obtained by taking the 2.5th and 97.5th percentiles of this sample, which are 0.31 and
0.42, respectively Figure 6.2b contains a histogram of these 900 posterior samples, with a 
smooth density estimate overlain.

To estimate the uncertainty about the expectation (in this case the posterior mean, 
Ê fjSauth|y ̂  we can use the batch means method. We divide the 300 samples from each 
chain into six batches each, and compute the standard error of these k =  18 batch means 
(where each set of six batch means per chain has autocorrelation approximately zero). This 
approximate standard error is about 0.002. As in the toy example from earlier, the uncer
tainty about the mean is tiny compared to the uncertainty in the posterior distribution of 
the parameter (3s° uth, and we conclude that these 900 samples are sufficient for our Task 1 
inference for pS01̂ 11. We can double-check our batch means calculations by computing the 
effective sample size of these 900 draws (which accounts for autocorrelation) using standard 
methods (Kass et al., 1998), and we compute that the approximate total number of indepen
dent draws from these three sets of 300 autocorrelated samples is 169. Thus, the standard 
error of the mean computed this way is 0.029/ v'169, which is about 0.002, confirming our 
earlier batch means calculation.

hi practice, we could compute more accurate estimates of summaries of the posterior 
distribution of (3SDUth, for example the expectation, variance, and various quantiles, by 
induding iterations 101-2000 in our posterior sample: visual inspection of the trace plot 
that the chains converged by iteration 100, and in fad R.hat = 1.00 when it is computed 
using iterations 101-2000. But more samples will not improve our Task 1 inference in any 
meaningful way, and since this wTas our goal, wTe could have stopped the samplers after 
about 600 iterations (instead of running them for 2000 iterations as we did).

We have also worked oil problems that have required tens of thousands of iterations or 
more to reach approximate convergence, and the same inferential prindples apply.

Monitoring convergence of iterative simulation is straightforwTard (discard the first part 
of the simulations and then compare the variances of quantities of interest within and 
between chains) and inference given approximate convergence is even simpler (just mix

6.8 S u m m ary
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the simulations together and use them as a joint distribution). Both these ideas canbe and 
have been refined, but the basic concepts are straightforward and robust.

The hard part is knowing what to do when the simulations are slow to converge. Then 
it is a good idea to look at the output and put together a more efficient simulation algo
rithm, which sometimes canbe easy enough (e.g. using redundant parameterization for the 
Gibbs sampler or tuning the proposal distributions for a Metropolis algorithm), sometimes 
can require more elaborate algorithms (such as hybrid sampling or parallel tempering), 
and sometimes requires development of a simulation algorithm specifically tailored to the 
problem at hand. Once we have an unproved algorithm, we again monitor its convejgence 
by measuring the mixing of independent chains and checking that each chain seems to have 
reached a stationary distribution. And then we canperfonn simulation-based inferences as 
described above.
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7
Implementing MCMC: Estimating with Confidence

James M. Fie gal and Galin L. Jones

7.1 In tro d u ctio n

Our goal is to introduce some of the tools useful for analyzing the output of a Markov 
chain Monte Carlo (MCMC) simulation, hi particular, we focus on methods which allow' 
the practitioner (and others!) to have confidence in the claims put forward. The following 
are the main issues we will address: (1) initial graphical assessment of MCMC output; (2) 
using the output for estimation; (3) assessing the Monte Carlo error of estimation; and (4) 
terminating the simulation.

Let jt be a density function with support X c  M'" about which we wish to make an infer
ence. This inference oftenishased on some feature of tt. For example, if g  : X E  a common 
goal is the calculation of

We will typically want the value of several features such as mean and variance parameters, 
along with quantiles and so on As a result, the features of interest fonn a p-dimensional 
vector which wTe call 0„. Unfortunately, in practically relevant settings we often cannot 
calculate any of the components of 0̂  analytically or even numerically. Thus we are faced 
with a classical statistical problem: given a density n, we wrant to estimate several fixed, 
unknown features of it. For ease of exposition we focus on the case where 0̂  is univariate, 
but we will come back to the general case at various points throughout.

Consider estimating an expectation as hi Equation 7.1. The basic MCMC method entails 
constructing a Markov chain X =  {X0, X i,X 2, . ..}  on X having jt as its invariant density. 
(See Chapter 1, this volume, for an hitroduction to MCMC algorithms.) Then we simulate 
X for a finite number of steps, say n, and use the observed values to estimate E^g with a 
sample average

The use of this estimator is justified through the Markov chain strong law of large numbers 
(SLLN)*: If |g < oo, then g7, —> E^g almost surely as oo. From a practical point

<7.1)
. x

u—l

* This is a special case of the Birkhoff ergodic theorem (Fristedt and Gray, 1997, p, 558}.
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of view, this means we can obtain an accurate estimate of E ^  with a sufficiently long 
simulation.

Outside of toy examples, no matter how long our simulation, there will be an unknown 
Monte Carlo error, gv -  E ^ . While it is impossible to assess this error directly, we can 
obtainits approximate sampling distribution if a Markov chain central limit theorem (CLT) 
holds—that is, if

■ S T H g n - ^ - i  N (0 ,ol) (7.2)

as n oo, where cr̂  e (0, oo). It is important to note that due to the correlation present in a 
Markov chain, ct| /  v a r^ , except in trivial cases. For now, suppose we have an estimator 
such that -> tr| almost surely as it oo (see Section 7.4 for some suitable techniques). 
This allows construction of an asymptotically valid confidence interval for with half
width

where f* is an appropriate quantile.
Most importantly, calculating and reporting the Monte Carlo standard error (MCSE), 

6,,/y/n, allows everyone to judge the reliability of the estimates, hi practice this is done in 
the following way. Suppose that after it simulations our estimate of E ^  is gn =  1.3. Let ha 
denote the half-width given in Equation 7.3 of a (1 -  a) 100% interval, We canbe confident 
in the "3" in our estimate if 1,3 ± h a c  [1.25,1,35). Otherwise, reasonable values such as
1.2 or 1,4 could be obtained by rounding. If the interval is too wide for our purposes, 
then more simulation should be conducted. Of course, we would be satisfied with a wider 
interval if we only wanted to trust the "1" or the sign of our estimate. Thus the interval 
estimator (Equation 7.3) allows us to describe the confidence in the reported estimate, and 
moreover, induding an MCSE with the point estimate allows others to assess its reliability. 
Unfortunately, this is not currently standard practice in MCMC (Regal et al., 2008).

The rest of this chapter is organized as follows, hi Section 7.2 we consider some basic 
techniques for graphical assessment of MCMC output, then Section 7.3 contains a discussion 
of various point estimators of 0*. Nesxt, Section 7.4 introduces techniques for constructing 
interval estimators of 6n. Then Section 7.5 considers estimating marginal densities assod- 
ated with tt and Section 7.6 further considers stopping rules for MCMC simulations. Finally, 
in Section 7.7 we give conditions for ensuring the CLT (Equation 7.2). The computations 
presented in our examples were carried out using the R language. See Flegal and Jones 
(2010c) for an s weave file from which the reader can reproduce all of our calculations.

7.2 In itia l E xam in atio n  of O u tp u t

As a first step itpays to examine the empirical finite-sample properties of the Markov chain 
being simulated. A few simple graphical methods are often used in the initial assessment 
of the simulation output. These indude scatterplots, histograms, time series plots, autocor
relation plots and plots of sample means. We will content ourselves with an illustration of 
some of these techniques; see Chapter 1 (this volume) for further discussion, Consider the 
following toy example, which we will return to several times.
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The normal AR(1) time series is defined by

n̂+1 = + «n' (7.4)

where the e„ are i.i.d, N(0, 1) and p < 1, This Markov chain has invariant distribution
n ( o ,1/(1 - p : )).

As a simple numerical example, consider simulating the chain (Equation 7.4) in order to estimate 
the mean of the invariant distribution, that is = 0. W hile this is a toy example, it is quite useful 
because p plays a crucial role in the behavior of this chain. Figure 7.1 contains plots based on 
single sample path realizations starting at Xi = 1 with p = 0.5 and p = 0.95. In each figure the 
top plot is a time series plot of the observed sample path. The mean of the target distribution is 0 
and the horizontal lines are 2 standard deviations above and below the mean. Comparing the 
time series plots, it is apparent that while we may be getting a representative sample from the 
invariant distribution, when p = 0.95 the sample is highly correlated. This is also apparent from 
the autocorrelation (middle) plots m both figures. When p = 0.5 the autocorrelation is negligible 
after about lag 4, but when p = 0.95 there is a substantial autocorrelation until about lag SO. The 
impact of this correlation is apparent in the bottom two plots which plot the running estimates 
of the mean versus iterations in the chain. The true value is displayed as the horizontal line at 0. 
Clearly, the more correlated sequence requires many more iterations to achieve a reasonable 
estimate. From these plots, we can see that the simulation with p = 0.5 may have been run long 
enough while the simulation with p = 0.95 likely has not.

Example 7.1 (Normal AR(1) Markov Chains)

In the example, the plots were informative because we were able to draw horizontal 
lines depicting the true values, hi practically relevant MCMC settings—where the truth 
is unavailable—it is hard to know when to trust these plots. Nevertheless, they can still 
be useful since a Markov chain that is mixing well would tend to have tune series and 
autocorrelation plots that look like Figure 7.1a, while time series and autocorrelation plots 
like the one in Figure 7. lb would indicate a potentially problematic: simulation in the sense

(a)
T im e-series  vs, iteration

(b)
Time-series vs, iteration
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FIGURE 7.1
Initial output exam ination for AR{1) model: (a) p =  D.5 and (b) p =  0.95.
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that a large simulation effort willbe required to obtain good estimates. Also, plots of current 
parameter estimates (withno reference to a standard error) versus number of iterations are 
not as helpful since they provide little information as to the quality of estimation.

hi simulating a rf-dimensional Markov chain to simultaneously estimate the dimen
sional vector Ojr of features of n, p can be either greater than or less than d. When either d 
or p is large, the standard graphical techniques are obviously problematic That is, even if 
each components tune series plot indicates good mixing, one should not necessarily infer 
that the chain has converged to its joint target distribution, hi addition, if either rf or p is 
large it will be impractical to look at plots of each component. These issues have received 
very tittle attention in the MCMC literature, but see Peltonen et al. (2009) and Sturtz et a l 
(2005) for some recent work.

7.3 P oin t E stim ates of 0^

hi this section, we consider two specific cases of 0n: estimating a univariate expectation 
E^g; and estimating a quantile of one of the univariate marginal distributions from n.

7.3.t Expectations

Suppose that 6* = and assume that E„ |g| < oo. Recall from Section 7.1 that there is an 
SLLN and hence it is natural to use the sample average gn to estimate 0 .̂ Alternatively, we 
could use p oint estimates of 0* obtained through the use of bum-in or averaging conditional 
expectations.

Consider the use of burn-in. Usually, the simulation is not started with a draw from tt  

since otherwise we would just do ordinary Monte Carlo. It follows that marginally each 
X, tt and Ejrg /  E[g(X ,j]. Thus gn is a biased estimator of E^g. hi the current setting, we

have that X„ -4- it as n ->■ oo so, hi order to diminish the effect of this "initialization bias," 
an alternative estimator may be employed:

j  71-l-B-l

sn.B = -  X!
11 i=B

where B denotes the bum-in or amount of simulation discarded. By keeping only the draws 
obtained after B — 1 we are effectively choosing a new initial distribution that is "closer" 
to 7i. The SLLN still applies to gn p, since if it holds for any initial distribution it holds for 
every initial distribution. Qf course, one possible (perhaps evenlikely) consequence of using 
bum-in is that var( g,lrB) > var( ̂ +b,o)/ that is, the bias decreases but the variance increases 
for the same total simulation effort. Obviously, this means that using burn-in could result 
iti an estimator having larger mean-squared error than one without btmi-in. Moreover, 
without some potentially difficult theoretical work (Jones and Hobert, 2001; Latuszynski 
and Niemiro, 2009; Rosenthal 1995; Rudolf, 2009), it is not clear what value of B should be 
chosen. Popular approaches to determining B indude simply discarding a fraction of the 
total ran length (see Gelman and Rubin, 1992), or are based on convergence diagnostics (for 
a review, see Cowles and Carlin, 1996). Unfortunately, there simply is no guarantee that 
any of these diagnostics will deted a problem with the simulation and, in fact, using them 
can introduce bias (Cowles et al., 1999).
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Now consider the estimator obtained by averaging conditional expectations. To motivate 
this discussion, suppose that the target is a function of two variables and we are
interested in estimating the expectation of a function of only one of the variables, say g(x). 
Let (X, Y) =  {<Xo,Yo),(Xi,Yi>,(X2,Y 2) , .  ..} denote the Markov chain, ntyiy) denote the 
marginal density, and fx\ y (x | y ) denote the conditional density. Notice that

Ejrg —

so, by letting

g(x)-n(x,y)dx dy = Jg(*)/xiY(* I y)dx niY<y)dtf

% )  = gmfx\Y(x I y)dx,

we can appeal to the SLLN again to see that, as u —» oo,

j  ii—l j  jj- 1 p

k, =  -  X !  h{'/l) = u X !  S<x)fx\Y<x | i/i > dx E ^ .
" 1=0 1=0 ^

This estimator is conceptually the same asg7I in the sense that both are sample averages and 
the Markov chain SLLN applies to both. The estimator/),, is often called the Rno-Blwhvellized 
(RB) estimator’' of E^g (Casella and Robert, 1996). A natural question is which of glu the 
sample average, or //„, the RB estimator, is better. It is obvious that //„ will sometimes be 
impossible to use if | T (-̂  I V) is not available hi dosed form or if the integral is intractable. 
Hence, /i„ will not be as generally practical as gn. However, there are settings, such as in 
data augmentation (Chapter 10, this volume), where h7! is theoretically and empirically 
superior to see Liu et al. (1994) and Geyer (1995) for theoretical investigation of these 
two estimators.

Example 7.2

This example is also considered in Chapter 10 (this volume). Suppose that our goal is to estimate 
the first two moments of a Student's f distribution with 4 degrees of freedom and having density

There is nothing about this that requires MCMC since we can easily calculate that = 0 and 
EmX- = 2. Nevertheless, we will use a data augmentation algorithm based on the joint density

so that the full conditionals are X | V" ~  N(0, y ~ 1) and V" | X  ~  r(5/2, 2 + x2/l). Consider the 
Gibbs sampler that updates X  then V so that a one-step transition looks like (x', y!) —»■ (x, y') —»

* This is an unfortunate name since it is only indirectly related to the Rao-Blackwell theorem, but the name has 
stuck in the literature.
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(x, y). Suppose that we have obtained n observations {x,-, y,-; i = 0, . . . ,  n — 1} from running the 
Gibbs sampler. Then the standard sample average estimates of and EnjX- are

1 rc— I 1 n— 1
- T ]  Xj and - T ]  X1,

1=0 (= 0

respectively, Further, the RES estimates are easily computed. Since X \ Y ~  N(Q, y -1) the RB 
estimate of En7X  is 0. On the other hand, the RB estimate of EmX- is

As an illustration of these estimators we simulated 2000 iterations of the Gibbs sampler and plotted 
the running values of the estimators in Figure 7.2. In this example, the RB averages are less variable 
than the standard sample averages.

It is not the case that RB estimators are always better than sample means. Whether they 
are better depends on the expectation being estimated as well as the properties of the 
MCMC sampler, hi fact, Liu et a l (1994) and Geyer (1995) give an example where the RB 
estimator is provably worse than the sample average. RB estimators are more general than 
our presentation suggests. Let h be any function and set

f ix )  =  E[g(X) | //(X) =  //(*)]

so that = E„/. Thus, by the Markov chain SLLN with probability 1 as u oo,

- 71—  1 ^.71 —  1

-  =  -  £ E f c ( X )  I l/(X;) = litX i ) ]  -  E
1 = 0 !=0

As long as the conditional distribution X | h{x) is tractable, RB estimators are available.
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FIGURE 7*2
Estimators of the first two moments for Example 7.2. The horizontal line denotes the truth, the solid curves are
the running sample averages while the dotted curves are the running RB sample averages, (a) E ?hX  and (b)
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7.3.2 Quantiles

It is common to report estimated, quantiles in addition to estimated expectations. Actu
ally, what is nearly always reported is not a multivariate quantile but rather quantiles of 
the univariate marginal distributions associated with tt. This is the only setting we con
sider. Let F be a marginal distribution function associated with ji. Then the ijth quantile 
of F is

= inf (jc : F(.t> > q\, 0 < q < 1. (7.5)

There are many potential estimates of but we consider only the inverse of the empirical 
distribution function from the observed sequence. First define {Xi:i) , . . . ,  X(?!)} as the order 
statistics of {Xo, then the estimator of <pq is given by

L n =  X(y-i-i), where -  < q < (7.6)
1 n n

Example 7.3 (Normal AR(1) Markov Chains)

Consider again the time series defined in Equation 7.4. Our goal in this example is to illus
trate estimating the first and third quartiles, denoted Q-| and Q j. The true values of Q i and Q3 
are i t t -1 (0.75)/-v/l — P~f where <t> is the cumulative distribution function of a standard normal 
distribution.

Using the same realization of the chain as in Example 7.1, Figure 7.3 shows plots of the run
ning quartiles versus iteration number when p = 0.5 and p = 0.95. It is immediately apparent 
that estimation is more difficult when p = 0.95 and hence the simulation should continue. Also, 
without the horizontal lines, these plots would not be as useful. Recall that a similar conclusion 
was reached for estimating the mean.

(a) Running quartiles (b) Running quartiles

Iteration Iteration

FIGURE 7.3
Plots for AR{1) model of running estimates of Oa and Q3. The horizontal lines are the true quartiles, (a) p =  D.5 
and (b) p =  0.95.
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7.4 In terv al E stim a te s  of 0*

In our examples we have known the truth, enabling us to draw the horizontal lines on the 
plots which allowus to gauge the quality of estimation. Obviously the true parameter value 
is unknown in practical settings, and hence the size of the Monte Carlo error is unknown. 
For this reason, when reporting a point estimate of 9^, a MCSE should be included so that 
the reader can assess the quality of the reported point estimates, hi this section we address 
how to calculate MCSEs and construct asymptotically valid interval estimates of 6„.

7.4.1 Expectations

Suppose that 9̂  = E ^ , which willbe estimated withgu = g„n (i.e. with no burn-in). How
ever, using burn-in presents no theoretical difficulties since, as with the SLLN, if the CLT 
holds for any initial distribution then it holds for every initial distribution Thus the use of 
burn-in does not affect the existence of a CLT,butitmay affect the quality of the asymptotic 
approximation If a 2 is an estimate of o 2, then one can form a confidence interval for 
with half-width

where f* is an appropriate quantile. Thus the difficulty hi finding interval estimates is in esti
mating <j|, which requires specialized techniques to account for correlation in the Markov 
chain. We restrict attention to strongly consistent estimators of a 2. Some interval estimationc
techniques do not require consistent estimation of <ri (see Schruben, 1983) but we need it 
for the methods presented later in Section 7.6. The methods yielding strongly consistent 
estimators indude batch means methods, spectral variance methods and regenerative 
simulation. Alternatives include the initial sequence methods of Geyer (1992); however, 
the theoretical properties of Geyer1's estimators are not well understood. We will focus on 
batch means as itis the most generally applicable method; for more on spectral methods, see 
Regal and Jones (2010a), while Hobert et al. (2002) and Mykland et al. (1995) study regener
ative simulation. There are many variants of batch means; here we emphasize overlapping 
batch means {OLBM).

7.4.1.1 Overlapping Batch Means

As the name suggests, in OLBM we divide the simulation into overlapping batches of 
length l>„, say. For example, if bri =  3, then {Xq, Xi, X2} and {Xi, X2, X3J would be the first 
two overlapping batches, hi general, there are 11 — l>n +  1 batches of length (>,„ indexed by 
I running from 0 to 11 -  V  Let Yj(bn) ■— 1^(Xr+l ) for j  — 0 , . . . ,  11 — (>„. Then the
OLBM estimator of u"i is

(7.7)

j ihn
(7.8)

Batch means estimators are not generally consistent for o| (Glynn and Whitt, 1991), How
ever, roughly speaking, Flegal and Jones (2010a) show that if the Markov chain mixes
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quickly and bn is allowed to increase as the overall length of the simulation does, then 
Oqlbm a strongly consistent estimator of <t|, It is often convenient to take l>r, =  for 
some 0 < v < 3/4, and v =  1/2 may be a reasonable default. However, v values yielding 
strongly consistent estimators are dependent on the number of finite moments of g  with 
respect to the target n and the mixing conditions of the Markov chain. These conditions 
are similar to those required for a Markov chain CLT, see Flegal and Jones (2010a), Jones 
(2004), and Jones et al. (2006). Finally, when constructing the interval (Equation 7.7), f* is a 
quantile from a Student s t distribution with it — bn degrees of freedom.

Example 7.4 (Normal AR(1) Markov Chains)

Recall the AR(1) model defined in Equation 7,4, Using the same realization of the chain as in Exam
ple 7.1, that is, 2000 iterations with p g  {0.5, 0.95} starting from X-| = 1 ,w e  consider estimating 
the mean of the invariant distribution, that is, = 0. Utilizing O LBM  with bn = LV Ĵ' we 
calculated an MCSE and resulting 80%  confidence inteival. Figure 7.4 shows the running means 
versus number of iterations for p = 0.5 and p = 0.95. The dashed lines correspond to upper and 
lower 80%  confidence bounds. Notice that for the larger value of p it takes longer for the MCSE 
to stabilize and begin decreasing. After 2000 iterations for p = 0.5 we obtained an interval of 
-0.034 ±0.056, while for p = 0.95 the interval is —0.507±0.451.

Many of our plots are based on simulating only 2000 iterations, W e chose this value strictly for 
illustration puiposes. An obvious question is whether the simulation has been run longenough—  
that is, whether the interval estimates are sufficiently narrow after 2000 iterations. In the p = 0.5 
case, the answer is "perhaps," while in the p = 0.95 case it is clearly "no." Consider the final 
interval estimate of the mean with p = 0.5, that is, —0.034 ± 0.05& = (-0.090, 0.022). If the user 
is satisfied with this level of precision, then 2000 iterations are sufficient On the other hand, when 
p = 0.95 our inteival estimate is -0.507 ± 0.451 = (-0.958, -0.056), indicatingthat we cannot 
trust any of the significant figures reported in the point estimate.

Running average (b) Running average

500 1000 1500
Iteration

2000
Iteration

FIGURE 7.4
Plots for AR(1) model of running estimates of the mean along with confidence intervals calculated via OLBM. The 
horizontal line denotes the truth, (a) p =  D.5 and (b) p = 0.95.
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Recall the RB estimators of Section 7.3.1. It is straightforward to use OLBM to calculate 
the MCSE for these estimators since the conditional expectations being averaged define the 
sequence of batch means ).

Example 7.5

Recall Example 7.2, where the first two moments of a Student's f distribution with 4 degrees of 
freedom were estimated using sample average and RB estimators. Using the same Markov chain, 
an 80% confidence interval is calculated via OLBM  with bn = LV«J at each iteration, Figure 7.5a 
shows the running estimate of E^JV versus iteration number and includes confidence bounds for 
the sample average estimator. Recall that the RB estimator is exact, so there is no uncertainty 
in this estimate. Figure 7.5b shows the running estimate of Ej,X- versus iteration number, with 
confidence bounds for both estimates. Here it is provable that the RB estimator has a smaller 
asymptotic variance than the sample average estimator (Geyer, 1995). This is clearly reflected by 
the narrower interval estimates.

7.4.1.2 Parallel Chains

To this point, the recipe for implementing MCMC seems straightforward: given a sampler, 
pick a starting value and ran the simulation for a sufficiently long time using the SLLN 
and the CLT to produce a point estimate and a measure of its uncertainty A variation 
of this procedure relies on simulating multiple independent, or parallel, chains. Debate 
between a single long run and parallel chains began in the early statistics literature on 
MCMC (see Gelman and Rubin, 1992; Geyer, 1992), even earlier in the operations research 
and physics literature (BratLey et a l, 1987, Fosdick, 1959; Kelton and Law, 1984), and con
tinues today (ALexopoulos and Goldsman, 2004; Alexopoulos et al., 2006). The main idea

(a) First m om ent (b) Second m om ent

Iteration Iteration

FIGURE 7.S
Estimators of the first two moments from a f distribution with 4 degrees of freedom. The horizontal line denotes 
the truth, the solid curves are the running sample averages with confidence bounds, while the dotted curves are 
the running RB sample averages with confidence bounds, (a) EmX  and (b) E mX^.
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of parallel chains is to run r independent chains using different starting values, where 
each chain is the same length and using the same bum-in This yields r independent 
estimates of E^g, namely . .  . , g n,Err - Hie grand mean would then estimate E^g—
although Glynn and Heidelberger (1991) have shown that an alternative estimator may be 
superior—and our estimate of its performance, a|, would be the usual sample variance of 
the£„,B,i.

This approach has some intuitive appeal in that estimation avoids some of the serial 
correlation inherent in MCMC and it is easily implemented wThen more than one processor 
is available. Moreover, there is value in trying a variety of initial values for any MCMC 
experiment. It hits also been aig^ied that by choosing the r starting points in a widely dis
persed manner there is a greater chance of encountering modes that one long run may 
have missed. Thus, for example, some argue that using independent replications results 
in "superior inferential validity" (Gelman and Rubin, 1992, p. 503). However, there is no 
agreement on this issue; indeed, Bratley et a l (1987, p. 80) "are skeptical about [the] ratio
nale" of some proponents of independent replications. Notice that the total simulation effort 
using independent replications is r(tt + B). To obtain good estimates of crj will require r to 
be large, which will require n +  B to be small for a given computational effort. If we use 
the same value of B as we would when using one long run, this means that each gn,B,i will 
be based on a comparatively small number n. of observations. Using more than one chain 
will also enhance the initialization bias, so that a careful choice of B canbe quite important 
to the statistical efficiency of the estimator of E^g (Glynn and Heidelberger, 1991). More
over, since each run will be comparatively short, there is a reasonable chance that a given 
replication will not move far from its starting value. Alexopoulos and Goldsman (2004) 
have shown that this can result in much poorer estimates (in terms of mean square error) 
of Ejrg than a single long run. On the other hand, if wTe can find a variety of starting values 
that are from a distribution very dose to tt, then independent replications may indeed be 
superior. This should notbe surprising since independent draws directly from n are dearly 
desirable.

There is an important caveat to the above analysis. There are settings (see Chapter 20, 
this volume) where it is prohibitively difficult (or time-consuming) to produce a suffi- 
dently large Monte Carlo sample without parallel computing. This has received limited 
attention in MCMC settings (Brockwell, 2006; Rosenthal, 2000), but perhaps deserves 
more.

7.4.2 Functions of Moments

Suppose that we are interested in estimating ^(E^g), where $ is some function. If 4> is con
tinuous, then <)>(£„) —>■ (fME^g) with probability 1 as n oo, making estimation of 
straightforward. Also, a valid Monte Carlo error canbe obtained via the delta method (Fer
guson, 1996; van der Vaart, 1998). Assuming (Equation 7.2), the delta method says that if 4> 
is continuously differentiable in a neighborhood of Eng and ^'(E^g) ^ 0, then as tt —> so,

W ( 0, [<t>'(E7r£)]2<jf) ■

If the estimator of a2, say a 2, is strongly consistent and is continuous, then [i|>'(£ji)]262 is 
strongly consistent for [((/(E^g)]2^ .
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Consider estimating (E^X)- with (Yn)-. Let t|j(x) =  x~ and assume E -̂V ^  0 and a CLT as in 
Equation 7.2. Then as n —» oo,

V ^ ((X n)- - ( E , * ) 2)  4  N ( 0 ,4 (^ X )2o 2x ),

and we can use OLBM to consistently estimate o~x with 5~n, which means that4(Xn)“6^ is a strongly 
consistent estimator of 4(E ^ X )-aJ.

From this example we see that the univariate delta method makes it straightforward 
to handle powers of moments. The multivariate delta method allows us to handle more 
complicated functions of moments. Let X„ denote a sequence of rf-dimensional random 
vectors and 0 be a rf-dimensional parameter. If, as 11 -> oo,

v ^ ( T„ -  9} 4 .  N(,i ,  E )

and cj) is continuously differentiable in a neighborhood of 0 and 4>'(0) =i 0, then as
I I —>■ 30,

V»(4>{T„} -  <t>(9)) 4 -  (0)T).

Example 7.7

Consider estimating varng =  ^ g ~  — (E:ig)_ with, setting h =  g~,

Example 7.6

where c  =  E^g0 — E^gE^g-. Let tj)(x, y) =  y — x - . Then as n —»■ oo,

V n(vn -v a r^ g ) 4- N (0,4(E wg)(ij|Emg -  Eng 3 +  EngEng-) +  <jp.

Since it is easy to use OLBM to construct strongly consistent estimators of cr̂  and c^, a strongly 
consistent estimator of the variance in the asymptotic normal distribution for vn is given by

4(gn)(Ag,ngi7 —jn  + grAi) + ®hrn'

where j  =  g J .



Implementing MCMC 187

7.4.3 Quati tiles

Suppose that our goal is to estimate <t>q with defined in Equations 7.5 and 7.6, respec
tively, We now turn our attention to constructing an interval estimate of ̂ , It is tempting to 
think that bootstrap methods wouldbe appropriate for this problem. Indeed, there hasbeen 
a substantial amount of research into bootstrap methods for stationary time series which 
would be appropriate for MCMC settings (see Bertail and Clemenmn, 2006, Buhhnann, 
2002; Datta and McCormick, 1993; Pohtis, 2003). Unfortunately, our experience has been 
that these methods are extremely computationally intensive (compared to the MCMC simu
lation itself) and have inferior finite-sample properties compared to the method presented 
below.

As above, we assume the existence of an asymptotic normal distribution for the Monte 
Carlo error—that is, there is a constant y2 e (0, oo) such that, as tt —> so,

-  <hj) N "(0, Y p  {7.9)

Flegal and Jones (2010b) give conditions under which Equation 7.9 obtains. Just as when 
we were estimating an expectation, we find ourselves in the position of estimating a com
plicated constant y2. We focus on the use of the sttbsampling bootstrap method (SBM) in 
this context. The reader should be aware that our use of the term "subsampling" is quite 
different than the way it is often used in the context of MCMC, in that we are not deleting 
any observations of the Markov chain.

7.4.3.1 Subsampling Bootstrap

This section will provide a brief overview of SBM in the context of MCMC and illus
trate its use for calculating the MCSE of While this section focuses on quantiles, 
SBM methods apply much more generally; the interested reader is encouraged to consult 
PoHtis et al. (1999).

The mam idea for SBM is similar to OLBM in that we are taking overlapping batches 
(or subsamples) of size from the first n. observations of the chain )Xq,X^, . . .  ,X„_^}. 
There are it — bn + 1 such subsamples. Let {X, , . . . ,  X ^ ^ i )  be the ;th subsample with cor
responding ordered subsample [X*1)f. . . ,  X*b ,(}. Then define the quantile based on the /th 
subsample as

= X L j ,  where y- < q <  ̂ for / = 0, . . . ,  jj — b„.
l?n

The SBM estimate of yjr is then
7

V? =
K

ii - b „  +  l

u—bn+l
E  (tf-V)2, 
1=0

where
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Politis et al. (1999) give conditions that ensure this estimator is strongly consistent, but 
their conditions could be difficult to check in practice. SBM implementation requires 
choosing such that, as u oo, we have />„ oo and b„/n  —► 0, A natural choice is 
K  =  LvVl-

Example 7.8 (Normal AR(1) Markov Chains)

Using the AR(1) model defined in Equation 7.4, we again consider estimating the first 
and third quartiles, denoted Q-| and Q3. Recall that the true values for the quartiles are 
± 0 _1 (0.75)/v/l -  p-, respectively.

Figure 7.6 shows the output from the same realization of the chain used previously m Exam
ple 7.3, but this time the plot includes an interval estimate of the quartiles. Figure 7.6a shows a plot 
of the running quartiles versus iteration number when p = O.S. In addition, the dashed lines show 
the 80% confidence interval bounds at each iteration. These intervals were produced with SBM  
usingfen = Lv^J- Ataround200 iterations, theMCSE (and hence interval estimates)seem to stabi
lize and begin to decrease. At 2000 iterations, the estimates for Q i and Q 3 are —0,617 ± 0.069 and 
0.77S±0.065, respectively. Figure 7.6b shows the same plot when p = 0.95. At 2000 iterations, 
the estimates for Q i and Q3 are —2.74 ±0.481 and 1.78 ±0.466, respectively.

Are the intervals sufficiently narrow after 2000 iterations? In both cases [p = 0.5 and p = 0.95) 
the answer is likely "no." Consider the narrowest interval, which is the one for with p= 0.5, 
that is, 0.778 ± 0.065 = (0.71 3,0.843), which indicates that all we can say is that this is evidence 
that the true quantile is between 0.71 and 0.85. .Note that in a real problem we would not have 
the horizontal line in the plot depicting the truth.

SBM is applicable much more generally than presented here and, in fact, essentially 
generalizes the method of OLBM previously discussed in Hie context of estimating an 
expectation. The subsample mean is Yy (bn) and the resulting estimate of f?| is

= » _ b "  +  1 £  -  n 2, (7.10)
■ j=0

(a) Running quartiles (b) Running quartiles

Iteration Iteration

FIGURE 7,6
FI ots fo r AR{ 1) m ode 1 o f ru nni ng estim ate s 0 f Q1 and Q3, al o ng wi th 80% po intwi s e co nti denee intervals caleul ate d 
via SBM. The horizontal lines denote the true values, (a) p =  D.5 and (b) p =  0.95.
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where
_ 1 _
? * = ----- T T T  E  */<*«>■

It is straightforward to establish that the OLBM estimate defined in Equation 7.8 is 
asymptotically equivalent to the SBM estimate defined in Equation 7.10.

7.4.4 Multivariate Estimation

While we have largely focused on the univariate setting, recall from Section 7.1 that 
a typical MCMC experiment is conducted with the goal of estimating a p-dimensional 
vector of parameters, 0^, associated with the rf-dimensional target it. Generally, 0  ̂ could 
be composed of expectations, quantiles and so on, and p could be either much larger or 
much smaller than d. Suppose that each component 0^, canbe estimated with 6,v so that 
0„ = (0JI;1, . . .  , j )  — 0  ̂ almost surely as n -> oo. It is natural to seek to estabhsh the exis
tence of an asymptotic distribution of the Monte Carlo error 9„ — and then use this 
distribution to construct asymptotically valid confidence regions. To our knowledge this 
problem has not been investigated. However, it has received some attention in the case 
where Gj, consists only of expectations; we know of one paper in the statistics literature 
(Kosorok, 2000) and a few more in operations research, including Muhoz and Glynn (2001), 
Seila (1982), and Yang and Nelson (1992). Currently the most common approach is to 
ignore the multiplicity issue and simply construct the MCSE for each component of the 
Monte Carlo error. If p is not too large then a Bonferroni correction could be used, but this 
is clearly less than optimal. This is obviously an area in MCMC output analysis that could 
benefit from further research.

7.5 E stim a tin g  M arg in al D en sities

A common inferential goal is the production of a plot of a marginal density associated with 
tt. hi this section we cover two methods for doing this. We begin with a simple graphical 
method, and then introduce a clever method due to Wei and Tanner (1990) that reminds us 
of the Rao-Blackwellization methods of Section 7.3.

Ahistogram approximates the true marginal by the Markov chain SLLN. Moreover, his
tograms are popular because they are so easy to construct with existing software. Another 
common approach is to report a nonparametric density estimate or smoothed histogram. It 
is conceptually straightforward to construct pointwise interval estimates for the smoothed 
histogram using SBM. However, outside of toy examples, the computational cost is typically 
prohibitive.

Example 7.9

Suppose that V/||X, 9 —- N{\\, 6) independently for i = 1,___m, where m > 3, and assume the
_ I

standard invariant prior v(n, 0) cx 0 - . The resulting posterior density is

n:(|i, 6 1y) tx 0 -^ + 1
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FIGURE 7.7
Histograms for estimating the marginal densities of Example 7.7: (a) marginal density of (j. and (b) marginal 
density of 0.

where s~ is the usual biased sample variance, It is easy to see that n | 0, y N(y, 0/m) and that 
fl|H, y  ~  r - '  ((m — 1)/-, m[s- + (y  — ]/2), and hence a Cibbs sampler is easily implemented
W e consider the Gibbs sampler that updates then 0 so that a one-step transition is given by 
([i1, 9 ' )  - >  { [ * . ,  9 ' )  - »  ( ( i ,  0 )  anti use this sampler to estimate the marginal densities of (jl and 0 .

Now suppose m =  11 , y =  1 ands: = 4. W e simulated 2000 realizations of the Gibbs sampler 
starting from ( | x q ,  X o ) =  (1,  1). The marginal density plots were created using the default settings 
for the d e n s it y  function in R and are shown in Figure 7.7, while an estimated bivanate density 
plot (created using R functions fcde2d and p e rsp ) is given in Figure 7.8. It is obvious from these 
figures that the posterior is simple, so it is no surprise that the Gibbs sampler has been shown to 
converge in just a few iterations (Jones and Hobert, 2001).

A clever technique for estimating a marginal is based on the same idea as RB estimators 
(Wei and Tanner, 1990). To keep the notation simple, suppose that the target is a function 
of only two variables, ji(jc, y), and let nix and ntj be the associated marginals. Then

nixW  =  JiUvy) = h\Y(x | y)iiiY(y) dy =  E,,!Yf X\Y(x \ yh

FIGURE 7.8
Estimated posterior density of Example 7.7.
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suggesting that, by the Markov chain SLLN, we can get a functional approximation to nix 
since for each x, as u —► oo,

j  71— 1

-  i yti ,hx(jc). { 7 .ii)
' 1= 0

Of course, just as with RB estimators this will only be useful when the conditionals 
are tractable. Note also, that it is straightforward to use OLBM to get pointwise confi
dence intervals for the resulting curve; that is for each .x we can calculate an MCSE of the 
sample average in Equation 7.11.

Example 7.10

Recall the setting of Example 7.9. W e will focus on estimation of the marginal posterior density 
of \x.\y, that is, n((i|y). Note that

| y ) = ttOi | 6, y )n (0 | y) c/9,

so that by the Markov chain SLLN we can estimate tt((1 | y) with

1 n_1
-  ^  710  I 6 y ,y ) ,  

j=0

which is straightforward to evaluate since \x\Q;,y — N(y, 9,7m). Note that the resulting marginal 
estimate is a linear combination of normal densities. Using the same realization of the chain 
from Example 7.9, we estimated n((i|y) using this method. Figure 7.9 shows the results with our 
previous estimates. One can also calculate pointwise confidence intervals using OLBM , which 
results in a very small Monte Carlo error (and is therefore not included in the plot). Notice that 
the estimate based on Equation 7.11 is a bit smoother than either the histogram or the smoothed 
histogram estimate, but is otherwise quite similar.

- 3 - 2 - 1 0 1 2 3 4

FIGURE 7.9
Estimates of the marginal density n. The three estimates are based on a histogram, smoothed marginal densities 
(solid line), and the method of Wei and Tanner (1990) {dashed line).
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7.6 T erm in atin g  the S im u latio n

A common approach to stopping an MCMC experiment is to simulate for a fixed run length. 
That is, the simulation is terminated using a fixed-time rule. Notice that this makes MCSEs 
crucial to understanding the reliability of the resulting estimates. There are settings where, 
due to the nearly prohibitive difficulty of the simulation, a fixed-time rule may be the only 
practical approach. However, this is not the case for many MCMC experiments.

Perhaps the most popular approach to terminating the simulation is to simulate an initial 
Monte Carlo sample of size /to, say. Hie output is examined and if the results are found to be 
unsatisfactory, the simulation is continued for another fti steps and the output reanalyzed. 
If the results are still unsatisfactory, the process is repeated. Notice that this is a sequential 
procedure that will restdt in a random total simulation effort.

When implementing this sequential procedure the examination of the output can take 
many forms; it is often based on the use of graphical methods such as those described in 
Section 7.2 or on convergence diagnostics. We advocate terminating the simulation the first 
time the MCSE is sufficiently small, Equivalently, the simulation is terminated the first time 
the half-width of a confidence interval for 0  ̂ is sufficiently small, resulting in a fixed-width 
rule. There is a substantial amount of research on fixed-width procedures in MCMC wlien 
6j, is an expectation—see Flegal et al. (2008), Glynn and Whitt (1992), and Jones et al. (2006) 
and the references therein—but none that we are aware of when 0  ̂ is not an expectation. 
Let S^be a strongly consistent estimator of v2 from Equation 7.2. Given a desired half-width 
g the simulation terminates the first time

where tr_ is the appropriate qtiantile and pin) is a positive function such that p(n) = o(u~ ̂ 2) 
as n —>■ oo. Letting u*: be the desired minimum simulation effort, a reasonable default is 
p i n )  = (I(n  < i i *  ) + u~l . Glynn and Whitt (1992) established conditions ensuring that the 
interval at Equation 7,12 is asymptotically valid+ in the sense that the desired coverage 
probability is obtained as e -»■ 0. The use of these intervals in MCMC settings has been 
extensively investigated and found to work well by Flegal et al. (2008), Flegal and Jones 
(2010a), and Jones et al. (2006).

Example 7.11 (Normal AR(1) Markov Chains)

Consider the normal AR(1) time series defined in Equation 7.4. In Example 7.4 we simulated 2000 
iterations from the chain with f> = 0.9S starting from X0 = 1 and found that a 80% confidence 
interval for the mean of the invariant distribution was —0.S07 ± 0.4S 1.

Suppose that we wanted to continue our simulation until we were 80% confident that our 
estimate was within 0.1 of the true value after a minimum of 1000 iterations— a fixed-width pro
cedure. If we use O LBM  to estimate the variance in the asymptotic distribution, then Equation 7.12 
becomes

+ Glynn and Whitt (1992) also provide a counterexample to show that weak consistency ofci^ for a| is not enough 
to achieve asymptotic validity.

(7.12)

—  + 0 . 1 / ( n  <  1000)  + / i - 1  <  0.1,
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where t* is the appropriate quantile from a Student's t distribution with n — bn degrees of freedom. 
It would be computationally expensive to check this criterion after each iteration, so instead we 
added 1000 iterations before recalculating the half-width each time. In this case, the simulation 
terminated after 60,000 iterations, resulting in an interval estimate of —0.0442 ±0.100. Notice 
that this simple example required a relatively large simulation effort compared to what is often 
done in much more complicated settings, but note that p is large. Further, either narrowing the 
interval or increasing the desired confidence level will require a larger simulation effort.

7.7 M ark ov  C h ain  C en tral L im it T h eorem s

Throughout we have assumed the existence of a Markov chain central limit theorem—see, 
for example, Equations 7.2 and 7.9. hi this section we provide a brief discussion of the 
conditions required for these claims; the reader can find much more detail in Chan and 
Geyer (1994), Jones (2004), Meyn and Tweedie {1993), Roberts and Rosenthal (2004), and 
Tierney (1994).

Implicitly, we assumed that the Markov chainX is Harris ergodic, that is, Harris recurrent 
and aperiodic. To fully explain these conditions would require a fair amount of Markov 
chain theory, so we will content ourselves with providing references; the interested reader 
should consult Meyn and Tweedie (1993), Nmnmelin (1984) or Roberts and Rosenthal
(2004). However, it is frequently trivial to verify Harris ergodicity (see Chapter 10, this 
volume; Tan and Hobert, 2009; Tierney, 1994).

Harris ergodicity alone is not sufficient for the Markov chain SLLN or a CLT. However, 
if X  is Harris ergodic and E„ |£| < oo, then the SLLN holds: gn E ^  with probability 1 as 
ii co. A CLT requires stronger conditions, hi fact, it is important to be aware that there 
are simple nonpathological examples of Hams ergodic Markov chains that do not enjoy a 
CLT (Roberts, 1999). Let the conditional distribution of X„ givenXo =  x be denoted Pr! a , -), 
that is,

Pn(x,A ) =  Pr(X„ e A | X 0 =  x).

Then Harris ergodicity implies that, for eveiy starting point x g X,

||P"(*,-) -  n( )|| 4 0 as jj -s. oo, (7.13)

where || - 1| is the total variation noun. We will need to know the rate of the convergence 
in Equation 7.13 to say something about the existence of a CLT. Let MU’) be a nonnegative 
function on X and yin) be a nomiegative function on Z+ such that

||P7i(̂ c, ) — or( )|| <M(jOy(u). (7.14)

When X is geometrically ergodic, y(fi) =  f l for some t < 1; while tuiipriu ergodicity means 
that X is geometrically ergodic and M  is bounded. These are key sufficient conditions for 
the existence of an asymptotic normal distribution of the Monte Carlo error but they are 
not the only conditions guaranteeing a CLT. hi particular, a CLT as in Equation 7.2 holds 
if X is geometrically ergodic and E^g2-1"5 < oo for some & > 0, or if X  is uniformly ergodic 
and E^g2 < co. Moreover, geometric ergodicity is a key sufficient condition for the strong 
consistency of the estimators of <y} from Equation 7.2, For example, Flegal and Jones (2010a)
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establish that when X is geometrically eigodic and E^ 2-1"6 < so  for some 5 > 0, the OLBM 
method produces a strongly consistent estimator of <r|, Geometric ergodidty is also an 
important suffident condition for establishing (Equation 7.9) when estimating a quantile 
(Flegal and Jones, 2010b).

hi general, establishing (Equation 7.14) direcdy is apparently daunting. However, if 
X is finite (no matter how large), then a Harris ergodic Markov chain is uniformly eigodic. 
When X is a general space there are constructive methods which can be used to estab
lish geometric or uniform ergodidty; see Chapter 10 {this volume), and Jones and Hobert 
(2001) for accessible introductions. These techniques have been applied to many MCMC 
samplers. For example, Metropolis-Hastings samplers with state-independent proposals 
can be uniformly eigodic (Tierney, 1994). Standard random-walk Metropolis-Hastings 
chains on ffi*1, d > 1, cannot be uniformly ergodic but may still be geometrically ergodic; 
see Mengersen and Tweedie (1996). An incomplete list of other research on establishing 
convergence rates of Markov chains used in MCMC is given by Atdiade and Perron (2007), 
Christensen et al. (2001), Geyer (1999), Jamer and Hansen (2000), Meyn and Tweedie (1994), 
and Neath and Jones (2009) ■who considered Metropolis-Hastings algorithms, and Doss 
and Hobert (2010), Hobert and Geyer (1998), Hobert et al. (2002), Johnson and Jones (2010), 
Jones and Hobert (2004), Marchev and Hobert (2004), Roberts and Poison (1994), Roberts 
and Rosenthal (1999), Rosenthal (1 9 9 5 ,1 9 9 6 ), Roy and Hobert (2007 , 2010), Tan and Hobert 
(2009), and Tierney (1994) who examined Gibbs samplers,

7.8 D iscu ssio n

The mam point of this chapter is that a MCSE should be reported along with the point 
estimate obtained from an MCMC experiment. At some level this probably seems obvious 
to most statisticians, but it is not the case in the rep orting of most MCMC-based simulation 
experiments. In fact, Doss and Hobert (2010) recently wrote:

Before theM CM C revolution, when classical M onte Carlo m ethods based on i.i.d. samples 
were used to estimate intractable integrals, it would have been deemed unacceptable 
to report a M onte Carlo estimate without an accompanying asymptotic standard error 
(based on the CLT). Unfortunately, this seems to have changed with the advent of MCMC.

While it is tempting to speculate on the reasons for this change, the fad remains that most 
currently published work in MCMC reports point estimates while failing to even acknowl
edge an associated MCSE; see also Hegal et al. (2008). Thus we have little ability to assess the 
reliability of the reported results. This is especially unfortunate since it is straightforward 
to compute a valid MCSE.

The only potentially difficult part of the method presented here is in establishing the 
existence of a Markov chain CLT. In essence, this means simulating a Markov chain known 
to be geometrically ergodic and checking a moment condition Given the amount of work 
that hasbeen done on establishing geometric ergodidty for standard algorithms in common 
statistical settings, this is not the obstacle it was in the past. However, this remains an area 
rich in important open research questions.
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8
Perfection within Reach: Exact MCMC Sampling

Radu V. Craiu and Xiao-Li Meng

8.1 In ten d ed  R ead ersh ip

The amount of research done by the Markov chain Monte Carlo (MCMC) community has 
been very impressive in the last two decades, as testified by this very volume. The power of 
MCMC has been demonstrated in countless instances in which more traditional numerical 
algorithms are lielpless. However, one ubiquitous problem remains: the detection of con
vergence or lack thereof. Among the largenuniber of procedures designed for detecting lack 
of convergence or for establishing convergence bounds {see, e.g. Chapters 6 and 7 in this 
volume), there is one dass of MCMC algorithms that stands apart simply because it avoids 
the problem altogether. Whereas examples of such algorithms canbe traced bade to at least 
1989 (see [56]), it is Propp and Wilson's 1996 seminal paper [48] that introduced the general 
scheme of coupling from the past (CFTP). Since then, there hasbeen an intense searchfor per
fect sampling or exad sampling algorithms, so namedbecause such algorithms use Markov 
chains and yet obtain genuine independent and identically distributed (i.i. d.) draws—hence 
perfect or exact—from their limiting distributions within a finite number of iterations.

There is, of course, no free lunch. Whereas this is a dass of very powerful algorithms, their 
construction and implementation tend to require a good deal of labor and great care. Indeed, 
even the most basic general themes are not entirely trivial to understand, and subtleties 
and traps canbe overwhehning for novices. Our central goal in this chapter is therefore to 
provide an intuitive overview of some of the mostbasic sampling schemes developed since 
[48]. We do not strive for completeness, nor for mathematical generality or rigorousness. 
Rattier, we focus on a few basic schemes and try to explain them as intuitively as we can, 
via figures and simple examples. The chapter is therefore not intended for the residents 
but rather the visitors of the MCMC kingdom who want to tour the magic land of perfect 
sampling. There are of course a number of other tour packages—see, for example, the 
list provided at http: / / dimacs.rutgers.edu/ '-dbwilson/ exact.litml, maintained by David 
Wilson. But wTe hope ours is one of the least expensive ones in terms of readers' mental 
investment, though by no means are we offering a free ride,

8.2 C o u p lin g  from  th e Past

8.2.1 Moving from Time-Forward to Time-Backward

The CFTP algorithm is based on an idea that is both simple and revolutionary. Suppose 
that wTe are interested in sampling from a distribution with probability law n (■) with state

199



200 Handbook o f  Markov Chain Monte Carlo

space S  c  We define a Markov chain with stationary law n using a transition kernel 
K(x, ■) whose transitions canbe written in a stochastic recursive sequence (SRS) form,

Xm-i = ^f+i), t = 0 ,1 ,2 , . . . ,  (8.1)

where 4> is a deterministic map and t̂+i is a random variable with state space A c  R’\ 
(Sometimes it is automatically assumed that A = (0, l ) r, but that is not necessary here.) 
More precisely, the distribution of % is such that P(Xt+i e A) =  fH/L) = J K(xt,A )n(dxt), 
that is, it guarantees that the output Xf+i lias the same (marginal) distribution as the input
X f i f X f -  n.

To explain the key idea of CFTP, let us first review the usual implementation of MCMC. 
When the chain can be written as in Equation 8.1, we can simply compute it iteratively 
starting from an arbitrary starting point Xo e S, by generating a sequence of ^i, %i, . . %t, 
if we decide to run for f iterations. If the Markov chain formed by Equation 8.1 is positive 
recurrent and aperiodic (see Chapter 10, this volume), then we know that as f —> oo, the 
probability law of Xf, Pf, will approach n, regardless of the distribution of Xo. Of course, 
how large f needs to be before the difference between P; and fl becomes too small to have 
practical consequences is the very thorny issue we try to avoid here.

The CFTP, as its name suggests, resolves this problem using an ingenious idea of running 
the chain from the past instead of into the fu ture. To see this clearly, compare the following 
two sequences based on the same random sequence 5f) used above:

Forward: =  4>(<f ( . ..  (t|>(̂ ,̂ i),

Backward: X^ 0 =  t)>(K ■ ■ % t ) , ■ ■ - %i>, !l>- (8.2)

The tiine-fbnmrd sequence X ^ t is obviously identical to the Xf computed previously with 
Xo = x. The time-backward sequence is evidently not the same a s X ^ f but dearly they 
have identical distribution whenever .. .,%t) are exchangeable, which certainly is the
case when { f̂, t =  1 ,2 ,...}  are i.i.d., as in a typical implementation. (Note a slight abuse of 
notation: the use of t both as the length of the chain and as a generic index.) Consequently, 
we see that if we can somehow compute X |^0 at its limit at t =  oo, then it will be a genuine 
draw from the desired distribution because it has the same distribution as X ^ f at t = oo.

8.2.2 Hitting the Limit

At first sight, we seem to have accomplished absolutely nothing by constructing the tune- 
backward sequence because computing X ^ Q at t =  oo surely should be as impossible as 
computing x j ^  at t =  co! However, a simple example reveals where the magic ties. Con
sider a special case where (J>(Xf, that is, the original {Xf, t =  1, 2 , . . .}  already
forms an l id .  sequence, which clearly has the distribution of as its stationary distri
bution (again, we assume {%t, t =  1, 2, . . . }  are i.id  ). It is easy to see that in such cases, 
X ^ f = %t, but Xff 0̂ — for all f. Therefore, with X ^ ^  we can only say that it has the 
same distribution as 51, whereas for X^_^0 we can say it is%\\

More generally, under regularity conditions, one can show that there exists a stopping time 
T such that P[T < 0 0 )  =  1 and that the distribution of X ^  0 is exactly n , that is, X ^  0 "hits 
the limit" with probability 1. Intuitively, this is possible because unlike = X ^ f, which
forms a Markov chain, Xj'1* = X|j|0 depends on the entire history of {Xi, .. ,,Xf_i}, It is this



Perfection within Reach 201

dependence that restricts the set of possible paths Xt can take and hence makes it possible 
to “hit the limit" in a finite number of steps. For a mathematical proof of the existence of 
such T, we refer readers to [48,53,54].

The CFTP strategy, in a nutshell, is to identify the aforementioned stopping time T via 
coupling. To see how it works, let us first map t to — f and hence relabel X^ 0 as X^,_^Q, 
which makes the meaning from the past clearer. That is, there is a chain coming from the 
infinite past {and hence negative time) whose value at the present time t =  0 is the draw 
from the desired stationary distribution. This is because coming from infinite past and 
reaching the present time is mathematically the same as starting from the present time 
and reaching the infinite future, However, this equivalence will remain just a mathematical 
statement if we really have to go into the infinite past in order to determine the current value 
of the chain But the fact that the backward sequence can hit the limit in a finite number of 
steps suggests that, for a given infinite sequence { f̂, t — -1 ,  - 2 , . . . } ,  there exists a finite T 
such that, when f > T, X ^_^0 will no longer depend on x, that is, all paths determined by 

t =  - 1 ,  - 2 , . . . }  will coalesce by time 0, regardless of their origins atthe infinite past. It 
was proved in [ 10] that such coupling is possible if and only if the Markov chain {Xi, X i, . . .}  
determined by (f> is uniformly ergodic.

8.2.3 Challenges for Routine Applications

Clearly once all paths coalesce, their common value Xo =  is a genuine draw from
the stationary law n . Therefore, the CFTP protocol relies on our ability to design the MCMC 
process given by §, or more generally by the transition kernel if, such that the coalescence o f  
d l  paths takes place for moderate values of T. This requirement poses immediate challenges 
inits routine applications, especially for Bayesian computation, where S  typically contains 
many states, very often uncountably many. The brute-force way of monitoring eachpathis 
infeasible for two reasons. First, itis simply impossible to follow infinitely many paths indi
vidually. Second, when the state space is continuous, even if we manage to reduce the pro
cess to justtwo paths {as with the monotone coupling discussed below), the probability that 
these will meet is zero if they are left to run independently. Therefore, our first challenge is to 
design die algorithm so that the number of paths shrinks to a finite one within a few steps. A 
hidden obstade in this challenge is being able to figure out exactly which paths will emerge 
from this reduction process as they are the ones that need tobe monitored until coalescence. 
The second challenge is to find effective ways to "force" paths to meet, thatis, to couple them 
in such a way that, at each step, the probability that they take the same value is positive.

The rest of this chapter will Illustrate a variety of methods designed to address both 
challenges and other implementation issues. We do not know any universal method, nor 
do we believe it exists, But there are methods for certain dasses of problems, and some of 
them are rather ingenious.

8.3 C o alescen ce  A ssessm en t

8.3.1 Illustrating Monotone Coupling

Suppose that the space S  is endowed with a partial order relationship -< so that

-i -< }/ => <1>(x, %) <  <t>0/,l) { 8 .3 )
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for any x, y  e S, % e A, and where is an SRS as in Equation 8.1. If we can find the minimum 
and maximum states X min, X max £ S  withrespect to the order then we caniniplenient this 
monotone coupler—as defined by Equation 8,3—in which it is sufficient to verify the coupling 
of the paths started at these two extremal points because all other states are "squeezed" 
between them. Therefore, the monotone coupler is an efficient way to address the first chal
lenge discussed in Section 8.2.3. For illustration, consider the random walk with state space 
J  = {0.25, 0.5, 2, 4), with probability p of moving up or staying if the chain is already at Hie 
ceiling state Xf = 4, and probability 1 — p of moving down or staying if already at the floor 
state Xf = 0.25. It is easy to see that this construction forms a monotone chain, expressible 
as Xf =  (|>(Xf_i,^f), where %t ~  Bernoulli (/>) and its value determines the direction of the 
walk, with one going up and zero going down.

Figure 8.1 shows a realization of the CFTP process, corresponding to

{i=_s, %-i, ■ ■ !=—2, ^ -i} =  {0,1,0, 1, 1,1,1,0}. (8.4)

One can see that the order between paths is preserved by  ̂ In particular, all the paths are at 
all times between the paths started at Xm;n = 0.25 (solid line) and Xma?: = 4 (dashed line), 
respectively. Therefore, in order to check the coalescence of all four paths, we only need to 
check if the top chain starting from X = 4 and the bottom chain starting from X =  0.25 have 
coalesced. In this toy example, the saving from checking two instead of all four is obviously 
insignificant, but one can easily imagine the potentially tremendous computational savings 
when there are many states, such as with the Ising model applications in [48].

8.3.2 Illustrating Brute-Force Coupling

This toy example also illustrates well the "brute-force" implementation of CFTP, that is, 
checking directly the coalescence of all paths. Figure 8.1 establishes that for any infinite 
binary sequences {^, t < —1 ), as long its last eight values (i.e. from f = — 8 to t — —1) are 
the same as that given in Equation 8.4, the backward, sequence given in Equation 8.2 will 
hit the limit X = 2, that is, the value of the coalesced chain at t =  0. Pretending that the

Time

FIGURE 8.1
Illustration of amonotone SRS which preserves the natural order on the real line (i.e. paths can coalesce but never 
cross each other). Different lines represent sample paths started from different states.
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monotone property was not noticed, we can still check the coalescence step by step for all 
paths. Or, more efficiently, we can use the "binary back-off" scheme proposed in [481; that 
is, whenever a checkfails to detect coalescence, we double the number of "backward" steps. 
Specifically, imagine we first made one draw of %, and it is zero (corresponding to = 0).
We compute X^ ^ 0 of Equation 8.2 for all values of x e 5 , which leads to

_ 9 Y® — D y -̂5) _ y(0.25) _
- 1^0 — - 1^0 — ^  A- 1^0 — - 1^0 — UZi)'

indicating that coalescence has not occurred. We therefore double the number of steps 
going back, which requires only one new draw from % ~  Bemuolli(p), as we already have 
|_i =  0. It is important to emphasize that we always reuse Hie draws of %t that we have 
already made because the point here is to simply check what the coalesced value would 
be for a given infinite sequence of {|f, t < —1}. The device of making draws starting from 
t = — 1 and going backward is the ingenious part of CFTPbecause it allows us to determine 
the property of an infinite sequence by revealing and examining only a finite number of its 
last elements. That is, since the remaining numbers in the (Infinite) sequence cannot alter 
the value of the chain at t =  0, we do not even need to care what they are.

Now this new draw yields  ̂ = 1, and hence we have {^ -2, s_i) = {1/0}/ which is then 
used to compute Equation 8.2 again but with T = —2:

__ T v'fO-S) __ (1 c  y (0 .2 5 )  __ ^  rj,-
A - 2 - ^ o  — A _ 2^ o  — A> A - 2 - ^ 0  — U 5 '  A - 2-^0 —

hence, again, no coalescence. Once again we double the steps and go further back to T =  -  4, 
which means we need two more draws of %, and this tune they both are one, yielding 
{1 - 4, 5_3, %-2j ^ -1} =  {1,1,1,0}. Since we oidy need at most three consecutive upward steps 
to bring any state to the ceiling state X = 4, the {1,1,1, 0) sequence immediately implies 
that

X ^ 0 =  4.(4,0) = 2, for all x e 5.

We have therefore detected coalescence after going back to only T =  -4 .  This is not in any 
contradiction to Figure 8.1, but points to an even stronger statement that only the last four 
elements in the sequence (Equation 8.4), {^_t, ^_3, |_2, l - i }  =  [1/ X  1 / 0 } /  rattier than all 
eight elements, are really relevant.

8.3.3 General Classes of Monotone Coupling

One may wonder when such ordering exists in more general situations and, if so, what 
important classes of distributions can be identified to satisfy Equation 8.3. Sudi questions 
have been investigated by [13,18] in the case of Monotone (also called attractive) and tuiti- 
iiionotone (also called repulsive) distributions n. Suppose that S  =  Z d, for some set Z  c  ffi. 
We consider the componentwise partial order on 5  so that jc -< y  if and only if *, < i/, for all 
1 < / < d. The probability measure P on 5  is defined to be monotone if, for each 1 < i < d,

P(Xi < s|X[_,] = a) > P(X, < s|X[_,] = b), for all s £ 5 , (8.5)
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whenever a  -< h m Z d 1, where X[_,] =  (Xi, . . X j_ i,X I+i, .. .,X,j). Similarly, P is called 
anti-monotone if

P(X; < s|X[_[] = rt) < P(X; < s|X[_j] = b),

whenever a -< b ill Z d~l .
This definition of monotonidty via all full conditional distributions P(X,'|X[_;]}, / =

1, . -., d, was motivated by their use with the Gibbs sampler. In particular, Equations 8.3 
and 8.5 are easily connected when the sampling from P(X, < s|X|_,] = a) is done via the 
inverse CDF method. Put Fl(s\n) =  P(X, < s|X|_,] =  a) and assume that the /th compo
nent is updated using cf>; ( If) = (x i,x2, ■ ■.,.r,_i,inf{s : J?I-(s|.r[_;]) = with
ir ~  U (0,1). If we assume.? -< y, then from Equation 8.5 we get

tj>i(j£, U) ■< fyity, U) (8.6)

because inf (s : F,(s|;*[_j]) =  tf} < inf{s : P, ( s ) = U} Applying Equation 8.6 in sequen
tial order from i = 1 to i =  d, as in a Gibbs sampler fashion, we can condude that for 
ir = { Ui, . . . ,  [{,{}., the composite map

tj>(.?, II) =  1(- • ■ ‘W'tufX- Ul)/ Ih ), ■ ■ Hrf-i), IJrf) (8.7)

is monotone in x withrespect to the same partial order -<.
hi the case of anti-monotone target distributions, it is not hard to see that the 4>(:x, II) of 

Equation 8.7 is also anti-monotone with respect to < if d is odd, but monotone if d is even. 
Indeed, the ceiling/upper and floor/lower chains switch at each step (indexed by i =  1 
to i = d), that is, the ceiling chain becomes the floor chain and vice versa. This oscillating 
behavior, however, still permits us to construct bounding chants that squeeze in between all 
the sample paths such that the general coale scence canbe detected once the b ounding chains 
have coalesced. See, for example, [13], which also discusses other examples of monotone 
target distributions; see also [6,21].

8.3.4 Bounding Chains

In a more general setup, [18] discusses the use of bounding chains without any condition 
of monotonidty To better fix ideas, consider the following simple random walk with state 
space S =  {0.25,0.5,2} and with transition probability matrix

(P  1 ~ P  0 \
^4= 0 p 1 - p l ,

\P 0 1 - p j

where the (1,1) entry corresponds to the probability that the chain stays at 0.25. Unlike 
the previous random walk, the recursion defined by the matrix A is neither monotone 
nor anti-monotone with respect to the natural order on the real line. For example, with 
% ~ Bemoulli(p), and if % =  1, we have cj>(0.25, |) =  0.25 < <̂ (0.5, i~) =  0.5 > c|>(2, |) = 0.25, 
where <j> is the chain's SRS. hi contrast to the previous random walk, here | = 1 can indicate 
both moving up or down depending on the starting position, and this is exactly what 
destroys monotonidty with respect to the same ordering as in the previous random-walk 
example. (This, of course, by no means implies that no (partial) ordering existed under
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FIGURE B.2
Nonmonotone Markov chain. The upper and lower solid lines mark the bounding processes.

which the SRS is monotone, seeking such an ordering is indeed a common implementation 
strategy for perfect sampling.)

hi Figure 8.2, we show one run of the CFTP algorithm implemented for this simple 
example with p =  0.1, where {^_s, . . =  {0 ,1 ,0 ,0 ,0 ,0 ,0 ,0}. Cne can see that the three 
paths cross multiple times and no single path remains above or below all the others at all 
tunes. Abounding chain, in the general definition introduced by [ IS], is a chain {i t f > 0} 
defined on the set of all subsets of S, with the property that if e Yf for all x e S  
then X ^  e Yf+i for all * e S, evidently Yq needs to contain all values hi 5. If, at some time 
t, Yf is a singleton then coalescence has occurred. Clearly, there are many ways to define 
the chain Yt, but only a few are actually useful in practice and these are obtained, usually, 
from a careful study of the original chain X t.

For instance, in our example we notice that after one iteration Yo = S  will become either 
Yi =  (0.25, 0.5} or Yi = {0.5,2}, depending on whether % =  1 or % =  0, and therefore Yf will 
always b e a sub set of these two sets (p ossibly themselves). Therefore, for t ^ 1, the up d athig 
rule Yf+i = 'i’XYf, i-) canbe simplified to

Cne can see then that having the ordered triplet {1,0,0} in the ^-sequence triggers coales
cence, after which one simply follows the path to time zero.

Two essential requirements for an effective bounding chain are that (i) it can detect coa
lescence of the original chain and (ii) it requires less effort than running all original sample 
paths. The chain Yf =  {61} for all t. is a bounding chain and satisfies (ii), but dearly it is 
useless. As an example of bounding chains that do not satisfy (ii), consider the upper and 
lower solid paths in Figure 8,2, Here the upper solid path is the maximum value attained 
by all paths at each time f, and the lower solid path is the minimal value (both have been

Yf, if £ = 1 and Yf = {0.25,0.5},
{0.25,0.5} if £ = 1 and Yf = {0.5,2},

vI>(Yt,|)= {0.5,2}, if | = OandYf = {0.25,0.5},
{2}, if % = 0 and Yf = {0.5,2},

<t>(Xf,^), ifYf = {Xf}.

(8.8)
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slighted shifted for better visualization). For each time t, the interval between the upper 
and lower solid paths, denoted by Yt, dearly forms a bounding chain. But unlike Yt in 
Equation 8.8, the updating function for Y* is not easy to define, so running Y* involves 
checking the extremes of all the paths for X f and is thus as complicated as running all paths 
for Xf.

As far as general strategies go, [ 13] shows how to construct bounding chains when each 
component of the random vedor X is updated via a Gibbs sampler step, whereas [IS] 
presents a general method for constructing bounding chains and applies it to problems 
from statistical mechanics and graph theory.

8.4 C o st-S av in g  S tra te g ie s  fo r Im p lem en tin g  P erfect S am p lin g

The plain vanilla CFTP described in Section 8.2 suffers from two main drawbacks. First, the 
implementation "from the past" requires the random seeds used in the backward process to 
be storeduntil coupling is observed and a randomsample is obtained. Second, the impatient 
user caimot abandon runs that are too long without introducing sampling bias, because the 
coupling tune T is correlated with the sample obtained at time zero. In the following two 
sections we provide intuitive explanations of the read-once CFTP and Fill's intemiptible 
algorithm, designed respectively to address these two drawbacks.

8.4.T Read-Once CFTP

Read-once CFTP (Ro-CFTP), as proposed by Wilson [56], is a dever device that turns CFTP 
into an equivalent "forward-moving" implementation. It collects the desired i.i. d. draws as 
the process moves forward and without ever needing to save any of the random numbers 
previously used. The method starts with a choice of a fixed block size K, such that the 
^-composite map

=  <t>(<|>(. ..$(<>(■*,£ i) ,£2), ---'Sk-

where % =  [%i, . . has a high probability of coalescing, thatis, the value of 4>k(X; will 
be free of x, or equivalently, all paths coalesce within the Mock defined by |. hi [56], Wilson 
suggests selecting K such that the probability of 4>k coalescing, denotedby pk, is at least 50%. 
Given such a we first initialize the processby generating i.i. d. %;,j =  1,2, . . . ,  until we find 
a |ro such that 4>k(X; |y0) coalesces. Without loss of generality, in the top panel of Figure 8.3, 
we assumed that jo =  1; and we let So = <J>k(-*,!,0)- We then repeat the same process, that 
is, generating i.id. |,s until coalesces again hi the top panel of Figure 8.3, this
occurred after three blocks. We denote the coalescent value as Si. During this process, we 
follow from block to block only the coalesce!we path that goes through So while all the other 
paths are reinitialized at the beginning of each block. The location of the coalescence path 
just before the beginning of the next coalescent composite map is a sample from the desired 
n. hi Figure 8.3 this implies that we retain the drded X  ̂ as a sample. The process then is 
repeated as we move forward, and this time we follow the path starting from Si and the 
next sample X2 (not shown) is Hie output of this path immediately before the beginning of 
the next coalescent block. We continue this process to obtain i.i.d.. draws X 3, X i, and so on,
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FIGURE B.3
Top: The read-once CFTP with blocks of feed length. Bottom: Comparison with CFTP2.

The coimectionbe tween the Ro-CFTP and CFTP may notbe immediately dear. Indeed., in 
the plain vanilla CFTP, the concept of a composite/block map is not emphasized because, 
although we "back off" in blocks, we do not require to have a coalescent composite map 
of fixed length. For instance, if we set K =  4, we can see that in Figure 8.1 the paths started 
at — 2K coalesce in the interval (—K, 0) rather than within the block (—2K, -K ).  However, 
suppose we consider a modified implementation of the plain vanilla CFTP, call it CFTP2, 
in which we go back from time zero block by block, each with size K, until we find a block 
that is coalescent, that is, all paths coalesce within tf/rzf black. Clearly, if we trace the path 
from the coalescent value from that block until it reaches time zero, it will be exactly the 
same value as found by the original plain vanilla CFTP because once the coalescence takes 
place, all paths will stay together forever, The bottom panel of Figure 8.3 illustrates CFTP2, 
where the third block (counting backward from t =  0) is the coalescent block, and X i is our 
draw.

The resemblance of the bottom panel and the first three blocks in the top panel (counting 
forward from time t = 0) is intended to highlight the equivalence between Ro-CFTP and 
CFTP2. On its own, CFTP2 is dearly less cost-effective than CFTP because by insisting on 
having block coalescence, it typically requires going back further in time than does the 
original CFTP (since block coalescence is a more stringent detecting criterion* as discussed 
above). However, by sacrificing a little of the effidency of detecting coalescence, we gam the 
ujriepe/Mfc/M’fbetween the block coalescent value So and the entire backward search process 
for So, and hence we can reverse the order of the search without affecting the end result.

As this independence is the backbone of the Ro-CFTP, here we show how critically it 
depends on having frxed-size blocks. Intuitively, when the blocks all have the same size, 
they each have the same probability of being a coalescent block, and the distribution of 
the coalesced state given a coalescent block is the same regardless of which block it is. 
To confirm this intuition and see how it implies the independence, let us define the block 
random vedor %_t =  <X-tK, %-tK+i ■■■ , 5-tK+JC-i) and, for a given set %_tf t =  1 ,2 , . . . ,  let T 
be the first t such that coalesces, and let So = be the coalescent value.
Also let C,' =  {4>]c(.iv %_j) coalesces}, that is, the event that theyth block map coalesces. Then 
[T =  f] = (n'~j Cp n Q. For notahonal simplidty, denote Aj  = |<|>kU', %-}) e A\ and B, =  
{ E, e £}, where A and B are two arbitrary (measurable) sets on the appropriate probability
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spaces, and Ej — {^ - i , . . . ,  %-j). Then for any positive integer f,

P(So e A, r = f, Sj-i e B) = P(At n [nj=JCy n Cf] n Bt-i)

= P(AfnCf)P(nJt i c / n B f_i)

= P(Af|Cf)P(Ct)P(n;t J c /  n b,_i) 

= P(Af|Cf)P(Cf riyi| Cj n Bf_i)

= P(Ai|Ci)P(r =  f,B r-i)-

(S. 9)

In deriving the above equalities, we have repeatedly used Hie fact that {A tl Cf} are inde
pendent of Bf_i, Cf_iJ since they are determined respectively by |_f and {|y, j  = 
- 1 ,  - ( f  -  1)J. The last switching from P(7lf|Cf) to P(Ai|Ci) is due to thei.i.d. nature of
the {At,  Cf},because allblocks have the same size K. This switching is critical in establishing 
the factorization in Equation 8.9, and hence the independence.

Clearly, as depicted in Figure 8.3, the output of CFTP2, namely X i, can be expressed 
as M (So , T, S j - i ) ,  where M  is a deterministic map. The aforementioned independence 
ensures that if we can find { f ,  H^_1} such tliat it lias the same distribution as {T, S t - i }  
and is independent of So, then X i = M (S o , T, S^_1) will have the same distribution as 
X i = M (S o , T,  St-i)/  and hence it is also an exact draw from the stationary distribution 
n. Because {|_i, |_2, . . . , }  are i.i.d., obviously the distribution of {T, St-i] is invariant to 
the order at wThich we check for the block coalescence. We can therefore reverse the orig
inal backward order into a forward one and start at an arbitrary block which must be 
independent of So. This naturally leads to the Ro-CFTP, because we can start with the block 
immediately after a coalescence has occurred (which serves as So), since itis independent of 
S0. Moreover, the number of blocks and all the block random numbers (i.e. % s) needed before 
we reach the next coalescent block represents a sample from the distribution of {T, 3 t_ i} . It 
is worth emphasizing that each coalescent composite map fulfills two roles as it marks the 
end of a successful run {inclusive) and thebegiiming of a new run (exclusive). Alternatively, 
Equation S.9 implies that we can first generate T from a geometric distribution with mean 
1 /p k  (recall that pK is the probability of coalescence within each block), and then generate 
T -  1 noncoalescent blocks, via which we then ran the chain forwTard starting from So. 
This observation has little practical impact since [>k is usually unknown, but it is useful for 
understanding the connection with the splitting chain technique that will be discussed in 
Section 8.5. The forward implementation brought by Ro-CFTP also makes it easier to imple
ment the efficient use of perfect sampling tours proposed by [401, which willbe discussed in 
Section S. 6.

8.4.2 Fill's Algorithm

Fill's algorithm [8] and its extension to general chains [9] break the dependence betwTeen 
the backwTard time to coalescence and the sample obtained at time zero. In the following 
we use the slightly modified description from [39],

The algorithm relies on Hie time-reversal version of the Markov chain designed to sample 
from n. If the original chain has transition kernel K(x, ■), then the time-reversal versionlias 
kernel K(z, •), such that

k(x|z)tt(z) = k(z\x)Ti(x), V (x,z) e 5 x S, (S. 10)
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where, for simplicity of presentation,, we have assumed that the stationary law n  has density 
Ti, andKl Y, ■) and K(z, ■) have kernel densities A.(-|„r) and k(- \ z), respectively. It also requires 
that, given a particular path Xo Xi -> ■ ■ ■ -> Xf , we can sample, conditional on the observed 
path, a sample of the same length from any state in 5.

The algorithm starts by sampling a random Z e S  from an arbitrary distribution Pq (with 
density Pq) that is absolutely continuous with respect to n , and by selecting a positive 
integer T. The first stage is illustrated hi the top panel of Figure 8.4: using the reversal 
thne chain, we simulate the path Z = X? X t~ i ■ -v X i -»■ Xo (note that the arrow 
is pointing against the direction of time), hi the second stage, we sample forward from 
all the states in S  conditional oil the existing path Xo -» X i • ■ ■ -»■ X j  = Z (note that 
this path is considered now in the same direction as time). If by time T all the paths have 
coalesced, as depicted in the middle panel of Figure 8.4 (where we used monotone coupling 
for simplicity of illustration, but the idea is general), we retain Xo as a sample from tt, as 
shown in the bottom panel of Figure 8.4, and restart with a new pair (Z, T). Otherwise, we 
select a new T or we restart with a new pair (Z, T).

FIGURE 8.4
Illustration of Fill's algorithm.
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To understand why the algorithm produces i.i.d. samples from tt, we first note that 
Equation 8,10 holds in the more general form.

if(.r|z)Tr(z) =  kt(z | jc)Ti(at), V (x,z) e  S  x S , (8.11)

where Jt* is the kernel density of the f-step forward transition kernel Kt and kt is the cor
responding titne-reversal one, Kt. Fill's algorithm retains oidy those paths from Z to Xo 
{obtained via K j)  such that the corresponding kj(z\x) is free of x—and hence it can be 
expressed as h j(z)—due to coalescence; in this sense Fill's algorithm is a case of rejection 
sampling. Therefore, using Equation 8,11, the probability density for those retained Xqs is

p(x) = kT(x\z)pa(z)dz =  f po(z)dz oc h(jc), (8.12)
J

hence the correctness of the sampling algorithm (see also [4]). Note that here, for simplicity, 
we have deliberately blurred the distinction between Hie fixed f in Equation 8.11 and the 
potentially random T in Equation 8.12; in this sense Equation S. 12 is a heuristic argument 
for building intuition rather than a rigorous mathematical proof, hi its general form, Fill's 
algorithm can search for the coalescence time T just as with CFTP—see [9] for a detailed 
treatment of the general form of Fill's algorithm, induding a rigorous proof of its validity. 
See also [4] for an alternative proof based directly on the rejection-sampling argument, as 
well as for a numerical illustration.

The conditional sampling is the mam difficulty encountered when implementing Fill's 
algorithm, but in some cases it canbe straightforward. For instance, if Xf+i 
thenitis possible that llf+i is uniquely determined oncebothXf and Xt+i are fixed (e.g. if we 
generate X f+i using the inverse CDF transformation). If we denote by {ll^, . . . ,  :=  i f l
the set of random deviates determined by the path Z = X t  X t_ i -»■■■—» X i Xo, 
then at the second stage we simply ran for T steps, from all the states of S, the Markov 
diains using the recursive form (Equation 8.1) with the set ZY° as random seeds.

8.5 C o u p lin g  M e th o d s

All algorithms described so far require the coupling of a finite or infinite number of paths 
in finite time. This is the greatest difficulty of applying perfect sampling algorithms to con
tinuous state spaces, espedally those with unbounded spaces (which is the case for most 
routine applications hi Bayesian computation) and this is where the greatest ingenuity is 
required to run perfed sampling in more realistic settings. A good coupling method must 
be usable in practice and it is even better if it is implementable for different models with 
the same degree of success, hi this section, we review' some of the most useful coupling 
techniques, which essentially belong to two different types: (i) those which induce a "com
mon regeneration state" that all sample paths must enter with positive probability; and (ii) 
those w7hich explore hidden discretization and hence effectively convert the problem into 
one with a finite state space.



Perfection within Reach 211

8.5.1 Splitting Technique

A veiy common technique for coupling MCMC paths is initiated in [46] and discussed in 
detail by [54], Consider the Markov chain X f defined using the transition kernel K  and 
suppose that there exist t > 0, 0 < ? < 1, a set C (called a sm dl set) and a prdxlulih/ measu re 
v such that

Kt(x,dy) > fv(rfy ) , V x g C, 

where Kt represents the f-step transition kernel Thus, for any „r e C,

Kt(x,(fy) =  tv{dy) + (1 -  e) = tvirty) +  (1 -  <L)Q(x,rty), (8.13)

where Q(x,dy) = [Kt(x,dy) — ev(rfi/)]/(l -  e). The representation given by Equation 8.13 is 
important because with probability e the updating of the chain will be done using the 
probability measure v, that is, independently of the chain's current state. If at time t all the 
paths are in the set C and all the updates use the same random numbers E; that lead to 
the transition into the v component of Equation 8.13, then all paths will coalesce at time 
f + 1, even if there are uncountably many. HowTever, for a set C c  5  it will be difficult, if 
not impossible, to determine whether it contains all paths at a given time. This problem is 
alleviated in the case of CFTP where the existence of successful coupling has been shown 
(see [10]) to be equivalent to the uniform ergodicity of the chainXf, in which case the small 
set is the whole sample space, S , so all paths are automatically within a small set at all 
times. A lt  example where this idea has been brought to fruition is Hie tmdtigmtuna coupler 
introduced by [37], following the gamma coupler of [25]. The method is further developed 
by [36] in the context of perfect sampling from continuous state distributions.

The multiganima coupler applies when the update kernel density/( I?) of the Markov 
chain is known. In addition, it requires that there is a nonnegative function r such that

f fy  I■*) > >W' v-lVV € S. {8.14)

If we denote p = J  f'O/Vfy > 0, then in line with the splitting technique discussed above we 
can WTite

P(X;+i < y  | Xf = x) =  pR(y) +  (1 -  p)Q(J/|.t), (8.15)

where R(i/) = p” 1 and Q(y|.ir) = (1 -  p)_1 J^ co[/0’ I x) -  r(v)]riv.
As a simple example, assume that the transition kernel has the gamma density/[y  \ a, l)x) =  

ya~Hf exp{—ifl>x)/r(a), where a  is fixed, and bx depends on the previous state Xf = x. but 
is always within a fixed interval, say bx e [to,bi], where ho and are known constants. 
Then we can set r(y) =  exp(—yb\)/T(a), which yields p =  ib o /b i f .  At each t, we
sample % Bemoulli(p), and if £ = 1, wTe draw y  from Gamma(rt, l>i), and let all paths 
Xf+i = y  regardless of their previous states, hence coalescence takes place. If % =  0, then 
we draw from the Q component in Equation 8.15 (though this step requires drawing from 
a nonstandard distribution).

In situations wThen no uniform bound can be found on 5  for Equation 8.14 to hold, 
Murdoch and Green [37] propose partitioning S =  5^ U . . .  U S m and bounding the kernel 
density / on each 5, with r: and introduce a partitioned iiiiiltigamnia coupler for this setting. A 
more difficult coupling strategy has been described in [22] in the case of geometrically (but 
not necessarily uniformly) ergodic chains, though the approach has not been implemented 
on a wide scale.
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There is a direct connection between the multigamma coupler and the Ro-CFTP in 
Section 8.4.1. With a block of size K =  1 the multigamma coupler construction implies 
that the probability ol coalescence within the block is p. As described above, we can there
fore sample a geometric T with success probability p, and start from a coalesced value, 
that is, an independent draw from R{y) in Equation 8.15. We then run the chain forward 
for T — 1 steps conditioning on noncoalesced blocks, namely, we use the Q component of 
Equation S. 15 as the transition kernel. The resulting value then is an exact draw from n  [ 37] 

There is also a dose connection between the multigamma coupler and the slice sampler 
(see Section 8.5.4), as both canbe viewed as building upon the following simple idea: For 
a given (not necessarily normalized) density g(y), if (U,Y) is distributed uniformly on 

: ii < g(y)}, then the marginal density of Y is proportional to£(v). Therefore, 
when/fi/l*) > Mv) for ah x and y, we have

Qv = {(n,y) : n < r(y)} c  = ((»,]/): « < /(y I *)}, V x e S .  (8.16)

For shnphdty of illustration, let us assume that all are contained in the unit square 
[0,1] x [0,1], Imagine now we use rejection sampling to achieve the uniform sampling on 

for a particular x by drawing uniformly on the unit square. The chance that the draw 
(n,}!) will fall into £2r is predsely p, and more importantly, if it is in Q,-, it is an acceptable 
proposal for/(y|.T) regardless of the value of jc because of Equations. 16. This is the geometric 
interpretation of how the coalescence takes place for splitting coupling, which also hints at 
the more general idea of coupling via a common proposal, to which we now7 turn

8.5.2 Coupling via a Common Proposal

The idea of using a common proposal to induce coalescence wTas given in [3] as a way to 
address the second challenge discussed in Section 8.2.3. (Note, however, that this strategy 
does not directly address the first challenge, namely discretizing a continuous set of paths 
into a finite set; that challenge is addressed by, for example, the augmentation method 
described in the next subsection, or by other dever methods such as the multishift coupler 
in [57].) Imagine that we have managed to reduce the number of paths to a finite one. hi 
practice, it may still take a long time (possibly foo long) before all paths coalesce into one. 
Intuitively, one would like to make it easier for paths that are dose to each other to coalesce 
more quickly.

Remarkably, the description of coupling via a common proposal can be formulated in 
a general setting irrespective of the transition kernel used for the chain, as long as it has 
a density. Suppose that the chain of interest has transition kernel with the (conditional) 
density/( ■ |Xf). Instead of always accepting the next state as Xm-i ~ f (  ■ |Xf), we occasionally 
replace it with a random draw Y sampled from a user-defined density g Thus, the Xf+i 
from the original diain plays the role of a proposal and is no longer guaranteed to be the 
next state; we therefore relabel it as Xm-i.

hi stead, given Xt = x, the next state Xm-i is given by the updating rule

y  if
Xf+1 =  , ' / (X f+iW £ (Y ) '

X(+i, otherwise,

(8.17)
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where [I ~  [J(0, 1) and is independent of any other variables, hi other words, the above 
coupler makes a choice between two independent random variables Xf+i and Y  using 
a Metropolis-Hastings (MH) acceptance ratio. Note that the MH accept-reject move is 
introduced here simply to ensure that the next state of the chain has distribution density 
/(■ |Xf) even if occasionally the state is "proposed" from g. Hie coupling via a common 
proposal tends to increase the propensity of coalescing paths that are close to each other. 
More precisely, suppose that two of the paths are dose, that is, x|^ *=» X j21. Then the ratios 
in Equation 8.17 wall tend to be similar for the two chains, which implies that both chains 
will likely accept/ reject Y  simultaneously.

It is also worth emphasizing that the above scheme needs a modification in order to 
be applicable to the MH sampler which does not admit a density with respect to the 
Lebesgue measure. The basic idea is to introduce the common proposal into the MH pro
posals themselves as in [3]. This perhaps is best seen via a toy example. Suppose that our 
target distribution is N(0,1), and we adopt a random-walk Metropolis algorithm, that is, 
the proposal distribution is = N(y — x), where N(z) is the density of M (0,1). Clearly, 
because Niz) is continuous, two paths started at different points in the sample space will 
have zero probability of coalescing if we just let them "walk randomly." To stimulate coa
lescence, we follow the ideas hi [3] and create an intermediate step in which the proposals 
used hi the two processes can be coupled.

More precisely, at each tune t we sample Zf+1 ~  tj(-), where t-, is the t distribution with 
three degrees of freedom Suppose that the proposal for chain i at time t is Y ^ ,  where 
y j j i  -  N(Xf\ 1). We then define

■ N(Zt+l - X f
>t+l>  II  f V -  >  LI,

w il] -rVM-l “

n (z h  i - x ^ t e sfyffj)

n v ^ - x W a z *  1) (81S)

Y ^p otherwise,

where [J ~  LI (0,1) is independent of all the other variables. The proposal is accepted 
ushig the usual MH strategy because its density is still the density of the original proposal, 
N(Xfl\ 1); the next state is then either (acceptance) or x|° (rejection). What has changed
is that regardless of which paths the diains have taken, their MH proposals now have a 
positive probability of taking on a common value Zf+i for all those chains for which the first 
inequality in Equation 8. IS is satisfied. This does not guarantee coupling, but it certainly 
makes it more likely, hi Figure 8.5 we show two paths simulated using the simple model 
described above, where the two paths first came very dose at t =  -8  and then coalesced 
at it = -7 .

8.5.3 Coupling via Discrete Data Augmentation

Data augmentation [51], also known hi statistical physics as the auxiliary variable method, 
is a very effective method for constructing effident MCMC algorithms; see [55] for a review7. 
It turns out to be useful for perfed sampling as well, because wTe can purposely consider 
auxiliary variables that are discrete and therefore convenient for assessing coalescence. 
Specifically, suppose that our target density is f(x ),  where x may be continuous. Suppose 
thatwe have a way to augment f(x )  into/(.r,/), where / is discrete. If wre canperfonn Gibbs 
sampling via f i x  \ I) and f(l\x), then we will automatically have a Markov sub-chain with
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Time

FIGURE 8.S
Illustration of coupling with proposals for two paths.

/(/) as the stationary density (note the sub-chain with / only is Markovian because the Gibbs 
sampler here only involves two steps). Therefore, we have effectively turned the continuous 
problem for / U ) into a discrete one because once we have an authentic draw from/(/), then 
we can easily get a corresponding authentic draw7 from fix )  by sampling from/(jc | /).

To illustrate, consider finite mixtures, where the obvious auxiliary variable is the indicator 
variable indicating the mixture component from which a sample is obtained. The coupling 
via augmentation has been successfully implemented by [ 17] in the case of two-component 
mixtures of distributions and by [38] in the case of Bayesian mixture priors. Below is one of 
the examples discussed by [17], wluch we recastin order to crystalize the essence of discrete 
data augmentation.

Consider the mixture afijid) +  (1 — a)fi(d), where only the mixture proportion a is 
unknown and therefore wTe seek its posterior density, assuming a uniform prior on (0, 1), 
Given a sample [di, . . r/,,} from the mixture, the posterior for a is proportional to

11
fi(a\d) oc [^{a/o(rii) + (1 -  o0/i(rf;)}, (8.19)

i=i

involving 2” terms when expanded; note that here we use d =  {rfi, . . dVl } to denote the 
data instead of the original [jci, . . to avoid the potential confusion of our generic 
notation which uses X for the sampling variable, which is a  here. Let the latent variables 
z — {z i , . . .  , z„} be such that z, =  0 if if, has been generated from/o and z, = 1 if d, has been 
generated from/i. Then it is easy to see that
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This implies that we can construct the discrete augmentation as I =  ^  z„ which has a 
nonhomogenous binomial (NhB) distribution NhB(»,/5), where p = {pi, .. That is, I 
is the sum of u independent but not necessarily identically distributed Bernoulli variables. 
Given this data augmentation scheme/(a, I), the algorithm givenin [17] canbe reformulated 
as follows.

1. Because of Equation 8.21, given It = I, we generate af+i — Beta(/( +  1 — 1,1 +  1), 
which can be accomplished by drawing w; ~  Exponential(l) for j  e {1, .. .,u. +  2} 
and then letting

“ h-i = ' ■ <8-22>L ,= i m

2. Given oif+i = a,because of Equation 8.20, we need to draw lt+1 from NItB (i i, ft (a)), 
where p{a) =  {pi, .. .,pv}, with pt =  pi(a) given by the right-hand side of Equa
tion 8.20. This draw is accomplished by generating independent h* ~  11(0,1) and 
letting

II

zt+i =  X !  1{"' -  Pi)* <8-23)
i=i

where 1{A} is the usual indicator function of event A.

Combining Equations 8.22 and 8.23, wre see that the SRS from h to /f+i canbe written as

Jt+i = bO-bTt'W) =  X! 1
1=1

11; < 1 +
■71-1-1-itE n-t-j 
i=l II?,

-1
kid,)
flid i)

-11
(S. 24)

Forgiven u — [ui, . . uv} and w =  {w\, .. .,w-n}, the function tj> in Equations. 24is evidently 
increasing in It and thus defines, withrespect to the natural integer ordering, a monotone 
Markov chain on the state space S; =  {0, . . . ,  n), with the ceiling and floor states given by 
1 =  0 and 1 = n. Through data augmentation we have therefore converted the problem of 
drawing from the continuous distribution given by Equation 8.19 into one in which the 
sample space is the finite discrete space S;, given by Equation 8.24, for which we only need 
to trace the two extreme paths starting from 1 =  0 and 1 = a.

8.5.4 Perfect Slice Sampling

Slice sampling is based on the simple observation that sampling from n  (assumed to have 
density n) is equivalent to sampling from the uniform distribution oc 1 {» < f(x )},
where / is an unnormalized version of n and is assumed known. One can easily see that 
the marginal distribution of x is then the desired one. hi turn, the sampling from g can 
be performed using a Gibbs scan in which both steps involve sampling from uniform 
distributions:

I. Given Xf, sample u ~ 11(0,/(Xf)).

II. Given u from Step I, sample Xf+i ~  where A(w) = \y : f(y )  > ?i?}.
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Here, for simplidty, we assume that A(u) has fhiite Lebesgue measure for any u, more 
general implementations of the slice sampler are discussed in [7,45], The coupling for slice 
sampling has been designed by [30] under the assumption that there exists a minimal 
element .:imm e S  with respect to the order jc -< y fix )  < /(!/).

Specifically, the perfect slice sampler achieves coupling via introducing common random 
numbers into the implementation of Steps I and II in the following fashion We implement 
Step I, regardless of the value of Xf, by drawing e ~  (1 (0, 1 ) and then letting U =  u(Xf) =  
e/(Xf); hence all the u(Xf) share the same random number e.

Given the LT = u(Xt) from Step I, we ne ed to implement Step II hi such a way that there is a 
positive (and hopefully laige) probability that ah Xf+1 will take the same value regardless of 
the value Xf. This is achieved by forming a sequence of random variables W = 
where Wi — ir[A(/(.rm;n))] and W, —■ ir[A(/(W; _i))], for any j  > 2. The desired draw Xf+i 
is then the first Wy g j4(u(X()) = A(if{Xt}), that is,

Xf+i = §(Xtl («,W)) = WT(xf),

where t ( j c )  =  inf{/ :/(W,) >  tf(x )J.
hi [30] it is proven that, almost surely, only a finite number of the elements of the 

sequence W are needed hi order to determine i(jc). The correctness of the algorithm is 
satisfied if WT(*) ~  [J[A(«/(jt))], and hi [30] this is establishedby viewing it as a spedal case 
of adaptive rejection sampling. Here we provide a simple direct proof. For any given x, 
denote =  A(cf(x)) and B :'1'1 =  {(Wi, . . W; ) : /(Wi) < e/(Jt), i =  1, . . Then dearly, 

for any k > 1, =  k\ =  {Wt g  A ^ } n B ^  (assume B ^  =  S  for any x g  S). Hence, for
any (measurable) set C c  we have

P([WT{x) g C]|x(.r) =  k) =

(S. 25)

P({Wk 

F(jW t G A W jn B fJj)

e [e  (l{W t e .. .,W *_!)]

e [ e ( 1 {W* e A ^ ’J l t ^ i l l W i ,

EfltfiW^PtlWfc e CJIW t.i)]

E [ l { B ^ 1}P({Wi g A W JIW h )]'

hi the above derivation* we have used the fad  that {Wf, . . . rWk} forms a Markov 
chain itself. Given H't_1 =  w, Wt is uniform on A (f(w )) by construction, so P(( g  B}| 
Wjt_i =  if) = (x(B)/(i(A(/(7('))), where |x is the Lebesgue measure. Consequently, the last 
ratio hi Equation 8.25 is exactly [i.(C)/(i.(A(3£)), the uniform measure on AW. It follows 
immediately that WT(;l) ~  [Z(AW) = tf[A(e/(.r))].

To visualize how Steps I and II achieve coupling, Figure 8.6 depids tlie update for two 
paths in the simple case in which/ is staidly decreasing with support (0, Jtmin). Suppose that 
the two chains are currently in X  ̂ and X2. Given the € drawn in Step I, the monotonidty 
of / allows us to write A(e/(Xi)) =  ( 0 ,^ )  and A(«/(X2)) = (0,A 2). Step II then starts by 
sampling Wi ~ U(0,3cmin) and, since it is not hi either of the intervals (0, A\) or (0, A2), 
we follow by sampling uniformly W2 ~  U(0, Wi) which is the same as sampling W2 ~  
li[A(/(Wi))] since/is decreasing, Because W2 e (0, Ai), we have t(X 2) =  2 so X2 is updated
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AW(x2))

FIGURE 8.6

Illustration of perfect slice sampling.

into W2. As W2 (0, zii) we continue by sampling W3 ~  If (0, W9), and since W3 e (0,/li) 
we can set t(X i) =  3. Thus, in the case illustratedby Figure 8.6, the updates are 4>(Xi, W) =  
W3 and <\>(X2j W) = W2. To understand why this construction creates an opportunity for 
coupling, imagine that the second uniform draw, W2, happens tobe smaller thanAi. hi this 
case, t(X i) =  t(X 2) =  2 so both X i and X2 are updated into W?, which means thatthe two 
paths have coalesced. In fact, for all X £ (0,Jtmm) with the property that/(X) </(Wi)/«we 
have tj>(X, W) = Wh  for all X such that/(Wi)/e < /(X) </(W2)/e we have 4>(X,W) =  W2, 
and so on. This shows how the continuous set of paths is discretized in only one update.

Figure 8.6 also illustrates that the density ordering X2 -< X i {since/(X2) < /(X1)) is con
sistent with the same ordering for the updates: cj>(X2/W) =  W2 -< c(j(Xi, W) = W3 because 
/(W2) < /(W3) by construction. This is true in general because if X? -< X i, that is, /(X2) < 
f(X\), tlien t(X 2) £  t(X i) because AUf(Xi ))  c  A(e/(X2)). Consequently, Wx(x2) -< Wt(Xi)- 
This property implies that we can implement the monotone CFTP as described in Section 
1,3,1, if a maximal .Tmax exists. In situations in which the extremal states caimot be found, 
Mira et al. [30] show how to construct bounding processes for this perfect slice sampler.

8.6 S w in d le s

The term "swindle" has traditionally been used in the Monte Carlo literature to character
ize any strategy or modification that either reduces the computational effort or increases 
the efficiency of the algorithm [12,50]. Usually, swindles are relatively easy-to-implement 
generic methods applicable to a wide dass of algorithms. In the following we describe
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some of the swindles proposed that either are for or take advantage of perfect sampling 
algorithms.

8.6.1 Efficient Use of Exact Samples via Concatenation

The algorithms presented in Section 8.2 maybe very slow in producing one dim v from the 
distribution of interest n , which is very uneconomical considering that the whole generation 
process involves a large number of random variables. Motivated by this observation, [40] 
proposed alternative implementations and estimators that extract more than one drawfrom 
each perfect sampling run.

One natural idea is that once a perfect draw is made, say Xo ~  n, then we obviously 
can run the chain forward for, say, k steps, all of which will be genuine draws from n . 
However, this introduces serial correlation in the k samples retained for estimation. Sim
ulations performed in [40] show that a more efficient implementation is the concatenated 
CFTP (CCFTP). The strategy is illustrated in Figure 8.7, in which two consecutive runs of 
the monotone CFTP have produced independent sample points X, Y ~ n. Instead of using 
just the two sample points, CCFTP uses the tou r made up of all the realizations lying on the 
path starting at — Ty (the time needed to detect coalescence for sampling Y) that connects 
X to Y, that is, the dashed line in Figure 8.7.

Since the time order of X and Y is irrelevant here (because all the random numbers are 
ii.d. along the sequence), one could construct another tour using the path that starts at 
time — T y  with state Y and ends in X; note that such a path must exist because all tours, 
regardless of their initial position, must coalesce after Tx  iterations by design Whereas such 
constructions are not hard to generalize to situations with more than two chains, it is much 
more straightforward to construct the tours with the Ro-CFTP algorithm. That is, in Figure
8.3, instead of using just X i, we indude in our sample the segment of the coalescence path 
between X i and X? (the second sample point not shown in the figure), and then between 
X, and X!+i for all i.

Clearly all such tours are independent, but the samples within one tour are serially cor
related. If we denote the length of the /th tour by T, and draws within the tour by X,y, 

T,, then obviously a consistent estimator for

L  = g(x)n(dx) (S. 26)

FIGURE 8.7
Illustration of a perfect tour.
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that utilizes N  tours is [44]

'Lti'EjLigiXij) E "  i Tigi
h  =

E h  Ti T,?=1Ti

where g, is the sample average of g(X,y) withm the ith tour, Note/ however, that this is a 
ratio estimator since Hie tour lengths are random, but the added benefit here is that since 
the tours are i.i.d., so are the {T,,#,}. Hence, the variance of cm  easily be estimated (when 
N  is large) by the usual variance estimator for ratio estimators based on i.i.d. samples (see 
[24]), namely

(827)
• (E !ii W2

Note that in Equation 8.27, for the sake of simplicity, we have used denominator N  instead 
of the usual N -  1 hi defining the duster sample variance—we can view each tour as 
a duster of draws and there are N  dusters in total Hie beauty of Equation 8.27 is that 
it entirely avoids the issue of dealing with within-tour dependence, just as hi the usual 
duster sampling we do not need to be concerned with intra-cluster correlations when we 
have genuine replications of dusters, which are the tours here.

8.6.2 Multistage Perfect Sampling

Perfert sampling offers the possibility of performing simple random sampling. It is well 
known in the sampling survey literature that simple random sampling is surpassed in 
statistical and / or cost efficiency by a number of alternative sampling protocols, for instance 
multistage sampling, hi light of this observation [27] proposed a different approach for 
running a monotone CFTP algorithm. The inn! t is tag e backward coupling algorith in is designed 
to perform multistage sampling within the CFTP protocol.

For the sake of simplicity, we describe first the case with two stages. Consider a partition 
of the sample space into in dusters S  =  U'^C,. hi the first stage we run the CFTP until 
cluster conleseeiice occurs, that is, all chains merge into a common duster, say Cj at time 0. hi 
the second stage, we run CFTP to sample from the conditional distribution I~I(-|Cy) defined 
via n(A |Cj) =  n (A) / n  (Cj) for any measurable A  C C; The two-stage method can easily be 
extended to multiple stages using a dass of nested partitions—for example, each element of

Ki
the p artition used hi the second step can in him  be partitioned, C, = and sampling
from n(-|Cy) canbe done again in two or more stages, and so on.

The astute reader may have realized that this procedure is valid only if the detection of 
duster Cy m the first stage guarantees that the sample we would eventually have obtained 
was indeed going to belong to Cj. One way to achieve this is to restrict the proposal to Cj 
when using MH algorithm for the second stage, hi general, this "foretelling" requirement 
can be quite stringent when implemented in brute-force ways; more effective methods 
need to be developed before the multistage sampling methods see general applications. 
Nevertheless, when the method canbe implemented, empirical evidence provided hi [27] 
demonstrates that substantial reductions {e.g. 70%) hi running tune are possible.
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8.6.3 Antithetic Perfect Sampling

Stratified sampling is another efficient method widely used in sample surveys. An implicit 
way of performing stratification in Monte Carlo simulations canbe implemented via anti- 
fhetic vanatcs [15]. Traditionally antithetic sampling is performed in Monte Carlo using two 
negatively correlated copies of an unbiased estimator. Suppose that we are interested in esti
mating the Is in Equation 8.26. Traditional Monte Carlo uses an i.id. sample {Xi, .. .,X 2,,} 
from n  and the estimator

h ‘ = ----- 2T.----- '

The variance of 1%, canbe significantly decreased if we are able to sample, for each 1 < j  < /i, 
x ‘Tl, x j 2) ~  n such that corr (g(Xr( 11), g(X*21)) < 0 and use the estimator

.  s : L i t « ! 1, ) + s ( x ; a )]

^ ------- 1

hi the case where g is monotone, there are relatively simple ways to generate the desired 
pairs (Xy1>,X  -2'*). Moreover, we have shown in [6] that increasing the number of simultane
ous negatively correlated samples can bring a significant additional variance reduction, 
The more complex problem of generating k > 3 random variables {X(1>, . . X (- }  such 
that any two satisfy co rrig tX ^ g -fX ^ )) < 0 can be solved, at least for monotone g, 
using tlie concept of negative association (NA) introduced in [20]. The random variables 
{X,\ i = l , . .  ,,/r}, where each X; canbe of arbitrary dimension, are said to be negatively 
assodated (NA) if for every pair of disjoint finite subsets A\, A2 of {1, .. ,,k} and for any 
nondecreasing functions g i ,g 2,

cov(gi(X i,i e A i),g 2(Xj,j e A2)) < 0,

whenever the above covariance function is well defined, hi light of this stringent condition 
it is perhaps not surprising that NA is a stronger form of negative dependence which 
is preserved by concatenation More predsely, if {Xi, . . . , X^j} and {Yi, .. ., Y^} are two 
independent sets of NA random variables, then their union, [Xi, . . X^,  Yi,  .. . ,  Y\2\, is 
also a set of NA random variables. A number of methods used to generate vedors of NA 
random deviates, espedally the very promising iterative latin  hypercube sampling, are 
discussed in [6].

The implementation of the antithetic prindple for CFTP is relatively straightforward. 
Given a method to generate NA (S*1'1, .. . , ^ }  (where % is as needed in Equation 8.1), one 
can run k CFTP processes in parallel, the yth one using { ^ ,  t < 0}, where {Sp,  . . . ,  
f < 0, are i.i.d. copies of { ^ ,  . . . ,  as sketched in Figure 8.8. Within the )th process 
of CFTP all paths are positively coupled because they use the same { ^ ,  t < 0}. At eadi
update, ^ ’} are N A  a property that dearly does not alter the validity of each
individual CFTP process.

To obtain//. =  km draws, we repeat the above procedure independently in times, and colled
{X^\ 1 < /' < 111; 1 < j  < k\, where i indexes the replication, as our sample {Xi, . . . ,  X,,}. Let
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Process 1

Process 2

Process k

Negatively
coupled

FIGURE 8,8

Parallel antithetic backward CFTP processes.

a| = var[g(X)] and =  c o r r ^ X ^ g t X p ) ) .  Then

var(^E«™) = J  [l + tf-iJP?].
Consequently, the variance reduction factor (VRF), relative to the independent sampling with 
the same simulation size, is

Sfcte) = 1 +  (* — 1 )P?}.

We emphasize here the dependence of 5 ^  on k, and more hnportantly ong, and thus the 
actual gain in reduction can be of practical importance for some g  but not for others, but 
sjf* < 1 as long as < 0.

8.6.4 Integrating Exact and Approximate MCMC Algorithms

It is probably dear by now to the statistidan with some travel experience hi the MCMC 
kingdom that perfect sampling may notbe the vehide that one could take on every trip. But 
it is possible to extend its range considerably if we couple it with more traditional MCMC 
methods. Here we describe such an approach devised by [33] to deal with Bayesian com
putation hi cases where the sampling density is known only up to a constant that depends 
on the model parameter, and hence the likelihood function itself cannot be evaluated 
directly.

More predsely, consider the case hi which the target of interest is the posterior density 
cx | 0), where p{&) is the prior density and p iy  19) is the sampling density of

the data. There is a large spectrum of problems (e .g. Markov random fields, image analysis, 
Markov point processes, Gaussian graphical models, neural networks) for which p( i/ | 0) 
is known only up to a constant, that is, p( y  | 0) =  q{y  | 9)/Cg, with the functional form of q 
knownbut the normalizing constant Ce unknown, in the sense that its value at any particular
0 is hard or even impossible to calculate. Obviously, for such problems, the classical MCMC 
approach cannot be directly implemented. For instance, a Metropolis algorithm with a
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symmetric proposal, moving from 0 —̂ 0', would require the calculation, of the acceptance 
ratio

a (0 ; 0) =  nun { 1, -— ' „ x —
p (0 )7 (y | 0)  Cy

which involves the unknown ratio of two normalizing constants, CqJCy, a problem which 
occurs in many areas (see, e.g., [11,28,29]).

One obvious way to deal with this problem is to use Monte Carlo or other approximations 
to estimate each ratio needed in the implementation ol Metropolis-Hastings algorithm. A 
more creative and "exact" solution is proposed by [33] with the help of perfect sampling. 
The idea is to add into the mix an auxiliary variable x such that the chain updates not 
only 0 but (9, jc) via MH sampling with an acceptance ratio in which no unknown constant 
appears. Since the auxiliary variable is just a computational artifact, as long as the marginal 
distribution of 0 is preserved there is a lot of freedom in dioosing howto update x. In parti c- 
ular, we consider updating (6,.*) via a proposal (fc)',x') m which the proposal 0' is generated 
asinthe original chain (it does not depend on*)biitx'|0', 0,? ~  q(-\0')/Ce>. Essentially, x' is 
pseudo-data simulated from the sampling distribution when the parameter is equal to the 
proposal, 0'. For the new chain, the acceptance ratio is then

5 - n . m i l .  (8.28)
1 p(%(j/!%(■*'|G') J

which no longer involves any unknown normalizing constant.
The perceptive reader may immediately have realized that the above scheme sim

ply transfers one difficult problem into another, namely simulating from the original 
sampling density p(-|0') = '/( |0')/Ce Since is not available, direct methods such as 
inverse CDF are out of the question (even when they are applicable otherwise), We can 
of course apply the Metropolis-Hastings algorithm itself for this sampling, which will 
not require any value of Ce (since here we sample for x, not 9). But then we would 
need to introduce a new proposal, and more critically we would need to worry about 
the conveigence of this imbedded Metropolis-Hastings algorithm within each step of cre
ating a proposal (0',.*') as called for by Equation 8.28. This is clearly cumbersome and, 
indeed, entirely defeats the purpose of introducing x’ in order to have a "clean" solution 
to the problem without invoking any approximation (beyond the original Metropolis- 
Hastings algorithm for 0). This is where the perfect sampling methodologies kick in, 
because if we have an exact draw from p(x'\Q'), then the acceptance ratio given in Equa
tion 8.28 is exactly correct for implementing the Metropolis-Hastings algorithm for drawing 
(6, Jt) and hence for 0. This is particularly fitting, since intractable likelihoods are com
mon in inference for point processes and this is also the area where exact sampling 
has been most successful. For instance, in [33], the method is illustrated on the well- 
known Ising model which was proposed as a main application in Propp and Wilson's 
landmark paper [48], which is a "must" for any tourist of the magic land of perfect 
sampling.

hi dosing, we should mention that the method discussed here is only one among a 
number of promising attempts that have been made to couple the power of traditional 
MCMC to the precision of perfect sampling such as in [40,43], See also [42] for related ideas 
and algorithms.
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8.7 W h ere A re the A p p lica tio n s?

The most resounding successes of perfect sampling have been reported from applications 
involving finite state spaces, especially in statistical physics (e.g. [13,19,48,49]) and point 
processes (e.g. [1,14,21,23,26,31,34,35,52]). Other applications include sampling from trun
cated distributions (e.g. [2,47]), queuing ([41]), Bayesian inference (as in [16,32,37,38]), and 
mixture of distributions (see [5,17]).

Whereas applications are many, and some are exceedingly successful, much still needs 
to be done before perfect sampling can be applied routinely. What is gained by per
fect sampling is its ‘■''perfectness," that is, once it delivers a draw, we are theoretically 
guaranteed that its distribution is mathematically the same as our desired distribution. 
The price one pays for this mathematical precision is that any perfect sampling method 
refuses to produce a draw unless it is absolutely perfect, much like a craftsman reputed 
for his fixation with perfection refuses to sell a product unless it is 100% flawless, hi 
contrast, any "nonperfect" MCMC method can sell plenty of its "products," but it will 
either ask the consumers to blindly trust their qualities or leave the consumers to deter
mine their qualities at their own risk, The perfect sampling versus nonperfect sampling 
is therefore a tradeoff between quality and quantity As with anything else hi life, per
haps the future lies hi finding a sensible balance. Perfect quality hi small quantity only 
excites treasure collectors, and lousy quality hi abundant quantity only helps garbage col
lectors. The future of perfect sampling methods lies hi how successfully we can strike 
a balance—producing many quality products at an affordable price in terms of users' 
implementation cost.
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9
Spatial Point Processes

Mark Huber

9.1 In tro d u ctio n

Spatial point processes arise naturally ill many contexts, including population studies, 
forestry, epidemiology, agriculture, and material science; for more examples, see Ripley 
(1977), Stoyanand Stoyan (1995), and Meller and Waagep eter sen (2007). Typically, statistical 
models for these data sets are given by densities with respect to a Poisson point process, 
hi Section 9.2 these Poisson point processes and densities are described in detail, together 
with, several examples. As in many applications, these densities are often unnormalized, 
and calculating the normalizing constant exactly is computationally unfeasible, Therefore 
Monte Carlo methods are used instead,

Many of these methods involve construction of a Markov chain whose stationary dis
tribution matches the target density. There are two primary types of chains used for these 
point processes, hi Section 9.3, the Metropolis-Hastings and reversible jump (Green, 1995) 
methods are described. Section 9.4 shows how to build continuous-time spatial birth and 
death chains for these problems.

Next, in Section 9.5 perfect sampling techniques are introduced. These methods draw 
samples exactly drawn from the target distribution Acceptance/rejection methods can 
be used for small problems, while larger problems require methods such as Kendall and 
M0ller's (2000) dominated coupling from the past.

Sections 9.2 through 9.5 develop techniques for sampling from the statistical model. When 
the interest is in sampling from the posterior, Section 9.6 goes further and shows how these 
methods canbe modified in order to accomplish this task and carry out Bayesian inference.

Finally, Section 9.7 examines what is known about the running time of these methods, 
and strategies for improving the convergence of these chains.

9.2 S e tu p

The models considered here are described by using densities with respect to a Poisson 
point process. Consider a space S that is separable (so it has a countable dense subset) 
equipped with a set of measurable sets B, and intensity measure >. satisfying X(S) < oo. 
Usually this intensity is proportional to Lebesgue measure; throughout this chapter we use 
in(A) to denote the Lebesgue measure of a set A. Examples of point processes include the 
following:

227
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* Spatial data. S ^  M2, 'k(A ) is proportional to iit(A) and B is the usual Borel a-algebra.
* Marked spatial data. For instance S c l 2 x [0, oo), where the R2 coordinate is the 

location of the point and the [0, so) coordinate is the radius of a disk centered at the 
point. The intensity X(-)isthe cross product of mi ■) on IE2 and an arbitrary measure 
on [0, so). For instance, Fiksel (1984) studied data of Klier on Norwegian spruces 
together with their trunk diameters.

* Typed spatial processes. When the mark is a finite set, it can be used to represent 
the type of point. Here S c  R2 x {1 ,2 ,. . . ,  k\, with intensity the cross product of 
iii(-) with a measure on {1,2, . . . ,  k}. The value of the second coordinate determines 
the type of point. For instance, Harkness and Isham (1983) analyzed locations of 
ants' nests wThere there were two different possible types of nests.

Configurations in a Poisson point process over a space S are vectors of random length 
{including length 0) whose components are points, that is, elements of S. For example, if 
£ =  [—10,10]2, then ((2.78,3.42), (1.23, -  3.21)) and 0 are valid configurations of points. Tlie 
process is governed by X, the intensity measure on S. If X is a Poisson point process and A 
a measurable region, then the expected number of components of X {the points) that he in 
A must equal X(/l).

Formally, a Poisson point process canbe viewTed as a measure on these configurations 
that canbe defined using an exponential space) see Carter and Prenter (1972) for details. A 
Poisson point process can also be viewed as the distribution of the output of the following 
procedure,

ALGORITHM 9.1 POISSON POINT PROCESS GENERATOR

Input! space S, intensity measure X(-) with X(£) < oo 
Output! X 
i: d r a w  N Poisson(X(S))
2: d r a w  Xi , .. .,  XN i.i.d. from X(-)
3: X  «- ( X l ,  JCw)

hi line 1, N (the number of points in the configuration) is a draw from a discrete Poisson 
random variable with parameter X(S), so P{N =  i) — [X(S)'/f!] exp(-X(S)). hi line 2, each 
point is distributed according to the normalized intensity, so P(Xi £ A) =  X(j4)/X(S).

Note that if S is discrete or X assigns positive measure to any point of 5, then it is possible 
that X, = X, for some i < j  < N. That is, it is possible to have repeated points in the config
uration. On the other hand, w'hen S is a continuous space and X is atomless, the probability 
of repeated points becomes 0.

Since the order of the points is immaterial, this means that the configurations can be 
treated as a set rattier than a vector. If x = {x\, . . . ,  x$x} is a set containing ttx distinct points, 
then there are exactly (#*)! different vectors that give rise to the set. Therefore, if n is the 
distribution of the output of this algorithm on sets of distinct points,

X(S)*1 \(dx)
II(fir) = (#*)! exp(-X(S)) =  exp(-X(S)) Y\ X(rfJt;). (9.1)

i=l i=i

While it is easy to sample from the basic Poisson point process, it is far more difficult 
to sample from models where the target distribution is given by an unnormalized density
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withrespect to a Poisson point process. A random variable X has density/ with respect to 
measure |i if P(X £ A) =  J^/W  Typically densities either reward or penalize point
processes by attaching multiplicative factors greater or less than 1.

In fact, for most models these densities are of the form

=  where g(jc) =  a(ftr)/;(.x), Z =

and tor is the number of points in configuration x. Here the function a(ii) controls the 
number of points, while U(x) is a measurable function that describes the interaction structure 
between points of the process. Z is the normalizing constant, and usually no direct method 
is known for even approximating Z, let alone calculating it exactly.

Example 9.1

The Strauss process (Strauss, 1975) is a repulsive model that surrounds each point with a disk 
of radius R, and then penalizes configurations for each pair of points whose disks overlap. This 
process has three parameters: X. is the nonnegative activity of points, y is the interaction parameter 
in [0,1 ], and R is the radius of the disks. Typically, 5 = and the density is with respect to (A 
where the intensity is m(-):

g(x) = X#* y s<x), s(x) = #{{/,/} : dist(\j, xj) < 2R\, [S.D

where x consists of the points x i, ..., x$x. In order to normalize g to be a probability density, set 
Z(X, y, R) = J g(s) diL(s) and f(x) = g(x)/Z(\, y, R).

As y -»■ 0, it becomes more and more unlikely to find overlapping disks. The limit of this process 
is cal led a hardcore model, sinceeach diskbecomesa hardcore thatcannot overlap. When y > 0, 
the process can be called a soft core model, as it is possible for the cores surrounding the disks to 
interpenetrate. The Strauss process was generalized to pair-repulsion processes in Kelly and Ripley 
(1976), where the penalty factor is allowed to be a general function, rather than a constant y.

A weakness of the Strauss process is that it can only be used to model repulsion, since if 
y > 1 then the density cannotbe normalized, The next example, the area interaction process, 
solves this problem and allows for both repulsion and attraction as one of its parameters 
varies from 0 to infinity

Example 9.2

The area interaction process (Baddeley and van Lieshout, 1995; Wisdom and Rowlinson, 1970) 
has two parameters, 'k and y, each in [0, oo). Each point Xj is surrounded by a region A, called 
the grain of Xj. The unnormalized density is

g(x) = \*x y - m(UA<-). [9.3)

When y > 1, points tend to clump closer together, making the model attractive; and when y < 
1, the points are forced farther apart, making the model repulsive. The model is written above 
using Lebesgue measure, but in fact is veiy general and can be used with any measure on the 
space.
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9.3 M e tro p o lis -H a stin g s  R ev ersib le  Jum p C h ain s

Typical discrete-time Markov chains for approximately sampling from g operate by using 
three types of moves: (1 ) shifting a point in the configuration, (2) adding a point to the 
configuration, (3) removing a point from the configuration. These algorithms were first 
describedby Geyer and Meller (1994), and canbe considered a special case of the reversible 
jump procedure of Green (1995). Reversible jump is an extension of Metropolis-Hastings 
chains (Hastings, 1970; Metropolis et al., 1953) for problems where the dimension of the 
space is not fixed.

Metropolis-Hastings chains are constructed to satisfy the reversibility condition. 
A Markov chain with transition kernel K(.r, ■) is reversible with respect to tt if

Ti(dx)K(x,di/) =  n(dy)K(y,<1x).

The purpose of reversibility in the design of Markov chains is that if K is reversible with 
respect to tt, then te is a stationary distribution of the Markov chain.

To reach the goal of generating variates from a point process with distribution n, first 
a Markov chain must be constructed with n as its stationary distribution Suppose that tt 
has density g{x)jZ  with respect to a Poisson point process with intensity (■) (so that the 
underlying Poisson point process has measure |i() as in Equation 9.1). hi other words,

7i(fix) =  ■ |A(rfa). (9.4)

For a configuration and points v e S, let x +  v denote the configuration that contains 
all the points in x and v. For v g  x ,  let — v denote the configuration x after removing the 
point v.

Metropolis-Hastings chains begin with a proposal kernel K'U, ■), where nidyiK 'iyjix) is 
absolutely continuous with respect to n id x ^ ix ^ y ) .  Given the current state x, K' is used 
to generate a state y  which is the proposed next state of the chain. Given „r and y, the 
Metropolis-Hastings ratio is

= n(dy)K'(y,dx) =  g\y)\i{<ty)K'{ifrdX\
nidxjK'iXidi/) g(x)\i(dx)Kf(x,dy)' '

Formally this is a Radon-Nikodym derivative, which is the reason for the absolute conti
nuity requirement above. With probability min{ 1, r(x, y)}, the move from * to y  is accepted, 
and y becomes the next state in the chain, Otherwise the next state is the same as the cur
rent state, Note that the normalizing constant Z hi Equation 9.4 cancels out in the ratio 
(Equation 9.5).

Shifting When y = x + v - w  for some v,w  e S, suppose that the proposal move 
shifts point k? to point v. To find the ratio in Equation 9.5, recall that | i(rf.T ) = 
exp(—X(S)) F lS i  Mdxi). The exp(—/.,(Si) factor cancels out. Since the point w is shifted to 
v in moving from x to y, |i (dy) contains a factor of \{dv) that |i itix) does not. hi the other 
direction |i (dx) contains a factor of k(dw) tliat |i (dy) does not. All the other factors cancel, 
and so Equation 9.5 becomes

g(x + v -  w) K'(x + v -  w,dx) X(rfo)
v) — —_________ t__________________■______ ■

' £(:t) K'(jc,rf(„r + v  — k?)) }.(dw)
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Birth Wheny = x + v, suppose that point v is bom. In this case if}/ = ttx + 1, and so \x(dy) 
contains a factor of }.(dv) that lacks, So tlie Metropolis-Hastings ratio becomes

g(x +u) K '(* + v,dx) ,
r(x,y) =  ---------- ■ —------ ----------- Mdv).

gix) ¥J(x,d(x +  y)l

Death When y =  x — w, suppose that point w died. In this case #y = ttx — 1, and |.l (dx) 
contains a factor of \(dw) that \i(dy) lacks. The Metropolis-Hastings ratio is

g (x -  w) K'(x — w, dx) 1
r(x,y) =

g(x) K'(x,d(x — W)) X(rf?D)'

One choice that simplifies these ratios is to use P(shift) = P (birth) = P(death) =  j .  For 
shifts or births, v is drawn from the normalized intensity measure >,_( ■) /MS), and for shifts 
or deaths, w is drawn uniformly from the set of points in x. This makes the shifting ratio

+  i(X(rfjw)/X(S))(l/#a[) X(riy) _  £(jc +  v -  w)

£(■*) i(i.(rfu)/>.(S))(l/#.r) H&v) g W  '

Similarly, the birth ratio becomes

g(x + u) ^(1/{#JC +  1)) +  MS)
£(■*) ^(rfu)/X(S) g(*) ttx +  1'

The death ratio becomes

jf ( jr -w ) lMdiv)/\(S) 1 g(x — w) #x
g(x) 1(1 /ttx) Mdm) #(.*) MS)'

Therefore the following pseudocode takes one step in this chain;

ALGORITHM 92  METROPOLIS-HASTINGS STEP IN SHIFT-BIRTH-DEATH 
CHAIN

I n p u t :  current state x,
O u t p u t :  next state x 1 
i: d r a w  type -f— Uni f ({shift, birth, deathj), U f— Unif ([0 , l]), v <— >.(■), 

w <— Unif(x )
2 : i f  type = shift and U < g ( x  +  v  — w ) / g ( x ) t h e n
3 : x '  <— X  -+- V  — W

4: e l s e  i f  type =  birth and U < ( g ( x  +  v)/cr(x))(X.(S)/[#x + l]) t h e n
5 : X  ' <— X  +  V
6: e l s e  i f  type =  death and U <  ( g ( x  — w ) / g ( x ) ) ( # x / ' k ( S ) ) t h e n  
7 : x ‘ -f— x  — w
8: e l s e
9 : X  ! <— X

10: e n d  i f

Calculation of g{y)/g(x) can be the most difficult part in coding these algorithms, 
Fortunately, it is often tlie case that many factors in the ratio cancel.
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Consider Example 9.1. In the Strauss process density (Equation 9.2), adding (or removing) 
a point changes the number of factors of X by 1, and adds (or removes) a number of factors 
of y equal to tlie number of other points within distance 2R of the changing point. For n e S, 
let n i x ,  u) — #{j : distf.^, i i ) < 2K}, so

2 <* + W) £<■* -  1") _  , & <■* +  u -  ?1?:i _
~ g m ~  ~  ' Y '  ~ “ v  ■

In Example 9.2 (Hie area interaction process), it is easy to write a formula forgOc + v) /g(x), 
but difficult to compute in practice. Let a(x,v) denote tlie area of the region that is inside 
the grain for v, but which is not inside the grain for any other point. Then

* < *  +  V) _a{x>v) gix  -  w )  . _ ! g(x +  v -  w )  - a(x,v)+a(x+v,w)

Y ■ ^  ~ v ■

So Hie ratio for a birth is (g(x +  y)/gQ())(X(S)/(#* +  1)) = (X(S)/(#.r + l))Xy_,l(3£'c'>. Even 
when the grain is a simple disk, calculation of n(x, v) can be time-consuming, which in 
turn makes finding the Metropolis-Hastings ratio difficult This problem is addressed in 
Section 9.4, where continuous-time Markov chains are considered.

9.3.1 Examples

9.3.2 Convergence

Let ■) be the distribution of Xf given that the starting state of tlie chain is x. Tlie 
Metropolis-Hastings methodology gives a means for building a chain with an invariant tt 
so that

tt(A) = K (x,A) n(dx).

For Monte Carlo purposes the goal is to have the limiting distribution match Hie stationary 
distribution:

l i m  | |Kf(jc, ■} -  ti(-)||t v  =  0,
f—OO

where | |\j| |tv is the total variation norm of a signed measure given by

IMItv = sup |v(/l)|.
A

The methods above build a Markov chain whose stationary distribution matches Hie 
target distribution given by g, but that is not a guarantee that the limiting distribution 
matches Hie stationary distribution.

The following definitions come from Section 5 .6 of Durrett (2005). Suppose that a Markov 
chainis a Harris chain if there exist measurable sets A, B, reale > 0, and a probability measure 
p with p(B) = 1 ■where two properties hold. First, if := mi)/; > 0 : X„ e A], then P(i^  < 
do|Xq = .*) > 0 for all x. Second, if x e A and C is a measurable subset of B then K(jc, C) > 
fcp(C). That is, from any starting state, there is positive probability of getting to A, and from 
any state in A, there is a positive chance t that a simulator can ignore the value of the current 
state in deciding the location of the next state,



Spatial Point Processes 233

Furthermore, if (V.y g  A)(P(t^ < co|Xq = jc) = 1) (so that the probability of returning to 
A from any starting point in A is 1) then the chain will be recurrent. For a recurrent chain, 
for all x £ A, the greatest common divisor of { t : K/(.t, A) > 0] will be the same. Call this 
common value the period of A, and, if the period is 1, call the diain aperiodic. Then the fol
lowing theorem gives sufficient conditions for the stationary distribution to be the limiting 
distribution (see Durrett, 2005):

Theorem 9.1

Let X„ be an aperiodic recurrent Harris chain miSi stationary distribution, n.  I f  P(x a  <  oo|Xo =  
.Y) = 1, then a s t - * o o ,

||Kf(^ 0 - ttC-)|| -> 0.

For chains on Hie space of point processes, using A =  B = 0 is usually a valid choice for 
showing that a Harris chain is recurrent. A sufficient condition for the validity of this choice 
is local stability:

Definition 9.1

A density £(_r) is defined to be locally stable if there exists a constant K  such that g (;* + 
y) /#(■*) < K for all x and v.

Note that both the Strauss process and the area interaction process discussed earlier are 
locally stable, hi addition, most Markov point processes such as the saturated and triplets 
process (Geyer, 1999) or nearest-neighbor processes (Baddeley and Mailer, 1989) are locally 
stable as well. The Metropolis-Hastings step given above will be Hams recurrent for any 
locally stable Markov chain; see Rosenthal (1995) for examples of this type of analysis.

Suppose that a chain is Harris recurrent, and that when the chain is in the empty set, there 
is a positive chance that a death is proposed. Since the chain stays in the same configuration 
when this happens, the chain also becomes aperiodic, thereby satisfying the conditions of 
Theorem 1,

9.4 C o n tin u ou s-T im e S p atia l B ir th -D e a th  C h ains

A Metropolis-Hastings chain stays at the current state for a number of steps before jumping 
to a new state. The time until the first jump is a geometric random variable. The continuous
time analog is the exponential distribution, and so continuous-time Markov chains operate 
by staying at the current state an exponential amount of tune, and then jumping to a new 
state. These chains are also known as jump processes (see Feller, 1966, Chapter X.3).

As with discrete-time chains, reversibility is the key to designing continuous-time chains 
with the target distribution as their limiting distribution. Preston (1977) solved this problem 
by introducing jump process where, for a configuration x, the rate of births is controlled by 
a rate functionb(x, v), and the rate of deaths is controUedby a death function d(x, ?(?), where 
d(j£,?i?) >  O if  ?i? g  x.

Reversibility holds with respect tog if the rate of births balances the rate of deaths for all 
configurations x and points v:

g(x)b(x, v) = g(x + v)d(x + v, v). (9.6)
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The chain is updated as follows. For the total rate of births and of deaths we have

b(x,v) \(dv), frf(Jf) =  'y^d(x/ w).

The time until tlie next birth is an exponential random variable with rate ri,(.x). Similarly, tlie 
time until tlie next death is exponential with rate r<i(x)' If a birth occurs, a point u is chosen 
according to >,(■). If a death occurs, a point w e jc is chosen to be removed with probability 
d(x, m / r d.

ALGORITHM 9.3 CONTINUOUS-TIME BIRTH-DEATH CHAIN

I n p u t :  current time t, current state x 
O u t p u t :  new time t1, new state x~ 

i :  d r a w  tb 4—  Exp(J  b(x  , v ) > . ( d v ) ) ,  fcd 4 -  Exp(£WSA d(x , w))

2 : i f  tb < td (so a new point is born) t h e n  
3: d r a w  v  <— X(-)
4 : X  4—  X  +  V  , fc' <—  t +  tb
5: e l s e
S: d r a w  w <— d(x, •)
7 : X 1 <—  X  — W  , fc' fc +  t d

s : e n d  i  f

To create birth and death rates that satisfy reversibility {Equation 9.6), a technique similar 
to Metropolis-Hastings is used. When a birth occurs, only accept the birth witli a ratio r(jc, v). 
This thins the birth rate fromH*, v) to t '  (jt, v ) — h(x, v)r(x, v ). This procedure is easiest when 
the density is locally stable with constant K, so that^U' +  v)/g(x) < K  for all x and v.

To create a spatial birth-death jtmip process with a locally stable g as its target density, 
set d(x, w) =  1 and b(x, v) = K  for all configurations x and all points v and w Hence i% = 
JtX (S> and r,i =  fix. Once a birth occurs, it is accepted with probability r(x,v) =  (1 /K)(g(x +  
v)fg(x)). Hence,

^(jt)b'(.T,u) = x (*)?’ (x, v) rU, v) =  g W  (K/K) (g(x + v)/g(x)) = d .(x + v ,v )g (x + v ), 

and reversibility holds. Tlie pseudocode is as follows:

ALGORITHM 9.4 PRESTON SPATIAL BIRTH-DEATH CHAIN

I n p u t :  current time t, current state x 
O u t p u t s  new time t1, new state x ! 
l: d r a w  fcj, Exp(iCV.(5)) , ta Exp(#x)
2 : i f  fcj, < (a new point might be born) t h e n  
3: d r a w  v X(-), U Unif([o, l])
4 : xf <— X  , t '  4— t +  tt,
5: i f  U <  (cr(x +  v ) /g r (x ) ) ( l / J C )  t h e n
5  : X *  <— X *  V

7: e n d  i  f
8: e l s e
9: d r a w  w U n i f ( x )

1 0 :  X 1 *—  X  —  W , t’ <—  t  +  t(3

i i :  e n d  i f
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Ail exponential with rate a  can be drawn by taking —(1/a) In U, where II is a uniform 
random variable on [0,1], Therefore the work needed in this algorithm is similar to that 
needed to take a discrete time step.

9.4.1 Examples

Consider Example 9.1, the Strauss point process. Here K is X For a point v that is bom  
into a configuration x, g(x + v)/g(x) is just 'hyu{x'u>, where nix, v) =  it{j : dist z>) < 2R} as 
before. So lines 5 and 6 above become:

5 :  if U < y nU'v) t h e n
6  : x' <— X  +  V

For Example 9.2, the area interaction process, it was difficult to create a Metropolis chain 
because of the difficulty of calculating the acceptance ratio. As before, let n(x, u) denote 
the area of the grain of v not already in a grain of a point of x and ini-) be the measure 
used to determine areas in the process. Then the Metropolis ratio for accepting a birth is 
/k = (w(S)/(#.x + l))XY_t' ^ ,  which canbe difficult to compute.

hi contrast, the ratio for accepting a birth in the continuous-time chain is simpler. For 
a configuration [j£lf .. with grains {Ay .. . ,^ fc|, let Abe the muon of these grains (so 
A =  Ujoej(Aw). Suppose that y > 1, so K = X applies as the constant of local stability. Then 
(g(x + v)/g(u))(l/K ) = y -a(x-v\ While this value is no easier to compute than it wrasbefore, 
a Bernoulli random variable with this parameter canbe generated as follows. First, generate 
a Poisson point process with intensity measure (hi y)fff(-) over Av. Remove any points from 
this process that he hi A. This is called thinning the process,

The result of thinning is a Poisson point process over the region Av n A c  with intensity 
(In y)in(-) restricted to Av n Ac , since the expected number of points inside any subset of 
Av n Ac  willbe correctbecause it came from the Poissonpoint process over the larger region. 
Since it is a Poisson point process, the number of points in the region will have the Poisson 
distribution with parameter (h iy)m(Av n Ac ). Hence the probability the process contains 
zero points wifi be exactly exp(-(h i y)ut(Av n Ac )) = y -3!-1-1'). So if no points remain after 
thinning, accept the birth of the gram, otherwise reject. In pseudocode:

6 a :  d r a w  Z as a Poisson point process on A v with intensity
( In  Y)m(-)

6 b : i f  Z D Ac =  0 t h e n
6 c  : x' X  +  V

Letrtbe the measure of a grain surrounding y. When y < X adding the point u changes the 
density by a factor of at most Xy~n. Therefore tlie probability of accepting a birth becomes 
[gu +  f)/g(.ir)][l/(Xy_'1)] =  X y ^ ^ ’VO'-Y- ") =  Cy— 1)—C«—“ta:,®'))_ a  Bernoulli with this prob
ability can be found by first generating a Poisson point process with intensity hi(y_1) =  
-  hi y inside the grain of v, and then accepting if none of the points he hi the area of the 
gram that is already covered by grams of points in x. Again thinning canbe used to verify 
that the probabilities are correct:

6 a :  d r a w  Z as a Poisson point process on A v with intensity
— (lny)fn(-)

6 b : i f  Z P i A = 0  t h e n
6 c  : x' x  +  v
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9.4.2 Shifting Moves with Spatial Birth and Death Chains

Preston (1977) only included provisions for births and deaths in his examples, but his 
method canbe extended to allow for shifting moves as well. Suppose that point v is added 
and point w is removed from the chain at rate six, v, w). Reversibility for the jump process 
requires

g ( j t ) s ( . r , y , n ? )  =  g ( x  +  v  — w ) s (jc +  v — ii

Note that the shifting move rate can be multiplied by any constant without disturbing 
reversibility. This allows the user to make shifting moves more or less prevalent compared 
to births and deaths as needed to make the chain run more quickly.

9.4.3 Convergence

Kaspi and Mandelbaum (1994) studied Harris recurrence for continuous-time Markov 
chains. Tlie results are essentially tlie same as in the discrete-time case, although, because 
of Hie exponential waiting time between jumps, there is no need for a notion of aperiodidty 
in this context. As long as the chain returns infinitely often to a set A that is hit from Hie 
starting state x with probability 1, then ||Kf(.r, ■) — or(-)11 -»■ 0 as t oo. When the target 
density is locally stable, then the empty configuration gives such a set when used with Hie 
Preston spatial birth-death chain.

9.5 P e rfe c t S a m p lin g

While it may be possible to show convergence of the distribution of tlie state to the sta
tionary distribution, it is far more difficult to assess howT quickly this convergence occurs. 
This is the primary drawback to Markov chain methods for approximately sampling from 
distributions. Heuristics such as autocorrelation plots can show that a Markov chain is not 
mixing, but they cannot prove that tlie diain is mixing,

Perfed sampling algorithms generate samples exactly from n (up to the natural limits 
all Monte Carlo algorithms face: real numbers that are rounded to machine accuracy and 
the use of pseudorandom numbers rather than true uniforms). The drawback to perfed 
sampling algorithms is that they are Las Vegas type algorithms, and so their running time 
is itself a random variable. While the running time has finite expedation, tlie support is 
unbounded. That is:

Definition 9.2

A perfect simulation algorithm for ji is ail algorithm whose running time T is finite with 
probability 1, whose output is a draw from tt ,  and wThere, for all f ,  P( T > t) >  0.

9.5.T Acceptance/Rejection Method

As an illustration, consider the acceptance / rejection method for generating fromg, the basic 
idea of which goes back to von Neumann (1951). Suppose that^U) < nix), where nix) is 
an unnormalized density from which it is possible to generate samples. Then a random
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variate with density proportional to u (x) is drawn, and is accepted as a draw from density 
gUx) with probability g(x )/u(x). Otlierwise the process begins again.

ALGORITHM 9.5 ACCEPTANCE/REJECTION

I n p u t :  target g ( x ) , upper bound u ( x ) satisfying g(x) < u(x)
O u t p u t :  X ~ g(-)  

r e p e a t
draw X u(-) 

u n t i l  U < g ( X ) j u { X )

Theorem 9.2

The output o f the drove procedure is distributed nccordit ig to g(x).

Proof. Let Xi, X i, . . .  be the ii.d. draws from ii(.x) used by the algorithm, Hi, U?,. . .  the 
uniform ii.d. draws, N the number of times through the repeat loop, and A a measurable 
set. Then

P(XN <=A) =  £  FIX, E A, N =  h  =  £  P E A, U, < f|  P ( i ; ; > )  .

Each factor in the last product is the same (since Ji, and X: are i.i.d.), so call it 1 — p. Then

;- l

;=!
P(Ut < g(Xi)/jj(Xi))(/;(JC)/Z„) d\i(x)

A

cc 00 / , y  s \

p (x w g A) = e A' N =  '■> = X ! p ( Xi E A' Ui -  (1 - ^
i = l  1=1 1

cc

^ n - p r 1
=1

(g(x)/u(x))(n(x)/Zu) d\i(x) J ^ ( l  -  p)1-1
1 1=1

(j(jt)/z„)rfiJL(jc)l a /p )
L A  J

where Z„ is the normalizing constant for n(x). Next calculate p and find P(Xjv e A) :

p = P(Uj < g ( X j ) /u (X j ) )  =  

P(Xm e A) =

exactly as desired.

(g(x}/n(x))(ii.(x)fZu) d\ii:x) =  ZgjZ u, 

(g(x)IZg ) rt\i(x),

The running tune of the algorithm T (as measured by the number of times through the 
repeat loop) is a geometric random variable, and so P(T > t) > 0 for any fixed value of t. 
The output does come from it, but can take an arbitrarily long time to do so.
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Moreover, the expected running time of 1/p = Zu jZg is directly related to how dose tlie 
upper bound density u(x) is to gix). For example, in the Strauss process density (Equa
tion 9.2), u(x) = 'k*x is a valid upper bound density, and is easy to sample from: simply 
generate a Poisson point process with intensity ).»/(■) rather than iit(-). Given a draw 
X  ~  «(•), the probability of accepting the draw is g(X)fn(X ) — y5® .  If X. is large, there 
could be many pairs of points within distance 2R of each other, and so for (say) y =  Hie 
probability of accepting could be very small For this reason, acceptance/rejection is usu
ally only useful on small problems, and for larger instances more sophisticated techniques 
must be used.

9.5.2 Dominated Coupling from the Rtst

hi this section Hie dominated coupling from tlie past (DCFTP) procedure of Kendall and 
Mailer (2000) is described. This method extends the coupling from the past procedure of 
Propp and Wilson (1996) to work with chains with an unbounded number of dimensions 
for locally stable processes.

Consider again the Preston spatial birth-death chain of Section 9.4, It is worth recalling 
two important fads about exponential random variables here.

• If/ti,/l2y -■ -fA-n areexponentialrandomvariables with rates X.i, 1.2, .. .,X.,„ then the 
minimum of the A\, . . . ,  A„ variables will be an exponential random variable with 
rate Xi + ■ ■ ■ +  )■,„ Hence, the death dock of rate r,{ canbe thought of as putting 
individual death clocks of rate 1 on each of the points in the set, and activating 
them as needed.

• Exponential random variables are memoryless. Conditioned on a clockbeing larger 
than t, the remaining time on the dock will stUlbe an exponential random variable. 
That is, if T ~  Exp(Xi), then [T -  t\T > f] ~ Exp( m).

Using these properties, an equivalent method for simulating the Preston birth-death 
chain is as follows, Always keep track of the time of the next birth of a point, and the times 
of the deaths of the current points. When a point dies, it is removed from the process as 
before; when itisbom , it is assigned a death time, and then checked to see w7hether or not it 
should be thinned. Call tlie resulting process Xf, and this process has stationaiity density g .

Also keep track of the process wThere no points are thinned, and call this process Df. Note 
that Df is using the same birth and death events as process Xf, it is just that some of Hie 
births are thinned (and so those points do not appear) in Xf. So Df always contains more 
points than Xf, and Df is a dominating process for Xf. Since Df has no thinning it has birth 
rate K\(S) and a death rate of 1 on each point. Hence Do is a Poisson point process with 
intensity me a sure K  \ (■), and so is D t for all times t Iti order to know whether or not to thin 
the pointy e D t in the process Xf-, eachpointin the dominating process willbe marked with 
a  value drawn uniformly from [0,1]. That mark will be used to dedde if the point should 
be thinned. (This mark is in addition to any other mark that might be part of the spatial 
point process model.) Figure 9.1 illustrates this process by showing a  possible run of Hie 
marked dominating process Df and the thinned underlying process Xf. In this figure, Hie 
line segments represent Hie lifespans of the points, while tlie squares are birth and death 
events. Shaded squares indicate a point in both the dominated and underlying process, 
while empty squares are in Df, but wTere thinned at birth and so do not appear in Xf.

With a dominating process in hand, the CFTP procedure of Propp and Wilson (1996) 
can now be used. Here, instead of running the Xf process to larger times f, think of tlie
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FIGURE 9.1
Dominated and underlying process.

process as miming over all times in (-so , oo) and just selecting Xo. Intuitively, since over 
time (—00, 0] the process has already been running for an arbitrarily long amount of time, 
Xo will be stationary. This involves running the dominating process backwards in time and 
then running the coupled (Df, Xf) process forwards in time up to time 0.

First consider howT to run the dominating processbackwards in time. This process is time 
reversible, and so running backwards in time is straightforward. At time 0, Do is just a drawr 
from a Poisson point process with, intensity K'k(S), which canbe created using the Poisson 
point sampler (Algorithm 9.1).

As the process moves backwards in time, the roles of births and deaths are reversed. 
A "death" causes a new point to be added, and a "l>irth" removes an existing point from 
the system. Hence deaths occur backwards ill time at constant rate K'k(S), while the total 
birth rate for the dominating process is |Df |.

Consider the following example. Let D(— n) denote the state of the marked dominating 
process after 11 events (either births or deaths) backwards in time have been generated. 
Suppose Do =  D(0) =  (I’l, y?} Then the time until the first birth of v\ or u? is exponential 
with rate 2, and the time until the first death is exponential with rate K\(S). Suppose that 
a death occurs. Then a random point v$ is chosen by >,(■) and added to the system so that 
D ( - l )  = {v\,v2,vz}- Now suppose that the next event that occurs is the birth of Then a 
uniform on [0,1] for;;? is rolled for its mark (let us say it was 0.9863...), and D( -2 )  = {i>i, P3} 
since 1;? is removed from the system. The list of events going backwards in time for the 
dominating process nowT has two events in it, a death of v-, followed by a birth of z>2 with 
mark .09836..., so

birth-deathlist =  V5 n 1 .[birth  V2 0 .9836...J

In this fashion, given the current state of the marked dominating process D{—u) and the 
list of the first 11 events, the list canbe extended to give state D (-n') and the first 11' events 
using the following pseudocode:
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ALGORITHM 9.6 DOMINATED EVENT GENERATOR

I n p u t !  state D (— n), birth-death list BDL with n events, and the 
new size of list n'

O u t p u t !  D(— n'),  new birth-death list BDLr of size n' 
l :  D < - D ( - n ) ,  BDL1 BDL 
2 : f o r  i from n + 1  to n' d o  
3: d r a w  tfj Exp(JCX.(S)) , fcj, Exp(#U)
4: i f  t(j < tj, (then next event is a death) t h e n
5 : d r a w  w •<— 'K(-)
s: D D + w ,  add [death w] to list BDL'
7: e l s e
8: d r a w  v ̂ Unif(fl), U <— Unif ([0 , l ] )
9: D D — v , add [birth v [7] to list B D L 1

l o : e n d  i  f
i i :  e n d  f o r  
12: D ( - n ’ ) <— D

III the dominated event generator, the actual values of td and fj, are not used, they are only 
being used to determine if *d < fj,. For two independent random variables A i ~  Exp(Xi) 
and A2 ~  Exp(>,,2), P(A\ < Az) =  X-i/(Xi + X2), so lines 3 and 4 of the dominated event 
generator canbe replaced with:

d r a w  U Unif([0, l])
i f  U < K\(S)/[K'k(S)  + # D ]  t h e n

Go back in time for tt events, and suppose that the state X right before these events is 
known, and that tlie list of the next 11 events is given. Then all tlie random choices needed 
to calculate the state Xo have already been made in the BDL list. So from the list, the state 
of the process up to time 0 canbe calculated.

ALGORITHM 9.7 ADVANCE UNDERLYING STATE TO TIME 0

I n p u t :  state X after n events back in time, birth-death list BDL  
consisting of 11 events 

O u t p u t !  X, the state at time 0
i: f o r  all the events e in BDL from end to beginning d o
2 : i f  e = [death w] t h e n
3: X ^  X -  W
4: e l s e  i f  e = [birth v  U] t h e n
5: i f  U < [(gr(X+ v)/gr(X)][l/K] t h e n
S: X X +  V
7: e n d  i  f
8 : e n d  i  f
9 : e n d  f o r

Note that this forms a coupling of tlie marked dominated process Df and tlie underlying 
process Xf, Acoupling is a joint process (in this case (Xf, Df)) such thatthe marginal processes 
have their original distribution, hi this case Xf is evolving according to the Preston spatial



Spatial Point Processes 241

birth-death chain, and Df is evolving according to a simple spatial birth-death chain, so 
marginally each has the correct distribution.

The problem with this procedure is that if D(-/i) /= 0 thenX(-/f.) is unknown, making it 
impossible to ran the procedure! SinceP(D(—/i.) = 0) = exp(-KX(S)), this is unlikely except 
lor small spaces or very small values of K. So instead a bounding chain (Huber, 2004) is 
used to try to find X(0).

Definition 9.3

Aprocess ( I f , M f) is a bounding chain for X f if there is a coupling ( I f ,  X f, M f) such that

I f  c  X f c  M f => I f '  c  Xf- c  M f' for all f' > t.

For our purposes, it is sufficient to use processes L(—n) and M (—n), and verify that if 
!■(-») 9  X (-h )  c  M(-/t), tlien L ( - u +  1) c  X (— n + 1) c  M (-u  +  1). Note tliatif a death 
occurs, then in line 4 the point is always removed from the underlying state X. However, 
if the point is a birth, then the probability that the point v is added to X is only r(X) =  
(g(X + v)/g(X ))(l/K ). Thus a lower bound on the probability that the point is added to X is

'mm = null r(X).

Similarly, rm3K =  max y: l  (-??)excm<; ~n) f(X) is an upper bound on the probability of adding 
v to X. Let X satisfy L{—ii) c  X  c  M (— n). If IT < rmm then v will be added to X , and so 
L(—ii +  1) = L(— n) +  v and M( — n + 1) = M (— n) +  v is vaHd as a bounding chain step. If 
H > f'max/ then v is definitely not added to X, and so L(—u +  1) =  L(—n) and M (—a  +  1) =  
M (-u )  is a valid bounding chain step, Finally, if /"mm < U < rmax, setting L(—ti +  1) = 
L (-ii)  and M (—/I +  1) =  M (— n.) + v is a valid step, This is summarized in the following 
pseudocode:

ALGORITHM 9.8 BOUNDING CHAIN STEP

I n p u t :  L(— n ) , M (—n ) , event e 
O u t p u t :  L { —n  +  1), M (—n  +  1) 

i :  i f  e  =  [death h/] t h e n  
2 : L (—n  + 1) -e— L ( — n) — w
3 : M ( - n  +  1 ) •<- M (-n )  -  w
4 : e l s e  i f  e =  [ b i r t h  v  U] t h e n
5 : A { X  : U - r i )  c  X  C  M(-Jl)}
6: rmin <- minxea[g(x + v)/g(x)][l/ff], rmax -s- maxxeA[g(x +  v)/gr(x)][l/K]
7: i f  u < rmin t h e n
8: L ( —n  + 1) L(— n) + v , M(—n  +  1) <— M (—n) +  v
9: e l s e  i f  U <  r max t h e n

10: M(— n  +  1) <— M(— n) +  v
l i :  e n d  i f
12: e n d  i f

Now the main DCFTP loop canbe created. The outline is as follows, First generate D(0), 
and « events in the backward birth-death list. Set L(—n) =  0 andM (—h) = D i—n) so that
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no matter w hatX(—n) is, L(—») c  X (—ii) c  Then advance forward to find L(0) and
M(0), If L(0) = M(0), tlienX(O) is sandwiched inbetv\reen and canbe output as a stationary 
state. If they are different, then generate events even farther back in tune, and begin again. 
This is summarized in the following pseudocode.

ALGORITHM 9.9 DOMINATED COUPLING FROM THE PAST

I n p u t !  starting value for n
O u t p u t :  X a draw from the target density g

i :  d r a w  D(0) - ^ P o i s s o n  p o i n t  p r o c e s s  s a m p le r (K \ ( - ) )
2 : Hold 4— 0 , BDL •<— 0 
3: r e p e a t
4: (D(— n), BDL) -^Dominated event gener at or (i? (— nc, i d), B D L , n0id, n )
5: U <r- D ( - n )
6: f o r  e the events in BD L from end of list to beginning of

list <30
7: (L, 17) *— B o u n d .in g  c h a i n  s t e p ( L ,  U, e )
8: e n d  f o r
9: Hold < -n , n 211

10: u n t i l  U = L  
11: X "S- U

It is important to note that the events generated in line 4 are being appended to the already 
created events in BDL. That is, suppose that the backward events 1-10 have already been 
created. If n =  20, then only events 11-20 will be added to the list, since events 1-10 are 
currently in the list, and must be reused on each run through the repeat loop.

hi line 9, the number of events checked is doubled at each step. Let N be the smallest 
value of u  such that L ( - ii) and M ( —ii), rim forward in time, equal one another. Then by 
doubling n each time, the longest run in the repeat loop will be for n < 2N. This makes 
the total time at most 2N + N + N /2  + ■ ■■ < 4 N, and so this method ensures that the total 
number of steps taken is within a factor of 4 of Hie optimal value N.

9.5.3 Examples

The trickiest part of a DCFTP algorithm is the creation of an efficient bounding chain, 
hi lines 5 and 6 of the bounding chain step, the values of rmm and are written as a 
minimum and maximum over a large set A. hi many instances, it is possible to find these 
values without resorting to use of an optimization method.

Consider the Strauss process (Example 9.1), which is locally stable with K =  k. As 
before, for a configuration x and point v, let n(x, y) = %  : dist(jty,y) < 2K} so that (g(x +  
v)/g(x))(l/K ) =  Then since y < \, this ratio is smallest when ti(x,v) is largest, wiiich
happens when x = M i—ii), its upper bound, hi the other direction, tlie ratio is largest wThen 
it(x, v) is smallest, so occurs when x =  L(—u). So there is no need to compute A, making 
the relevant line for tlie Strauss process in the bounding chain step:

fi- let r  ■ r  . vn(£,W-tmin ■ V t msx *— y -

Now consider Example 9,2, tlie area interaction process, hi Section 9.4.1, it wTas shown 
how to take steps hi the Preston birth-death chain by generating a Poisson point process Z
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withintensity | lny|i«(-) in AE,, the grain of the proposed birth v. Let A be the region covered 
by the grains of points in If Z n Ac = 0 and y > 1, or if Z Pi A =  0 and y < 1, then the 
point is accepted. Let AI(A) denote the region covered by the grains of points in the upper 
process AI, with L(A) defined similarly for the lower process L, Then L c  x c  M  impHes 
L(A) c  A c  AI(A), andAI(A)c  c A c  c  L(A)C. Fory > 1, the equivalent to the uniform being 
less than >'min is if Z n L(A)C = 0, and the uniform being less than fmax is Z nM (A )f = 0. 
So for the bounding chain step:

6 : d r a w  Z ■«— P o i s s o n  p o i n t  p r o c e s s  s a m p l e r ( ( l n  y)ni(- PiAv ))
7 :  i f  Zr\L(A)c = t f  t h e n
8 : M{—n +  1 ) -e- M (-n) +  v ,  L ( - n  +  l)  L (-n ) + v
9 : else if  zn w (A )c =  0 t h e n

10 : M(—n + 1) -s— M (—n) +  v

Another way to view this update is as follows. When Z P  L(A')C =  0,  add the birth to the 
lower process L, When Z n AKA)" = 0, add the birth to the upper process U. hi effect, L 
and LI are being updated exactly as though they were states in the Markov chain. When 
this choice of update works for the bounding chain, the update scheme is called uionotonic.

When y < 1, the update scheme is no longer monotonic. Now the point is least likely to 
be bom  when X = II, and most likely to be bom  when X =  L. The pseudocode becomes:

6: d r a w  Z ■«— P o i s s o n  p o i n t  p r o c e s s  s a m p l e r ( —(lny)m(-Pi Ay)}
7 : i f  Z n M(A) =  0 t h e n
8 : M(—n  +  1 ) -e- JVf(-n) +  v ,  L ( - n  +  1 ) •<- L ( - n )  +  v
9 : «lse if Z  n L(A) =  0 t h e n

10 : M{—n +  1 ) -e- jvf(-n) +  v

9.6 M o n te  C arlo  P o s te r io r  D raw s

Markov chain Monte Carlo for Bayesian analysis of spatial data creates a new set of chal
lenges. The basic framework is as follows. First, a probabilistic model (such as the Strauss 
process or area interaction process) is placed on the data. These models have parameters, 
which are themselves treated as random variables. The distribution of these random vari
ables is called the prior. Assuming that the data is drawn from (he probabilistic model, then 
the distribution of the parameters conditioned on the value of the data is different from the 
prior, and is known as the posterior. This posterior can oftenbe written as an unnormalized 
density using Bayes' rule. However, in Bayesian spatial analysis, the unnormalized density 
can contain normalizing constants that are themselves difficult to compute—making the 
problem exceptionally difficult!

Let p(-) denote tlie initial probability density of the random parameter 0 (this is known 
as the prior for 0). Let X  denote the random value of the data, and suppose that the density 
of X given 6 isg(-|6)/Ze Let n be the distribution of 6 given X. From Bayes' rule,
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So while the denominator is an unknown normalizing constant, the numerator contains 
such a constant as well.

Metropolis-Hastings canbe used to design a chain with limiting distribution tt(|X = .r) 
without knowing tlie denominator, but there is still tlie problem of Za. Suppose that 6 = a, 
and r/(-|0 =  a, X =  jt) is the proposal density used to generate a proposed move to 0 =  b. 
Then the probability of accepting this move is

r _  g(*|9 =  b)/Zh p(b) q(ti\Q =  b,X  = x) 
r ~ g(x\B =  a)/Za pin) q(b\Q =  n,X = x) '

The last two factors in the ratio are typically easy to calculate, but the first represents a
problem. While g(Jf|0 = b)/g {x |0 = a) is straightforward, ZajZb is not feasible to compute 
directly.

Bognar and Cowles (2004) used importance sampling to approximate this ratio to take 
approximate steps in the Metropolis chain. Mailer et a l (2006) suggested an auxiliary vari
able approach for dealing with this problem without needing to find the ratio. By adding an 
extra random variable to the Markov chain, and choosing the appropriate proposal density, 
the factor Za/Z& is eliminated in the Metropolis-Hastings acceptance ratio (Equation 9,7).

Alongside the random variable 0, create a new random variable Y, conditioned on 9 and 
X =  x, that is itself a point process with normalized density /( |0,X = jt) with respect to 
a Poisson point process with intensity iu( ) This is an example of the data augmentation 
method: see Chapter 10 (this volume) for more information 

Note that 0 has exactly the same distribution as earlier. Therefore, in a draw from Hie 
limiting distribution of the Metropolis chain for (0, Y\X = x), the marginal density of 9 will 
remain as before. The good news is that unlike the Metropolis chain for 0|X = x, a new 
Metropolis chain for (0,Y|X = jt) canbe constructed where the ratios can be calculated 
explicitly.

Suppose that X = x, d = a, and Y = y. Using density q(-\Q =  a,X  =  x), propose a move 
to 0 =  h. Now using density g(-|0 = b)/Z&, propose a new state y' for Y to move to. This 
makes tlie combined density for (b ,y ') equal to g(i/'|0 = b)q(b\0 = a, X = x)/Z},. This makes 
the Metropolis-Hastings ratio for accepting the move from (a,y) to (b,i/):

f  = 1>)/Zb p(b) f(y'\Q =  b,X  =  x) g(i/|0 = a)q(a\e = b,X  = x)jZ a
r ~ g{x\% =  a)jZ R p(a) /(y|0 = a,X  = x) g<y'|0 =  b)q(b\6 = a,X  =  x)jZ b '

Note that Za and Zj, cancel out in this ratio, and so this method canbe implemented to take 
a Metropolis-Hastings step.

ALGORITHM 9.10 AUXILIARY VARIABLE METROPOLIS-HASTINGS STEP

In p u t! c u r r e n t  s t a t e  0 = a ,  Y =  y ,  d a ta  x  
O utput! n e x t s t a t e  (0, Y)

draw b  < - g(-|0 = a , X = x ) ,  y f cr(-|0 = b , X =  x ) , U Unif ([0, l])
^ ^  gr(x|0 =  b ) p ( b ) f  ( y ' |0 =  b , X =  x ) g ( y  |0 =  a)q(a|0 = b , X  =  x)
r  gr(x|0 =  a)p(a)f(y|9 =  a , X  =  x)gr(y'|0 =  b )q (b\ Q  =  a , X = x)
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The drawback of this method {as noted in Msller et al., 2006) is that the acceptance 
probability can become very low, since the ratio involves/(-| 9 = I’, X  =  .*). When/ is very 
far away fromg, this can lead to proposals that are only rarely accepted. This problem has 
been addressed by a variant of the method that uses the auxiliary variable in a different 
fashion: see Murray et al. {2006) and Murray (2007) for details.

9.7 R u n n in g  Tim e A n aly sis

Although it is not possible to analyze the mixing time of the Markov chains or the run
ning time of the perfect simulation methods precisely for all models., ■when tlie model is 
sufficiently noisy (in a sense to be described later), these methods will have a polynomial 
running time.

The technique used here is coupling. As mentioned in Section 9.5, a coupling (Xt, Yf) is 
a paired process where both Xf and Yf marginally have the correct distribution. Coupling 
relates to the mixing time of a Markov chain as follows.

Theorem 9.3

{Doeblin, 1933) Let (X t,Y f) he a  coupling o fftoo  processes whose marginal distributions are a 
Markov chain with stationary distribution n, and Yo — n. Then

\\P(Xt £ ■) -  n(-)\\Ty < P(Xt ^ Y f).

Proof. Let A be a measurable set. Then P(Yt e  A) =  n (A) and

P{Xt g  A) = P(Xf g  A, Y t =  X t) + P(X, g  A, Yt ±  X t) < P(Yf g  A) +  P (Y t X ,).

Subtractingtt(A) =  P{Yf g  A)yieldsP(Xf g  A) — n (A) < P(Yf ^  X f). ReversingXf andYfin 
the above argument gives ti(A) -  P(Xf g  A) < P(Yf ^ Xf), so |P(Xf g  A) -  ti(A)| < P(Yf ^  
Xf). This is true for all A, so ||P(Xf e ■) -  tt(-)||tv 5  P(Xf /  Yf) as desired. ■

The processes Xf and Yf have couplet1 if Xf =  Yf. Aldous (1982) used coupling to bound 
mixing times of Markov chains, and Hie following proofs are in the same style, with some 
differences necessary to deal with the nature of birth and death chains. Consider a process 
Xf started at Xo = 0, Yo ~  n, coupled as in Section 9.5 by using a dominating process Dt 
and sharing birth and death events. Using the Preston spatial birth-death chain, if a birth 
occurs in Df, it canbe thinned so that the birth does not occur inXf. But if it survives, when 
tlie point dies in Df, it dies in Xf as w ell The same occurs for Yf, so that a point that is bom  
in Dt could be bom  in Xf or Yf or both.

Since births come from the dominating process Dtr both Xf and Yf are subsets of Df. 
Moreover, when a death occurs in one of the processes it will also occur in the other if that 
point exists in Hie other. This tends to aid in coupling the two processes.

Births, on the other hand, might drive Xf and Yt apart, as a point might be accepted as 
bom into X t but not Yf. or vice versa. Let Wf = X f © Yt be those points in X t or in Yf, but 
not in both (this is the symmetric difference of tlie two configurations.) Let wi t) =  E[#Wf].
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Abirth can only change the number of points in Wf by 1, and so a differential equation for 
w(t) canbe derived by considering

Hm wtt +  ii) ~ M t)  =  limE[E[#Wf+fc|Xf,Yf] -  m t]/h.
Ji—>D // h —> 0

Theorem 9.4

Consider a  Strauss process Xf (Example 9.1) started at Xo = 0 , and let (3 be the Lebesgue measure 
o f  abaft o f radius 2R (this value depends on the distance metric used.) Z/PX( 1 — y) < 1 . tl ten

||P(Xf e |X0 =  0) -  tt(-)||tv <  k i i i (S )  e x T p ( - ( l  -  p>.(l -y » f ) .

Proof. The idea of the proof is to couple the X  process started at X0 =  0 with a Y process 
started with Yo ~  tt. At the beginning, Y most likely contains points that X  does not. But 
when a point in Y dies, the Y process and X  process move closer together. Therefore, this 
is referred to as a good event.

The point process Wj- =  Xf ® Yf is the set of points in X but not in Y, or in Y  but not in X, 
A good event is when one of these points dies, and so the rate at which good events occur 
is just #Wf.

Abad event is when a point is bom to X but not to Y, or bom  to Y but not to X. These bad 
events increase the size of Wf by 1. The goal of the proof is to find an upper bound on tlie 
rate of bad events. If the rate of bad events is smaller than the rate of good events, then tlie 
good events will dominate, and eventually, the point process Wf will lose more and more 
points until it reaches the empty set.

For #Wf to increase by 1 (abad event), a birth must occur at v and must be accepted by Xf 
but not Yf or vice versa. The only way that can happen is if v lies within distance 2R of at 
least onepointin Wf. The chance of adding to Xf but not Yf (orvice versa) is at most 1 -  y"1'"'1, 
where n(v) denotes the number of points of Wf within distance ZR of v. Let A, denote Hie 
measure of the region within distance 2R of exactly i points in Wf. Then ^  ■ iAi < f5 #Wf.

The birth rate of points within ZR of i points in #Wf in the Preston birth-death chain is 
XA,. The total rate at which bad events occur is then at most

#Wf- #W(
-  y1) 5  J2  iAwa - y ^  -  v>>

i=i i=i

where the first inequality follows from

1 -  y  =  (1 -  Y ) ( l  +  y +  ■ ■ . +  y1- 1) <  (1 -  y)f.

Note that Hie rate of bad events is small when X is small, p is small, or y is dose to 1. When 
the bad event rate is smaller than the good event rate, the size of #Wf will tend to 0.

To make this intuition precise, consider the probability that exactly one event (good or 
bad) occurs in tlie time interval from f to t. +  h. This will yield a differential inequality on 
w(t) :=  E[#Wf]. Because this is a continuous-time Markov chain, this probability is pro
portional to It, and the probability that exactly 11 events occur in [f, t +  //] is 0 (h n). Putting
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this together with the known rate of good events (that decrease #W(f) by 1) and the upper 
bound on the rate of bad events (that increase #W(£) by 1) yields an upper bound on

. m i m + h \ x t/Yt] -  m ]w i t ) = l i in ------------— ------------------
ft̂ -0 II

< ^  m m m m i  -  v> -  m )  +
_  fc-»0 ll

= —E[#Wf(pX(l — y) — 1)]

=  -H?(f)(l -  |3M1 -  Y)>.

Now jiMO) < E[#W(0)] = }j i i (S) so, together with the differential inequality above,

wit) < Kin(S) e x p (-f(l -  pX.(l -  y))).

The last trick is to note that #Wf is a nonnegative integer, and when #Wf does not equal
0, it is at least 1. This allows the use of Markov's inequality to say that

P(Xt £  Yt) = P(#Wf ^ 0) = P(#W; > 1) < E(#W(f)) = w(t), 

wliich completes the proof. ■

Therefore, to get the total variation distance below an arbitrary e > 0, when),p(l — y) < 1 
it suffices to take f = (1 — pX.(l — y))- 1[ln(>j«{S)) + ln E _1]randrun this chainfor this length 
of tiine. Hie number of uniforms generated in running the chain for t steps is proportional 
to the number of events in Hie dominating chain. Fortunately, this is closely related to t. 
The following tail bounds on Poisson random variables will be helpful

Lemma 9.1

Let A ~ Poisson(a). Then E[A] =  a, and for c > 1,

P(A > ac) < ex p (-a (rln r -  c  +  1)), (9.8)

P(A < a/c) < e x p (-a (- ( ln c)/c -  (1 jc) +  1)). (9.9)

Proof. These are examples of Chemoff bounds (Chemoff, 1952). The idea is to use 
Markov's inequality for Hie moment generating function, thenminimize over the argument. 
That is, for all a > 0,

P(A > ra) =  P (t^  > e11™) < ^texP ^ ) ]  _  _ i _  C(Jytr
exp(nca)

where Hie last inequaHty is using the fact that E[ exp (fA)] = exp(a(ef — 1)). Now minimizing 
f" — 1 — m gives a =  In c, making the bound exp(a(r — 1 — clnr)) as in Equation 9.8.

The second inequality follows similarly, first multiplying by - a  where a > 0 to obtain
P (-aA  > —aa/c), and then using a  =  ln r  as before, ■
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Theorem 9.5

Let Nt be the number o f  events in the Preston spatial. birth-death dominating chain to move from 
time 0 to time t. Then E[Nf] = 2KX(S) and, for all c > 1,

P[Nt > 2cK\(S)] < 2exp(-2£KX(S)(<:ln<: — c + 1)).

Proof. Break the number of events Nt into tlie number of births Nj, plus the number of 
deaths N/f. Tlie birth and death processesin the chain are themselves each a one-dimensional 
Poisson process with rate KkiS), so Nj, and are each Poisson random variables with 
parameter tK~k(S). The theorem essentially states that it is very likely that these two Poisson 
random variables are close to their means, where E[Nj,] =  E[Nrf] = tKk(S).

UNt > 2ctK~k(S) then, since Nt =  Nt, +  N,{, atleast one of Nj, and N,{ is at least ctK'k (S). So 
P(Nt > 7rtK'k(S)) < P(Nb > ctKkiSY) + PiN^ > ctKk(S)). The two tail probabilities on tlie 
right are bounded using Lemma 1 to complete the proof. ■

hi other words, to run for time t in the Preston birth-death chain requires evaluation of 
on average 2tKk(S) events, and is unlikely to take very much more time than that.

Theorem 9.6

Consider oji area interaction process X t (Example 9.2) started nt X 0 =  0, mid-let nbe the maxi mum 
area o f a. grain for any point in the space. Let B(v) be the area, o f  the region where for a  point w in 
the region, the grainsofw  andv intersect, and let fS = supagS B(v). I f  kfta ii\Ax{y, y- 1 }3 < 1, then

||P(Xf £ -|Xo = 0) -  te(■)||tv 1  X./J1(S) exp(—(1 — XPfflmax{Y,y_ Y )f) .

Proof. As in tlie proof of Theorem 4, what is needed is to show that the rate of bad events 
is smaller than the rate of good events, hi the earlier proof, the rate of good events is exactly 
#Wf, and the same rate holds here,

The rate of bad events canbe bounded above by noting that a p oint v must b e bom  so that 
its grain overlaps with a point in Wf. This birth rate is at most #WfX,p. Then the probability 
of accepting the birth is for y > 1, and (y -1)-(*-*(*,!'» for y < 1. Either way, this is
boundedbelow by max{y, y_1}n, and tlie overall rate of bad events is #WfXf1rmiax{y, y_ 1}ra. 

The rest of the proof proceeds as in Theorem 4. ■

9.7.1 RunnitigTime of Perfect Simulation Methods

The advantage of using a perfect simulation method is that there is no need to know tlie 
mixing time of a Markov chain—when tlie methodruns quickly, the samples are guaranteed 
to come from the correct distribution 

On tlie other hand, it is still useful to have an a. priori bound on the running time for a 
nontrivial set of parameters of the model, and these bomids can be created in a fashion 
similar to that used in finding tlie mixing tune. The following theorem bomids the expec
tation and the tail of the number of events generated in the birth-death list in tlie course of 
creating a single random drawT. The running time of dominated coupling from the past is 
proportional to this number of events.
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Theorem 9.7

Consider perfect simulation o f  the Strauss process Xf using dominated, coupling from the past. Let 
n he the smallest number o f  events needed in the birth-death list before convergence occurs. Let 
P =  sup„eS m({w : distil’, w) < 2R}) altd b — 1 — (3M l -  y). Ifb  > 0, then

P(n > n )<  exp(-0.15«) +  X/jj(S) exp(-2Z>rt/[l;H(S)])), E[u] < 6.2 +  1.6km(S)[\m(S)/b~\).

Proof. This theorem is stated in terms of the smallest number of entries n on the birth- 
death list needed for convejgence to occur, rather than in time, since the running time of 
DCFTP is directly proportional to this number.

Consider a fixed f < 0. Then suppose that entry number a  in the birth-death list comes 
before time t, and that, running forward from time t, the DCFTP procedure brings the lower 
process and upper process together. Then n < a. Taking complements and using the union 
bound, the probability that n > a  is upper-bounded by the probability that fewer than a 
events occur in [t, 0] plus the probability Hie lower and upper processes fail to converge in 
time t.

B egin by bounding Hie probability that the lower process L and upper process M conveige 
by time f. When a point dies, it is removed from both M and L, but when a point is bom, 
there is a chance it is added to M but not L, further separating the processes.

So consider a lower process L started at 0, andM started with a draw from a Poisson point 
process on S. Two types of events alter the size of M\L. Type I events are deaths of points 
in M\L. Type II events are the birth of points within distance R of M\L that are accepted 
into M but not L.

The rate of type I events is exactly #(M\L). The rate of type II points canbe bounded 
as follows. Recall that if a point is bom  within distance R of iim points hi M,„ rm;n =  y"M, 
while if it is bom  within distance R of iii points in L„, rmax = y,,L. Therefore, the chance of 
adding a birth to M  but not I  is

yiL _  ytlM _  _  yUM - ”L ) < 1 — yltM-KL

Let A, denote the area of points within distance R of exactly i points in M\L. Then the 
total rate of births in M \ L is bounded above by

7 ^  X.A,(1 -  y ), where A\ +  2A2 H------ 1- iAj < p#(M\L).
1=1

Now7 use 1 -  y' = (1 -  Y)(l +  Y H-------H YI_1) < (1 -  Y)' t° saY that

#(M\L) #(M\L)

E  ^ ' t 1 -  v!> < Z !  -  y) < PMi -  y)#(M\t).
1 = 1  i ' = l

Therefore, a sufficient condition for the rate of good events to outp ace the rate of b a d events 
is that U(M \ L) > PX(1 — y)#(M \ L), or equivalently, that b =  1 -  pX(l -  y) > 0.

Let w(t) := E[#(Mf \Lt)], where Mf and Lf are the upper and lowTer processes after t 
time has evolved. Then, as in tlie proof of Theorem 4, the rate computation above shows 
that i[?(0 < -  PX{1 -  y)) and, taken with i(?(0) = E[#(Mq\Lo)] = 'hin(S), leads to
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the result 1iiatP(#(Mf\Lt) > 0) < \m(S) exp(—tb). Hiat is, the probabihty of not coupling 
declines exponentially in tlie amount of time elapsed.

Now the second half of the proof starts, where it is shown that, for t =  2a/\in(S), tlie 
probability that fewer than a  events occur hi [f, 0] is small, Consider birth events: they form 
a Poisson process with rate 'tJii(S), and so the probability that fewer than a births occur hi 
interval [t, 0] is bounded by tlie probability that a Poisson random variable with parameter 
'uii(S)t =  2/7 is at most a.

From Lemma 1, this probabihty is bounded above by e x p (-0.15/1). Therefore, the sum of 
these probabilities is

exp(-0.15rt) + 'km(S) ex]>(-'M>f[l.iii(S)]).

The bound on tlie expected value of it then follows from Hie tail sum formula. ■

Some comments are in order. First, as b approaches zero, Hie bound approaches infinity, 
hi fact, in this situation it is possible to obtain a bound on E[»] that grows as 0 (  [k///(5)]2).

Second, no effort was made to obtain tight constants hi the running tune because hi 
practice they are unnecessary: this is a perfect simulation algorithm and so it can just be 
run and the expected running time estimated as tightly as needed. The purpose of these 
bounds is that under the same conditions wThere tlie Markov chain is known to be rapidly 
mixing, the perfect simulation algorithm is polynomial as well. But in practice, the perfect 
simulation algorithm could be fast over a much wider range of parameters, whereas the 
mixing tune of the Markov chain is completely unknown.

Third, suppose that the original call to dominated coupling from the past began with 
ii =  10, and after doubling twice to n =  40, the algorithm terminates. Then there were 40 
events generated, and 40 + 20 + 10 evaluations of howT Hie upper and lower processes 
changed given those events. Because the number of calls is being doubled at each step, if 
ii is the minimum number of steps needed, the longest call to DCFTP will run for at most 
Til steps. Each step is evaluated twice, and so the number of steps taken in Hie bounding 
chain w illbe In  +  it +  (n( 2) +  ■ ■ ■ < lit. That is, the total expected number of steps willbe 
at most 4ji, justifying tlie emphasis onbounding n in Hie preceding theorem.

A similar analysis can be done for Hie area interaction process.

Theorem 9.8

Consider perfect simulation o f  the area interaction process Xf using dominated coupling from the 
past. Let n be the smallest i lumber o f events i leeded ii i the b irth-death list before converge! ice occurs. 
As earlier, let ah e the maximum area o f a gram over points in the space, aiidlet B(v) be the areaofthe 
region where, for a point w in the region, the grains o fw  and v intersect. Then let p = sup„igS B(v) 
andb  = 1 — max{y, y-1 }- ®]. I fb  > 0, then

P(ii > a ) <  2exp(-0.15«) + I/jj(S) exp(-2Zw/(X/H(S))}, E[jj] < 6 .2+  1.6>jjj{S)|"Xjw(£)/&].

The proof is the same as Hie previous theorem. The only difference is tlie definition of b, 
which {roughly speaking) is 1 minus the rate at which a point hi M\L is causing new 
points to be bom  to M\L. (The 1 measures the rate at which these points are dying.) 
Once b is known, the bounds on the tails of tlie running time, and the bound on tlie expected 
running time, follow as before.
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10
The Data Augmentation Algorithm: Theory and 
Methodology

James P. Hobert

10.1 B asic Id eas and E xam p les

Assume that the function fx  : [0, co) is a probability density function (pdf). Sup
pose that g  : W  -+ R is a function of interest and that we want to know the value 
of Efxg  = J v g(x)fx(x)dx, but that this integral cannot be computed analytically There 
are many ways of approximating such intractable integrals, including numerical inte
gration, analytical approximations, and Monte Carlo methods. In this chapter, we will 
describe a Markov chain Monte Carlo (MCMC) method called the data augmentation. (DA) 
algorithm.

Here is the basic idea, hi situations where classical Monte Carlo methods are not applicable 
because it is impossible to simulate from fx  directly, it is often possible to find a joint pdf 

—> [0; oo) that satisfies two properties: (i) Hie -marginal is fx , that is,

Jra

and(ii) simulating from tlie asso date d conditional p df s, fx \ y (■* I y) and/y|y(i/ jr), is straight
forward. The DA algorithm is based on this joint pdf. The first property allows for 
the construction of a Markov chain that has fx  as an invariant pdf, and tlie second 
property provides a means of simulating this Markov chain As long as the resulting 
chain is reasonably well behaved, simulations of it can be used to consistently estimate 
E,xg. We now begin to fill in the details, starting with the construction of the Markov 
chain.

As usual, letfy (y )  = f i x , y) dx. Also, define X =  {.r e IRP : fx (x )  > 0} and Y =  \y e K** : 
fyiy) > 0} and assume that f ix , y) =  0 whenever (x,y) £ X x Y. Now define a function k :
X x X —>■ [0, oo) as follows:

k(:x | Jt) = fx\Y(x'\y)fy\x{y\x)dy. (10.1)

(We will not need to perform the integration in Equation 10.1—remember that we are still 
in tlie construction phase.) Since tlie integrand in Equation 10.1 is a product of conditional

253
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densities, k is never negative. Furthermore,

k(x' | = J /xiyC*' I y)fr\x(y I * ) dy

f Y \ x t y \ x )
L Jx.

fx\Y(x'\y)dx'

dx'

dy

fY\xty\x)dy

=  1.

Hence, for each fixed x e X, k(x : \ .* ) is nonnegative and integrates to 1. The function k is 
therefore a Markov transition density (Mtd) that defines a Markov chain, X  = (X„ }£L0, with 
state space X. The chain evolves as follow's. If the current state of the chain is XTI = x, then tlie 
density of the next state, X,I+i, is k{- | jc). This Markov chain is the basis of the D Aalgorithni 
and wTe now describe some of its properties.

The product k(x' \ x )fx (X) is symmetric in (xrx'). Indeed,

k(xr\x)fic(x) = fx (x ) fx\Y(x’ \y)fY\xty\x)dy =  f dy.
Jy Jy

Thus, for all x, x' e  X,

k(x' | x)fx(x) =  k(x | x )fx{x'), (10.2)

which implies that the Markov chain X is reversible witli respect to fx  (see, e.g. Ross, 1996, 
Section 4.7). Equation 10.2is sometimes caRedtiier/efay/er/f>f7/rajt.Y«>jiif//f/0/i. Integrating both 
sides of Equation 10.2 with respect to x yields

k(x' | x)fx(x)dx =  fx(x'), (10.3)Jx
which shows that/y is an ii ivariajit density for tlie Markov chain X. What does it mean for fx  
to be invariant for X? To answer this question, note that tlie integrand in Equation 10.3 is tlie 
joint density of (Xo, X i) when the starting value, Xo, is drawn from/y. Thus, Equation 10,3 
implies that, when Xo ~  fx r the marginal density of X i is also fx- Actually, since X  is a 
time homogeneous Markov chain, Equation 10.3 also implies that, if X„ — fx , thenXTI+i ~  
fx  Hence, a simple induction argument leads to the conclusion that, if Xo ~ fx ,  then Hie 
marginal density of X„ is fx  for all n. hi other wTords, when Xo ~  fx , the Markov chain X 
is a sequence of dependen t random vectors with density fx- Of course, in practice, it will 
not be possible to start the chain by drawing Xo from/v. (If simulating directly from/V is 
possible, then one should use classical Monte Carlo methods instead of the DA algorithm 
for Hie reasons laid out in Subsections 10.2.4 and 10.3.1.) Fortunately, as long as the Markov 
chain X is well behaved (see Section 10.2.1), the marginal density of X„ will converge to 
the invariant density fx  no matter how the chain is started. And, more importantly, Hie 
estimator n-1  ) will be strongly consistent for Ejxg, that is, this estimator will
converge almost surely to Efxg as u —* oo.

hi order to keep things simple, we are considering only situations where /;.: and/(jt, y) are 
densities with respect to Lebesgue measure. However, all of the results and methodology
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that we discuss in this chapter can easily be extended to a much more general setting. See, 
for example, Section 2 of Hobert and Marchev (2008),

Now consider the practical issue of simulating the Markov chain X. Given that tlie current 
state of the chain is X„ =  x, how do we draw X„+1 from the Mtd ki- | .i:)? Hie answer is based 
on a sequential simulation technique that we now describe. Suppose that we would like to 
simulate a random vector from some pdf/u(//}, but that we cannot do this directly; Suppose 
further that/tj is the ^-marginal of tlie joint pdf fu.vOi, v) and that we have tlie ability to 
make draws froni /i/(u) and from fu\v(n 11’) for fixed v. If we draw V '~-fv(r), and then, 
conditional on V = v, we draw [J fu  \ v(-1 v), then the observed pair, (n, v), is a draw from 
fu.v, which means that u is a draw from fu- This general technique will be employed many 
tunes throughout this chapter. We now explain how it is used to simulate from ki- \ x). 

Define

) i ( y , y  | at) = f x |y(*' I y)fY\xW I ■*>,

and note that, for fixed x e X, hix'/y „t) is a joint pdf in (x\y) with J Y hix'/y .*) dy =  k(x' I*). 
We simply apply the technique described above with ki - | jt) and hi-, ■ | jr) playing the roles 
of fu(-) and fu,v( ■, -), respectively. All we need is the y-margmal of h{x',y \ x), which is 
fy\xiy I x), and the conditional density of X' given Y =  y, which is

We now have a procedure for simulating one step of the DA algorithm. Indeed, if the 
current state is X„ = x, we simulate XJI+i as follows.

ONE ITERATION OF THE DA ALGORITHM

1. Draw Y —/y|x(- I -*)/ and call the observed value y.
2. DrawX„+i ~fx\r{-\y).

So, as long as we can simulate from the conditional densities, f x \y and/y|x, we can simulate 
the Markov chain X. {Note that, as mentioned above, we do not need kix’ \ x) in dosed 
form.)

The name data augmentation algorithm comes from Tanner and Wong (1987) who used it 
to describe an iterative algorithm for approximating complex posterior distributions. On 
Hie last page of their paper, Tanner and Wong note that an "extreme" spedal case of their 
algorithm (in which their in is set equal to 1) yields a Markov chain whose transition density 
has the form {10.1). However, it does not appear to be tlie case that Taimer and Wong (1987) 
"invented" the DA algorithm (as we have defined it here), since other researchers, such as 
Swendsen and Wang (1987), were using it at about the same time, Here is our first example,

Example 10.1

Suppose that fx is the standard normal density, fx(x) = e~x~I1 j j l u .  Obviously, there is nothing 
intractable about this density. On the other hand, it is instructive to begin with a few simple 
examples in which the basic ideas of the algorithm are not overs ha do wed by the complexity of the 
target density, Take f(x, y) = (t/2n )-1 exp ( — (x: — */lxy + y - ) ), which is a bivanate normal
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density with means equal to zero, variances equal to one, and correlation equal to 1 The 
x-marginal is clearly standard normal and the two conditionals are also normal. Indeed,

= and =

Simulating from these conditionals is easy. For example, most statistically oriented programming 
languages, such as R (R Development Core Team, 2006), produce variates from the normal dis
tribution and many other standard distributions. Hence, we have a viable DA algorithm that can 
be run by choosingan arbitrary starting value, X0 = x0, andthen iterating the two-step procedure 
described above.

We now provide two more toy examples that will be put to good use. Two realistic 
examples are given in this section.

Example 10.2

Suppose that fx(x) = jx- ^o,1) (x )' If we take f(x, y) = 3x 1(0 < y  < x < 1), then the x-marginal 
is fx(x) = 3x2/(o ,i)M  ar|d the two conditional densities are given by

1 2x
fv\x(y\x) -  - l(P  < y < x) and fx\y(x\y) -  1 _  2 Ky  < x < 1).

Simulatingfrom these conditionals is straightforward. Indeed, if U ~  U (0 ,1), then xU ~  

and, using the probability integral transformation, — y-) + y 2 -  h\Y(- \y)-

Example 10.3

Suppose that /*(x) is a Student's f density with 4 degrees of freedom,

fx(x) = - [ 1 + —K )
If we take

f i x ,  y )  =  ~ ^ = y t  exp J - y  ^  ^  J  /(0iO=)(y),

then J K f(x, y) dy = fx(x). Moreover, it is easy to show that X\ Y = y ~  N(Q, y _1 ) and that V"|X = 
x ~  r (5 ,  + _). (We say that W ~  T(a, (}) if its density is proportional to vva - 1e-w Pf(iv > 0).)

The popularity of the DA algorithm is due in part to the fact that, given an intractable 
fx, there are general techniques available for constructing a potentially useful joint density 
f{x ,y). Here is one such technique. Suppose that fx  canbe factorized as fx(x) =  q(x)l{x). 
Now define

f{x ,y ) =  q(x)Im x ])(\f)r
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and note that

f(x ,y )d y  = q{x)
R

I(0lUx))ty)d!t =  q(x)
R

•l(x)
dy = q(x)l(x) = fx (x).

o

A simple calculation shows that Y | X =  x ~  U(Q,l{x)), which is easy to sample. Thus/ if 
it is also possible to draw from^|y(Jt y) oc q(x)I(y/x ){Ux)), ttien the DA algorithm canbe 
applied. In this particular form, the DA algorithm is known as the simple slice sampler (Neal, 
2003). Tlie reader may verify that the DA algorithm developed in Example 10.2 is actu
ally a simple slice sampler based on the factorization fx (x) =  3.*2I(o,i)(X) =
= [^)][/(a:)].

Another general technique for identifying an appropriate f(x ,y )  involves the concept 
of missing data that underlies the EM algorithm (Dempster et al., 1977). This technique is 
applicable when the target, fx ,  is a posterior density. Let z denote some observed data, 
wliichis assumed tobe a sample from a member of a family of pdfs {p(z | 0) : 6 g ©}, where 
0  c  IRP. If n(0) denotes the prior density, then Hie posterior density is given by it(6 | z) =  
p(z 10)Tr(0)/f(z), where c(z) =  J1 p(z | 0)ic(0) d& is the marginal density of the data. Assume 
that expectations with respect to ji(0 | z) are intractable; that is, irfS | z) is now playing the 
role of tlie problematic target fx(.x).

Suppose that we can identify missing data y  e Y c  W> such that Hie joint density of z and 
y, call it p(z,y  | 9), satisfies

^ p(z ,y\ 0)dy  =  p(z\Q). (10.4)

Finding such missing data is often straightforward. Indeed, the joint density p(z, y | 9) is 
precisely what is required to construct an EM algorithm for finding the maximum likeli
hood estimate of 0; that is, the maximizer of p(z | 0) over 0 g 0  for fixed z. If such an EM 
algorithm already exists, we can simply use the corresponding missing data, Now define 
tlie complete data posterior density as

p { z ? y  I 0)te(0) _  p<z,y | 0)te(0) _  p(z,y 19)71(8)
71 Z ~~ J e ^YP (^ y\ ^ (Q )dydB  ~ J B p(z\9)n(9)dd ~ c(z) '

The key feature of the complete data posterior density is that its 9-marginal is the target 
density ti{0 | z). Indeed,

’  ̂ j  71 (9)7i(0,y|z)(fy= —
Y C\Z)

’ . j  p(Z | 0)71 (0)
p(z,y\Q)dy = ------—-----=  ti(9|z).

Y C{Z)

When an EM algorithm is constructed, Hie missing data is chosen to make likelihood cal
culations under p(z,y  | 0) much simpler than they are under Hie original density, p(z | 9). 
Such a choice will usually also result in conditional densities, t t ( 0  \ y, z) and n (y | 0 ,  z), that 
are easy to sample. Regardless of whether or not our missing data came from a preexisting 
EM algorithm, as long as it{0 y, z) and ir(y | 0,2) canbe straightforwardly sampled, we 
will have a viable DA algorithm with the complete data posterior density playing the role 
of f{x ,y ). hi particular, O plays the role of x, and everything is done conditionally on the 
observed data z.
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Let Z-|, . . Zm be a random sample from the location-scale Student's t density with known degrees 
of freedom, v > 0. The common density of the Z,- is given by

r ( ^ l )  / ,

Example 10.4

aVnvr(^)

Here ((i, a2) is playing the role of 0. The standard diffuse prior density for this location-scale 
problem is a2) a. 1 /a2. O f course, whenever an improper prior is used, it is important to 
check that the posterior is proper. In this case, the posterior is proper if and only if m > 2 (Fernandez 
and Steel, 1999), and we assume this throughout. The posterior density is an intractable bivariate 
density that is characterized by

 ̂ -<«+i) 
(Zj -  '

7l([l,C F2 |Z) OC ( V 1)  “ 0  1 +

1=1 V

where z = (z-|, . . zm). Meng and van Dyk (1999) described a DA algorithm for this problem in 
which the missing data are based on the standard representation of a Student's f variate in terms 
of normal andx~ variates. Conditional on let (Z lr Vt), ..., (Zm, V'm) be independent and
identically distributed (i. i.d.) pairs such that, for / = 1, ..., m,

Z; I Yj, |1, 0“ -

Y; I n, a- -  rev/2, V/2).

In this case, Y = R™  where IR+ := (0, oc). Letting y  = (y-\, ym), we have

m
p(z, y I (1, a2) = ]” [ p(Zj I yir H, a- )p (yf | |i, a-)

;= 1

( Vw

Now,

p(z, y | H, CF-) dy = n p(z; | v „ ( i,c - )p(yi |i,a-) dy-,
JIE+

=fi r(̂ ] fi
so Equation 10.4 is satisfied. The complete data posterior density is characterized by 

I n  #  | yiJ i« n ,< r ) ,y |z )  a  - j  P |  — ^  exp | -  A - (z ;  -  n )2 ) exp | (10.5)

In order to implement the DA algorithm, we must be able to draw from :t(y | ji,u 2, z) and 
from 7i(|Ji; c2 | y,z), Since 7i(y | |i, o2, z) tx a2, y | z), it is clear that the Yi are conditionally



The Data Augmentation Algorithm 259

independent given , z) and, in fact,

( 10 . 6 )

W e can simulate from it(|x, cr |y, z) sequentially by first drawing from n(cr |y, z) and then from
u (\l\o-, y, z). (Remember our sequential method of drawing from f(_/, W ) Let y. = S /= i Yi an'̂  
define

Finally, tt(<j- | y, z) is proportional to what remainswhenn is integrated out of Equation 10.5. This 
integral can be computed in closed form and it follows that

where T 1 (a, (V) is the distribution of 1/IV when l¥ ~ r (o i,  f>). W e  now know how to run the 
DA algorithm for this problem. Given the current state, Xn = (|j,,<j-), we simulate the next state, 

= (|xJT_|_ |, <j2+1 ), by performing the following two steps:

1. Draw V-|,..., Vm independently according to Equation 10.6, and call the result y =

The algorithm described above is actually a special case of a more general DA algorithm developed 
by Meng and van Dyk (1999) that can handle observations from the multivariate location-scale 
Student's f density,

We end this section by describing Albert and Chib's (1993) DA algorithm for Bayesian 
probit regression, which is one of the most widely used DA algorithms.

Example 10.5

LetZ-|, ..., Zm be independent Bernoulli random variables such that Pr(ZH- = 1) = where
Vj is a p  x 1 vector of known covanates associated with Z it (J is a p x 1 vector of unknown 
regression coefficients and <!>(■) ^ienotes the standard normal distribution function. W e have

Using the fact that ji(h  | a-, y, z) oc tt((1, a- ,y  | z), it is straightforward to show that

(10.7)

( 10 .8 )

(y-i, ...,ym).
2. Draw o2+1 according to Equation 10.8, and then draw ( a a c c o r d i n g  to Equation 10.7 

with in place of a-.

iTJ
Pr(Zi = z i ,  . . . ,Z m = zm |P) = ]” [ [ 0 ( v I7"P)]z'[ l  -<t>(v/p>]1_z\

(=1



260 Handbook o f  Markov Chain Monte Carlo

where each z, is binary— either 0 or 1. Consider a Bayesian analysis that employs a flat prior on 
Letting z = (z1f . . zm) denote the observed data, the marginal density is given by

c(z) =
W ,= 1

Chen and Shao (2000) provide necessary and sufficient conditions on z and {V7}™| for propriety 
of the posterior; that is, for c(z) < oo. W e assume throughout that these conditions are satisfied. 
The intractable posterior density of (5 is given by

1 m
* ( p iz } = —

c{ > y=i

Albert and Chib (1993) developed a DA algorithm for this problem. Let t|](u; \i, k2 ) denote 
the N (|i, k-) density function evaluated at the point u e R. Also, let K _  = (—oo, 0), let y = 
(y-1, ■ ■ ■, Ym)T e I I m, and consider the function

1 m
’Rtt,y\z ) =  +  D. no.9)

f= 1

Integrating y out of n(£, y \ z), we have

cb> L Ie " L ̂  I 1 >(Z/) + ,E- (K W K  vI$' 11 dY™ ■ ■ ■ dV- c/>'i
m f

I I  { (  v'<) 'i: 1) < )  +  % - < >'<)'{a :i t ̂ )} <t> (y, ; '7  3 - 1) dy,
,=i

m t ro c r0 I
n  11\ 1 \(Zj)  ̂ t{){ vv; v j I?', 1) dy, + Arq | (z/) 4>( y/; v j fi, 1) dy, J

m . ,

Y[ |/|il(Zi)®(i'iirp) + J{Q}(z,-)[l -0(1/,^)]

1

c(z)

1

c(z)
1 = 1

1

c(z) ,=1

= n(t>\z).

Hence, ti(P, y 1 z) is a joint density in (f>, y) whose (5-marginal is ir(fS | z). Albert and Chib's [1993) 
DA algorithm is based on this joint density. W e now derive the conditional densities, n(f>|y,z ) 
and t t (y | f>, z). Let V denote the m x p  matrix whose /th row is v j . (A necessary condition for 
propriety is that V  have rank p.) Standard linear model-type calculations show that

n  KV,; vj$, 1) = ( " T T r ^ e - T ^ ' - ^ ' e x p  
(=1

( 10. 10)

where fi(y) = (V ^ V ) 1 V Ty and H = 1 VT. This implies that ti($| y, z) is a p-vanate
normal density with mean P (y ) and covariance matrix (V '7"V')_1 .
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Finally, let TN(n., k: , u) denote a normal distribution with mean (X and variance k: that is 
truncated to be positive if u = 1 and negative if u = 0. It is clear from Equation 10.9 that, given P 
andz, the Y, are independent with V,- ~  TN(v?"p, 1, Z j) .  W e now know exactly how to implement 
the DA algorithm. Given the current state, Xn = p, we simulate the next state, Xn+-|, by performing 
the following two steps:

1. Draw V|, ..., Ym independently such that V(- ~TN fy/ 'p , 1,Zy), and call the result y —
(y-1, ■■■,yra) r

2. Draw Xn+1 ~  N (p (y), {V TV ) ~ ' ).

See Robert (1995) for an efficient method of simulating truncated normal random variables.

Iti Hie next section, we describe the theoretical properties of the Markov chain underlying 
the D A algorithm.

10.2 P ro p e rtie s  o f the D A  M a rk o v  C h a in

10.2.1 Basic Regularity Conditions

In Section 10.1 we described how to construct and simulate a Markov chain, X, that has the 
intractable target, fx , as an invariant density. Unfortunately, without additional assump
tions, there is no guarantee that this chain will be useful for approximating expectations 
with respect to /V. Here is a simple example from Roberts and Smith (1994) that illustrates 
one of the potential problems.

Example 10.6

Suppose that fx(x) = ^ we take

y) = n [̂ (o,i )(x )J(o,i)(y) + ,[i,:^x)J[i,:)(y)]' 

then J k  f(x ,y )d y  = i/(Q,2)(x) and

f\\r (x ly) =  h\x {y\ *) = V i ) ( x^(o,D(y) + J[i,:)(x)/[i,2)(>/)-

Since the x-marginal of f(x ,y) is fx and simulation from the conditionals is easy, there is a DA 
algorithm based on f(x, y). However, this algorithm is useless from a practical standpoint because 
the underlyingMarkov chain is not irreducible. Forexample, suppose we start the chain atx0 =  4, 
and consider applying the two-step method to simulate X1. First, we draw V ~  (7(0, 1) and then, 
no matter what the result, we will draw X-\ ~  U(Q, 1). Continuing along these lines shows that the 
chain will be stuck forever in the set (0, 1). Hence, there is no sense in which the chain converges 
to fx .

If the Markov chain X is il'-irredudble, aperiodic and Harris recurrent, then the DA 
algorithm canbe employed to effectively explore the intractable target density,/x- When 
X satisfies these three properties, we call it Harris ergodic. Unfortunately,, a good bit of
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technical Markov chain theory must be developed before these conditions can even be 
formally stated (Meyn and Tweedie, 1993; Roberts and Rosenthal, 2004). To avoid a lengthy 
technical discussion, we simply provide one suffident condition for Harris ergodidty of X  
that is easy to check and holds for all of our examples and for many other DA algorithms 
that are used in practice.

Define a condition (which we will refer to as condition fC) on the Mtd k as follows:

k(x  | jc) > 0, for all x', x e X.

Condition K, implies that the Markov chain X is Harris ergodic (see, e.g. Tan, 2008). Infact, 
condition K. implies that it is possible for tlie chain to move from any point x e X to any 
"big" set in a single step. To make this prerise, let X. denote Lebesgue measure on X and let 
P(-, ■) denote the Markov transition function of tlie chain; thatis, for t e X and a measurable
set A,

P(x,A) =  Pr (X„+i e A|X„ =jc) =

Under condition K., if A is big in the sense that I  (A) > 0, then

k(x  | .*) dx1.
A

P(x,A) = k(x' | x) dx' > 0,

which means that there is positive probability of moving from x to A in a single step. Recall 
that

k(x‘ | jt) =

Clearly, if f(x , y) is strictly positive on X x Y, then condition K  holds and the Markov chain 
X is Harris ergodic. We now check that Hie Markov chains developed in the examples of 
Section 10.1 are indeed Harris ergodic.

Examples 10.1 and 10.3 (cont)

In Example 10.1, we have X = Y = R, while in Example 10.3, X = R, Y = R-|-. In both cases, 
f(x ,y) is strictly positive on X x Y. Hence, the Markov chains underlying the DA algorithms in 
Examples 10.1 and 10.3 are Harris ergodic.

Example 10.4 (cont)

The role of X is played by 0 = l x  R + and Y = . Note that the complete data posterior density
(10.S) is strictly positive for all ((H-,cf-), y) e 0  x Y. Hence, the chain X  is Harris ergodic.

Example 10.5 (cont.)

In this case, X = R P  and Y is a Cartesian product of m half-lines (R-|_ and R _ ), where the rth 
component is M-|_ if z(- = 1, and R _  if Zj = 0. It is clear that the joint density (Equation 10.9) is 
strictly positive on X x Y, and this implies that the Markov chain underlying Albert and Chib's 
(1993) algorithm is Harris ergodic.
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Even when/(:*, y) is not strictly positive on X x Y, it is still often the case that condition K  
holds,

Example 10.2 (cont.)

The joint density is given by fix, y) = 3x/(0 < y < x < 1), which is notstrictly positive on X x Y =
(0,1} x (0,1). However, we can show directly that condition fC holds. Indeed, for fixed x e (0,1), 
we have

Hence, k(x' \ x) is strictly positive for all x', x e (0,1) and Harris ergodicity follows. Actually, it 
is intuitively clear that the Markov chain has a positive probability of moving from any x e (0,1) 
to any set A C (0,1) with X(A) > 0 in one step. Indeed, to get from x to the new state, we first 
draw V ~  U (0, x), and then, given Y = y, the new state is drawn from a density with support 
(y, 1). Therefore, as long as the observed y is small enough, there will be a positive (conditional) 
probability of the new state being in any open set in (0, 1).

Itis not difficult to create examples of well-behaved DA algorithms for which condition K  
fails to hold. Fortunately, there are many general results available for establishing that X 
is Harris ergodic in such situations; see, for example, Roberts and Smith (1994), Tiemey 
(1994), Roberts and Rosenthal (2006) and Hobert et al. (2007). In Hie next subsection, we 
describe exactly what Harris ergodidty buys us.

10.2.2 Basic Convergence Properties

If X is Harris ergodic, then, no matter how the chain is started, the marginal distribution of 
X„ will converge to (the distribution assodated with) fy , and an analog of the strong law 
of large numbers (SLLN) holds. To make this precise, some additional notation is required. 
Define tlie / (-step Markov transition function as

so P 1 =  P. Also, let 4>{ ) denote the probability measure corresponding to fx, that is, for 
measurable A, (j>(A) = j Afx(x)dx. If X is Harris ergodic, then the total variation distance 
between Hie probability measures P" (:x, ■) and 4>(-) decreases to 0 as n gets large. In symbols,

fc(x'|x) Jr*(i -y2)/(0 < y < x)i(y  < x' < 1 )ciy

P"0r, A) =  Pr (X„ e A | Xo =  x),

||P"(jc, ■)-<>(■)II I  0 as/i.->do, ( 1 0 . 1 1 )

where

\\Pn(xr ) -<K-)|| := sup |PTI(x, A) -  <|>(i4)|.
/i
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Harris ergodidty is also suffident for the ergodic theorem, which is the Markov chain 
version of the SLLN. Let Ll (fx) denote the set of functions h : X —► ffi such that

IJ'W  | fx (x)dx  < oo,
.  x

and, for h e  Lk/x)/ define EjxU =  J x 1t(x)fxU'c)dx. The ergodic theorem iinpHes that, if g e 
L1 ( then, no matter what the distribution of Xo, we have

 ̂TT— 1
Sn -+ Efrg

■ 1 = 0

almost surely as n —>■ so; that is, g71 is a strongly consistent estimator of Efyg. The ergodic 
theorem justifies estimating Erxg with g u where Xo is any point (or has any distribution) 
from whichit is convenient to start the simulation An importantpractical question that this 
basic theory does not answer is "What is an appropriate value of u?" Tools for answering 
this question willbe presented in  Section 10.3. For now, we simply p oint out that all rigorous 
methods of choosing an appropriate (Markov chain) Monte Carlo sample size are based 
on a central limit theorem (CLT) for g }!. Assuming that J x£ 2(X> fc(X) <ix < oo, a simple 
suffident condition for the existence of such a CLT is that Hie Markov chain, X , converge 
to its stationary distribution at a geometric rate.

10.2.3 Geometric Ergodidty

Assume that X is Harris eigodic. Note that Equation 10.11 gives no information aboutthe rate 
at which the total variation distance converges to 0. There are important practical benefits 
to using a DA algorithm for which this rate is (at least) geometrically fast. Formally, Hie 
chain X is called geometrically ergodic if there exist a function M  : X —>■ [0, oo) and a constant 
p g  [0,1) such that, for all x e X and all n =  1 ,2, . . . ,

■ )-+(•)I <M (jOp". (10-12)

Unfortunately, Harris ergodidty does not imply geometric ergodidty. The most straight
forward method of proving that the Harris ergodic chain X is geometrically Harris ergodic 
is by establishing a certain type of drift condition, which we now introduce.

A function V : X [0, do)  is said to be unbounded- off compact sets if, for each p e R, Hie 
sub-level set ( i  e  X V(x) < fi) is compact. We say that a geometric drift condition holds if 
there exist a V : X ^  [0, co) that is unbounded off compact sets, and constants X e [0,1) 
and L e E  such that

E[V(X„+1) | X„ =  x] < -kV(x) +  L. (10.13)

The function Vis caUedtherfwyf/zHfrtrat. ]if(x ,y ) > 0 for all (x, y) e X x Y, then the existence 
of a geometric drift condition implies that X is geometrically eigodic (Tan, 2008). (See Meyn 
and Tweedie (1993, Chapter 15) for similar results that hold when f(x , y) is not strictly 
positive.) hi practice, establishing a geometric drift condition is simply a matter of trial and 
error (and a lot of analysis), We now provide some pointers on calculating the expectation 
in Equation 10.13.
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Note that the left-hand side of Equation 10.13 canbe rewritten as

E[V(X,i+i)|X„ = at] = Vix^kix' \x)dx>

V(x') dx'

. Jx
V(x,)fx\Y(x> yt/jdx'

(10.14)

Thus, the expectation can be computed (or bounded) in two steps. Tlie first step is to 
compute (or bound) the expectation of V (X ') with respect to/sqy(-1 y), call the result t{y). 
The second step entails calculating (or bounding) tlie expectation of e(Y) with respect 
to /y|y(-1 r). The fact that we are able to simulate straightforwardly from fx |y(jc | y) and 
fy\x{y I x) often means that these conditional densities are easy to handle from an analytical 
standpoint. Hence, itis usually possible to calculate (or, at least get sharp upper bounds on) 
expectations with respect to fx\r(x y) and/y|x(i/ | jc>. We now give two simple examples 
illustrating how to prove that a DA algorithm is geometrically ergodic by establishing a 
geometric drift condition

Example 10.3 (cont.)

Recall that f(x, y) is strictly positive on X x Y, so the drift technique can be used to establish 
geometric convergence in this example. Consider the drift function V(x) =  x 2 . For p < 0  the sub
level set [x e X : l '(x )  < P} is the empty set, for ft = 0 it is the set {0}, and for p > 0 it is a closed 
interval. Thus, 1/ is unbounded off compact sets. Recall that X  | V' = y  ~~ N(0, y _1 ). Hence, the 
"inner expectation" in Equation 10.14 can be evaluated as follows:

E[V(X')|y]=E[(X'r \y] = y  

Now, using the fact that Y | X = x ~  r (§ ,  4^+ 2 ) yields

E[l/ (Xn+1) | Xn = x] = E[ y '1 | x] = V  + t  = I  V(x) + %.
3 3 3 3

W e have established that Equation 10.13 holds with X. =  ̂ and/. = 5, and this shows that the 
Markov cham underlying this DA algorithm is geometrically ergodic.

In the toy example just considered, we were able to compute E[¥(X ,,+i) | X„ =  Jt] exacfly 
and, luckily, the final expression involved Hie function V(x) in exactly the right way. Estab
lishing geometric drift conditions in real examples is typically much more difficult, and 
often involves what Fill et a l (2000) describe as "difficult theoretical analysis." Geometric 
drift conditions have been established for the Markov chains underlying the DA algorithms 
in Examples 10.4 and 10.5 (Marchev and Hobert, 2004; Roy and Hobert, 2007), but these 
calculations are too involved to present in this chapter. The next example is still a toy exam
ple, in the sense that the intractable target density is univariate, but it does provide a nice 
illustration of the type of bounding that is required in real examples.
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Consider a simplification of the Student's t setup in Example 10.4 where the variance is known 
and equal to 1. In this case, the posterior density is an intractable univariate density given by

Example 10.7

where z = (z-|, ..., zm). Using the same missing data as before, the complete data posterior, 
y | z), is proportional to the right-hand side of Equation 1 0.S with a~ set equal to 1. Note that 

tt ([jt, y | z) is strictly positive o n X x Y  = 0 x Y  = R x  R ^ .  O f course, to run the DA algorithm, we
need to be able to draw from n (y  | (i, z) andfrom tc((j. | y, z), Recall that (1 = j3.<yr) = y  Dylli zjyj, 

(Since the data, z, is fixed, we suppress this dependence in the notation.) It is easy to show that 
[i\y, z  ~  /V(p.(y), y)  and that the y (-s are conditionally independent given (n, z) with

For notational convenience, we will denote the DA Markov chain as (instead of the usual
~^e of the DA algorithm is then given by

W e now show that this Markov chain is geometrically ergodic as long as v > 1 and m > 1/ 
(v — 1). The drift function we use is V(|i.) = (zi ~  l^)'- It 's easY to see that V is unbounded 
off compact sets. Indeed, fix  ̂e Ht and consider the sub-level set (n e R :  !/(>) < f)}, Let z = 
m_1 X)/=i zi■ If P < 2 /=i (z/ —z)2, then the sub-level set is the empty set, and if |i > |
(Zj —z)-, the sub-level set is a closed interval.

Let z* and z* denote the minimum and the maximum of the z;, respectively. Since |l(y ) 
is a convex combination of z lf .. ,,zm, it follows that |l(y ) e [z*,z*] for all y  e Y. The inner 
expectation in Equation 10.14 can now be bounded as follows:

m t  -fv+1)

| \x) = 7I{|/  | yt z) 7i(y | [I, z) dy.
Y

E[V '((x ')|y ,z ] = E | y , z

m
= Y  E[(z'_ 1 >,'z]

in in ^

= Y  va|t(z' - ̂  i y> zl + Y  { E[fz' - 1 y-z]\~
i n  n t

£ v a r [ n '| y ,  z ] + £  |z, -  E [V  | y, z] ) '
m m

/=1 (=1

m * ^
< — + m(z* -  z*)-y-
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Now, since the harmonic mean is less than or equal to the arithmetic mean, we have

rv. — 1 — m ' 'r  m „-'l

W e conclude that

1 . \ n
E[V'(M-r) I y,z] < +m(z* -Z*)-.

i=i

Therefore, as long as v > 1, we have

T/ 1 m a  | ■
E[V{iAn+1) | n n =\x] < E f - J 2  Yi~] + m(z* - z * )2)  |

L ( = 1  ^  -

m i= 1

I ✓ s'1  ̂ * •u ̂
— ---------- TT V (z (- -  |A )- +  ------------- +  m (Z *  -  z *  -m(y -  1) (v -  1)

m(v -  1) (v -  1)

W e have established that, when v > 1, Equation 10.13 holds with X. = ■ Thus, the Markov
chain is geometrically ergodic whenever v > 1 andm(\j — 1)>  1.

Of course, the fact that our analysis did not lead to a geometric drift condition for the (extreme) 
situations where « < 1 and/or m(v — 1) < 1 does not imply that the DA chain converges at a 
sub-geometric rate in those cases. Indeed, it may be the case that a more delicate analysis of 
EfV'fUn+i) | n n = n] would show that these chains are geometric as well. Or we might have 
to resort to changing the drift function. Unfortunately, there are currently no simple methods of 
proving that a DA chain is oof geometrically ergodic.

The drift method that we have described and illustrated in this subsection provides only 
qualitative information about the rate of convergence in the sense that, once (10.13) hasbeen 
established, all we can say is that there exist M  and p satisfying Equation 10.12, but we 
cannot say what they are. There are other (more complicated) versions of this method that, 
in addition to establishing the existence of M  and p, provide an upper bound on MU)PJ! 
that decreases to zero geometrically in n. These methods were developed and refined in 
a series of papers beginning with Meyn and Tweedie (1994) and Rosenthal (1995); for an 
overview, see Jones and Hobert (2001). Hie filial subsection of this chapter concerns CLTs 
for the estimator gn.

10.2.4 Central Limit Theorems

Harris ergodicity alone does not imply the existence of CLTs. However, as we now explain, 
if the DA Markov chain, X, is geometrically Harris ergodic, then there will be CLTs for
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square integrable functions. Let 1 2(/y ) denote the set of functions : X ->■ R such that

h2(x)fx (x)dx < CO.

Assume that g  e L2(/x) and define q  =  cov[g(Xo),#(Xfc)] for k e {1,2, 3 ,...} , where Hie 
covariances are calculated under the assumption thatXo ~  fx- For example,

f i  = f (g(x') -  Efxg)(g(x) -  Efxg)k{x' | x)fx (x) dx dx , 
: Jx '

where we have used the fact that Xo ~  implies that Xi ~  fx , so the expected value of 
#(Xi) is EfKg. Liu et al. (1994, Lemma 3.2) noted ttiat this expression canbe rearranged as 
follows:

ci = {g(x') -  Efxg)(g{x) -  Efyg)k{x' I x)fx(x) dx dx

x ..

(g(x') -  Efzg)(g{x) -  Efzg) fx |y(jc' \y)fc\xiy I ■*) rfy fx(x) dx dx

(£u'> -  E/xg)(#(x) -  E j^ fx ^ ix '  \y)fx\Y(x \y)fYiy)dxdxdi/

Iy [ fx ĝ{X) ~ 1 V) dx

v a r (E [fe (X ') -E /xS)| y ']),

fY(y)dy

where {X', Y!) ~ f(x ,y ) .  This shows that c\ > 0, hi fact, this result canbe used in conjunction 
with tlie reversibility of X to show that > 0 for all k  e {1,2, 3 ,...} .

Assume that X  is geometrically Harris ergodic and that# e L2( /x). As before, putg n —
h SC o 1# ^ ;). Define a 2 =  E+.,-#2 -  (Efx#)2 and k2 = <j2 +  2 ^ ^  c*. Results in Roberts and 
Rosenthal (1997) and Chan and Geyer (1994) imply that k2 < oo and that, as it -> oo,

(10.15)

This CLT does not require that Xo ~  fx —it holds for all starting distributions, including 
degenerate ones. We note that the reversibility of X  plays a major role in the existence of 
the CLT (10.15). In the next section, we explain how to consistently estimate the asymptotic 
variance, k2 But first, we briefly compare the estimators of Ejxg based on DA and classical 
Monte Carlo.

Let XpX|, . . .  be an i.i.d. sequence from /y. The classical Monte Carlo estimator of Efxg 
is := | If# e L 1 (fx ), then, by Hie SLLN, is a strongly consistent estimator
of Efyg. If, hi addition, g e I 2( fx), then standard results from i.i.d. theory tell us that, as
i i —>■ 30,

'/"(gn ~  Efxg) N( 0,<t2). (10.16)

If Ci /  0 (as will typically be the case), then k2/<j 2 > 1, so the asymptotic relative efficiency 
(ARE) of#* with respect to g7I is larger than one. Therefore, if it is possible to make a n iid ,
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draw from /y, and the computational effort of doing so is similar to the effort of simulating 
a single iteration of tlie DA algorithm, then tlie classical Monte Carlo estimator is to be 
preferred over the estimator based on the DA algorithm, hi the next section, we explain 
how these CLTs canbe used in practice to choose an appropriate Monte Carlo sample size.

10.3 C h o o s in g  the M o n te  C a r lo  S a m p le  S iz e

10.3.1 Classical Monte Carlo

We begin by describing how the Monte Carlo sample size is chosen in the classical Monte 
Carlo context. Assume that# e Ll (fx) and recall that the classical Monte Carlo estimator of 

 ̂Tf-=iS ^ i  >' where X*, X^, . . .  are ii.d. froni/x . The main motivation for using 
g* as an estimator of Efxg  is that g* converges to Efxg  almost surely as u. -s- oo. Obviously, 
in practice we cannot use an infinite sample size, so we must find a finite value of u sudi 
that the error in g* is (likely to be) acceptably small. To make this more precise/ suppose 
we are willing to live with ail error of size A. hi other words, we would like to be able to 
assert that the interval given by ̂  ±  A is highly likely to contain the true, unknown value 
of Efxg. As we now explain, this canbe accomplished through routine use of the CLT given 
in Equation 10.16.

Let <j 2 denote the usual sample variance of the g ( X * } ,

i=i

Basic asymptotic theory tell us that, since a2 is a consistent estimator of a2,

v s e - i » r f  * N m y

Thus, for large n, the interval g^ ±  26J1/y 7̂ will contain Hie unknown value of Ejxg  with 
probability (approximately) equal to 0.95. With this in mind, we can proceed as follows. 
Choose an initial sample size, say /(', and make ft' i.id. draws from /v. (Hopefully, n1 is 
large enough that d2, is a reasonable estimate of c 2 ) If the observed value of 2a;r'/V7? is 
less than A , then the current estimate of E i s  good enough and we stop. Otherwise, if 
2<j„'/%/H7 > A , then additional simulation is required. Moreover, the current estimate of a2 
can be used to calculate approximately how much more simulation will be necessary to 
achieve tlie stated precision Indeed, we require an n such that 26„/s//7 < A, so assuming 
that our estimate of a2 has stabilized, n > 4<t2,/A2 should suffice.

There are two major obstacles blocking the use of a similar program for choosing n in the 
DA context. First, as we have already seen, even when the Markov chain X  is Harris eigodic, 
Hie second moment condition, g  e L2( fx ), is not enough to guarantee that the estimator 
g  satisfies a CLT To be sure that CLTs hold for L2{ fx ) functions, the practitioner must 
either (i) employ a DA algorithm that is known to be geometrically ergodic, or (ii) establish 
geometric ergodidty of the DA algorithm in question. The second problem is that, even 
when the CLT in Equation 10.15 is known to hold, consistent estimation of the asymptotic
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variance/ k2, is a challenging problem because this variance has a fairly complex form and 
because the dependence among the variables in the Markov chain complicates asymptotic 
analysis. Consistent estimators of k2 have been developed using techniques from time 
series analysis and using the method of batch means/ but these estimators are much more 
complicated than a2, both practically and theoretically. Good entry points into the statistical 
literature on methods of estimating k2 are Geyer (1992), Jones et al. (2006), and Flegal et al. 
(2008).

There is no getting around the fact that establishing the existence of CLTs is harder for 
Markov chains than it is for ii.d. sequences. However, it is possible to circumvent Hie 
difficulties associated with consistent estimation of k2. Indeed, there is an alternative form 
of the CLT in Equation 10.15 that is developedby introducing regenerations into tlie Markov 
chain. The advantage of this new CLT is that consistent estimation of its asymptotic variance 
is very simple. The price we have to pay for this added simplicity is that the user must 
develop a iiiiiiorization condition for the Mtd Jf(-1 ■). Fortunately, tlie form of k lends itself 
to constructing a minorization condition. Before we can fully explain regeneration, and 
minoriz ation, we have to intro duce thre e new Markov chains that are all clos ely rela ted to X .

10.3.2 Three Markov Chains Closely Related to X

Recall from Section 10.1 that, for fixed x e X, tlie function | t) =  fx\Y(x' y')/V|x(}/ |-t)
is a joint pdf in (x^y1). Now, define k : (X x Y) x (X x Y) [0, co) as

h x ,i /\ x ,y )  =  1i(x',y' | x) =  fx\r(x' \y'}fY\x(:y' I ■*)■

For each fixed (x,y) g X x Y, k(x',t/ \ x,y)  is nonnegative and integrates to 1. Hence, Hie 
function k is an Mtd that defines a Markov chain, (X ,Y) = {(X„, with state space
X x Y. If the current state of the chain is (X„, Y?,} =  (x,y),  then the density of Hie next 
state, (Xn-i-i, Y„+i), is k(-, • | x,y).  Furthermore, the chain (X, Y) has invariant density f {x,  y), 
indeed,

| x ,y )f(x ,y )dydx  =  fx\Y(x' \ y')

=k\Y(x'\y')

h\x(y' I *)

f (x ,y !)dx

. J Y
f(x ,y )d y dx

=fx\Y(x'\y')fY{y')
= f { x , y !).

We refer to (X, Y) as the "Gibbs chain" because it is, in fact, just the Markov chain that is 
induced by the two-variable Gibbs sampler based on the joint density/U,y). Tlie analogue 
of condition K  for the Gibbs chain is condition K:.

k(x',y' | „r,|/) > 0  for all [x,y), ix'st/1) e X x Y .

Condition fC iniphes that tlie Gibbs chain is Harris eigodic. A sufficient condition for 
condition PC is that/U,y) > Ofor all (x,y) g X x Y.

The reader has probably already noticed that k(x', y \ x,y) does not actually depend ony. 
hi terms of the Markov chain, this means that Hie future state, (X„-|-i, Y„+i), depends on tlie
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current state, (X,.,, Y„}, only through X„. This fact can be used to show that the conditional 
distribution of X„+i given (Xo, Xi, . . X„) does not depend on (Xo, Xi, . . . ,  X„_ i). In other 
words, the sequence X =  {X,,|?“  Q is itself a Markov chain on X. Moreover, its Mtd is

that is, the marginal sequence X =  {X„ }^ 0 from the Gibbs chain is the original DA Markov 
chain, (This is why it made sense to use the symbol X?! to denote the ^-coordinate of Gibbs 
chain.) It follows that we can view our estimator, gn =  i r 1 as being an estima
tor based on the Gibbs chain. Formally, gn = n-1 Yf), whereg(x,y) = g(x). This

easier because, unlike k, k  is a known dosed-form function.
Concerning simulation of the Gibbs chain, recall that our two-step procedure for Sim

ula ting one iteration of the DA algorithm involves drawing from the joint pdf | .*)
and throwing away the ^-coordinate. In other words, the two-step procedure given in 
Section 10.1 actually simulates the Gibbs chain and just ignores the ^-coordinates.

Not surprisingly, the marginal sequence Y =  {Y , 0 from the Gibbs chain is also a 
Markov chain. This chain lives on Y and its Mtd is

It follows that Y can be viewed as Hie Markov chain underlying a DA algorithm for the 
target den sit}’ fy  (y), and, as such, Y is reversible with respect to fy. There is actually an 
alternative estimator of Efxg based on Y that we now describe. Define

and note that J Yg(y) fy(y) = j x g (x )fx W  dx =  E/Xg- Thus, if we can write g in dosed 
form, which is often the case in practice, then we can compute the alternative estimator of 
EfxS given by

If Y is Harris ergodic, then, like g n, the estimator {10.17) is strongly consistent for E',fx g . 
In fad, Liu et al (1994) proved that, if Xo ~ fx  and Yo ~  fy , then tlie alternative estimator 
has a smaller (small sample) variance than gn. (Comparing variances is appropriate here 
since, if Xo ~  fx  and Yo ~  fy , then both estimators are unbiased,) We note that the methods 
described below for computing a valid asymptotic standard error for g n can just as easily 
be applied to the estimator (10.17).

Finally, consider the Mtd given by

Y . Y

correspondence allows us work with the Gibbs chain instead of X, which turns out to be

*Y(yV) =  M x W  I x)fx\y(x Iy)dx.

£(J/) =  gW fx\y(x\y)dx,

7 1 -1

(10.17)

k iy 'rx 'ly^x ) = h\x(V  |.x')/x|YU' \y),
and denote the corresponding Markov chain by (Y ',X ') = {(Y',, X '/ )}^ . Of course, (Y ',X ') 
is just the Markov chain induced by the two-variable Gibbs sampler io r/ u ,y ) with the
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variables in the opposite order. The chain (Y', X ') behaves just like (X, Y). Indeed, f ix ,y )  
remains invariant and, by symmetry, the marginal sequences [XJJJjlg and {Y 'J^ q  are equiv
alent (distributionally) to X =  {X„ and Y =  J,t̂ =0- Consequently, we can also view
our estimator, g n = n.~1 y^^^glX,'), as being an estimator based on Hie chain (Y', X '), that 
is, g  ̂ =  i r 1 g (Y’(', X ■}, where #(j/,x) =  g (.*). hi some cases, it is more convenient to

work with k than with k, Ail important fact that will be used later is that all four of tlie 
Markov chains discussed in this section (X, Y, (X, Y) and (Y', X ')) converge at exactly tlie 
same rate (Dia corns et al., 2008; Roberts and Rosenthal, 2001). Therefore, either all four 
chains are geometrically ergodic, or none of them is. We now describe tlie minorization 
condition and how it is used to induce regenerations, which can in turn be used to derive 
the alternative CLT.

10.3.3 Minorization, Regeneration and an Alternative CLT

We assume throughout this subsection that the Gibbs chain is Harris ergodic. Suppose 
that we can find a function s : X — [0,1) with E/Xs > 0 and a joint pdf rf : X x Y -> [0, oo) 
such that

k(x' ,y' | x,y) > s(Y) dix , y )  for all (x,y), ( x , if ) e X x Y. (10.18)

Equation 10.18is called a niiuorization.condit.iou. (Jones and Hobert, 2001; Meyn and Tweedie, 
1993; Roberts and Rosenthal, 2004). Here is a simple example.

Example 10.2 (cont)

Here we have X = Y = (0,1), and we can develop a minorization condition as follows:

k (x ’, /  | x,y) = fx\Y(x> I / ) fY\x</ I *> 

:x j1 v< 1
-  / (/  < xf < 1) — / (0 < yf < x < 1)

1 —y - x

2x' 1
> -----? r i(y> < x' < 1) -  1(0 < y < 0 .5 )/{Q. 5 < x < 1)

1 "x-  -  ;(0.5 < x < 1 )----- - ! ( /  < x' < 1) 1(0 < /  < 0.5)
x 1 -  y'-

—  1(0.5 < x < 1) 
x̂

Ax'
< 1 )/ (0 < / < 0 .5 )

= s(x) d(x!, / ) ,

where we have used the fact that

o 1 -  y
2x 1

- I(y  < x < 1) 1(0 < y  < 0.5) dx dy — -.

Note that the density d is not strictly positive on X x Y,
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The minorization condition (10.18) canbe used to represent the Mtd ft as a mixture of two 
other Mtds. First, define

, , *■(*',j/' \x,y) -  s(3t)ri(jt',y')re.i/ I*.y> =------ ------------ ,
and note that r(x',y' | x, y) is an Mtd. Indeed, Equation 10.18 implies that r is nonnegative, 
and it is also dear that J x J Y Mx', if  \x,y) dy' dx' =  1. We can now express ft as

k(x,,y'\x,y)=s(x)(1(x',y') +  (1 - s ( j ( ) ) f ( .r 'y \x,y). (10.19)

If we think of s(„r) and 1 -  six) as two fixed numbers in [0,1] whose sum is 1, then the
right-hand side of Equation 10.19 canbe viewed as a mixture of two Mtds, dix'.i/) and
r{x' ,y' | x,y). Since d(x',yr) does not depend on (x, y), the Markov chain defined by d is 
actually an i.i.d. sequence, and this is the key to introducing regenerations. Technically 
speaking, the regenerations do not occur in the Gibbs diain itself, but in an augmented 
Markov chain that we now describe.

For {x,y) t X x  Y, let/i(S | (x,y)) denote a Bemoulh(s(.*)) probability mass function; that 
iS//i(l | (Jf,y)) = s(.r) and/i(01 (*,#)) =  1 -  s(jt). Also, for (;*', y"), (x ,y ) £ X x  Y and8 <= {0,1}, 
define

f l i ix ’/y') 15, U,v)) = d (x ',y ')ia  =  1) +  y' | jc, j/) Z(S =  0). (10.20)

Note that/v is a pdf in Finally, define

^((Jt',y '),5y|(jc,i/),5) =fi(&' \ (x ,y ))fi((x ,y>) \br,(x/y)). (10.21)

Now; kB is nonnegative and

^ 2  hs{ (x ,y ,),b' | (x/in ,b)dx: dy* =  ^  /i(5' | (x,y)) =  1.
S'e(0,l}J y J x  5'e {0,l(

Therefore, fts is an Mtd and tlie corresponding Markov chain, which we denote 
by ((X, Y), 6) = {(X„, Y„), lives on (X x Y) x {0,1}. This is called the split chain
(Nummeliii, 1984, Section 4.4).

B efore we eluddate tlie regeneration properties of the split chain, we describe the relation
ship between the split chain and the Gibbs chain. Note that ks does not actually depend on 
S. Thus, arguments similar to those used in Section 10.3.2 show that the marginal sequence 
{(X„, Y„) } ^ Q from the split chain is itself a Markov chain with Mtd given by

Jr6((jc',y'), 1 1 (x,y), S) + ks((x',y ), 0 1 (x,y), S)

= /i(l I (x,y))f2{{x',y!) 11, {x,y)) + fi(0\ {x ,y))fi((x'ly>) | 0, (x/y))

=  s ix W x f y') 4 - ( 1  -  s ( j c ) )  i 'C t ', j/ ' | J t ,y )

= k(x ’, i /  | x, y).

We condude that the marginal sequence {(X„, Y„) } ^ 0 from the split diain is (distribution
ally) equivalent to the Gibbs chain. Moreover, the split diain inherits Harris ergodidty from
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the Gibbs chain (Nmnmelin, 1984, Section 4.4). As before, we can view the estimator gn as 
being based on the split chain.

The split chain experiences a regeneration every time the binary component visits the set 
{1}. To see this, suppose that we start the split chain with &o = 1 and (Xo, Yq) ~ d{-, ■). It is 
dear from Equations 10.21 and 10.20 that, no matter wliat the value of the current state, 
((X„,Y„), 8„), if 5„+i = 1 then (X„+i, Y^+i) ~  d(-, ■) and the process stochastically restarts 
itself; that is, the Markov chain regenerates. We now use Hie regenerative structure of Hie 
split chain to recast our estimator of Efyg in such a way that i.i. d. theory can be used to 
analyze it. This leads to an alternative CLT whose asymptotic variance is very easy to 
estimate.

Let to, t i ,  t.2j . ■. denote the regeneration times' that is, the random times at which the split 
chain regenerates. Then to = 0 and, for t =  1, 2,3, . . . ,  we have

Tf = mill {/ > Tf_i : 5, =  l}.

This notation allows us to identify the "tours" that the split chain takes in between 
regenerations:

| ((^Tf_!, )/ ■ ■ ■, ((^Tj—1/ T̂f—l) :

These tours are independent stochastic copies of each other, and hence standard techniques 
from ii.d. theory (such as the SLLN and the CLT) canbe used in the asymptotic analysis of 
the resulting ergodic averages. In other words, the regenerative structure that we have intro
duced allows us to circumvent (to some extent) the complications caused by the dependence 
among the random vedors in the Markov diain.

Consider running the split chain for R tours; that is, the chain is started with So = 1 and 
(Xo,Yo) ri(-, ■) andisrununtiltheRthtiiiiethataS,, =  1. (Some practical advice concerning 
simulation of the split chain will be given later.) For t =  1,2, . . . ,  R, define Nt =  xt -  Tt- l,  
which is the length of tlie fthtour, and St =  1 g(X,j. Because the tours are independent
stochastic copies of each other, the pairs (Ni, Si), . . . ,  (Nr, % ) are i.i.d. The total length of 
the simulation is Nt = tr, which is, of course, random Our estimator of Ef,Ag  will be

Clearly, Hie only difference between gp and the usual eigodic average, gn, is that here, 
the sample size is random. However, t r  —> so almost surely as R —>■ oo and it follows 
that g F is also strongly consistent for Efxg as R oo. Tlie advantage of gF over the usual 
ergodic average is that it canbe expressed in terms of the i.i.d. pairs {(Nt/ S f } }^ . Results in 
Hobert et al. (2002) show that, if the Gibbs chain (or, equivalently, the DA Markov chain) is 
geometrically ergodic and E/x | g | 2+11 < oo for some a > 0, then as R —» oo,

^ f e - E ^ ) - N ( 0 , V 2) ,  ( 1 0 - 2 2 )

where
_  E [ (S i  -  N iE ^ g )2]

v — ----- n2
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Note that this asymptotic variance is written in terms of a single tour, (Ni, Si). Results in 
Hobert et a l (2002) show that tlie geometric ergodidty of tlie Gibbs chain and the "2 + or 
moment condition on# together imply that EM2 and ES  ̂are bothfinite, Once these moments 
are known to be finite, routine asymptotics can be used to show that

is a strongly consistent estimator of y2 a s R  oo. Note the simple form of this estimator.
A couple of comments are in order concerning the two different CLTs (10.22 and 10.15). 

First both CLTs are based on the assumption that the DA Markov chain, X, is geometrically 
ergodic. However, while Equation 10.15 requires only the usual second moment condition, 
E/Xg 2 < co, Equation 10.22 requires the slightly stronger condition that Efx | g \ 2+a < oo for 
some a  > 0. Second, the two asymptotic variances are related via tlie formula k2 =  y2/E,xs 
(Hobert et al., 2002). This makes sense intuitively because Efxs is the average probability 
of regeneration (under stationaiity) and hence 1/Efxs seems like a reasonable guess at the 
average tour length.

We conclude that, if X is geometrically ergodic and the "2 +  a" moment condition on# is 
satisfied, then we can employ the DA algorithm in the same way that classical Monte Carlo 
is used. Indeed, we can simulate R1 tours of tlie split chain, where R ' is some initial sample 
size. (Hopefully, R' is large enough that y|, is a reasonable estimate of y2 ) If 2 y /' ŷ R7 < A, 
then the current estimate of Ejyg is good enough and we stop. Otherwise, if 2y!;./ \/R7 > A, 
then additional tours must be simulated.

10.3.4 Simulating the Split Chain

Exploiting the techniques described in tlie previous subsection in practice requires the 
ability to simulate the split chain. The form of ke actually lends itself to the sequential sim
ulation technique described in Section 10.1. If tlie current state is ((X,,, Y,,), 5,,) =  ((.*, v), 6), 
then the future state, ((X,l+i, Y„+i), 6„+i), canbe simulated as follows, First, draw S„+i ~  
BemouHi(s( f  )) and then, conditional on 5,l+ i =  S', draw (X„+i, Y,l+ i) from

that is, if S' = 1, draw (X„+i,Y„+i) — r/(-, ■), and if 5' =  0, draw (X„+i, Y„+i) — f(-, ■ | x,y). 
Here is an example where this method is viable.

Example 10.2 (cont.)

Recall that we developed a minorization condition of the form (10.18) fo r this example earlier m 
this section. W e now verify that it is straightforward to simulate from d(: , ■ ) and from r(-, ■ \ x, y). 
First, it is easy to show that if (U, V) ~  d{-, ■), then marginally, V is U(0, 0.5), andthe conditional 
density of U given V = v is f;qy(iv| v) = ~u * l(y  < u < 1). Hence, simulating from d is easy.

Now consider r. Since, s(x) = 0 when (0,0.5), we must have r(V , y' \ x,y) = k(x', y' | x, y) 
when x e (0,0.5). On the other hand, when x e (0.5,1), then routine calculations show that

K £ f = l ( S t - £ RNt)2

£  ((-,■> I s', (x,y))

r(x',y'\x, y)
(1 - y ' : ) (x-0.5)

/(y' < x' < 1) /(0.5 < y' < x ),
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and, in this case, it is easy to show that if {U, V ) ~  r(-, ■ | x,y), then marginally, V is (J(0.5,x), 
and the conditional density of U  given V = v is fx\y(u I v), so it is also easy to draw from r. Note 
that the supports of d(-r ■) and /■(■, ■ |x, y) are mutually exclusive. W e conclude that the sequential 
method outlined above can be used to simulate the split chain in this example.

Ill the toy example just considered, it is straightforward to simulate from >■(■, ■ | x, y) 
However this will typically not be the case hi real examples where Mx',y' \x,y) is a 
high-dimensional, complex Mtd. Fortunately, Mykland et a l (1995) noticed a clever way 
of rireuinveiitiiig the need to draw from r. Their idea amounts to using the sequen
tial simulation technique, but in the opposite order. Indeed, one way to draw from 
<X„-n,Y„+i),S„+i | (X„,Y„) is to draw first from (X„+i,Y„+i) | (X,„ Y„) and then from 
8?i+i I (X,1+i, Yn+i), (X,,, Y„). Alittle thought reveals that these two steps are simple and 
do not involve drawing from r. First, we established above that (X„+i, Y,i+i) | (X„, Y„) = 
(i, y) ki-, ■ | jc,y), so this step can be accomplished by simulating a single iteration of the 
Gibbs chain (by drawing from ff\x and then from/x|y). Furthermore, given (X,„ Y„) and 
(X„4-i, Yti+i), Sji-i-i has a Bernoulli distribution with success probability given by

P r (W l = 1 1X,3 =  x,Y„ = y ,X n+1 = x',Yn+l = y ‘) =  s} ^ dix’' ^  . (10.23)
kix'/y^x/i/)

Here is a summary of how Mykland et al s (1995) method is used to simulate the split 
chain. If Hie current state is (X,„ Y„> = (x, y), then we simply draw (X„+i, Y„+i) in the usual 
way, and then we go back and "fill in" tlie value of 5„+i by simulating a Bernoulli with 
success probability (10.23). Even though we only draw from d once (at the start) and we 
never actually draw from r at all, there is a regeneration in tlie chain each time =  1. In 
fact, we can even avoid the single draw from d (although, even in real problems, it is usually 
pretty easy to draw from d). Starting tlie chain from an arbitrary point, but then throwing 
away everything from the beginning up to and induding the first Bernoulli that equals
1, is equivalent to drawing (Xo, Yo) ~  rf(-, - ). Finally, note Hie rather striking fact that Hie 
only difference between simulating the split chain and the Gibbs chain is a single Bernoulli 
draw per iteration! hi fact, if computer code is available that runs tlie DA algorithm, then a 
few minor modifications will yield a program that runs the split chain instead. Here is an 
example illustrating the use of Equation 10.23.

Example 10.2 (cont.)

If the nth and (n + 1)th states of the Gibbs chain are(X„, Yn) = (x, y) an d (X „+1, V"n+1) = (x', y '), 
then it must be the case that x, x' e (0, 1) and y' e (0, m in{x,xf}). Now, applying Equation 1 0.23, 
the probability that a regeneration occurred is

Pr (Sjj-h = 1 I X„ = x ,Y „ = y, Xn+1 = x', Yn+l = y ') = 1(0.5 < x < 1) /(0 < /  < 0.5).

In hindsight, this formula is actually "obvious.'" First, ifx f  (0.5,1), then s(x) = 0, and regeneration 
could not have occurred, Likewise, if y ' f  (0,0.5), then d could not have been used to draw 
(^n-H < Yfi+l) so, again, regeneration could not have occurred On the other hand, if x e (0.5, 1) 
and y ' e (0, 0.5), then there must have been a regeneration because r(-, ■ | x, y) could not have 
been used to draw (Xn+-|, v W i) '

In the next section, wTe give a general method of developing the minorization condi
tion (Equation 10.18).
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10.3.5 A General Method for Constructing the Minorization Condition

The minorization condition for Example 10.1 was derived in a s ome what ad / toe maimer. We 
now describe a general re ape, due to Mykland et al. (1995), for constructing a minorization 
condition. This tedmique is most effective when fix , y) is strictly positive on X x Y. Fix a 
"distinguished point" e X and a set D c  Y. Then we can write

Fortunately, the value of c is not required in practice. The success probability in 
Equation 10.23 involves s(jt) andrf(jt',y') only through their product, so c cancels out. Fur
thermore, it is possible to make draws from dix' ,y') without knowing the value of c. We 
first draw Y' from its marginal density, c~lfy\x{y’ I x-^loiy'), by repeatedly drawing from 
fy\x(-1 **) until the result is in the set D. Then, given Y' = y ,  we draw X' from/jqyt-1 ]/')■ 

Since the asymptotics described in Section 10.3.3 are for large R, the more frequently 
the split chain regenerates, the better. Thus, in practice, one should choose the point x* 
and the set D so that regenerations occur frequently. This can be done by trial and error. 
In applications, we have found it useful fix x* (at a preliminary estimate of the mean of 
fx )  and then vary the set D. Note that, according to Equation 10.23, a regeneration could 
only have occurred if y' € D, so it is tempting to make D large. However, as D gets larger, 
six) becomes smaller, which means that the probability of regeneration becomes smaller. 
Hence, a balance mustbe struck. For examples, see Mykland et al. (1995), Jones and Hobert 
(2001), Roy and Hobert (2007), and Tan and Hobert (2009). We now provide two examples 
illustrating Mykland et al/s (1995) method.

Example 10.3 (cont.)

Recall that X \ Y = y ~  N(0, y ~ 1) and V" | X  = x f (£ ,  + _). Thus,

k(x',y\ x,y) = fx\r(x'\y!)fy\x{y' I■*)

fx\Y(x' \y')fY\x<y' Ix*)Id(i/)

/yix(J/|*) 1 1\fxiyC*'\y')fY\x(y'

where

c = fx\Y(x\y)fY\x(y\x*)iDty) forty  = fY\x(y\x*)(ty-
. D

Thus, we have a minorization condition k(x',y' \ x, y) > ${x)d(x', y') with

fy\x(y I*) 
fv\x(y l ■**)
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So if we take D = [d-\, & ], where 0 < tf| < d? < 00, we have

V6 D

Thus,

Pr (8n+1 =  1 | Xn =  x, Yn = y, Xll+ i = x', Yn+] = / )

_  s{x) d(x', y')

Jr(x', y‘ | x, y)

A draw from d(x', y') can be made by drawing a truncated gamma and then a normal.

Here is a more realistic example.

Example 10.4 (cont.)

The variable of interest is ((j., t r ) ,  which lives in X = R  x R+, and the augmented data, y, live in

where the conditional densities on the right-hand side are defined in Equation 10.6 through 10.8. 
Fix a distinguished point y* e Y and let D = [d], dz] x [c/3, c/4] where —oo < d] < dz < 0 0  and
0 < c/3 < c/4 < 00. Now, letting ys denote the sum of the components of y*, we have

jt(h. n I y<z)
| y*,z)

Y = K™. In order to keep the notation under control, we use the symbol r| in place of©-. In this 

example, it turns out to be more convenient to use k, which is given by

k(y', (^ ', V) I y. 1)) = * ( /  I I 7, z ) ^ 1, t]11 y, z),
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where Q ((i; y ,  y#) is a quadratic function of (a whose coefficients are determined by y  and y#. Now 
co n sid er minimizing the exponential over (|i, rj) 6 [c/-|, c^] x [tfj, c/4]. Let (i denote the maximizer 
o f Q (n ; y ,  y*) over n e [d\, cf;], which is e a sy  to compute o n c e  y  and y *  are specified. Clearly, 

if Q (|I; y,  /*) >  0, then the exponential is minimized at ((i, ri) =  (|i, c/3 ). On the other hand, if 
Q fe  y, y*) <  o,  then the mmimizer is (11, m) =  (ji, d^).  Let r\ = d$ if Q ((I; y , y*) > 0 a n d  c/4 if 
Q(V-',y,y*) < 0- Then we can write

s(v) = c  inf
(U,il)e[di,rf:]x[d3,di]

= c v T / y 5- (yn ^ e , j _ _ !  }
\y*,z) V F s x r s S 2 ^ ) /  1 -n I '

and

d( / ,  Gi',n')) =  I \x',\\,z)v:(\k’ ,\{\ y„,z)/D{n', »/)■

Putting all of this together, if the nth and (/i+ 1)th states of the Gibbs chain are (Xn, Yn) = 
((H ,r|),y ) and (Xn+i, Yn+ i) = ((|x ',n '),y '), then the probability that a regeneration occurred 
(i.e. that Sn+-| = 1) is given by

s(y) cf(/,([i',V))

h y1, (m-W)I y, (M-. n>)
inf

7I(|1, ti | y , z )

_ (n,n)e[tfi,d;]x[d3,d4] Tt((l, ri | y*,z)_
ti' | y*, z)

1 1= exp | -  _ Q (jI;y ,y *) + _ Q ( (i/;y,1,,y)

Id ( 'n/)

In the final section of this chapter, we describe a simple method of improving the DA 
algorithm.

10.4 Im p ro v in g  th e  D A  A lg o r ith m

Suppose that the current state of Hie DA algorithm is X„ = x. As we know, the move to 
X„+i involves two steps: draw Y ~  fy\x(-1 x) and then, conditional on Y = y, draw7 X„+i ~  
fx\Y(-1]/)- Consider adding an extra step in between these two. Suppose that, after having 
drawn Y =  y  but before drawing X„+i, a random move is made from y  to a new point 
in Y; call it Y'. Then, conditional on Y' =  y', draw X„+i — fe|Y(■ I]/')- Graphically, we are 
changing tlie algorithm from X Y X' to X -*■ Y Y’ -v X'. Of course, this must all 
be done subject to the restriction that fx  remains invariant. Intuitively, this extra random 
move within Y should reduce the correlation between XJ; andXTI+i, thereby improving the 
mixing properties of the DA Markov chain. On the other hand, the new algorithm requires 
more computational effort per iteration, which must be weighed against any improvement 
in mixing. In this section, wTe describe techniques for constructing relatively inexpensive 
extra moves that often re suit in dramatic improvements in mixing. Here is abrief description 
of one of these techniques.

Suppose that G C and that we have a dass of functions tg : Y Y indexed by g e G. 
hi Section 10.4.4 we show that, if this dass possesses a certain group structure, then there 
exists a parametric family of densities on G, indexed by )/ e Y—call it % ig',y)—that can be 
used to make the extra move Y —> Y'. Itproceeds asfollowTs. GivenY = y, drawG ~ £(• ;y),
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call the result g, and set Y’ = tg fy). In other words, Hie extra move takes y to the random 
point Y' =  tcAy) where G is drawn from a distribution that is constructed to ensure tliat /y 
remains invariant. Typically, d is small, say 1 or 2, so drawing from $(- ,y) is inexpensive. A 
potential downside of small d is that, for fixed y, the set { ( y) : # e G} is a low-dimensional 
subset of Y (that indudes tlie point y). Tims, the potential "shakeup" resulting from tlie 
move to Y' = fc,(y) may not be significant. However, it turns out that, even when d = 1, 
this shakeup often results in huge improvements. We now begin a careful development of 
these ideas.

10.4.1 The PX-DA and Marginal Augmentation Algorithms

Recall that our DA algorithm is based on the pdf/U,y) whose -marginal is/v. As above, let 
G c  and suppose that we have a dass of functions ts  : Y Y indexed by g e G. Assume 
that, for each fixed#, h  (y) is one-to-one and differentiable iiiy. Let Js (z) denote the Jacobian 
of the transformationz = C 1^), so, for example, in the univariate case, ]s (z) = ^ ts (z). Note 
that

yi) \Js (y)\dy = f(x ,z )d z  = fx{x). (10.24)

Now suppose that w : G [0, oo) is a pdf and define/*1") : X x Y x G [0, oo) as follows:

f iw\x,y,g) \Jgty)  I (10.25)

It is dear from Equation 10.24 that/ 1™1 (x, y, g) is a pdf whose jt-maiginalisjxfjc), and hence 
the pdf defined by

f ze](x ,y ,g)dg

also has/x as its .r-marginal. Thus, if straightforward sampling from/-^ (.r 11/) and/j^ (y \ x) 
is possible, then we have a new DA algorithm that can be compared with the one based 
on f(x ,y ). (For tlie rest of this chapter, we assume that all Markov chains on X are Harris 
ergodic.) As we will see, it is oftenpossible to choose tg and w in such a way that there is little 
difference between these two D A algorithms in terms of computational effort per iteration. 
However, under mild regularity conditions that are described below, the new algorithm 
beats the original hi terms of both convergence rate and ARE. The idea of introducing Hie 
extra parameter, g, to form a new D A algorithm was developed independently by Meng and 
van Dyk (1999), who called it marginal augmentation, and Liu and Wu (1999), who called it 
parameter expajided-dataaiigiiientaiion (or PX-DA). We find Liu and Wu's (1999) terminology 
a little more convenient, so we call the new DA algorithm based on f (wHx,y) a PX-DA 
algorithm. Here is a simple example.

Example 10.3 (cont)

Set G = R + and let fg(y) = gy. If we take w(g) to be a r(a, p) pdf, then we have 

f {w){xryrg) = f(x,tg(y)) \jg(y) I w(g)

- J =  (gy)ir- exp | -  g y (  ̂  + : )  ) /R+. (y )] (g)
r(a )

ga 1 expl-gPJfj (g)
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It follows that

f {wUx,y) = Wwi , 4p“ r S + af^ k x , y, g) dg = -----1 y ?-
. r(a)v^rt Kt + 1)+i>

-(5/2+a)

Accordingto the theory above, every (a, p) e M.-|_ x K.-|_ yields a different version of f^w\x, y) and 
every one of them has the Student's f density with 4 degrees of freedom as its jc-marginal.

Now consider the conditional densities under f^w>(xr y), It is easy to show that 1 y) is a

scaled Student's f density and that fy^i- | x) is a scaled F density. In fact, if the current state of 
the PX-DA Markov chain is Xn = x, then the next state, Xn+i, can be simulated by performing 
the following two steps:

1. Draw U from the F distribution with 5 numerator degrees of freedom and 2a denominator
de grees of freedom, and call the realized value u. Then set y = ,° 1 ct(x--H) it.

2. Draw V from the Student's f distribution with 2(a + 2) degrees of freedom, and set Xn+i =
h-tY+V v 

V >'<“+-) '

(Note that Step 2 is as difficult as drawing directly from the target pdf, fx, which is a Student's f 
density, but keep in mind that this is just a toy example that we are using for illustration.) W e now 
have infinitely many viable PX-DA algorithms— one for each (ct,P) pair, This raises an obvious 
question. Are any of these PX-DA algorithms better than the original DA algorithm, and if so, is 
there a best one? These questions are answered below.

Ill tlie toy example just considered, tlie conditional densities fy ^  have standard
forms. Unfortunately, in real examples, it will typically be impossible to sample direcdy 
from (or even compute) these conditionals. However, by exploiting the relationship between 

and f  wHx, y ,g), it is possible to develop indirect methods of drawing from

and f^ r  that use only draws from  /x|Y, Jy\x, n?(g) and one other density. (Recall that we 
have been operating since Section 10.1 under the assumption that it is easy to sample from 
fx\Y and/i |\',) We begin withfy^Ay | x). Note that

X|Y

r f
^ x ( y i jr> =

(x ,y ,g)dg
fx (x )

f j X ' W )
fx(x)

(10.26)

fY\x(tg(:y)\x) |/4(y)| w{g)<ig.
J G

Now suppose that Y' ~  fy\x(-1 ■*)/ G ~  w (-), and Y' and G are independent. Then the inte
grand in Equation 10.26 is the joint density of (G ,Y ) where Y = ^ 1(Y'). Consequently,
Y =  f^ tY ') has density/y^t- x ). This provides a simple method of drawing f r o m ^ J (■ | .*). 
Indeed, we draw Y’ and G independently from/y|x(-1 Jt) and ?(?(■) respectively, and then 
take Y =  ^ 1(Y').

Sampling from/^'y is a little trickier. Clearly,

Aw)

f x |Y(-* I]/) — fx,G\ y(xfg  ly) dg — fy  | y;G •-* \ lJ '&) fa  I Y ̂  Iv1 rig
(ai) Aw)
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Thus, we can use the sequential simulation technique from Section 10.1 to draw from 
| v) as follows. First, draw G •— /g”'y (' IV1 and then, conditional on G = #, draw 

X — /j|'y G(- y,g). But now the question is whether we can draw from /i 

It is actually simple to draw froni/^’p{‘i’y g because
/ ■(ui) 

G| y a n d  f x \ Y ,G ‘

fx\Y,G('X\V>S) ~
f tw)(x,y,g) _  f(x , tg(y)) \Jg (y) w(g) 

j xf {w]{x,y,g)dx fy(ts {y)) \Jg (y) \ w(g) =  fx\Y{x I (y))

hi otlier words, drawing from /̂ “’y G(- ly,#) is equivalent to drawing from /V|Y( ■ | tg U/)) 
Now,

j y. f w](x/y ,g )dx  
Jg  J J [w)(x,y,g)t1xdg

/W (*,y ,g)dx  =  f Y(tg{y)) |/̂ (y)| w(g).

There is no simple trick for drawing from/G™y, Moreover, at first glance, sampling from 
the normalized version of/y(fg(i/)) |/̂ (y) | ii>(#) appears challenging because this function 
involves/y, from which it is impossible to sample. (Indeed, if we could draw directly from 
fy , then we could use the sequential simulation technique to get exact draws from the target, 
fx , and we would not need MCMC!) Fortunately, g  typically has much lower dimension 
thany and in  such cases it is often possible to draw from y (# \y) despite the intractability 
of /y . Hence, our method of drawing from/^y (■ | y) is as follows. Draw G — /Ĝ y (■ | y) and
then, conditional on G = g, draw X ~  /V|y( ■ I tg(y))■

As we know from previous sections, performing one iteration of the PX-DA algorithm 
entails drawing from /y^C-1 and then from/^'yi - |y). Liu and Wu (1999) noticed that 
making these two draws using the indirect techniques described above canbe represented 
as a three-step procedure in which the first and third steps are the same as the original DA 
algorithm Indeed, if the current state of the PX-DA Markov chain, is X,£ =  x, then we can 
simulate X„+i as follows.

ONE ITERATION OF THE PX DA ALGORITHM

1. Draw Y ~ fy\x(-1 ■*), and call the observed value y.

2. Draw G ~  i p ( - ) ,  call the result#, then draw G' 
and finally set j/' = tg(t~l (i/)).

3. DrawX„+i ~ fx\r(-\y’)-

Azv) 
J G \ Y '(■ I K l (y}), call the result#',

Here is a recapitulation of what has been done so far in this subsection. We started with 
a DA algorithm for fx based on a joint density fix ,if). Tlie density fix , if) was used to 
create an entire family of joint densities, f iw](x,y)r one for each density i u ( - ) .  Each mem
ber of this family has fx  as its .^-marginal and can therefore be used to create a new 
DA algorithm. We call these PX-DA algorithms. Running a PX-DA algorithm requires 
drawing from /y|y and fy^y, and simple, indirect methods of making these draws were 
developed. Finally, we provided a representation of the PX-DA algorithm as a three-step 
algorithm in which the first and third steps are the same as the two steps of the original DA 
algorithm
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From a computational standpoint, the only difference between the original DA algo
rithm and the PX-DA algorithm is that one extra step (Step 2) must be performed at each 
iteration of tlie PX-DA algorithm, However, when g  has relatively low dimension, as is 
usually the case in practice, the computational cost of the extra step is inconsequential 
compared to the cost of Steps 1 and 3. hi such cases, the DA and PX-DA algorithms are 
(essentially) equivalent in terms of cost per iteration What is amazing is Hie extent to 
which the mixing properties of the DA algorithm can be improved without really altering 
the computational complexity of the algorithm (see, e.g. Liu and Wu, 1999; Meng and van 
Dyk, 1999; van Dyk and Meng, 2001). Moreover, there is empirical evidence that the rel
ative improvement of PX-DA over DA actually increases as the dimension of X increases 
(Meng and van Dyk, 1999). Section 10.4.3 contains a rigorous theoretical comparison of the 
DA and PX-DA algorithms. We end this subsection with a real example that was devel
oped and studied in Liu and Wu (1999), van Dyk and Meng (2001), and Roy and Hobert 
(2007).

Example 10.5 (cont.)

In this example, tl(P, y  \ z) plays the role of f(x, y'). Take G  = R-i- and fg(y) = g y  = ( g y i , . . gym), 
and take w as follows:

(10.27)

where a ,S e  K +. This is just the ;iensity of the square root of a gamma variate; that is, if U  F (a f S), 
then C  = V U  has density (10.27). Substituting Equation 10.10 into Equation 10.9 and integrating 
with respect to (J shows that

exp j -  l y T{ l - H ) y ]  ™

\VTV\ V-c(z)(2n)(m~PV2

Thus,

I y) lz) l)g(y) l w<g)

exp I - U sy )T0 - H) (^ )} j (^ m) [ r “ 1 expl-g^tt+te)] 

r y T0 -  H )yexp -  g~ ■ + a %+. (&)■

Note that I y) has the same form as w(g; a, 5), which means that a draw from I y)
can be made be simulating a gamma and taking its square root. Putting all of this together, if 
the current state of the PX-DA algorithm is Xn = (5, then we simulate the next state, V h ,  by 
performing the following three steps:

1. Draw V i , . . . ,  independently such that Y, ~  TN(vr/J"p, 1, z{), and call the result y  = 
(yi i ■ ■ -i ytn)^■
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2. Draw U ~ r(a , S), call the result u, and set y = yj Ju . Draw

call the result v, and set y' = \fvy.
3. D raw Xn+1 ^ N (p (y ') , (V 'r V ')-1).

Sampling from the truncated normal distribution is typically done using an accept-reject algorithm, 
and Step 1 of the above procedure involves the simulation of m truncated normals. Obviously, 
the computational burden of Step 2, which requires only two univariate draws from the gamma 
distribution, is relatively minor. On the other hand, as the examples in Liu and W u (1999) and 
van Dyk and Meng (2001) demonstrate, the PX-DA algorithm mixes much faster than the DA 
algorithm.

As a prelude to our theoretical comparison of DA and PX-DA, we introduce a bit of 
operator theory.

10.4.2 The Operator Associated with a Reversible Markov Chain

It is well known that techniques from spectral theory (see, e.g. Rudin, 1991, Part III) can 
be used to analyze reversible Markov chains. Tlie reason for this is that every reversible 
Markov chain defines a self-adjoint operator on the space of functions that are square 
integrable with respect to the invariant density. Examples of the use of spectral theory in 
the analysis of reversible Markov chains canbe found in Diaconis and Stroock (1991), Chan 
and Geyer ( 1 9 9 4 ) ,  Liu et al. ( 1 9 9 4 , 1995), Roberts and Rosenthal (1997), and Mira and Geyer 
(1999), Our theoretical comparison of PX-DA and DA involves ideas from this theory. 

Define

and, for g ,h  e L^ifx), define the inner product as {g,h} =  § xg(x)h(x) fx (x) dx. Tlie corre
sponding norm is given by ||g|| =  Let a : X x X [0, oo) denote a generic Mtd
that is reversible with respect to/x; that is, n{x' \ x)fx (x) = a(x \ x')fx(x’) for all.r,.*' e X. Let 
^  % }?™ Q denote the corresponding Markov chain and assume t h a t i s  Harris ergodic,
The Mtd a  defines an operator, A, that maps g g L q ( fx ) to a new function mLpf/y) given by

Note that =  E[^('^„+i) | 'i’„ =  i ] . To verify that Ag is square integrable with respect
to fx , use Jensen's inequality, Fubini's theorem, the invariance of fx ,  and the fact that g e 
Lq( fy )  as follows:

(Ag)(jr)= £ ( r  W7(x' \x)dx.

[ l ^ ) W ] 2/ iW rfj:=  f £(■*') | ■*) dx:‘ f x (x)dx
, x L Jx. X
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L- x
a(x' | x)fx(x)dx dx

g%x')fx (x')dx' < oo.
X

That Ag has mean zero follows from Fubini, the invariance of fx , and the fact that g has 
mean zero:

(Ag)(x)fx(x)dx = g (x )a (x ' \x)dx' fx(x)dx

g(x')
L Jx

a(x' | x)fx(x)dx dx'

g(x')fx{x')dx' =  0.

We now demonstrate that the operator A is indeed self-adjoint (Rudin, 1991, Section 12). 
Using Fubini and the fa etthat/z(.ir' :i)/y (X) is symmetric m (x, we have, for g, h e L^(fx),

{Agji) =  | (Ag)(x)h<x)fxW dJt

1 
L

■ J * * ' )

g(.x') a{x! | j() dx' h(x)fx(x)dx

g(x') h(x}a(x' | x)fx(x) dx ttx'

h(x) tiix |jt')rfjt fx(x')dx'

=  f g(x')[Aln(x')fx(x')dx’
Jx

= (g,Ah).

The norm of the operator A is defined as

\\A\\ =  sup ||Ag ||.
geLllfx), ||*|| = 1

Obviously, ||A|| > 0. In fact, ||A|| e [0,1]. Indeed, ||Ag||2 = J x [(AgM:n]2/xU)dx and the 
calculations above imply that ||Ag|| 2 < ||̂ ||2. The quantity ||A|| is dosely related to the 
convergence properties of the Markov chain For example, is geometrically ergodic 
if and only if ||A|| < 1 (Roberts and Rosenthal, 1997; Roberts and Tweedie, 2001). The doser 
||A || is to 0, the faster '!> converges to its stationary distribution (see, e.g. Rosenthal, 2003). 
Because of this, Monte Carlo Markov chains are sometimes ordered according to their oper
ator norms. In particular, if there are two different chains available that are both reversible 
with respect to fy, we prefer the one with the smaller operator norm (see, e.g. Liu and Wu, 
1999, Liu et aL, 1994; Meng and van Dyk, 1999). hi the next subsection, we compare DA 
and PX-DA in terms of operator norms as well as performance in the CLT



286 Handbook o f  Markov Chain Monte Carlo

10.4.3 A Theoretical Comparison of the DA and PX-DA Algorithms

The Mtd of tlie PX-D A algorithm is given by

However, there is an alternative representation of hw that is based on the general three- 
step procedure for simulating the PX-DA algorithm that was given in Section 10.4.1. This 
representation turns out to b e much more useful for comp aring D A and PX-D A  Recall that 
Step 2 of tlie three-step procedure entails making the transition y  -> i f  by drawing Y' from 
a distribution that depends on y. Hence, this step can be viewed as performing a single 
iteration of a Markov chain whose state space is Y. If we denote tlie corresponding Mtd as 
lw (V | y), then we can reexpress the Mtd of the PX-DA algorithm as

M * '  |x) =
Y ..

fx \ r(/  I y ) u y  I y)ft\x(y I *) fiydy. (10.28)

Liu and Wu's (1999) Theorem 1 implies that/y is an invariant density for lzv; that is,

ktAy'\y)h(y)dy = /Y{y').

This invariance impHes that /y is an invariant density for kw(x' | .r):

kw(x \x)fx(x)dx =
LJY

fx iY & y y )

fx |Y (s' | y!) lw(y' I y)fy\x(y I ■*) dy dy1 fx W d x

iw(y'\y)fY(y)<iy dy'
L ■ Y

fx\Y(x’ \y )fY(y')dy
<

= fx(x').

Of course, we did not need Equation 10.28 to conclude that fy  is invariant for kw(x' \ x.). 
Indeed, the fact that kw(x' \ xj is the Mtd of a DA algorithm implies that ku, is reversible 
with respect to fy , and hence that/x is invariant for Note, however, that the previous 
calculation still goes through if is replaced by any Mtd having fy as an invariant density. 
This suggests a generalization of Equation 10.28.

Let I : Y x Y ^  [0, co) be any Mtd that has fy (y )  as an invariant density Define Hie 
function kt : X x X —* [0, oo) as follows:

kL(x' |J£) = Iy')Ky' \y)fy\x(y I x )dydy . (10.29)

The reader can easily verify that, for each fixed x e  X, J x kfx '  | j()  dx1 =  1. Hence, fc; is an Mtd 
that defines a Markov chain on X, and the arguments above sliowT tliat fx is an invariant 
density for A;. This is a generalization of Equation 10.28 in the sense that the set of Mtds 
having fy  as an invariant density is much larger than the set of Mtds of the form lw, Hobert
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and Marchev (2008) studied A; and established that (under weak regularity conditions) the 
MCMC algorithm based on k[ is better (in terms of convergence rate and ARE) than the DA 
algorithm. This leads to the conclusion that every PX-DA algorithm is better than the DA 
algorithm upon which it is based, hi order to state the results precisely, we need a couple 
of definitions.

If there exists a joint pdf with §yf*(x /y )d y  — Jx  (x) such that

k[(x' | Jt) = fx \ Y {x '  W ' f y '

then we say that ft; is representable. Clearly, if k[ is representable, then it is also reversible 
with respect to Jx(x). (Note that, by definition, kw is representable w i t h (x, y) playing 
tlie role of J*(x ,y).)

The second definition involves the CLT discussed in Section 10,2,4, Let X  =  {X ,,}^ 0 
denote the Markov chain underlying tlie original DA algorithm based m\f(x,y). Suppose 
that g g L2(fx) and, as before, let gn =  | J g (X,). If g n satisfies a CLT, then let k| denote 
Hie corresponding asymptotic variance. If there is no CLT for g n, then set v2 equal to oo. 
(Since we have not assumed that X is geometrically ergodic, a CLT for gn may or may not 
exist.) Now let X* =  {X*J^ 0 denote the Markov chain associated with ft; (x' | x), and define 
k.*1 analogously using g* =  | Place of ^ < 4  for every S e L2(fx),
tlien we say that k[ is more efficient flimi k.

Hobert and Marchev (2008) established two general results that facilitate comparison of 
the DA algorithm and the MCMC algorithm based on k{. (i) if k( is reversible with respect 
to fx ,  then kf is more efficient than ft; and (ii) if k[ is representable, then \\Kf || <. ||K||, where 
Kf and K  are the operators on L (̂ Jx )  associated with A; and k, respectively. (Hobert and 
Rosenthal (2007) show that, in (ii), representability canbe replaced by a weaker condition 
at no expense.) Now, consider Hie implications of these results with regard to the PX-DA 
algorithm. Since kw is representable, both of Hobert and Marchev's (2008) results are appli
cable and we may conclude that every PX-DA algorithm is better than the corresponding 
DA algorithm hi terms of both convergence rate and ARE. (The norm comparison result 
was actually established in Liu and Wu(1999) and Meng and van Dyk (1999) using different 
techniques.)

hi addition to providing information about the relative convergence rates of X and X*, the 
inequality ||KJ| < ||iC|| also has a nice practical application. We know from Section 10.4.2 
that a reversible Markov chain is geometrically ergodic if and only if the norm of the 
corresponding operator is strictly less than 1. Therefore, if we can prove that the D A Markov 
chain, X, is geometrically eigodic (by, say, establishing a geometric drift condition), then 
it follows that ||ic; || < ||K|| < 1, which implies that X* is also geometrically ergodic. This 
allows one to prove that X* is geometric without having to work directly with fy, which, 
from an analytical standpoint, is much more cumbersome than k.

It is important to keep in mind that tlie comparison results described above are really 
only useful in situations where at least one of the two chains being compared is known 
to be geometrically ergodic. For example, if all we know is that ||iQ|| < ||K||, then it may 
be the case that X  and X* are both bad chains with norm 1 and neither should be used in 
practice. Similarly, if there are no CLTs, then the fact that fcj is more efficient than k is not 
very useful.

Finally, there is one very simple sufficient condition for k[ to be reversible with respect 
to Jx , and that is the reversibility of Uy' \ y) with respect to fyiy). Indeed, suppose that
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Hy' I lV)/y(*/) is symmetric in (y, y') Then

k(x' | x)fx(x) =  fx(x) fx\y(x' |y') % ' I y) fy\xty I x.) dydy1 
. Y . Y

I .i/)/(i/ 1.1/) f(x , y) dydy
Y

f x |Y(Jt' | .i/)/(}/ | i/)/S u/) te|Y(  ̂ I y) r/yrfy'
r

ly ')/ (y  |y ')/ r(y ')JficiY(* ly )
r

fix ', y') l(y I y')_/jqY(:* | y) dy <ly'
Y ,

=  fx(x') fx\Y(x\y)l(y\y')fY\yJy'\x') dydy'
Y JY

=  * * ( *  |JC')/X(-TC').

There is also a simple sufficient condition on /(}/' | y) for representability of h; (see Hobert 
and Marchev, 2008).

We know that each pdf w ig) yields its own PX-DA algorithm. In the next subsection, we 
show that, under certain conditions, there is a limiting version of Hie PX-D A algorithm that 
beats all the others.

10.4.4 Is There a Best PX-DA Algorithm?

The results in the previous subsection show tliat every PX-D A algorithm is better than tlie 
original DA algorithm based on f(x.,y). This raises the question of whether there exists a 
particular PX-DA algorithm that beats all the others. There are actually theoretical argu
ments as well as empirical evidence suggesting that tlie PX-DA algorithm will perform 
better as the pdf ?y( ) becomes more "diffuse" (Liu and Wu, 1999; Meng and van Dyk, 1999, 
van Dyk and Meng, 2001). On the other hand, itis dear that our development of Hie PX-DA 
algorithm breaks down if w is improper, hi particular, if w is improper, then Equation 10.25 
is no longer a pdf. Moreover, Step 2 of the PX-DA algorithm requires a draw from w, -which 
is obviously not possible when in is improper. However, Liu and Wu (1999) showed that, 
if there is a certain group structure present in the problem, then it is possible to construd 
a valid PX-D A-like algorithm using an improper Haar density in place of w. Moreover, Hie 
results from the previous subsection canbe used to show that this H im  PX-DA algorithm is 
better than any PX-D A algorithm based on a proper w.

Suppose that the set G is a topological group; tliat is, a group such that Hie functions 
( g b g 2) ^  g\g2 and g i-*- g-1  are continuous. (An example of such a group is the multiplica
tive group, H+, where the binary operation defining tlie group is multiplication, Hie identity 
element is 1, and g-1  =  1 jg.) Let e denote the group's identity element and assume that 
tc (ly) = y  for ally  e Y and tliat tsig2(y) =  ^  (fg, (y)) for a llg i,g 2 e G and ally  e Y. In other 
words, we are assuming that t0 iy ) represents G acting topologically oil the left of Y (Eaton, 
1989, Chapter 2). °

A function x : G IR+ is called a multiplier if x. is continuous and x(#L£2) =  x(£i)x(#2) 
for all g i ,g 2 £ G. Assume tliat Lebesgue measure on Y is relatively (left) invariant with
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multiplier that is, assume that, for any j e G  and any integrable function h .Y  
we have

X(«) h(y)dy.

Here is a simple example.

Example 10.5 (cont.)

Again, take C  = R+ and tg(y) = gy = (gy i, ..., gym). Now think of G = R+ as the multiplicative 
group and note that, for any y  e R+ and any g\,g2 e G, we have f0(y) = y  and

fgi gi (y~> = 8: y = gi (8z y) = fe, ( (y)) ■
Hence, the compatibility conditions are satisfied. Now, for any g e G, we have

h{tg (y ))dy  = h(y) dy.

which shows that Lebesgue measure on Y = is relatively invariant with multiplier x(g) = gm-

Suppose that the group G has a left-Hmr measure of the form \>i(g) dg, where dg denotes 
Lebesgue measure on G. Left-Haar measure satisfies

Hgg) vi(g)dg = M g ) vi(g)dg, (10.30)

for all g  e G and all integrable functions h : G —> R. In most applications, this measure will 
be improper; that is, J c  vi(g) dg = oo. (When the left-Haar measure is Hie same as the right- 
Haar measure, whidi satisfies tlie obvious analog of Equation 10.30, the group is called 
uni modular.) Finally, assume that

<](y) ■= /yftgW) t(g )v i(g )d g

is strictly positive for all y  e Y and finite for (almost) all y e Y.
We now state (a generalized version of) Liu and Wu's (1999) Haar PX-DA algorithm. If 

Hie current state is X* = x, we simulate X +̂1 as follows.

ONE ITERATION OF THE HAAR PX DA ALGORITHM

1. Draw Y ~_/Y|x(-1 -*)/ and call tlie observed value y.
2. Draw G from the density proportional to /y (tg (y)) j  (g) v; (#), call the result g, and 

sety' =  tg (y).
3. D raw X *^  ~&|y(-|y').

This algoritlmi is not a PX-DA algorithm, but its Mtd does take the form (10.29). Indeed, if 
we let Jh (<//1y) denote the Mtd of the Markov chain on Y that is simulated at Step 2, then 
we can write the Mtd of the Haar PX-DA algorithm as

* h ( * ' | * ) = [  fx\r{x' W’ylHiy' \y)fr\xty\x)dydy!. 
Jy  Jy
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Hobert and Marchev (2008) show that /^(i/1)/) is reversible with respect to fy, which, of 
course, implies that fy is an invariant density for /h(}/ | y) Moreover, these authors also 
prove that kH is representable. Hence, tlie comparison results from the previous subsection 
are applicable and imply that the Haar PX-DA algorithm is better than the DA algorithm 
in terms of both convergence rate and ARE. However, what we really want to compare is 
Haar PX-DA and PX-DA, and this is the subject of the rest of this section.

Hobert and Marchev (2008) show that, for any fixed proper pdf ?[?(-), fcH can be 
reexpressed as

kn(x' | x) = f i $ ( *  W ) Iy ) f ^ ( y  Ix)dydV'f (10.31)

where and f ^  are as defined in Section 10.4.1, and 1{W](i/ |i/) is an Mtd on Y that

is reversible with respect to /i11’1 (;/) := j  y f tw> (x,y) dx. Now consider the significance of 
Equation 10.31 in the context of tlie results of Section 10.4.3. In particular, we know that tlie 
PX-DA algorithm driven by / {“’1 (x, y) is itself a DA algorithm, and Equation 10.31 shows 
that kH is related to ku, in exactly the same way that k{ is related to k. Therefore, since fcH 
is representable, we may appeal to the comparison results once more to conclude that tlie 
Haar PX-DAis better than every PX-DA algorithm in teims of both convergence rate and 
ARE.

Finally, note that Step 2 of the Haar PX-DA algorithm involves only one draw from a 
density on G, whereas the regular PX-DA algorithm calls for two such draws in its Step 2. 
Thus, from a computational standpoint, the Haar PX-DA algorithm is actually simpler than 
the PX-DA algorithm. We conclude with an application to the probit example.

Example 10.5 (cont)

Recall that C  is the multiplicative group, K+, and tg(y') = gy = (gy-|, ..., gym)- Note that, for any 
g e  G, we have

'OC -j roc i
h(S8) - c!s = h(g) - dg,o g Jo g

which shows that ^  is a left-Haar measure for the multiplicative group. (This group is actuallya
abelian and hence ummodular.) Thus,

n(tg()0 |z )x (g )v/ (g ) txg "1 1 exp - r y J { l - H ) y l
~ 8

and it follows that

q(y) oc gnl 1 exp r y T0 - H ) y dg =

which is clearly positive for all y e Y  and finite for (almost) all y e  Y. W e can now write down 
the Haar PX-DA algorithm, Given the current state, X * = P, we simulate the next state, , by 
performing the following three steps:

1. Draw VV .... Vm independently such that Vy -— TNI(i^^fJ, 1, z,-), and call the result y =
(yi,
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2. Draw

v ~ r ( -  y T<~! - H)yl n 1 <i( )■
call the result v, and set y ' = */vy.

3. D ra w X *+1 -  N (p (/ ) , (V T V ')-1).

In Section 10.4.1, we developed a family of PX-DA algorithms for this problem, one for each 
(a, 8) e 5+ x IR+. The results in Section 10.4.3 imply that every member of that family is better 
than the original DA algorithm based on f(x, y). Moreover, the results described in this subsection 
show that the Haar PX-DA algorithm above is better than every member of that family of PX-DA 
algorithms.

Roy and Hobert (2007) proved that this Haar PX-DA algorithm is geometrically ergodic by 
establishing that the much simpler DA algorithm of Albert andChib (1993} is geometrically ergodic, 
and then appealing to the fact that || KHII < These authors also provided substantial empirical 
evidence suggesting that the ARE of the Haar PX-DA estimator with respect to the DA estimator is 
often much larger than 1.
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11
Importance Sampling, Simulated Tempering, and 
Umbrella Sampling

Charles J. Geyer

11.1 Im p o rtan ce  S am p lin g

The importance of so-called importance sampling in Markov diain Monte Carlo (MCMC) is 
not what gives it that name. Itis the idea that "any sample can come from any distribution" 
{Trotter and Tukey, 1956). Suppose that we have a Markov diain X i, X 2, . . .  having properly 
normalized density / for its equilibrium distribution. Let/e denote a parametric family of 
densities each absolutely continuous with respect to /. Then

for all 6, because by the Markov chain law of large numbers (Meyn and Tweedie, 1993, 
Theorem 17.1.7),

(the requirement that /e is absolutely continuous with resped to / is required so that we 
divide by zero in the middle expressions with probability zero, so Hie value of the integral 
is not affeded). With one sample from one distribution/^) we learn about |x(9) for all 0.

Monte Carlo standard errors (MCSEs) for importance sampling are straightforward: we 
just calculate the MCSE for the functional of the Markov chain (Equation 11.1) that gives 
our importance sampling estimator. This means we replace g in Equation 1.6 in Chapter 1 
{this volume) by g k / f -

We are using here both the prindple of "importance sampling" {in using the distribution 
with density/ to learn about the distribution with density /e) and the prindple of "common 
random numbers" (in using the same sample to leam about/a for all 0). The prindple of 
common random numbers is very important. It means, for example, that

{ 11.1)

is a sensible estimator of
H(6) = E ^ (X ) J {11 .2)

l i„ { 0 )  E\f  | g ( X ) ^ ^ J  = g (x ) fj^ - f{x )d x  =  g(x)fy(x)dx

295
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is a sensible estimator of

Vn(0 )  =  B t { V x ( X ) } ,

which relies on the same sample being used for all 0. Clearly, using different samples for 
different 0 would not work at all.

The argument above relies on/ and fy being properly normalized densities. If we replace 
them with iinnormalized densities h and he, we need a slightly different estimator (Geweke, 
1989). Now we suppose that we have a Markov chain X\, X?, . . .  having unnormalized 
density It for its equilibrium distribution, and we let denote a parametric family of 
iinnormalized densities, each absolutely continuous with respect to h. Define the so-called 
"normalized importance weights"

we(jc) = U(x)
M * i )  

,=i )

(11.3)

so

M 9> =
i=i

(11.4)

is sensible estimator of Equation 11.2 for all 0, because of the following. Define

rf(0) =  /(e(jt)rfjt,

d — h dx,

so hf)/(1{Q) and h id  are properly normalized probabihty densities. Then by the law of laige 
numbers,

1iq ( x )  1

s (T )w i

* I i m  J

hs(x) U(x) m
d

<t(x)———dx 
6 d(Q)

h$(x) h(x) 
h(x) d

dx m
d

h(x)
d(Q)

=  Ert{^(X)}
dx

(the requirement that J/e is absolutely continuous with respect to h is required so that we 
divide by zero in Hie middle expressions with probability zero, so the value of Hie integral 
is not affected).

MCSEs for importance sampling are now a little more complicated. The estimator 
(Equation 11.4) is a ratio of two functionals of the Markov chain

l  " /v h iX o

i  « M X i)
‘i h i  ?'fx,)
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We calculate the joint asymptotic distribution for Hie vector functional of the Markov 
chain having two components gho/Ji and h$fh and then use tlie delta method to derive 
the asymptotic variance of their ratio, Geyer and Thompson {1995) give details,

The normalized importance weights trick, which uses Equation 11.3 and Equation 11.4 
instead of Equation 11.1, is essential when using unnormalized densities to specify distri
butions. It is nice to use even when using properly normalized densities, because it makes 
the complement rule hold exactly rather than approximately for our Monte Carlo estimates 
of probabilities. If we use Equation 11.1 to estimate Pr(A) and Pr(/ic), the estimates will sum 
to approximately one for large n. If we use Equation 11.3 and Equation 11.4, the estimates 
will sum to exactly one for all n.

Even when there is only one target distribution with unnormalized density ii%, one may 
do better using a different unnormalized density// as the importance sampling distribution. 
When there are many Jfe of interest, importance sampling is usually better than running a 
different sampler for every 0 of interest.

When importance sampling is allowed, it is never obvious what the equilibrium 
distribution of your MCMC sampler should be.

Why would one ever be interested in more than one distribution? Isn't MCMC just for 
Bayesian inference, and aren't Bayesians only interested in the posterior? The answers are, 
of course, no and no. As mentioned at the end of Section 1.1 in this volume, MCMC is also 
used for likelihood inference for models with complicated dependence {Geyer, 1994, 1999; 
Geyer and Thompson, 1992, 1995), and there one is interested in calculating tlie likelihood 
at each parameter value 9. Bayesians are often interested in inference under multiple priors 
{hisua and Ruggeri, 2000).

One warning is required about importance sampling. If the target distribution is not dose 
to the importance sampling distribution, then importance sampling does not work well. 
Of course, it works for sufficiently large Monte Carlo sample size, but the sample sizes 
required may be unpractical. A method for getting an importance sampling distribution 
dose enough to target distributions of interest is umbrella sampling (Section 11.2.5 below).

11.2 S im u lated  T em pering

If a random-walk Metropolis sampler, as illustrated in Section 1.13, does not converge in a 
reasonable amount of time, the best way to deted this {other than perfect sampling, which 
usually one does not knowhow to do for one's problem) is to run a better sampler. Tlie mcmc 
package provides two such sampling schemes, called parallel and serial tempering, both 
done by the tempe r function. Either can produce rapidly mixing samplers for problems in 
which no other known method works. Parallel tempering is easier to use. Serial tempering 
works better. Geyer and Thompson (1995) give an example in which serial tempering seems 
to work for a very hard problem but parallel tempering failed..

Serial tempering (Geyer and Thompson, 1995; Marinari and Parisi, 1992) runs a Markov 
chain whose state is (i,x), where / is a positive integer between 1 and nt and x is an element 
of RP. The unnormalized density of the equilibrium distribution is h( i, x). The integer i is 
called tlie index o f  the component o f the mixture, and tlie integer in is called the number o f



298 Handbook o f  Markov Chain Monte Carlo

componen ts o f the mixture. The reason for this terminology is that

111
h(x) = (11.5)

1=1

which is the unnormalized marginal density of x derived from the uitnormalized joint den
sity h(i, x) of the equilibrium distribution of the Markov chain, is a mixture of m component 
distributions having unnormalized density h(i, ■) for different i.

Parallel tempering (Geyer, 1991) runs a Markov chain whose state is (,*i,.. . ,x m) where 
each Xi is an element of ]RP. Thus Hie state is a vector whose elements are vectors, which 
may be thought of as ail in x p matrix. The unnormalized density of the equilibrium 
distribution is

Since Equation 11.6 is the product of tlie unnormalized marginals h(i, -) for different /, this 
makes the „rE asymptotically independent in parallel tempering.

Parallel tempering was not so named by Geyer (1991). That name was later coined by 
others (Earl and Deem, 2005) to make an analogy with simulated tempering, tlie name 
Marinari and Parisi (1992) coined for their algorithm because they thought it had an anal
ogy with simulated annealing (Kirkpatrick et al,, 1983), even though tlie latter is a method 
of adaptive random search optimization rather than an MCMC method. Tlie temper func
tion in the mcmc package coins the name "serial tempering" for what has formerly been 
called "simulated tempering" on the linguistic grounds that both methods are forms of 
"tempering" (so say their names) and both methods "simulate" Markov chains, thus both 
must be forms of "simulated tempering." Fortunately, "simulated tempering" and "serial 
tempering" can both use the same abbreviation (ST), so there is no confusion there. The 
parallel-serial distinction is taken from the terminology for electrical circuits: parallel tem
pering (PT) simulates all the component distributions h(i, ■) simultaneously, whereas ST 
simulates the component distributions h(i, ■) one at a time.

The analogy with simulated annealing is the following. Suppose one has a function q that 
one wants to minimize, but tlie problem is hard with many local maxima, so no algorithm 
for finding local minima is worth trying. Define

where k is an arbitrary positive constant and i is an adjustable parameter. Consider tlie 
probability distribution with unnormalized density h z. Nothing in our setup guarantees 
that JiT is actually integrable if the state space is infinite, so we assume this. As i goes to zero, 
the distribution with unnonnalized density hT converges to tlie distribution concentrated on 
the set of global minima of Hie function q. Conversely, as t goes to infinity, tlie distribution 
with unnormalized density Jjt becomes more and more dispersed. Simulated annealing 
runs a Metropolis sampler for the distribution with uimonnalized density JiT and slowly 
decreases t  over the course of tlie r a i l  in hopes that the simulations will converge to tlie 
global minimum of the function q.

This chapter not being about optimization, we wTould not have bothered with tlie pre
ceding point except for its relevance to simulated tempering. The physics and chemistry 
literature (Earl and Deem, 2005; Marinari and Parisi, 1992) seems quite taken with the

m
( 11.6)

i=l

M * )  = (11.7)
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annealing analogy using unnormalized densities for serial or parallel tempering of the 
form

li,(x) = e- q(*)/kTi, i =  in, (11. S)

by analogy with Equation 11.7. hi PT we simply let h(i,x) = hi(x) so the joint distribution 
Equation 11.6 is the product of the distributions (Equation 11.8) . hi ST the definition hii.x) =  
hiix) usually does not work, and we need

h(i,x) = hl(x)cil (11.9)

where the Cj are constants adjusted by trial and error to make the ST chain mix well (Geyer 
and Thompson, 1995, call the c, the pseudo-prior). This adjustment by trial and error is what 
makes ST harder to do than PT. As we shall see (Section 11.3 below) this adjustment by trial 
and error also makes ST much more useful than PT in some applications.

Geyer and Thompson (1995) point out that there is no reason to choose distributions of the 
form Equation 11,8 and many reasons not to. They allow the J;, tobe arbitrary unnormalized 
densities. For example, in B ayesian problems, where sampling from the prior distribution is 
often easy (perhaps doable by OMCordinary Monte Carlo) and sampling from the posterior 
is much harder, it seems more natural to replace Equation 11.8 by

hi(x) =  i = % . . . ,  in, (11.10)

where I is the log likelihood, p is the log prior, and

0  =  X i <  a.2 <  ■ ■ ■ <  =  1,

so tlie sequence of tempering distributions interpolates prior and posterior. Many other 
schemes are possible. It is not at all dear that anyone with good insight into a particular 
simulation problem cannot easily invent a tempering sequence tliat will workbetter on that 
particular problem than any general suggestion such as Equation 11.8 or Equation 11.10. 
We shall see another form of tempering sequence hi Section 11.3. Geyer and Thompson 
(1995) illustrate still other forms and also discuss the choice of in.

11.2.1 forallel Tempering Update

Parallel tempering is a combined update. One kind of elementary update simulates a new 
Xi preserving the distribution with unnomialized density Ji,. Since x.j, for j  ^  /, are left fixed 
by such an update, this also preserves tlie joint distribution (Equation 11.6).

hi addition, there are updates that swap states t, and x, of two components of the state 
while preserving the joint distribution (Equation 11.6). This is a Metropolis update, since a 
swap is its own inverse. The odds ratio is

hi{Xj)h,{Xi) 
r(b)) =  T . , . ■

The swap is accepted with probability m in(l, r(i,j)}, as in any Metropolis update, and the 
new state is the old state with jc, and x, swapped. Otherwise, the state is unchanged.

The combined update used by the function tem per in tlie mcmc package is as follows. 
Each iteration of the Markov chain does either a within-component update or a swTap
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update, each chosen with probability  ̂ Having chosen to do a within-component update, 
it then chooses an i uniformly at random from {1, . . . ,  m\, and then updates preserving 
h, using a nonnal-random-walk Metropolis update. Having chosen to do a swap update, 
it then chooses an i uniformly at random from {1, . . . ,  in}, chooses a j  uniformly at random 
from the subset of j 1, . . . ,  in} that are neighbors of /, where neighbomess is a user-spedfied 
symmetric irreflexive relation on {1, . . . ,  hi}, and then updates r, and Xj by doing tlie swap 
update described above. This combined update is reversible.

There is no reason for this division into within-component updates and swap updates 
except convenience. Usually, before trying tempering, one has tried a more conventional 
MCMC sampler and hence already has code available for the within-component updates.

11.2.2 Serial Tempering Update

Serial tempering is a combined update, One kind of elementary update simulates a new 
.i' preserving tlie distribution with unnormalized density ht. Since i is left fixed by such an 
update, this also preserves the joint distribution h, 

hi addition, there are updates that jump from one component of the mixture to another 
while preserving h. This is a Metropolis-Hastings update. Tlie Hastings ratio is

h jix ^ q if i )

hi(x)CiqO,})

where q (/,/) is the probability of proposing a jump to j  when the current state is i. The jump 
is accepted with probability min( 1, r(/,/)), as in any Metropolis-Hastings update, and Hie 
new state is (j, .* ). Otherwise, the state is unchanged.

The combined update used by the function tem per hi the mcmc package is as follows. 
Eachiterationof the Markov chain does either a within-componentupdate or a jump update, 
each chosen with probability Having chosen to do a within-component update, it updates 
jt preserving hi using a normal-random-walk Metropolis update. Having chosen to do a 
jump update, it then chooses a j  uniformly atrandom from the subset of {1, . . . ,  in} that are 
neighbors of i, where neighbomess is a user-spedfied relation as in the parallel tempering 
case, so

I !/„.(,), j  and i are neighbors,
0, otherwise,

where n(i) is the number of neighbors of i. This combined update is reversible.
As with PT, there is no reason for this division into within-component updates and jump 

updates except convenience.

11.2.3 Effectiveness of Tempering

Whether tempering wTorks or not depends on the choice of the sequence of component 
distributions/fi,.. . ,h m. The Gibbs distributions (Equation 11.8) are a "default" choice,but, 
as argued above, careful thought about one's particular problem may suggest a better 
choice.

Suppose hm is the distribution wTe actually want to sample. Tlie other distributions //, 
in the sequence are "helpers." They should become progressively easier to sample as i 
decreases and neighboring distributions (however neighbomess is defined) should be dose 
enough together so that tlie swTap (PT) or jump (ST) steps are accepted with reasonable prob
ability {Geyer and Thompson, 1995, give recommendations for adjusting the "doseness"
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of these distributions). I f i s  easy to sample, h j is easy to sample with help from h\, h? is 
easy to sample with help from Jii and 7/2, and so forth, then the whole scheme will work 
and hm will be (relatively) easy to sample, much easier than if one had tried to sample it 
directly, just repeating the wth within-component elementary update.

Your humble author has failed to invent a simple example of tempering. Tlie stumbling 
block is that any toy problemis easily doable by other means, that any truly difficultproblem 
takes a long time to explain, and—what is worse—that it is not obvious that the tempering 
sampler produces correct results. In a problem so difficult that no thing but tempering could 
possibly work, there is no way to check whether tempering actually works. In the genetics 
example in Geyer and Thompson (1995), we think the ST sampler worked, but cannot be 
sim . Thus we can do no better than the examples in the literature (Earl and Deem, 2005; 
Geyer and Thompson, 1995; Marinari and Parisi, 1992).

This issue applies more generally. The fact that MCMC works for toy problems which 
canbe done by methods simpler than MCMC provides no evidence that MCMC works for 
problems so hard that no method other than MCMC could possibly work.

11.2.4 Tuning Serial Tempering

ST, unlike PT, has Hie additional issue that the user-spedfied constants in
Equation 11.9 must be correctly specified in order for the sampler to work. Define

— h i(x )d x

to be the normalizing constant for tlie /th component distribution (the integral replaced by 
a sum if the state space is discrete). Then the marginal equilibrium distribution for i in an 
ST sampler is given by

j h(i, xj dx =  C;//,, i =  1, . . . ,  in.

hi order that this marginal distribution be approximately uniform, we must somehow' 
adjust the tj so that cj & 1/di, but the d, are unknown.

Let (If, Xf), t — 1 ,2 , . . . ,  be the output of an ST sampler. Define

„ i n
dk =  — Y l ( I t = k), k =  l , . . . , in ,  (11.12)

where l(If =  k) is equal to one if It =  k and zero otherwise. Also define

fll

d = cidi> 
i= l

which is the normalizing constant for h . Then, by the law of large numbers,

\ a.s, dk 

d k ~ i

so Hie df. estimate the unknown normalizing constants dj. up to an overall unknown con
stant of proportionality (which does not matter, since it does not affed the equilibrium 
distribution of the ST sampler),
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Hence, assuming that the ST sampler already works, we can improve our choice of the 
cjt by setting them to 1/74■ But this clearly will not work when <4 =  0, which happens 
whenever the cz are so badly adjusted that we have c^di-id <§; 1. Geyer and Thompson 
(1995) recommend using stochastic approximation to deal with this situation, but the R 
function tempe r  does not implement that. Instead we use a simple update of the tuning 
constants

where rtis an arbitrarily chosen constant that keeps the new values of q  finite (e10 wTas used 
in the vignette temper. pdf in the mcmc package) and <— denotes redefinition.

A few iterations of this scheme usually suffice to adjust tlie c, wTell enongh so that Hie 
ST sampler will work well. Note that this does not require that we have ctd, exactly Hie 
same for all /. We oidy need ctdt approximately the same for all i, which is shown by having 
Cidi 1/in for all i. Section 11.3 below' gives an example of this trial-and-error adjustment,

11.2.5 Umbrella Sampling

The idea of sampling a mixture of distributions was notnew when tempering was devised. 
Tome and Valleau {1977) proposed a procedure they called umbrella sampling (US), which 
is exactly Hie same as ST but done with a different purpose, hi ST one is only interested in 
one component of the mixture, and the rest are just helpers, hi US one is interested in all 
the components, and wants to sample them simultaneously and efficiently

US is very useful for importance sampling. Suppose that one is interested in target distri
butions with unnormalized densities he for all 0 in some region 0 . We need an importance 
sampling distribution that is "close" to all of the targets. Choose a finite set {Gi,. . . ,  0,„} and 
let hi — be Hie components of the US mixture. If the 6; are spread out so that each 0 e © 
is close to some 9, and if the parameterization 0 i-» he is continuous enough so that closeness 
in 0 implies closeness in ho, then US w illbe an effective importance sampling scheme. No 
other general metho d of constructing good importance sampling distributions for multiple 
targets is known.

Two somewhat different importance sampling schemes have been proposed. Let (It, X f), 
f =  1, 2 , . . . ,  be tlie output of an ST sampler with iinnormalized equilibrium density h(i, x), 
and let/io(jc) be a parametric family of unnormalized densities. Geyer and Thompson (1995) 
proposed the following scheme, which thinks of he (X) as a function of i and x, giving

^  g(X t)ho(Xt)
p ,  h d t, x t)

w - W  <11U>
ft i  iH It'Xt)

as a sensible estimator of Equation 11.2, a special case of Equation 11.4.
Alternatively, one can think of heix) as a function of x only, in wThich case the importance 

sampling distribution must also be a function of x only, in w7hich case

m rn

j*mix(*) =  ^ / '( / ,X  =  J ]  f,./MXh
!=1 1=1
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the marginal distribution of X derived from the ST/ US equilibrium distribution (Equa
tion 11.9). Then one obtains

^  giX t)he(Xt) ̂  g(Xf)J*e(X f)
2.̂  i. . iv  \ 2s~ ,a, (=1 ^mix(Xf) t=i Ei'=l Cill^Xt)

“ ”(e) =  A  M X ,) =  A  1.,(X,) <1114>
f=l ^rmx(^f) t=l E ,=  1 f,7l-!(X t )

as a sensible estimator of Equation 11.2, a different special case of Equation 11.4. This latter 
scheme was suggested at a meeting by someone your humble author has now forgotten 
as an application of the idea of "Rao-Blackwellization" (Gelfand and Smith, 1990) to Equa
tion 11.13. It is not known whether Equation 11.14 is enough better than Equation 11.13 
to justify the extra computing required, evaluating ) lor each i and t rather than just 
evaluating h[t (Xt).

11.3 B ayes F acto rs and N o rm alizin g  C o n stan ts

Umbrella sampling is very useful in calculating Bayes factors and other unknown normaliz
ing constants. Here we just illustrate Bayes factor calculation. Other unknown normalizing 
constant calculations are similar. We follow the example worked out in detail in the vignette 
b f  st . pdf that comes with each installation of the mcmc package (Geyer, 2010).

11.3.1 Theory

Suppose we have m Bayesian models with data distributions f (y  | 0, /), where i indexes the 
model and 0 any within-model parameters, within-model priorsg(0 | /), and prior onmod- 
els pri(/), For each model i the within-model prior ■ | /) must be a properly normalized 
density It does not matter if the prior on models pri( ■) is unnormalized. Each model may 
have a different within-model parameter. Let 0 , denote the within-model parameter space 
for the fth model.

Likelihood times unnormalized prior is

J1(/,6) =  f (y  | e,/)£(0 | >)pri(i).

The unknown normalizing constant lor the ith model is

//(/, 0) dB =  pri(f')
Bi

/(J/ I 0,O£(0 I J)rf6,
0,

and the part of this that does not involve the prior on models is called tlie miiionitahzed 
Bayes factor,

Hi I y) = /(J/ lM s (© l Ode. (11.15)
0,

The properly normalized posterior on models is

pri(/)&(» | y) 
post(f) = -------------------

E  vri(jMj I y)
/=i
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But frequently the prior on models is ignored (or left for users to dedde for themselves) 
and one reports only the ratio of prior odds to posterior odds, the (normalized) Bayes factor

postQ) p rig ) = Hi \y)
post (j) piifi) bij | y ) ' '

Clearly it is enough to report the unnormalized Bayes factors (Equation 11.15) from which 
(Equation 11.16) are trivially calculated. Bayes factors and other unknown normalizing 
constants are notoriously difficult to calculate. Despite many proposals, no really effec
tive scheme has been described in the literature. Here we show how ST/ US makes Hie 
calculation easy.

hi using ST / US for Bayes factors, we identify the index i on components of the umbrella 
distribution (Equation 11.5) with the index on Bayesian models. ST/US requires that all 
components have Hie same state space © but, as the problem is presented, the Bayesian 
models have different (within-model) state spaces €),. Thus we have to do something a 
little more complicated. We "pad" the state vector 0 so that it always lias Hie same dimen
sion, doing so in a way that does not interfere with the Bayes factor calculation. Write 
6 =  (0actuai/0pad)/ the dimension of both parts depending on the model;. Then we insist on 
the conditions

/(j/ I *') = /(F I âctual/*)> 

so Hie data distribution does not depend on Hie "padding" and

£ ( 0  I i) =  fa c tu a l (^actual I i) 1 £ p a d (0 p a d  I 0 r

so the two parts are a  priori independent and both parts of the prior are normalized proper 
priors. This ensures that

H >\y)= f(y \ $ ; i)g(Q\i)dQ

f ty  I ^actual/factual (̂ actual I 0£pad(^pad I 0 ^actual (̂ pad

f (y  I ^ a c t u a l /  /factual( âctual I 0  ^actual/ (11.17)
0,

so Hie calculation of the unnormalized Bayes factors is the same whether or not we "pad" 
6, and we may then take

hi(Q) =/(y | 6, ;)£(9 I ;)
=  / ( y  I ^ actu a l/ 0£actu a l (^actual I O ^Jpad(0pad I l)

to be the unnormalized densities for tlie component distributions of the ST / US chain. It is 
dear that the normalizing constants for these distributions are just Hie unnormalized Bayes 
factors (Equation 11.17).

Thus these tmlaiown normalizing constants are estimated the same way we estimate all 
unknown normalizing constants in ST/US, If preliminary trial and error has adjusted tlie 
pseudo-prior so that the ST/ US chain frequently visits all components, then the unknown



Importance Sampling, Simulated Tempering, and Umbrella Sampling 305

normalizing constants are approximately rf, as 1/q  (Section 11.2.4 above). Improved esti
mates with MCSEs of the unknown normalizing constants can be found by another run 
of the ST/ US sampler. The normalizing constants (Equation 11.12), being simple averages 
over the run, have MCSEs straightforwardly estimated by tlie method of batch means.

One might say this method is "cheating" because it does not completely spedfy how the 
trial and error is done, and it is dear tliat the trial and error is crudal because ST / US does 
not "work" (by definition) until trial and error has successfully adjusted the pseudo-prior. 
Moreover, most of tlie work of estimation is done by Hie trial and error, which must adjust 
Ci as l/d, to within a fador of 2-3. The final run only provides a little polishing and MCSE. 
Since Bayes factors may vary by 1010 or more, it is dear that trial and error does most of 
the work. It is now dear why any method tliat proposes to compute Bayes fadors or other 
unknown normalizing constants from one run of one Markov chain cannot compete with 
this "cheating."

11.3.2 Practice

However, as shown by an example below, the trial and error canbe simple and straightfor
ward. Moreover, the trial and error does not complicate MCSE. hi the context of the final run, 
the components c; of the pseudo-prior are known constants and are treated as such in the 
computation of MCSE for the unknown normalizing constant estimates (Equation 11.12).

Let us see how this works. As stated above, we follow the example in tlie vignette 
b f s t .p d f  of tlie mcmc package. Simulated data for the problem are the same logistic 
regression data in the data frame logit in the mcmc package analyzed in Section 1.13. 
There are five variables in the data set, tlie response y and four predidors, x i ,  x 2, x 3, 
and x 4 . Here we assume tlie same Bayesian model as in Section 1.13, but now we wish to 
calculate Bayes fadors for the 16 = 24 possible submodels tliat include or exdude each of 
the predidors, x i ,  x 2, x 3, and x 4 .

11.3.2.1 Setup

We set up a matrix tliat indicates these models, hi the R code shownbelow, out is the result 
of the frequentist analysis done by the glm function shown in Section 1.13:

varnara <- names(coefficients(out)) 
varnara <- varnam [varnam != 11 (Intercept) 11 ] 
nvar <- length (varnara)

modeIs <- NULL
foo <- seq(0, 2“nvar - 1)
for (i in l:nvar) {

bar <- foo %/% 2"(i - 1) 
bar <- bar %% 2
models <- cbind(bar, models, deparse.level = 0)

}
colnames(models) <- varnam

The slightly tricky code above essentially counts from 0 to 15 in binary, Hie /Hi row of the 
matrix mode 1 s is / — 1 in binary, hi each row, 1 indicates tliat the predidor is in the model 
and 0 indicates that it is out.



306 Handbook o f  Markov Chain Monte Carlo

The function temper in the mcmc package that does tempering requires a notion of 
neighbors among models, It attempts jumps only between neighboring models. Here we 
choose models to be neighbors if they differ only by one predictor.

neighbors <- matrix(FALSE, nrow(models), nrow(models)) 
for (i in 1:nrow(neighbors)) {

for (j in 1 :ncol(neighbors)) {
foo <- models[i, ] 
bar <- models[j, ]
if (sum(foo != bar) == 1) neighbors[i, j] < - TRUE

}
}

Now we specify the equilibrium distribution of the ST/ US chain. Its state vector is (i, 0), 
where i is an integer between 1 and 16 and 0 is the parameter vector "padded" to always 
be the same length, so we take it to be the length of the parameter vector of the full model 
whichis length (out$coeff icients), orncol (models) + l, which makes the length 
of the state of the ST chain ncol (models) + 2. We take the within model priors for Hie 
"padded" components of the parameter vector to be the same as those for the "actual" 
components, normal with mean 0 and standard deviation 2 for all cases. As is seen in 
Equation 11.17, tlie priors for Hie ‘■''padded" components (parameters not in Hie model for 
the current state) do not matter because they drop out of the Bayes factor calculation. Tlie 
choice does not matter much for this toy example; see the discussion below for more on 
this issue. It is important that we use normalized log priors, tlie term dnorm (beta, o, 2 , 
log = true) in the function ludfun defined below This is unlike when we are simulating 
only one model as in the function lupost defined hi Section 1.13, where unnormalized log 
priors - beta"2 / 8 were used.

The temper function wants the log unnormalized density of the equilibrium distribu
tion. We indude an additional argument, log .pseudo.prior, which is log(r,) in our 
mathematical development, because this changes from run to run as we adjust it by trial 
and error. Other "arguments" are the model matrix of the full model modmat, the matrix 
mode 1 s relating integer indices (the first component of Hie state vector of the ST chain) to 
which predidors are in or out of the model, and the data vedor y, but these are not passed 
as arguments to our function and instead are found in the R global environment.

modmat <- out$x 
y <- logit$y

ludfun <- function(state, log.pseudo.prior) { 
stopifnot(is.numeric(state))
stopifnot(length(state) == ncol(models) 4 2) 
icomp <- state[1]
stopifnot(icomp == as.integer(icomp)) 
stopifnot(1 <= icomp && icomp <= nrow(mode1s)) 
stopifnot(is.numeric(log.pseudo.prior)) 
stopifnot(length(log.pseudo.prior) == nrow(models)) 
beta < - state[-1]
inies < - c(TRUE, as.logical(models[icomp, ])) 
beta.logl <- beta 
beta.logl[! inies] <- 0
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eta <- as.numeric(raodmat %*% beta.logl)
logp <- ifelse(eta < 0, eta - loglp (exp (eta)),
- loglp(exp(- eta)))

logq <- ifelse(eta < 0, - loglp(exp(eta) ) ,
- eta - loglp(exp(- eta)))

logl <- sum(logp[y == 1]) + sum(logq[y == 0])
logl + sum (dnorni (beta, 0, 2, log = TRUE))
+ log.pseudo.prior[icomp]

}

11.3.2.2 Trial and Error

With this setup we are ready for the tiial-and-error process. We start with a flat log pseudo
prior (having 110 idea what it should be).

state.initial <- c(nrow(models) , out$coefficients) 
qux <- rep(0, nrow(models))
out <- temper(ludfun, initial = state.initial , 
neighbors = neighbors,

nbatch = 1000, blen = 100, log.pseudo.prior = qux)

So what happens?

> ibar <- colMeans(out$ibatch)
> ibar
[1] 0.00000 0.00000 0.00000 0.00000 0.00524 0.06489 0.00754
[8] 0.06021 0.00033 0.00202 0.00008 0.00054 0.28473 0.31487

[15] 0.12478 0.13477

The ST / US chain did not mix well, several models notbeing visited even once. So we adjust 
the pseudo-priors to get uniform distribution.

> qux <- qux + pmin(log(max(ibar) / ibar), 10)
> qux <- qux - min(qux)
> qux
[1] 10.0000000 10.0000000 10.0000000 10.0000000 4.0358384
[6] 1.5794663 3.7319377 1.5543214 6.8608225 5.0430623

[11] 8.2778885 6.3683460 0.1006185 0.0000000 0.3256077
[16] 0.8485902

When a component of ibar is zero, the corresponding component of ibar is inf, but the 
pmin function limits the increase to 10 (an arbitrarily chosen constant). The statement

qux <- qux - min(qux)

is unnecessary. An overall arbitrary constant can be added to the log pseudo-prior without 
changing the equilibrium distribution of the ST chain. We do this only to make qux more 
comparable from run to run,

Now we repeat this until the log pseudo-prior "converges" roughly
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qux . s ave < - qux 
repeat {

out <- temper(out, log.pseudo.prior = qux) 
ibar <- colMeans(out$ibatch)
qux <- qux + pmin(log(max(ibar) / ibar), 10) 
qux <- qux - min(qux)
qux. save <- rbind(qux.save, qux, deparse.level = 0) 
if (max(ibar) / min(ibar) < 2) 

break
}

The entire matrix qux. save is shown in the vignette. Here we just show a few columns:

> qux . s ave [ , 1:5]
[,1] [, 2] [,3] [,4] [,5]

[1,] 10.00000 10.000000 10.00000 10.000000 4.095838
[2,] 17.70751 9.999775 14.43037 9.714906 4.049512
[3,] 18.76818 9.325494 14.43382 9.014132 3.972982
[4,] 18.94703 9.733071 14.71371 9.478451 4.276229

We see we get fairly rapid (albeit sloppy) convergence to the log reciprocal normalizing 
constants.

Now that the pseudo-prior is adjusted well enough, we need to perhaps make other 
adjustments to get acceptance rates near 20%. The acceptance rates for jump updates and 
for within-component updates are shown in the vignette. Those for jump updates seemed 
OK, but those for within-component updates were too small {as low as 0.02) for some 
components. Hence the scaling for within-component updates was changed,

out <- temper(out, scale = 0.5, log .pseudo.prior = qux)

and this produces within-component acceptance rates that are acceptable (at least 0.15 for 
all components).

Inspection of autocorrelation functions for components of out $ ib a tc h  (not shown in 
the vignette or here) says that batch length needs to be at least 4 times longer. We make it
10 times longer for safety.

out <- temper(out, blen = 10 * out$blen, log.pseudo.prior = qux)

The total time for all runs of the temper function was 70 minutes on a slow old laptop and 
less than 7 minutes on a fast workstation.

11.3.2.3 Monte Carlo Approximation

Now we calculate log 10 Bayes factors relative to the model with the highest unnormalized 
Bayes factor

> log.10. uimorm.bayes
<- (qux - log(colMeans(out$ibatch)))/ 
log(10)

> k <- seqfalong = log.10.unnorm.bayes)[log.10.unnorm.bayes ==
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+ min (log . 10 .uimorm. bayes) ]
> models[k, ] 
xl x2 x3 x4
1 1 0  1

> log.10.bayes <- log.10.unnorm.bayes - log.10.unnorm.bayes[k]
> log.10.bayes
[1] 8.17814103 4.17098637 6.33069128 4.05292216 1.80254545
[6] 0.67203156 1.40468558 0.70498671 2.58875400 1.93202268

[11] 2.82341431 2.37170521 0.08004553 0.00000000 0.37357715
[16] 0.35242443

These are the Monte Carlo approximations of the negatives of Hie base 10 logarithms of 
the uimormalized Bayes factors. Higher numbers mean lower posterior probabihty The 
model with the highest Bayes factor (0.00000 in the vector shown above) is the model with 
predictors x i ,  x 2, and x 4 and intercept. The model with the lowest Bayes factor (8.17814 
in the vector shown above) is the model with no predictors except the intercept. Thus there 
is a difference of more than eight orders of magnitude among the unnormalized Bayes 
factors.

Note that the trial-and-error process did most of the work, The log pseudo-prior for the 
model with tlie lowest Bayes factor was 18.94703 (shown above), Converted to base 10 
logs, this is 8.22859, which is nearly the same as our final estimate 8.17814 (shown just 
above). The final ran contributes only a final polishing to the work done by trial and error. 
However, it does do all the work for MCSE. Tlie MCSE calculation is shown in the vignette. 
The MCSEs are about 0.02, so 95% nonsimultaneous confidence intervals have a margin 
of error of about 0.04. These are all relative to tlie model with highest estimated negative 
log 10 Bayes factor (0.00000 in tlie vector shown just above). Hence, we have only weak 
evidence (if we assume uniform prior on models) of the superiority of the model with tlie 
highest Monte Carlo Bayes factor to the model with the next closest (0.08005 in tlie vector 
shown just above). All of the other models have dearly lower posterior probability if we 
assume a uniform prior on models. Qf course, the whole point of Bayes fadors is that users 
are allowed to adopt a nonuniform prior on models, and would just subtract the base 10 
logs of their prior on models from these numbers. The MCSE would stay the same.

11.3.3 Discussion

We hope that readers are impressed with the power of this method. We calculated the most 
extreme log 10 Bayes factor to be 8.17 ±  0.04 If we had simply sampled with uniform prior 
on models, we would have visited tlie no-intercept model with approximate probability 
IQ-s. 17—that is, never in any practical computer ran. The key to tlie method is pseudo-prior 
adjustment by trial and error. The method could have been invented by any Bayesian who 
realized that the priors on models, pri(w) in our notation, do not affed the Bayes fadors 
and hence are irrelevant to calculating Bayes factors. Thus the priors (or pseudo-priors in 
our terminology) should be chosen for reasons of computational convenience, as we have 
done, rather than to incorporate prior information 

The rest of the details of the method are unimportant. The temper function in R is 
convenient to use for this purpose, but there is no reason to believe that it provides optimal 
sampling. Samplers carefully designed for each particular application would undoubtedly 
do better. Our notion of "padding" so that the within-model parameters have the same 
dimension for all models follows Carlin and Chib (1995), but "reversible jump" samplers
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{Green, 1995) would undoubtedly do better (see the Bayesian model selection example in 
Section 1,17,3). Unfortunately, there seems to be 110 way to code up a function like tem per 
that uses "reversible jump" and requires no theoretical work from users that, if messed 
up, destroys the algorithm. Tlie tem per function is foolproof hi the sense that if the log 
unnomialized density function written by the user {like our lu d fu n) is correct, then the ST 
Markov chain has the equilibrium distribution it is supposed to have. There is nothing the 
user can mess up except this user-written function No analog of this for "reversible jump" 
chains is apparent (to your humble author).

Two issues remain, Hie first being about within-model priors for the "padding" compo
nents of within-model parameter vectors £ pad(0pad I m) in the notation in Equation 11.17. 
Rattier than choose these so that they do not depend on the data (as we did), it would be 
better (if more trouble) to choose them differently for each "padding" component, centering 
£pad (Qpad I >») so the distribution of a component of 0pa(i is near to the marginal distribution 
of the same component in neighboring models (according to the n e ig h b o rs  argument of 
the tem per function).

The other remaining issue is adjusting acceptance rates for jumps. There is no way to 
adjust this other than by changing the number of models and their definitions. But tlie 
models we have cannot be changed; if we are to calculate Bayes factors for them, then we 
must sample them as they are. But we can insert new models between old models. For 
example, if the acceptance for swaps between model i and model j  is too low, then we can 
insert distribution A between them that has unnormalized density

hk(x) =

This idea is inherited from simulated tempering; Geyer and Thompson (1995) have much 
discussion of how to insert additional distributions into a tempering network. It is another 
key issue in using tempering to speed up sampling. It is less obvious in the Bayes factor 
context, but still an available technique if needed.

A ck n o w led g m en ts

This chap ter benefited from detailed comments by Christina Knudson, Leif Johnson, Galin 
Jones, and Brian Shea.
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12
Likelihood-Free MCMC

Scott A. Sisson and Yanan Fan

12.1 In tro d u ctio n

III B ayesian inference, Hie posterior distribution for parameters 0 e  © is given by id'O | j/) oc 
(V | 0)it(0), where one's priorbeliefs about the unknown parameters, as expressed through 

tlie prior distribution n (6), are updated by the observed data y e 3-' via the likelihood 
functioii tt (if | 0). Itiference tor the parameters 0 is then based on the posterior distribu
tion. Except in simple cases, numerical simulation methods, such as Markov chain Monte 
Carlo (MCMC), are required to approximate the integrations needed to summarize fea
tures of tlie posterior distribution. Inevitably, increasing demands oil statistical modeling 
and computation have resulted in Hie development of progressively more sophisticated 
algorithms.

Most recently there has been interest in performing Bayesian analyses for models which 
are sufficiently complex that the likelihood function ttO/ | 6) is either analytically unavail
able or computationally prohibitive to evaluate. Tlie dasses of algorithms and methods 
developed to perform Bayesian inference in this setting have become known as likelihood- 
free computation or approximate Bayesian computation (Beaumont et al., 2002; Marjoram et al., 
2003; Ratmann et al., 2009; Sisson et al., 2007; Tavare et al., 1997). This name refers to the 
circumventing of explidt evaluation of the likelihoodby a simulation-based approximation.

Likelihood-free methods are rapidly gaining popularity as a practical approach to fitting 
models under the Bayesian paradigm that would otherwise have been computationally 
impractical. To date they have found widespread usage in a diverse range of applications. 
These include wireless conummications engineering (Nevat et al., 2008), quantile distribu
tions (Drovandi and Pettitt, 2009), HIV contact tradng (Blum and Tran, 2010), tlie evolution 
of drug resistance in tuberculosis (Ludani et al., 2009), population genetics (Beaumont 
et al,, 2002), protein networks {Ratmann et al., 2009, 2007), archeology {Wilkinson and 
Tavare, 2009); ecology (Jabot and Chave, 2009), operational risk {Peters and Sisson, 2006), 
spedes migration (Hamilton et al., 2005), chain-ladder claims reserving {Peters et al., 2008), 
coalescent models {Tavare et a l, 1997), a-stable models (Peters et al., in press), models 
for extremes (Bortot et al., 2007), susceptible-infeded-renioved models (Toni et al., 2009), 
pathogen transmission (Tanaka et al., 2006), and human evolution (Fagundes et al., 2007).

ALGORITHM 12.1 LIKELIHOOD FREE REJECTION SAMPLING ALGORITHM

1. Generate 0' ~  tt(0 ) from the prior.
2. Generate data set x from the model ji(x | 0 ') .
3. Accept 0' if x z z y .

313
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The underlying concept of likelihood-free methods maybe simply encapsulated as shown 
in Algorithm 12.1, the likelihood-free rejection sampling algorithm (Tavare et al., 1997). For 
a candidate parameter vector O', a data set is generated from the model (i.e. the likelihood 
function) jc ■— n(x | 0'), If the simulated and observed data sets are similar (in some maimer), 
so that x ^ y ,  then 0' is a good candidate to have generated the observed data from the given 
model, and so 0' is retained and forms as a part of the samples from the posterior distribution 
n(01 y) Conversely, if x and y are dissimilar, then 0' is unlikely to have generated Hie 
observed data for this model, and so 0' is discarded. The parameter vectors accepted under 
this approach offer support for y under the model, and so may be considered to be drawn 
approximately from the posterior distribution n(H | y) In this manner, the evaluation of Hie 
likelihood ?r(y 10')/ essential to most Bayesian posterior simulation methods, is replacedby 
an estimate of the proximity of a simulated data set x  ~  ti(x | 0') to the observed data sety. 
While available in various forms, all likelihood-free methods and models apply this basic 
principle.

hi this chapter, we aim to provide a tutorial-style exposition of likelihood-free model
ing and computation using MCMC simulation. In Section 12.2 we provide an overview of 
the models underlying likelihood-free inference, and illustrate the conditions under which 
these models form an acceptable approximation to the true but intractable posterior TT(eiy). 
hi Section 12.3 we examine how MCMC-based samplers are able to circumvent evalua
tion of the intractable likelihood function, while still targeting this approximate posterior 
model, We also discuss different forms of samplers that have been proposed in order to 
improve algorithm and inferential performance. Finally, hi Section 12,4 we present a step- 
by-step examination of the various practical issues involved hi performing an analysis 
using likelihood-free methods, before concluding with a discussion.

Throughout we assume a basic familiarity with Bayesian inference and the Metropolis- 
Hastings algorithm. For this relevant background information, Hie reader is referred to Hie 
many useful chapters in this volume.

12.2 R eview  of L ik e lih o o d -F re e  T h eory  and M eth od s

hi this section we discuss Hie modeling principles underlying likelihood-free computation.

12.2.1 Likelihood-Free Basics

A common procedure to improve sampler efficiency hi challenging settings is to embed 
the target posterior within an augmented model hi this setting, auxiliary parameters are 
introduced into the model whose sole purpose is to facilitate computations—see, for exam
ple, simulated tempering or annealing methods (Geyer and Thompson, 1995; Neal, 2003). 
Likelihood-free inference adopts a similar approach by augmenting the target posterior 
froniTr(0 \y) ex n(y | 0)ji(0) to

Iy )  oc te(y | x ,Q)-k ( x  10)jt{0) (12.1)

where tlie auxiliary parameter is a (simulated) data set from tt(jc | 0) (see Algorithm 12.1), 
on the same space asy e (Reeves and Pettitt, 2005; Wilkinson, 2008}. As discussed hi more 
detail below (Section 12.2.2), the distribution ti (iy | x, 0) is chosen to weight the posterior



Likelihood-Free MCMC 315

tt ( 0 1 x) with high density in regions where x and y are similar. The density i t ( )/ 1 x, 6)  is 
assumed to be constant with respect to 9 at the point x =  y, so that tt (y y, 9) =  c, for some 
constant c > 0, with the result that the target posterior is recovered exactly at jc =  y. That
i s ,  T T L F ( 6 ,1 /  I J / )  OC TC (J/ I e ) T T ( 0 ) .

Ultimately interest is typically in the marginal posterior

integrating out Hie auxiliary data set *. The distribution ttlf(0 Iv) then acts as an approxima
tion to n(61 y). hi practice this integration is performed numerically by simply discarding 
tlie realizations of tlie auxiliaiy data sets from the output of any sampler targeting the joint 
posterior I]/)- Other samplers can target ttlf(0  I y) directly (see Section 12.3.1).

12.2.2 The Nature of the Posterior Approximation

The likelihood-free posterior distribution ttlf(0 |v) will only recover the target posterior 
jt (0 |y) exactly when the density tt (y | x, 6) is precisely a point mass at y =  x and zero 
elsewhere (Reeves and Petti tt, 2005). In this case

However, as observed from Algorithm 12.1, this choice for tt «/ \ x, 9) will result in a rejec
tion sampler with an acceptance probability of zero unless the proposed auxiliary data set 
exactly equals the observed data = y. This event will occur with probability zero for all 
but tlie simplest applications (involving very low-dimensional discrete data), hi a similar 
manner, MCMC-based likelihood-free samplers (Section 12.3) will also suffer acceptance 
rates of zero.

hi practice, two concessions are made on the form of n(y \ x, 0), and each of these can 
induce some form of approximation into jilf(0  I j/) (Marjoram et al., 2003). The first allows 
tlie density to b e a standard kernel density function, K, centered at tlie p oint x = y  and with 
scale determined by a parameter vector e, usually taken as a scalar. In this manner

weights the intractable likelihood withhigh density in regions x ^ y  where tlie auxiliary and 
observed data sets are similar, and with low density hi regions where they are not similar 
(Beaumont et al., 2002; Blum, 2010; Peters et al., 2008). The interpretation of likelihood-free 
models hi the nonparametric framework is of current research interest (Blum, 2010).

The second concession on the form of jre(y :x, 9) permits the comparison of the data 
sets, jt and y, to occur through a low-dimensional vector of summary statistics T(-), where 
dim(r(-)) > dim(0). Accordingly, given the improbability of generating an auxiliary data 
set such that x ^  y, tlie density

t [ l f (0  | y) oc t t ( 0 ) 7i ( y  | x, 0 )tt(^  | 0 ) dx,
■ y

(12.2)

tclf(0|J/) oc tc(0) tt(v I■*, &)te(Jt | 0) dx =  :i(y | Q)te(0).

(12.3)

will provide regions of high density when T(x ) T fy) and low density otherwise. If the 
vector of summary statistics is also suffident for the parameters 0, then comparing the
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summary statistics of two data sets will be equivalent to comparing the data sets them
selves, Hence there will be no loss of information in model fitting, and accordingly no 
further approximation will be introduced into |v). However, tlie event X(.*) T(y)
will be substantially more likely thanjr ^  y, and so likelihood-free samplers based on sum
mary statistics TO  will in general be considerably more efficient in terms of acceptance 
rates than those based on full data sets (Pritchard et al., 1999; Tavare et a l, 1997). As noted 
by McKinley et al. (2009), Hie procedure of model fitting via summary statistics T(-) per
mits the application of likelihood-free inference in situations where the observed data y  are 
incomplete.

Note tliat under the form (Equation 12.3), lim ^ o ne(y I 9) is a point mass on T(x) = 
T(y). Hence, if T(■) are also sufficient statistics for 6, thenlim ^o h l f (6 y) =  it(91 y) exactly 
recovers tlie intractable posterior (Reeves and Pettitt, 2005). Otherwise, if a > 0 or if T(-) 
are not sufficient statistics, then the likelihood-free approximation to n(0 | y) is given by 
h lf(9  I y) hi Equation 12.2.

Afrequently utilized weighting kernel (y | x, 6) is the unif omi kernel density (Marjoram 
et al., 2003; Tavare et al., 1997), whereby T(y) is uniformly distributed on the sphere centered 
at T U\| with radius €. Tliis is commonly written as

f t  if p(T{x),T{y)) < e, 
iraj/1^9) oc |0 otherwise/ (12.4)

where p denotes a distance measure (e.g. Euclidean) between T (;t) and T(y). hi the form 
of Equation 12.3 this is expressed as tth (j/ | x, 6) = « ~1 (p(T ( j ), T(if))/<e), where ic„ is Hie
unifomikemel density. Altemative kernel densities that havebeenimplemented indude Hie 
Epanedmikov kernel (Beaumont et a l, 2002), a nonparametric density estimate (Ratmaim 
et al., 2009) (see Section 12.3.2 below), and the Gaussian kernel density {Peters et a l, 2008), 
whereby ^t (t/1^,0) is centered at T(jc) and scaled by e, so tliat T (y) ~  N(T(.*), E t2) for some 
covariance matrix E.

12.2.3 A Simple Example

As an illustration, we examine the deviation of Hie likelihood-free approximation from 
the target posterior in a simple example. Consider the case where n (91 y) is the univari
ate N ( 0 ,1) density. To realize this posterior in tlie likelihood-free setting, we specify tlie 
likelihood as x ~  N (0, 1), define T(x) = x as a suffident statistic for 0 (the sample mean), 
and set the observed data y  =  0. With the prior n (9 )  oc 1 for convenience, if the weighting 
kernel (y \ x, 0) is given by Equation 12.4, with p(T(.:t), T(y) ) = | x — y  |, or if (y \ x, 0) is 
a Gaussian density with )/ ~  N {x, e2/3), then

respectively, where <i>(■) denotes the standard Gaussian cumulative distribution function. 
The fador of 3 in the Gaussian kernel density ensures that both uniform and Gaussian 
kernels have the same standard deviation, hibotli cases ttlf(0 \y) —> N (0,1) as« —v 0.

The two likelihood-free approximations are illustrated in Figure 12.1 which compares Hie 
target tt(0 | y) to both forms of hlf(& I y) for different values of <e. Clearly, as <e gets smaller, 
h lf(9  | y) ^  tt(0 | y) becomes abetter approximation, Conversely, as e increases, so does tlie

tclf( 0  I y )  oc
4>(<e -  6) -  <t>(-e -  9) 

2f
and | y) =  N ( 0,1 +
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FIGURE 12.1
Comparison of likelihood-free approximations to the WCO, 1) target posterior (solid line) for t values of (a)
(b) V3/2, (c) V3/10- Likelihood-free posteriors are constructed using uniform (dotted line) and Gaussian (dashed 
line) kernel weighting densities (y | x, 0).

posterior variance in the likelihood-free approximation. There is only a small difference 
between using uniform and Gaussian weighting functions in this case.

Suppose now that an alternative vector of summary statistics r(-) also permits unbiased 
estimates of 6, but is less efficient than X(■), with a relative efficiency of e < 1. As noted by 
A. N. Pettitt {personal communication), for the above example with the Gaussian kernel 
density for n e iy xr 0), the likelihood-free approx filiation using ?(■) becomes h l f (0 y) =  
N (0,1/e  +  e2/3). The 1/e term can easily be gi'eater than the t 2/3 term, especially as practical 
interest is in small e, This example illustrates that inefficient statistics can often determine 
the quality of the posterior approximation, and that this approximation can remain poor 
even for e = 0,

Accordingly, it is common in practice to aim to reduce e as low as is computationally 
feasible. However, in certain circumstances, it is not dear that doing so will result in a 
better approximation to n (0 1 y) than for a larger e. This point is illustrated in Section 12.4.4.

12.3 L ik elih o o d -F ree  M C M C  S am p lers

A Metropolis-Hastings sampler may be constructed to target the augmented likelihood- 
free posterior I J/) (given by Equation 12,1) without directly evaluating the
intractable likelihood (Marjoram et al., 2003). Consider a proposal distribution for this 
sampler with the factorization

q[(^x), (0' , s')] =  (/(e, eVO*' I 6').

That is, when at a current algorithm state (0, Jt>, a new parameter vector 0' is drawn from 
a proposal distribution /j(0, 0') and, conditionally on 0y, a proposed data set x' is generated 
from the model x' ~  -n(x | 0'). Following standard arguments, to achieve a Markov chain 
with stationary distribution n l f  (9/ x I y), we enforce the detailed-balance (time-reversibility) 
condition

TCLF(9,JMj/)P[(e,.r),(e',;*')] = TTLF(0V ly)P[(9',*'),(M )], {12.5)



318 Handbook o f  Markov Chain Monte Carlo

where the Metropolis-Hastings transition probability is given by

P [(0 , * ) ,  (0 ', * ' ) ]  =  ql(Q,x), (0', *')]o i[(0 ,j£ ), (0 ',* ') ] .

The probability of accepting a move from (0, „t) to (0', :r') witllin the Metropolis-Hastings 
framework is then given by min{ 1, a[(0, x), (0', :*')]}, where

^LF(0',x'|i/)<7[(e ',y ) ,(0,:x)]
Ot[(0,at), (0 ,3  )] =

n f ty  \x',§i ) t i{x i | 0')t i(0') (7(6% 6)tt(.t | G) 
TTe (y  I xr 0)tt(.t I 0)tt(6) <7(0, 0')ti (*' | 6') 

Titty \x', e ')7 t(6 ') (7 (9 '/  6) 

tte(i/|.if, 0)ti (0)4(9, 00 '
( 12.6)

Note that Hie intractable likelihoods do not need to be evaluated in the acceptance 
probability calculation (Equation 12.6), leaving a computationally tractable expres
sion which can now be evaluated. Without loss of generality we may assume that 
m in{l, a[(0',x')f (O, jr)]} =  1, and hence the detailed-balance condition (Equation 12.5), is 
satisfied since

ji l f ( M  |j/)P[(0,jc), (6',jt')] =  7ilf(MIJ/)<7[(M), (0',x')M(0,.x), 0 ' ,x')]

_  h l f (M  I y)?(8/ O'W *' I 0r)7t.(y  IX1, 0')7i(0J)(7(0// 0)
■nt (y\x, 0)tt(0)^(0, 0')

Titty I Xr 0) ti(x | 0)t[(0)(7(0, 0')tt(.t' | 0r)TiH <>/1 x', 0 ')n (9 r)q(0', 0)
=  TrH(y | 0)Tr(0)i7(0,00

=  Tl̂ ty I x!, 0r)7T(jty | 0,)^(6,)(7(6% 0)Tr(.T | 0)

=  ^LF(0'/ X I J/)P[(0', x 1), (0, Jt)].

ALGORITHM 12.2 LIKELIHOOD-FREE (LF)-MCMC ALGORITHM

1. Initialize (0o,Jto) and e. Set f = 0.

At step t-.
2. Generate 0'(7(0*-, 0) from a  proposal distribution.
3. Generate x' ~  ti(jc | 0') from the model given 0'.

. . Titty I X', 0r)7t(0/)f7(0/y 0f)4. With probability mm{l,— — -- ) set (0f+i, jcf+i) = (0 , x ),■My I JCf, 9()n(0t)(7(9(,0') 
otherwise set (0f+i,3(f-|-i) = (0(,.itt).

5. Increment t = t + l  and go to 2.

The MCMC algorithm targeting ttlf(S/ x I'/)/ adapted from Marjoram et a l (2003), is listed 
in Algorithm 12.2. The sampler generates Hie Markov chain sequence (0f, Jf>) for f > 0, 
although in practice it is only necessary to store the vectors of summary statistics T(x.f) and 
T(V) at any stage in the algorithm. This is particularly useful when the auxiliary data sets 
xt are large and complex.



Likelihood-Free MCMC 319

Ail interesting feature of this sampler is that its acceptance rate is directly related to 
the value of the true likelihood function ir(i/ | O') at the proposed vector 0' (Sisson et al.,
2007). Tills is most obviously seen when using tlie uniform kernel weighting density 
(Equation 12.4), as proposed moves to can only be accepted if pfrfx'), T(y)) < e,
and this occurs with a probability in proportion to the likelihood. For low e values this 
can result in very low acceptance rates, particularly in the tails of the distribution, thereby 
affecting chain mixing in regions of low posterior density (see Section 12.4.5 for an illustra
tion). However, the LF-MCMC algorithm offers improved acceptance rates over rejection 
sampling-based likelihood-free algorithms (Marjoram et al., 2003).

We now examine a number of variations on the basic LF-MCMC algorithm which have 
been proposed either to improve sampler performance or to examine model goodness of fit.

12.3.1 Marginal Space Samplers

Given the definition of t [ l f (6 |V) hi Equation 12.2, an unbiased pointwise estimate of the 
marginal posterior distribution is available through Monte Carlo integration as

S =  1

where x 1, .. , ,x s are independent draws from the model n(x | 0) (Marjoram et a l, 2003; 
Peters et al., 2008; Ratmann et al., 2009; Reeves and Pettitt, 2005; Sisson et al., 2007; Toniet al., 
2009; Wegmaim et a l, 2009). This thenpermits an MCMC sampler to be constructed directly 
targeting the likelihood-free marginal posterior j i l f (6 |v)- hi this setting, tlie probabihty of 
accepting a proposed move from 0 to 6' ~  q(Q, O') is given by min{ 1, a(0, 0')}, where

7 E ^ (y l^ 0 ')n (0 ')/ / (0 ',0 )

^  e'> = ~ V------------------  <izs)71 ̂ ' 9 > I  £  (j, I ̂  e)7r(0)r/(0, 0')
^  s

and x11, . . . ,  xlS ~  n („i 10'). As Hie Monte Carlo approximation (Equation 12.7)becomes more 
accurate as S increases, the performance and acceptance rate of the marginal likelihood-free 
sampler will gradually approach that of the equivalent standard MCMC sampler.

However, the aboveratioof twounbiasedlikelihood estimates is only unbiased as S —- oo. 
Hence, the above sampler will only approximately taiget ttlf(0 I y) for large S, which makes 
it highly inefficient. However, note that estimating a(0,6') withS =  1 exactly recovers (Equa
tion 12.6), the acceptance probability of the MCMC algorithm targeting ttlf(9, I i f) . That 
is, tlie marginal space likelihood-free sampler with S = 1 is precisely the likelihood-free 
MCMC sampler in Algorithm 12.2. As the sampler targeting hlf(9, x \ y) also provides unbi
ased estimates of the marginal j i l f {0 |}/), it follows that the likelihood-free sampler targeting 
T[lf(® IV) directly is also unbiased in practice (Sisson et al., 2010). A similar argument for 
S > 1 can also be made, as outlined below 

An alternative augmented likelihood-free posterior distribution is given by

7 t L F ( 0 , .S l :S  |J/) oc J I e ( y  | J £ l :S ,e ) T r ( X l :S  | 6 ) 7 1 ( 6 )  

S

i ^ T T £(y|JCE, 0)
S s=l

S  ■

Y [  rct** is)]
S = 1 .

H(0),
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where = (jc1, .. . ,x s) represents s =  1 , . . . ,  S replicate auxiliary data sets .r  ~  tt ( jt 10), 
This posterior, generalized from Del Moral et al. (2008), is based on the more general 
expected auxiliary variable approach of Andrieu et al. (2008), where the summation form 
of nt( y 1 describes this expectation. The resulting marginal posterior 71 l f ^  i y} ~
J j s  7tLF(0--*i:S, 9 | i/)ff r i s is Hie same for all S, namely ■KLF^Iy) = ^LF(0|y)- 

The motivation for this form of posterior is that tliat a sampler targeting tx l f  t®/ ̂ 'i:S I y), 
for S > 1, will possess improved sampler performance compared to an equivalent sampler 
targeting ttlfO- x \y), through a reduction in the variability of tlie Metropolis-Hastings 
acceptance probability. With tlie natural choice of proposal density given by

s
m  *1:S), ( 0 V l : S )] = <1®, # )  n  7 1 1 I 9') '

5 = 1

where x[.s = (x'1, . . . ,  r's ), the acceptance probability of a Metropolis-Hastings algorithm 
targeting ttlf(0,^1:S I y) reduces to

€X[(0,JC1:S), (6' , * ^ ) ]  = --------------------------------- . (12.9)
7  E  ^  ty I x S > e),it(9)</(e,e')

This is the same acceptance probability (Equation 12.8) as a marginal likelihood-free sampler 
targeting t t l f(6 I y) directly, using S Monte Carlo draws to estimate ttlf(0 |y) pointwise, via 
Equation 12.7. Hence, both marginal and augmented likelihood-free samplers possess iden
tical mixing and efficiency properties. The difference between the two is that the marginal 
sampler acceptance probability (Equation 12.8) is approximate for finite S, whereas Hie 
augmented sampler acceptance probability (Equation 12.9) is exact. However, clearly Hie 
marginal likelihood-free sampler is, in practice, unbiased for all S > 1. See Sisson et al. 
(2010) for a more detailed analysis.

12.3.2 Error-Distribution Augmented Samplers

hi all likelihood-free MCMC algorithms, low values of e result in slowly mixing chains 
through low acceptance rates. However, this also provides a potentially more accurate 
posterior approximation tilf(0  I}/) ^  n(0 | y) Conversely, MCMC samplers with larger e 
values may possess improved chain mixing and efficiency, although at the expense of a 
poorer posterior approximation (e.g. Figure 12.1). Motivated by a desire for improved sam
pler efficiency while realizing low e values, Bortot et al. (2007) proposed augmenting Hie 
likelihood-free posterior approximation to include e, so that

tclf(9/-V£ IJA) oc tc€(j/1 x, 0)7i(j£ | 0)ji(0)Tr(e).

Accordingly, e is treated as a tempering parameter in the maimer of simulated tempering 
(Geyer and Thompson, 1995), with larger and smaller values respectively corresponding to 
"hot" and "cold" tempered posterior distributions. The density n (>) is apseudo-prior, which 
serves only to influence the mixing of the sampler through tlie tempered distributions. 
Bortot et a l (2007) suggested using a distribution which favors small e values for accuracy,
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while permitting large values to improve chain acceptance rates. The approximation to the 
true posterior tt(9 | y) is then given by

I y) —
£  ..

tilf(0,3£, e \ y)</jc rfe

where e e £  c  R+. Sampler performance aside, this approach permits an fipos tenor/ evalua
tion of an appropriate value e = e* such that 71^(6 y) witho =  [0, €*] provides an acceptable 
approximation to ji(6 |y).

An alternative error-distribution augmented model was proposed by Ratmann et al. 
(2009) with the ami of diagnosing model niisspedfication for the observed data y  For the 
vector of summary statistics T(x) =  (T i(.i),. . .  , Tpjx)), the discrepancy betwTeen the model 
T[(„r | 0) and the observed data is given by i  =  ( i i , .. where i,- = Tr(x) -  Tr(y), for 
r — , R, is tlie error under the model in reproducing the rth element of T( ). The joint
distribution of model parameters and model errors is defined as

rcLF{Ml:S,i:|y) oc :i£(y| T,Jri:S,e)TrC>ci:s | 9)j i(0}tt(i )

:= min|r(xr | y,xi,s , 6)or (.ri:S | 6)71(6)71 (i), {12.10)
r

where the univariate error distributions

*  1 ® / i , . - r r , .u 6) - r , . (y ) l\
%t ( * t \ y,JiA0) = Y ----- j  (1211)

are constructed from smoothed kernel density estimates of model errors, estimated from S 
auxiliary data sets jt1, . . . ,  xs, and where ti(x) = ]~[r 11(1,-), the joint prior distribution for the 
model errors, is centered onzero, reflecting that the model is assumed plausible a priori. The 
terms min, (1,-1y,x , 0) and tt(i) take the place of tlie weighting density 7ie(y | x,xi-s, 0). 
The minimum of the univariate densities | y, x, 6) is taken over the R model errors 
to reflect the most conservative estimate of model adequacy, while also reducing the 
computation on the multivariate 1 to its univariate component margins. Tlie smoothing 
band widths e, of each summary statistic T, -(-) are dynamically estimated during sampler 
implementation as twice the interquartile range of Tr(xc} -  T, (y), given.i1, .. . ,x s . 

Assessment of model adequacy can then be based on

Ij/) =
J b

■ n L F ( 0 ,* l :S ,T :  | jr ) l i .T l :S l f 0 ,

the posterior distribution of the model errors. If the model is adequately specified then 
I y) should be centered 011 the zero vector. If this is not the case then the model is 

misspedfied. The nature of the departure of 7ilf(t  I y) from the origin, for example via one 
or more summary statistics r,-( ), may indicate tlie manner in which the model is deficient. 
See, for example, Wilkinson (2008) for further assessment of model errors in likelihood-free 
models.

12.3.3 Potential Alternative MCMC Samplers

Given the variety of MCMC techniques available for standard Bayesian inference, there are 
a number of currently unexplored ways in w7hich these might be adapted to improve the 
performance of likelihood-free MCMC samplers.
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For example, within the dass of marginal space samplers (Section 12.3.1), the number 
of Monte Carlo draws S determines the quality of the estimate of h l f O V) (cf. Equa
tion 12.7). Astandard implementation of tlie delayed-rejedion algorithm (Tierney and Mira, 
1999) would permit rejeded proposals based oil poor but computationally cheap posterior 
estimates (i.e. using low to moderate S), to generate more accurate but computationally 
expensive second-stage proposals (using large S), thereby adapting the computational 
overheads of tlie sampler to the required performance.

Alternatively, coupling two or more Markov chains targeting itlf(0,-* I J/), each utilizing a 
different € value, would achieve improved mixing in tlie "cold" distribution (i.e. the chain 
with the lowest e) through the switching of states between neighboring (in an e sense) 
chains (Petti tt, 2006). This could be particularly useful in multimodal posteriors. While 
this flexibility is already available with continuously varying a in Hie augmented sampler 
targeting ttlf(0, Jt, e  \y) (Bortot et al., 2007; see also Section 12.3.2 above), there are benefits 
to constructing samplers from multiple chain sample-paths.

Finally, likelihood-free MCMC samplers have to date focused on tempering distributions 
based on varying e. While not possible in all applications, there is dear scope for a dass 
of algorithms based on tempering on the number of observed data points from which the 
summary statistics T (■) are calculated. Lower numbers of data points will produce greater 
variability in the summary statistics, in turn generating wider posteriors for tlie parameters
6, but with lower computational overheads required to generate tlie auxiliary data x.

12.4 A P ra ctica l G uide to L ik elih o o d -F ree  M C M C

hi this section we examine various practical aspeds of likelihood-free computation under a 
simple worked analysis. For observed data y  = (i/1, ■ ■ ■ ,1/20) consider two candidate models: 
1a ^ Exponential^) and yL — Gamma (A , *|j), where model equivalence is obtained under 
A = 1, \|j =  l/>,. Suppose that the sample mean and standard deviation of y  are available as 
summary statistics Tty) = (y, s,/) =  (4,1), and that interest is hi fitting each model and in 
establishing model adequacy Note that tlie summary statistics T(-) are suffident for >, but 
not for (A, xf/), where they form moment-based estimators. For the following we consider 
flat priors t t ( X )  o c  1 ,  n(A, 1] ; )  o c  1  for convenience. The true posterior distribution under Hie 
Exponential X) model is k | y  Gamnia(21, 80).

12.4.1 A 11 Exploratory Analysis

An initial exploratory investigation of model adequacy is illustrated in Figure 12.2, which 
presents scatterplots of summary statistics versus summary statistics, and summary statis
tics versus parameter values under each model Images are based on 2000 parameter 
realizations A, \f? ~  11(0, 20) followed by summary statistic generation under each model 
parameter. Horizontal and vertical lilies denote the values of Hie observed summary 
statistics T(y).

From the plots of sample means against standard deviations, T(y) is dearly better rep
resented by the gamma than the exponential model. The observed summary statistics (i.e. 
the intersection of horizontal and vertical lines) lie in regions of relatively lower prior pre
dictive density under the exponential model, compared to the gamma. That is, a priori, the 
statistics T(y) appear more probable under tlie more complex model.
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FIGURE 12.2
Scatter plots of summary statistics T(x) =  ( i ,s * )  and parameter values V,fc, ij" under both Exponential^) and Gamma(fc, i|i ) models, based on 2000 realizations V,fc, 41 ~  
U (0,20). Horizontal and vertical lines denote observed summary statistics T(y) =  (4,1). Circles denote the maximum likelihood estimate of k =  1/y =  1/4 under the 
exponential model. Crosses denote method of moments estimators k =  ]/2fSy =  16 and ip =  Syfy =  1/4 under the gamma model.
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Consider the plots of X-1 versus T(x.) under the exponential model. The observed statis
tics T(y) individually impose competing requirements on tlie exponential parameter. An 
observed sample mean of y — 4 indicates that X-1  is most likely in the approximate range 
[3,5] (indicated by those X-1 values where the horizontal line intersects with the density). 
However, the sample standard deviation sy =  1 independently suggests that X-1  is most 
likely in the approximate range [0.5,1.5]. If either x or sx were the only summary statistic, 
then only one of these ranges is appropriate, and the observed data would be considerably 
more likely under tlie exponential model. However, tlie relative model fits and model ade
quacies of the exponential and gamma can only be evaluated by using the same summary 
statistics on each model. (Otherwise, the model with the smaller number of summary statis
tics will be considered the most likely model, simply because it is more probable to match 
fewer statistics.) As a result, the competing constraints on X through the statistics x and sy 
are so jointly improbable under the exponential model tliat simulated and observed data 
will rarely coincide, making T(y) very unlikely under this model. This is a strong indicator 
of model inadequacy.

hi contrast, the plots of ft and i|f against T U ) under the gamma model indicate no obvious 
restrictions on the parameters based on T(y), suggesting that this model is flexible enough 
to have generated tlie observed data with relatively high probability. Note that from these 
marginal scatterplots it is not dear tliat these statistics are at all informative for the model 
parameters, This indicates the importance of parameterization for visualization, as alter
natively considering method of moments estimators as summary statistics (ft, n[r), where 
ft =  x 2fs]: and if/ = s\jx, will result in strong linear relationships between (ft:, ) and (ft, if/). 
Of course, in practice dired unbiased estimators are rarely known.

12.4.2 The Effect of e

We now implement the LF-MCMC algorithm (Algorithm 12.2) targeting the Exponential(V) 
model, with an interest in evaluating sampler performance for different e values, Recall 
that small e is required to obtain a good likelihood-free approximation to the intradable 
posterior jilf(0  | y) ~  n(0 | y) (see Figure 12.1), where now 0 =  X, However, implementing 
the sampler with low* canbe problematic in terms of initializing the chain and hi achieving 
convejgence to the stationary distribution.

An initialization problem may occur when using weighting kernels :tH <y \ x, 0) with com
pact support, such as the uniform kernel (Equation 12.4) defined on [—g,e]. Here, initial 
chain values (0o,.td) are required such that uf (y | mtln) ^ 0 in Hie denominator of Hie 
acceptance probability at tune f = 1 (Algorithm 12.2). e, this is unlikely to be Hie case 
for the first such parameter vedor tried. Two naive strategies are to either repeatedly 
generate ato ~  tt(.t | 0o), or similarly repeatedly generate 9q ~  n(0) and Jto ~  ti(:x | So)/ until 
itf (</1 -*n- 0o) ^  0 is achieved. Howevei; tlie former strategy may never terminate unless 0o 
is located within a region of high posterior density. Tlie latter strategy may never terminate 
if the prior is diffuse with resped to the posterior. Relatedly, Markov chain convergence 
can be veiy slow for small t when moving through regions of very low density, for which 
generating x' ~ tt (x | O') with T(V) «  T(y) is highly improbable.

One strategy to avoid these problems is to augment Hie target distribution from 
•jilfW/-* Iy) to h : l f ( 0 , |  y) (Bortot et al., 2007), permitting a time-variable e to improve 
chain mixing (see Section 12.3 for discussion on this and other strategies to improve chain 
mixing). A simpler strategy is to implement a specified diain bum-in period, defined by a 
monotonic decreasing sequence < tj-, initialized withlarge eo, for whidief = e remains 
constant at the desired level for t > t*f beyond some (possibly random) time t* (see Peters
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et al., 2010). For example, consider the linear sequence ej =  max {eg — ct,«J for some c > 0. 
However, the issue here is in determining the rate at which the sequence approaches the 
target <e: if c  is too large, then <Ef =  e before (Gf, Jtf) has reached a region of high density; if 
c  is too small, then the chain mixes well but is computationally expensive through a slow 
bum-in.

One self-scaling option for the uniform weighting density (Equation 12.4) would be to 
define 6q =  p(T(xo), T (v)) and, given the proposed pair (O', x') at time t, propose a new 
€ value as

e" =  max{e,min{e', {12.12)

where e' = p{T(x'),T(y)) > 0 is the distance between observed and simulated summary 
statistics. If tlie proposed pair (O',*') are accepted then set ef = else set et = ef_i. That 
is, the proposed e" is dynamically defined as the smallest possible value that results in 
a nonzero weighting function nef(y x , O') in tlie numerator of tlie acceptance probability, 
without going below the target e, and while decreasing monotonically If the proposed 
move to (0', x') is accepted, the value t" is accepted as the new state, else Hie previous value 
et_ i is retained. Similar approaches could be taken with nonuniform weighting densities

Four trace plots of Xf and tf for the Exponential >,) model are illustrated in Figure 12.3a,b, 
using the above procedure. All Markov chains were initialized at Xo = 10 with target e = 3, 
proposals were generated via X' ~  N(Xf_i, 1), and the distance measure

v{T(x),T{y)) = { [ r w - r c ^ r s - ^ m  - r(i/ )]j1/2 {12.13)
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FIGURE 12*3
Performance of the U-MCM C sampler for the Exponential V) model. Trace plots of (a) \ f and (b) i f  for four chains 
using the self-scaling {e/} sequence given by Equation 12.12. The maximum likelihood estimate of k is 0.25 and 
the target e is 3. (c) Jittered trace plots of V  with different target t =  4.5 (bottom), 4, 3.5, and 3 (top), (d) Posterior 
density estimates of X for the same chains based on a chain length of 100,000 iterations.
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is given by Mahalanobis distance. The covariance matrix E = oov(T(y)) is estimated by Hie 
sample covariance of 1000 summary vectors r(:t) generated from tt(t | X) conditional on 
X = 0.25, the maximum likelihood estimate. All four chains converge to the high-density 
region at X =  0.25 quickly, although at different speeds as the sampler takes different routes 
through parameter space. Mixing during buni-inis variable between chains, although over
all convergence to = 3 is rapid. The requirement of tuning the rate of convergence, beyond 
specifying the filial tolerance e, is dearly circumvented.

Figure 12.3c,d also illustrates the performance of the LF-MCMC sampler, post conver
gence, based on four chains of length 100,000, each with different target e. As expected (see 
the discussion in Section 12.3), smaller t results in lower acceptance rates. In Figure 12.3c, 
e = 4.5 (bottom trace), 4, 3.5, and 3 (top) result in post-convergence (of mean acceptance 
rates of 12.2%, 6.1%, 2.9%, and 1.1%, respectively. Conversely, precision (and accuracy) of 
the posterior marginal distribution for X increases with d ecreasin g as seen in Figure 12 3d.

hi practice, a robust procedure to identify a suitable target <e for tlie likelihood-free 
MCMC sampler is not yet available. Wegniami et al. (2009) implement tlie LF-MCMC 
algorithm with a large e value to enhance chain mixing, and then perform a regression- 
based adjustment (Beaumont et al., 2002; Blum and Francois, 2010) to improve the final 
posterior approximation. Bortot et a l (2007) implement tlie LF-MCMC algorithm target
ing the augmented posterior t t l f  (9/ ̂ -6 |y) (see Section 12.3.2), and examine the changes 
in ji^pO |y) = J\- Jy  ttlf(0, t y) dx rfe, with £ =  [0, 6*], for varying e*. Tlie final choice 
of e* is the largest value for which reducing €* further produces no obvious improve
ment in Hie posterior approximation. This procedure may be repeated manually through 
repeated LF-MCMC sampler implementations at different fixed a values (Tanaka et al., 
2006). Nevertheless, in practice e is often reduced as low as possible such that computation 
remains within acceptable limits.

12.4.3 The Effect of the Weighting Density

The optimal form of kernel weighting density ir, (y | x, G) for a given analysis is midear 
at present, While tlie uniform weighting kernel (Equation 12.4) is the most common in 
practice—indeed, many likelihood-free methods have this kernel written directly into 
the algorithm (sometimes implidtly)—it seems credible that alternative forms may offer 
improved posterior approximations for given computational overheads. Some support 
for this is available through recently observed links between Hie likelihood-free posterior 
approximation t t l f (6 Iy) and nonparametric smoothing (Blum, 2010).

Here we evaluate the effed of the weighting density iMy 6) on posterior accuracy 
under tlie Exponential (X) model, as measured by the one-sample Kohnogorov-Smimov 
distancebetweenthe likelihood-free posterior sample and the true Gamma (21, SO) posterior. 
To provide fair comparisons, we evaluate posterior accuracy as a function of computational 
overheads, measured by the mean post-convergence acceptance rate of the LF-MCMC sam
pler. The following results are based on posterior samples consisting of 1000 posterior 
realizations obtained by recording eveiy lOOOtli chain state, following a burn-in period of
10,000 iterations. Figures are constructed by averaging the results of 25 sampler replications 
under identical conditions, for a range o f« values.

Figure 12.4a shows the effed of varying the form of tlie kernel weighting function based 
on tlie Mahalanobis distance (Equation 12.13). There appears little obvious difference in tlie 
accuracy of the posterior approximations in this example. However, it is credible to susped 
that nonunifonn weighting functions may be superior in general (Blum, 2010; Peters et al,,
2008). This is more dearly demonstrated in Section 12,4.5 below. The slight worsening hi the
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FIGURE 12.4
Performance of the LF-MCMC sampler for the Exponential^) model under varying kernel weighting densities: (a) 
Mahalanobis distance between r(;r) and T(y) evaluated on uniform, Epanechnikovand triangle kernel functions; 
(b) Mahalanobis, scaled Eudidean and Euclidean distance between T(x) and T(y) evaluated on the uniform kernel 
function. Sampler performance is measured in terms of accuracy (y-axis: one-sample Kolmog-orov-Smirnov test 
statistic evaluated between likelihood-free posterior sample and true posterior) versus computational overheads 
(jt-axis: mean sampler acceptance probability),

accuracy of the posterior approximation, indicated by the upturn for low t in Figure 12.4a, 
will be examined in more detail in Section 12.4.4.

Regardless of its actual form, the weighting density nf (y 1 x, 6) should take the distribution 
of the summary statistics T () into consideration Fanetal. {2010) note that using a Eudidean 
distance measure {givenby Equation 12.13 with E  = I, the identity matrix) within (say) the 
uniform weighting kernel {Equation 12.4), ignores the scale and dependence (correlation) 
structure of T(-), accepting sampler moves if T (y) is within a circle of size <e centered on 
T(x), rather than within an ellipse defined by E  = cov(T(y)). In theory the form of the 
distance measure does not matter as in the limit e -»■ 0 any effed of the distance measure p 
is removed from the posterior ttlf(6 I y), tliat is, T (x) = T (y) regardless of the form of E . In 
practice, however, with e > 0, the distance measure can have a strong effed on the quality 
of the likelihood-free posterior approximation h lfO  y) ^  tt(0 | ?/).

Using the uniform weighting density Figure 12.4b demonstrates the effed of using Maha
lanobis distance (Equation 12.13), with E  given by estimates of covlTo/)), diag(cov(T(y) ) ) 
(scaled Eudidean distance) and tlie identity matrix I  (Eudidean distance). Clearly, for a 
fixed computational overhead ( j'-axis), greater accuracy is attainable by standardizing and 
orthogonalizing the summary statistics. In this sense, Mahalanobis distance represents an 
approximate standardization of the distribution of T(y) | 6 at an appropriate point 9 follow
ing indired inference arguments (Jiang and Turnbull, 2004). As cov(T(y)) may vary with 0, 
Fan et al. (2010) suggest using an approximate maximum a posteriori estimate of 0, so that O 
resides in a region of high posterior density Hie assumption is then that cov(T0/)) varies 
little over the region of high posterior density.

12.4.4 The Choice of Summary Statistics

Likelihood-free computatioil is based on the reproduction of observed statistics T fy ) under 
the model. If the T(y) are suffident for 0, then the true posterior tt<G | y) can be recovered
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exactly as « ^  0. If dim(X(i/)) is large (Bortot et al., 2007), then likelihood-free algo
rithms become computationally inefficient through tlie need to reproduce large numbers of 
summary statistics (Blum, 2010). However, low-dimensional, nonsuffident summary vec
tors produce less efficient estimators of G, and so generate wider posterior distributions 
tclf(G | y) than using sufficient statistics (see Section 12.23). Ideally, low-dimensional and 
near-sufficient T (i/J are the preferred option.

Unfortunately it is usually difficult to know wThich statistics are near-sufficient in prac
tice. Abrute-force strategy to address this issue is to repeat the analysis while sequentially 
increasing tlie number of summary statistics each time (in order of their perceived impor
tance), uutil no further changes to t t l f (G \ y) are observed (Marjoram et al., 2003; see also 
Joyce and Marjoram, 2008). If the extra statistics are //j (informative, tlie quality of approx
imation will remain the same, but the sampler will be less efficient. Howrever, simply 
enlarging the number of informative summary statistics is not necessarily the best way 
to improve tlie likelihood-free approximation ttlf(G I y) ^  n (9 1 y), and in fact may worsen 
the approximation in some cases.

An example of this is provided by the present Exponential^,) model, where either of Hie 
twTo summary statistics T(y ) =  (y,sy) =  (4  1) alone is informative for X (andindeed, j/ is suf
ficient), as wTe expect that \ ^  \jy ^  1 jsy under any data generated from this model, hi this 
respect, howTever, the observed values of the summary statistics provide conflicting informa
tion for the model parameter (see Section 12.4.1). Figure 12.5 examines the effect of this,by 
evaluating the accuracy of the likelihood-free posterior approximation j i l f (G | y) ^  ti(0 | y) 
as a function of f under different summary statistic combinations. As before, posterior accu
racy is measured via the one-sample Kolmogorov-Smirnov test statistic with respect to the 
true Gamma(21,80) posterior.

With T{y) — y, Figure 12.5a demonstrates that accuracy improves as « decreases, as 
expected. For Figure 12.5b, with T(i/) — s¥ (dots), the resulting jt l f (6 I}/) posterior is clearly 
different from the true posterior for all e. Of course, the limiting posterior as e —»■ 0 is (very) 
approximately Ganmia(21,20), resulting from an exponential model with X = l / s y = 1, 
rather than Gamma (21,80) resulting from an exponential model with >, = 1/y = 1/4. Tlie 
crosses in Figure 12.5b denote the Kohnogorov-Smimov test statistic with respect to the 
Gamma(21,20) distribution, wrhich indicates that ttlf(6 |i/) is roughly consistent with this

(a) <b) (c)
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FIGURE 12.5
likelihood-free posterior accuracy of the Exponential (k) model as a function of e for differing summary statistics:
(a) T{y) =  y; (b) T{y) =  Sy) (c) Tty) =  (y, Sy). Posterior accuracy (y-axis) is measured by one-sample Kolmogorov- 
Smirnov (KS) test statistic evaluated between likelihood-free posterior sample and true posterior. Points and 
vertical lines represent KS statistic means and ranges based on 25 sampler replicates at fixed t levels. Crosses in
(b) denote KS statistic evaluated with respect to a Gamma(21,20) distribution.



Likelihood-Free MCMC 329

distribution as ? decreases. That the Gamma (21,20) is not the exact limiting density (i.e. 
the KS statistic does not tend to zero as t ^  0) steins from the fact that s,7 is not a sufficient 
statistic for X., and is less than fully efficient.

hi Figure 12,5c with T(y) =  (}/, s,,), which contains an exactly suUident statistic ([/), the 
accuracy of I y) appears to improve with decreasing e, and then actually worsens 
before improving again. This would appear to go against Hie generally accepted principle 
tliat, for suffident statistics, decreasinge will always improve the approximation hlf(0 I y) ^  
j t ( 6  | y ) .  Of course, the reality here is that both of these competing statistics are pulling 
Hie likelihood-free posterior in different directions, with Hie consequence that the limiting 
posterior as e 0 will be some combination of both gamma distributions, rattier than the 
presumed (and desired) Gamma(21,80).

This observation leads to the uncomfortable condusion that model comparison through 
likelihood-free posteriors with a fixed vector of summary statistics T{if), will ultimately 
compare distortions of those models which are overly simplified with respect to the true 
data-generation process. This remains true even when using sufficient statistics and for 
6 0.

12.4.5 Improving Mixing

Recall tliat the acceptance rate of the LF-MCMC algorithm (Algorithm 12.2) is directly 
related to the value of the true likelihood 7i(y | 6') at the proposed vector 0' (Section 12.3). 
While this is a necessary consequence of likelihood-free computation, it does imply poor 
sampler performance in regions of low probability, as Hie Markov chain sample-pathmay 
persist in distributional tails for long periods of time due to low acceptance probabilities 
(Sisson et a l, 2007). This is illustrated in Figure 12.6(a, b: lowest light gray lines), wThich 
displays the marginal sample paths of k and \[/ under the Gamma (ft, \|j) model, based on 
5000 iterations of a sampler faceting ti{0, x \y) with e = 2 and using the uniform kernel 
density ji e (j/ | x, 0). At around 1400 iterations the sampler becomes stuck in the tail of the 
posterior for the following 700 iterations, with very little meaningful movement,

A simple strategy to improve sampler performance in this resped is to increase the 
number of auxiliary data sets S generated under the model, by targeting either the joint 
posterior it lf(0,.*1:S I y) or the marginal posterior h lf(0  y) with S > 1 Monte Carlo draws 
(see Section 12.3.1). This approach will reduce the variability of the acceptance probability 
(Equation 12.8), and allowT the Markov chain acceptance rate to approach that of a sam
pler targeting the true posterior n (6 |y). The trace plots in Figure 12.6a,b (bottom to top) 
correspond to chains implementing S =  1, 10, 20, and 50 auxiliary data set generations 
per likelihood evaluation. Visually, there is some suggestion tliat mixing is improved as 
S increases. Note, however, that for any fixed S, Hie LF-MCMC sampler may still become 
stuck if the sampler explores suffidently far into Hie distributional tail.

Figure 12.6c,d investigates this idea from an alternative perspective. Based on 2 million 
sampler iterations, the lengths of sojourns thatthe ft parameter spent above a fixed threshold 
k were recorded. Asojoum length is defined as the consecutive number of iterations in which 
tlie parameter k remains above k. Intuitively, if likelihood-free samplers tend to persist in 
distributional tails, the length of the sojourns will be much laiger for the worse-performing 
samplers. Figure 12.6c,d show's the distributions of sojourn lengths for samplers withS = 1, 
10, 25, and 50 auxiliary data sets, with k =  45 (c) and k = 50 (d). Boxplot shading indicates 
use of the uniform (white) or Gaussian (gray) weighting kernel M y  \xr 0).

Anumber of points are immediately apparent. Firstly, chain mixing is poorer the further 
into the tails the sampler explores. This is illustrated by the increased scale of the sojourn
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FIGURE 12,6
Aspects of LF-MCMC sampler performance. Trace plots of (a) k  and (b) 41 parameters under the gamma model, 
for varying numbers of auxiliary data sets S — 1 (lower traces), 10,25 and 50 (upper traces) using t =  2 and the 
uniform kernel density 1 x, 0). Distribution of sojourn lengths of parameter k  above (c) k =  45 and (d) k =  50 
for varying numbers of auxiliary data sets. Boxplot shading indicates uniform (white) or Gaussian (gray) kernel 
densities jrt {y | j ,  9). The Gaussian kernel sampler used t  =  2/\/3 to ensure a comparable standard deviation with 
the uniform kernel sampler.

lengths for k =  50 compared to k = 45. Secondly, increasing S by a small amount substan
tially reduces chain tail persistence. As S increases further, tlie Markov chain performance 
approaches that of a sampler directly targeting the true posterior ji (6 1 if), and so less per
formance gains are observedby increasing S beyond a certainpoint. Finally there is strong 
evidence to suggest that LF-MCMC algorithms using weighting kernel densities tic (y | x, 6) 
that do not generate large numbers of zero-valued likelihoods will possess superior perfor
mance to those that do. Here use of the Gaussian weighting kernel dearly outperforms tlie 
uniform kernel in all cases. In summary, it would appear that the choice of kernel weighting 
function n€ (0 | y) has a larger impact on sampler performance than the number of auxiliary 
data sets 5.

12.4.6 Evaluating Model Misspecification

In order to evaluate the adequacy of both exponential and gamma models in terms of their 
support for the observed data Tiy) = (y, sy), we fit the error-distribution augmented model 
{Equation 12.10) given by

^LF(0/JCl:Sy 1 l y )  : =  n u n | r ( l r | l/,^l:S ,9)lt(JCl:S  I 9 )71(0)71(1) ,

asdescribedinSectionl2.3.2(Ratmaimetal.,2009).ThevectorT = (xi, T2),witht,- = T, Or) -  
r,U/) for r = 1,2, describes the error under the model in reproducing the observed summary
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statistics TO/). The marginal likelihood-free posterior | y) should be centered on the 
zero vector for models which can adequately account for tlie observed data.

We follow Ratniaim et al. (2009) in specifying K  in Equation 12.11 as a biweight (quar- 
tic) kernel with an adaptive bandwidth determined by twice the interquartile range of 
T,-(jrs) -  r ,  ()/) given .ri:s =  U '1, .. . ,x s ). The prior on the error i  is determined as j i ( t ) =  

n,-Tt(v), where n(xr) =  exp(— 11, | /&, )/(2&r) with 5i =  S? = 0.75 for both exponential and 
gamma models.

Based on50,000 sampler iterations using S =  50 auxiliary data sets, the resulting bivariate 
posterior | y) is illustrated in Figure 12.7forbothmodels. From theseplots, the errors t 
under Hie ganrnia model (bottom plots) are clearly centered on the origin, with50% marginal 
high-density regions givenby t i  | y ~  [-0.51, 0.53] and 12 Iy ~  [—0.44,0.22] (Ratniaimetal.,
2009). However for the exponential model (top plots), while the marginal 50% high density 
regions 1 1 1 y  ~  [—0.32,1.35] and 12 | y ~  [-0.55,0.27] also both contain zero, there is some 
indication of model misspedfication as the joint posterior error distribution x | y  is not fully 
centered on the zero vector. Based on this assessment, and recalling the discussion on the 
exploratory analysis in Section 12.4.1, the gamma model would appear to provide a better 
overall fit to the observed data.

12.5 D iscu ssio n

hi tlie early 1990s, the introduction of accessible MCMC samplers provided the catalyst 
for a rapid adoption of Bayesian methods and inference as credible tools in model-based 
research. Twenty years later, the demand for computational techniques capable of han
dling the types of models inspired by complex hypotheses has resulted in new dasses of 
simulation-based inference, which are again expanding the applicability and relevance of 
the Bayesian paradigm to new levels.

While the focus of the present chapter is on Markov chain-based, likelihood-free simula
tion, alternative methods to obtain samples from h l f (6 IV) have been developed, each with 
their own benefits and drawbacks. While MCMC-based samplers can be more effident 
than rejection sampling algorithms, the tendency of sampler performance to degrade in 
regions of low posterior density (see Section 12.4.5 above; see also Sisson et al., 2007) canbe 
detrimental to sampler effidency One dass of methods, based on Hie output of a rejection 
sampler with a high e value (for effidency), uses standard multivariate regression methods 
to estimate tlie relationship between the summary statistics T(jt) and parameter vedors
0 (Beaumont et al., 2002; Blum and Frangois, 2010; Marjoram and Tavare, 2006). The idea 
is then to approximately transform the sampled observations from (9, X(jc)) to (0*, T (y)) 
so that the adjusted likelihood-free posterior h lf(0,J£ |V) —»■ ttlf(0V/ 10  ^  n(0 \y) is an 
improved approximation Further attempts to improve sampler effidency over MCMC- 
based methods have resulted in the development of likelihood-free sequential Monte 
Carlo and sequential importance sampling algorithms (Beaumont et al., 2009; Del Moral 
et al., 2008; Peters et al., 2008; Sisson et al., 2007; Toni et al., 2009). Several authors have 
reported that likelihood-free sequential Monte Carlo approaches can outperform their 
MCMC counterparts (McKinley et al., 2009; Sisson et al., 2007).

There remain many open research questions in likelihood-free Bayesian inference. These 
include how to select and incorporate the vectors of summary statistics T() ,  howto perform 
posterior simulation in the most effident maimer, and which joint likelihood-free posterior
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models and kernel weighting densities admit the most effective marginal approximation to 
the true posterior tilfO  I y) ^  | y). Additionally, the links to existing bodies of research,
including nonparametrics (Blum, 2010) and indirect inference (Jiang and Turnbull, 2004), 
are at best poorly understood.

Finally, there is an increasing trend toward using likelihood-free inference for model 
selection purposes (Grelaud et al., 2009; Toni et al., 2009). While this is a natural extension 
of inference for individual mo dels., the analysis in Section 12.4.4uiges caution and suggests 
tliat further research is needed into tlie effect of Hie likelihood-free approximation both 
within models and on the marginal likelihoods t t l f U /) = t i l f ( 0  y) rfQ upon which model 
comparison is based.
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13
MCMC in the Analysis of Genetic Data 
on Related Individuals

Elizabeth Thompson

13.1 In tro d u ctio n

This chapter provides an overview of the use of Markov chain Monte Carlo (MCMC) 
methods in the analysis of data observed for multiple genetic lod on members of extended 
pedigrees in which there are many missing data. Rather than on the details of tlie MCMC 
sampling methods, our focns is first on the complex structure of these data that necessitates 
MCMC methods, and second on the use of Monte Carlo realizations of latent variables in 
statistical inference in this area.

MCMC should be a weapon of last resort, when exact computation and other Monte 
Carlo methods fail. When MCMC is needed, there are two prerequisites for its effident use 
in complex stochastic systems. Hie first is a consideration of the conditional independence 
structure of the data observations and latent variables, and a choice of latent variable struc
ture that will facilitate computation and sampling. While unnecessary augmentation of the 
latent variable space is dearly disadvantageous, there are dassic cases where augmentation 
of the space greatly improves effidency (Besag and Green, 1993). Second, and related, it is 
important to consider what parts of a computation may be performed exadly. Where a par
tial exad computation is feasible, this may be used to resample jointly subsets of the latent 
variables, and hence improve MCMC performance. Additionally, partial exad computation 
may permit the use of Rao-Blackwellized estimators (Gelfand and Smith, 1990), improving 
effidency in the use of sampled realizations. Thus, in Section 13.3 we consider the structures 
and exad computational algorithms that will complement MCMC approaches.

As genetic marker data on observable individuals increase, and the traits requiring analy- 
sisbecome genetically more complex, the challengesbothfor exadcomputationand MCMC 
methods increase also. In Section 13.4, we describe MCMC samplers of genetic latent vari
ables thathave evolved from the single-site genotypic updating samplers of Sheehan (2000) 
to the most recent multiple-meoisis and locus sampling of inheritance patterns of Tong and 
Thompson (2008). The separation of the analysis of trait data from the MCMC sampling of 
latent variables conditional on genetic marker data was first proposed by Lange and Sobel 
{1991). With the increasing complexity of models for trait data, this becomes the approach 
of choice, and in Section 13.5 we discuss tlie sampling of latent inheritance patterns condi
tional only on dense marker data. In some cases, the model on which sampling is based is 
too simple to even approximate reality. Then, importance sampling reweighting becomes 
a key tool in improving tlie usefulness of this approach Also in the arena of marker data 
based analyses is tlie question of genetic map estimation (Section 13.5.2),

3 3 9
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Having developed the exact and Monte Carlo computational methods in Sections 13.3 
and 13.4, in Section 13.6 we describe their use in the analysis of genetic data, In Section '13,6.1, 
we show how realizations of inheritance patterns canbe used in the Monte Carlo estimation 
of multilocus linkage log-odds (lod) scores and other test statistics. In Section 13.6.2, we 
show how the variation in Monte Carlo realizations ol latent variables can be used to 
measure uncertainty in inferences and test linkage detection, using the latent p-value or 
fuzzy p-value approach of Geyer and Meeden (2005). Finally, in Section 13.6.3 we discuss 
two approaches to localization of genesfor complex traits, using the latent /'-value approach. 
Overall, our thesis again is that a single set of realizations of latent genetic variables, made 
conditional on joint marker data on all individuals and over an entire genomic region, can 
be used in a broad variety of ways to analyze Hie geneticbasis of complex traits.

While this chapter contains new material, particularly in relation to methods for 
approaching modem dense single nucleotide polymorphism (SNP) data using MCMC 
methods, much of the background inf onnation is based on earlier papers. These include a 
tutorial chapter on MCMC for genetic data (Thompson, 2005) and a chapter in the Hai idbook 
o f  Statistical Genetics on linkage analysis (Thompson, 2007). Many additional references may 
be found in these two previous papers.

13.2 P ed ig rees, G en etic V ariants, and the In h eritan ce  of G enom e

In this section, we introduce the specification of pedigrees and inheritance, and then discuss 
structure of genetic models. Apedigree is a specification of the genealogical relationships 
among a set of individuals. Each individual is given a unique identifier, and the two parents 
of each individual are specified. Individuals with unspecified parents xrefotmders'. the others 
are uotifomiders. Graphically, males are traditionally represented by squares andfemalesby 
circles. In the graphical representation of a pedigree known as a marriage node graph, a male 
and a female individual having shared offspring are connected to a marriage itode, and tlie 
marriage node is connected to each offspring. An example pedigree we will use throughout 
this chapter is shown in Figure 13.1. For darity, the marriage nodes are shown as bullets.

Each marriage node is connected upward to two parent individuals, and downward to 
at least one (and possibly many) offspring individual(s). Each nonfounder is connected 
upward to precisely one marriage node. Aparent individual may be comieded to multiple 
marriage nodes, hi the example 2S-member pedigree (Figure 13.1), the letters are the iden
tifiers of Hie individuals (some not shown). There are 9 founders and 19 nonfounders, 12 
males and 16 females, and 11 marriage nodes. One individual (H) has two marriages. One 
individual (C) is inbred, having related parents E and H. Note that it is not only inbreeding 
that causes loops inpedigrees. Even without C, the fad that£ and H  are double-first cousins 
creates a loop in the pedigree structure. Another loop is created by Hie fad  that sibs D and 
F are double-first cousins to A, B, and J.

Human individuals are diploid: every cell nudeus contains two haploid copies of the 
T)NA of the human genome, each of approximately 3 x  105 base pairs (bp). One of these 
copies derives from the DNAin the individual's mother (the maternal genome), and Hie 
other from the DNAin the individual's father (the paternal genome). Note that nil DNAis 
double-stranded. The double-stranded nature of DNAhas nothing to do with the haploid 
(single genome copy) or diploid (two-copy) genome content of a cell or organism. The 
biological pro cess through which I) NAinparent cells is copied and transmitted to offspring 
is known as meiosis, and Mendel's first hut? (1S66) specifies this transmission marginally, at
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FIGURE 13.1
An example 28-member pedigree.

any location in the genome. Agenome location is known as a locus (plural loci). In modem 
terminology, Mendel's first law states that the copy transmitted from parent to offspring is 
a randomly chosen one of the two parental copies, and that all meioses, wliether to different 
offspring of a single parent or in different parental individuals, are independent.

At many loti. of our genomes there is genetic variation. At a given locus, the possible 
variants are knowTi as the alleles of that locus. The two (possibly identical) alleles at a locus 
carried by a diploid individual are the individual'sgfljofr/pf atthatlocus. The DNAof our cell 
nudei is divided into 46 chromosomes (22 pairs and 2 sex chromosomes). The allelic types 
along a chromosome are known as the haplotype. In a given genomic region, the two haplo- 
types carried by an individual determine tlie individual's genotype at all loci in the region. 
The converse is not true; a set of single-locus genotypes of an individual may correspond to 
many different haplo type pairs. This is is problem of phase (Browning and Browning, 2007).

Inheritance is dependent among lod on the same chromosome pair. Specifically, DNA 
at nearby loci has a very high probability of being copied to an offspring from the same 
parental chromosome, and in fad  chromosomes are inherited in chunks with length of 
order 10s bp. Mendel's first law implies only that, at each locus, an offspring will share 
an allele with each parent. The chromosomal dependence in inheritance resulting from the 
process of meiosis implies that, at least locally and with high probability, an offspring will 
share a haplotype with each parent,

13.3 C o n d itio n al In d ep en d en ce  S tru ctu re s  of G en etic  D ata

The descent of DNA in a pedigree is not directly observable, and, even wTliere individuals 
are available for observation, the DNA variants of their separate chromosomes (i.e. their 
Jtaplotypes) are not normally observable, Thus, tlie framework for analyses of genetic data 
canbe described through several complementary latent variable specifications, hi a genetic
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FIGURE 13.2
The structure of genetic models.

analysis the primary objective is often the computation oi a likelihood, or the probability of 
observed data Y. The latent variables are the targets of MCMC approaches to Monte Carlo 
estimates of this likelihood.

13.3.1 Genotypic Structure of Pedigree Data

While Hie genetic data have become ever more complex, the basic structure outlined by 
Elston and Stewart (1971) remains. Figure 13.2 shows this structure, and in these and similar 
figures, models willberepresentedbyboxes, latent variables by circles, and observable data 
by diamonds. For the founder members of the pedigree, the population, model specifies tlie 
probabilities of the allelic types of DNA and hence also their genotypes. Hie transmission 
model specifies Hie probabilities of meiotic events, and hence tlie descent of DNA and thence 
the genotypes of all members of the pedigree. The penetrance model specifies the probability 
of data observations given the genotype. The data observation here may be qualitative or 
quantitative, and the penetrance probability may depend on other covariate information 
on the individual, such as age, sex, or geographic location, Given this dassic structure of 
genetic models, it is natural to consider first the genotypes of individuals as defining tlie 
latent structure of genetic data.

The probability of data, Y, or likelihood of any model parameters f  is given by

The probability structure here implies that data on offspring are conditionally independent 
given the genotypes of parents, or more generally that data on disjoint parts of the pedigree

L(T) = P(Y; D = X ;  P(Y | G)P(G)
G

= ]  P<Gi|GMtf)/Gf(f)) P(Y,' | G,) J . (13.1)
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FIGURE 13.3
Genotypic peeling on pedigree structures. The two dark-shaded individuals are a cutset dividing the left- and 
right-hand parts of the pedigree.

are conditionally independent given the genotypes of individuals in a cutset dividing these 
parts (Figure 13.3). This led to Hie computational method of pedigree peeling proposed by 
Elston and Stewart (1971), and soon generalized to arbitrary pedigrees (Cannings et al., 
1978) and more complex models (Cannings et a l, 1980).

We will not labor the details here, since the approach is now well known through the 
generalization to other graphical models (Lauritzen, 1992, Lauritzen and Spiegelhalter, 
1988). One point worth noting is that pedigrees are intrinsically directed, with DNAbeing 
copied from parents to offspring (Equation 13,1). Thus when tlie accumulated probability 
relates to individuals connected to a cutset member i via his offspring ("below i"), the 
natural probability to consider is

R f (g) =  P(data | G, = £).

However, if the accumulated probability is for data onindividuals connected via the parents 
of / ("above <"), the natural probability is

R*(g) =  P(data,G; =  g).

Oil a complex pedigree, the accumulated probability may relate to a pedigree subset above 
some individuals but below others. For example, in Figure 13.3 the probabihty of the data 
in the right half of the pedigree could be expressed as

E £?-(gb£2) =  P (right data, Ge = g i \ G r = g2),

where £ and r denote the left and right member of the cutset pair in the middle of the 
pedigree. Equivalently, the data in the left half could be considered as

R ^ -ighgi) =  P(leftdata,G, = g 2 \ Gt = gi).
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Since individuals t  and r are unrelated, multiplying these two functions and summing over 
provides tlie overall likelihood P(Y). Then also, the product of the twTo functions 

normalized by P( Y) provides the conditional probability P(Gf =  g i, G, = g 2 | Y).
The methods of this section can be applied to data at several genetic lod along a chromo

some, with tlie latent genotype being phased. That is, it is a specification of the collection of 
alleles on each of the two chromosomes of the individual: the two haplotypes. The model is 
then completely general, with the population model permitting any specified population 
haplotype frequendes, Hie meiosis model permitting any specified transmission of DNA 
fromparents to offspring, and data observations being determined arbitrarily by the phased 
genotypes of individuals jointly over the lod. However, the number of potential phased 
genotypes of an individual increases exponentially with tlie number of genetic lod, and for 
more than a very few genetic lod computation becomes infeasible. An alternate structure 
of latent variables is then required.

13.3.2 Inheritance Structure of Genetic Data

One alternate structure of latent variables consists of a specification in all the meioses i 
(parent-offspring transmissions) of the pedigree of the inheritance of genome at any set of 
discrete lod j:

S j'j =  0, if DNA at meiosis i locus j  is parent s maternal DNA,

= 1, if DNA at meiosis i locus j  is parent s paternal DNA

For convenience, we define tlie twTo sets of vedors each of which makes up Hie array
S = {Si,/}:

5.,/ = {S / = 1, . . . ,  in], j  =  1, . . . ,  I,

51.. =  {S it]-j =  1 l , . . . , w,

where m is the number of nieioses in the pedigree (twice the number of nonfounders) and
1 the number of lod under consideration, hi the literature, the vedor S. y is knowTi as Hie 
inheritance vector at locus / (Lander and Green, 1987).

According to Mendel's first law, the components of S.,y are independent, and hence so 
also are the vedors S,,.. However, the components of S,,. are dependent among lod j  on Hie 
same chromosome pair. For any pair of lod j  and/,

P(S;,, =  0) = P(5,, = 1) = PCS,,. =  0) = P (SU- =  1) = 1/2

by Mendel's first law. One additional parameter, p ( j , f  ) =  Pf'S,,, f  Si/), suffices to spedfy 
the joint distribution, hi reality, tlie value of tlie recombination parameter p depends on 
the meiosis /, most importantly on the sex of the parent in w7hich the meiosis occurs (Kong 
et al., 2002). Sex-specific recombination parameters impose no computational burden, but 
for notational convenience we will ignore Hie dependence of p on i. For lod j  and )' that 
are dose in tlie genome, p(/,/) is small and approximately equal to the genetic distance 
between the lod in morgans (Haldane, 1919). The relationship between genetic (nieiotic) 
distance and physical (base-pair) distance is complex and variable across Hie genome, but 
a useful overall average is that 1 centunorgan (cM) corresponds to p ^  0.01, and to 106 bp. 
The value p(/,/') =  ̂ corresponds to independence of Slrj and S;/, and under most models 
of meiosis 0 < p < \.
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For more than two lod, suppose that lod  j  =  1 ,2 ,...  ,1 are ordered along tlie chromosome. 
A convenient and adequately accurate assumption is that S,;;- are Markov in j:

P(S,',/+l =  s | Si, i , . . . ,  S rf =  P(S„; +l = s | Sirj) oc p)S“5vl)( l -  p/)(1" l‘- ^ l), (13.2)

where p, now denotes the recombination parameter between successive lod j  and j  +  1. 
Then

m

P(SV I =  Y i  P(Si,; | S y -l) 
i = l

and P(S) =  P(S.(1) p(s*,/ I ■

We now assume further that the data can be separated into components Y,i} determined 
separately by genotypes at eadilocus ). These genotypes are a deterministic function of the 
allelic types at this locus of founder members of the pedigree, and of £, (. Then

i

P(Y I S i = Y ]  I S.,;)
;=1

P(Y) = J ] P ( Y  | S)P(S) {13.3)
s

=e  (n p<Y« i p<s-i) ( i W ,'
The data then have hidden Markov (HMM) structure as shown in Figure 13.4. The meio- 

sis model provides the hidden layer of inheritance vedors S,j while population models
determine the allelic types .4:Fl of founders (F) at locus j. These latent variables deter
mine the genotypes of all individuals at each locus j, and we shall find that computation 
of probabilities of data Y.y is straightforward for lod at which genotypes are observed 
(typically "marker lod"), but is more complex if single-locus genotypes are not observable 
(Section 13.3.3).

Given a method for computation of P(Yt,y | S.,/) (Section 13.3.3), standard HMM compu
tational algorithms canbe applied (Baum et al , 1970). Following standard notation, let

Y*(i) =  ■ ■ ■, * . , !  and Y+,'> = {Y.,y,. . . ,  Y.j],

Ft* (s) =  P(Y*0>, S.,y =  s) and Rj(s) =  P(Y+'-'+1) | S.,, =  s).

Given SKj, Y*0-D/ y  and 5,;y+i are mutually independent. Alternately, given S.r}, Y +(J+1), 
Y.'j, an d S,j_ i are mutually independent. Unlike apedigree, achromosomehasno direction, 
but we retain the conditional (t) and joint (*) forms for analogy with Section 13.3.1. As in 
that case, the likelihood P(Y) =  P(Y*{i>) maybe computedby successive elimination of each
S .j (Baum, 1972), while

P(S.,y | V) =  K^^^s)E+(-,,(s)/P(Y). {13.4)
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FIGURE 13.4
The HMM dependence structure of pedigree data, For details, see text.

FIGURE 13.5
The dependence structure of pedigree data.

While the HMM approach permits the computation of likelihoods on pedigree data sets 
with data at multiple lod  on a chromosome, it has limitations. First not only is tlie meiosis 
model more restrictive than in the Elston-Stewart framework, but so also are the trait and 
marker penetrance models, with the data separating into components determined only by 
the inheritance vector at that locus. Second, we have replaced an algorithm exponential 
in the number of lod by one that is exponential in the size of the pedigree. If there are in 
meioses in Hie pedigree, each S.,, can take 2'" values, and the basic HMM algorithm is of 
order 2'" x 2m x 1 — l i m (Lander and Green, 1987).

hi fact, the situation is not so severe, due agahi to Mendel's first law The (unconditional) 
independence of meioses provides a dependence structure of the form shown in Figure 13.5, 
which is a fiictomi hidden Markov structure (Rshelson and Geiger, 2004). Although SvJ still 
takes 2'" values, the forward computation of R*+1 from R* may be accomplished for each 
of the in meioses hi turn, providing an algorithm of order i m l”1. However, tlie approach
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remains exponential in nr, so that exact computation of probabilities of genetic data observed 
at multiple dependent lod is limited to small pedigrees.

13.3.3 Identical by Descent Structure of Genetic Data

Segments of DNAin different genomes that are copies of the same genomic material in a 
recent common ancestor are said to be identical by descent {ibd). In the analysis of data on 
a fixed set of pedigree structures, ibd is defined relative to Hie founders of the pedigrees. 
By definition, the genomes of founders are nowhere ibd. An accurate model is that ibd 
segments of DNA carry the same allelic types; mutation has low probability and can be 
ignored. By definition, non-/M segments carry independent allelic types. Thus, identity by 
descent underlies all similarity among relatives that results from the effects of their DNA.

At any given locus j, Hie pattern of ibd among pedigree members is a function of Hie inher
itance vector S.j. Consequently, given S,_y, we may define the /M-grapli among observed 
pedigree members as shown in Figure 13.6. hi the pedigree on Hie left the individuals 
labeled A-L  are assumed observed at the locus in question. In Hie /Jxf-graph on the right, 
tlie edges are the (data on) these observed individuals, and the nodes canbe considered as 
(the allelic type of) tlie DNA shared ibd by the individuals. Edges join the nodes represent
ing the two DNA segments carried by tlie individual at this locus. Thus, in this example, 
sibs A, B, and / all share DNA ibd. from one of their parents, while B and / share also the 
DNA from their other parent, but A does not. An individual such as C connected to only 
one node is assumed to carry two ibd segments of DNA at the locus, one copied to him 
from each of his parents, who must necessarily then have a common ancestor within the 
pedigree.

For darity Hie founder genomes are labeled in Figure 13.6, but it is important to recognize 
that the founder origins are irrelevant. Only ibd among the current observed individuals 
impacts die probabilities of data.

(a) 13,14 9,15 1,2 3,4

FIGURE 13.6
The iM-graph as a function of inheritance, (a) Pedigree with observed individuals A-L  and labeled founder 
genomes 1—IS. (b) A possible iM-graph resulting from descent of founder genomes in this pedigree. For details 
see text.
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Since ibd underlies all similarity among relatives that results from the effects of their DNA, 
at any locus j  the /M-graph on observed individuals is an equivalence dass of all the 
inheritance vedors S.,, tliat must give identical data probabilities P(Y.,y | S.,,).

For marker lod, at which, for observed individuals, it is assumed genotypes can be 
observed without error, Sobel and Lange (1996) and Kmglyak et al. (1996) indepen
dently provided effident algorithms for computation of P(Y.;, | ) using the iM-graph.
By assumption, the allelic types of iM-nodes are independent, since each represents a 
non-/M piece of genome. Suppose tliat each node g  has allelic type independently with 
probability rft. Then

13 .3 .4  /f>d-Graph Computations for Markers and Traits

PM> = FI = II €  ' <ia 5 >

where n(k) is number of nodes g with type and

p (y .,; i s ) =

where the sum is over all A j consistent with Y./ There are always 2,1, or 0 possible A j, and 
probabilities multiply over unconnected components of the iM-graph.

As an example, consider the larger component of tlie ;M-graph in Figure 13.6. Suppose 
that A, B J  are all rt 1/14, G is D is a.4/1̂ , E is C is f  is H  is nzUj, and Lis 
It immediately follows that node 2 is a\, nodes 9, 13 are a±, 4 is iiiD, 6 is n?, 15 is m , and 17 is 
a\. This is the only possible assignment, and results in two nodes of type a\, two of type â , 
and one each of /i?, a-,, and n̂ ,. The probabihty is 6-

Computation on the fM-graph is not limited to error-free genotypic data, hi 1997, S. Heath 
proposed and implemented computation for arbitrary two-allele single-locus penetrance 
models (Thompson and Heath, 1999). Again, the distind nodes g, have independent allelic 
types, (say) type -4(g,) with probabilities q (A {g i)) . Hie allelic types, A nt\ and A ,^2, of tlie two 
genome labels of an observed individual 11 determine his genotype, and hence probabilities 
of his observed data Y„, P(Y„ | A^i, A?li2), independently for each n:

p(y 1M ) = e  n p<y« 1 a , i , a , z ) 1 (13.6)
A{g)

The parallel between Equation 13.6 and Equations 13.1 and 13.3 is dear, and computation 
proceeds through tlie graph as for any graphical model Since components of the distind 
genome label graph are generally small, this computation is much easier than computing 
on tlie pedigree structure, where summation over unobserved types is required. Details are 
given by Thompson (2005).
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13.4 M C M C  S am p lin g  of L aten t V ariables  

t3.4.1 Genotypes and Meioses

As in many areas of application of MCMC the earliest samplers involved single-site updates, 
either of the genotype of one individual (Sheehan, 2000), or of a single meiosis indica
tor (Thompson, 1994). However, many genotypic configurations on a pedigree have zero 
probability, since individuals must receive an allele from each parent. Likewise, given dis
crete data observations on individuals, inheritance vectors may be tightly constrained, and 
changes to a single component alone impossible. Thus, a single-site Gibbs update does 
not lead to an MCMC sampling process that is irreducible over the space of feasible latent 
variable configurations.

13.4.2 Some Block Gibbs Samplers

A natural extension is thus to consider block Gibbs samplers (Roberts and Sahu, 1997), and 
these have proven much more successful. The HMM structure of the data (Figures 13.4 and 
13.5) suggests updating Hie latent genotypes or the inheritance vector S.,r at a given locus, 
conditional on other latent variables and on Hie data observations (Heath, 1997). Note that

PtS.j | V, jS,̂ ;,k j]) = P(S.j | Y,,j, S.,;— i, S.,/-n)
oc P(Y.,; I S.,; )P(S.,y I S.,;_ !, S.,/+1). (13.7)

That is, the update involves only the data at locus j, and the inheritance vectors at the two 
neighboring lod. At a single locus, sampling from P(S.,y | Y.,y) is accomplished by reverse 
peeling (Ploughman and Boehnke, 1989). Only the transmission probabilities are changed 
by conditioning also on inheritance vedors at neighboring lod; these depend now on the 
recombination parameters. Analogously to Equation 13.2,

P ( %  = S  | S y - b S y + l )  OC p j T ^ U -  P ; - l ) , 1- |S- ^ - ll>p f ' ^ +ll>( l  -  p/)<1- l s- ' V l l > .

Reverse peeling samples directly from F(Sv  | Y,<;) Hence, any consistent with data Y.;y 
canbe sampled. Provided recombination parameters py_i and py between locus j  and its 
neighbors are strictly positive, conditioning on and 5,<;+i does not affed the space of 
feasible realizations. Thus the full-locus Gibbs sampler (or L-sampler) is irredudble (Heath, 
1997), although mixing may be poor if recombination parameters are small. Typically, an 
L-sampler scan is performed, resampling in a random order each S,r/ for each j  e 1 ,2 ,...  ,1 
from its full conditional given {S,^, k ^ /} and Y.

In contrast, the meoisis sampler (or M-sampler) updates jointly all components of the 
meiosis vedor S,;„ which is easily accomplishedby applying the Baum algorithm to the two- 
state HMM of Si'j,j =  1 , . . . ,  I, keeping the remainder of S (% „  k i) fixed {Thompson and
Heath, 1999). Typically, an M-sampler scanis performed, resampling in a random order each 
Slr, for each i e 1 ,2 , . . . ,  »i from its full conditional given {Sjt,„ f t /= /} and Y. Since resampling 
is jointly overall all lod, Hie M-sampler is not directly affected by small recombination 
parameters. However, the feasible space of meioses is often tightly constrained by data, 
and the M-sampler is often not irredudble.

The LM-sampler (Thompson and Heath, 1999) is a combination of L-sampler and 
M-sampler that performs markedly better than either. At each stage, a random choice is
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made to perform either an L-sampler update or an M-sampler update (see Figure 13.5). 
Again, typically updates are by scan, so the choice is of L-sampler updates for every locus 
in a random order, or of M-sampler updates of every meiosis in a random order. Since 
(he L-sampler is irreducible, so is (he LM-sampler, while incorporating M-sampler updates 
greatly improves mixing performance.

13.4.3 Gibbs Updates and Restricted Updates oil Larger Blocks

hi principle there is no reason why a block Gibbs MCMC update should be restricted to a 
single locus or to a single meiosis. When eachlocus has only two alleles (e.g. SNP markers), 
joint updating of tlie inheritance vectors S,<; over several such lod j  is feasible, although Hie 
practical benefits are unclear. More useful is tlie joint updating of several meiosis vectors 
Sfj.. Here again the algorithm is a direct application of the forwards-backwards Baum 
algorithm (Baum et al., 1970) to some subset of meioses i e I. As hi Section 13.3.2, forward 
computation provides

for each j =  1 ,2 , . . . , I. Reversing the procedure, we have

P(S.ri(I) =  s | Y, S.ik/k = j + l , . . . , l )  =  P(S .,y(I) = s | Y*i, S.,/+i(I))

o i R J W ) ) ] ]  p ! * - S v + l l ( l -  p ^ - k - V i l .

i'el

Hence, forward computation and backward resampling is feasible provided only the set 
of meioses hi I  is small enough for the HMM computations to be feasible in an MCMC 
framework, Tong and Thompson (2008) have implemented and tested a variety of multiple- 
meiosis Gibbsproposals. Updating jointly thenieioses from a given individual, froma given 
parent couple, or within a small three-generation subset of a pedigree, can greatly improve 
mixing.

hi some cases, the number of meioses in a nuclear family or three-generation subset of a 
pedigree can exceed practical bounds for a full Gibbs update. In this case, sampling within 
a restricted set of updates provides an alternative approach. For example, some updates 
considered by Thomas et al. (2000) indude proposals to switch Hie binary indicators of 
all the maternal and/ or paternal meioses of all offspring hi a nudear family, hi this case, 
at a given locus, there are just four alternatives to be considered, including the current 
state. Formally, this is most easily considered as an auxiliary variable problem (Tong and 
Thompson, 2008). Given a current state S = { / =  1, . define X; = 0 ,1 ,2 ,3to indicate 
each of the possible alternative states at locus j. Since, given S, X j is a one-to-one function 
of it retains the Markov structure of the inheritance vectors S,i( over lod  j. Since Xj 
lias only four states, a full Gibbs update of X =  (X i, . . . ,  X;) is easily accomplished via tlie 
forwards-backwards B aum algorithm, and translates to an update of S within the restricted 
space of alternatives. Other restricted updates designed to improve mixing particularly in 
pedigrees with large sibships may be considered similarly (Tong and Thompson, 2008). 
While these proposals greatly improve mixing, it is important to recognize that only Hie 
L-sampler ensures irredudbility; all samplers must indude some proportion of L-sampler 
steps.
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13.5 M C M C  S am p lin g  of In h eritan ce  G iven  M a rk e r  D ata

13.5.1 Sampling Inheritance Conditional on Marker Data

We have seenin Section 13.3.4 that computation of data probabilities, and hence also MCMC 
sampling, is more straightforward for genetic markers than the analogous computations 
for trait data. As informative marker data become increasingly available, and trait models 
increasingly complex, basing MCMC realizations of latent inheritance only on marker data, 
and then using these realizations in multiple trait analyses and / or for multiple trait models 
becomes the approach of choice, hi this section we therefore focus on this marker-based 
MCMC, and return to trait data analyses in Section 13.6.

13.5.2 Monte Carlo EM and Likelihood Ratio Estimation

While models for genetic marker data are generally more straightforward than are trait 
models, there are still unknown parameters of the meiosis and population marker models, 
Although MCMC-based EM algorithms have been more widely used in genetic analyses 
(Guo and Thompson, 1994), we will locus here on the estimation of genetic maps, or, equiv
alently, Hie recombination parameters py between marker j  and/ + \,j =  1 , . . . ,  / — 1. Again, 
estimationfor sex-specific recombination parameters is no more complex, but for notational 
convenience we restrict here to a single vector of recombination parameters.

hi the EM framework, the complete dtita consist of latent variables Sm and observed marker 
data Ym, and (see Equation 13.3) the coiitplete-data log likelihood is

logPp(YM,SM) = logP(YM | Sm ) + logPp(SM)
i i 

= ^]logP(Y.,y | S.,y) + log P(5.,i) + ^]logP(S.,y | S.,y_i).
J=1 j—2

Note that the recombination parameter py appears only in the term

m
log P(S.,f+l | S.(y) = log P(-S,,,+i | 5,,y) 

i'=l

= ( i z  |5,''+1 -  lo£ P; +  I ' "  -  ( i t  togt1 -  P;)

{see Equation 13.2). Ill tlie m meioses, for each marker interval / = 1 , . . . ,  m, Hie E-step of the 
EM algorithm thus requires only computation of Hie expected number of recombinants, at 
Hie current recombination frequency vector p and conditionally on VM:

Ep f 5,,,+1 -  £,-y 11 Y m ) =  Pp(s i,y+i ^  Si./ I y m )-

The M-step then updates each py to Pp(SiJ+i ^  Sl(j | Ym)/wj.
On very small pedigrees the E-step may be performed exactly. A slight generalization of 

Equation 13.4 gives

S.,y+i | Y) = R^(s)P(Y.,,+i | S.,y+i)P(S.,/+i | S.,y)l?++1)(s)/P(Y)
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However, unless the number of meioses in is very small, use of this bivariate distribution of 
inheritance vectors at two lod is impractical. On the other hand, MCMC procedures provide 
realizations of S conditional on Ym and hence straightforward Monte Carlo estimates of tlie 
conditional expected recombination counts. This Monte Carlo EM (MCEM) is very easily 
implemented, but a disadvantage is that MCMC sampling is repeated with each update 
of the vedor of recombination parameters p. This can be very slow, particularly dose to 
the maximum likelihood estimate, where very large sample sizes are required for accurate 
estimation of the recombination counts. Stewart and Thompson (2006) therefore propose 
a more general estimation and testing framework for genetic maps using MCEM only for 
the earlier iterates and stochastic approximation (Gu and Kong, 1998; Robbins and Monro, 
1951) hi the later stages.

hi estimation of genetic maps, or more generally any genetic model I", it is important 
to be able to explore the local likelihood surface around a final estimate, or the variation 
of that local surface with changing values of nuisance parameters. The use of MCMC- 
based local likelihood ratio estimates (Thompson and Guo, 1991) provides a practical 
approach;

where the expedation is over the distribution of latent variables S conditional on data Y 
under model T. That is, this single MCMC sample of S provides an estimate of tlie entire 
local likelihood surface L(r*) normalized by L(r).

Agahi, for shnplidty, we consider only tlie example of genetic marker data Ym, the related 
inheritance at marker lod Sm and genetic marker models I'm . For example, wTe might first 
wish to explore the likelihood surface for recombination frequendes hi Hie neighborhood 
of an estimated map. hi this case T and T* differ only hi these recombination frequen
des and P(Y | S; f* ) = P(Y | S; f) . Furthermore, the ratio P(S; f*)/P(S; D  takes the simple

Thus computation of the likelihood ratio L(r*)/L(r) is very easily and evidently accom
plished.

Alternatively, we might wish to explore the sensitivity of Hie estimated likelihood to alter
nate assumptions about marker allele frequendes. hi this case P(S, T*) =  P(S; I"1), and Hie 
ratio P(Y | S;r*)/P(Y | S;T) is very easily computed, since the /M-graph is the determined 
by S (Section 13.3.4). hi fad, hi many cases the ratio is simply a produd of the ratio of 
allele frequendes under T* and T (Equation 13.5), but canbe slightly more complex where 
different allelic assignments are possible under a particular sampled S.

(13.8)

form

(13.9)
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13.5.3 Importance Sampling Reweighting

Importance sampling reweighting is a key tool in investigating the effect of alternative 
models on MCMC realizations, and for using these realizations under a variety of alternate 
model assumptions. Suppose that we have realizations of Sm conditional on marker data 
Ym tinder a model Tm , but wish to consider an alternate model

E(ff(SM) | YM; r j j )  =  J > S M)P(SM | Ym ;T ^ )

=  pr; p—-P(SM I YM, r M>
4-^ P(Sm Ym/Tm )Sm

,P(SM |YM;r ^ )
= E(g(SM) ^ — I v , r  ' I Ym, rM).

P(Sm I Ym , I m )

That is, realizations Sm sampled conditional on Ym under model Tm must be reweighted 
by a factor

F(Sm I Ym; r ^ j  P(Ym I SM; r ^ )  P(SM; r y  P(VM; r M)

P (S m |Y m ; T m ) P (Y m  i S M ;rM )P (S M ;rM )P (Y M ;rX i)'

Note also, from Equation 13.8, that

I'm ) _  g / P(Ym I SM; T^) P(Sm ; r ^ )
P(Ym; r M) \P(Ym | s m;T m ) P(Sm ;T m )

Ym ; Pm

That is, the relative weights

P(Ym I Sm ; I'm ) r j.j) 
P(Ym I Sm ; r M) P(SM; r M)

may be shnply normalized by their sum.
As hi Section 13.5.2, we will consider just two examples, one relating to parameters of 

the distribution of Sm and the other to parameters of P(Y | S). Both can provide substantial 
computational savings in genetic analyses involving multiple linked marker lod. In general, 
reweighting is a powerful tool in analyzing data under more complex models for which 
direct MCMC sampling is impractical, and Gibbs samplers infeasible.

For any model modification relating to the meiosis process,

P (Y m  I S m ; r ^ )  =  P (Y m  | S M ; Tm )- 

Under Mendel's first law, meioses are independent, and only

F(S;r^) ^  PCS,.,, II ,)

i=i

needbe computed. As in Equation 13.9, clearly we can reweight to alternative genetic maps. 
For example, we may do the initial MCMC assuming equal recombination frequendes in 
male and female meioses, but then wish to investigate more carefully in a region of the
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genome where thes e recombina tion fre quendes differ. Provide d the prob abilitie s of re aliz ed 
Sm do not differ too greatly, the previous MCMC samples may be reweighted, avoiding 
additional MCMC. As in any reweighting scheme, the distribution of the weights can be 
used to assess the increase in Monte Carlo variance due to reweighting. More generally, this 
approach may be used to assess deviations from the assumption of no genetic interference 
(Thompson, 2000); that is, S,,; are no longer Markov over lod j. While the Markov structure 
of the components of 5I;. greatly facilitates MCMC, reweighting permits analysis under any 
model for which PCS,;.) is computable.

Likewise, analogous to the example inSection 13.5.2, we may re weight to alternative allele 
frequendes. Then P(Ym I Sm; r ^ )  ?= P(Y;„{ | Sm; I'm), but the ratio of these probabilities is 
easily computed. However, as in the case of meiosis models, tlie approach is more general, 
permitting/ at least to a limited degree, the incorporation of allelic association or linkage 
disequilibrium (LD) among lod. LD is normally the result of population history, and is 
maintained by very tight linkage p as 0. This results, at the population level, in assodation 
of allelic types at different lod along a founder haplotype. Just as the Markov structure of 
inheritance vedors S.rj over lod  j  is essential to effective block Gibbs samplers, so also is Hie 
conditional independence of data Y,,( given S.,y (Equation 13.3). Thus LD cannot be directly 
incorporated into MCMC. However, since LD requires p 0, realized S,,y and hence d i 
graphs are almost always constant across lod in LD. Then reweighting is straightforward; 
the produd of allele frequendes across lod that is assumed in the MCMC is adjusted to 
the haplotype frequendes that actually obtain in Hie population. Even where a realized 
recombination event does change the /M-graph for observed pedigree members within a 
region of LD, reweighting is still possible, although it becomes less straightforward since 
then the assignment of haplotypes across both /M-graphs must be considered.

13.6 U sin g M C M C  R e a liz a tio n s fo r C o m p lex Trait In feren ce

13.6.1 Estimating a Likelihood Ratio or lod Score

The MCMC sampling methods of Section 13.4 may be applied to genetic lod  of any 
kind, whether genetic markers at which genotypes of individuals are available, or to trait 
lod  where there is a more complex penetrance relationship between trait data and latent 
genotypes. Where the trait model and data together provide strong information on latent 
inheritance patterns, anMCMC sampling procedure thatincorporates trait data can provide 
more accurate results with greater computational effidency One such set of procedures are 
those developed by George andThompson(2003). Formuch modem data, however, marker 
genotype information proliferates, while the traits of interest are complex, and haveno dear 
inheritance pattern. In such cases, MCMC-based samples of latent inheritance conditioned 
on marker data, with subsequent analyses of trait data conditional on these inheritances, is 
more computationally effident and practically feasible.

We consider first the dassic statistics used to deted genetic linkage of a trait to a given 
region of the genome in which data on genetic markers are available. The data consist ofboth 
marker data and trait data, Y = { Ym, Y j ) ,  and the full model is now indexed by parameter 
% =  (p ,y ,rM). Here TM denotes all parameters relating to the markers, prindpally their 
allele frequendes, their order along the chromosome, and the recombination frequendes 
between adjacent marker lod. The parameter (S denotes all p arameters relating underlying 
inheritance at a causallocus to observable trait data, prindpally penetrance parameters and
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allele frequencies at lod contributing to the trait. The trait locus location y is Hie parameter 
of interest: y = do implies absence of linkage of the trait to these markers. The statistical 
approach taken is then to compute a likelihood and hence a location lod score:

Note that the lod score is simply a log-likelihood difference, although traditionally in this 
area logs to base 10 are used rattier than natural logarithms. More importantly, note that 
tlie models hi numerator and denominator differ only in y. Tlie likelihood of a particular

where Sm denotes the inheritance vectors at all marker locations.
Equation 13.11 suggests the MCMC approadi first proposed by Lange and Sobel (1991) 

to first sample Sm conditionally on marker data Ym and then use exact computation to 
compute Pp,Y) (Yt | Sm) for choices of (i and y. As hi Equation 13.7, this computation is 
directly analogous to the pedigree-peeling computation of the marginal probability Pp (Y j ), 
with only the transmission probabilities being modified to condition on inheritance vectors 
S.r! and S./ at marker lod  j  and /' flanking the position(s) y of hypothesized causal lod. A 
major advantage of this approach is that MCMC need be performed once only, to generate 
a large sample of Sm which canbe used to estimate lod(y) for a variety of y and under a 
variety of trait models p.

With increasing density of marker data over the genome, this approach becomes even 
more effective, hi part, this is because of Hie large amounts of marker data that must be 
incorporated into the MCMC, and the long MCMC runs required for adequate mixing of the 
MCMC with dense marker data, hi addition, with inheritance sampled at locations dense 
hi the genome, normally only these locations need be considered as potential causal trait- 
locus locations, and trait analyses may therefore be done directly oil the MCMC sample of 
(iri-graphs at these locations {Section 13.3.4).

Due to the conditional independence structure of inheritance patterns S =  {5, y}, MCMC 
conditional on marker data can only be effidently performed at the level of Sm ■ Define an 
individual to be "observed" (Om) if there are any marker or trait data for that individual. 
Since the flfrf-graph at any location j  is a deterministic function of the inheritance vector

(13.10)

and, when y = oo, Yt and Ym are independent. Thus Equation 13.10 reduces to

Finally,

P (Y t I Ym ; Tm /P/Y) = E  P fl'T  I S m ;P, y )P (s m  I Ym ; Tm )

(Pp,y(Yr I Sm ) | Ym ) , (13.11)
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FIGURE 13.7
The structure of genetic data with m odem  dense SNP data. For details, see text.

S. j and the set of observed individuals, this MCMC sampling will provide a set of distinct 
iM-graphs 'Dm and their sampling counts (Figure 13.7). This is a substantial reduction in 
the relevant output, first since many different inheritance patterns give rise to the same 
iM-graph, hut also since ;l?r/-graphs remain constant across regions encompassing many 
marker locations. At the location of any marker, tlie /M-graph for trait analysis, D j, is a 
subgraph of T>m at that location, since now only individuals O j  observed for the trait 
needbe considered. Since, provided v is a marker location, P^ytYj | Sm) =  PpO'r I Py),lod 
score estimation (Equation 13.11), can be carried out entirely in the iftrf-graph framework 
(Section 13.3.4).

13.6.2 Uncertainty in Inheritance and Tests for Linkage Detection

The lod score is estimated via the log of the average of contributions Wv(Sm) = Pp,y(V i  | 
Sm)/ where Sm are realized conditional on Ym (Equation 13.11). Typically, the lod score is 
plotted as a function of the hypothesized trait locus location y. However, there is information 
also in Hie distribution of the contributions, W(Sm). They provide estimates of the Monte 
Carlo standard error, for example by using batch means (Glynn and Whitt, 1991). More 
simply, a plot of Hie 10th and 90th quantiles of the lod-score contributions, along with 
the lod-score curve, provides a dear visualization of positions y  of high uncertainty. For 
example, where Hie estimate is dominated by a few extreme values tlie estimate can he well 
above the 90th quantile.

This leads naturally to Hie assessment of uncertainty via latent p-values (Thompson and 
Geyer, 2007), which is based on the earlier proposal of fuzzy p-valuesby Geyer andMeeden 
(2005). Tests for detection and localization of causal trait lod  typically condition on the trait 
data Y j. Since our tests will condition on trait data Y j, we will drop explidt use of Yt and 
the marker subscript M on the latent variables. Then, given any test statistic W(S), and
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realizations SlXi under the null hypothesis y =  oo,

ji(S) =  PtWfSoo) > W(S) | S) =  P(W(Soo) > W(S) | S, VM)

is a latent p-value, having a uniform 11(0, 1) distribution under the null hypothesis 
(Thompsonand Geyer, 2007). Letst^, h =  1, . . . ,  in ~  PM, aiidS(i), h =  1 , . . . , n ~  P(- | Ym)- 
Then, for each h =  1 , . . . ,  u,

ri(S(tJ,Y m) = P<W(S00) > W(S<*>) | S « ,  YM),

estimated by
m

> W(S(t))),
if=l

is a realization from the latent p-value distribution, Strictly, this is only so if the random 
variables W(S) are continuous. Thompson and Geyer (2007) show how discreteness canbe 
simply dealt with to provide, under Hoc, an exact U(0, 1) distribution over data sets Ym- 

The approach of Hie previous paragraph leads to tests for linkage detection using the 
(latent) lod score lo g (P ^ Y t  | S)/Pp(Yr)), at any particular position y. If y is the position of 
marker locus j, then this test statistic is a function only of S._,. More importantly, the proce
dure canbe applied equally easily to any omnibus test statistics such as the maximum lod 
score. While the maximum lod score has been used for over 50 years as a test statistic pro
viding evidence of linkage (Smith, 1953), formal p-value evaluation is seldom performed, 
due to the lack of distributional theory for general pedigrees and hence need for extensive 
resimulation of marker data Ym The use of a latent /J-value requires only realization of 
latent S conditional on the observed Ym- 

The latent /t-value approach canbe equally applied to any linkage detection test statistic 
tliat is a function of S. The null hypothesis is agahi y = co, or independence of trait data 
Y j  and inheritance S and marker lod. There are a wide variety of such statistics, W(S); see, 
for example, McPeek (1999). Typically the approach has been to compute E(W(S) | Ym) 
and to compare the value with the null distribution (Whittemore and Halpem, 1994). As 
in the lod-score case, use of the latent p-value approach avoids tlie need for distributional 
approximations or extensive simulation. Recently, Di and Thompson (2009) have used this 
approach to provide "marginal" tests for linkage detection, testing the null hypothesis 
y =  co of no causal locus on a chromosome.

13.6.3 Localization of Causal Loci Using Latent p -Values

Although test statistics such as the lod score are formally tests of lhikage detection, with 
null hypothesis y = so, they are often used as evidence for localization of trait lod, for 
example by selecting tlie position y where the test statistic is most extreme. However, using 
tlie latent /J-value approach, confidence intervals and formal localization tests are possible.

We consider first the classical confidence interval approach. That is, a value yo is in a 
(1 — a)-level confidence set if a test size a fails to reject the hypothesis y = y0. The latent 
/'-value approach can be used to provide randomized confidence sets for the location of a 
causal locus {Thompson, 2008). A lod-score-based latent test statistic W(S;yo) for testing 
y =  yo may be constructed for any yo, and the resulting randomized p-value inverted to 
provide a randomized confidence interval for y (Geyer and Meeden, 2005). We obtahi the
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latent p-value tt*;,. (S) by realizing S under y = y* conditional on Y^  and obtain realizations 
from the conditional distribution of n*. (S) by MCMC realization of S under y =  y* given 
Xvi and Y j. This procedure is also computationally intensive, since MCMC at each y* is 
required. Further, since sampling is conditional on trait data Y j, the nuisance parameters 
[3 enter into the procedure, and values mustbe assumed.

An alternative approach to localization has been taken by Di and Thompson (2009). Tlie 
null hypothesis considered is that there is no causal locus in an interval (yf, Vr)- Rejection 
of the null hypothesis localizes some causal gene(s) to the interval. Unlike the confidence 
interval approach, tlie conditional test does not require specification of the number or effects 
of causal genes, and the validity of the test does not rely on such model assumptions. 
The test rests on the result that, if there no causal locus in (yt-, yr), then at any point j  
within the interval the inheritance vector 5. y given S.^ and S,rT follows the conditional null 
inheritance distribution regardless of data Yt- As before, test statistics W (S.j) are functions 
of the inheritance vector at j  and the trait data, and Hie null Markov chain distribution 
of S.:j given S,it and S.t, provides the null distribution of If these variables were
observable, a /'-value -jt (S) would result. In fact, as before, S is latent, but canbe sampled by 
MCMC, conditionally on Ym, providing a probabihty distribution for tt(S) given Xvi This 
probability distribution is again a latent/'-value, and a randomized test follows. Although a 
single MCMC run can provide a sample of realizations of S and hence of all required pairs 
(Yi/Yr)/ the conditional testing procedure is computationally intensive, requiring Monte 
Carlo realization of S ,rj conditional on each MCMC realization,

13.7 S u m m ary

hi this chapter we have focused less on the mechanics of MCMC samplers, and more on 
the need for MCMC in the analyses of genetic data on related individuals, and on the uses 
that canbe made of the realizations in making inferences from these data.

We first explore the structure of genetic data onpedigrees, leading to three complementary 
sets of latent variables at each genetic locus j. These are the genotypes of individuals, G.,y, 
the inheritance vector at the locus, S.,y, and the allelic types of founder DNA, A Jr with G.,y 
being a function of S , j  and A j. We explore the limits of exact computation of likelihoods, 
and then show how these latent variables are the useful taigets of MCMC simulation when 
exact computation is infeasible.

With modem genetic data, marker data are plentiful and informative, while tlie traits 
requiring analysis are often complex. It has therefore become the paradigm of choice to 
sample latent variables conditionally only on marker data, and then to use these real
izations hi multiple trait and/or trait-model analyses. In Section 13.5 we therefore focus 
first on questions involving only marker-based sampling, such as the estimation of genetic 
maps. This section emphasizes the key role of importance sampling reweighting of MCMC 
realizations. This enables a variety of marker models to be explored based on a single set 
of MCMC realizations, and to use marker models for which the full conditionals are not 
available.

Finally, in Section 13.6, we turn to the use of MCMC realizations of latent variables in 
the analysis of trait data, considering both linkage detection and linkage localization. We 
describe recent work in this area, including tlie use of the probabihty distribution of latent 
p-values to express both the significance of a result and Hie degree of uncertainty about that
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significance, due to uncertainty in tlie latent variables. This work is recent, and it remains 
to be seen which, methods will stand and which will be superseded.
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14
An MCMC-Based Analysis of a Multilevel Model 
for Functional MRI Data

Brian Caffo, DuBois Bowman, Lynn Eberly, and Susan Spear Bassett

14.1 In tro d u ctio n

Functional neuroimaging technologies have inspired a revolution in the study of brain 
function and its correlation with behavior, disease, and environment. In these techniques, 
temporal three-dimensional images of the brain are analyzed to produce a quantitative 
description of brain function. Such techniques can, among other things, present evidence 
of localization of brain function within and between subjects. For example, when subjects 
perform motor tasks hi a functional magnetic resonance imaging (fMRI) scanner, such as 
finger tapping, the analysis typically wall present increased regional cerebral blood flow' 
(activation) in the motor cortex. Moreover, these techniques can also provide some infor
mation about how areas of the brain connect and communicate, hi this chapter we further 
investigate a novel Markov chain Monte Carlo (MCMC) based analysis of a model from 
Bowman et al. (2008) that combines activation studies with tlie study of brain connectivity 
hi a single unified approach.

This idea of localization of brain function underlying fMRI activation studies has a long 
history, with early attempts from the debunke d science of phrenology in the early nineteenth 
century and later breakthroughs by such luminaries as Broca, Wernicke, and Brodman (see 
Gazzaniga e ta l, 2002, for an accessible brief history). Priorto new measurement techniques, 
studies of brain function and localization were limited to animal studies, or post-mortem 
evaluation of patients with stroke damage or injuries. However, new measurement tech
niques, such as fMRI, positron emission tomography (PET), and electroencephalography, 
allow7 modem researchers noninvasively to study brain function hi human subjects.

hi contrast with the study of functional localization, tlie companion idea of connectivity 
has a shorter history. Functional connectivity is defined as correlation betwe en remote neu- 
rophysiological events (Friston et al., 2007). This idea is based on the principal of functional 
integration of geographically separated areas of the brain Such integration is supported by 
the existence of anatomical connections between cortical areas as wTell as ones within the cor
tical sheet (see the discussion in Friston et a l, 2007). This neuroanatomical model suggests 
a hierarchical structure of connectivity that includes correlations within and between areas 
of functional specialization. Therefore, we use this hierarchical biological model of brain 
function to explore a multilevel statistical model that simultaneously considers potentially 
long-range correlations as well as shorter-range ones.

We focus on analyzing fMRI data hi particular, though the statistical and computational 
techniques apply more broadly to other functional neuroimaging modalities. Functional
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MRIhasits roots in the late nineteenth-century discovery thatneuronal activity was accom
panied by a localized increase in blood How (Roy and Sherrington, 1890), More specifically, 
neuronal activity requires energy, which is supplied by chemical reactions from oxygenated 
hemoglobin. Therefore, provided a cognitive task is localized, a temporal comparison of 
blood oxygenation levels when the task is being executed versus when it is not would reveal 
areas of the brain where neurons are active. This is the principle of blood oxygenation level 
dependent (BOLD) fMRI (Ogawa et a l, 1990). In this technique, a subject in an MRI scanner 
is asked to perform a task at specific tunings while images targeting the BOLD signal are 
takenin rapid succession, usually one image every 2-3 seconds. Examples of tasks are motor 
tasks, pressing a button after a visual stimulus, mentally rotating figures and so on. The 
development of a well-controlled task, or paradigm, that isolates the particular cognitive 
function of interest is not covered in this chapter.

We focus on using Bayesian multilevel models via MCMC for the analysis of functional 
neuroimaging studies. We emphasize the analysis of so-called group-level fMRI data. In 
such studies one is interested in the commonality of activation and connectivity within 
groups and differences between groups, such as comparing diseased and control subjects.

In the following two subsections, we provide an overview of existing related fMRI 
research and introduce the data used to illustrate the methods. In Section 14.2, we give 
details on the processing and first-stage analysis of the data. In Section 14.3, we introduce 
the multilevel model used for analysis and outline the details of the MCMC procedure. 
In Section 14.4, we propose novel methods for analyzing and visualizing the output from 
the Markov chain, including the analysis of voxel means, regional means, and intra- and 
inter-regional connectivity. We conclude with a discussion

14.1.1 Literature Review

Traditional inter-group analyses of fMRI data employ a two-stage procedure, where a first 
stage relates the paradigm to the images and a second stage compares contrast estimates 
from the first stage across subjects groups. This two-stage process is motivated by dassical 
two-stage procedures for linear mixed effects models (see Verbeke and Molenberghs, 2000) 
and has the benefit of greatly reducing the amount of data to be considered in the second 
stage. Two-stage analysis of fMRI is proposed and considered in Beckmann et al. (2003), 
Friston et al. (1999, 2005), and Holmes and Friston (1998), among others. See also Wors- 
ley et al. (2002) for a more fomial discussion of two-stage random effects approaches for 
fMRI data.

Standard methods for analyzing two-stage data ignore spatial dependence and connec
tivity at the modeling level and instead incorporate tlie spatial dependence into the analysis 
of statistical maps created from the models. The map of statistics is assumed to possess a 
conditionally independent neighborhood structure, typically a Markov random field. Fur
ther descriptions of the use of Markov random fields in neuroimaging analysis canbe found 
in Worsley (1994), Cao and Worsley (2001), Worsley and Friston (1995), Worsley et al. (1996), 
and Friston et al. (2007). These approaches are notable for their speed and general applica
bility. However, they are also characterized by several issues of concern. First, tlie random 
field assumptions are somewhat restrictive, as they do not allow for long-range functional 
correlations and impose a rigid distributional structure. Moreover, many desirable sum
mary statistics have unknown distributions when the statisticalmap follows a random field. 
Therefore, indirect inference is typically used by considering a fairly narrow dass of statis
tics with tradable distributions. Conceptually, this could be combated via simulation from
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the random field under the null hypothesis. However, a more popular approach uses resam
pling methods, mostly focused on permutation testing, At the expense of computational 
complexity, these methods can flexibly handle any test statistic, and make few assumptions 
on the underlying distribution and correlation structure of the data. Permutation methods, 
as applied to neuroimaging data, are reviewed in Nidiols and Holmes (2002). An example 
for factorial experiments is given in Suckling and Bulhnore (2004). Comparisons between 
duster-size permutation tests and random-field intensity tests are given in Hayasaka and 
Nichols (2003). Despite their numerous benefits, permutation methods are focused on test
ing and do not offer generative models for the data. That is, unlike model-based methods, 
permutation testing lacks a formal mechanism for connecting tlie data to a population.

Multilevel models for inter-group analysis of fMRI data have become increasingly pop
ular. Bowman et al. (2008) gave a Bayesian approach and applied it to both Alzheimer's 
disease and substance abuse disorder data sets; the model from that artide motivates the 
analysis in this chapter. Bowman and Kilts (2003) give a multilevel model applied to the 
related area of functional PET imaging. Hie theory and application of Bayesian models is 
discussed in Friston eta l {2002a,b). Woolrichetal (2004) use reference priors for inter-group 
Bayesian fMRI analysis.

Functional MRI connectivity studies have la te ly  focused on the analysis of resting 
state data, based on the hypothesis of a default-mode brain network (Biswal et al., 1995; 
Greidus, 2003). These networks represent functional correlations in brain activity between 
voxels ■while resting in tlie scanner. Xiong et al. (1999) considered such resting-state con
nectivity between regions and compared results to those motivated by other techniques. 
Greidus (2004) used independent component analysis to explore resting state connectivity 
{see Calhoun et al,, 2003). Arfanakis et al. (2000) considered connectivity via regional correla
tions and independent components analysis. However, unlike the previous references, they 
considered active-state data collected along with an experimental fMRI paradigm, though 
focused on connectivity results hi areas unassodated with the paradigm. Our approach dif
fers drastically from these references, both hi terms of the methodology considered and the 
goal With regard to methodology, we consider a model-based approach to connectivity and 
decompose connectivity into both short-range connections and longer-range connections. 
Moreover, our focus is on connectivity assodated with a paradigm, and how this connec
tivity varies across experimental groups. That is, we consider areas of the brain that ad  in 
concert to perform the paradigm, rather than considering a default-mode brahi network.

14.1.2 Example Data

The data used hi our examples come from a study of subjeds at high familial risk for 
Alzheimer's disease and controls with tittle familial risk. Alzheimer's disease is a degener
ative memory disorder affecting millions of adults in the United States alone (Brooknieyer 
et a l, 1998). Typically, Alzheimer's disease affeds adults older than 65 years, though early 
onset cases do occur. Hie disease causes dementia, with Hie most common early symptom 
being short-term memory loss. Because precursors of the disease, such as mild cognitive 
impairment, occur well before dinical diagnoses, the study of at-risk individuals yields 
important inf onnation about early disease pathology {Bassett et al., 2006; Fox et al., 2001). 
Because some of Hie at-risk subjeds willnotbecome eventual cases, and some of the controls 
may become cases, larger sample sizes are necessary for a prospective or cross-sectional 
study of familiar risk, hi this study, the at-risk subjeds had at least one parent with autopsy- 
confirmed Alzheimer's disease and at least one additional affeded first-degree relative as 
per a clinical diagnosis of probable Alzheimer's disease. However, the subjeds themselves
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Rest

FIGURE 14,1
Illustration of the paradigm.

had no clinical Alzheimer's disease symptoms. Control subjects were also asymptomatic 
and had no affected first-degree relatives. The study is impressive in its scope, with over 
80 subjects in each group, which is atypically large for an fMRI study.

The fMRIparadigm, an auditory word-pair-associate task developedby Bookhemier et al. 
(2000), was chosen because its primary locus of activation is in the medial temporal lobe, a 
site of early neurop athological changes associated with Alzheimer's disease. Moreover, loss 
of verbal memory is an important component of Alzheimer's disease symptoms (Martin 
et al., 1985). The task consisted of encoding and recall blocks, where subjects heard an 
unrelated pair of words in the encoding phase and were asked to remember the second 
word when prompted with the first in the recall phase. Tlie paradigm included two six- 
minute sessions, each consisting of seven unique word-pairs. A pictorial description of 
the task is given in Figure 14.1, while further technical information is given in Bassett 
et al. (2006). A sagital profile of the image acquisition area for a specific subject is given in 
Figure 14.2.

Known anatomically-derived (Tzourio-Mazoyer et al., 2002) regions of interest (ROIs) 
are overlaid onto the single-subject maps. This parcelation allows for the study of inter- 
and intra-regional connectivity. Only those voxels in tlie image acquisition area with a 
substantial (greater than 10 voxels) intersection with an ROI are retained. Specifically, let 
v be a voxel, Ini be tlie collection of voxels in tlie image acquisition area and ROIt be Hie 
collection of voxels in region of interest i. Voxel v is retained if v e ROIt for some i and 
1 n ROIi contains more than 10 voxels. This drastically reduces the number of voxels under

FIGURE 14.2
Image acquisition area (darker gray region) overlaid on template brain. The image is displayed such that anterior 
is to the right and posterior to the left. The superior portion has been cropped to display an axial slice. (See online 
supplement for color figures.)
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FIGURE 14.3
Example region of interest definitions for three axial slices. Each shade of gray represents a different region. (See 
online supplement for color figures.)

consideration and further limits the imaging area available ior study. Figure 14.3 depicts 
the ROI definitions for three axial slices.

14.2 D ata P re p ro ce ss in g  and F irs t-L e v e l A n a ly s is

Following Friston et al. (2006), Holmes and Friston (1998), and others, we approach our 
analysis using a two-stage procedure, hi the first stage, the data are preprocessed and con
trast estimates obtained by linear regression over the time series, such as those comparing 
active states to rest, are retained for a second-stage analysis. Hie results is an image of 
contrast estimates, one per subject, that are then compared across subjects. This approach 
approximates random effect modeling and has several notable benefits. A principal one, 
however, is the issue of data reduction, as the contrast maps retained for the second stage 
are much smaller than the raw fMRI time series of images. However, we emphasize that this 
approach can have limiting assumptions, such as tlie inability to incorporate within-session 
temporal effects into group-level analyses. Such criticisms can be addressed by retaining 
some of tlie within-session temporal inf oniiation for the second stage, such as by fitting sep
arate effects for each block of the paradigm and analyzing them jointly in the second-stage 
analysis (Bowman and Kilts, 2003), However, this strategy results hi less data reduction for
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the second stage. Hence, in this chapter, we perform a second-stage analysis using only Hie 
contrast maps from the first while stipulating this potential limiting assumption.

Our preprocessing strategy was similar to those discussed in Friston et al. (1995, 2007) 
and Frackowiak et al, (2004). First, the within-subject images were spatially renormalized 
to the first image via rigid-body transformations. Secondly, these images were transformed 
into Montreal Neurological Institute (MNI) template space, so that valid comparisons could 
be made across subjects. Contrary to standard practice, we did not then smooth the images, 
as the second-stage model contains random effects that shrink voxel-level means within 
regions.

Next, a canonical hemodynamic response function (HRF) was convolved with indicator 
functions for the task sequence. This step is necessary as the BOLD signal is only a proxy 
for neuronal activity. In fact, initially after Hie onset of the task, blood oxygenation levels 
willbe slightly decreased before being replenished. Therefore, task-related increases in Hie 
BOLD signal are expected after a short lag subsequent to the onset of Hie task. The use of a 
canonical HRF is another somewhat limiting assumption for this and many other studies, 
as it variesboth across subjects and spatially within subjects due to, among other processes, 
kinetics of the vasculature.

Let i/i(v) =  {j/,1 (v ) ,. . be Hie temporal response vector for subject i =  1 ,...,1 ,
voxel v = \,. . .  ,V , and time index f = 1 Let  X  be a T x p matrix of an intercept 
and hemodynamically convolved indicator functions associated with the paradigm. Let 
H  be a T x q design matrix of slowly varying trend terms, such as a linear trend and lowT 
frequency trigonometric terms, to serve as a high-pass filter. This can account for slowly 
varying systematic effects, such as scanner drift., wThere the signal can steadily increase or 
decrease over a session. Then the general linear model fit for subject i at voxel v is given by

yi(v) =  Xfr(i?) +  Hyi(v) +  <e,(i?), (14.1)

where e,(i?) = {<E:i(y ),. . .  are assumed to be an AR(l)process, corr{<E,f(y), =
p( v)k, with an innovation variance a 2(v). Our two-stage procedure retains a contrast esti
mate from Equation 14.1 for the inter-subject model considered in the next section For 
example, wTe consider the comparison of encoding blocks versus rest, taking the contrast 
estimate at each voxel, hence creating a contrast map for each subject.

14.3 A M u lt ile v e l M o d e l fo r  In co rp o ra tin g  R e g io n a l C o n n e c tiv ity

14.3.1 Model

We consider decomposing the template brain into G regions, as depicted in Figure 14.3 
(Tzourio-Mazoyer et al., 2002). As in Bowman et al. (2008), let denote the contrast
estimate from model (Equation 14.1) for subject i =  , I, having condition j  =  1 , . . . , ] ,
in region g =  1 . . .  G and voxel v =  1 , . . . ,  Vgf where Vg is the number of voxels contained 
in region g. hi our application / = 2, differentiating at-risk and control subjects, G = 46, 
li =  71 and I2 =  83. Throughout we adopt the convention that omitting the voxel-level 
parentheses refers to a vector over voxels, such as = {(5^ (1),..., fe,0"V)}f
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The multilevel model that we explore is the following:

fe/U’) I |ia (i>),c%,o^2 -  (m + }

I' *  l?'' I 1

a~2 ~  r(f7o,M (14.2)

CLij I r ;- -  MVN(0, Vj) 

'k~2 ' - r ( c 0l d0)

ry1-  Wishartj^oHcyr1,^ ),

where a,, = {a ;y , . . . ,oi(Gj)'■ Here, \isj(v) is the mean contrast across subjects but within 
groups. The term a lgj represents subject- and region-specific deviations from Hie mean. This

where ygj is diagonal element £  from Ty. Thus, ps  measures the correlation of contrast 
estimates within a region and group. We refer to it as a measure of /dim-regional paradigm- 
related connectivity. In contrast, Ty is the variance-covariance matrix of the random effect 
terms between die G ROIs for condition j. Hence, we view tlie corresponding correlation 
matrix, say R j, as a measure of i/fto-regional paradigm-related connectivity.

The residual variance, a|., is constant within regions, unlike many models for fMRI that 
presume separate voxel-specific variances. That is, instead of smoothing voxel-spedftc vari
ances with further hierarchies, our model uses anatomical information to smooth variances 
within regions. Note that separate variances are assumed for each of tlie groups. The other 
variance term, X„y, measures variation in the vox el-level means around the prior mean, [i os  ■

14.3.2 Simulating the Markov Chain

The block full conditionals associated with model {Equation 14.2) (see Bowman et al., 2008, 
for more discussion) are given belowT:

-  N  [ ( r r 1 +  D - 1) ( D - 1 (S„. -  (I,-) 1 , ( 7 ' +  Dr 1) (14.3)

r  co +  V 2, (
1 (l%/ — M-Ĉy) (n.®/ —

2
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where |i<,y = {ns ( l ) , . . . ,  ^/(Vg)}^ Pa>, is £ ■ ■ - M y G>}f' %  = j; L ' t i aW'

Dy = Diag( V joy2, ■ ■ -, VGa^f) and|I, = { ^  M 17)' E ^ i  Î G/W j *■ The update
order proceeded with r, first, then a  loop over# for [isj, ogL, 'kgj, and then the update for a,y.

The full conditionals display the benefit of tlie use of the linear mixed effects model 
and "Gibbs-friendly" prior distributions. That is, the full conditionals are based on simple 
matrix summaries that can be executed quickly We discuss simple extensions with less 
restrictive priors in Section 14.6. Also note that none of the block updates have dimension 
larger than max^ Vg =  1784 and, more importantly, no matrix inversions are required for 
matrices with dimension larger than max, Vg x max^ Vg. This is a primary strength of tlie 
model, as any approach that requires matrix manipulations over all of the voxels would 
not allow the fast block updates. Hie code was written in MATL AB® {Mathworks version 
2006b) and is available from the first author's website. Ten thousand iterations were run 
for the results presented; however, later runs of 100,000 iterations confirm the conclusions. 
Note that with over 60,000 variables updated in each iteration (roughly 30,000 per group), 
this resulted in over 100 million basic operations. Regardless, the sampler was run on a 
standard laptop in under an hour (2.16 GHz dual core Intel processor and 2 GB of RAM).

With dimension in excess of 60,000, tlie posterior raises numerous issues regarding Sim
ula ting the chain and analyzing the output. First we note that storage of the output is itself 
a challenge. Memory allocation limits were reached if the entire chain of voxelwise results 
was stored for any reasonably long chain. We adopted the following strategy to combat 
this issue. The complete chain was stored for all of the values that have only tens of mea
surements per region. That is, the complete chain was stored for the ag;, a,y, \g;, and Ty. 
For the \igj, Hie complete posterior mean was updated each iteration and stored. In addi
tion, a batch means estimate (Jones et al., 2006) of the variance of this posterior mean was 
also stored. To utilize simple update rules, adaptive batch sizes were not employed and, 
instead, fixed batch sizes of size 100 were used. Moreover, the complete chains for several 
regional summaries,, such as tlie mean and quantiles of the i^y within regions, were also 
stored, Filially, tlie complete value of was stored for every 20th iteration, resulting in 500 
total stored iterations. However, it should be noted that considerable loss of information 
is incurred if the chain is subsampled (MacEacheni and Berliner, 1994). We do not recom
mend combining the values, subsampled or not, into a matrix or other single data structure. 
Instead, we recommend that the value for each saved iteration be stored in a separate file, 
with the filename indicating tlie iteration number.

For starting values, we used empirical moments and omiulants. Specifically, we let (î y 
be the empirical vector mean over the fy subjects within region g  and group j. We let 
be the average (across voxels) of the inter-subject variances within region £  and group 
j. We let \gj be the between-region variance of tlie region- and group-specific means of 
the (p̂ y from above). We further let be Hie mean of the EW/U’) within subject,
region, and group. Then r, was set to be the variance-covariance matrix of the start
ing value for cty , calculated by taking variances and covariances over subjects. The least 
accurate of these starting values are those for the a lgj and T y ,  as the starting value for a lgj

has mean y- £  |ig/(y) + (see Equation 14.2). However, recall that the outcomes are
contrasts estimates and ideally Hie task should specialize to only a small portion of the

1 vbrain, and therefore the term y- ^  (% (?>) should be small in absolute value. Hence, 
for starting values, ignoring the fixed effects contribution in tlie moment estimates is not 
problematic.
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To empirically evaluate Hie results of the chain, posterior mean estimates were com
pared with these starting values, hi all cases they agreed well, though we stipulate that 
this only adds to the face validity of the chain and is not a formal method of convergence 
assessment. To further evaluate properties of the chain, trace plots of (he parameters were 
investigated. However, tlie volume of parameters precludes investigation of all plots for the 

Instead, a random sample of voxels was selected and investigated in greater detail. 
To investigate sensitivity to hyperparameter settings, several chains were run, varying these 
parameters.

14.4 A n a ly z in g  the C h a in

14.4.1 Activation Results

We consider the distribution of voxel-level contrast means to answer tlie question of whether 
the are systematically larger thanzero in any area and whether they differ across groups.
The former question is of greater initial importance, as there is less interest in assessing inter
group differences when there is little evidence of localized within-group activation. We use 
a novel adaptation of a supra-threshold clustering technique widely used in tlie frequentist 
analysis of statistical maps. To evaluate a unit-free statistic, consider the map of voxel- 
level signal-to-noise statistics, \\\igj{v)\J<ssj\v. Following traditional analysis, we consider 
clusters of contiguous connected voxels above a threshold (Cao and Worsley, 2001; Friston 
et al., 1993; Nichols and Holmes, 2002; Worsley, 1994; Worsley et a l, 19%). Here, voxels 
are connected if they share a face, edge or comer. Figure 14.4 illustrates with fictitious one
dimensional data. We refer to the number of contiguous voxels in a duster as the extent, in 
Figure 14.4 this is the width of tlie cluster above the chosen threshold. We also considered 
tlie center of mass of tlie cluster, the area of the cluster, and tlie peak value within tlie cluster, 
Here the center of mass is simply tlie average of (he X, Y, and Z coordinates of each duster 
surviving the threshold. The area of (he duster is proportional to talcing tlie produrt of the 
voxels in the duster and the assodated heights of the statistics, and summing the results. 
Two cutoffs wTere considered for these supra-threshold statistics, 0.1 and 0.2 These were 
obtained empirically, by considering the inter-voxel distribution of the posterior means and

FIGURE 14,4
Illustration of supra-threshold cluster level statistics.
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FIGURE 14-5
Estimated posterior distributions for the maximum supra-threshold duster extents, The top and bottom images 
use an SMR cutoff of 0,1 and 0.2 respectively, and the left and right images correspond to at-risk and control groups 
respectively

inspection of related data sets. Filially, to reduce duster results to single numbers, we took 
the maximal statistic, such as considering the maximum cluster extent per MCMC iteration.

We considered thresholding the signal-to-noise statistic map generated at each MCMC 
iteration. As previously mentioned, a complication arose in thatit is most convenient to have 
the chain of (xa  (u) maps saved, as different thresholding values and statistics need to be 
evaluated interactively: As the complete diain is generally too large to save, we sub sampled 
the diain and saved 500 equally spaced iterations. For each saved map, we determined Hie 
duster size with the la te s t  supra-threshold extent. Histogram estimates of the posterior 
distributions for the two groups and for the two cutoffs are given in Figure 14.5. Here Hie 
maximal extents appear to be quite small, suggesting little voxel-level activation across 
subjects within groups. Figure 14.6 displays the centroids for tlie dusters surviving tlie 
threshold (of 0.1) for tlie control group for the 500 saved iterations. The color and width of 
the points are related to the extent of the duster. There is little evidence to suggest voxel- 
level localization of the dusters. In addition to considering the maximal extents, we also 
considered the areas under the dusters as well as tlie maximal peak value of tlie dusters. 
In each case, there was little suggestion of interesting voxel-level results. These condusions 
are consistent with those of more standard analyses.
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FIGURE 14,6
Plot of supra-threshold (threshold of D.l) duster centroids across 5DD saved iterations for the control (a) and at-risk 
(b) groups. The shading and size of the points are proportional to the cluster extent. Transparent template brain 
overlays are provided for reference. (See online supplement for color figures.)

We also considered regional mean level effects. That is, let %  = T i t 1 1Xgjm/Vg, where 
Vg is the number of voxels in region,#. As with the voxel-level results, we consider both 
within- and between-group effects. We first calculated the MCMC estimate of the minimum 
of the posterior tail probabilities of %gj being larger or smaller than 0, for each g and j\

ffim(P(0£, < 0 | Data), P(9a  > 0 | Data)}.

This quantity combines the information from the two one-sided tail probabilities similar to 
taking the smaller of two p-values from one-sided tests to perform a two-sided test. This is 
useful to answer whether or not tlie regional mean appears either much larger or smaller 
than zero.

In the control group, this quantity was the smallest in the right superior temporal lobe, 
with a posterior mean for 9^ of -0.0021 and minimum tail probability of 0.0057. This 
was followed by the left supplementary motor area (0.0532) and the right mid frontal area 
(0.0586). In the at-risk group, there were only modestly small minimum tail probabilities 
in the left supplementary motor area (0.0560) and the right mid frontal area (0.0563).

To compare the two groups, we again evaluated a minimum of posteriortail probabilities. 
Specifically, we considered the minimum posterior probability of one mean being smaller 
or larger than Hie other. That is, for eachg, we considered

min{P(9gl < 0g2 I Data), P (6̂  > Qg2 | Data)},

where j  =  2 refers to the at-risk group and j  =  1 refers to tlie controls. This quantity was the 
smallest in the right superior temporal pole, with a minimum tail probability of 0.032, and 
in tlie right superior temporal lobe (0.0648). Histogram estimates of QS1 -Q S2 for these two 
regions are given in Figure 14.7, showing that activation related to this contrast is (largely 
speaking) slightly higher in tlie at-risk group compared to tlie controls.
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FIGURE 14.7
Posterior distributions for — 9̂ 2 for the two regions with the smallest posterior tail probabilities. Projection 
plots of the two regions overlaid on a template brain are given for reference. (See online supplement for color 
figures.)

14.5 C o n n e c t iv it y  R e s u lts

14.5.1 Intra-Regional Connectivity

We first consider results for intra-regional connectivity; that is, we consider the posterior 
distributions for the {p,,,}. Figure 14.8 displays posterior credible intervals and posterior 
medians for Hie {p^} for the control and at-risk subjects for the 46 regions of interest, based 
on all 10,000 iterations. It is perhaps surprising that tlie correlations are as high as they 
are, especially given that no spatial smoothing was performed. We note that some of Hie 
variation in the intra-regional correlation arises from tlie size of the region in consideration, 
with, as expected, the smaller regions tending to demonstrate greater connectivity.

Figure 14.9 shows 95% equi-tail posterior credible intervals and posterior medians for 
the ratio P1/P2, with a gray vertical reference line drawn at one. Hie data exhibit regions 
both with greater and lesser intra-regional connectivity. Figure 14.9 also displays projection 
maps of the regions with higher intra-regional connectivity among Hie controls (shown in 
the upper plots, as determined by a credible interval entirely above one) and lower intra- 
regional connectivity among tlie at risk (shown hi the lower plots). Lower intra-regional
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FIGURE 14,8
Posterior credible intervals and medians for pj (controls, circles) and p j (at-risk, squares), Intervals are ordered 
by the average of the two groups' medians.

connectivity among tlie control subjects was most apparent ill the areas near the anterior 
dngulum Higher intra-regional connectivity among tlie controls was most apparent in 
more frontal areas and was diffusely spread out.

14.5.2 Infer-Regional Connectivity

The proposed hierarchical model also allows for the study of inter-regional connectivity 
associated with the paradigm. Figure 14.10 connects Hie centroids of regions wliose pos
terior mean correlation {from Hie off-diagonal entries of R,) was above 0.6 for control (left) 
and at-risk {right) subjects, with estimates obtained using all 10,000 iterations. Visually, the 
picture suggests a denser network of connectivity for the at-risk subjects, perhaps suggest
ing that this population has to attend to the task more rigorously to complete it or thatmore 
regions are called upon to complete the task to compensate for weaknesses in a few regions. 
Below we explore more formal methods for comparing the chain of variance and covari
ance matrices. We consider the eigenvalue decomposition of the variance matrices, Ty, and 
the correlation matrices, Ry. This is analogous to a principal component analysis of the i^y. 
hi particular, we focus on the eigenvalue decomposition of the R,, as Hie region-specific 
variances are of less interest.

The posterior mean of the percentage of variation explained by each component was 29, 
13, 10, 8, and 6 for the control group and 29,12,9, 7, and 6 for the at-risk group. Figure 14.11 
displays the posterior distribution for tlie largest eigenvalues for the control (solid) and 
at-risk subjects, respectively. We also looked at tlie distribution of the eigenvectors corre
sponding to the maximum eigenvalue. The at-risk group had larger loadings (across the 
board) for the first eigenvalue. Hie control group loaded most heavily (in absolute value) 
on the left precentral gyrus, tlie right mid dngulum, the right supplementary motor area, 
and tlie left postcentral gyrus. Hie at-risk group loaded more heavily on the left insula, the 
left precentral gyrus, the left caudate and left mid dngulum.

The equi-tail 95% posterior credible interval for the ratio of the la te s t  eigenvalues (control 
over at-risk) was [0.58,0.89], with a posterior distribution shown in Hie middle plot of Figure 
1411. To consider the variances, we considered Hie largest eigenvalue of (Fi + I^)- 1T i, the 
greatest root statistic (Mardia et al., 1979). The equi-tail 95% credible interval for tlie greatest 
root statistic was [0.981,0.989], with a posterior given in tlie rightmost plot of Figure 14.11.

Overall, the results suggest much greater connectivity in the at-risk group. We found this 
particular result to be the most intriguing for this data set and believe that it is suggestive of 
the idea that at-risk subjeds have to engage more cognitive resources to attend to the task,
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FIGUSE 14.9
Credible intervals and posterior medians for ratios of P1/P2 accompanied by projection maps of the regions with 
credible intervals showing higher intra-regional connectivity among the at-risk (top plots, 11  regions) and higher 
connectivity among the controls (bottom plots, seven regions), respectively Note that one of the top 11 and one 
of the bottom seven have credible intervals that overlap aero. (See online supplement for color figures.)

14.6 D iscu ssio n

In this chapter, we investigated a model from Bowman et al. (2008) and a data set from 
Bassett et al. (2006) and introduced some novel methods for analyzing, interpreting, and 
visualizing the output. The data are suggestive of some interesting findings 011 functional 
differences between a group of subjects at high risk for the development of Alzheimer's 
disease and a group of controls, First the voxel-level contrast map results suggest little 
difference between the groups in terms of activation., while the regional meanresults suggest
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FIGURE 14,10
Posterior mean connectivity estimates exceeding; a threshold of 0.6 for control (a) and at-risk (b) subjects. lines 
connect the centers of regions with posterior mean connectivity estimates exceeding the threshold. (See online 
supplement for color figures.)

a modest decrease in activation for the controls in two regions of the temporal lobe. These 
results, which havebeen confinne d with more traditionalparametricmodeling (not shown), 
differ from those of Bassett et a l (2006), based on the same subjects at an earlier visit. The 
discrepancy could be due to a variety of factors, such as a learning effect, differences in the 
sample (as there was dropout for Hie subsequent visit), or actual physiological longitudinal 
changes. We defer a full longitudinal analysis of this data to future research

The connectivity results are perhaps more interesting in demonstrating greater differ
ences between Hie two groups. The inter-regional results suggest greater connectivity 
among the at-risk groups. This result potentially suggests that the at-risk group are call
ing on greater cognitive reserves to perform the tasks. The intra-regional results suggest 
important differences hi areas of intrinsic connectivity for the two groups.

The at-risk Alzheimer's disease data set is uniquely suited to this model, First, the smaller 
imaging acquisition area limits the number of regions of interest to consider. Secondly, the 
huge number of subjects also allows for the estimation of a finer regional parcelation of the 
connectivity matrix. For example, if the study had typical group sizes of 15 or 20 per group, 
estimation of 46 x  46 covariance matrix would not be feasible, and hence regions would 
have to be aggregated to employ the model.

With regard to the model, its weakest point is the reliance on Gibbs-friendly priors for the 
variance components, hi particular, the use of inverted gamma priors (with small rates and 
scales) and Hie inverse Wishart distribution for the variance components has been widely 
discussed and criticized (Daniels, 1999; Daniels and Kass, 1999, Daniels and Pourahmadi, 
2002; He and Hodges, 2008; Yang and Berger, 1994). The previous references provide several 
alternative priors and approaches, including placing the priors on the eigenspace rather 
than the natural units. Such approaches are appealing in this setting, because principal 
component analysis of the region-specific random effects is of interest. However, a very 
practical solution would simply use a mixture of two or three gammas for the precisions 
and a mixture of two or three Wishart distributions for the inverse variance matrices. These 
solutions may add enough hyperparameters to allow for needed flexibility for the prior 
distributions, while still retaining a simple structure.

We discuss possible methods for further computational acceleration, though, as previ
ously mentioned, the chain ran adequately fast for our application. However, for whole
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FIGURE 14.11
(a) Density estimates for the posterior distribution of the largest eigenvalue for Rj for the control (solid) and at-risk 
(dashed) groups, (b) Density estimates for the posterior distribution of the ratio of the largest eigenvalues for 
divided by that of R̂ . (c) Density estimate for the posterior distribution for the greatest root statistic.

tra in  results and next generation scanners, the extent of the computations will increase 
dramatically A possible acceleration could be obtained with parallel processing. To be 
specific, tlie region- and group-speafic parameters, trgj and \gj, are all condition
ally independent given the inter-regional parameters, a,y and Ty, Hence, they could be 
updated in parallel, hopefully speeding up calculations by an order of magnitude, We have
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successfully applied this approach in unrelated areas with good success, though it was not 
applied here.

Perhaps tlie greatest challenge in this setting, and most germane to the topic of this book, 
is the question of the overall validity of the use of MCMC as a mechanism for analysis. 
While our application possessed only tens of thousands of parameters, current MRI and 
genomic technology puts the relevant number doser to millions. To our knowledge, con
vergence, implementation, diagnostic, and inferential issues for such large chains have had 
little discussion in the MCMC literature and represent a great challenge for future MCMC 
research.
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15
Partially Collapsed Gibbs Sampling and 
Path-Adaptive Metropolis-Hastings in 
High-Energy Astrophysics

David A. van Dyk and Taeyoung Park

15.1 Intro  d u ction

As the many examples in this book illustrate, Markov chain Monte Carlo (MCMC) methods 
have revolutionized Bayesian statistical analyses. Rattier than using off-the-shelf models 
and methods, we can use MCMC to fit application-specific models that are designed to 
account for the particular complexities of a problem. These complex multilevel models are 
becoming more prevalent throughout the natural, social, and engineering sciences largely 
because of the ease of using standard MCMC methods such as the Gibbs and Metropolis- 
Hastings (MH) samplers. Indeed, the ability to easily fit statistical models that directly 
represent the complexity of a data-generation niechanismhas arguably lead to the increased 
popularity of Bayesian methods in many scientific disciplines.

Although simple standard methods work surprisingly well in many problems, neither 
the Gibbs nor the MH sampler can directly handle problems with very high posterior corre
lations among the parameters. The marginal distribution of a given parameter is much more 
variable than the corresponding full conditional distribution in this case, causing the Gibbs 
sampler to take small steps. With MH a proposal distribution that does not account for the 
posterior correlation either has far too much mass in regions of lowT posterior probability or 
has such small marginal variances that only small steps are proposed, causing high rejection 
rates and/ or high autocorrelations in the resulting Markov chains. Unfortunately, account
ing for the posterior correlation requires more information about the posterior distribution 
than is typically available when tlie proposal distribution is constructed.

Much work has been devoted to developing computational methods that extend the 
usefulness of these standard tools in the presence of high correlations. For Gibbs sampling, 
for example, it is now well known tliat blocking or grouping steps (Liu et a l, 1994), nesting 
steps (van Dyk, 2000), collapsing or marginalizing parameters (Liu et al., 1994; Meng and 
vanDyk, 1999), incorporating auxiliary variables (Besag and Green, 1993), certain parameter 
transfonnatioiis (Gelfand et al., 1995, Yu and Meng, 2011), and parameter expansion (Liu 
and Wu, 1999) can allbe used to improve Hie convergence of certain samplers. By embedding 
an MH sampler within the Gibbs sampler and updating one parameter at a time (i.e. the 
well-known Metropolis-within-Gibbs sampler in the temiinology of Gilks et al., 1995), the 
same strategies canbe used to improve MH samplers.

383
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III this chapter, we describe two newer methods that are designed to improve tlie per
formance of Gibbs and Metropolis-within-Gibbs samplers. The partially collapsed Gibbs 
{PCG) sampler {van Dyk and Park, 2008; Park and van Dyk, 2009) takes advantage of the fact 
that we expect reducing conditioning to increase the variance of the complete conditional 
distributions of a Gibbs sampler. Thus, by replacing a subset of the complete conditional 
distributions by distributions that condition on fewer of the unknown quantities, that is, 
conditional distributions of some marginal distributions of the target posterior distribu
tion, we expect the sampler to take laiger steps and its overall convergence characteristics 
to improve. This strategy must be used with care, however, since the resulting set of condi
tional distributions may notbe functionally compatible and changing Hie order of the draws 
can alter the stationary distribution of the chain The second strategy involves updating 
the Metropolis proposal distribution to take account of what is known about the target 
distribution given an initial set of draws.

Although these are both general strategies with many potential applications, they were 
both motivated by a particular model fitting task in high-eneigy astrophysics. In recent 
years, technological advances have dramatically increased Hie quality and quantity of data 
available to astronomers. Multilevel statistical models are used to account for these com
plex data-generatioii mechanisms, which can include both Hie physical data sources and 
sophisticated instrumentation. Bayesian methods and MCMC technique sboth find numer
ous applications among the many resulting statistical problems and arebecoming evermore 
popular among astronomers, Examples include tlie search for planets orbiting distant stars 
{Gregory, 2005), tlie analysis of stellar evolution using sophisticated physics-based com
puter models {DeGennaro et al., 2008; van Dyk et al., 2009), tlie analysis of the composition 
and temperature distribution of stellar coronae (Kashyap and Drake, 1998), and the search 
for multi-scale structure hi X-ray images (Esch et al., 2004; Connors and van Dyk, 2007), to 
name just a few. hi this chapter, we describe the PCG sampler and the path-adaptive MH 
sampler and show how they can dramatically improve the computational performance of 
MCMC samplers designed to search for narrow emission lines in high-energy astronomical 
spectral analysis.

15.2 P artia lly  C o llap sed  G ib b s S am p ler

Collapsing hi a Gibbs sampler involves integrating a joint posterior distribution over a 
subset of unknown quantities to construct a maiginal or collapsed posterior distribution 
under which a new collapsed Gibbs sampler is built (Liu et a l, 1994). This strategy is similar 
to the efficient data augmentation strategy used to improve the rate of convergence of Hie 
EM algorithm (van Dyk and Meng, 1997). Efficient data augmentation aims to construct an 
EM algorithm using as little missing data as possible. That is, a portion of the missing data 
is collapsed out of the distribution of unknown quantities. Just as collapsing is known to 
improve the convergence of a Gibbs sampler, it is known that reducing the missing data in 
this way can only improve the rate of conveigence of the EM algorithm (Meng and van Dyk, 
1997). Generally speaking, there is a strong relationship between the rate of convergence 
of EM-type algorithms and Gibbs samplers constructed with the same set of conditional 
distributions (see Tanner and Wong, 1987; Liu, 1994; Liu and Wu, 1999; van Dyk and Meng, 
2001). Strong correlations slow both types of algorithms.
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Although these collapsing or marginalizing strategies typically improve convergence, 
they may not be easy to implement. For example, tlie complete conditional distributions of 
the collapsed posterior distribution maybe harder to work with than the conditional distri
butions of the original posterior distribution. The PCG sampler aims to take partial compu
tational advantage of the collapsing strategy while maintaining simple implementation by 
mixing conditional distributions from the original posterior distribution with those of one 
or more collapsed posterior distributions. Thus, we use collapsing only in those conditional 
distributions where it does not complicate parameter updating. This strategy is analogous 
to the ECME and AECM algorithms which generalize EM by allowing different amounts of 
missing data when updating different model parameters (Liu and Rubin, 1994; Meng and 
van Dyk, 1997); see Park and van Dyk (2009) and van Dyk and Meng (2010) for discussion.

To see both the potential advantages and the potential pitfalls of partially collapsing a 
Gibbs sampler, consider a simple example where a three-step Gibbs sampler is constructed 
to simulate the trivariate Gaussian distribution, (X, Y,Z) ~  Ns(0,2 ) with

(  1 p 0.5\
I  =  I 1 0.5 ,

\0.5 0.5 1 /

where p is a known constant tliat controls the convergence rate of the Gibbs sampler. The 
three-step Gibbs sampler iterates among the following steps:

Step 1. Draw X fromp(X | Y; Z). (Sampler 1)
Step 2. DrawY fromp(Y | X,Z).
Step 3. DrawZ from p(Z |X,Y).

The convergence rate of the Gibbs sampler is equal to the spectral radius of tlie correspond
ing forward operator (Liu, 2001). Letting Q =  £_1 with Q = {(],y{, Amit (1991) showed that 
the spectral radius of tlie forward operator for Sampler 1 is the largest norm of the eigen
values of n ,'=i(I -  D,Q), where I is the 3 x 3  identity matrix and D, is the 3 x 3  matrix 
of zeros except that tlie ;th diagonal entry is For example, with p = 0.99, the spectral 
radius is 0.98, indicating slow convergence. Hie conveigence characteristics of the Gibbs 
sampler and Hie sampled correlation structure between X  and Y are shown in the first row 
of Figure 15.1, which illustrates slow convergence and strong correlation, hi this simple 
example, we can easily reduce the conditioning in any of the steps in the hope of improv
ing convergence. In particular, the marginal distribution of (Y, Z) is a bivariate Gaussian 
distribution and we can eliminate the conditioning on X in Step 2:

Step 1. Draw X fromp(X | Y,Z). (Sampler 2)
Step 2. DrawY from p(Y | Z).
Step i .  DrawZ from p(Z |X,Y).

This is advantageous because the draws of Y are independent of the chaws of X in Sampler 2, 
eliminating a high correlation in Sampler 1. Unfortunately, however, the three conditional 
distributions in Sampler 2, p (X  | Y, Z}, p (Y | Z), and p (Z | X, Y ), are functionally incomp atflble 
and imply inconsistent dependence structure. Sampling Y frompfY | Z) suggests thatX and
Y are conditionally independent given Z, whereas sampling X from p(X  | Y, Z) suggests 
conditional dependence. The result is that the stationary distribution of Sampler 2 does not 
correspond to the target distribution p(X, Y, Z); information on the correlation between X
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FIGURE 15,1
Comparing three MCMC samplers for a simple Gaussian example. The three rows correspond to the Gibbs 
sampler (Sampler 1), the Gibbs sampler with the conditioning on X eliminated in Step 2 (Sampler 2), and the 
partially collapsed Gibbs sampler (Sampler 3). The first two columns show the mixing and autocorrelation of X, 
and the last column presents the sampled correlation structure between X and Y, based on 1000 iterations. The 
PCG sampler dramatically improves convergence while maintaining the target stationary distribution. In this 
simple case, the PCG sampler is simply a blocked Gibbs sampler.

and Y is lost (see the second row of Figure 15.1). Of course, there is an obvious solution. 
If we simply change tlie order of the draws in Sampler 2, that is, first sample Y from its 
conditional distribution given Z and then X from its conditional distribution given (Y, Z), 
we obtain a correct joint draw from /'(X, Y \ Z). This results in the following sampler:

Step 1. Draw Y from p(Y  | Z). (Sampler 3)
Step 2. Draw X from/'(X | Y,Z).
Step 3. Draw Z from p(Z\X,Y).

Although the conditional distributions remain incompatible, the third row of Figure 15.1 
shows the fast convergence of the subchain for X and the correctly sampled correlation 
between X and Y. In this case, Sampler 3 is simply a blocked version of Sampler 1: sam
pling p(Y |Z) and then p(X \ Y,Z) combines into a single draw from p(X,Y  | Z). As we shall 
illustrate, however, partial collapse is a more general technique than blocking. Liu et al. 
(1994) showed that the spectral radius of the forward operator for the blocked Gibbs sam
pler iterating between p(X,Y \ Z) and p(Z | X, Y) is tlie square of Hie maximal correlation 
between (X, Y) and Z, that is, 1/ {2( 1 + p)}. Thus, with p = 0.99, the spectral radius is 0.25, 
confirming the faster convergence of Sampler 3 than Sampler 1.

This simple three-step sampler illustrates an important point: care must be taken if we 
are to maintain the target stationary distribution when reducing tlie conditioning in some 
but not all of the steps of a Gibbs sampler. Van Dyk and Park (2008) describe three basic 
tools that can be used to transform a Gibbs sampler into a PCG sampler that maintains 
the target stationary distribution. The first tool is itiargiitnliznfioii, which involves moving a 
group of unknowns from being conditioned upon to being sampled in one or more steps 
of a Gibbs sampler, the marginalized group can differ among tlie steps. In Sampler 1 this 
involves replacing the sampling of p(Y \X,Z) with the sampling of p(X ,Y \Z) in Step 2;
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(a) (b) (c) (d) (e)
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FIGURE 15.2
Transforming the Gibbs sampler (Sampler 1) into the partially collapsed Gibbs sampler (Sampler 3) sequentially 
using marginalization, permutation, and trimming. The sampler in (e) is a blocked version of Sampler 1.

see Figure 15 2a,b Notice that rather than simply reducing the conditioning by eliminating 
X, we are moving X from being conditioned upon to being sampled. This canbe done by 
combining a distribution tliat conditions on less with a conditional distribution available 
from the parent sampler, that is, p(X, Y | Z) can be sampled by first sampling the reduced 
conditional distribution, p(Y | Z), and then sampling the conditional distribution from the 
original sampler, p(X  | Y,Z). This preserves the stationary distribution of Hie Markov chain. 
The second tool is penimtatioii of the steps. We may need to permute steps in order to use 
Hie third tool, which is to trim sampled components from steps if tlie components can be 
removed from the sampler without altering its Markov transition kernel, hi Figure 15.2c 
we permute the steps so that we can trim X* from the sampler in {d). Here and elsewhere 
we use a s u p e r s c r ip t t o  designate an intermediate qtuuitih/ that is sampled but is not part 
of the output of an iteration. Filially we block the first two steps in (e).

Both marginalization and permutation dearly maintain the stationary distribution of 
the chain and both can affect its convergence properties; marginalization can dramatically 
improve convergence, while the effect of permutation is typically small. Reducing condi
tioning (i.e. marginalization) increases variance and hence the sizes of the sampling jumps; 
see van Dyk and Park (2008) for a technical treatment. Trimming is explidtly designed to 
maintain the kernel of the chain. The primary advantage of trimming is to reduce the com
plexity of the individual steps. In doing so, trimming may introduce incompatibility into a 
sampler.

To illustrate how the three tools are used in a more realistic setting we use the sim
ple four-step example given in Figure 15.3a, where the target distribution is p(W, X, Y,Z). 
Suppose it is possible to directly sample from p(Y | X, Z) and p(Z\ X, Y), which are 
both conditional distributions of J  p(W,X, Y,Z)rfW, with p(Y|X,Z) ^p(Y|W ,X,Z) and 
p(Z X, Y) ^  p(Z | W, X, Y). If wTe were to simply replace the third and fourth drawTs in

(a} (b) (c) (d) (e)
Parent sampler Marginalize Permute Trim Block

p{W\X, Y,Z) 
p{X\W, Y, Z) 
p(Y]W ,X,Z) 
p{Z\W,X, Y)

/i(vr;|x, y, z )
p(X  1 W, Y, Z) 
p( W*, Y\X,Z) 
p(W,Z\X, Y)

p(\KY\X,Z ) 
p (V f’,Z\X, Y) 
p(W]X, Y, Z) 
piX  1W, Y, Z)

P(Y]X, Z) 
p(Z\X, Y) 
p(W\X, Y, Z) 
p(X| W, Y, Z)

pi.Y\X,Z) 
p(W, Z\X, Y) 
piX\ W, Y, Z)

FIGURE 15.3
Transforming a four-step Gibbs sampler into a partially collapsed Gibbs sampler. The sampler in (e) is composed 
of incompatible conditional distributions, is not a blocked version of the sampler in (a), and is therefore not a 
Gibbs sampler per se
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Figure 15. 3a with draws from /j (V | X, Z) and p(Z.\X, Y), we would have no dire ct way of ver
ifying that the stationary distribution of the resulting chain is the target joint distribution, 
Instead, we use tlie threebasictools to derive a PCG sampler. This allows us to reap thebene- 
iits of partial collapse while ensuring that tlie stationary distribution of the chainis the target 
distribution.

hi Figure 15.3b, we use marginalization to move W from being conditioned upon to being 
sampled in the last two steps, hi each step we condition on the most recently sampled value 
of each quantity that is not sampled hi that step. The output of Hie iteration consists of Hie 
most recently sampled value of each quantity at the end of the iteration: X sampled hi Hie 
second step, Y sampled hi the third step, and (W, Z) sampled in the last step. Although 
sampling W three times in each iteration may be inefficient, removing any two of the three 
draws affects the transition kernel of the chain: the draw hi the first step is conditioned 
upon hi the second step and the draw in Hie last step is part of tlie output of the iteration, hi 
order to preserve tlie stationary distribution, we only remove intermediate quantities whose 
values are not conditioned upon subsequently. Permuting the steps of a Gibbs sampler 
does not alter its stationary distribution but can enable certain intermediate quantities to 
meet Hie criterion for removal. In Figure 15.3c we permute Hie steps so that two of Hie 
draws of W can be trimmed in (d). The intermediate draws of W sampled in the first and 
second steps of Figure 15.3c are not used subsequently and both canbe removed from Hie 
sampler. Finally, Hie middle two steps of Figure 15.3d canbe combined to derive the final 
sampler given in (e). After blocking, tlie set of conditional distributions in Figure 15.3e 
remains incompatible, illustrating that partial collapse is a more general technique than 
blocking,

The samplers in Figure 15.3c, d have the same stationary distribution because removing 
the intermediate quantities does not affect the transition kernel. Thus, we know the station
ary distribution of Figure 15.3d is the target joint distribution. This illustrates how careful 
use of tlie three basic tools can lead to PCG samplers with the target stationary distribution. 
Notice that the samplers in Figure 15.3d,e are not Gibbs samplers per se. Hie conditional 
distributions that are sampled in each are incompatible and permuting their order may 
alter the stationary distribution of the chain.

15.3 P ath -A d ap tiv e  M e tro p o lis -H a stin g s  S am p ler

The second computational method aims to improve the convergence of the MH sampler by 
updating tlie proposal distribution using information about Hie target distribution obtained 
from an initial run of the chain. Suppose a target distribution of interest has density tt(X). 
Given a current state Xl f), tlie MH sampler proposes a state X' using a proposal distribution 
f>i(X'|X(f>); we use a one in tlie subscript because we update this proposal distribution 
below The move from l to X' is accepted with probabihty

That is, Xit+l) is set to X' with probabihty ^i(X' | X(f>) and to X (i) otherwise. Thus, for any 
X (t+1) ^ X(t), the transition kernel of tlie MH sampler is

£i<X(f+1) | X<f)) =  /n(X,H1) | X(n)(/i(Xtf+1) | Xw).
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The pa Hi-adaptive Metropolis-Hastings (PAMH) sampler is an efficient MH sampler 
that uses an empirical distribution generated from an initial run of the chain {i.e. tlie path 
samples of the chain) as a second proposal distribution This is used to construct a second 
transition kernel that is mixed with the original transition kernel in subsequent draws, hi 
this way, we use the sample generated by MHto construct a proposal distribution that more 
closely resembles the target distribution. This can dramatically improve performance if the 
original MH sampler is either slow mixing or computationally demanding.

The strategy of mixing transition kernels for MCMC methods had been suggested in 
the literature as one of the basic forms of hybrid strategies (Tierney, 1994). When different 
Markov transition kernels with a common stationary distribution are available, we can 
combine them in a mixture by specifying positive probabilities to tlie kernels and selecting 
one of tlie kernels according to tlie probabilities in each iteration. The random-scan Gibbs 
sampler is a common example of such a hybrid sampler (Roberts and Rosenthal, 1997). The 
PAMH sampler is a mixture of two MH samplers: with probability a, a proposal state X' is 
generated from/>i(X' X -̂1) and accepted with probability i/i(X' X 'f! ); and with probability 
1 -  a, a proposal state X' is generated from an empirical distribution ft (X) and accepted 
with probabihty

Thus, for any X lf+1> /■ X':f\ tlie transition kernel of the PAMH sampler is given by

where K2(X^+1) |X(f>) = ft(X<^1>V/2(X<t+1:i | X(t>).
An adaptive MCMC sampler (Roberts and Rosenthal, 2009) attempts to leam about a 

target distribution using information available from MCMC draws while they run. Thus, 
tlie PAMH sampler can be viewed as an adaptive MCMC sampler in that it mixes the 
original transition kernel with a transition kernel learned from an initial run of an MCMC 
sampler. It does not, however, continually adapt tlie empirical transition kernel. Hie mixture 
proportion a hi Equation 15.1 is a tuning parameter that is set in advance, hi effect the value 
of a  is set to one during the initial run that uses only the original proposal distribution to 
generate samples from jt (X), and the path samples from the initial run are then used to 
compute an approximation to the target distribution, ft(X). After the initial run, a  is fixed at 
some value between 0 and 1, and the mixture kernel in Equation 15.1 is used. In other words, 
tlie original MH sampler is ran for the first N i iterations, and the PAMH sampler that mix es 
the original proposal distribution with an approximation to the target distribution is run 
for an additional A'v iterations. The number of iterations for the initial run, N\, is usually 
set to a reasonably small number.

If tlie dimension of X  is small, the empirical distribution ft (X) can be computed by dis
cretizing the space into sufficiently small pixels and calculating the proportion of the initial 
Ari draws that fall into each pixel, hi some cases the approximation canbe improved by 
discarding an initial burn-in from the Ni draws, hi this way, we approximate ft(X) with 
a step function that is sampled by first selecting a pixel according to the empirical pixel 
probabilities and then sampling uniformly within the pixel. To get a more precise approx
imation to the target distribution, we can use a more sophisticated nonparametric density 
estimation method, such as kernel density estimation. This strategy is more efficient in 
higher dimensions andcanimprove the empirical approximation eveninlower dimensions, 
Of course, if the target distribution is discrete, no pixeling or smoothing is necessary.

I Xw) =  aK i(X(t+1) |X(f)) + (1 -  ctVC2(X(t+I) |XW), (15.1)
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Detailed balance is satisfied by the mixture transition kernel in Equation 15.1 because

7i(Xtf>yC+ (X<f+1> |XW) =amin{-n(X^)/>i(X<t+1> |X(0), ji(X<f+1) )pi(Xa) |X[f+I>)[

+ (1 -  a) mill { :i(X(f-))f[(X(f+1)}, 7i(Xtf+1,)ft(X(̂ )|

is a symmetric function of X 1̂  and X^+1\ Thus the resulting Markov chainis reversible with 
respect to :t(X). The PAMH sampler uses a mixture of two MH samplers rather than a single 
MH sampler with the mixture of two proposal distributions because the mixture of two 
MH samplers requires only the computation of one proposal distribution at each iteration. 
Thus, tlie PAMH sampler reduces the number of evaluations of 'n(X). This significantly 
improves the overall computation in Hie example of Section 15.4 where this evaluation is 
computationally costly. See Tierney (1998) for a comparison of Hie asymptotic efficiency of 
these two strategies.

To illustrate the advantage of the PAMH sampling strategy, we introduce a simple exam
ple where both the Gibbs sampler and the MH sampler exhibit slow convergence. Consider 
the following bivariate distribution which has Gaussian conditional distributions but is not 
a bivariate Gaussian distribution:

p(X ,Y) oc exp |-  ̂ ( 8X2Y2 +  X2 +  Y2 -  8X -  8Y ) J . (15.2)

This is a bimodal special case of a parameterized family of distributions derived by Gelman 
and Meng (1991).

A Gibbs sampler can easily be constructed to simulate from Equation 15.2:

Step 1. Draw X from p(X  IY>, where X | Y ~  N(4/(SY2 +  1), 1/(8Y2 +  1)).
Step 2. Draw Y from p(Y  | X), where Y | X  -  N(4/(SX2 +  1), 1/(8X2 + 1)).

Ati MH sampler can also be used to simulate the taiget distribution in Equation 15.2. 
We use an independent bivariate Gaussian distribution for the proposal distribution. 
That is, given the current state (XU), Y f̂)), we generate a proposal state (X', Y') =  (X^1 4-

ei, Y (f> +  £2), where e, ' N(0, i 2) for i =  1, 2, and accept the proposal state with probabil
ity p(X', Y')/p(XW, yW). hi this case, x is a tuning parameter that is chosen in advance and 
affects tlie convergence of the resulting sampler (Roberts and Rosenthal, 2001). A value of 
t that is too small produces small jumps which are often accepted but lead to a Markov 
chain that moves slowly. On the other hand, when 1 is too large, the sampler will propose 
large jumps that are too often rejected. Thus, it is important to find a reasonable choice of i  
between these two extremes. For illustration, we use three MH samplers, run with t  = 0.5, 
1, and 2.

We ran the Gibbs sampler and the MH sampler with three different values of x for 20,000 
iterations each. Convergence of the four samplers is described in the first four rows of 
Figure 15.4. The first two columns of Figure 15.4 show the trace plot of the last 5000 
iterations and autocorrelations computed using the last 10,000 iterations of each subchain 
of X. Hie last column compares each simulated marginal distribution of X  based on tlie 
last 10,000 draws (histogram) with the target distribution (solid line). The first four rows 
of Figure 15.4 illustrate the slow mixing and high autocorrelations of all four samplers; the 
simulated marginal distributions do not approximate the target distribution as well as we
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FIGURE 15.4
Comparing six MCMC samplers constructed for simulating abivariate distribution that has Gaussian conditional 
distributions but is not a bivariate Gaussian distribution. The rows correspond to the Gibbs sampler; the MH 
sampler with t =  0.5, the MH sampler with x =  1, the MH sampler with i = 2, the MH-within-PCG sampler run 
with t = 1, and the PAMH-within-PCG sampler run with t  =  1 and a =  0.5. The first column shows trace plots 
of the last 5000 iterations of each chain; the second column contains autocorrelations of the last 1D,DQD draws; and 
the last column compares each simulated marginal distribution of X  based on the last 10,000 draws (histogram) 
with the true marginal distribution (solid line).

might hope. Among the three MH samplers, tlie choice of t =  1 (row 3) results ill the best 
convergence.

We can use a PCG sampler to improve convergence as described in Section 15.2. hi par
ticular, if we could eliminate the conditioning on Y in Step 1 of tlie Gibbs sampler, we could 
generate independent draws by iterating between the following steps:
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Step 1. Draw X from/'(X), where

^ (X ) “  , exP  V s x 2 + 1

Step 2. Draw Y from p(Y  IX).

This PCG sampler would be a blocked one-step sampler if we could simulate p(X) directly. 
Because we caimot, we consider indirect sampling in Step 1 using MH with a Gaussian 
proposal distribution, X' | X m — N iX1-  , x 2). This results in an MH-within-PCG sampler 
that we implement with t =  1.* To further improve convergence, we use PAMH sam
pling in Step 1. This results in a PAMH-within-PCG sampler, that we also implement with

•l
i  = l  and with a = 1 for the first 1000 iterations and ot =   ̂ for the next 19,000 iterations. 
We discretize tlie space into 200 bins equally spaced between - 1  and 8, and approxi
mate ft (X) using the bin proportions from the first 1000 iterations. The last two rows of 
Figure 15.4 illustrate the convergence of the MH and PAMH-within-PCG samplers, respec
tively. The PAMH-within-PCG sampler exhibits a dear improvement over the other five 
MCMC samplers.

15.4 S p ectral A n aly sis  in  H igh -E n ergy  A stro p h y sics

We now turn to the illustration of PCG and PAMH in spectral analysis in high-energy 
astrophysics. In recent years technological advances have dramatically increased the quality 
and quantity of data available to astronomers. Instrumentation is tailored to data-collection 
challenges assodated with specific sdentificgoals. These instruments provide massive new 
surveys resulting in newT catalogs containing terabytes of data, high resolution spectrog- 
raphy and imaging across tlie electromagnetic spectrum, and incredibly detailed movies 
of dynamic and explosive processes in the solar atmosphere. The spectrum of newr instru
ments is helping make impressive strides in our understanding of the universe, but at die 
same time generating massive data-analytic and data-mining challenges for sdentists who 
study the data.

High-energy astrophysics is concerned with ultraviolet rays, X-rays, and y-rays, that is, 
photons with energies of a few electron-volts (eV), a few kiloelectron-volts (keV), or more 
than a megaelectron-volt, respectively. Roughly speaking, the production of high-energy 
electromagnetic waves requires temperatures of millions of degrees and signals the release 
of deep w’ells of stored energy such as those in very strong magnetic fields, extreme gravity, 
explosive nudear forces, and shock waves in hot plasmas. Thus, X-ray and y-ray telescopes 
can map nearby stars with active magnetic fields, the remnants of exploding stars, areas 
of star formation, regions near Hie event horizon of a black hole, very distant turbulent 
galaxies, or even the glowing gas embedding a cosmic duster of galaxies. The distribution 
of the energy of the electromagnetic emissions is called the spectrum and gives insight into 
these deep energy wells: the composition, density, and temperature j  energy distribution 
of the emitting material; any chaotic or turbulent flows, and the strengths of the magnetic, 
electrical, or gravitational fields,

* Verifying the stationary distribution of a MH-within PCG sampler or a EHMH-withln-PCG sampler considers 
somewhat subtle considerations that we do not discuss here, See van Dyk and Park (2011) for details.
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III this chapter we focus on X-ray spectral analysis. Atypical spectrum canbe formulated 
as a finite mixture distribution composed of one or more continuum terms, which are 
smooth functions across a wide range of energies, and one or more emission lines, which 
are local features highly focused on a narrowband of eneigies. For simplicity we focus on 
a case where there is one continuum term and one emission line. Because of instrumental 
constraints, photons are counted in a number of eneigy bins. These photon counts are 
modeled as aninliomogeneous Poissonprocess with expectationin energy bin) modeled as

A/(6) = fj (0C) +  (n , a2) , {15.3)

where 0 is the set of model parameters, /j(0c ) is the expected continuum count in bin j, 
6C is the set of free parameters in the continuum model, X is the total expected line count, 
and cr2) is the proportion of an emission line with location [i and width <r2 falling 
into bin j. Various emission line profiles such as Gaussian distributions, t distributions, and 
delta functions can be used to derive the emission line bin proportions as a function of (i 
and a2. We focus on the use of a delta function ■which is parameterized only in terms of 

Due to instrumental constraints, the photon counts are subject to blurring of the individ
ual photon energies, stochastic censoring with energy dependent rates, and background 
contamination. To account for these processes, we embed the scientific model in Equa
tion 15.3 within a more complex observed-data model, hi particular, the observed photon 
counts in detector channel I are modeled with a Poisson distribution,

Y Dbs j -  Poisson + fclf j  , (15.4)

where M[j is Hie probability that a photon that arrives with eneigy corresponding to bin j 
is recorded in channel 1, n,(0A) is the probabihty that a photon with energy corresponding 
to bin j  is observed, and 0® is the expected background counts in channel /. A multilevel 
model canbe constructed to incorporate both the finite mixture distribution of the spectral 
model and tlie complexity of the data-generation mechanism Using a missing-data/ latent- 
variable setup, a standard Gibbs sampler canbe constructed to fit the model (van Dyk et al., 
2001; van Dyk and Kang, 2004).

15.5 E fficien t M C M C  in  S p ectral A n aly sis

As a specific example, we consider data collected using the Chandra X-ray Observatory in 
an observation of Hie quasar PG1634+706 (Park et al., 2008). Quasars are extremely distant 
astronomical objects that are believed to contain supermassive black holes with masses 
exceeding that of our Sun by a factor of a million. Because quasars are very distant, the 
universe was a fraction of its current age when the fight we now see as a quasar was 
emitted. They are also very luminous and therefore give us a way to study the "young" 
universe. Thus, the study of quasars is important for cosmological theory and their spectra 
can give insight into their composition, temperature, distance, and velocity.

We are particularly interested in an emission feature of the quasar's spectrum, which is 
a narrow' Fe-K-alpha emission line whose location indicates tlie ionization state of iron in
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the emitting plasma. To fit the location of a narrow emission line, we model the emission 
line with a delta function, so that the entire line falls within one data bin,

Unfortunately, tlie standard Gibbs sampler described in van Dyk et al. (2001)breaks down 
when delta functions are used to model emission lines. Using the method of data augmen
tation, the standard Gibbs sampler is constructed in terms of missing data that include 
unobserved Poisson photon counts with expectation given in Equation 15.3 and unobserved 
mixture indicator variables for the mixture given in Equation 15.3. To see why the standard 
Gibbs sampler fails, we examine how the mixture indicator variables and line location are 
updated. The components of the mixture indicator variable are updated for each photon 
within each bin as a Bernoulli variable with probability of being from an emission line,

/.Tt :(|JL)
1 (15.5)

■̂(eL) + x.TTjtu.)

in energy bin j. (We suppress the width, o 2, of Hie emission line 71,(11, a2), because a delta 
function has no width.) Because the delta function is contained in a single bin, ny(|i) =  1 
if (X is within bin /, and 0 otherwise. This means tliat the probability in Equation 15.5 is 
zero for all energy bins except the one containing the current line location, |i. Thus, in each 
iteration of the standard Gibbs sampler, the only bin that can have photons attributed to 
the emission line is the bin that contains the current iterate of the line location. When die 
line location is updated using the photons attributed to the emission line, it is necessarily 
set to the same value as the current iterate. Thus, unless there are no photons attributed to 
the line, its location is fixed. As a result, unless tlie line is very wTeak, the standard Gibbs 
sampler is in effect not positive recurrent and does not converge to the target distribution 
Although this sampler works fine with emission lines of appreciable width, it fails for delta 
functions (Park and van Dyk, 2009; van Dyk and Park, 2004).

To understand the computational challenges of fitting this model, we must go into some 
of the technical details of the Gibbs sampler. Let Y = {Yabs;) be the observed data modeled 
in Equation 15.4, Ym;s = (Ym;s 1, Ym;s 2) be a collection of missing data, wThere Ym;s 1 denotes 
the unobserved Poisson photon counts with expectation given in Equation 15.3 and Ynils 2 
the unobserved mixture indicator variable for each photon under the finite mixture model 
given in Equation 15.3, [j. be tlie delta function line location, and l[r be tlie modelparameters 
other than (x. To sample from the target distribution /*( Ymis, i|r, (i | Y0bs), tlie parent Gibbs 
sampler is constructed by iteratively sampling from its conditional distributions, as shown 
iti Figure 15.5a. This is a special case of tlie "standard" Gibbs sampler discussed above and 
derived by van Dyk et al. (2001). We devise a PCG sampler to improve the convergence of 
the parent Gibbs sampler. To construct a PCG sampler, we eliminate Hie conditioning on 
all or some of Ym;s in the step that updates In combination with PAMH, this results in 
three new efficient samplers,

(a) (b) (c) (d) (e)
Parent sampler Marginalize Permute Trim Block
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FIGURE IS .5
Trans forming the parent Gibbs sampler into PCG I, The PCG I sampler in(e) is constructed by partially collapsing 
out the missing data and corresponds to a blocked version of its parent sampler in (a).
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First, PCG I is constructed by eliminating the conditioning on all of Ymls in tlie step that 
updates |i. Figure 15.5 shows how tlie p arent Gibbs sampler shown in (a) is transformed into 
PCG I shown in (e) by partially collapsing Ym;s out of the sampler, hi Figure 15.5b, Ymis is 
moved frombeing conditioned upon to being sampled in the step that updates |i. The steps 
are then permuted in Figure 15.5c hi order to make one of the two updates of Ym;s redundant. 
This allows us to trim the unused sample of Y*nis from the first step in Figure 15.5d. Finally, 
we can combine the first two steps into a single sampling of p(Ym;s, n | i|r, Y). The resulting 
PCG sampler in Figure 15.5e is a blocked version of the parent Gibbs sampler.

Because Hie likelihood function is flat within each bin as a function of |i, we can treat 
|i as a discrete parameter. Its distribution given i]; and Yabs is multinomial with values 
corresponding to the midpoints of data bins and probabihty vector proportional to the 
product of Hie Poisson distributions given in Equation 15.4. {We use a flat prior distribution 
on |i.) This probabihty vector must be computed at each iteration of tlie sampler, which 
is computationally expensive owing to Hie large blurring matrix M = {Af;; } and the laige 
number of energy bins. Because sampling from p([i | i|r, Yobs) is so expensive, wTe consider a 
second PCG sampler that avoids this update. In particular, we consider eliminating only the 
mixture indicator variables, Ymis ?, from the step that updates |i in the derivation of PCG II. 
Because Hie resulting update for |i conditions oil Ymis i, i|r, and Yabs, its distribution is 
multinomial with prob ability ve ctor pr op ortional to the productofthePoisson distributions 
given in Equation 15.3. This distribution does not involve the large dimension of the blurring 
matrix and is much quicker to compute,

Figure 15,6 illustrates the construction of PCG II which is identical to that of PCG I except 
that only Ym;s 2 is moved from being conditioned upon to being sampled in the step that 
updates n. Unlike PCG I, however, PCG II consists of a set of incompatible conditional 
distributions and does not correspond to a blocked version of the parent Gibbs sampler; 
see Figure 15.6d. Due to the greater degree of collapsing, PCG I is expected to have bet
ter convergence characteristics than PCG II (see van Dyk and Park, 2008). Tlie tradeoff 
is, how'ever, that an iteration of PCG II is much faster to compute than one of PCG I. A 
numerical comparison of the two samplers appears below7.

hi order to further improve computational speed, we consider using an MH step to up date 
|i in an effort to avoid the expense of computing a lengthy probabihty vector at each iter
ation This requires us to evaluate only two components of the multinomial probabihty 
vector, the components corresponding to the current value and the proposed value of the 
line location. Although this can significantly reduce computation tune per iteration, it is 
difficult to find a good proposal distribution because Hie posterior distribution of Hie line 
location canbe highly multimodal. A proposal distribution with relatively high variance is 
required to allow jumping among the modes, but this leads to many rejected proposals in

(a)
Parent sampler

MYrais|^M.Y)

V,Y)

(b)
Marginalize

^Ymisi,Y^is2|¥,H,Y)
Wf |Ymis,M.Y) 
P(YmLs2,M |Ymisl, V,Y)

(c) (d)
Permute Trim

K T S i i s a M  I Y m i s  1 '  V ,  Y )

MY™ |V. M.Y)
M V l Ymis,M,Y)

MMlYmisi.V.Y)
MYmislY^.Y)
P(VlYmls,H,Y)

FIGURE IS .6

Tlansforming the parent Gibbs sampler into PCG H  This PCG sampler is constructed by partially collapsing out 
part of the missing data, is composed of a set of incompatible conditional distributions, and is not a blocked 
version of the sampler in (a).
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FIGURE 15.7
Comparing three efficient MCMC samplers constructed for spectral analysis. The rows correspond to the PCG I, 
PCG n, and the PAMH-within-PCG I samplers, respectively. The PAMH sampler was run with t =  2 and a =
0.5. The first column shows trace plots of the last 10,000 iterations of each chain; the second column contains 
autocorrelation plots of the last 10,000 draws; and the last column presents a simulated marginal distributions of 
the line location |a. based on the last 10,000 draws. Although PCG I mixes more quickly than PAMH-within-PCG
1, it requires about 50 times more computing time for the 20,000 draws.

regionsbetween the modes. To improve the convergence of the MH sampler, we consider Hie 
PAMH sampling strategy to update p.. We use a Gaussian proposal distribution with stan
dard deviation t =  2f or the initial MH within Gibbs sampler, which allows jumps across Hie 
range of energies (5.5 keV). After 1000 iterations we use an estimate of the discrete margiiiid 
posterior distribution of |i m a second MH transition kernel that we mix with the original 
kernel in a fifty-fifty mixture for the remaining draws of Hie PAMH-within-PCG I sampler.

The convergence characteristics of the three samplers are compared in Figure 15.7. Each 
of the three samplers is run for 20,000 iterations. The rows correspond to the PCG I, PCG II, 
and PAMH-within-PCG I samplers, respectively; the columns correspond to the trace and 
autocorrelation plots of tlie last 10,000 iterations, and the simulated marginal posterior dis
tribution of the line location based on the last 10,000 iterations, respectively. Comparing Hie 
first two columns of Figure 15.7 illustrates that PCG I has the quickest conveigence among 
the three PCG samplers, but the other two PCG samplers also have fairly fast convergence. 
When sampling |i from its multinomial conditional distribution, however, PCG I requires 
significantly more computing time than PCG II, wrhichin turn takes significantly more time 
than PAMH-within-PCG I. The total computing time for 20,000 iterations of the PCG I, 
PCG II, and PAMH-within-PCG I samplers on a UNIX machine was 15 hours 35 minutes, 
1 hour 55 minutes, and 19 minutes, respectively.

To further compare the three PCG samplers, wTe compute their effective sample sizes 
(ESS), defined by

ESS = ______ - _______
i  +  2 L £ iP * ( e ) '

where it is Hie total sample size and pt(6) is the lag-fc autocorrelation for 0; see Kass et al. 
(1998) and Liu (2001). The infinite sum in effective sample size is truncated at lag k wThen 
pt (0) < 0.05. For ii equal to 10,000, die effective sample sizes of the PCG I, PCG II, and 
PAMH-within-PCG I samplers are 2436, 304, and 894, respectively. When computation
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time is accounted for, the PCG I and PCG II samplers have similar ESS per second: 0.087 
and 0.088, respectively, The PAMH-within-PCG I sampler, on the other hand, has ESS per 
second of 1.568, which is about 18 times larger. Thus, PAMH-within-PCG I offers a dramatic 
improvement in computation time with very good mixing.

15.6 C o n clu sio n

hi this chapter we illustrate the use of two computational techniques to improve the perfor
mance of MCMC samplers in a particular example from high-energy astrophysics. These 
techniques are of course useful in other settings as well. For example, PCG samplers are 
generally useful when eliminating conditioning on some unobserved quantities in a step 
of a Gibbs sampler does not complicate the draw. Reducing the conditioning in this way 
can only improve conveigence, but must be implemented carefully to be sure tlie target sta
tionary distribution is maintained {see Section 15.2). Even when the resulting draw is more 
complicated, PCG samplers may be worth pursuing if the conditional variance is increased 
substantially by reducing Hie conditioning. In this case, Hie extra effort in obtaining the 
draw may be offset by an improvement in the overall conveigence of the chain. PAMH, 
on the other hand, is most useful when tlie initial MH sampler mixes poorly but visits all 
important areas of the parameter space, hi this case, the initial draws can easily be used 
to construct an unproved proposal distribution, Even if mixing is acceptable, PAMH may 
be useful if the MH proposal distribution is expensive to evaluate, hi this case, the initial 
draws canbe used to construct a proposal distribution that provides similar mixing, but 
with faster evaluation 

There are many other computational techniques and variants on MCMC samplers that 
can be applied to the myriad of complex model fitting challenges in astronomy. Puzzling 
together the appropriate computational and statistical methods for the numerous outstand
ing data-analytic problems offers a gold mine for methodological researchers. We invite all 
interested readers to join us in this seemingly endless but ever enjoyable endeavor!

A ck n o w led g m en ts

The authors gratefully acknowledge funding for this project partially provided by NSF 
grants DMS-04-06085, SES-05-50980, and DMS-09-07522 and by NASA Contract NAS8- 
39073 and NAS8-03060 (CXC). The spectral analysis example stems from work of the 
California Harvard Astrostatistics Collaboration {www.ics.ud.edu/~dvd/ astrostat.html).

R eferen ces

Am it, Y. 1991. On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian 
distributions. Journal o f  M ultivariate Analysis, 38:82-69.

http://www.ics.ud.edu/~dvd/


398 Handbook o f  Markov Chain Monte Carlo

Besag, J. and Green, E  J. 1993. Spatial statistics and Bayesian computation. Journal o f  the Royal Statistical 
Society, Series B, 55:25-37.

Connors, A. and van Dyk, D. A. 2007. How to win with non-Gaussian data: Poisson goodness-of-fit. 
In E. Feigelson and G. Babu (eds), Statistical Challenges in M odern Astronomy IV, Astronomi
cal Society of the Pacific Conference Series, Vol. 371, pp. 101—117. Astronomical Society of the 
Pacific, San Francisco.

DeGennaro, S., von Hippel, T., Jefferys, W. H., Stein, N., van Dyk, D. A., and Jeffery, E. 2008. Inverting 
color-magnitude diagrams to access precise cluster parameters: A new white dwarf age for the 
Hyades. Astrophysical Journal, 696:12-23. 

van Dyk, D. A. and Park, T. 2004. Efficient EM-type algorithms for fitting spectral lines in high- 
energy astrophysics. In  A  Gelman and X.-L. Meng (eds), Applied Bayesian Modeling and Causal 
Inference from Incomplete-Da ta Perspectives: Contrib u.tions by DonaldRubin  s Statistical Family. Wiley, 
Chichester.

van Dyk, D. A  and Park, T. 2008. Partially collapsed Gibbs samplers: Theory and m ethods. Journal o f  
the American Statistical Association, ICS:790-796. 

van Dyk, D, A, 2000. Nesting EM  algorithms for computational efficiency. Statistical Sinica, 10: 
203-225.

van Dyk, D. A., Connors, A., Kashyap, V., and Siemiginowska, A. 2001. Analysis of energy spectra 
with low photon counts via Bayesian posterior simulation. Astrophysical Journal, 548:224r-243. 

van Dyk, D. A., DeGennaro, S., Stein, N., Jefferys, W. H., and von Hippel, T. 2009. Statistical analysis 
of stellar evolution. Annals o f  Applied Statistics, 3(1): 117-143. 

van Dyk, D. A. and Kang, H. 2004. Highly structured models for spectral analysis in high-energy 
astrophysics. Statistical Science, 19:275-293. 

van Dyk, D. A. and Meng, X.-L. 1997. Some findings on the orderings and groupings of conditional 
maximizations within ECM -type algorithms. Journal o f  Computational and Graphical Statistics, 
6:202-223.

van Dyk, D. A. and Meng, X.-L. 2001. The art of data augmentation. Journal o f  Comp utational and 
Graphical Statistics, 10:1-111. 

van Dyk, D. A. and Meng, X.-L. 2010. Cross-fertilizing strategies for better EM  mountain climbing 
and DA field exploration: A graphical guide book. Statistical Science, in press, 

van D yk,D . A. and Park, T. 2011. Themetropolis within partially collapsed Gibbs sampler. In progress. 
Esch, D. N., Connors, A.,Karovska, M ., and van Dyk, D. A. 2004. An image reconstruction technique 

with error estimates. Astrophysical Journal, 610:1213-1227.
Gelfand, A, E,, Sahu, S. K., and Carlin, B. P. 1995, Efficient parameterization for normal linear mixed 

models. Biometrika, 82:479-488.
Gelman, A. and Meng, X.-L. 1991. A note on bivariate distributions that are conditionally normal.

American Statistician, 45:125-126.
Gilks, W. R., Best, N. G., and Tan, K. K. C. 1995. Adaptive rejection Metropolis sampling within Gibbs 

sampling. Applied Statistics, 44:455-472.
Gregory, P  C. 2005. ABayesian analysis of extrasolar planet data for HD 73526. Astrophysical Journal, 

631:1198-1214.
Kashyap, V  and Drake, J. J, 1998. Markov-chain Monte Carlo reconstruction of emission measure 

distributions: Application to solar extrem e-ultraviolet spectra. Astrophysical Journal, 503:450-466. 
Kass, R. E v Carlin, B. P , Gelman, A., and Neal, R. M. 19S8. Markov chain Monte Carlo in practice: A 

roundtable discussion. American Statistician, 52:93-100.
Liu, I  S. 1994. Fraction of missing information and convergence rate of data augmentation. In  J. Sail 

and A. Lehman (eds), Computing Science and Statistics: Proceedings o f  the 2 6th Sytnposium on the 
Interface, pp. 490-496. Interface Foundation of North America, Fairfax Station, VA.

Liu, J. S. 2001. M onte Ca-rlo Strategies in Scientific Cainputing. Springer, New York.
Liu, C. and Rubin, D. B. 1994. The ECME algorithm: A simple extension of EM  and ECM  with faster 

monotone convergence. Bicrmetrika, 81:633—648.
Liu, J. S. and Wu, Y. N. 1999. Parameter expansion for data augmentation, journal o f  the American 

Statistical Association, 94:1264-1274.



Partially Collapsed Gibbs Sampling 399

Liu, J. S., Wong, W. Hv and Kong, A. 1994. Covariance structure of the Gibbs sampler with applications 
to comparisons of estimators and augmentation schemes. Biometrika, 81:27-40.

Meng, X.-L. and van Dyk, D. A. 1997. The EM  algorithm— an old folk song sung to a fast new tune 
(with discussion). Journal o f  the Royal Statistical Society, Series B, 59:511-567.

Meng, X.-L. and van Dyk, D. A. 1999. Seeking efficient data augmentation schemes via conditional 
and marginal augmentation. Biometrika, 86:301-320.

Park, T. and van Dyk, D. A. 2009. Partially collapsed Gibbs samplers: Illustrations and applications. 
Journal o f  Computational and Graphical Statistics, 18:283-305.

Park, Tv van Dyk, D, A , and Siemiginowska, A. 2008. Searching for narrow emission lines in X-ray 
spectra: Computation and methods. Astrophysical Journal, 688:807-825.

Roberts, G. O. and Rosenthal, J. S. 1997. Geometric ergodicity and hybrid Markov chains. Electronic 
Communications in Probability, 2:13-25.

Roberts, G. O. and Rosenthal, J. S. 2001. Optimal scaling for various Metropolis-Hastings algorithms. 
Statistical Science, 16:351-367.

Roberts, G. O. and Rosenthal, T. S. 2009. Examples of adaptive MCMC. Journal o f  Computational and 
Graphical Statistics, 18:349-367.

Tanner, M, A. and Wong, W. H, 1987. The calculation of posterior distributions by  data augmentation 
(with discussion). Journal o f  the American Statistical Association, 82:528-550.

Tierney, L. 1994. Markov chains for exploring posterior distributions. Annals o f  Statistics, 22: 
1701-1762. "

Tiemey, L. 19S8. A  note on Metropolis-Hastings kernels for general state spaces. Annals o f  Applied 
Probability, 8 :1-9.

Yu, Y  2005. Three contributions to statistical computing. PhD thesis,Department of Statistics, Harvard 
University

Yu, Y. and Meng, X.-L. 2011. To center or not to center, that is not the question: Asufhciency-ancillarity 
interweaving strategy for boosting MCMC efficiency (with discussion). Journal o f  Computational 
and Graphical Statistics, in press.





16
Posterior Exploration for Computationally Intensive 
Forward Models

David Higdon, C. Shane Heese, J. David Moulton, Jasper A. \rugt, and Colin Fox

16.1 In tro d u ctio n

hi a common inverse problem, we wish to infer about an unknown spatial field x =  
(x i , . . .  ,x m)T, given indirect observations y = {y i ,. . .  ,y u)T. Tlie observations, or data, are 
linked to the unknown field x through some physical system

V = + <e,

where t;(jr) denotes Hie physical system and t is an it-vector of observation errors. Examples 
of such problems include medical imaging (Kaipio and Somersalo, 2004), geologic and 
hydrologic inversion (Stenemd et al., 2008), and cosmology (Jimenez et a l 2004). When a 
forward model, or simulator, of the physical process i](jr) is available, one can model the 
data using the simulator

y  = ii (Jt) + f ,

where e includes observation error as well as error due to the fact that the simulator r|(j£) 
may be systematically different from reality for input condition x  Our goal is to use 
the observed data y to make inference about the spatial input parameters x—predict x and 
characterize Hie uncertainty in the prediction for x.

The likelihood L(v|i') is then specified to account for both mismatch and sampling error. 
We will assume zero-mean Gaussian errors so that

L(i/|jc) oc exp -\(y -  n(Jc))Tsr1(y -  tiCO) \, U&u

with £ c known. It is worth noting that the data often come from only a single experiment. 
So while it is possible to quantify numerical errors, such as those due to discretization (see 
Kaipio and Somersalo, 2004; Nissinen et al., 2008), there is no opportunity to obtain data 
from additional experiments for which some controllable inputs have been varied. Because 
of this limitation, there is little hope of determining the sources of error in e due to model 
inadequacy Therefore, the likelihood specification will often need to be done with some 
care, incorpora ting the modeler's judgment about the appropriate size and nature of the 
mismatch term,

401
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In many inverse problems we wish to reconstruct x, an unknovm process over a regular 
twTo-diniensional lattice. We consider systems for which the model input parameters x 
denote a spatial field or image. The spatial prior is specified for x, n(x)r which typically 
takes into account modeling, and possibly computational considerations,

The resulting posterior is then given by

■K{x\y) ocI(y|n(Jc)) x tt(x).

This posterior can, in principle, be explored via Markov chain Monte Carlo (MCMC). Howt- 
ever the combined effects of the high dimensionality of x and the computational demands 
of the simulator make implementation difficult, and often impossible, in practice. By itself, 
the high dimensionality of x is notnecessarily a problem. MCMC hasbeen carried out with 
relative ease in large image applications (Rue, 2001; Weir, 1997). However, in these exam
ples, the forward model was either trivial or non-existent. Unfortunately, even a mildly 
demanding forward simulation model can greatly affect the feasibility of doing MCMC to 
solve the inverse problem.

hi this chapter we apply a standard single-site updating scheme that dates back to 
Metropolis et aL (1953) to sample from this posterior. While this approach has proven 
effective in a variety of applications, it has the drawback of requiring hundreds of thou
sands of calls to the simulation model. In Section 16.3 we consider twTo MCMC schemes 
that use highly lmdtivariate updates to sample from T r ( . x | i / ) :  the multivariate random-walk 
Metropolis algorithm {Gelman et al., 1996) and the differential evolution MCMC (DE-MCMC) 
sampler of ter Braak (2006). Such multivariate updating schemes are alluring for computa
tionally demanding inverse problems since they have the potential to update many (or all) 
components of x at once, while requiring only a single evaluation of the simulator. Next, in 
Section 16.4, we consider augmenting the basic posterior formulation with additional for
mulations based on faster, approximate simulators. Tlie faster, approximate simulators are 
created by altering the multigrid solver used to compute t|(.t). These approximate simula
tors canbe used in a delayed acceptance scheme (Christen and Fox, 2005; Fox and Nicholls, 
1997), as well as in an augmented formulation (Higdon et al., 2002). Both of these recipes 
canbe utilized with any of the above MCMC schemes, often leading to substantial improve
ments in effidency. hi each section we illustrate Hie updating schemes with an electrical 
impedance tomography (EIT) application described in the next section, where tlie values 
of x denote electrical conductivity of a two-dimensional object. The chapter condudes with 
a discussion and some general recommendations.

16.2 A n In v erse  P rob lem  in  E le c trica l Im p ed an ce T om ography

Bayesian methods for EIT applications have been described in Fox and Nicholls (1997), 
Kaipio et al. (2000), and Andersen et a l (2003). A notional inverse problem is depided in 
Figure 16.1; this setup was given previously in Moulton et al. (2008). Here a two-dimensional 
object composed of regions with differing electrical conductivity is interrogated by 16 elec
trodes. From each electrode, in turn, a current I is injeded into the objed and taken out at a 
rate of 1/ (16 — 1) at the remaining 15 electrodes. The voltage is then measured at each of Hie 
16 electrodes. These 16 experimental configurations result in n =  16 x  16 voltage observa
tions which are denoted by the n-vedor y. The measurement error is simulated by adding 
independent and identically distributed mean-zero Gaussian noise to each of the voltage
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FIGURE 16.1
A synthetic EIT application. A two-dimensional object is surrounded by electrodes at 16 evenly spaced locations 

around its edge. The conductivity of the object is 3 in the white regions, and 4 in the black regions (the units are 
arbitrary since the data are invariant to scalings of the conductivity). First, a current of I is injected at electrode 1, 
and extracted evenly at the other 15 electrodes. The voltage is measured at each electrode. This data is shown in 
the plot labeled 1 on the right. Similar experiments are carried out with each electrode taking a turn as the injector. 
The resulting voltages are shown in the remaining 15 plots. In each plot, the voltage corresponding to the injector 
electrode is given by a black plotting symbol.

measurements. The standard deviation o of this noise is chosen so that the signal to noise 
ratio is about 1000 : 3, which is typical of actual EIT measurements. The resulting simulated 
data is shown on the right in Figure 16.1—one plot for each of the 16 circuit configurations, 
hi each of those plots, Hie injector electrode is denoted by the black plotting symbol.

We take s to denote spatial locations within the object Q — [0,1] x [0,1], and take .r(s) 
to denote the electrical conductivity at site s. We also take v(s) to be the potential at loca
tion s, and j(s) to be the current at boundary location s. A mathematical model for the 
measurements is then the Neumann boundary-value problem

- V  ■ x(s)Vv(s) = 0 , s e £2,

/  ̂ V V 'J , - ,

3 u.(s)

where 3 £2 denotes the boundary of the object £2 and ti(s) is Hie unit normal vector at the 
boundary locations e elf! The conservation of current requires that the sum of Hie currents 
at each of the 16 electrodes be 0.

hi order to numerically solve this problem for a given set of currents at tlie electrodes 
and a given conductivity field, xis), the conductivity field is discretized into an m =  24 x  24 
lattice, We use a robust multigrid solver called Black Box MG (Dendy, 1987), hi addition to
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being rather general and fast, we can also exploit the multigrid nature of Hie algorithm to 
develop fast approximations using the MCMC scheme described in Section 16,4,

Now, for any specified conductivity configuration x and current configuration, the multi
grid solver produces 16 voltages. For all 16 current configuration 16 forward solves 
produces an n — 256-vector of resulting voltages n (X). Hence, the sampling model for tlie 
data y  given the conductivity field x is given by Equation 16.1, where — o 2In.

For the conductivity image prior, we adapt a Markov random field (MRF) prior from 
Geman and McClure (1987). This prior has the form

ti (X) oc exp P X !  n( x‘ ~ xi) , x g [2.5, 4.5]™, (16.2)

where and s control the regularity of the field, and //.(■) is the tricube function of Cleveland 
(1979):

u(d) =
- (1  — [ri/s]3)3, i f — s < d < s ,  
s
0, if |r/| > s.

The sum is over all horizontal and vertical nearest neighbors, denoted by i — j , and given 
by the edges in the Markov random field graph in Figure 16.2. Hence, this prior encourages 
neighboring X( to have similar values, but once and Xj are more than s apart, the penalty 
does not grow This allows occasional large shifts between neighboring .r, . For this chapter, 
we fix (p, s) = (0.5,0.3). A realization from this prior is shown on tlie right in Figure 16.2. A 
typical prior realization shows patches of homogeneous values, along with abrupt changes 
in intensity at patch boundaries, This prior also allows an occasional, isolated, extreme 
single pixel value,

T ------- 1
J------- 1J--------1J------- 1J--------Ly------- 1p------- 0

o -------- ------- 1L)--------f1*1------- \ ^ \-------- — o

FIGURE 16.2
(Left) First-order neighborhood MKF graph corresponding to the prior in Equation 16.2; each term in the sum 
corresponds to an edge in the MKF graph. (Right) A realization from this gray level prior.



Computationally Intensive Forward Models 405

The resulting posterior density has the form

{16.3)

The patchiness and speckle allowed by this prior, and tlie rather global nature of Hie like
lihood, make posterior exploration for this inverse problem rather challenging, and a good 
test case for various MCMC schemes that have been developed over Hie years. We note that 
Hie nature of the posterior can be dramatLcally altered by changing Hie prior specification 
for x. This is discussed later in this section 

This chapter considers a number of MCMC approaches for sampling from this posterior 
distribution We start at the beginning.

16.2.1 Posterior Exploration via Single-Site Metropolis Updates

A robust and straightforward method for computing samples from the posterior n (x \y) is 
the single-site Metropolis scheme, originally carried out in Metropolis et a l (1953) on the 
world's first computer with addressable memory, the MANIAC. A common formulation of 
this scheme is summarized in Algorithm 1 using pseudocode. This scheme is engineered to 
maintain detailed balance—so that the relative movement between any two states x and x* 
is done hi proportion to the posterior density at these two points, The width of the proposal 
distribution <jz should be adjusted so that inequality in lhie 5 is satisfied roughly half the 
time (Gelman et al,, 1996), but an acceptance rate between 70% and 30% does nearly as well 
for single-site updates. After scanning through each of the parameter elements (for loop, 
steps 3-7), one typically records tlie current value of .if. We do so every 10 scans through the 
parameter vector.

ALGORITHM 1 SINGLE-SITE METROPOLIS

i :  i n i t i a l i z e  x  
2 : f o r  k  =  1 : n i t e r  d o  
3: f o r  i  =  1 : m d o
4: x ^ — x i  +  z ,  where z ~ N { 0,c2)

s e n d  f o r

This single-site scheme was originally intended for distributions with very local depen
dencies within the elements of x so that the ratio in line 5 simplifies dramatically, hi general, 
this simplification depends on tlie full conditional density of

5 i f  u < ' where 1) t h e n

8

7

s e t  x± =  x '  
end. i f  

e n d  f o r

7i(jt,'|j;_i,y), where =  (x.h . . .. .,jc„)t .
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This density is determined by keeping ad of the product terms m n(x\y) that contain.*,, and 
ignoring the terms that do not. Hence the ratio in line 5 canbe rewritten as

k(*'|y) _

In many cases this ratio becomes trivial to compute. However, in the case of this particular 
inverse problem, we must still evaluate the simulator to compute this ratio. This is exactly 
what makes Hie MCMC computation costly for this problem 

Nonetheless, this straightforward sampling approach does adequately sample Hie poste
rior, given sufficient computational effort. Figure 16.3 shows realizations produced by Hie 
single-site Metropolis algorithm, separated by 1000 scans through each element of.* Inspec
tion of these realizations makes it clear that posterior realizations yield a crisp distinction 
between the high- and lowT-eonductivity regions, as wTas intended by the MRF prior for x. 
Around tlie boundary of the high conductivity region, there is a fair amount of uncertainty 
as to whether or not a given pixel has high or lowT conductivity.

Figure 16.4 show's the resulting posterior mean for x and Hie history of three pixel values 
over tlie course of the single-site updating scheme. The sampler was run until 40,000 xm  
forward simulations wrere carried out. An evenly spaced sample of 6000 values for three of 
the in pixels is shown on the left in Figure 16.4. Note that for tlie middle pixel {blue circle), 
the marginal posterior distribution is bimodal—some realizations have Hie conductivity 
value near 3, others near 4. Being able to move between these modes is crucial for a well- 
mixing chain. Getting this pixel to move between modes is not simply a matter of getting 
that one pixel to move by itself; Hie movement of that pixel is accomplished by getting tlie 
entire image to move between local modes of the posterior.

This local multiiiiodality is largely induced by our choice of prior. For example, if we 
alter the prior model in Equation 16.2 so that

u(d) =  - i f ,  (16.4)

we have a standard Gaussian Markov random field (GMRF) prior for x. If, in addition, 
the simulator is a linear mapping from inputs x to ouputs ii(jc), the resulting posterior is 
necessarily Gaussian, and hence unimodal. While this is not true for nonlinear forward 
models/simulators, tlie GMRF prior still has substantial influence on the nature of Hie 
posterior. Figure 16.5 show's two realizations and the posterior mean resulting from such 
a prior with (3 =  2. Here posterior realizations are locally more variable—the difference 
between neighboring pixels is generally larger. However, the global nature of the posterior 
realizations is far more controlled than those inFigure 16.3sincethe GMRF prior suppresses

FIGURE 16.3
Five realizations from the single-site Metropolis scheme, Realizations are separated by 1000 scans through the 
m-dimensional image parameter x.
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FIGURE 16,4
Posterior mean image for x andMCMC traces of three pixels: one which is predominantly light (small conductivity); 
one which is predominantly dark (high conductivity) and one which is on the edge of the object. This MCMC 
run carries out 40,000 x?i forward simulator evaluations. The value of i,- is given every 10th iteration (i.e. every 
10 x m  single-site updates).

local modes that appear under tlie previous formulation. This resulting formulation is also 
far easier to sample, requiring about one tenth of the effort needed for formulation in 
Equation 16.3. An alternate, controlling prior formulation uses a process convolution prior 
for x is given in the Appendix to this chapter, hi addition to yielding a more easily sampled 
posterior the prior also represents the image x with far fewer parameters than the nr used 
in the MRF specifications.

While these alternative specifications lead to simpler posterior distributions, they do so 
while giving overly smooth posterior realizations. Still, such realizations maybe useful for 
exploratory purposes, and for initializing other samplers; we do not further pursue such 
formulations here. Instead, we focus on comparison of various MCMC schemes to sample 
the original gray level posterior in Equation 16.3. We use the sample traces from the three 
pixels drded in Figure 16.4 to make comparisons between a variety of samplers which are 
discussed in Hie next sections—the movement of these three pixels is representative of all 
the hnage pixels, hi particular, we focus on the frequency of movement between high and 
low conductivity at these sites.

FIGURE 16.5
Two realizations and the posterior mean from the single-site Metropolis scheme run on the posterior resulting 
from the GMRF prior. Realizations are separated by 1D0D scans through theTH-dimensional image .t.



408 Handbook o f  Markov Chain Monte Carlo

16.3 M u ltiv ariate  U p d atin g  S ch em es

Schemes that propose to update more than just a single component of x at a time have Hie 
potential to reduce the computational burden of producing an MCMC sample from n(x\y). 
The single-site scheme above is also applicable when tlie proposal for x changes some or all 
of the components of jr. However, producing a multivariate candidate x' that has an appre
ciable chance of being accepted (i. e. satisfying the inequality in line 5 of Algorithm 1) while 
allowing appreciable movement, is very difficult. This highlights a very appealing aspect of 
the single-site Metropolis scheme: even fairly thoughtless one-dimentional proposals have 
an appreciable chance of being accepted while adequately exploring the posterior.

There are clustering MCMC algorithms from statistical physics that allow for many pixels 
in x to be updated at once {Edwards and Sokal, 1988). Such methods can be adapted to this 
particular problem as in Higdon (1998); however, such methods typically show decreased 
effidency relative to single-site updating when the likelihood is strong relative to the prior. 
This is certainly the case with our attempts on this application whose results are not worth 
discussing here, Instead, we look to multivariate random-walk Metropolis updating and 
the D E-MCMC scheme of ter Braak (2006) as competitors to the costly single-site Metropolis 
updating for our EIT application.

16.3.1 Random-Walk Metropolis

The multivariate random-walk Metropolis scheme (RWM) has been Hie focus of a number 
of theoretical investigations (Gelman et al., 1996; Tierney, 1994). But to date this scheme 
has not been widely used in applications, and has proven advantageous only in simple, 
unimodal settings. The preference for single-site, or limited multivariate updates in practice 
maybe attributed to how the full conditionals often simplify computation, or maybe due to 
the difficulty in tuning highly multivariate proposals. In our EIT application, tlie univariate 
full conditionals do not lead to any computational advantages. If there is ever an application 
for which RWM may be preferable, this is it. Single-site updating is very costly, and may 
be ineffident relative to multivariate updating schemes for this multimodal posterior.

A multivariate Gaussian RMW scheme for the ///-vedor x is summarized in Algorithm 2 
using pseudocode.

ALGORITHM 2 RANDOM WALK METROPOLIS

i :  initialize x
2 : for k = 1 : n i t e r  do
3: x1 = x +  z , w here  z ~  ATm(0 , E z)
4: if u < ' where li ~  17(0,1) th.sn
5 : set X = x1
6: end i f
7: end. for

We consider three different proposals for this scheme:

E z oc E l  = lm,

E z oc S 2 = d iag (sf,..

Ez oc E 3 = S2,
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FIGURE 16.6
MCMC traces of three pixels circled in Figure 16.4 under three multivariate random-walk Metropolis schemes, 
and single-site Metropolis. For each run, 4Q,QDD x m  forward simulator evaluations are carried out. While the 
RWM scheme with Y.z oc S2 results in good movement for the central pixel, the movement of the top and bottom 
pixels is dearly inferior to that of single-site Metropolis.

where s f  is the posterior marginal sample variance for the conductivity xu and S2 is the 
in x in sample covariance matrix—both estimated from the previously obtained single-site 
MCMC run. hi each case we set Ez =  a, E,-, where the scalar a, is chosen so that the candidate 
.if' is accepted 30% of tlie time, which is dose to optimal in a Gaussian setting.

MCMC traces for these three implementations of RWM are shown in Figure 16.6. The 
traces from the single-site Metropolis scheme are also given for comparison Interestingly, 
the behavior of the traces varies with the choice of Ez. The scheme with Ez cx S2 shows 
the most movement for the central pixel, which moves between high and low conductivity 
over tlie run. However, its performance for Hie top, low-condiictivity pixel is noticeably 
worse. None of the RWM schemes do as well as single-site Metropolis when looking at 
tlie bottom, high conductivity pixel These results suggest that a scheme that 11tili7.es both 
single-site and RWM updates with E z cx S2 might give slightly better posterior exploration 
than single-site Metropolis alone.

16.3.2 Differential Evolution and Variants

hi ter Braak's DE-MCMC algorithm, a collection of independent chains {x1, . .rF} are con
structed, each sampling from the posterior. Chain x? is updated according to a multivariate 
Metropolis step where the candidate is a perturbation of X? based on Hie difference between 
two randomly chosen chains in the collection. This DE-MCMC scheme is described in Algo
rithm 3. hi Hie original implementation, a2 is chosen to be quite small so that a proposal 
of the form x1 = x +  e would nearly always be accepted; y is chosen so that the proposal is 
accepted about 30% of the time, Hence, it is the y (x? -  xr) part of the proposal that accounts 
for nearly all of tlie movement from the current location x.
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ALGORITHM 3 DIFFERENTIAL EVOLUTION
i: initialize P copies { X 1 , ... , xp}
2: for k  = 1 : niter do 
3: for p  =  1 : P do
4: chose indices q  and r without replacement from {1,

p-l,p+l,...,P}
5: x p ' =  x p +  y ( x q — x r ) +  e ,  where e ~ N ( 0 , a 2 I n)

6: if u < ” , where u ~  [7(0,1) then
7 : X P =  Xp/
8: end if
9: end for

1 0: end for

One interpretation of the DE-MCMC algorithm is as an empirical version of the RWM 
algorithm. The proposal distribution is a scaled difference between random draws from 
nU|)/); the dependence between tlie parallel chains means that these draws are not inde
pendent. Theoretical considerations make 2.38fy/JTi a useful starting choice for y (Gelman 
et al., 1996). However, some tuning of y is usually appropriate. An obvious appeal of this 
DE scheme is that it avoids the difficult task of determining the appropriate T.z used in 
the Gaussian RWM implementation from earlier in this section. By carrying P copies of 
the chain, fruitful multivariate candidates canbe generated on the fly Such schemes have 
proven useful in difficult, low-dimensional posterior distributions, but the utility of such 
an approach has yet to be demonstrated on highly multivariate posteriors resulting from 
applications such as this.

As a first step in illustrating DE-MCMC on the EIT application, we initialized the P =  400 
chains by taking equally spaced realizations from the first 6000 x in iterations from Hie 
single-site Metropolis scheme described earlier. Then each of the 400 chains were updated 
in turn according to the DE-MCMC algorithm. The sampler continued until 40,000 xm  
simulator evaluations were carried out. Thus each chain was updated 100 x in times. Tlie 
resulting MCMC traces for the three representative pixels are shown in Figure 16.7 for 
three of the 400 chains used in our implementation For comparison, tlie trace from 100 x in 
single-site Metropolis is also given on the bottom right of the figure. Also, the mean and 
(nwgiiial) standard deviation for the central pixel (marked by the blue circle in Figure 16.4) 
are shown in Figure 16.8 for each of the 400 chains. Within a given chain, the pixels show 
very little movement; the final value of the 400 chains is not far from the starting point, as 
is dear from Figure 16.8.

We also consider an alteration to the basic formulation of ter Braak in which Hie scalar 
y is drawn from a Il(—a,a) distribution, We set a=  0.02 so that the proposal is accepted 
about 30% of the time, For this alteration, we set e =  0 since these small steps had very little 
impad on the sampler. While this alteration leads to noticeably better movement than our 
standard DE-MCMC implementation, the movement of this chain is still dearly inferior 
to single-site Metropolis. Given the less than stellar performance of the multivariate RWM 
scheme, the lack of success here is not a big surprise since both schemes make use of highly 
multivariate updates based on jt ix\y). The laiger surprise is that the general failure of these 
multivariate updating schemes to provide any improvement over single-site Metropolis 
updating, even when there are no computational savings to be had by considering uni
variate full conditionals. We note that the poor performance of these multivariate updating 
schemes does not predude the existence of some modification that will eventually prove 
benefidal for this application; we simply did not find one.
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FIGURE 16.7
MCMC traces of the same three pixels shown in Figure 16.4 for three of the 4DD chains used in the DE-MCMC 
scheme. The algorithm ran until 40,000 xm  forward simulator evaluations so that the computational effort matches 
the other MCMC schemes. For each of the 400 chains, 1DD x m  updates are carried out. The bottom right plot shows 
movement from 100 x m single-site Metropolis iterations for comparison. The resulting movement is clearly 
inferior to that of the standard single-site scheme when normalised by computational effort.

16.4 A u g m en tin g  w ith  F ast, A p p ro xim ate  S im u lators

In many applications, a faster, approximate simulator is available for improving the MCMC 
sampling. There are a limited number of rigorous approaches for utilizing fast, approximate 
simulators: delayed acceptance schemes that limit the number of calls to the expensive,

0 100 200 300 400
Chain

FIGURE 16.8
The marginal posterior mean and lines extending ±1 standard deviation for the central pixel circled in Figure 
16.4. The mean and standard deviation is estimated separately from each of the 4DD copies in the DE-MCMC 
scheme. The chains were initialised from evenly spaced realizations taken from the single-site Metropolis scheme. 
The spread of the means relative to the estimated standard deviation indicates a very poor mixing, or posterior 
movement for the DE-MCMC scheme. For comparison, the marginal mean ± 1  standard deviation of single-site 
Metropolis is shown at the rightmost edge of the plot.
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exact simulator (Christen and Fox, 2005; Efendiev et al., 2006; Fox and Nicholls, 1997); and 
augmented or tempering schemes (Higdon et al., 2002, 2003), For this chapter, we consider 
simple implementations of both of these approaches and discuss their implementation in 
context of the EIT application.

For tlie multigrid EIT simulator t] (x), an approximate simulator canbe created by altering 
how the multigrid steps are carried out during the solve. Specifically; multigrid algorithms 
achieve their efficiency through the recursive use of a local smoothing iteration and suc
cessively coarser discrete problems; see (Briggs et a l, 2000) for an overview of multigrid 
principles. The most common multigrid cycle, the V-cycle, is shown in Figure 16.9. Here 
a local smoothing iteration, such as a Gauss-Seidel relaxation, smooths the error of Hie 
current iterate. In turn, the smoothed error is represented on a coarser grid through Hie 
restriction (weighting) of the current residual. Hie coarser grid provides a means to find an 
inexpensive correction to Hie current iterate; however, this grid may still be too large for a 
direct solve, hi this case the process is repeated until the coarsest grid is reached and a direct 
solve maybe performed. Hie correction is theninterpolated and smoothed, repeatedly, until 
the finest grid is reached. If a single smoothing iteration is applied at each grid level of Hie 
coarsening and refining phases, then the multigiid cyde is denoted as V(l, 1).

The complementarity of the smoothing and coarse-grid correction processes leads to 
multigrid's optimal algorithmic scaling (i.e. solution cost grows only linearly with number 
of unknowns), and to a uniform reduction in the error with each cyde. It is this latter prop
erty that creates the opportunity to develop effident approximate solvers using elements 
of robust variational multigrid algorithms, For example, MacLachlan and Moulton (2006) 
developed the Multilevel Upscaling (MLUPS) algorithm to efftdently model flow through 
highly heterogeneous porous media. MLUPS leveraged the hierarchy of discrete opera
tors provided by tlie operator-induced variational coarsening of the Black Box Multigrid 
(BoxMG) algorithm (see Dendy, 1982), and eliminated the smoothing iterations from Hie 
finest few levels.

hi this work, we produce approximate solvers by limiting the number of V7(l, 1) cycles 
carried out. Starting with a fixed initial solution, the approximate solvers will produce

Grid spacing

Interpolate

Interpolate

Interpolate

Interpolate

Solve

FIGURE 16-9
Schematic of the V-cycle multigrid iterative algorithm.
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ALGORITHM 4 DIFFERENTIAL ACCEPTANCE METROPOLOIS

1
2

3
4

5

6

7
8 

9
1 0

11

i n i t i a l i z e  x  
for k  =  1 : n i t e r  do 

for i = l : m do
x !± =  Xj 4- z ,  where z ^ N ( 0 , o2) )

if Ul < • wtlere ui~a(o,l) then
i c  «  « ■ »

s e t  Xi =  x ' 
end i f  

end. if 
end for 

end for

solutions of fitted voltages which depend on the conductivity field x. These approximate 
solutions are obtained more quickly, but donotmatch the voltages obtained from the "exact" 
solve. Here we consider two approximate solvers: one that stops after two V(l, 1) cycles; 
and another that stops after a single V(l, 1) eyde. Hie resulting approximate simulators 
rn(.r) (two V cydes) and r|2(X) (a single V cycle) are less accurate overall, but faster, hi this 
case, rii(Jt) typically takes a third of the computing time to evaluate relative to the exact 
solver TioC*), while ii2(.r) typically takes a quarter of the time.

16.4.1 Delayed Acceptance Metropolis

The delayed acceptance approach of Fox and Nicholls (1997) and Christen and Fox (2005) 
uses a fast, approximate simulator to "pretest" a proposal. This approach adapts ideas from 
the surrogate transition method of Liu (2001) for dealing with complex forward models. For 
now, we define different posterior formulations, depending on which simulator is used:

nv(x\y) oc Lt,(j/|jr) x ot(jc)

oc exp - ^ ( y -%(■*>) ( j/ - M * ) )  xexp X  J[.t e  [2.5, 4.5]'"].

We note that one cotdd alter the sampling model for the approximate formulations, though 
it is not done here.

A simple Metropolis-based formulation of this scheme is given in Algorithm 4, where 
TTo(̂ ly) and tti(■*!,!/) denote the posteriors using the exact and approximate simulators, 
respectively. Notice that Hie exact simulator need only be run if Hie pretest condition (//1 <
^ ^ j^ )  involving the faster, approximate simulator is satisfied. Hence, if the proposal width 
is chosen so tliat the pretest condition is satisfied only a third of the time, tlie exact simulator 
is only run for a third of the MCMC iterations. If we use the first approximate simulator 
r| 1(3:), then the 40,000 x in iterations required for our original single-site Metropolis scheme 
take about 66% of the computational effort using this delayed acceptance approach.

If iii(.r) is a very good approximation to Hie exact simulator r|o(jt), then this delayed 
acceptance sampler is equally effident if one normalizes by iteration. This is the case for the 
first approximate simulator in this example-the difference in log likelihood is typically no 
more than ±0.2 over the range of posterior samples. However, if the approximate simulator
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poorly matches the exact one, any savings obtained by reducing the numiber of exact sim
ulator evaluations will be more than offset by reduced efficiency in the delayed acceptance 
sampler. In our application here, tizIX) — rio(.x) canbe as large as 2 for some realizations 
jc from the posterior, hi using T12C*) in the delayed acceptance scheme, we detect a slight 
increase in autocorrelation which is more than offset by gains in computational efficiency 
from evaluating tizlX) in place of i|o(X>-

Apparently, this potential loss of efficiency is not present in this application since T]2fX> is 
still an adequate approximation to the exact simulator t]o(.r) This loss of efficiency due to 
poor approximationis readily apparentif one takes a univariate example in which n n (x \y) is 
the standard normal density, and 711 (Jt \y) is the normal density with mean one and standard 
deviation 0.5. hi this case, tlie delayed acceptance sampler must take occasional, slow- 
moving excursions in tlie negative numbers to offset the lack of support in Ti\(x\y) in that 
region, reducing the efficiency of the sampler.

Finally, we note that Christen and Fox (2005) give a more general formulation for Hie 
delayed acceptance sampler for which Hie approximate simulator can depend on Hie 
current state x of the chain. While a bit more demanding computationally, the more 
general algorithm can make use of local approximations which are available in some 
applications.

16.4.2 A11 Augmented Sampler

By augmenting the posterior of interest with auxiliary distributions one can use Metropolis 
coupling (Geyer, 1991), simulated tempering (Marinari and Parisi, 1992), orrelated schemes 
(Liu and Sabatti, 1999). Here we augment our posterior with additional posteriors based 
on the two approximate simulators. We introduce the auxiliary variable v e {0,1, 2J to our 
formulation, which indexes the simulator to be used, and treat v as an additional param
eter in a larger formulation. We specify a uniform prior for v over [0,1,2} resulting in Hie 
augmented formulation

iz{x,v\y) a  L(y\x,v) x tt{X) x  t t  ( v )

cx exp % (*)) xexp

x I[x £ [2.5,4.5]"'] x  I[v e  {0,1,2}].

This augmented formulation canbe sampled as before, except that after scanning through 
the elements of x to carry out single-site Metropolis updates, a simple Metropolis update 
is then carried out for v by making a uniform proposal over {0,1,2} \ v. Ideally, this chain 
should move somewhat often between the states of v.

A small subsequence from this chain is shown in Figure 16.10. As this sampler runs, Hie 
draws for which v =  0 are from the posterior of interest. While v =  1 or 2, Hie chain is 
using one of the faster, approximate simulators. Hence, it can more quickly carry out the 
single-site Metropolis updates, so that the chain moves more rapidly through this auxiliary 
posterior. By the time the chain returns to v = 0, tlie realizations of x will generally show 
more movement than a sampler based solely on the exact simulator r]o(X).

Marginally, tlie augmented sampler spends about 20% of its iterations at v = 2, 42% at 
v =  1, and 38% at v =  0. This augmented formulation allows about twice the number of 
single-site Metropolis updates as compared to the the standard single-site Metropolis chain
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FIGURE 16.10
A sequence from the augmented sampler chain. A scan of m  of single-site Metropolis updates is followed by a 
Metropolis update of the formulation index variable v. Here the sequence of images j: starts with v =  Q, then 
moves up to v =  2, and then back down to v =  D. While the chain is not using the exact simulator (u > 0), the 
computational cost of carrying out the vi single-site Metropolis updates for each *,■ is substantially reduced.

on the exact formulation alone. In all this nearly doubles the efficiency when normalized 
by computing effort. Hie efficiency of the sampler could be improved slightly by altering 
the prior for v so that the chain spends more time at v =  2 and less at v =  0.

A feature of both the delayed acceptance algorithm and the augmented formulation is 
thatthey utilize the most effident MCMC scheme available. Both of these methods couldbe 
used with an alternative to single-site Metropolis if it is found to be more efficient. For the 
augmented example above, we could improve the computational efficiency by employing 
delayed acceptance, using rii(X) when carrying out the in single-site Metropolis updates for 
Xi when v = 0. There is no practical benefit in using delayed acceptance using 112(Jt) when 
v =  1 since the relative speed of the two simulators is not that different.

16.5 D iscu ssio n

For the EIT example, single-site Metropolis requires about 2 million simulator evaluations 
to effectively sample this posterior distribution. Multivariate updating schemes such as 
random-walk Metropolis or I) E-MCMC—as we implemented them here—do not offer any 
real relief. Utilizing fast approximations through delayed acceptance and/or tempering 
schemes may reduce tlie computationalburdenby a factor of 4 or so, more if a very fast and 
accurate approximation is available. This means tliat sampling this /// =  576-dimensional 
posterior is going to require at least a half a million simulator evaluations. This number will 
most certainly increase as the dimensionality 111 increases. Hence, a very fast simulator is 
required if one hopes to use such an image-based MCMC approach for a three-dimensional 
inverse problem.

One challenging feature of this application is the multimodal nature of tlie posterior 
which is largely induced by our choice of prior. By specifying a more regularizing prior, 
such as the GMRF (Equation 16.4) or the process convolution (Equation A. 1), the resulting 
posterior will more likely be unimodal, so that standard MCMC schemes will be more 
efficient. Of course, the sacrifice is that one is now less able to recover small-scale structure 
tliat may be present in tlie inverse problem.

hi some applications tlie simulator is sufficiently complicated that one can only hope to 
run it a few hundred tunes, hi such cases, there is no possibility of reconstructing an entire
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itnage of unknown pixel intensities. However, one can construct a very fast surrogate by 
replacing the simulator by a response surface model built from the limited number of 
simulations that have been carried out, Craig et a l (2001) and Kennedy and O'Hagan 
(2001) are two examples of applications which utilize a response surface to aid tlie resulting 
simulation-based inference. Of course, this requires a low-dimensional representation of 
the unknown parameters to be input to the simulator. It also requires that the simulation 
outputbe amenable to a response surface model 

Finally, we note that the traditional way to speedup the computation required to solve an 
inverse problem is to speed up Hie simulator A substantial amount of progress has been
made in creating simulators that run on highly distributed computing machines. Compar
atively little progress has been made in utilizing modem computing architectures to speed 
up MCMC-based posterior exploration in difficult inverse problems. Clearly schemes such 
as Metropolis coupling chains and DE-MCMC are quite amenable to distributed imple
mentations. The integration of modem computing architecture with MCMC methods will 
certainly extend the reach of MCMC based solutions to inverse problems.

A p p en d ix : F o rm u latio n  B ased  on  a P ro cess C o n v o lu tio n  P rio r

An alternative to treating each pixel in Hie image as a parameter to be estimated is to use 
a lower-dimensional representation for the prior. Here we describe a process convolution 
(Higdon, 2002) prior for the underlying image x .

We define .*(s), s  g  Q, to be a mean-zero Gaussian process. But rather than specify x ( s  ) 

through its covariance function, it is determined by a latent process a and a smoothing 
kernel k(s). The latent process n =  {tt\,. . . ,  tip)T is located at tlie spatial sites toi,. . .  also 
in £2 (shown in Figure 16.11). The iij are then modeled as independent draws from a N(0, cr2) 
distribution. The resulting continuous Gaussian process model for Jt(s) is then

v
x ( s )  =  ^ 2  «/*(s -  toy), (A. 1)

;=i

FIGURE 16.11
(Left) A 10 x 10 lattice of locations u>i,___top, for the rtj of the process convolution prior; the 24 x 24 image pixels
are shown for reference. (Middle) A realization from the process convolution prior for (Eight) Posterior mean 
from the single-site Metropolis scheme run on the u vector that controls the image*.
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where Jr(- — to,) is a kernel centered at toy. For the EFT application, we define the smoothing 
kernel A( ) to be a radially symmetric bivariate Gaussian density with standard deviation 
o„ = 0.11. Figure 16.11 shows a prior draw from this model over the 24 x 24 pixel sites in 
Q. Under this formulation, the image is controlled by p =  100 parameters in u. Thus a 
single-site Metropolis scan of a takes less than 20% of the computational effort required 
to update each pixel in x  In addition, this prior enforces very smooth realizations for x. 
This makes the posterior distribution better behaved, but may make posterior realizations 
of x unreasonably smooth. The resulting posterior mean for x is shown in Figure 16.11. 
For a more detailed look at process convolution models, see Higdon (2002); Padorek and 
Schervish (2004) give non-statiomry extensions of these spatial models.
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17
Statistical Ecology

Ruth King

17.1 In tro d u ctio n

III recent years there has been an explosion in the application of Bayesian methods within 
the field of statistical ecology. This is evidenced by the huge increase in the number of 
publications thatuse (and develop) Bayesian methods for analyzing ecological data in both 
statistical and ecological journals. In addition, in recent years there have been a number of 
books published that focus solely on the use of Bayesian methods within statistical ecology 
(King et al., 2009; Link and Barker, 2009; McCarthy, 2007, Royle and Dorazio, 2008). One 
reason why the Bayesian approach has enjoyed a significant increase in its application to 
ecology is the particularly complex data that are collected on a typical population under 
study This can make standard frequentist analyses difficult to implement, often resulting 
in simplifying assumptions being made. For example, typical issues that can arise relate to 
complex distributional assumptions for Hie observed data; intractable likelihood expres
sions; and large numbers of biologically plausible models. Within a Bayesian framework it 
is possible to make use of standard Markov chain Monte Carlo (MCMC) tools, such as data 
augmentation techniques, so that these simplifications do not need to be made.

The analysis of ecological data is often motivated by Hie aim of understanding the 
given system and/ or of conservation management. This is of particular interest in recent 
years with tlie potential impact of climate change. Identifying relationships between 
demographic parameters (such as survival probabilities, productivity rates, and migra- 
tional behavior) and environmental conditions may provide significant insight into the 
potential impact of changing climate on a given system, In particular, the different biological 
processes are often separated into individual components (Buckland et al., 2004), allowing 
a direct interpretation of the processes and explicit relationships with different factors to 
be expressed. An area of particular recent interest in statistical ecology relates to the use 
of hidden Markov models (or state-space models) to separate the different underlying 
processes. For example, Newman et al. (2006) describe how these models can be applied 
to data relating to animal populations within a Bayesian framework. Royle (2008) uses a 
state-space formulation to separate the life history of the individuals (i.e. survival process) 
with the observation of Hie individuals (recapture process) in the presence of individual 
heterogeneity. The appeal of this type of approach is its conceptual simplicity, along with 
the readily available computational tools for fitting these models. The typical linear and 
normal assumptions can also be relaxed within this framework, permitting more realistic 
population models to be fitted. These methods have been applied to a number of areas, 
including fisheries models (Millar and Meyer, 2000), spedes richness (Dorazio et al., 2006),

419



420 Handbook o f  Markov Chain Monte Carlo

abundance data (Reynolds et a l, 2009), animal telemetry data (Jonsen et al., 2005), and 
occupancy models {Royle and Kery, 2007). It is anticipated that the use of these methods 
will continue to increase within these, and additional, areas as a result of tlie more com
plex statistical analyses that canbe performed and an increase in the number of relatively 
easy-to-use programs particularly using WinBUGS {or OpenBUGS). For example, Brooks 
et al. (2000, 2002,2004), Gimenez et al. (2009), King et al. (2009), O'Hara et al. (2009), Royle
(200S), and Royle et al. (2007) all provide WinBUGS code for different ecological examples. 
Within this chapter we focus on two forms of common ecological data: ring-recoveiy data 
and count data. We consider a numb er of issues related that typically arise when analysing 
such data, including mixed effects models, model selection, efficient MCMC algorithms, 
and integrated data analyses, extending the models previously fitted to the data considered 
by Besbeas et a l (2002), Brooks et al. (2004), and King et al. (2008b). Hie individual models 
described canbe fitted in WinBUGS; however, tlie length of the computer simulations makes 
the analysis for the count data prohibitive hi this case.

17.2 A n aly sis  of R in g -R e co v e ry  D ata

We consider hi detail an application of Bayesian inference, using MCMC, to a common form 
of ecological data (particularly for avian populations), namely ring-recovery data. These 
data are collectedby biologists orvolunteers over a number of tune periods (typically years). 
At the beginning of each time period, i =  1 , . . . ,  I, individuals are marked (e.g. a ring or tag 
applied) and released. The number of individuals recovered dead in each subsequent time 
period is then recorded. For simplicity we assume tliat individuals are ringed and recovered 
on an annualbasis. Furthermore, we assume that for an individual tliat dies, any subsequent 
recovery is immediate.

The data are typically presented in Hie form of an array. The first column details the 
number of ringed individuals in each year of release (denotedby R„ i =  1 , . . . ,1 ) ;  and each 
following column provides the number of individuals recovered dead within each subse
quent year (denoted by ///,,, for ; =  1 , . . . ,  I and j  = \ , w h e r e  / > I). Clearly =  0 
for j  < i, since an individual caimot be recovered dead before it is marked and released! 
Table 17.1 provides sample ring-recovery data on lapwings ringed from 1963 to 1973; all 
lapwings are ringed as chicks at Hie beginning of each year, and the year corresponds to a 
"bird year" lasting from April to March Note that we will consider the UK ring-recovery 
data for lapwings released from 1963 to 1997 and recovered up to 1998 (so that I  = J  =  35). 
Finally, we let ttt{ j+1 denote tlie number of individuals released in year i that are not seen 
agahi (either because they survive to the end of the study, or die and are not recovered), hi 
other words,

/

= Ri ~ J l  ,uU-
i =i

The array m =  [uijj : / =  1 , . . . ,  I , j  =  1 ,.. .,/  1] is typically referred to as an ///-array, and
is a sufficient statistic for ring-recovery data.

The corresponding likelihood of the data is straightforward to calculate, and for this data 
set is a function of three parameters:
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TABLE 17.1

Ring-Recovery Data for UK Lapwings for the Years 1963-1973

Year of Recovery
Year of Number _____________________________________________
Riiiging Ringed 1964 1%5 1966 1967 1968 1969 1970 1971 1972 1973 1974

1963 1147 14 i 1 2 1 0 1 1 0 0 0

1964 12S5 20 3 4 D 1 1 D 0 0 0

1965 1106 ID 1 2 2 0 2 2 1 1

1966 1615 9 7 4 2 1 1 0 0

1967 1618 12 1 6 2 0 0 1

1968 2120 9 6 4 0 2 2

1969 2003 10 S 5 3 1

1970 1963 S 3 2 0

1971 2463 4 1 1

1972 3092 7 2

1973 3442 15

* 4)ij =  P (an individual in their first year survives until year j  +  1 1 alive in year j),
.  4 =  P (an individual adult (i.e. age >  1 year) survives until year j  +  1 | alive in 

year j),
,  x;- =  P (an mdividual is recovered dead in the interval [j,j +  1) | dies in tlie interval

[bj + D).

We use standard vector notation, 4>i = {<(>1,/ ,]), and similarly for <J>a and X.
For each row of tlie ///-array, the data have a multinomial distribution,

m, ~  MultuioiiuallR,, q, ),

where m, = { m , rj : j  =  1 , 1 )  denotes the ith row of tlie ///-array, and q, tlie corre
sponding multinomial cell probabilities, hi particular, we have for i =  1, . . . , 1  and j  =

0, i > j,
/J;r; =  (1 — 1,: -1 f'-: ’ i = jt

_ V(1 — R U I+1 * < h

where we use the standard notation that if j  — 1 <  i +  1, the product is the null product 
and simply equal to one. Finally, to complete the specification, we need to calculate the 
probability, j +i, that an individual is not seen again. We do this by simply noting that the 
multinomial cell probabilities must sum to unity, so that for i =  1, . . .  , I,

/
'jij+ i = 1 -  X !

i=i

The likelihood is the product over each row of tlie corresponding multinomial probabilities,

i J+ i

/(m i <i»i, §a! \) a  n n c -
i=l/=! '
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The likelihood given above is a function of three demographic parameters: first-year sur
vival probabilities, adult survival probabilities, and recovery probabilities, Hie number 
of parameters is typically fairly large, when considering fully time-dependent models, hi 
addition, arbitrary tune-dependent parameters do not provide any understanding as to 
the potential factors of temporal variability. One approach that can reduce the number of 
parameters to be estimated (typically providing a greater precision of the estimated param
eters) and potentially provide a greater understanding of the factors driving the temporal 
variability is the use of covariates. hi particular, we begin by considering the model pro
posed by Besbeas et al. (2002). This model specifies a relationship between the survival 
probabilities and whiter severity. To represent this environmental covariate wTe use Hie 
number of days that the minimum temperature falls below freezing in Central England 
over the winter months, which we denote by fctnys, and regard as a surrogate for the harsh
ness of the winter. We use a logit link function between Hie survival probabilities and Hie 
environmental covariate, to ensure that the survival probabilities are constrained to Hie 
interval [0,1], so that

1 7.2.1 Covariate Analysis

where/ denotes the normalized value o i flays  in year j  (so that/v has mean 0 and variance 
1 over values j  — 1 ,...,/ ). Normalized covariate values are used in order to improve Hie 
mixing of the Markov chain and for interpretability of the corresponding intercept and 
slope parameters of the logistic regression. Alternatively, for recovery probabilities, there 
is some evidence from other studies that recovery probabilities have been decreasing with 
time (Baillie and Green, 1987). Thus, we specify a linear temporal dependence oil Hie logit 
scale (once more ensuring X, e [0,1]),

where f  denotes the normalized value for year j  =  I , . . . , } .  We note that Brooks et a l (2004) 
fail to normalize the years in their logistic regression for the recovery probabilities.

The parameters in the model are ai, Pi, a(I, £Sa, a-A, and y-,_ {i.e. a total of six), sig
nificantly reducing the number of parameters in the model compared to the arbitrary 
thne-dependence model (where there are a total of I ■ 2] parameters, although for Hie 
lapwing data since only chicks are ringed we cannot estimate i.e. adult survival prob
abihty in year 1, resulting in I x 2/ — 1 parameters), hi addition, wlien using covariates to 
explain temporal heterogeneity, we note that increasing the length of the study (i.e. increas
ing/) does not result in an increase in the number of parameters to be estimated (simply Hie 
number of covariate values of which the demographic parameters are a function). We need 
to specify priors on each of the parameters, hi particular, without any prior information, 
we specify an independent normal prior on each parameter with mean zero and variance 
10, which can considered to be vague in this context. Note that this does not induce a flat 
prior on tlie corresponding demographic parameter. See, for example, Newman (2003) and 
King et al. (2009) for further discussion.
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Using Bayes' theorem, we combine the likelihood of the data with tlie priors specified on 
each of the parameters, To explore and summarize tlie posterior distribution we use MCMC. 
We begin by calculating tlie posterior conditional distribution for each of the parameters 
in the model. Fornotational convenience, we let a  = {ai, a>.) and (S = {fh,pn}. We let « (i) 
(Pq ) denote the set of parameters, excluding c*i (Pi). The posterior conditional distribution 
for a i is given by

17.2.1.1 Posterior Conditional Distributions

where A, =  qtj+i corresponds to the probability of not being observed agahi within the 
study, given by

This posterior conditional distribution is clearly a nonstandard distribution, Similar poste
rior conditional distributions exist for all the other regression coefficient parameters—for 
example,

Thus we use a Metropolis-Hastings random-walk single-update algorithm for updating 
each of the parameters « i, Pi, a„, ( 3 , „ a n d  y>,_ within the Markov chain. For example, 
suppose that we propose to update parameter a i We propose the new candidate value,

I I+i
71(01! | m , a a ) , p , Y x )  oc p (ct : ) l i n e

;=i/=i

/ I" j - 1
Ai = 1 — (1 — <|>l,i)V ~ ^ ' 4̂ 1,i''V(1 — ĥ,/) | j  §a,k

y=i'+l |_ k=i+ lj=i+1

1 + exp(ai + Pi/')
expfai +  Pifi) ;'-2

f y  ( 1  —

tt( P i | m , « , p (1), Y > J  oc exp

-  U [cti  - S , a i  +  S],
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where 8 is chosen arbitrarily. We accept this proposed parameter value with probabihty

lnnl ----- -̂------------ r;------ y\Tr(ai | %yk) J

since the proposal distribution is symmetric.
Note that S is chosen via pilot tuning. For example, we calculate Hie mean acceptance rate 

over 1000 iterations of Hie Markov chain, and increase or decrease the proposal variance 
if this is deemed to be too high or too low, respectively. Gelman et al. (1996) and Roberts 
and Rosenthal (2001) suggest an optimal mean acceptance rate of (approximately) 0.234, 
but more generally a mean acceptance rate of 20-40% for weU-perfonning chains. For Hie 
above example, Table 17.2 provides Hie value of S used for each regression parameter for 
the pilot tuning steps performed and the corresponding mean acceptance rate, all lying 
in the interval 20-40% for the filial proposal values, Note that there is dearly a tradeoff 
between the length of time used for pilot tuning and the computation time in performing 
the MCMC iterations. For this example, simulations are very quick to perform, so that 
relatively minimal pilot tuning is required.

17.2.1.2 Results

Implementing the above MCMC algorithm, the convergence to the stationary distribu
tion appears to be very fast (i.e. within 1000 iterations from reasonable starting points). 
We run multiple chains starting from over-dispersed starting points for 100,000 iterations, 
using a conservative burn-in of 10,000 iterations. Independent replications provided essen
tially identical posterior results (to 3 decimal places for tlie summary statistics for each 
parameter) so that we assume that convergence has been achieved. More formally, tlie 
Brooks^ Gelman-Rub in (BGR) statistic (Brooks and Gelman, 1998) also didnotindicate any 
lack of convergence. The corresponding posterior means and standard deviations for each 
of the regression parameters are presented in column (a) of Table 17.3.

Clearly there is a negative relationship between both first-year and adult survival prob
abilities with tlie covariate fdays. Note that within tlie Markov chain, oidy negative values 
for the survival slope parameters (i.e, pi and (3,3) are visited within the Markov chain fol
lowing the bum-in period (even with initial positive starting values), demonstrating tlie

TABLE 17.2

The Values of the Proposal Parameter 5 Used in the Iterative Pilot Tuning Procedure for Each 
Regression Coefficient for the Random-Walk Single-Update Metropolis-Hastings Algorithm with 
Uniform Proposal Distribution Within ±8 of the Current Value and Corresponding Mean 
Acceptance Rate for 1000 Iterations (Ignoring the First 100 Iterations)

Parameter

Initial Value Attem pt 2 Attem pt 3

s

M ean Acceptance 

Probability <%) 8

M e an Acce ptance 

Probability (%) A
M ean Acceptance 

Probability (%)

“ 1 0.1 73.4 0.6 16.4 0.4 25.4

Pi 0.1 67.4 0.5 19.3 0.3 33.0

“ a 0.1 70.6 0.6 17.5 0.4 24.6

Prt 0.1 60.9 0.5 13.4 0.3 24.5

a>. 0.1 48.0 0.2 2 6 .9 0.2 25.5

& 0.1 54.2 0.2 2 7 .6 0.2 30.5
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TABLE 17.3

The Posterior Mean and Standard Deviation (SD) of each Regression Parameter for the Lapwing 
Data Set Using Different Independent Normal Priors Specified on the Regression Coefficients

Parameter

(a) (b) (c)

Posterior M ean (SD) Posterior M ean (SD) Posterior M ean (SD)

“ 1 0,536 (0,069} 0.533 (0.069) 0.536 (0.069}

Pi -0 .2 0 8  (0,062) -0 .2 0 7  (0.062) -0 .2 0 8  (0.062)

an 1.531 (0.0700 1.526 (0.069) 1.532 (0.070(

Pra -0 .3 1 0  (0.044) -0 .310 (0 .044) -0 .3 1 1  (0.044)

-4 .5 6 7  (0.065) -4 .5 6 3  (0.035) -4 .5 6 7  (0.065)

Y>. -0 .3 4 6  (0.035) -0 .3 4 5  (0.039) -0 .3 4 6  (0.039)

The priors used are: (a) N(D, 10); (b) N(D, 1); and (c) W [0,100).

strength of Hie negative association. This result is unsurprising since ftinys is a surrogate 
for the harshness of the winter, when the majority of mortalities occur, hi addition, there 
appears to be a decrease in the recovejy probabilities with time (this is not unusual for 
ring-recovery studies).

Finally, we consider a prior sensitivity analysis. Columns (b) and (c) of Table 17.3 
provide the corresponding posterior mean and standard deviations for the regression 
parameters assuming independent N (0,1) and N (0,100) priors on the regression parame
ters (i.e. changing tlie prior variances by a factor of 10}. Clearly the posterior is data-driven 
with very little sensitivity on the posterior distributions of the parameters with the dif
ferent prior specifications The results here differ slightly with respect to those obtained 
by Brooks et a l (2004), (who use a N (0,100) prior specification, independently on each 
regression parameter) due to tlie fact that we normalize the time covariate for the recovery 
probabilities, while they logistically regress the recovery probability on Hie (raw) times,
2 , . . . ,  T. Thus, Hie interpretation of the logistic regression parameters for the recovery 
probabilities differs between analyses (and hence so do Hie posterior estimates for these 
parameters). However, the posterior distributions for the other parameters are essentially 
identical.

17.2.2 Mixed Effects Model

The covariate model above assumes a deterministic relationship between the demographic 
parameters and covariates of interest. However, we now relax this assumption and allow 
additional temporal dependence not explained by Hie covariates considered, extending the 
models previously htted to these data and considered by Besbeas et al. (2002), Brooks et al. 
(2004), and King et al. (2008b). We consider a mixed effects model (Phiheiro and B ates, 2000), 
withboth fixed effects (covariate dependence) and additional random effects (on an annual 
level), hi particular, we specify the mixed model on tlie first-year survival probabilities to 
be of tlie form.

logit <H, = « i + pif j  -Mi,/,

where ey ~  N(0, o\). This essentially changes tlie deterministic relationship between the 
survival probability and the covariate to be a stochastic relationship, An alternative
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specification of this model is

logit <1)1,; -  N (a i +  Pifj , a 2).

We once more use the standard vector notation 11 =  (ti , : I =  1 We consider analo
gous models for <J>3 (regressed on fdm/s) and X (regressed on year), with additional random 
effect terms t a and e, and corresponding random effect variance terms, o2 and a2, respec
tively. For notational convenience, we set € =  [ei, €n, e-̂ } and er2 =  {<jp a2, <r?j. Finally, note 
that we consider the same priors for Hie regression coeffidents as before, and for the ran
dom effect variances specify ~  for h e [l,a , k}. The parameters of interest in
the model are typically the hyperparameters a, (3, y-,„ and a2, as for standard mixed models, 
although we can also estimate the e terms and hence 4>i, <J>r3 and X. Note that, within tlie 
Bayesian framework, we could consider the random effects components of the model as 
simply specifying a hierarchical prior on the e i, and terms.

17.2.2.1 Obtaining Posterior Inference

We wish to calculate tlie posterior distribution it (a, p, er2 | m). In order to do this, we 
need to specify tlie corresponding likelihood for the data, given tlie parameters, For a 
mixed model, the corresponding likelihood is expressed as ail integral over the « values, hi 
particular, we can express the likelihood in the form

/'(m | of, p, a2) = /(m | a, 0, yx, «)/>(« | <j z)

However, this integral is analytically intractable. Thus, we consider a computationally 
intensive method for performing the integration, using MCMC. hi particular, we regard 
the € as parameters (or auxiliary variables) to be estimated. We then form Hie joint posterior 
distribution overboth the auxiliary variables and model parameters,

jt (oe, p , y>_, (J2,  € | m )  oc/ ( m  | a , p , y x , a 2,  e )/»(«, P , y x ,<t2, 0

= /(m | <*,P,yx,€)p(a)p(p)p(Yj..)^(€ | a 2)/j(a2),

taking into account the conditional independence of tlie different parameters, and where 
/(m | ce, p, y>,_, c) can once more be easily calculated using the standard likelihood for riiig- 
recovery data, since the demographic parameters <|>i, and X are a deterministic function 
of the parameters a, (i, y>„ and e. The required posterior distribution is simply the marginal 
distribution,

n («/ P, Yk, ct2 | m) = 7i(a, p, yx, a2, e | m) th.

To obtain a sample from this marginal distribution, we use an MCMC algorithm to obtain a 
sample from the full posterior distribution of all Hie model parameters and auxiliary vari
ables and simply consider the sampled values of Hie parameters of interest (ie. irrespective 
of the values for the auxiliary variable {«) terms}. We note that the posterior distribution 
over both Hie model parameters and auxiliary variables is sampled from within the MCMC 
algorithm, so that we can also obtain posterior summary statistics of tlie auxiliary vari
ables if they are of interest—see Section 17.3.1 for a particular example. In addition, since

2 ,
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we impute the € values, we also impute the demographic parameters 4>i, and V Thus 
we can once more easily obtain posterior estimates of these demographic rates from the 
MCMC algorithm. Finally, we note that mixed models often take significantly longer to run 
than fixed effects models, due to tlie increase in the number of parameters that need to be 
updated at each iteration of tlie Markov chain. For example, for tlie lapwing data set, the 
mixed model takes approximately 15 times longer to run than the fixed effects model (with 
only six parameters), due to the large number of random effects terms (ei, «l7, and e ,) that 
need to be imputed within Hie MCMC algorithm.

17.2.2.2 Posterior Conditional Distributions

We implement a single-update Metropolis-Hastings algorithm. Inparticular, we implement 
the same proposal distributions for the regression coefficients, oc and (J, as for tlie fixed 
effects model above, hi addition, for eachrandom effect term, we again use a random-walk 
Metropolis-Hastings step, using a uniform, proposal distribution, Finally, for the random 
effect variances, we use a Gibbs step, since the posterior conditional distributions are of 
standard form. For example, for o\r we have the posterior conditional distribution,

With similar results for o 2 and a?. Without any prior information we set tit = =  0.001
for k g {1, n, ).}. Note tliat Gehnan (2006) suggests an alternative prior specification for the 
random effect variance terms, when there is no prior mfomiation, where tlie standard 
deviation (rather than variance) is an (improper) uniform distribution on tlie positive real 
line. This induces a prior on the variance of the form, p(o Tlie corresponding
posterior conditional distribution is again of standard form with

We initially retain tlie inverse gamma prior, but do consider a prior sensitivity analysis 
using this alternative prior.

17.2.2.3 Results

The simulations are run for 100,000 iterations, with tlie first 10,000 simulations discarded 
as bum-in. Note that, typically, for random effects models longer simulations are neces
sary (since more parameter space needs to be explored). However, convergence appears to 
be rather swift yet again. Column (a) of Table 17.4 provides the corresponding posterior 
summary statistics for tlie regression coefficients and random effects variance terms. Inde
pendent replications from over-dispersed starting points differed only slightly (typically in 
tlie third decimal place), so that we assume that convergence has been achieved (witliBGR 
statistics approximately equal to one for all parameters). Comparing the posterior estimates 
for the regression coefficients with Table 17.3 for the corresponding fixed effects model (i e. 
no random effects present), it is dear that these parameter estimates are very similar, as we 
would typically expect Tlie effect of Hie additional random effects terms is most easily seen 
by considering the corresponding demographic parameter estimates, since the magnitude 
of the random effect variance needs to be interpreted with resped to regression coeffident
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The Posterior Mean and Standard Deviation (SD) of Each Parameter for the
Lapwing Data Set for the Mixed Effects Model for (a) r _1 (0.001,0,001)

i i _ _1
Prior on the Random Effect Variance Terms; and (b) Gelman's Prior (oc a  )
on the Random Effect Variance Terms

TABLE 17.4

Parameter

(a) (b)

Posterior Mean (SD) Posterior M enu (SD)

<*l 0.555 (0.081) 0.538 (0.086)

Pi -0 .2 1 6  (0.079) -0 .2 1 4  (0.082)

<*a 1.525 (0.073) 1.533 (0.073)

-0 .3 1 5  (0.050) -0 .3 1 7  (0.052)

a*. -4 .5 6 7  (0.039) -4 .5 6 7  (0.040)

Y>. -0 .3 5 0  (0.044) -0 .3 5 0  (0.044)

-5 0.061 (0.059) 0.090 (0.071)

0.009(0.011) 0.012 (0.016)

•2 0.00S (0.009) 0.010 (01012)

parameters and link function. Figure 17.1 provides the posterior mean and 95% highest 
posterior density interval (HPDI) for the survival and recovery probabilities for both Hie 
fixed effects and mixed effects models for comparison Note that producing posterior esti
mates of the demographic parameters are straightforward, as they are calculated within 
the MCMC algorithm at each iteration (since Hie t terms are imputed).

The random effects variance terms appear to be very small for Hie adult survival proba
bilities and recovery probabilities. This is demonstrated in Figure 17,1 with tlie very similar 
posterior estimates for the fixed effects and mixed effects models. This would suggest tliat 
the covariates largely explain the temporal variability within the demographic parame
ters. However, for the first-year survival probabilities, the addition of a random effect in 
the model appears to significantly increase the posterior uncertainty, suggesting that tlie 
covariate fdm/s may not adequately model the temporal variability for the parameter. Thus, 
this result could in itself prompt further investigation for the first-year survival probabili
ties, for example, Hie consideration of further environmental covariates or the addition of 
an individual heterogeneity component to tlie model

We conduct a prior sensitivity analysis, using the prior suggested by Gelman (2006). 
The corresponding posterior summary statistics of Hie regression parameters and random 
effect variance terms are given in column (b) of Table 17.4. There is typically very little 
difference between the posterior results obtained using the different priors. The la te s t  
difference observed is in Hie posterior mean (and standard deviation) for a 2. This results in 
a very slight increase hi Hie posterior variance of the first-year survival probabilities, but 
the difference is minimal.

T 7.2.3 Model Uncertainty

Previously, we have assumed a known covariate structure for each of the demographic 
parameters—a dependence on for the survival probabilities or time for tlie recovery 
probabilities. Typically the models are developed from biological understanding; however, 
there will generally be a level of model uncertainty regarding the presence of absence 
of the covariates within the model, For example, for the lapwing data, we assumed tliat
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FIGURE 17.1
The posterior mean (*) and 95% HFDI for the fixed effects model (in black) and mixed model (in gray) (a) 4=i; 
(b) and (c) X. In (a) and (b) the bottom line denotes the covariate/jiajtf.

the survival probabilities were a function of only and Hie recovery probabilities of 
only time. However, more generally we may wish to consider additional models, allowing 
for different combinations of fdm/s and time dependence on the demographic parameters. 
Discriminating between these different competing models is often of particular biological 
interest, in order to understand the underlying dynamics of tlie biological system.

Within the Bayesian framework model uncertainty is conceptually easy to introduce, by 
simply considering the model itself to be an unknown parameter to be estimated. The joint 
posterior distribution over both parameter and model space is given by

Tr(6,5,j( | m) ot/(m  | I n)p(ii),

where /(m | H,;, u) denotes the likelihood of Hie data given model n with corresponding 
parameters ft,,. We quantitatively discriminate between competing models by calculating 
the corresponding posterior model probability given by Hie marginal distribution,

Tt(/i | m) oc {17.1)

To obtain a sample from the joint posterior distribution, jt (0„, ii | m), we use tlie reversible 
jump (RJ)MCMC algorithm (Green, 1995), since the posterior distribution is multidimen
sional with tlie number of parameters (i. e. regression coefficients) diffeiingbetweenmodels.
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17.2.3.1 M odel Specification

We need to define the set of models tliat we wish to consider and discriminate between, hi 
order to do this we define the saturated model of the form:

logit <t>ij =  oti +  f iif j  +  yitj +  ij, ey ~  N (0, a \ ) ,

logit 4>n,y =  a a +  pH/; + yJ ] ,  

logit Xj =  a-k +  (3)../; +  y\tj.

We adopt the standard notation m = and similarly for () and y. We consider
a mixed effects model for the first-year survival probabilities and a fixed effects model 
for the adult survival probabilities and recovery probabilities, motivated by the results in 
Section 17.2.2.

Alternative (sub)models are then obtained by specifying restrictions on the regression 
coefficients. For example, setting (3,j = 0 implies that the adult survival probabilities are 
not related to fdm/s. We consider all four possible comb illations of covariate dependence 
for each demographic parameter, allowing for the inclusion or exclusion of each covariate. 
Taking all possible combinations of covariate dependence for each demographic parameter 
gives a total of 43 = 64 models. Within the Bayesian framework, we need to specify a prior 
over tlie model space, tliat is, define the prior probability of each model, hi this instance, 
with no prior information, we specify an equal prior probability on each model, which 
also corresponds to a marginal prior probability of 0.5 that a demographic parameter is 
dependent on a given covariate. We note that, more generally, placing a flat prior over 
the full model space may not be Hie most sensible course of action. See King et al. (2006) 
who discuss this in further detail in the presence of additional age dependence on Hie 
demographic parameters, and King and Brooks (2003) for Hie case of multi-site data.

17.2.3.2 Reversible Jump Algorithm

Within each iteration of the Markov chain we consider the following steps:

1. Update each parameter, conditional on it being present in the model; for each 
(nonzero) parameter a, p,y and ei we use a single-update uniform random-walk 
Metropolis-Hastings update and for <j 2 a Gibbs step.

2. Update tlie covariate dependence in the model using a reversible jump step.

We consider only Step 2 hi detail, since the previous Metropolis-Hastings steps are imple
mented in the same way asbefore. For the reversible jump step of the MCMC algorithm, we 
cyde through each demographic parameter hi turn and propose to add or remove a single 
covariate dependence. Without loss of generality, suppose that we are considering Hie adult 
survival probabilities. We randomly select one of the covariates (fflays or time). Suppose 
that we select fdm/s. If the covariate dependence is present ((5rJ / 0), we propose to remove 
the dependence; else if the covariate dependence is absent (pH = 0), we propose to add Hie 
dependence. We initially consider the case where we propose to add the dependence.

We denote the current model by n, with parameters a, p, and a 2 and with (3rJ =
0. We propose to move to model n.‘ which has the additional covariate dependence on 
jflays for adult survival probabilities. We propose a candidate value (5̂  from some proposal 
distribution q. All other parameter values remain the same. Finally, we let (J' = {Pi, (3', (3-,„}
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denote the regression coefficients for fdm/s in the proposed model. We accept the proposed 
move with probability min(l, A), where

ji(a,p',y,€i,a|,n' | m)

Note that the Jacobian term in tlie standard reversible jump acceptance probability is simply 
equal to one in this case.

Now, to consider the reverse move, suppose that the chain is in model ii1 with current 
parameter values a , p', y, ei, and a\, such that p' = {Pi, P', p>). We propose the new model n, 
such that pH =  0, and set p = {P1, Pn, Px}. We accept this move with probability mini 1 ,A ~ l) 
for A given above.

17.2.3.3 Proposal Distribution

hi order to improve the efficiency of the reversible jump updating step we consider the 
proposal distribution, q, in more detail. Withoutloss of generality, suppose that we propose 
to add in the parameter S to themodel, so that S e {Pi, pH, \h, yi, ya, Yx }■ We consider a normal 
proposal distribution, namely,

S ~  N(\n,oj).

The values of |ig and are chosen via a pilot tuning exercise, hi particular, we run the 
saturated model for 10,000 iterations (discarding the first 1000 iterations as burn-in). We 
then set 115 and to be the posterior mean and variance of the corresponding regression 
coefficient from this pilot run. In other words,

|i5 =  E^(5); a 2 — var ,,(&),

where we take tlie expectation and variance with respect to the posterior distribution of the 
parameters in the saturated model. See King and Brooks (2002) and King et a l (2009) for 
further discussion of proposal distributions of this form.

17.2.3.4 Results

We run the simulations for a total of 100,000 iterations, discarding the first 10,000iterations as 
burn-in. Trace plots suggest that again the burn-in is very conservative. Independent repli
cations from over-dispersed starting points obtain essentially identical results, so that we 
assume tlie estimates have converged. Table 17.5a provides the corresponding (marginal) 
posterior probabihty that each covariate is present in the model for each demographic 
parameter. Clearly there is very strong evidence that tlie adult survival probability is 
dependent on frfm/s, with a marginal posterior probability of tlie dependence equal to 0.959 
(equivalent to a Bayes factor of 23). Similarly, the recovery probabihty appears to be strongly 
dependent on tune, with a posterior probability of 1.000 to three decimal places. There is 
evidence that the survival probabilities are not dependent on time for this data (Bayes factor 
of 33 for first-years and 10 for adults). Finally, there is uncertainty as to wThether tlie first- 
year survival probabilities are dependent on jtfays, with a posterior probability of 0.567 of 
no dependence {or a Bayes factor of 1.3).
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The Marginal Posterior Probability of the Dependence of Each Demographic Parameter on the 
Combination of Covariates j&ays and Time, Assuming Fixed Effects Models for <|>ji and }, and a Mixed 
Effects Model for Specifying Independent Normal Distributions on the Regression Parameters 
With Mean Zero and Variance of (a) 10, (b) 1, and (c) 100, and (d) Gelman's Prior on the Random 
Effect Variance Component With N (0 ,10) Priors on the Regression Parameters

TABLE 17.5

Covariate

Dependence

(a) AT (0,10) Priors (b )N (0 ,l )  Priors (c>N( 0,100) Pciors <d> Gelman's Prior

\ <h 4*1! 4>l 1 4>l <t>n \

f d a y s  and time 0.012 Q084 0.125 0.055 0.222 0.171 0.002 0.029 0.085 0.012 0.084 0.111

fdtl y s  only 0.420 0875 0.000 D.578 0.751 0.000 0.227 0.922 0.000 0.368 0.880 0.000

time only 0.017 0007 0.870 0.033 0.018 0.829 0.008 0.002 0.915 0.020 0.005 0.889
none 0.550 0039 0.000 0.334 0.019 0.010 0.764 0.047 0.000 0.600 0.031 0.000

We once more consider a prior sensitivity analysis, changing the prior variance on each of 
the parameters. In particular, we consider independent N (0,1) and N (0,100) priors on each 
of tlie regression parameters (i.e. increasing and decreasing the variance by a factor of 10). 
Alternatively, we consider Gelman's prior on the random effect variance term (with itide- 
pendent N(0,10) priors on the regression coefficients). The corresponding posteriormodel 
probabilities obtained are given in Table 17.5b—d. Recall that previously, when considering 
only a single model, changing Hie prior specification had virtually no impact on tlie corre
sponding posterior distributions of the parameters (see Section 17,2,1 and Tables 17.3 and 
17.4). For the adult survival probabilities and recovery probabilities, the posterior model 
probabilities (and corresponding interpretation of the results) are generally fairly insensi
tive to the choice of prior. However, we can clearly see that the prior specification does 
influence the posterior model probabilities for tlie first-year survival probabilities, where 
there is the greatest uncertainty regarding the presence or absence of Hie covariates hi Hie 
model Increasing (decreasing) the prior variance results in a decrease (increase) in Hie 
corresponding posterior probability of the covariate being present in the model. This can 
be explained by considering the fomi of the posterior model probability hi equation 17.1, 
which involves integrating out the parameters within the joint posterior distribution over 
b oth parameter and model space. Specifying a laiger prior variance increases the area being 
integrated over with small posterior mass, decreasing the corresponding hitegral value (and 
hence posterior probability), and is often referred to as Lindley's paradox (Lindley, 1957). 
This has a greater effect (as for first-year survival probabilities) when there is relatively little 
information contained within the data relating to the dependence structure. Alternatively, 
specifying Gelman's prior on Hie random effect variance term for Hie first-year survival 
probability has relatively little impact. Hie posterior mean of the random effect variance 
term is slightly greater (0.123 for Gelman's prior compared to 0.093for Hie r_1(0.001,0.001) 
prior), which has the impact of slightly decreasing Hie posterior probability that the first- 
year survival probability is dependent on fdm/s, with tlie random effect term essentially 
explaining a greater amount of tlie temporal variability (compared to flays),

17.2.3.5 Comments

RJMCMC algorithms typically require longer simulations than standard MCMC algo
rithms, since Hie additional model space needs to be explored as wTell as parameter space, 
However, tuning the reversible jump step is typically more difficult, and the corresponding
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mean acceptance probabilities are lower than for standard Metropolis-Hastings steps. For 
example, in the reversible jump step above, we obtain a mean acceptance probability of 
15,4% for changing the dependence of tlie first-year survival probability on fdm/s {with a 
proposal mean of -0 .377 and a proposal standard deviation of 0.165). However, if we had 
considered a "plain vanilla" reversible jump step, and used the prior distribution as the 
proposal distribution, we would have obtained a mean acceptance probability of 3.8%. In 
this instance, the prior distribution is rather diffuse, so we could consider an alternative 
pilot tuning exercise for the proposal variance (keeping the proposal mean equal to zero). 
For example, setting tlie proposal variance to be equal to unity provided a mean accep
tance rate of 8.0%. However, taking the posterior mean and variance of the parameters in 
the saturated model as the proposal mean and variance involves only a single simulation, 
and also updates the location of the proposal distribution, although it does assume that 
the parameter values are generally similar across models. Note that additional pilot tuning 
could also be performed here. In this instance, changing Hie proposal variance did not make 
any significant improvement in the acceptance probabilities.

We performed model selection on the covariates present in the model. However, we 
could also consider the analogous model selection technique in relation to the random 
effects, in terms of their presence or absence. This is generally more difficult since we need 
to specify a "sensible" prior on tlie random effect variance term. As we have seen for the 
covariate terms, posterior model probabilities are typically more sensitive to the priors 
specified oil the parameters than the posterior distribution of the parameter. This is as a 
result of integrating out over the parameter space in the derivation of the posterior model 
probability, as described above. Typically we specify a vague prior on tlie random effect 
variance term. In order to use the RJMCMC algorithm, the prior needs to be a proper prior so 
that the acceptance probability canbe calculated (since we need to evaluate tlie prior hi the 
acceptance probability, and the constant of proportionality is infinite for improper priors). 
For proper vague priors (such as the r -1 ( 0.001,0.001) distribution), the prior distribution 
is very diffuse, so that the simpler fixed effects model will often be chosen {i.e. Lindley's 
paradox occurs). Thus, for this data set, we consider tlie posterior distributions of the 
random effects variances and corresponding demographic parameters (assuming a mixed 
model for each demographic parameter) to see whether it appears that random effects are 
important or not. hi particular, we conclude that random effects are only present for the 
first-year survival probabilities. A more rigorous approach would be to consider Hie form 
of the distribution of tlie random effect variance term in more detail such that the induced 
prior on the corresponding random effect terms {and hence demographic parameter) are 
"sensible."

17.3 A n aly sis  of C ount D ata

For the UK lapwing population., there are additional, independent, count data. We consider 
data from 1965 to 1998. These data correspond to estimates of the number of breeding female 
lapwings at a number of sites throughout the United Kingdom and canbe regarded as an 
index for the total population However, these counts are only an estimate of the index 
{or population size). In order to account for this uncertainty regarding these estimates we 
consider a state-space approach, following the ideas and model suggested by Besbeas et al. 
{ 2002).
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17.3.1 State-Space Model

State-space models consider two separate processes: a system process, describing how tlie 
population size changes over time; and the observation process, which takes into account 
(he uncertainty in the observed count data. We consider each of these processes in turn.

17.3.1.1 System Process

For the UK lapwing data, the individuals are described as either first-years or adults. Thus, 
we consider these population sizes separately. Let N y and Nraji- denote the true number of 
first-year (female)birds and adult (breeding female)birds attinie i. We assume that all adult 
birds breed; and that no first-year birds breed. Anatural model for the number of first-year 
birds at tune i would be

Ni,i -  Poisson(NII;, - 1 p, - 1 1,i - 1),

where p, denotes Hie productivity rate of females per female in year i hi addition, for Hie 
number of female adults we assume

NSii ~  Binomial(Nu_i + N ^ .i,

For further discussion of this model, see, for example, Besbeas et al. (2002). We note that 
are confounded in this model, since tlie terms oidy appear as a product, hi order to separate 
these two processes (first-year survival and productivity), additional data is necessary. For 
example, specifying a logistic regression on the first-year survival probabihty on a given 
covariate can remove this confounding. Alternatively, the use of additional data (such as Hie 
ring-recovery data considered previously) can also remove this confounding issue, since 
the parameter <()1 is estimable from the ring-recovery data.

The system process is defined for i =  1 ,... ,T  (with i =  1 corresponding to tlie year 1965 
and T = 34). However, for i =  1, ATy and N a r e  a function of Ni,o and N̂ o- To allow 
for this (without truncating Hie likelihood), we consider jVi.o and N^o as parameters, and 
place vague uniform priors oil them Note that this essentially induces a prior on all other 
population sizes, and N1V for i =  1 , . . . ,  T, by the relationship expressed above in Hie 
system process.

17.3.1.2 Observation Process

We do not observe the truepopulation sizes, Ni = . . . ,  N^t} and N(J = {N^i,. . . ,  Naj } ,
but only an estimate of some of the population sizes. For the UK lapwings, we have an 
estimate of only the number of breeding females, denoted by y — [y\,. . .  ,y j) ,  that is, y  is 
an estimate of Na. hi order to model the observation uncertainty, we assume

yi ~  N(N,v ,<jy),

for i =  1 , . . . ,  T, where V s to be estimated. Clearly many other models are possible, such 
as a lognormal distribution (King et al., 2008b), or where the observation error variance is 
proportional to the true population size. We retain the simplest normal observation model. 
We place a conjugate inverse ganmia prior on the observation variance, a 2 ~  r -1 (rty, ?y), 
with Oy =  bv =  0.001.
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17.3.1.3 Model

In addition to the survival and recovery parameters, there are the additional productivity 
rates. We specify a logarithmic regression for the productivity rate of the form

log p,' = a„ +  yp ti,

where f, denotes the (normalized) variable corresponding to tune (i.e. year). We extend our 
vector notation, so that a  =  { o t i , a a, a x , a p} and y =  {y-k , y p}.

The overall model has a random effects component for the first-year survival probabilities, 
also dependent onjflays, a fixed effects model for adult survival probabilities dependent 
on  plays, and fixed effects models for the recovery probabilities and productivity rate, both 
dependent on time. Thus, this model considers additional random effects for the first-year 
survival probabilities, not considered hi the previous analyses by Besbeas et al. (2002), 
Brooks et a l (2004), and King et a l (2008b). Notationally, we specify this model in the form

This model is motivated by the model identified from the ring-recovery data considered 
previously with a logistic regression specified on 4  ̂and \ and the analysis by Besbeas 
et al. (2002) (for the productivity rates).

17.3.1.4 Obtaining Inference

The likelihood of the count data is analytically intractable. We consider an auxiliary variable 
approach (analogous to the approach used for tlie random effects model). We treat tlie true 
population sizes Ni and N, as parameters (or auxiliary variables). Hie corresponding joint 
likelihood of the count data y and true population sizes (given tlie demographic parameters) 
canbe written in the form

f ( y ,  N i, N(I | Ni.o, N^o, <|>i, <tv K  P/ °y> =  fobAy I Hi- cr̂ )/sys(N i, Nn | N i,0, Na,o, <|>i, <|>a, X, p),

where /abs and f sys denote the likelihood functions associated with the observation and 
system processes. Thus/0bs is a product over normal distributions, and/SyS a product over 
Poisson and binomial distributions, For notational simplicity, we specify the likelihood 
as a function of the demographic parameters. Equivalently, we can express the likelihood 
given the regression parameters (and random effect terms if present). This likelihood can 
be combined with the priors to form the johit posterior distribution of the parameters and 
auxiliary variables (true population sizes and random effects terms). However, note that 
there is typically very little infonnationrelating to the first-year parameters (population size 
and survivalprobabiliti.es), with only estimates of the adult populationsizes. Inaddition, the 
posterior precision of the other parameters can also be poor (see, e.g. Brooks et al., 2004). 
HowTever, there is the additional, independent, ring-recovery data that can be combined 
with the count data within a single integrated analysis, using all the available information.

17.3.2 Integrated Analysis

Following the approach of Besbeas et al. (2002), we combine tlie independent ring-recovery 
data and count data within an integrated analysis, but consider a different underlying
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model {as we assume a mixed effects model for the first-year survival probabilities). Since 
the data sources are independent of each other, we can write the joint likelihood of tlie ring- 
recovery data and count data as the product of tlie individual likelihoods. Thus, we can 
express the joint posterior distribution of the regression parameters and auxiliary variables 
{population sizes and random effect terms) in the form

Ti(a, p. y .a f,* !, 1% N,j, o2 | m, ij) oc f ahs(y | Nn/a )̂/sys(Ni, Nn | a, y ,e,N iiQ/NII;Q)

./(m |

The first line corresponds to the likelihood for the count data, the second line to the likeli
hood for the ring-recovery data, and Hie final terms to the priors for all the parameters in 
the model.

17.3.2.1 MCMC Algorithm

We consider a single-update Metropolis-Hastings algorithm. We implement a uniform 
randoni-walk algorithm for the demographic regression parameters, a ,  ( i ,  and y ,  and tlie 
population sizes, Nlo and NBro. Alternatively, for o 2, we use a Gibbs update, since tlie 
conditional distribution is of standard form,

/ X 1 ^
Oy I Ns — r _1 I Hy + -,by + -  -  Nrtji)2

\ 1=1

Finally, we consider two different updating schemes for Ni and N„.

Algorithm 1. Uniform random-walk single-update Metropolis-Hastings algoritlmi 
(as implemented by Ring et al., 2008b).

Algorithm 2. Single-update Metropolis-Hastings algoritlmi using the system process 
(i.e. binomial or Poisson distribution) as the proposal distribution for times i =
i , . . . , r .

For algoritlmi 1, we initially performed a pilot tuning exercise to obtain the lower and 
upper bound of the uniform proposal. We set the proposal distribution such that the can
didate value is within ±75 of the current value, providing a mean acceptance probability 
of 18-39% for first-years and adults over all years. Algorithm 2 does not typically require 
any pilot tuning, and results in mean acceptance probabilities of 56-75% for first-years and 
adults for years i =  1 , . . . ,  T — 1 (for year T the mean acceptance probabilities are 100% and 
98% for first-years and adults). Figure 17.2 provides a trace plot of the number of first-years 
and adults for a typical year, while Figure 17.3 provides die corresponding autocorrelation 
function (ACF) plot, for both algorithms. The trace plots suggest that algoritlmi 2 may have 
better mixing properties (particularly for tlie adults). This is supported by the ACF plots, 
with a reduction of approximately 20% in the autocorrelation (by lag 50) of algorithm 2 
compared to algorithm 1 (for this particular year). Thus, we retain the use of algorithm 2.

One problem with the single-update approach is that population sizes are highly corre
lated from one year to the next, due to the underlying system process. This means that tlie 
algoritlmi can exhibitpoor mixing and high autocorrelation (as demonstrated above). Block
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FIGURE 17.2
Trace plots for the number of first-years (top left) and adults (top right) for algorithm 1 (uniform proposal); and 
first-years (bottom left) and adults (bottom right) for algorithm 2 (using system process) in the year 1989.

updating can improve tlie mixing, and was considered for algorithm 2 (e.g. simultaneously 
updating N ij and NS/, within a single update), but did not appear to improve the mixing 
in this case.

17.3.2.2 Results

The simulations are run for 1 million iterations, with the first 10% discarded as burn-in, 
to be conservative. Table 17.6 provides the corresponding posterior mean and standard 
deviation of each parameter hi the model. Note that tlie posterior distributions for the 
regression parameters are very similar to those obtained for tlie ring-recovery alone, given 
in Table 17.3. This is a result of there being relatively little direct information in the count 
data on these parameters, so that the ring-recovery data dominate with respect to these 
parameters. For further discussion of similar issues and for a comparison of results for 
ring-recovery data only, count data only, and integrated data for the analogous fixed effects 
model, see Brooks etal. (2004) and King et al. (2009). Recall that witlihi the MCMC algorithm 
we also impute the true population sizes. Thus, we can also draw inference on the true 
population sizes, whichis typically of particular interest. Figure 17.4 provides the posterior 
mean and 95% HPDI of the estimates of the true population size for first-years and adults, 
along with the corresponding observed count data, y.
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FIGURE 17,3
ACF plots for the number of first-years (top left) and adults (top right) for algorithm 1 (uniform proposal); and 
first-years (bottom left) and adults (bottom right) for algorithm 2 (using system process) in the year 1989. Note 
that the ACF at lag 50 is equal to 0.619 and 0.494 for the number of first-years and 0.820 and 0.677 for the number 
of adults for algorithms 1 and 2, respectively.

TABLE 17.6

The Posterior Mean and Standard Deviation (SD) of Each 
Parameter for the Integrated Analysis of Ring-Recovery 
Data and Count Data

Parameter Posterior Mean (SD)

a i 0.545 (0.0S2)

Pi -0.20(2(0.075)
1.545 (0.071)

Pa — 0.245 (0.039)
-4.563(0.035)

YX -0.351(0.039)

a P —1.142 <0.090)

YP -0.253(0.053)

-5 0.063 (0.056)
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FIGURE 17.4
The posterior mean (*) and 95% HFDI for the population size relating to adults (in black) and first-years (in gray). 
The solid dots give the corresponding data, y, relating to the estimates of the adult population size.

Ill addition, within the MCMC algorithm we can obtain a sample from the posterior 
distribution of functions of the population sizes (and/or other parameters). For example, 
one particular quantity of interest is tlie (log) adult population growth rate over time. For 
generality, we let lo g rlfj denote Hie log change in adult growth to year i at lag /, defined 
to be

log fij =  log NiV -  log

We can estimate additional quantities of interest, such as tlie posterior probability that the 
log adult population growth rate at lag j  is positive, corresponding to ail increase in the 
adult population between times i — j  and i. Consider, for example, ^75 (i.e. the change in 
population size over 25 years), used in Hie determination of species of conservation concern 
(Gregory etal., 2002). The posterior distribution for r/?5 is plotted hi Figure 17.5. An estimate 
from the observed count data, ignoring the uncertainty in relation to these estimates, is 
plotted for comparison (although no associated uncertainty intervals can be calculated), 
Clearly, there appears to be a significant change hi the adult lapwing population over the 
25-year period 1973-1998, For example, in 1998 we obtain a 42% posterior probability that 
the population has declined by more than 50%. See King et a l (2008b) and Brooks et al. 
(2008) for further discussion of assessing changing population sizes and their relation to 
conservation concern.

17.3.3 Model Selection

We once more consider the issue of the underlying covariate dependence for each of the 
demographic parameters. Allowing each parameter (ie. survival probabilities, recovery 
probabilities, and productivity rates) tobe dependent on frfays and/ or tune, there are a total 
of 44 = 256possible models. Once more, we assume thatthe first-year survival probabilities 
have a random effects component, whereas all other parameters are fixed effects models, 
thus extending the set of models considered by King et al, (2008b). We assume an equal

Title
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Title

Year

FIGURE 17.5
The posterior mean (*) and 95%HPDI far the 25-year adult growth rate, r; 35 (in black) and corresponding 25-year 
adult growth rate from raw data, i j  (in gray).

prior probability on each of the possible models and use the analogous RJMCMC algorithm 
as before, extending the method to updating the dependence of the productivity rate on 

and time, so we omit the details for brevity.

17.3.3.1 Results

The simulations are run lor a total of 10 million iterations, discarding the first 10% as burn- 
in. Independent replications did provide some mild variation with respect to the posterior 
model probabilities {within the second decimal place), but the interpretation of the results 
remained consistent between simulations. We note that the poor mixing over model space 
appears to be a result of bimodality in tlie model space between nonneighboring models 
{see further discussion below). Tables 17.7 and 17.8 provide Hie corresponding posterior 
{model-averaged) mean and standard deviation of Hie model parameters and correspond
ing marginal posterior model probabilities for each of the demographic parameters in terms 
of tlie dependence on frfays and time. It is interesting to compare Table 17.8 with Table 17.5a, 
the analogous marginal posterior model probabilities for only the ring-recovery data. One 
of tlie main differences is that in the integrated analysis, the adult survival probability has 
a significantly higher probability of being dependent on time (0.679 compared to 0.091). 
From Table 17.7 we see that if the time dependence is present, then the adult survival prob
ability is declining with time (i.e. the posterior distribution for yH is dearly negative). This 
is demonstrated in Figure 17.6, which provides the (model-averaged) estimates of all Hie 
demographic parameters for both the integrated analysis and for the ring-recovery data 
only, for comparison Clearly, for the first-year survival probabilities and recovery proba
bilities there is very little difference in the posterior estimates of these parameters for Hie 
integrated and ring-recovery only analyses (although there are some differences in Hie pos
terior model probabilities for these parameters). We note that the count data do not contain 
any information on the recovery probabilities and there is no direct information on tlie 
first-year survival probabilities (only indirect information contained in the estimates of tlie
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TABLE 17.7

The Marginal (Model-Averaged) Posterior Mean and Standard Deviation 
(SD) of Each Regression Parameter (Conditional on Being Present in the 
Model) and the Corresponding Posterior Probability that the Parameter is 
Present in the Model for the Integrated Analysis of Ring-Recovery Data and 
Count Data. Note that the Logistic Intercept Terms («) and are Always 
Assumed To Be Present

Parameter Posterior M ean (SD) Posterior Probability

“ 1 0.506 (0.087) 1.000
Pi -0.192(0.086) 0.243

yi -0.045(0.093) 0.033

ai 0.078(0.065) 1.000

ua 1.488(0.076) 1.000
Pfl -0.209(0.063) 0.835

Vn -0.222(0.049) 0.679

-4 .5 9 4  (0.04CD 1.000
fH. 0.148(0.054) 0.511

yx -0.378(0.045) 1.000

“p -1.061(0.098) 1.000
Pp -0.175(0.122) 0.101

yp -0.260(0.086) 0.371

number of adults). There is a slight discrepancy between the estimates of the adult-survival 
probabilities; this appears to be most likely a result of the differing posterior probabilities 
of being dependent on time between the two analyses.

Finally, we note a couple of differences between these results and those obtahied by King 
et al. (200Sb) who consider a similar approach but using only fixed effects models with a 
different observation process, hi particular, the (marginal) posterior model probabilities for 
the first-year survival probabilities differ substantially with 0.644 posterior probability for 
4>i( f  ) and 0.323 posterior probability for 4>i- This is compared to the posterior probabilities 
of 0.234 for model 4>(/) and 0.732 for model 4>i within our analysis using a mixed effects 
model for first-year survival probabilities. Thus, allowing for additional random effects 
significantly reduces the posterior probability that the first-year survival probabilities are 
dependent on jtfays. This is often Hie case, since the additional random effects account for

TABLE 17.8

The Marginal Posterior Probability of the Dependence of 
Each Demographic Parameter on the Combination of 
Covariates fdays and Time

Covariates ■h 4*1! \ P

fik y s  and time 0.009 0.588 0.511 0.033
fik y s  only 0.234 0.247 0.000 0.068
time only 0.025 0.090 0.489 0.322

no dependence 0.732 0.074 0.000 0.577
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FIGURE 17.6
The posterior model-averaged mean (*) and 95% HPDI for each parameter for the integrated analysis (in black) 
and for the ring-recovery data only (in gray), assuming a mixed effects model for (|>i and fixed effects models for 
4>a. Xand p, for (a) 4>i; (b) cfin; (c) k; and (d) p. The bottom line in each plot denotes the values for the covariatefdays.

some of the temporal heterogeneity; whereas if we assume a fixed effects model, Hie covari
ate (jHfii/s) may not explain the temporal variability very well, but is better than assuming 
a  constant survival probability hi addition, we note that in the analysis by King et al. 
{2008b), although the same two (marginal) models for Hie recovery probabilities dominate 
the posterior distribution, the corresponding posterior model probability for 'k(t) is 0.748 
and for ">,(/, t) is 0.252. This corresponds to a Bayes factor of 2.97—bordering on "positive 
evidence" (Kass and Raftery, 1995) for only time dependence for the recovery probabilities 
compared to the additional dependence on fdm/s. This is in contrast to our results, with 
posterior probabilities of 0.489 for X(f) and 0.511 for >,(/, f) (and a Bayes factor of % 1), so 
that there is greater posterior uncertainty as to the presence/ absence of the dependence of 

for tlie recovery probabihty.

17.3.3.2 Comments

Care needs to be taken when considering marginal posterior distributions, of parameters 
and / or models. Intricate detail (and interesting interpretations) canbe missed if parameters 
and/or models are highly correlated, and this detail canbe difficult to identify, particu
larly over large model spaces. For example, hi this analysis the marginal posterior model
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The Posterior Probabilities for the Models With Largest 
Posterior Support

TABLE 17.9

Model Posterior Probability

0.1 S3

t)/\(fdays, t)/p 

tfiyifttays.afy/fyaljiteys, i)/X{t)/p 

$l{al)/btA f< kys)/n fd iiys, f)/p(t) 

$l(pl)/biA fdiiys)/\ (t)/p(t)

0.164

0.144

0.109

0.059

<$?l(o\)/«?ajUfdays,t)f [>(t) 

ctil{/ii!i/*,aj)/itia(/£iflys)/>.(t)/p(f)

0.056

0.052

The terms in brackets correspond to the parameter dependence:/i&ys 
for the covariate/iMi/s; f for time; and corresponding to the random 
effect component for first-year survival probabilities.

probabilities given in Table 17.8 caimot provide any information relating to the correlation 
between the models. Thus in Table 17.9 we present the overall models with largest posterior 
support.

Careful consideration of these models suggests tliat tlie marginal models for the adult sur
vival probability and productivity rates may be correlated (when <j>n is dependent on time, 
p is not, and vice versa). We investigate this further. Ill particular, we calculate the posterior 
probability that productivity is dependent on time, given that adult survival probability 
is not time-dependent, to be equal to 0.999; whereas the posterior probability that produc
tivity is dependent on time, given that the adult survival probability is time-dependent, is 
only 0,049. Conversely, the posterior probability that the adult survival probability is time- 
dependent, given tlie productivity rate is thne-dependent (not tune-dependent), is 0.094 
(0.999). Clearly there is a strong negative posterior correlationbetweenthe time dependence 
of the adult survival probability and productivity rate. Overall, the posterior probability 
that either the adult survival probability or the productivity rate is thne-dependent, but not 
both, is equal to 0.966 (ie. a Bayes factor of 28). This corresponds to strong evidence that 
only the adult survival probabilities or productivity rates are time-dependent, but with 
slightly larger posterior support that it is the adult survival probabilities (a Bayes factor 
of 1.5 that it is the adult survival probability rather than productivity rate, conditional on 
only one being thne-dependent). Similar results were obtahied by King et a l (200Sb) when 
considering only fixed effects models. Interestingly, additional (independent) studies have 
identified declining chick numbers, which would support the model with time-dependent 
productivity rates; see Besbeas et al. (2002) and Wilson et a l (2001) for further discussion. 
Finally, we note that when, parameter dependencies are highly correlated, moving between 
the differentmodels canbe difficult (essentially we have a bimodal distribution over model 
space). This can result in poor mixing within Hie RJMCMC algorithm. To improve the mix
ing between models, "block" updates can be performed with respect to model updates, 
essentially proposing to update the model for the different parameters simultaneously For 
example, in this case, we could add an additional move type that proposes to update both 
the covariate dependence on the adult survival probabilities and productivity rates within 
a single model move.
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17.4 D iscu ssio n

The use of MCMC algorithms can greatly simplify analyses of complex data that arise in eco
logical problems, and allows more realistic models to be fitted to tlie data. The use of these 
algorithms hi statistical ecology is likely to continue due to an increased awareness of Hie 
methods and freely available published codes. One area where Bayesian approaches have 
had a significant impact in statistical ecology is in relation to tlie inclusion of heterogene
ity within models. Individual heterogeneity is an example which has received particular 
attention due not only to its perceived importance and relevance within ecological mod
els but also to associated problems. The use of MCMC greatly aids the fitting of (even 
nonnormal) random effects models, allowing more complex and realistic models to be fit
ted to data (Bany et al., 2003; Brooks et a l, 2002; King and Brooks, 2008; Royle and Link,
2002). Alternatively, covariate models are often used to describe tlie relationship between 
demographic parameters and factors of interest (on an individual or temporal scale), and 
so are often of particular interest to biologists. However, missing values often arise in these 
circumstances, adding an additional level of complexity to an analysis. Once more, a data 
augmentation approach can be implemented, with the missing values treated as auxiliary 
variables and imputed within the MCMC algoritlmi (Bonner and Schwarz, 2006; Dupuis, 
1995; King et a l, 2006, 200Sa). Discriminating between competing covariate models pro
vides information relating to the underlying dynamics of the system and is typically of real 
biological interest. Two issues often arise in such analyses: constructing efficient RJMCMC 
algorithms; and the prior specification on the parameters. These continue to be active areas 
of research. Additionally, within covariate analyses, a parametric relationship is typically 
assumedbetween the covariate(s) and demographic parameters. However, this is generally 
a very restrictive assumption, and often not tested within analyses. An alternative approach 
has been presented by Gimenez et al. (2006) who consider the use of spline functions to 
describe the relationship between the demographic parameter and the covariate of interest. 
This flexible modeling approach is a real step in developing more complex and realistic 
models, to link observed data with potential factors.

The MCMC algoritlmi typically allows more complex models to be fitted to tlie data within 
a Bayesian framework. How'ever, there is typically a tradeoff between fitting increasingly 
complex models, using advanced techniques, and Hie corresponding computation time 
needed to obtain posterior estimates of interest. Thus, one area of particular interest (and 
more generally) is the development of efficient MCMC algorithms. For example, the gen
eral implementation of the Metropolis-Hastings algoritlmi is typically straightforward; 
however, problems can still arise, such as poor mixing, so that more "intelligent" algo
rithms need to be developed. An example of this problem, as a result of high correlation 
between parameters, is given hi Section 17.3.1. Although tlie "plain vanilla" algoritlmi 
was unproved, the algorithm implemented still suffered from high autocorrelation. More 
generally, Link and Barker (2008) have considered efficient Metropolis-Hastings updates 
for tlie recapture and survival probabilities relating to capture-recapture data. The leap 
from MCMC to RJMCMC, hi the presence of model uncertainty, often brings additional 
mixing problems, in terms of proposed moves between different models having very lowT 
acceptance probabilities, so that the development of alternative model updating algorithms 
would be of particular interest. Tlie complexity of the likelihood expression in many eco
logical applications can make it difficult to implement some efficient RJMCMC algorithms, 
such as the method proposed by Brooks et al. (2003), so that alternative algorithms need
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to be developed. For example, Gramacy et a l (2010) apply the method of "importance 
tempering" to mark-recaptur e-recovery data in tlie presence of model uncertainty.

The explosion in tlie application of Bayesian methods within statistical ecology shows 
no sign of slowing. On the contrary, application of the methods continues to increase. 
The publication of freely available computer codes (in WinBUGS/OperiBUGS and R) and 
books devoted to the area will no doubt fuel the further expansion of the use of MCMC 
within the field of statistical ecology. The complexity of data collected will help to drive 
statistical advances within the field, and more generally, such as the development of efficient 
(RJ)MCMC algorithms.
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18
Gaussian Random Field Models for Spatial Data

Murali Haran

18.1 In tro d u ctio n

Spatial data contain information about both the attribute of interest and its location. Exam
ples canbe found hi a large number of disciplines, including ecology, geology epidemiology, 
geography, image analysis, meteorology, forestry, and geosciences. The location may be a 
set of coordinates, such as Hie latitude and longitude associated with an observed pollutant 
level, or it maybe a small region such as a comity associated with an observed disease rate. 
Following Cressie (1993), we categorize spatial data into three distinct types: (i) geostatistical 
or point-level data, as in the pollutant levels observed at several monitors across a region; 
(ii) lattice or "areal" (regionally aggregated) data, for example, US disease rates provided by 
county; and (iii) point process dnta, where the locations themselves are random variables 
and of interest, as in the set of locations where a rare animal species was observed. Point 
processes where random variables associated with the random locations are also of interest 
are referred to as marked point processes. In this chapter, we only consider spatial data that 
fall into categories (i) and (ii).

We will use the following notation throughout. Denote a real-valued spatial process in d 
dimensions by (Z(s) : s £ D c  where s is the location of the process Z(s) and s varies 
over the index set D, resulting in a multivariate random process. For point-level data D is 
a continuous, fixed set wrhile for lattice or areal data D is discrete and fixed. For spatial 
point processes, D is stochastic and usually continuous. Tlie distinctions among the above 
categories may not always be apparent hi any given context, so determining a category is 
part of the modeling process.

The purpose of this chapter is to discuss the use of Gaussian random fields for modeling a 
variety of point-level and areal spatial data, and to point out the flexibility in model choices 
afforded by Markov chain Monte Carlo (MCMC) algorithms. Details on theory, algorithms 
and advanced spatial modeling canbe found hi Cressie (1993), Stein (1999), Banerjee et al. 
(2004), and other standard texts. The reader is referred to the excellent monograph by 
M0ller and Waagepetersen (2004) for details on modeling and computation for spatial 
point processes.

18.1.1 Some Motivation for Spatial Modeling

Spatial modeling can provide a statistically sound approach for performing interpolations 
for point-level data, which is at the heart of "kriging", a body of work originating from 
mineral exploration (see Matheron, 1971). Even when interpolation is not the primary goal,

449
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accounting for spatial dependence can lead to better inference, superior predictions, and 
more accurate estimates of the variability of estimates, We describe toy examples to illustrate 
two general scenarios where modeling spatial dependence can be beneficial: when there 
is dependence in the data, and when we need to adjust for an unknown spatially vary
ing mean. Learning about spatial dependence from observed data may also be of interest 
in its own right, for example, in research questions where detecting spatial dusters is of 
interest.

Example 18.1 Accounting Appropriately for Dependence

Let Z ( s )  =  6s  +  «(s) b e  a random variable  in dexed  by its location s  e  (0, 1), with dep e n d e n t  

errors «(s) generated via a simple autoregressive model: e(s-|) =  7, e(s,) ~  N (Q .9 t(S j_-\), 0 ,1),  / =

I , . . . ,  1 00, for e q u a l ly  sp a c e d  locations x-|, . . . ,  x-| 0o in (0, 1). Figure 18.1 a sh ow s h o w  a model 

that assum es the errors are dependent,  such as a linear C au ssian  process (CP) model (solidcurves)  

d e scr ib e d  later in Section 1 8 .2 .1 ,  provides a  much better fit than a  regression m odel with inde

p en d en t  errors (dotted lines). N o te  that for spatial data, s is usually  in tw o- or three-dimensional 

space;  w e  are o n ly  c on sid er ing  on e-dim ensional sp ace  here in order to better illustrate the 

ideas.

Example 18.2 Adjusting for an Unknown Spatially Varying Mean

Let Z ( s )  =  sin(s) +  e(s) w h ere ,  for any set o f  locations s-|,. . . , e  ( 0 , 1 ) ,  and  e(s-|) , . . . ,  e(s^) are 

indepen d en t a n d  identically distributed normal random variables with mean 0 a n d  variance  tr2 . 

Sup p o se  that Z ( s )  is o b se rv e d  at  ten locations, From Figure 1 8 .1 b  the d e p e n d e n t  error model 

(solid cuives)  is superior to an indepen d en t error model (dotted lines), even though there w a s  no 

d e p e n d e n c e  in the generating process. A d d in g  d e p e n d e n c e  can thus a c t  as a form o f  protection 

against a poorly  sp ec ified  model.

Dependent (A R -I) errors Sine function with independent errors

s  s

FIGURE 18.1
"Black dots: simulated data. Solid curves: Gaussian process with exponential covariance. Dashed curves: Gaussian 
pro cess with gau ssian covariance. Dotted lines: independent error mo del. I nail cases, the mean and 95% prediction 
intervals are provided.
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Example 18.2 shows how accounting for spatial dependence can adjust for a misspediied 
mean, thereby accounting for important missing spatially varying covariate information 
{for instance, the sin(.r) function above). As pointed outin Cressie (1993, p. 25), "W hatis one 
person's {spatial) covariance structure m aybe another person'’s mean structure." hi other 
words, an interpolation based on assuming dependence (a certain covariance structure) 
canbe similar to an interpolation that utilizes a particular mean structure (sm(.if) above). 
Example 18.2 also shows the utility of GPs for modeling tlie relationship between "inputs" 
(s l, ■ - ■, ) and "outputs" (Z (s i Z  (s„)) when little is known about the parametric form
of the relationship, hi fact, this flexibility of GPs has been exploited for modeling relation
ships between inputs and outputs from complex computer experiments (see Currin et al., 
1991; Sacks et a l, 1989). For more discussion oil motivations for spatial modeling see, for 
instance, Cressie (1993, p. 13) and Schabenberger and Gotway (2005, p. 31).

18.1.2 MCMC and Spatial Models: A Shared History

Most algorithms related to MCMC originated hi statistical physics problems concerned 
with lattice systems of partides, hidudhig the original Metropolis et al. (1953) paper. 
The Hammersley-Clifford theorem (Besag, 1974; Clifford, 1990) provides an equivalence 
between the local specification via tlie conditional distribution of each partide given its 
neighboring partides, and the global specification of Hie joint distribution of ah the par
tides. The specification of the joint distribution via local specification of the conditional 
distributions of the individual variables is the Markov random field specification, which 
has found extensive applications hi spatial statistics and image analysis, as outlined in 
a series of papers by Besag and co-authors (see Besag, 1974, 1989; Besag and Kempton, 
1986.: Besag et al., 1995), and several papers on Bayesian image analysis (Aniit et al., 1991; 
Genian and Genian, 1984; Grenander and Keenan, 1989). It is also the basis for variable-at- 
a-time Metropolis-Hastings and Gibbs samplers for simulating these systems. Thus, spatial 
statistics was among the earliest fields to recognize tlie power and generality of MCMC. A 
historical perspective on the connection between spatial statistics and MCMC, along with 
related references, canbe found in Besag and Green (1993).

While these original connections between MCMC and spatial modeling are assodated 
with Markov random field models, this discussion of Gaussian random field models 
indudes both GP and Gaussian Markov random field (GMRF) models in Section 18.2. hi 
Section 18.3, we describe tlie generalized versions of both linear models, followed by a dis
cussion of non-Gaussian Markov random field models hi Section 18.4 and a brief discussion 
of more flexible models hi Section 18.5.

18.2 L in ear S p atia l M od els

hi this section we discuss linear Gaussian random field models for both geostatistical and 
areal (lattice) data. Although a wide array of alternative approaches exist (see Cressie, 1993), 
we model the spatial dependence via a parametric covariance function or, as is common 
for lattice data, via a parameterized predsion {inverse covariance) matrix, and consider 
Bayesian inference and prediction
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18.2.1 Linear Caussian Process Models

We first consider geostatistical data, Let the spatial process at location s e D be defined as

Z(s) = X(s)p + k?(s ) ; fo r s e D , (18.1)

where X(s) is a set of p covariates associated with each site s, and f} is a p-dimensional 
vector of coefficients. Spatial dependence canbe imposed by modeling (?u(s) : s e D\ as a 
zero-mean stationary GP Distributionally, this implies that for any s i , . . . ,  s„ e D, if we let 
w = (w (s i) ,? [? (s „ ) )T and © be the parameters of the model, then

w | 0 ~ W(0, E(0)), (18.2)
where E (0 ) is the covariance matrix of the ; (-dimensional normal density We need S (0 )  to 
be symmetric and positive definite for this distribution to be proper. If we specify E(©) by 
a positive definite parametric covariance function, we can ensure that these conditions are 
satisfied. For example, consider the exponential covariance with parameters © = (i|/, k, $), 
with k, <\> > 0. The exponential covariance E(©) has the form E (0 ) = ijil + kH(c|)), where 
1 is the identity matrix, the (i,/)th element of H(c|)) is exp (—||s, — s,||/<}>), and ||s, — sr || is tlie 
Euclidean distance between locations s„ s, e D. Alternatives to Euclidean distance may be 
useful—for instance, geodesic distances are often appropriate for spatial data over large 
regions (Banerjee, 2005). This model is interpreted as follows: the "nugget" i[r is the vari
ance of tlie nonspatial error, say from measurement error or from a micro-scale stochastic 
source associated with each location, and k and dictate the scale and range of the spatial 
dependence, respectively. Clearly, this assumes that the covariance and hence dependence 
between two locations decreases as tlie distance between them increases.

The exponential covariance function is important for applications, but is a special case 
of the more flexible Matfim family (Handcock and Stem, 1993). The Matem covariance 
between Z(s, ) and Z(s,) vrith parameters if/, k, <}>, v > 0 is based only on the distance 
„r between s,- and s;-,

cov(_t; if/, k, \!) =
K -(2v^ 2jc/^ )vKv(2v^2x/^), if > 0,2v'_ 1r(v) ^  - > (1S3)

l|f +  K, if„T =  0,

where Kv(x) is a modified Bessel function of order v (Abramowitz and Stegun, 1964), and v 
determines the smoothness of the process. As v increases, tlie processbecomes increasingly 
smooth As an illustration, Figure 18.1 compares prediction (interpolation) using GPs with 
exponential (v =  0.5) and gaussian (\> —>• oo) covariance functions (we use lower case for 
"gaussian" as suggested in Schabenberger and Gotway, 2005, since Hie covariance is not 
related to the Gaussian distribution). Notice how the gaussian covariance function produces 
a much smoother interpolator (dashed carves) than the more "wiggly" interpolation pro
duced by the exponential covariance (solid curves). Stein (1999) recommends the Matem 
since it is flexible enough to allowT the smoothness of tlie process to also be estimated. He 
cautions against GPs with gaussian correlations since they are overly smooth (they are 
infinitely differentiable), hi general the smoothness v may be hard to estimate from data; 
hence, a popular default is to use the exponential covariance for spatial data wThere Hie 
physical process producing the realizations is unlikely to be smooth, and a gaussian covari
ance for modeling output from computer experiments or other data where Hie associated 
smoothness assumption may be reasonable.
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Let Z = (Z (si),. . .  ,Z (sr,))T. From Equations 18,1 and IS.2, once a covariance function 
is chosen (say, according to Equation 18.3), Z has a multivariate normal distribution with 
unknown parameters ©, p. Maximum likelihood inference for the parameters is then simple 
in principle, though strong dependence among the parameters and expensive matrix oper
ations may sometimes make it more difficult. ABayesian model specification is completed 
with prior distributions placed on 0 ,  p. "Objective" priors (perhaps more appropriately 
referred to as "default" priors) for the linear GP model have been derivedby several authors 
(Berger et al., 2001; D e Oliveira, 2007; Paulo, 2005). These default priors are very useful since 
it is often challenging to quantify prior information about these parameters hi a subjective 
maimer. However, they can be complicated and computationally expensive, and prov
ing posterior propriety often necessitates analytical work. To avoid posterior impropriety 
when building more complicated models, it is common to use proper priors and rely on 
approaches based on exploratory data analysis to determine prior settings. For example, 
one could use a uniform density that allows for a reasonable range of values for tlie range 
parameter cj>, and inverse gamma densities with an infinite variance and mean set to a rea
sonable guess for k and (see, e.g. Finley et a l, 2007), where the guess may again depend on 
some rough exploratory data analysis such as looking at variograms. For a careful analysis, 
it is critical to study sensitivity to prior settings,

18.2.1.1 MCMC for Linear CPs

Inference for the linear GP model is based on the posterior distribution ir(©, p | Z) that 
results from Equations 18.1 and 18.2 and a suitable prior for ©, p. Although :t is of fairly 
low dimensions as long as the number of covariates is not too large, MCMC sampling 
for this model can be complicated by two issues: (i) Hie strong dependence among the 
covariance parameters, which leads to autocorrelations in the sampler; (ii) the fact that 
matrix operations involved at each iteration of the algorithm are of order N3, where N is 
the number of data points. Reparameterization-based MCMC approaches, such as those 
proposed hi Yan et al. (2007) and Cowles et al. (2009), or block updating schemes, where 
multiple covariance parameters are updated at once hi a single Metropolis-Hastings step 
(cf. Tibbits et al., 2010), may help with the dependence. Also, there are existing softwTare 
implementations of MCMC algorithms for linear GPmodels (Finley et al., 2007; Smith et al.,
2008). A number of approaches canbe used to speed up the matrix operations, induding 
changing Hie covariance function hi order to induce sparseness or other special matrix 
structures that are amenable to fastmatrix algorithms; wTe discuss this further in Section 18.5.

Predictions of the process, Z* =  {Z (sp ,. . . ,  Z(s* ))T, where s^,. . . ,  s*n are newT locations 
in D, are obtained via the posterior predictive distribution,

TT(Z* | Z) = n(Z* | Z ,© ,(S)tt(0 ,p  | Z)rf0rffS. (18.4)

Under the GP assumption the joint distribution of Z, TT given 0 ,  {3 is

[2 *] | © , P ~ n ( V i " E u E 12

> 2 .

f
_ e 2 i )'

where jjl̂  and \l  ̂ are the linear regression means of Z and Z* (functions of covariates 
and p), and E u , E 12, 2  21, £22 are block partitions of the covariance matrix E (0 ) (functions 
of covariance parameters 0 ). By basic normal theory (e.g. Anderson, 2003), Z* | Z, p, 0 ,
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corresponding to the first temi in tlie integrand m ( IS. 4), is normal with mean and covariance 

E(Z* I Z ,p ,e ) =  \L2 +  Y2i ^ 11{ Z - M h var(Z* | Z,p,©) =  £22 -  S z iS ^ E lz - U&5)

Note, in particular, that Hie prediction for Z* given Z has expectation obtained by adding 
two components: (i) the mean \l2 which, in the simple linear case, is px*, where X* are 
the covariates at tlie new locations; (ii) a product of the residual from the simple linear 
regression on the observations (Z -  |x 1) weighted by E 2 1 . If there is no dependence, tlie 
second tenn is dose to 0, but if there is a strong dependence, the second temi pulls Hie 
expected value at a new location doser to the values at nearby locations. Draws from tlie 
posterior predictive distribution (Equation 18.4) are obtained in two steps: (i) simulate 
0 ' ,  (S' ~ j t ( 0 , ( 3  | Z) by the Metropolis-Hastings algorithm; (ii) simulate Z* | ©', p',Z from 
a multivariate normal density with conditional mean and covariance from Equation 18.5 
using the ©', p' draws from step (i).

Example 18.3

Haran et al. (2010) interpolate f low erin g  dates for w h e a t  crops across North D ak o ta  as part  o f  a 

model to estimate crop e p id e m ic  risks. The f low erin g  dates are only  available  at a fe w  locations 

across the state, but using a linear G P  model with a M atem  covariance,  it is possible  to obtain 

distributions for interpolated f lo w e r in g  dates at sites w h ere  other information (weather predictors) 

is available  for the ep idem ic  model,  as show n in Figure 18.2. Although o n ly  point est imates are 

disp layed  here, the full distribution o f  the interpolated f low erin g  dates is used w h e n  estimating 

crop e p id e m ic  risks,

18.2.2 Linear Gaussian Markov Random Field Models

A direct specification of spatial dependence via E(©>, while intuitively appealing, reties on 
measuring spatial proximity in terms of distances between the locations. When modeling 
areal data, it is possible to use measures such as inter-centroid distances to serve this 
purpose, but this canbe awkward due to irregularities in the shape of the regions. Also, 
since the data are aggregates, assuming a single location corresponding to multiple ran
dom variables maybe inappropriate. A11 alternative approach is a conditional specification, 
by assuming that a random variable assodated with a region depends primarily on its 
neighbors. Asimple neighborhood could consist of adjacentregions, but more complicated 
neighborhood structures are possible depending on the specifics of the problem. Let tlie 
spatial process at location s e D be defined as in Equation 18.1 so Z(s) = X(s)p +  w(s), 
but now assume that the spatial random variables ("random effects") w are modeled 
conditionally. Let w_, denote the vedor w excluding w(s,). For each s, we model ip(s,-) 
in terms of its full conditional distribution, that is, its distribution given the remaining 
random variables, w .,:

w(s,) | W _ , ; 0 ~ N  ^ CijW (sy), k “ 1 j  , i =  1 , . . . , II, ( IS.6)

where c , y  describes the neighborhood structure. c , y  is nonzero only if i and j  are neighbors, 
while the k; are the predsion (inverse variance) parameters, To make the connection to tlie 
linear GP model (Equation 18.2) apparent, we let 0  denote the predsion parameters. Each
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(b)

♦ ♦
U ♦ U ♦ ♦ f  ♦ ♦ r ^ r - 
♦ *1* ♦ ♦ ►

A A J. *
A A A A A A

A Before July 6 ♦  July 6-)uly 12 9  July 13—July 19 ■  After July 19

FIGURE 18.2
(a) Raw  flowering date, (b) Interpolated flowering dates at desired grid locations, using m eans from posterior 
predictive distribution from linear Gaussian process model.

if(s,) is therefore a normal random variate with meanbased on neighboring values of w(s,). 
Just as we need to ensure tliat the covariance is positive definite for a valid GP, we need to 
ensure that the set of conditional specifications result in a valid joint distribution. Let Q be 
an n  x  i i . matrix with ith diagonal element k, and (/,/)th off-diagonal element —k,c,y. Besag 
(1974) proved thatif Q is symmetric and positive definite (Equation 18.6) specifies a valid 
johit distribution,

w | © ~  m Q - 1), (18.7)

with 0  the set of precision parameters (note that the r,y and k ,  depend on © ) .  Usually 
a common precision parameter, say t, is assumed so k; = i  for all i, and hence Q(t) =  
i( J  + C) wThere C is a matrix which has 0 on its diagonals and O'./Jth off-diagonal element
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—c,j, though a more attractive smoother may be obtained by using weights in a GMRF 
model motivated by a connection to thin-plate splines (Yue and Speckman, 2009), To add 
flexibility to the above GMRF model, some authors have included an extra parameter in tlie 
matrix C (see Ferreira and De Oliveira, 2007). Inference for the linear GMRF model specified 
by Equations 1S.1 and IS. 7 can therefore proceed after assuming a prior distribution for 
t, p, often an inverse gamma and flat prior respectively. An alternative formulation is an 
improper version of the GMRF prior, tlie so-called "intrinsic Gaussian Markov random 
field" (Besag and Kooperberg, 1995):

where Q has —xr,y on its off-diagonals (as above) and /th diagonal element i  £  ■ cl}. The 
notation j  ~  i implies that i and j  are neighbors. In tlie special case where ci; =  1 if j  ■— i and 
0 otherwise, Equation 18.8 simplifies to tlie "pairwise- difference form,"

which is convenient for constructing MCMC algorithms with univariate updates since 
the full conditionals are easy to evaluate. Q is rank deficient so tlie above density is 
improper. This f omi is a very popular prior for the underlying spatial field of interest, For 
instance, denote noisy observations by y = (y (si) , . . . ,y (s n)) , so vis,) = i[?(s,) + f, where 
t, ~  N(0, <il ) is independent error. Then an estimate of the smoothed underlying spatial 
process w canbe obtained from Hie posterior distribution of w | y as specified by Equa
tion 18.8. If the parameters, say x and <r2, are also to be estimated and have priors placed on 
them, inference is based on the posterior w, i, c 2 | y. The impropriety of the intrinsic GMRF 
is not an issue as long as the posterior is proper. If ct, =  1 when i and j  are neighbors and 
0 otherwise, this corresponds to an intuitive conditional specification;

where u, is the number of neighbors for the /th region, and NO) is tlie set of neighbors of 
the /th region. Hence, the distribution of w(s;) is normal with mean given by tlie average 
of its neighbors and its variance decreases as the number of neighbors increases. See Rue 
and Held (2005) for a discussion of related theory for GMRF models, and Sun et al. (1999) 
for conditions under which posterior propriety is guaranteed for various GMRF models.

Although GMRF-based models are very popular in statistics and numerous other fields, 
particularly computer science and image analysis, there is some concern about whether 
they are reasonable models even for areal or lattice data (McCullagh, 2002). The marginal 
dependence induced canbe complicated and counterintuitive (Besag and Kooperberg, 1995; 
Wall, 2004). Iti addition, a GMRF model on a lattice is known to be inconsistent with tlie 
corresponding GMRF model o i l  a subset of the lattice, that is, the corresponding margmal 
distributions are not the same. However, quoting Besag (2002), this is not a major issue if 
"The main purpose of having the spatial dependence is to absorb spatial variation (depen
dence) rather than produce a spatial model with scientifically interpretable parameters." 
GMRF models canhelp produce much better individual estimatesby "borrowing strength" 
from the neighbors of each individual (region). This is of particular importance hi small

/(w | ©) oc i (N 1*,/2exp {-w TQ(T)'iv}, (18.8)
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area estimation problems (see Ghosh and Rao, 1994), where many observations are based on 
small populations, for instance disease rate estimates in sparsely populated comities. Spa
tial dependence allows tlie model to borrow information from neighboring comities which 
may collectively have larger populations, thereby reducing the variability of the estimates. 
Similar considerations apply hi disease mapping models (MoHie, 1996) where small regions 
and the rarity of diseases have led to the popularity of variants of the GMRF-based Bayesian 
image restoration model due to Besag et al. (1991). More sophisticated extensions of such 
models hi the context of environmental science and public health are described in several 
recentbooks (see, e.g. Lawson, 2008; Le and Zidek, 2006; Waller and Gotway, 2004). Several 
of these models fall under the category of spatial generalized linear models, as discussed 
hi Section 18.3.

18.2.2.1 MCMC for Linear CMRFs

The conditional independence structure of a GMRF makes it natural to write and compute 
the full conditional distributions of each tp(Si), without any matrix computations. Hence 
MCMC algorithms which up date a single variable at a time are easy to construct. When this 
algorithm is effident, it is preferable due to its shnpHdty. Unfortunately, such univariate 
algorithms may often result in slow mixing Markov chains, hi Hie linear GMRF model 
posterior distribution, it is possible to analytically integrate out all the spatial random 
effects (w), that is, it is easy to integrate the posterior distribution j t  (vv, 0 ,  (3 | Z) withrespect 
to w to obtain the marginal ti(0 , (J | Z) hi dosed form, This is a fairly low-dimensional 
distribution, similar to the linear GP model posterior, and similar strategies as described 
for sampling from tlie linear GP model posterior may be helpful here. However, unlike 
the linear GP model posterior, all matrices involved in linear GMRF models are sparse, A 
reordering of tlie nodes corresponding to the graph can exploit tlie sparsity of the predsion 
matrices of GMRFs, thereby reducing tlie matrix operations from O(ir') to Oiiib2) where 
b2 is the bandwidth of the sparse matrix; see Rue (2001) and Golub and Van Loan (1996, 
p. 155). For instance, Example 18.3.2.2 (see Section 1S.3.2) involves u. =  454 data points, but 
tlie reordered predsion matrix has a bandwidth of just 24. The matrix computations are 
therefore speeded up by a fador of 357 each <uid tlie ensuing increase in computational 
speed is even larger.

18.2.3 Summary

Linear Gaussian random fields are a simple and flexible approach to modeling dependent 
data. When the data are point-level, GPs are convenient since the covariance canbe specified 
as a function of the distance between any two locations. When the data are aggregated or 
on a lattice, GMRFs are convenient as dependence canbe specified in terms of adjacendes 
and neighborhoods. MCMC allows for easy simulation from the posterior distribution for 
both categories of models, espedally since the low-dimensional posterior distribution of 
Hie covariance (or predsion) parameters and regression coeffidents may be obtained in 
dosed form. Relatively simple univariate Metropolis-Hastings algorithms may work well, 
and existing software packages can implement reasonably effident MCMC algorithms. 
When the simple approaches produce slow mixing Markov chains, reparameterizations 
or block updating algorithms may be helpful. Many strategies are available for reducing 
tlie considerable computational burden posed by matrix operations for linear GP models, 
including the use of covariance functions that result in spedal matrix structures amenable to 
fast computations, GMRFs have significant computational advantages over GPs due to the
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conditional independence structure which naturally results in sparse matrices and greatly 
reduced computations for each update of the MCMC algorithm.

1 8 3  S p atial G en eralized  L in ear M od els

Linear GP and GMRF models are veiy flexible, and work surprisingly well hi a variety of 
situations, including many where the process is quite non-Gaussian and discrete, such as 
some kinds of spatial count data. When the linear Gaussian assumption provides a poor fit 
to data, transforming the data via the Box-Cox family of transformations, say, and modeling 
the transformed response via a linear GP or GMRF may be adequate (see "trans-Gaussian 
krighig," for instance, in Cressie, 1993, with the use of delta method approximations to 
estimate the variance and perform bias correction). However, when it is important to model 
the known sampling mechanism for the data, and this mechanism is non-Gaussian, spatial 
generalized linear models (SGLMs) may be very useful. SGLMs are generalized linear 
models (McCullagh and Nelder, 1983) for spatially associated data. The spatial dependence 
{the error structure) for SGLMs can be modeled via GPs for point-level ("geostatistical") 
data as described in the seminal paper by Diggle et al. (1998). Here, we also include Hie 
use of GMRF models for the errors, as commonly used for lattice or areal data. Note tliat 
the SGLMs here may also be referred to as "spatial generalized linear mixed models" since 
the specification of spatial dependence via a generalized linear model framework always 
involves random effects.

18.3.1 Generalized Linear Model Framework

We begin with a brief description of SGLMs using GP models. Let {Z(s) : s e  D} and {zi?( s) : 
s g D\ be two spatial processes onD c  R'1 (d e Z+.) Assume that tlie Z(s,) are conditionally
independent given k?(si), . . . ,  where si.___, sr, e D, the Z(s,) conditionally follow
some common distributional form, for example, Poisson for count data or Bernoulli for 
binary data, and

E(Z(s,) | w) =  n(Si), for i = l , . . (IS. 9)

Let i](s) = //(n(s)} for some known link function h (■) (e.g. the logit link, h(x) =  log ( j , 
or log link, h(j) — log(jc)). Furthermore, assume that

n ( s ) = X ( 8)p +  ro<s), ( 18.10)

where X(s) is a set of p covariates associated with each site s, and p is a p-dimensional vector 
of coefficients. Spatial dependence is imposed on this process by modeling {?[?(s) s t  D| 
as a stationary GP sow  =  (jw(si), . . .  ,Jt>(s„))T is distributed as

w  | © ~  N (0, £ ( 0 )). ( 18.11)

£(©) is a symmetric, positive definite covariance matrix usually defined via a parametric 
covariance such as a Matem covariance function (Handcock and Stein, 1993), where © is 
a vector of parameters used to spedfy the covariance function, Note tliat with tlie identity 
link function and Gaussian distributions for the conditional distribution of the Z(s, ), we
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can obtain the linear GP model as a spedal case. Tlie model specification is completed with 
prior distributions placed on 0 ,  (3, where proper priors are typically chosen to avoid issues 
with posterior impropriety There has been little work on prior settings for SGLMs, with 
researchers relying on a mix of heuristics and experience to derive suitable priors, Prior 
sensitivity analyses are, again, crudal, as also discussed in Section 18.6. It is important to 
carefully interpret the regressionparameters in SGLMs conditional on the underlying spatial 
random effects, rather than as the usual marginal regression coeffidents (Diggle et al., 1998, 
p. 302).

The GMRF version of SGLMs is formulated in similar fashion, so Equations 18.9 and 
18.10 stay the same but Equation 18.11 is replacedby Equation 18.7. Inference for the SGLM 
modelisbased on the posterior distribution ji (0 , p, w | Zi. Predictions canthenbe obtained 
easily via the posterior predictive distribution In prindple, the solution to virtually any 
sdentific question related to these models is easily obtained via sample-based inference. 
Examples of such questions include finding maxima (see the example in Diggle et al., 1998), 
spatial cumulative distribution functions when finding the proportion of area where Z (s) is 
above some limit (Short et al., 2006), and integrating over subregionsm the case of Gaussian 
process SGLMs when inference is required over a subregion.

18.3.2 Examples

18.3.2.1 Binary Data

Spatial binary data occur frequently in environmental and ecological research, for instance 
when the data correspond to presence or absence of a certain invasive plant spedes at a 
location, or when the data happen to fall into one of two categories, say two soil types. 
Interpolation in point-level data and smoothing in areal/lattice data may be of interest. 
Often, researchers may be interested in learning about relationships between the observa
tions and predictors while adjusting appropriately for spatial dependence, and in some 
cases learning about spatial dependence may itself be of interest.

Example 18.4

The coastal marshes of the mid-Atlantic are an extrem ely  important aquatic resource. An invasive 

p lant species  c a l le d  P h ra g m ites  au stra lis  or  "phrag''  is a  major threat to this aquatic  ecosystem  [see 

Saltonstall,  2002), and  its rapid expansion  may be the result o f  human activities c a u s in g  habitat 

d isturbance (Marks et al., 1994). Data  from the Atlantic S lopes Consortium (Brooks et al., 2006) 

p rovide  information on p resen ce  or a b se n ce  o f  p hrag in the C h e s a p e a k e  Bay area, a lo n g  with 

predictors o f  phrag p resen ce  such as land use characteristics. A c c o u n t in g  for spatial d e p e n d e n c e  

w h en  studying p hrag p resen ce  is important since areas near a p h rag-do m in ated  region are more 

likely  to have phrag. O f  interest is estimating both the sm o o th ed  probability  surface associated  with 

p h rag  ov e r  the entire region as well  as the most important predictors of  p hrag presence.  B ecau se  

the response (phrag presence/absence) is binary a n d  spatial d e p e n d e n c e  is a  critical c o m p o n e n t  

o f  the m odel,  there is a  n e e d  for a spatial regression m odel for binary data. This can b e  easily 

c on structed via an SGLM, as discu ssed  below.

An SGLM for binary data maybe specified following Equations 18.9 and 18.10:

Z(s) | p(s) ~  Bemoulli(p(s)), 

4>“ V (s )}  = P X ( s ) +?u(s),
(18.12)
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where 4>-1 {/>(s)} is the inverse cumulative density function of a standard normal density, 
so /j ( s ) = <i>{pX + w(s)}. X(s), as before, is a set of p covariates associated with each site s, 
and p is a ^-dimensional vector of coefficients, w is modeled as a dependent process via a 
GP or GMRF as discussed in Section 18.3.1. Tlie model described by Equation 18.12 is the 
dipped Gaussian random field (De Oliveira, 2000) since it can equivalently be specified as:

,1 , ifZ*(s) > 0,
Z(s) | Z*(s) = , ,

[0, if Z*(s) < 0.

Z * (s) is then modeled as a linear GP or GMRF as in Section 18.2. This is anintuitive approach 
to modeling spatial binary data since the underlying latent process may correspond to a 
physical process that was converted to a binary value due to Hie detection limits of the mea
suring device. It may also just be considered a modeling device to help smooth the binary 
field, when there is reason to assume that the binary field will be smooth. Alternatively, 
a logit model may be used instead of the probit in Hie second stage in Equation 18.12, so

log ( l = ^ ) )  = PX(s) +w(s).
Several of the covariance function parameters are not identifiable. Hence, for a GP model 

the scale and smoothness parameters are fixed at appropriate values. These identdfiability 
issues are common in SGLMs, but are made even worse in SGLMs for binary data since 
they contain less information about tlie magnitude of dependence, Apotential advantage of 
GMRF-based models over GP-based models for binary data is that they can aggregate pieces 
of binary information from neighboring regions to better estimate spatial dependence.

18.3.2.2 Count Data

SGLMs are well suited to modeling count data. For example, consider the model

Z{s) | n(s) — Poisson(E(s)|ji(s)>, 

log(|i(s)) = pX + w(s),

where E(s) is a known expeded count at s based on other information or by assuming 
uniform rates across the region, say by multiplying the overall rate by the population at s.

Example 18.5

Yang et al. [2009) study infant mortality rates by  c o u n ty  m the southern US states o f  A la bam a,  

G eorgia ,  Mississippi, North Carolina, a n d  South C arolina  (Health Resources a n d  Services 

Administration, 2003) b etw een  1998 a n d  2000. O f  interest is f inding regions with unusually 

e lev a ted  levels in order to study possible  s o c io -e c o n o m ic  contributing factors. Since no interpo

lation is required here, the purpose  of introducing spatial d e p e n d e n c e  v ia  a G M R F model is to 

improve individual county-level est imates using spatial sm oo th ing  by  " b o rro w in g  information' ' 

from n eighboring counties. The raw a n d  sm o o th ed  posterior means for the maps are d isplayed in 

Figure 18.3. Based on the posterior distribution, it is possible  to make inferences abou t questions 

o f  interest, such as the probability  that the rate e x c e e d s  som e threshold, a n d  the importance of  

different s o c io -e c o n o m ic  factors.

The two mam examples in Diggle et al, (1998) involve count data, utilizing a Poisson 
and binomial model respectively. SGLMs for count data are also explored hi Christensen
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FIGURE 18.3
(a) Raw infant mortality rates, (b) Posterior mean infant mortality rates.

and Waagepetersen (2002), where a Langevin-Hastings MCMC approach is also devel
oped for smmlating from the posterior distribution. Note tliat count data with reasonably 
large counts may be modeled well by linear GP models, Given tlie added complexity of 
implementing SGLMs/ it may therefore be advisable to first try a linear GP model before
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using an SGLM. However, when there is scientific interest in modeling a known sampling 
mechanism, SGLMs maybe abetter option.

18.3.2.3 Zero-Inflated Data

hi many disciplines, particularly ecology and environmental sciences, observations are 
often hi the form of spatial counts with an excess of zeros {see Welsh et al., 1996). SGLMs 
provide a nice framework for modeling such processes. For instance, Rathbun and Fei
(2006) describe a model for oak trees which determines the species range by a spatial 
probit model which depends on a set of covariates thought to determine the species' range. 
Within thatrange {corresponding to suitable habitat), species counts are assumed to follow 
an independent Poisson distribution depending on a set of environmental covariates. Tlie 
model for isopod nest burrows hi Agarwal et al, {2002) generates a zero with probability 
p and a draw from a Poisson with probability 1 — p. The excess zeros are modeled via a 
logistic regression and the Poisson mean follows a log-linear model. Spatial dependence is 
imposed via a GMRF model.

Example 18.6

Recta et al. (2011) study the spatial distribution o f  C o lo ra d o  potato beetle  populations in potato 

fields w h ere  a substantial proportion o f  observations w e r e  zeros.  From the point o f  v i e w  o f  p o p u 

lation studies, it is important to  identify the w ithm -fie ld  factors that predispose the p resen ce  o f  an 

adult. The distribution may be seen as a manifestation of  tw o b io log ical  processes:  incidence,  as 

sh ow n  b y  p resen ce  or abse n ce ;  a n d  severity, as show n b y  the mean of positive cou nts, The obser

vation at location s, Z (s), is d e c o m p o s e d  into tw o  variables: in cid en ce  (binary) variable  U (s) =  1 
if Z(s) > 0, else L^(s) =  0, a n d  severity (count) variable  V(s)  =  Z (s )  if Z(s ) > 0 (irrelevant other

wise). Separate linear G P  m odels can b e  sp ec ified  for the U (s)  a nd  \/(s) processes, with different 

c o v a r ia n ce  structures a n d  means. This formulation a l low s a great  deal o f  flexibility, including 

the ability  to study spatial d e p e n d e n c e  in severity, a n d  spatial d e p e n d e n c e  b etw een  severity a n d  

in cidence,  and  the potential to  relate predictors  specifica lly  to severity a n d  in dependence.

For c on ve n ien c e ,  w e  order the data so that the incidences,  observations w h ere  (7(s) =  1, 
are the first n-| observations. H e n c e ,  there are observations for V ,  co rres p o n d in g  to the first

ni observations o f  U, and  n-| < n. O u r  observation vectors are therefore U  =  ( U ( s -\) , __ U (sn) ) T
a n d V  =  ( W s - | ) , . . . ,  V ( * nl J)7"' P lac ing  this model in an SG L M  framework:

LV(s) =  Bernoull i(/\(s», so Pr((7(s) =  1 | of) =  A(s),

.fi tf*
V (s) — TruncPoisson(6 (s)), so E(V'(s) | wv(s), p) = ------ ^ r .

1 — e ~

TruncPoisson is a truncated Poisson random variable  (cf. D a v id  an d  Johnson, 1952) with Pr(V(s) = 
r | B(s)) =  rft̂  g-BtO)' r — 1 j an d  mv(s) ,  a, p are d e scr ibed  below. Furthermore,

u s in g c a n o n ic a l  link functions,

l0g (  1 -^(S) )  = Xu(s)« +

log(fi(s)) = XV(s)p + nv(s),

w h ere  X(j(s),  AV(s), are vectors  o f  explanatory  variables, ot, p are regression coefficients,  a n d

W u  — ( W ( j( s i ) , __ W(j(sn))7 a n d  v i y  =  ( w y (s - | ) , . . . ,  w y ( sni ) ) r  are m o d e le d  v ia  C Ps.  The

resulting c o v a ria n ce  matrices for W u , W y  are E y ,  E y  respectively, sp ec ified  by exponential
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co v a ria n ce  functions as d e scr ibed  in Section 18 .2 .1 .  The parameters o f  our m odel are there

fore (a,  p, 0),  with 0  representing cov aria n ce  function parameters.  N o te  that the model structure 

a lso  a l low s for a f lexible  cross-co variance  relating these  tw o latent processes (Recta e t  al., 20 11) ,  

though w e  do not discuss this here. Priors for a ,  ft, 0  are sp ec ified  in standard fashion, with a flat 

prior for the regression parameters and  log-uniform priors for the cov aria n ce  function parameters. 

Inference and  prediction for this m odel are b a se d  on the posterior w ^ ,or ,  f), 0  | U ,V ) .  An

algorithm for sam p lin g  from this distribution is d iscu ssed  in the next section.

18.3.3 MCMC for SGLMs

For SGLMs, unlike spatial linear models, marginal distributions are not available in dosed 
form for any of the parameters. In other words, for linear spatial models it is possible to 
study tt(©, p | Z) ("marginalizing out" w), while for SGLMs, inference is based on the 
joint distribution ji(0 , p, w | Z). Hence, the dimension of the distribution of interest is 
typically of the same order as the number of data points. While one can easily construct 
variable-at-a-time Metropolis-Hastings samplers for such distributions, the strong depen
dence among the spatial random effeds ( i f , )  and the covariance/precision parameters ( 0 )  

typically results in heavily autocorrelated MCMC samplers, which makes sample-based 
inference a challenge in practice, hi addition, expensive matrix operations involved in each 
iteration of the algorithm continue to be a major challenge for GP-based models, though 
some recent approaches have been proposed to resolve this (see Section 18.5). Hence not 
only are standard MCMC algorithms for SGLMs slow mixing, but also each update canbe 
computationally expensive, leading to very ineffident samplers.

A general approach to improve mixing in the Markov chain is to update parameters 
jointly in large blocks. This is a well-known approach for improving mixing (see, e.g. Liu 
et al., 1994) and is particularly useful in SGLMs due to the strong dependence among the 
components of the posterior distribution However, constructing joint updates effectively 
canbe a challenge, espedally in high dimensions. Approaches proposed for constructing 
joint updates for such models often involve deriving a multivariate normal approximation 
to the joint conditional distribution of the random effeds, :r(iv | 0 , p,Z). We now briefly 
discuss two general approaches for constructing MCMC algorithms for SGLMs.

18.3.3.1 Langevin-Hastings MCMC

Langevin-Hastings updating schemes (Roberts and Tweedie, 1996) and effidentreparame- 
terizations for GP-based SGLMs are investigated in Christensen et al. (2006) and Christensen 
and Waagepetersen(2002). The Langevin-Hastings algorithmis a variant of the Metropolis- 
Hastings algorithminspiredby considering continuous-time Markov processes that have as 
their stationary distributions the target distribution Since it is only possible to simulate from 
the discrete-time approximation to this process and the discrete-time approximation does 
not result in a Markov chain with desirable properties (it is not even recurrent), Langevin- 
Hastings works by utilizing Hie discrete-time approximation as a proposal for a standard 
Metropolis-Hastings algorithm (Roberts and Tweedie, 1996). Hence, Langevin-Hastings, 
like most algorithms for block updating of parameters, is an approach for constructing 
a multivariate normal approximation that can be used as a proposal for a block update. 
The significant potential improvement offered by Lange vin-Ha stings over simple random- 
walk type Metropolis algorithms is due to tlie fact that Hie local property of the distribution, 
specifically tlie gradient of the target distribution, is utilized, This can help move the Markov



464 Handbook o f  Markov Chain Monte Carlo

chain in the direction of modes. To illustrate tlie use of MCMC block sampling approaches 
based on Langevin-Hastiiigs MCMC, we return, to Example 18.3.2.3.

Example 18.7 Langevin-Hastings MCMC for a Two-Stage Spatial Zero-Inflated 
Poisson Model

This description fo l low s c losely  the more detailed  discussion in Recta et al. (2011).  S imple uni

variate M etropolis-H astings updates w o rk e d  poorly  an d  num erous Metropolis  ran dom -w alk  blo ck  

update sch em es for the random effects resulted in v e iy  s l o w  m ixin g  M arkov  chains as well.  Hence,  

Langevin-H astings updates w e r e  a p p lied  to the random effects. B orrow in g  from the notation a n d  

description in Christensen et al. (2006) a n d  D iggle  a n d  Ribeiro (2007), let

V(Y) = 7 - l°gn(Y !■■■) = 
dy

h  (,4(s,)) j ,=i
u+ni

den ote  the gradient o f  the lo g  target density eva lu a te d  at y  (denoted by jx(y | . . . ) )  w h ere  h c  and  g c  
are the partial derivatives o f  the c an on ical  link functions for the Bernoulli  a n d  truncated Poisson 

distributions respectively, h  a nd  g  are partial derivatives o f  the actual link functions used, and 

E i s  the Choleski factor o f  the joint cov aria n ce  matrix for W(j, w y .  S ince  w e  used can on ical

links in both cases, =  g^ g<s'^  =  1 for each i. H owever,  since the Lan eev m -H a st in es

algorithm a bov e  is not ge om etr ica l ly  ergodic  (Christensen et al., 2001), w e  use a truncated version 

w h ere  the gradient is

Vtmnc(y) = 7 - logitCy !■■■) = - y  +  t ^ V  dy 1 n+ni
y=n+1

w h ere  H  e  ( 0 , o o )  is a truncation constant. This results in a  geom etrical ly  ergodic  algorithm 

(Christensen et al., 2001) so a central limit theorem  holds for the estimated expectat ions and 

a consistent estimate for standard errors can be used to provide  a theoretical ly  justified stopping  

rule for the algorithm (Jones et al., 2006). The binomial part o f  the gradient does not n e e d  to b e  

truncated b e c a u se  the expectat ion, /4(s), is bounded. Given that the current value  o f  the random 

effects vector  is y, the Langevin-H astings update for the entire vector  o f  spatial random effects 

involves u s i n g a  multivariate normal proposal,  N ( y +  i? y  (y)trunc, h i) ,  h  >  0. The tuning param 

eter h  may b e  se le cted  ba se d  on so m e  initial runs, say by  a dap t in g  it so that a cc e p ta n c e  rates are 

similar to optimal rates given m Roberts a n d  Rosenthal (199B).

Unfortunately, the a bov e  M C M C  algorithm still mixes s low ly  in practice, w h ich  m ay be due to 

the fact that Lan gevin -H astin gs w o rk s  poorly  w h e n  different c o m p o n en ts  have different variances 

(Roberts a n d  Rosenthal, 2001); this is certainly the case  for the random effects W(j, w ^ .  To im prove 

the mixing o f  the M arkov  chain w e  fo l lo w  Christensen et al. (2006) a n d  transform the vector  of 

random effects into app roxim ate ly  (a p o s t e r io r i) uncorrelated c o m p o n en ts  with h o m o g e n e o u s  

variance, For c on ve n ien c e ,  let w =  (w ^, w ^ )7" be  the vecto r  o f  spatial random effects and  Y =
(U J ,V 7")T . The c o v a ria n ce  matrix for w  | Y is approxim ately  E =  ( E  1 +  A ( w ) )  ',  w h ere  A(w )1
is a diagonal matrix with entries lo g tc ( Vy | Wj), a nd Wj a n d  Yj are the /th e lem ents o f  w  

a n d  Y respectively. A lso,  w  is assum ed to b e  a typical  valu e  o f  w, such as the posterior m o d e

o f w .  Let w be such that w =  E ^ -w .  Christensen e ta l .  (2006) suggest updating w instead o f  w,
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since  w has a p p roxim ate ly  uncorrelated c o m p o n en ts  with h o m o g e n e o u s  variance,  s im p lify in gthe  

construction of  an eff icient M C M C  algorithm. For our application, setting A ( w ( x ) )  =  0 for all x  
is a c o n ve n ien t  c h o ice  a n d  appears to be adequate ,  though there are alternative a p p ro a ch e s  [see 

Christensen et al., 200&). An effic ient M etropolis-Hastings algorithm is ob ta in e d  b y  updating the 

transformed parameter vector  w  via  Langevin-H astmgs.  The rem aining parameters a ,  f), © may 

then be updated using simple Metropolis  random -walk  updates. This w o rk e d  reasonably  w e ll  in 

our exam ples,  but certain reparam etenzations may also be helpful in cases w h ere  m ixing is poor.

The above  Langevin-H astings algorithm w a s  fou nd in Recta et al. (2 0 11)  to be  eff icient in a 

num ber o f  real data and  sim ulated exam ples.  Similar e ff ic iencies  w e r e  seen for SGLM s for cou nt  

data m Christensen et al. (2006). For prediction at a n ew  set o f  locations, say w e

w o u l d  first predict the spatial random effect vectors  w£, =  . . . ,  iv jjtsJn))7  a n d  =

( n v ( s p , __ w v ( S n ) ) 7". A gain ,  sa m p le -b ase d  inference provides a simple  and  effective w a y  to

obtain  these predictions. G iven  a  sa m p le d  vecto r  o f  w y ,  cc, f), 0 }  from above ,  w e  can easily 

sa m p le  the vectors w£,, w£, | from the posterior predictive distribution as it is

a  multivariate normal,  similar in form to Equation 1 8 .S. O n c e  these vectors are obtained, the 

c o rres p o n d in g  predictions for the in cid en ce  and  p re v a le n ce  (U  and  V) processes  at the n e w  

locations are p ro d u c e d  by simulating from the c o rresp o n d in g  Bernoulli  a n d  truncated Poisson 

distributions. M an y  scientific question related to prediction or inference may b e  easily  a n s w e re d  

b a s e d  on the sam ples p ro d u c e d  from the posterior distribution o f  the regression parameters and  

spatial d e p e n d e n c e  parameters,  a lo n g  with the samples from the posterior predictive distribution.

18.3.3.2 Approximating an SGLM by a Linear Spatial Model

Another approach for constructing efficient MCMC algorithms involves approximating 
an SGLM by a linear spatial model. This can be done by using an appropriate normal 
approximation to the non-Gaussian model Consider an SGLM of the form described in 
Section 18.3.1. A linear spatial model approximation may be obtained as follows:

M(s,') | -N tX fs^ p  + w ts ;) ,^ ')) , i =  l , . . . ,n ,
{18.13)

iv | © -  W(0, £(©)),

withM (s;) representing the observation or some transformation of the observation at loca
tion s, , and c(s, ) an approximation to Hie variance of M (s,). It is dear that an approximation 
of the above form results hi a joint normal specification for the model. Hence, the approxi
mate model is a linear spatial model of the form described in Section 18.2.1 and the resulting 
full conditional distribution for the spatial random effects, i(w| 0 , p, Z), is multivariate 
normal Note tliat an approximation of this form can also be obtained for SGLMs that have 
underlying GMRFs. We consider, as an example, tlie following version of the well-known 
Poisson-GMRF model (Besag et a l, 1991):

Z(Sj ) | tp(Si) ~  Poisson(£, expjnMs,}} }, i =  1 ,. . . ,  u,

f i w  | t)  oc i (W_1^ 2 exp {—w t Q (i)w },

with a proper inverse gamma prior for i. An approximation to tlie Poisson likelihood above 
may be obtained by following Haran (2003) (see also Haran and Tierney, 2011; Haran et al., 
2003). By using tlie transformation M(s,) = log (Yj/E,), and a delta method approxima
tion to obtainc (s,) = minfl/Y,-, 1/0.5), we derive the approximation M(s,) — N’(k?(s,), r(s,) ). 
Other accurate approximations of tlie form E qu a tion 18.13, induding versions of tlie Laplace 
approximation, have also been studied (cf. Knorr-Held and Rue, 2002, Rue and Held, 2005).
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The linear spatial model approximation to an SGLM has been pursued in constructing 
block MCMC algorithms where the approximate conditional, distribution of tlie spa
tial random effects can be used as a proposal for a block Metropolis-Hastings update 
{Haran et al., 2003; Knorr-Held and Rue, 2002). The spatial linear model approximation 
above also allows for tlie random effects to be integrated out analytically, resulting in 
low-dimensional approximate marginal distributions for the remaining parameters of Hie 
model. The approximate marginal and conditional may be obtained as follows:

1. The linear spatial model approximation of the form Equation 18.13 results in a 
posterior distribution tt(©, p,w | Z). This canbe used as an approximation to the 
posterior distribution of tlie SGLM ('ji(0, p,w | Zi).

2. The approximate distribution ft(©, P, w | Z) can be analytically integrated with 
respect to w to obtain a low-dimensional approximate marginal posterior tt (©, p |
Z). The approximate conditional distribution of w is also easily obtained in closed 
form, ft(w | ©, P,Z).

The general approach above has been explored hi the development of heavy-tailed pro
posal distributions for rejection samplers, perfect samplers and efficient MCMC block 
samplers {Haran, 2003; Harm and Tierney, 2011). Separate heavy-tailed approximations to 
the marginal tH©, p | Z ) and the conditional ft (w  | ©, p, Z ) can be used to obtain a joint dis
tribution, which may thenbe used as a proposalfor an independence Metropolis-Hastings 
algorithm that proposes from the approximation at every iteration (see Haran and Tiemey, 
2011, for details). This algoritlmi is uniformly eigodic in some cases (Haran and Tiemey, 
2011) so rigorous ways to determine MCMC standard errors and the length of the Markov 
chain (Flegal et al., 2008; Jones et al., 2006) are available. The general framework described 
above for obtaining a linear spatial model approximation and integrating out the random 
effects {Haran, 2003; Haran and Tiemey, 2011) has been extended in order to obtain fast, 
fully analytical approximations for SGLMs and related latent Gaussian models (Rue et al.,
2009). While their fully analytical approximation may not have the same degree of flexibil
ity offered by Monte Carlo-based inference, the approach in Rue et a l (2009) completely 
avoids MCMC and is therefore a promising approach for routine, efficient fitting of such 
models especially when model comparisons are of interest or large data sets are involved. 
However, it is worth noting that with Monte Carlo approaches, unlike with purely ana
lytical approaches, it is possible in principle to obtain arbitrarily precise estimates. That 
is, as the Monte Carlo sample size gets large, the standard error reduces to zero. Sample- 
based inference is also an extremely useful tool for appropriately propagating uncertainty, 
this is increasingly important in complex scientific problems where multiple models are 
used—output from one model often acts as input to another model, hi the spatial modeling 
context, when joint distributions are of particular interest, sample-based inference provides 
a convenient approach for propagating uncertainty while preserving properties of the joint 
distribution.

Both tlie Langevin-Hastings algoritlmi and MCMC based on "linearizing" an SGLM, 
along with their variants, result in efficient MCMC algorithms in many cases. An advan
tage of algorithms that use proposals that depend on the current state of the Markov 
chain (like tlie Langevin-Hastings algorithm or other block sampling algorithms dis
cussed here), over fully-blocked independence Metropolis-Hastings approaches is that 
they take into account local properties of the target distribution when proposing updates. 
This may result in a better algorithm when a single approximation to the entire distribu
tion is inaccurate. However, if the approximation is reasonably accurate, the independence
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Metropolis-Hastings algorithm using this approximation can explore the posterior distri
bution very quickly does not get stuck in local modes, and canbe easily parallelized as 
all the proposals for the algorithm can be generated independently of each other. Since 
massively parallel computing is becoming increasingly affordable, this may be a useful 
feature.

We note that computing and inference for GP-based models and GP-based SGLMs for 
binary data, particularly for large data sets, have been studied extensively in the machine 
learning literature as well. While the context of tlie problems may not always be obviously 
spatial in nature, the models used are very similar. Therefore, several of the associated 
computational approaches may also be very useful and practical hi the context of the spa
tial models discussed here. Both analytical approaches and sophisticated MCMC-based 
approaches (see Neal, 1999) have been developed. An excellent review of this literature 
may be found in Chapters 3 and S of Rasmussen and Williams (2006).

18.3.4 Maximum Likelihood Inference for SGLMs

It is important to note that even hi a non-Bayesian framework, computation for SGLMs 
is nontrivial. For the SGLMs described hi the previous section, the maximum likeli
hood estimator (MLE) maximizes Hie integrated likelihood. Hence, the MLE for 0 , p 
maximizes

£(© , p,w;Z)f/w,

with respect to 6 , p. Evaluating the likelihood requires high-dimensional integration and 
tlie most rigorous approach to solving this problem uses MCMC maximum likelihood 
(Geyer, 1996; Geyer and Thompson, 1992). Alternatives include Monte Carlo expectation- 
maximization (MCEM) (Wei and Tanner, 1990), as explored by Zhang (2002) for SGLMs, 
although in some cases fast approximate approaches such as composite likelihood may be 
useful, as discussed for binary data by Heagerty and Lele (1998). In general, computation 
for maximum likelihood-based inference for SGLMs may often be at least as demanding 
as hi the Bayesian formulation. On Hie other hand, the Bayesian approach also provides a 
natural way to incorporate tlie uncertainties (variability) hi each of the parameter estimates 
when obtaining predictions and estimates of other parameters in the model

18.3.5 Summary

SGLMs provide a very flexible approach for modeling dependent data when there is a 
known non-Gaussian sampling mechanism at work. Either GP or GMRF models can be 
used to specify tlie dependence hi a hierarchical framework. Constructing MCMC algo
rithms for SGLMs canbe challenging due to the high-dimensional posterior distributions, 
strong dependence among Hie parameters, and expensive matrix operations involved hi 
Hie updates. Recent work suggests that MCMC algorithms that involve block updates of the 
spatial random effects can result in improved mixing in tlie resulting Markov chains. Con
structing efficient block updating algorithms canbe challenging, butffiiditig accurate linear 
spatial model approximations to SGLMs or using Langevin-Hastings-based approaches 
may improve the efficiency of the MCMC algorithm in many situations. Matrix operations 
canbe greatly speeded up by using similar tools to those used for linear spatial models. 
These will be discussed again in Section 1S.5 in the context of spatial modeling for Luge data 
sets, Appropriate SGLMs and efficient sample-based inference allow for statistical inference 
for a very wide range of interesting scientific problems,
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18.4 N o n -G au ssian  M ark ov  R an d om  Field  M od els

Non-Gaussian Markov random field (NMRF) models provide an alternative to SGLM 
approaches for modeling non-Gaussian lattice/areal data. These models were first pro
posed as "auto-models" in Besag (1974) and involve specifying dependence among spatial 
random variables conditionally, rather than jointly NMRFs may be useful alternatives to 
SGLMs, especially when used to build space-time models, since they can model some inter
actions in a more direct and interpretable fashion, for example, when modeling the spread of 
contagious diseases from one region to its neighbor, thereby capturing some of the dynam
ics of a process. GMRFs, as described by Equation 18.6, are special cases of Markov random 
field models. Amore general formulation is provided as follows:

with \)f > 0. This conditional specification results in a valid joint specification (Besag, 1974; 
Cressie, 1993) and belongs to the exponential family Consider a specific example of this for 
binary data, the autologistic model (Besag, 1974; Heikkinenand Hogmander, 1994):

where ic,y = 1 if i and j  are neighbors, and w,, =  0 otherwise. For a fixed value of tlie 
parameters (3 and i[f, the conditional specification above leads to an obvious univariate 
Metropolis-Hastings algorithm that cycles through ah tlie full conditional distributions in 
turn. However, when inference for the parameters is of interest, as is often the case, tlie 
joint distribution canbe derived via Brook's lemma (Brook, 1964; see also Cressie, 1993, 
Chapter 6), to obtain

where (J) is the intractable normalizing constant, which is actually a normalizing finic-
tioi i of the parameters i]v, (), Other autoexponential models canbe specified in similar fashion 
to the autologistic above, for example, the auto-Poisson model for count data (see Ferran- 
diz et al., 1995), or the centered autologistic model (Caragea and Kaiser, 2009). Specifying 
conditionals such that they lead to a valid joint specification involves satisfying mathemat
ical constraints like the positivity condition (see, e.g. Besag, 1974; Kaiser and Cressie, 2000) 
and deriving the joint distribution for sound likelihood-based analysis can be challeng
ing. Also, the resulting dependence canbe nonintuitive. For example, Kaiser and Cressie 
(1997) propose a "Winsorized" Poisson automodel since it is not possible to model posi
tive dependence with a regular Poisson auto-model In addition, it is nontrivial to extend 
these models to other scenarios, say to accommodate other sources of information or data 
types such as zero-inflated data. These challenges, along with the considerable computa
tional burden involved with full likelihood-based inference for such models (as we will

p(Zi | Z_,) oc exp ^ X !  c ‘i Z i j '

p(Zh . . . ,  Z„) =  c(4r, P) 1 exp p J ]  XjZ, + 'I' X !  w ljz i z
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see below), have made non-Gaussian Markov random fields more difficult to use routinely 
than SGLMs.

Since tlie joint distributions for NMRFs contain intractable normalizing functions involv
ing the parameters of interest, Besag (1975) proposed the "pseudolikelihood" approxi
mation to tlie likelihood, which involves multiplying the full conditional distributions 
together. The pseudolikelihood is maximized to provide an approximation to the MLE. 
This approximation works well in spatial models when the dependence is weak, butunder 
strong dependence the maximum pseudolikelihood estimate may be a very poor approxi
mation to the maximum likelihood estimate (see Gumpertz et a l, 1997). MCMC maximum 
likelihood (Geyer, 1996; Geyer and Thompson, 1992) provides a sound methodology for 
estimating Hie maximum likelihood via a combination of MCMC and importance sam
pling. This is yet another instance of Hie enormous flexibility hi model specification due 
to the availability of MCMC-based algorithms. MCMC maximum likelihood is a very gen
eral approach for maximum likelihoods involving intractable normalizing functions that 
also automatically provides sample-based estimates of standard errors for the parameters, 
though the choice of importance function plays a critical role in determining Hie quality of 
the estimates.

Now consider a Bayesian model obtained by placing a prior on the parameters (say, (p, iff) 
for Hie autologistic model). Since the normalizing function is intractable, the Metropolis- 
Hastings acceptance ratio caimot be evaluated and constructing an MCMC algorithmfor the 
model is therefore nontrivial. Approximate algorithms replacing the likelihoodby pseudo
likelihood (Heikkinen and Hogmander, 1994) or by using estimated ratios of normalizing 
functions have been proposed, but these do not have a sound theoretical basis, though 
recent work by Atchade et al. (2008) is a first attempt at providing some theory for the 
latter algorithm. A recent auxiliary variables approach (Meller et al., 2006) has opened 
up possibilities for constructing a Markov chain with the desired stationary distribution, 
though it requires samples from Hie exnct distribution of the auto-model at a fixed value of 
the parameter, which is typically very difficult. Perfect sampling algorithms tliat produce 
samples from the stationary distribution of the Markov chains do exist for some models 
such as the autologistic model (MeHer, 1999; Propp and Wilson, 1996). Perfect samplers are 
attractive alternatives to regular MCMC algorithms but are typically computationally very 
expensive relative to MCMC algorithms; Bayesian inf erence for non-Gaussian Markov ran
dom fields, however, is one area where perfect sampling has potential to be useful. Zheng 
and Zhu (2008) describe how Hie MsUer et a l (2006) approach canbe used to construct an 
MCMC algorithm for Bayesian inference for a space-time autologistic model. While there 
has been some recent activity hi this area (cf. Hughes et al., 2011), Bayesian inference and 
computation for auto-models is still a relatively open area for research.

To summarize, non-Gaussian Markov random fields are an alternative to modeling 
dependent non-Gaussian data. The specification of dependence does notinvolve link func
tions and can therefore provide a more direct or intuitive model than SGLMs for some 
problems, Unfortunately, the mathematical constraints that allow conditional specifica
tions to lead to valid joint specifications of non-Gaussian Markov random fields can be 
complicated and nonintuitive. Also, such models are not easily extended to more compli
cated scenarios (as discussed hi Section 18.5). Sound inference for NMRFs hasbeen a major 
hurdle due to intractable normalizing functions that appear in the likelihood. Maximum 
likelihood based inference for such models can be done via MCMC maximum likelihood; 
Bayesian inference for such models has been an even greater challenge, but recent research 
hi MCMC methods has opened up some promising possibilities. Potential advantages and 
disadvantages of NMRFs over SGLMs are yet to be fully explored.
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18.5 E xten sio n s

The dasses of models described in Hie previous three sections, while very rich, are relatively 
simple and only have two or three (hierarchical) levels each. Using random field models as 
building blocks, a very large number of more flexible models canbe developed for tackling 
an array of important sdentific problems. In particular, when there is interest in incorpo
rating mechanistic models and physical constraints, spatial models can be specified via a 
series of conditional models, capturing the physical characteristics while still accounting 
for spatial and temporal dependence and various sources of error. For instance, Wikle et a l
(2001) describe a series of conditionally specified models to obtaina very flexible space-time 
model for tropical ocean surface winds.

hi similar fashion, joint models for data that are both point-level and areal can be eas
ily specified in a hierarchical framework, providing a model-based approach to dealing 
with data available at different levels of aggregation (see the discussion of spatialmisalign
ment in Banerjee et al., 2004, Chapter 6). Methods for spatial processes that either occur 
or are observed at multiple scales (Ferreira and Lee, 2007} take advantage of much of tlie 
same basic machinery described here. Models for spatiotemporal processes are particu
larly important since many problems involve space-time data, and it is critical to jointly 
modelboth sources of dependence. Spatiotemporal processes are particularly useful when 
mechanistic models are of interest and when there are interesting dynamics to be captured. 
Assuming space-time "separability"—that is, that the dependences across time and space 
do not interact (mathematically, Hie covariance is multiplicative in tlie spatial and temporal 
dimensions)—allows tlie use of Kronecker produds and dramatic increases in the speed of 
matrix computations. However, nonseparability is often not a tenable assumption Classes 
of computationally tradable spatial models with stationary, nonseparable covariances have 
been proposed (Cressie and Huang, 1999; Gneiting, 2002) to address this issue, but in many 
cases computation can quickly become very challenging with increase in space-time data, 
particularly for more flexible models. While MCMC-based approaches are feasible in some 
cases (see Wikle et al., 1998), approximate approaches based on dimension reduction and 
empirical Bayes estimation combined with Kalman filtering (Wikle and Cressie, 1999) or 
sequential Monte Carlo-based approaches (Doucet et a l, 2001) may be more computa
tionally effident, for example, in fitting multiresolution space-time models (Johaimesson 
et al., 2007). It is also often of interest to model dependendes among multiple space-time 
variables, along with various sources of missing data and covariate information; multiple 
variables, covariates and missing data are very common in many studies, particularly in 
public health and sodal sdence related research. These variables and missing information 
can just be treated as additional random variables in the model, and added into the sampler, 
thereby accounting for any uncertainties assodated with them. Multivariate models canbe 
explored via both multivariate GMRFs (Carlin and Banerjee, 2003; Gelfand and Vounatsou,
2003) and multivariate or hierarchical GP models (Royle and Berliner, 1999).

As with many other areas of statistics, a major challenge for spatial modelers is dealing 
with massive data sets. This is particularly problematic for GP-based models since matrix 
operations involving very large matrices can be computationally prohibitive. One set of 
approaches centers around fast matrix computations that exploit the sparsity of matrices 
in GMRF models. Rue and Tjelmeland (2002) attempt to approximate GPs by GMRFs to 
exploit these computational advantages in the GP model case as well, but discover that 
the approximation does not always work as desired, particularly wThen the dependence is 
strong. However, utilizing sparsity does seem to be among the more promising general
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strategies, as shown in recent work by Comford et a l (2005) who describe a framework to 
first impose sparsity and then exploit it in order to speed up computations for large data 
sets, Furrer et al. (2006) and Kaufman et a l (2008) use covariance tapering while Cressie 
and Johannesson (2008) use a fixed number of basis functions to construct a nonstationary 
covariance and exploit the special structure in tlie resulting covariance matrix to drastically 
reduce computations. Other approaches thathavebeeninvestigatedinrecentyears indude 
using a Fourier basis representation of a GP (see Fuentes, 2007, Padorek, 2007), and fast 
likelihood approximations for a GP model based on produds of conditionals (Caragea, 
2003; Stein etal., 2004; Vecchia, 1988). Wikle (2002) presents an approach for modeling large- 
scale spatial count data using an SGLM where he uses a spectral-domain representation of 
the spatial random effeds to model dependence. Higdon (1998) describes a kernel mixing 
approach by utilizing the fad  that a dependent process can be created by convolving a 
continuous white noise process with a convolution kernel By using a discrete version of 
this process, for instance with a relatively small set of hid ependent normal random variates, 
it is possible to model a very large spatial data set. The recently developed "predictive 
process" approach due to Banerjee et al. (2008) involves working with a low-dimensional 
projection of the original process, thereby greatly reducing the computational burden.

Stationarity and isotropy maybe restrictive assumptions for the spatial process, particu
larly when there are strong reasons to suspedthat dependence maybe different in different 
directions or regions. Induding anisotropy in GP models is fairly standard (Cressie, 1993); 
however, it is more difficult to obtain valid nonstationary processes that are also compu
tationally tradable, Several such models for nonstationary processes have been proposed, 
iiiduding spatially-varying kernel based approaches for GPs (Higdon et a l, 1999; Padorek 
and Schervish, 2006) and GMRFs, or by convolving a fixed kernel over independent spatial 
processes with different kernels (Fuentes and Smith, 2001). MCMC plays a central role hi 
fitting these flexible models.

To summarize, linear Gaussian random field models and SGLMs provide nice building 
blocks for constructing much more complicated models hi a hierarchical Bayesian frame
work. Much of the benefit of Bayesian modeling and sample-based inference is realized hi 
spatial modeling hi situations where a flexible and potentially complicated model is desired, 
but is much more easily specified via a series of relatively simple conditional models, where 
one or more of the conditional models are spatial models.

18.6 C o n clu sio n

The linear Gaussian random fields discussed hi Section 18.2 are enormously powerful and 
flexible modeling tools when viewed hi a maximum likelihood or Bayesian perspective, as 
are some of the non-Gaussian random fields discussed briefly hi Section 18.4. Although the 
discussion here lias focused on spatial data, the methods are useful hi a veiy wide array 
of nonspatial problems, induding machine learning and classification (primarily using GP 
models; see Rasmussen and Williams, 2006), time series, analysis of longitudinal data, and 
image analysis (primarily GMRF models; see references hi Rue and Held, 2005). The major 
advantage of using a Bayesian approach accrues from the ability to easily specify coherent 
joint models for a variety of complicated sdentific questions and data sets with multiple 
sources of variability Bayesian approaches are particularly useful for the broad dasses of 
models and problems discussed hi Sections 18.3 and 18.5.



472 Handbook o f Markov Chain Monte Carlo

MCMC and sample-based inference in general greatly expands the set of questions that 
can be answered when studying spatial data, where for complicated conditionally spec
ified models, asymptotic approximations may be difficult to obtain and hard to justify 
Sample-based inference allows for easy assessment of the variability of all estimates, joint 
and marginal distributions of any subset of parameters, incorporation of nonlineariiies, 
multiple sources of variability, allowing for missing data, and Hie use of scientific informa
tion in the model as well as via prior distributions. It is also typically much harder to study 
likelihood surfaces in maximum likelihood inf erence, but one can routinely study posterior 
surfaces—this provides a much more detailed picture regarding parameters in complicated 
models, which is important when likelihood or posterior surfaces are multimodal, flat or 
highly skewed, hi principle, once the computational problem is solved (a good sampler is 
implemented), essentially all such questions canbe based on the estimated posterior dis
tribution Since this is a very concise overview' of Gaussian random field models for spatial 
data, we have neither discussed Hie theory underlying Gaussian random fields nor impor
tant principles of exploratory data analysis and model checking, but these can be found 
in many texts (Banerjee et al., 2004; Cressie, 1993; Diggle and Ribeiro, 2007; Sehabenberger 
and Gotway, 2005).

It is perhaps best to end with some words of caution. While MCMC algorithms and pow
erful computing have made it possible to fit increasingly flexible spatial models, it is not 
always dear that there is enough information to leam about the parameters in such mod
els. Zhang (2004) show's that not all parameters are consistently estimable in. maximum 
likelihood-based inference for Gaussian process SGLMs; howTever, one quantity is consis
tently estimable {the ratio of the scale and range parameters in a M attm covariance), and 
this is the quantity that drives prediction. Ithasbeennoted that the likelihood surface for the 
covariance parameters in a linear GP model is relatively flat, which accounts for the large 
standard errors of the estimates in a maximum likelihood setting (see Handcock and Stein, 
1993; Li and Sudjianto, 2005). hi our experience, this can also lead to large posterior stan
dard deviations for the parameters in a Bayesian framework, both in GMRF and GP-based 
models. Remarkably, prediction based on these models often works extremely well—Stein 
(1999) provides a theoretical discussion of this in the context of linear GP models. This can 
be viewed as both a positive and a negative: a positive because often researchers are most 
concerned with prediction, and a negative because inference about the parameters is unreli
able, and model validation techniques such as cross-validation cannot detedproblems with 
inference about these parameters, as noted by Zhang (2002). The large uncertainties about 
parametervalues can also be a problem mother situations. For example, tlie inferred depen
dence (range parameter) may not differ significantly even when differences in dependence 
exist, say at different time points or across different subregions. While the discussion above 
has centered on GP-based models and there has been less theoretical w'ork on studying 
properties of GMRF-based models, many of the same practical concerns appear to exist, 
including identifiability issues, especially for the variance components (see, e.g. Bemar- 
dinelli et a l, 1995), Prior sensitivity analysis should be a critical component of a careful 
spatial analysis.

As discussed at length here, Gaussian random field models are very useful but present 
considerable computational challenges. Software to meet this challenge indudes Hie 
R (Ihaka and Gentleman, 1996) packages geoR (Ribeiro and Diggle, 2001), spBayes 
(Finley et al., 2007) for various linear GP models, geoRglra (Christensen and Ribeiro, 2002) 
for GP models for count data, ramps (Smith et al., 200S) for joint linear models for point- 
level and areal data, and the GeoBugs module in WinBUGS (Lunn et al., 2000) for various 
GMRF models. However, although these software packages are a great advance, there still
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remains a lot of room for development of new algorithms and software for the classes of 
spatial models discussed here,
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Modeling Preference Changes via a Hidden Markov 
Item Response Theory Model

Jong Hee Park

19.1 In tro d u ctio n

Over the past two decades, political scientists have made great advances in the empirical 
estimation of ideal points (Bafuini et a l, 2006; Bailey and Chang, 2001; Clinton et al., 2000; 
Heckman and Snyder, 1997; Jackman, 2001; Londregan, 2000; Martin and Quinn, 2002; Poole 
and Rosenthal 1997). An ideal point, or preference, is a foundational theoretical concept 
for explaining the choices a political actor makes. For example, in simple unidimensional 
spatialmodels of voting, a legislator's vote choice is modeled as a rational dedsionbased on 
a (Euclidean geometric) calculation of differences in utility values between the legislator's 
ideal point, a proposed bill, and the status quo.

Although an ideal point is often assumed to be static for theoretical convenience, dynam
ics in ideal points pose an important theoretical and empirical puzzle to researchers. For 
example, examining tlie judidal opinion writing of 16 US Supreme Court justices, Epstein 
et al, (1998) condude that there is enough evidence to invalidate the assumption of pref
erence stability over time.* They also go on to claim that any inference about a justice's 
"revealed preference" that is based on the stable preference assumption canbe misleading 
if the justice actually underwent several preference changes over a lifetime. However, the 
development of statistical methods for dynamic ideal point estimation has been limited to 
a few published works (Martin and Quinn, 2002; McCarty et al., 1997). Also, the existing 
methods for dynamic ideal point estimation fail to distinguish fundamental changes from 
random drifts. In this paper I propose a method to detect ski/yj, discontinuous changes in ideal 
points.

The approach I take in this paper is to combine Chib's (1998) hidden Markov model 
(HMM) with Hie two-parameter item response theory (IRT) model, hi this model, the 
dynamics in ideal points are modeled as agent-spedfic hidden regime changes. I demon
strate the utility of the hidden Markov IRT model by analyzing changes in ideal points 
among the 43 US Supreme Court justices serving between 1937 and 2006, and condude 
that the model provides an effective benchmark for making probabilistic inferences about 
the timing of preference changes.

* The study of linkages between judges’ opinions and their ideological leanings has become an important area of 
research in the last two decades, as political scientists have rejected "apolitical" legal understandings of judicial 
opinions in favor of attitudinal and rational m odels that introduce "political" factors into the decision-making- 
process (Epstein and Knight, 1998; Segal and Spaeth, 1993),
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19.2 D yn am ic Id eal P o in t E stim atio n

Assuming a quadratic utility loss function, the utility of voting for item i by legislator j at 
time t is

= - ( e /f- y , ' ) z + 5 ^

where 9;f is legislator / s ideal point at f, Y, is the location of Yay, and is a stochastic 
error drawn from a Gaussian distribution. For simple notation, I assume that 0;t and Y, are 
scalar, which means that the underlying political space is one-dimensional. The utility of 
voting against item i is defined similarly:

U/,(Ni) =  - ( 0/, - N i )2 +  5 ^ .

hi this random utility model, a legislator votes for a bill i when U; f(Y,) -  Ult(Ni) > 0. If 
the utility difference between two vote choices is treated as a latent variable, the process 
can be modeled as a Bernoulli trial in which tlie probability of a yes vote is a function of a 
legislator's ideal point and the proposed bill's location:

= 1 1, if Zijt = Ujt(Yi) -  Ujt (Ni) > 0,
'f jo , if zljt -  U]t(Y;) -  U jtim  < 0.

Then, as shown by Jackman (2001), some simple algebra shows the connectionbetween tlie 
random utility voting model and tlie two-parameter IRT model:

Zijt =  UjtiYi) ~  Ujt(Ni) =  - ( 6 ] t  -  Y i) 2 +  sg p  +  <eyt -  N i)2 -  

=  - 2 (Ni -  Yj)Qjt -  ( Y f  -  N f ) +  4 ?  -  

= +  Syf.

Note that tlie f subscript hi ideal points is carried through the equation to denote tlie 
dynamics hi ideal points.

If a political actor only makes a few decisions oris active fora shortperiod of thne, ignoring 
idealpoint temporal dynamics is unlikely to pose a problem. However, for someone such as 
a legislator who serves multiple terms hi office sessions, the conventional IRT model with 
constant ideal points very likely fails to capture any political evolution. As the legislator 
ages, exposure to exogenous shocks hi tlie form of economic shifts, social upheavals, and 
new political environments is likely to affect voting decisions. It would be unrealistic to 
attribute ah time-varying patterns in voting behavior to bill characteristics {a and p).* 

Since the constant IRT model itself is highly parameterized with 71 + f  parameters, where 
I is the number of items and / is the number of legislators, letting ideal points (0yj) vary over 
time is not a trivial modification. Two methods have been proposed so far. The first method, 
which does notrely on the IRT framework, is to spedfy ideal points as a polynomial function 
of time (McCarty et al., 1997). The other is to model the transition of ideal points as a first- 
order Markov process while the observed voting data are generated from the IRT model

* H ote that the variance parameter in the IR Tm odel is not identified as in the binary response models.
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{Martin and Quinn, 2002). One major difference between two methods is the source of the 
dyanmics. McCarty et al/s {1997) method assumes that the effect of time on ideal points is 
deterministic. By contrast., Martin and Quinn's dynamic ideal point method decomposes 
the source of changes in ideal points into a deterministic part and a stochastic part and 
estimates the variance of legislator-specific transitions. These two methods are successfully 
applied to developing dynamic measurements of ideal points in US legislators and US 
Supreme Court justices with DW-NOMINATE (McCarty et al., 1997) and the Martin-Quinn 
score (Martin and Quinn, 2002), respectively.

Howevei; while both methods are effective in uncovering transitions in ideal points, 
neither is specifically designed to detect the timing of changes in ideal points. In other 
words, the existing dynamic ideal point estimation methods are not optimal for modeling 
sharp, discontinuous changes in ideal points. This is an important issue since theoretical 
discussions on changes in ideal points pit continuous transitions of ideal points against 
discontinuous transitions. To put it differently, researchers who are more interested in the 
existence and timing of ideal point shifts rather than with smooth evolutions of ideal points 
over time would not find the existing methods helpful. This is why I have introduced 
a dynamic IRT model specifically designed to capture sharp, discontinuous ideal point 
shifts.

19.3 H id d e n  M a r k o v  I te m  R e s p o n s e  T h e o r y  M o d e l

The approach I take combines a HMM with Hie standard two parameter IRT model. Specif
ically, I use Chib's (1998) model to capture hidden regime changes in a legislator's ideal 
point. Note that in Chib's model the regime transition is constrained so that a Markov chain 
only moves forward to the terminal state. This constraint generates a nonergodic Markov 
chain, which titms out to be computationally efficient and as flexible as HMMs with ergodic 
Markov chains.*

Let Sjt be an indicator of hidden regimes for legislator j' s ideal point at t, and Pj be a 
transition matrix for the hidden regimes. Due to the nonergodic constraint, it is trivial to 
compute the initial probability: t t q  =  ( 1 , . . . ,  0 ) .  The latent propensity of voting for an item 
i canbe expressed as a function of item characteristics and ideal points, which are subject 
to agent-spedfic regime changes:

* Let =  Pr(s/ = j  |s/_i =  i) be the probability of m oving to state ; from state i at time (w h en  the state at f — 1 
is i. Then, the transition m atrix of Chib (1998) is

Z ijk —  — +  &ijt/ £ijt N(0, 1),

Sjt I Sj't-1 ~  Markov (ttq, P,).

(19.1)

(19.2)

!>U p 12 0
o  V22  P23

P =

Vm- im 
1 /
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The value of 6f;3rt can take M different values at each time point subject to the first-order 
Markov process. In other words, Sjt indicates the preference regime associated with a 
legislator's ideal point at t.

It should be stressed that the hidden Markov IRT model canbe considered as a spedal 
type of the dynamic IRT model developed by Martin and Quinn {2002). While the dynamic 
IRT model assumes that ideal points change at each time point due to random shocks, 
the hidden Markov IRT model assumes that ideal points change only when the underlying 
regime changes. When there is no deteded change point sit =  1 for f =  1 , . . . ,  Tj, the hidden 
Markov IRT model reduces to the constant IRT model.

Albert (1992) and Johnson and Albert (1999) provide an effident Gibbs sampling algo
rithm for Hie constant IRT model. Once hidden state variables Sjt are sampled, the rest of 
the sampling scheme is similar to the constant IRT model.

Normal distributions are used as prior distributions for ideal points and item parameters. 
For identification^ I use the standard normal distribution as a prior distribution of ideal 
points*

>.,■ ~ IV(|io, Vo),

QjiSi ~  N(0, 1), 

pa -  Beta(/i>>,

where V  = {a;,
The MCMC sampling algorithm for the hidden Markov IRT model consists of five steps, 

including two steps for augmented variables. We have

p (« ,M ,P | y ) = p(a, p, 8, P, s, z | y ) ds dz

p (a ,p 16, P, s,z)p(fl | P, s,z)p(V  | s, z)p(s | z,y)p(z | y) rtsdz.

Step 1. Simulation of latent utilities. Following Albert and Chib (1993), the latent variable 
(z,yjt) in Equation 19.1 is sampled from two truncated normal distributions, the support 
of which changes depending on realized binary outcomes:

f N(—oc,d](ctj + 1 ), if yijt =  o,
Z'l’k [ W(0,co) («! + fo 1), if yijt =  1.

Step 2. Simulation of item parameters. A vedorized notation is used to explain the simu
lation of item parameters. Latent utilities are formed as a / x 1 vedor (zIt), and ideal 
point estimates are transformed into a J  x 2matrix = (1, ) where 0jrS}t is a vec
tor of ideal points for all legislators at time t: t>/i3(t = (0i,31(, . . .  ,0/,Sji()'. Finally, item 
parameters are stacked as a 2 x 1 matrix X, = (a,, £V)'. Then we have a multivariate 
linear regression model

Z,'f =  O f i . ,  +  E,'f.

* See Clinton et al. (2DDD) and Jackman (ZDD1) for the identification of the IRTm odel in Bayesian estimation.
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Note that serves as a design matrix and X, serves as a parameter vector at this 
sampling step. From this,

\i |ft,P,z,y ~N(|ju.,Vi.),

V , = f a  © M  +  V
\t=i

= Sx €>'tz[t +  Vq Vo 
\f=l

Step 3. Simulation of a latent state vector. For the simulation of ideal points, I transform 
Equation 19,1 hito a multivariate time series model by subtracting the difficulty 
parameter a{ from latent utilities (z*t =  z;t -  a !t) and stacking ttiem as an I- x lvector. 

4 indicates the ntmiber of items considered by legislator j  at time t and varies across 
legislators, aj. indicates difficulty parameters for all items considered by legislator j  
at time t. The dimension of aj. also changes by legislators and time. Similarly, let p̂
denote discrimhiation parameters for ah items considered by legislator j  at time f.
Tlie new equation can take the form of a linear regression model with ^  as a J- x 1 
design matrix and 0Jj6f as a 1 x 1 parameter vector as fohows:

z £ = p 'e ,w + e /(. (19.3)

Sampling a latent state vector for each legislator is done using Chib's (1998) recursive 
sampling algorithm. The algorithm is identical for all legislators and needs to be 
repeated/ times. Thus, I drop subscript j  for notational simplicity, p, z*, 0 andP should 
be read as and Py in the fohowing. Note that I suppress time subscripts of
p, z*, 6 to denote them as matrices containing all observations. The joint sampling of 
latent states canbe decomposed as follows:

p(sh . . .  ,sT | p, z*, 9, P) = p(sT | p,z*, G, P)p(sT_ h sT_2/. . .  ,s i  | sT, p,Z*, 6, P)

= P(sT I p ,z * ,e ,P ) . .  .p(st I st+1, p ,z % e , P ) ... 

p(si|p,z*,S2,e ,P ), (19.4)

where S t+1 mdicates Hie history of the state from f + 1 to T. Using Bayes' theorem, a 
typical form of Equation 19.4 can be decomposed as fohows:

p(s11 St+1, p, z*, 9, P) cx p(sH 11 sf, P)p(st | p, i.*, 6, P).

Hie first part of the right-hand side is a transition probability from t to f +  1, which is 
obtahied from a transition matrix (P). The second part of the right-hand side should
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be obtained via recursive calculation. Let Z* denote all z* up to t. Then

p(.3t\Z*t_ v $,Q,P) =
s
M

=  J ]  p(st |S;_i =  m)p(st-L = 111 I Z\_y M ,P ),
m=1

p(st \zf, p,e,P) =
p(St | Z\_y % O, P)p{Z* | Z*_y 

Em=i P(*t = I z?_i, p, e, P)p( z* I Z j_1( eS(=ra) '
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Continued.

Step 4. Simulation of transition probabilities. Simulating transition probabilities given 
sampled state variables is a standard beta update from binary outcomes, For each 
legislator, let be the number of one-step transitions from state i to i, and u,j be the 
number of one-step transitions from state i to j. Then for the posterior distributions 
of legislator-spedhc transition probabilities we have

p(pu\s) o c  / M s  | ^ ,  )Beta(rt>)

o L p ' x a - P i t f f i r h i - p a ? - 1, 

pa | s ~  Beta(« + + 1).
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Continued.

Step 5. Simulation of ideal points. Ideal points are sampled using the transformation 
shown in Equation 19.3. Based on the sampled transition matrices, state variables, 
item characteristic parameters, and latent variables, is updated across all legisla
tors by treating as a design matrix and z*t as response variables. Let m and z jm 
denote sampled parameters for legislator f s  with state. Then

,, . * , , ,  )fm -  j fm,
0/,m I z y<m N (| J-0  I ^  0 ) r

y f  = (^ „ A rtI+ i r \
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FIGURE 19*2
Comparison of ideal point estimates from the dynamic IRT model by M artin and Quinn (2002) and the hidden 
M arkov IRT model: Black, Douglas, Stewart, and Marshall. The chain was run for 20,000 draws after throwing- 
out the first 10,ODD. Thick lines on the plots in the top two rows indicate posterior means and light lines are 95% 
Bayesian credible intervals. The plots in the bottom row show posterior probabilities o fbeing  in state 1 (darklines) 
and in state 2 (light lines).

19.4 P referen ce  C h an ges in  US S u p rem e C ou rt Ju stice s

Using the hidden Markov IRT model, I analyze ideal point changes of 43 U.S. Supreme 
Court justices who served between 1937 and 2006.* The 43 justices considered 4868 cases 
during the period, and on average each justice considers 113 cases throughout their terms 
on the bench

hi this analysis, I drop six justices with 2 years of service or less: Sutherland, Cardozo, 
Brandeis, Butler, Roberts, and Alito. Following Martin and Quinn (2007), I use informa
tive priors for three justices, tlie liberal Hugo Black, the moderate Potter Stewart, and the 
conservative William Rehnquist, in order to interpret results in such a way that positive 
ideal point estimates indicate tlie conservative position and negative ideal point estimates 
indicate tlie liberal position:

001ads ~  N ( - 2, 0.1),

* I thank M artin and Quinn for providing data. For details, see M artin and Quinn (2007)
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^Stew art N( 1/0-1)/ 

^Rehnquist N (3, 0.11

Also, these informative priors serve to limit tlie bounds of ideal point estimates; ideal point 
estimates near —2 and 3 are highly extreme values in this scale.

Figure 19.1 shows Hie results of the hidden Markov analysis of the 43 US Supreme Court 
justices. The fitted hidden Markov IRT model finds a break in ideal points for each justice. 
By checking the size of the break, we can tell whether a justice's preferences have actually 
changed.

Sixteen justices exhibit dramatic ideal points changes over their careers in the Court. 
Harlan, Black, Douglas, Marshall, Brennan, Warren, Frankfurter, Reed, Jackson, Blaekmun, 
Rehnquist, Stevens, Souter, Thomas, O. J. Roberts, and Stone have dramatic shifts in their 
terms. However, significant preference changes are not found in Stewart, White, Whittacker, 
Bmger, Kennedy, Scalia, Ginsburg, Breyer, Murphy, and O' Connor.

The results of the hidden Markov analysis identify substantively important issues about 
the timing and grouping of ideal point changes that may be indicative of broader social 
and political contextual factors, First, ideal points of the justices who served early in tlie 
sample period—Frankfurter, McReynolds, O. J. Roberts, and Stone—changed dramatically
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Comparison of ideal point estimates from the dynamic IRT model by M artin and Quinn (2002) and the hidden 
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between the late 1930s and the early 1940s. Given the timing of the breaks, these preference 
changes seem likely to be related to what is known commonly as "the switch in time that 
saved nine," when Justice O. J. Roberts shifted his alignment to Hie liberal bloc of justices on 
a key 1937 case, a move that is often viewed as a means to protect the Court's independence 
from President Franklin Roosevelt"s attempts to reorganize it through expansion (Epstein 
and Walker, 2007, Ho and Quinn, 2010).

Another interesting finding is timing of David S outer's preference shift. Souter, who was 
nominated by George H. W. Bushin 1990, has drawn the ire of conservatives for voting with 
liberal justices on many important cases including P3 turned Parenthood v. Casey and Bush v. 
Gore. When George H. W. Bush's son, George W. Bush, sought to fill two openings during his 
presidential term, conservatives fretted over whether his conservative picks would exhibit 
a similar leftward drift over their careers. The hidden Markov IRT model detects Souter's 
movement to the left in the early 1990s, very shortly after his confirmation. This movement 
was not so much a slow evolution, but a quick about-face followed by a long, consistent 
liberal preference.

Figures 19.2 through 19.4 compare the estimates from the hidden Markov IRT model 
with the estimates from Martin and Quinn (2002)'s dynamic IRT model. To save space, I 
select 12 justices with more than 20 years of service in the Court, hi each figure, the top row
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replicates Martin and Quinn (2002)'s dynamic ideal point estimates, the middle row shows 
the hidden Markov ideal point estimates, and the bottom, row shows tlie posterior regime 
probabilities from the hidden Markov IRT model.

The difference is dear. While Martin and Quinn's (2002) dynamic IRT model tracks trends 
in ideal points over time, the hidden Markov IRT model provides a sharp estimate of 
preference changes. For example, in the case of Douglas in Figure 19.2, it is hard to pinpoint 
the timing of Douglas's change from the Martin and Quinn (2002) estimate. By contrast, Hie 
hidden Markov IRT model clearly shows the timing of the shift. However, when justices' 
ideal points change slowly as in the case of Blackmun, the timing of the break uncovered 
by the hidden Markov IRT model is not as informative as the estimate from Martin and 
Quinn's (2002) dynamic IRT model.

19.5 C o n clu sio n s

hi this chapter, I present a statistical model for dynamic ideal point estimation. The model 
combines Hie hidden Markov model with the standard two-parameter IRT model Hie 
application of the the model to tlie US Supreme Court data demonstrates that the hidden 
Markov IRT model is an effective method to detect preference changes from longitudinal 
voting data.
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20
Parallel Bayesian MCMC Imputation fo r  Multiple 
Distributed Lag Models: A Case Study in 
Environmental Epidemiology

Brian Caffo, Roger Peng, Francesca Dominici, Thomas A. Louis, and Scott Zeger

20.1 In tro d u ctio n

Patterned missing covariate data is a challenging issue in environmental epidemiology. 
For example, particulate matter measures of air pollution are often collected only every 
third day or every sixth day, while morbidity and mortality outcomes are collected daily 
In this setting, many desirable models caimotbe directly fit. We investigate such a setting in 
so-called "distributed lag" models when the lagged predictor is collected on a cruder time 
scale than the response. In multi-site studies with complete predictor data at some sites, 
multilevel models canbe used to inform imputation for the sites with missing data.

We focus on the implementation of such multilevel models, in terms of both model 
development and computational implementation of the sampler. Specifically, we paral
lelize single chain runs of sampler. This is of note, since tlie Markovian structure of Markov 
chain Monte Carlo (MCMC) samplers typically makes effective parallelization of single 
chains difficult. However, the conditional independence relationships of our developed 
model allow us to exploit parallel computing to run the chain. As a first attempt at using 
parallel MCMC for Bayesian imputation on such data, this chapter largely represents a 
proof of principle, though we demonstrate some promising potential for the methodol
ogy. Specifically, the methodology results in proportional decreases in run-time over the 
nonparallelized version near one over Hie number of available nodes.

In addition, we describe a novel software implementation of parallelization that is 
uniquely suited to disk-based shared memory systems. We use a "blackboard" paral
lel computing scheme where shared network storage is a used as a blackboard to tally 
currently completed and queued tasks. This strategy allows for easy addition and sub
traction of compute nodes and control of load balancing. Moreover, it builds in automatic 
checkpointing.

Our investigation is motivated by multi-site time series studies of the short-term effects 
of air pollution on disease or death rates. A common measure of air pollution used for such 
studies is the amount in micrograms per cubic meter of particulate matter of a specified 
maximum aerodynamic diameter. We focus on PM2.5 (see Samet et al., 2000). Unfortunately, 
the definitive source of particulate matter data in the United States, the Environmental 
Protection Agency's air pollution network of monitoring stations, collects data only a few 
times per week at some locations. One of the most frequent observed data patterns for
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PM7.5 is data being recorded every third day. However, the disease rates that we consider 
are collected daily.

I11 this setting, directly fitting a model that indudes several lags of PM2.5 simultaneously 
is not possible. Such models are useful, for example, to investigate a cumulative weekly 
effect of air pollution on health. They are also useful to more finely investigate tlie dynamics 
of tlie relationship between the exposure and response. As an example, one might postulate 
that after an increase in air pollution, high air pollution levels on later days may have a 
smaller impact, as the risk set has been depleted from the initial increase (Dominid et al., 
2002; Schwartz, 2000; Zeger et al., 1999).

We focus on distributed lag models that relate the current-day disease rate to particulate 
matter levels over the past week. That is, our model includes the current day's PM2.5 levels 
as well as tlie previous six days. While dired estimation of the effed for any particular lag 
is possible, joint estimation of tlie distributed lag model is not possible (see Section 20.3). 
Moreover, missing-data imputation for counties with patterned missing data is difficult. 
We consider a situation where several independent time series are observed at different 
geographical regions, some with complete PM?5 data. We use multilevel models to borrow 
information across series to fill in the missing data via Bayesian imputation. The hierarchical 
model is also used to combine county-specific distributed lag effeds into national estimates.

The rest of the chapter is organized as follows. In Section 20.2 we outline the data set 
used for analysis and follow in Section 20.3 with a discussion of Bayesian imputation. 
In Section 20,4 we describe the distributed lag models of interest, and in Section 20.5 we 
illustrate a multiple imputation strategy. Section 20.6 uses the imputation algorithm to 
analyze hospitalization rates of chronic obstructive pulmnoiiary disease (COPD). Finally, 
Section 20.7 gives some condusions, discussion and proposals for future work,

20.2 T h e  D ata  S e t

The Johns Hopkins Environmental Biostatistics and Epidemiology Group has assembled 
a national database comprising time series data on daily hospital admission rates for 
respiratory outcomes, fine particles (PM2.5),  and weather variables for the 206 largest US 
comities having a population larger than 200,000 and with at least one full year of PM2.5 
data available. The study population, derived from Medicare daims, indudes 21 million 
adults older than 65 with a place of residence in one of the 206 counties included in Hie 
study.

Daily counts of hospital admissions and daily number of people enrolled in the cohort are 
construded from the Medicare National Claims History Files. These counts are obtained 
from billing daims of Medicare enrollees residing in the 206 comities. Each billing daim 
contains the following information: date of service, treatment, disease (ICD 9 codes), age, 
gender, race and place of residence (zip and county).

Air pollution data for fine partides are collected and posted by Hie United States Environ
mental Protection Agency Aerometric Information Retrieval Service (AIRS, now called Hie 
Air Quality System, AQS). To proted against outlying observations, a 10% trimmed mean is 
used to average across monitors after correction for yearly averages for each monitor. Specif
ically, after removing a smoothly varying annual trend from each monitor time series, tlie 
trimmed mean was computed using the deviations from this smooth trend. Weather data is
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Region

FIGURE 20.1
Sum mary of the m issing-data pattern. The gray line displays the proportion of the total days in the study with 
observed PM 2.5 data for each county, with the actual number of days displayed on the right axis. The black 
line shows the proportion and count of the days w ith observed air pollution data w here the lag-1 day is also 
observed.

obtained from the National Weather Monitoring Network which comprises daily temper
ature and daily dew points temperature for approximately 8000 monitoring stations in the 
USA We aggregate data across monitors to obtain temperature time series data for each of 
the 206 counties,, of which 196 were used in analysis. Details about aggregation algorithms 
for tlie air pollution and weather are posted at http: / /wwwbiostatjlisph.edu/ MCAPS 
and further information about data collection is given in Dominid et a l (2006).

Figure 20.1 illustrates the salient features of the missing-data pattern for PM? 5 in this 
database. This study considered 1096 monitoring days, Figure 20.1 displays the proportion 
of the 1096 days with observed PM2.5 data for each county (dark gray line). The associ
ated number of observed days is displayed on the right scale. This figure also displays the 
proportion of 1096 days with observed PM2.5 data where the lag-1 day was also observed 
(black line).

The plots show that nearly half of the 196 counties have measurements on roughly one 
third of the total possible days. Ninety-six of these counties have over 40% of tlie air pol
lution data observed and enough instances of seven consecutive observed PM2.5 days to 
estimate the desired distributed lag model (see Section20.4). For these counties, any missing 
data is often due to a large contiguous block, for example, several weeks where Hie mon
itor malfunctioned. Such uninformative missing data leaves ample daily measurements 
to estimate distributed lag models, so is ignored in our model. The remaining counties 
have PM25 data collected every third day and possibly also have blocks of missing data, 
hence have data on less than 33% of the days under study. Because of the systematically 
missing PM?5 data in these counties, there is little hope of fitting a distributed lag model 
without borrowing information on the exposure-response curve from daily time series 
data from other comities. Hie plot further highlights this by showing that direct estimates 
of the lag-1 auto covariances are not available for roughly half of Hie counties. However, 
because of the missing-data pattern, all of the counties have direct estimates of the lag-3 
autocovariances.



496 Handbook o f Markov Chain Monte Carlo

20.3 B a y e sia n  Im p u ta tio n

In this section, we discuss the relative merits of Bayesian imputation. We focus on our 
particular missing-data problem, and refer the reader to Carlin and Louis (2009) and 
Little and Rubin (2002) for general introductions to Bayesian statistics, missing data, and 
computation. We argue that imputation for systematic missingness in the predictor time 
series is relevant for distributed lag models, and particularly for Hie data set in question, 
while it is less relevant for single-lag models, hi this section, we restrict our discussion to 
the consideration of a single outcome time series, say Yf, and single predictor time series, 
X t. For context, consider Hie outcome to be the natural log of the county-spedfic Medi
care emergency admissions rate for COPD, and the predictor to be PM2,5 levels for that 
county. To make this thought experiment more realistic, let Yf and Xf be the residual time 
series obtained after having regressed out relevant confounding variables. We assume that 
the {Yf} are completely observed and the {Xf} are observed only every third day, so that 
Xo, X3, Xg,. . .  are recorded; and we evaluate whether or not to impute the missing predic
tors. I11 our subsequent analysis of tlie data, we will treat this problem more formally using 
Poisson regression.

20.3.1 Single-Lag Models

A single-lag model relates the Yt to Xf_;i for some n = 0 ,1 ,2 ,.. .  via the mean model 
E[Yf] = % Xf_„, when anidentity link functionis used. We argue that, for any such single-lag 
model, implementing imputation strategies for the missing predictor values is unnecessary. 
Consider that direct evidence regarding any single-lag model is available in the form of sim
ple lagged cross-correlations. For example, the pairs (Yo, Xo), (Y3, X3), (Y&, Xg),. . .  provide 
direct evidence for u = 0; the pairs (Y1, Xo), (Y4, X3), (Y7, X^),. . .  provide direct evidence for 
// = 1 and so on. Imputing Hie missing predictors only serves to inject unneeded assump
tions. Furthermore, there is a tradeoff where more variation in the predictor series benefits 
the model's ability to estimate the associated parameter, yet hampers the ability to impute 
informatively. Hence, in the typical cases where the natural variationiii the predictor series 
is large enough to be of interest, we suggest that imputing systematically missing predictor 
data for single-lag models is not worth the trouble, hi less desirable situations with low 
variation in the predictor series, imputation for single-lag models may be of use.

20.3.2 Distributed Lag Models

Now consider a distributed lag model, such as E[Yf] = ^ =0 % A -if  Here, if a county 
has predictor data recorded every third day, there is no direct information to estimate 
this relationship, Spedfically, let t =  0, .. ,,T  — 1 and D be the design matrix associated 
with the distributed lag model and Y be the vector of responses. Then the least squares 
estimates of the coefficients are (y D fD)- 1y D fY. The off-diagonal terms of ^DfD contain 
the lagged autocovariances in the {Xf} series; i D fY contains Hie lagged cross-covariances 
between tlie {Yf} and {Xf}. As was previously noted, these lagged cross-covariances are 
directly estimable, even with patterned missing data in the predictor series, hi contrast, Hie 
auto covariances in the predictor series are only directly estimable for lags that are multiples 
of 3. Thus, without addressing Hie missing predictor data, Hie distributed lag model cannot 
be fit. For our data, this would eliminate information from nearly 50% of the counties 
studied. Hence, a study of the utility of predicting the missing data is warranted.



Multiple Distributed Lag Models 497

A R(1) param eter

FIGURE 20.2
l i  keli hood for the AR(1) coefficient for AE(1) simulated data with an assumed correctly known innovation variance 
of 1 and coefficient of 0.5, for three m issing-data patterns: completely observed (solid), observed only every three 
days (dashed) and observed only every six days (dotted). A solid vertical line denotes the actual coefficient value 
of 0.2.

One might consider using a model, such as an AR(|>); to extrapolate Hie missing autocor
relations. However, a single time series with this degree of systematic missingness may not 
have enough information to estimate tlie parameters. Consider an AR(1) process. To illus
trate, Figure 20.2 shows the likelihood for the AR(1) coefficient for data simulated under 
an AR(1) model with a correctly known innovation variance of 1 and data observed every 
day (solid), every third day (dashed) and every sixth day (dotted). Any inference for the 
AR(1) parameter (at 0.5, depicted with a horizontal line) would be imprecise with the sys
tematically missing data. For the data observed every sixth day, notice that the likelihood is 
multimodal and symmetric about zero. This is because the likelihood only depends on the 
AR coefficient raised to even powers. This poses a problem even for our every-third-day 
data, because additional missing observations create patterns of data collected only every 
sixth day. Such multimodal likelihoods for AR models are described hi Wallin and Isaksson
(2002) (also see Broersen et al., 2004). hi addition, here we assume that the correct model is 
known exactly, which is unlikely to be true in practice.

hi our data set, there is important information in the counties with completely observed 
data tha t canb e used to help cho o se models for the pre dictor time serie s and estimate param
eters. Figure 20.3 demonstrates such model fits with an AR(4) model applied to a detrended 
version of tlie log of tlie PM2.5 process. This plot is informative because when the data are 
available only once every third day, it is not possible to estimate the autocorrelation function 
using data only from that county However, it also illustrates tliat the population distribu
tion of autoregressive parameters appears to be wTell defined by Hie counties with mostly 
observed data. Figure 20.4 shows the estimated residual standard deviations from these 
model fits, suggesting that these are wTell estimated even if the autoregressive parameters 
are not. The data suggest that an AR(1) process is perhaps suffident, though we continue 
to focus on AR(4) models to highlight salient points regarding imputation.
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FIGURE 20-3
Estim ated AR(4) coefficients, labeled "1 " to "4 ," by  counties ordered by  decreasing- percentage of observed data 
from left to right. Roughly the first 100 counties have substantial consecutively observed data to estimate the AR 
parameters while the rem aining 100 do not.

20.4 M o d el and  N o ta tio n

111 this section, we present notation and modeling assumptions. A summary of Hie most 
important parameters and hyperparameters is given in Table 20.1. Let Yct, for county 
c =  0, . . C — 1 and day t =  0, . . X — 1, denote a response time series of counts., such
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FIGURE 20,4
Variances from individual autoregressive time series by counties ordered b y  decreasing percentage of observed 
data from left to right.
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TABLE 20.1

Parameters and their Definitions

Y et Response count for county c at time f
R # Size of the risk set for county c at time f

'>■-ct County-specific expected rate for YCf

X c/ L ogPM j.ij level in micrograms per cubic meter for county c at time t

6cn Distributed lag parameters for county c
A* Constrained distributed lag parameters for county c

e&i Constrained and reparameterized distributed lag parameters for county c

Profile log likelihood for

W d, i t c Slowly varying trend m odel on the log PM 2.5 series log(Xrf) = W L-/tyc + t c;

Residuals from above model, w here w e presume -*|rc is known and fixed at the estimated value; 
these terms are the actually imputed terms

M- Inter-county m ean of the 0̂

Inter-county variance-eovariance matrix of the 0̂

Cf,. County-specific autoregressive parameters on the

K Inter-county m ean of the ac

Inter-county variance-eovariance matrix of the a c

as the daily incident counts of COPD. Let R ct denote the number of persons in county 
c  at risk for disease on day f. We assume that both of these processes are completely 
observed. Let l_ff = E[Yff | Rrt, Xct, Hr/ pr] be the daily mean, Xct denote PM^s, and Zctj, for 
7 =  0, . . . ,/  — 1, be other covariates of interest, which we assume are completely observed.

We assume that tlie response process follows a Poisson law with means satisfying:

d /-I

£  +E
11=0 ;=D

For the hospital admissions data, we consider d — 6. That is, the model relates the prior 
week's air pollution to the current day's mean disease rate.

The sum of the lagged air pollution parameters, labeled the distributed lag "total" or 
"cumulative" effect, 6a£, is a parameter of primary interest. The total effect is the 
change in the log mean response rate given a one-unit across-the-board increase in the 
PM2.5 over the current and prior d days.

To mitigate tlie variance inflation incurred by including many obviously coUinear lagged 
covariates, sometimes a functional form is placed on the 0ra, especially if d is Luge {see 
Zanobetti et a l, 2000). Aparticularly effective approach is to assume that 0„, = AI( 6* , where 
A„ is column n from a smoothing design matrix, say A, on the time points 0, ...,d . When 
d =  6, choosing A to be a bin smoother with bins for the current day days lag 1 to 2, and 
days lag 3 to 6, has been shown to be a useful approach in the air pollution time series 
literature (Bell et al., 2004). Such a smoother requires three parameters, 6* = 6*3)/
so that the model becomes

Z 6 k

log(Xrfr/Rrfr) =  Xc,t-u +  0*3 y  ' Zrf/PtyV-
7£= 1 U = 3  j=  0

This restriction on the distibuted lag parameters is equivalent to a convenient form for 
tlie rate model that considers the seven-day average air pollution and its deviation from
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the three-day average and current day:

k
l0g(Vfr/Rrtr) =  — *it  ̂  +  6 f 3 — Sff1) +  zct]f‘cj! - (20.1)

/=0

Here xf^ is the average of the current-day and k previous days' PM2.5 values. These 
parameters are related to the 0* via the equalities

e?i = |e+i + A9+2̂ |e+,

+c2  ~

ft* -  1 fi+ 1 flt 1fl+ yc3 -  j^cl ~  7 c2 _  y*c5-

hi this constrained model the total effect is 0^ =  0^ + 2Q*2 +  40*3. We use the constrained 
and reparameterized specification from Equation 20.1 for analysis. For convenience, we 
have dropped the superscript *  or t  from 0 when generically discussing the likelihood or 
MCMC sampler.

We denote the Poisson log likelihood for county c by £c (0f, ), where bold face represents
a vector of the relevant parameters, such as = (0ri, . . Our  approach uses Bayesian
methodology to explore the joint likelihoodby smoothing parameters across counties. How
ever, the number of nuisance parameters makes implementation and prior specification 
unwieldy. Therefore, we replace the county-spedfic log likelihoods with the associated 
profile log likelihoods:

Mflf) =  M M ,  Where M 0r) = argmax^£f (0f, pf).

This step greatly reduces the complexity of the MCMC fitting algorithm. However, it does 
so at the cost of theoretical unity as the profile likelihood used for Bayesian inference is 
not a proper likelihood (Monahan and Boos, 1992), as well as computing time. We stipulate 
that tills choice may impact the validity of the sampler and inference. Currently, we assess 
validity by comparing results with maximum likelihood results for counties with complete 
data.

The modelfor the air pollution time series contains trend variables and AR{p) distributed 
errors, We assume that

log(-Xrf) = Wrft f  + eff, (20.2)

where the are a stationaiy autoregressive process of order p with conditional means and 
variances

p

E U r f i ,  .. =  /* ' ctcf̂ c,t—jr varff ff .. .,€fjf_-p) =  ar,
J=i

Here the trend term, Wrfilr,,, represents the slowly varying correlation between air pollution 
and seasonality. Specifically, we set Wft to be a natural cubic spline with 24 degrees of 
freedom per year, Throughout, we set p =  4.
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20.4.1 Prior and Hierarchical Model Specification

We place a N(|jl, Eb) prior on the distributed lag parameters, and a diffuse normal prior 
for |jl and an inverted Wishart prior with an identity matrix scale on with 4 degrees of 
freedom. Here, ^ is a parameter of central interest estimating the between-county mean 
distributed k g  parameters.

We do not place a prior on the missing-data trend term i|rr, instead fixing it from the onset 
at the least squares estimated value. For the autoregressive parameters, a q , we place the 
prior on tlie lagged partial autocorrelations (Barnett et al., 1996; Monahan, 1983). We refer 
the reader to Diggle (1990) for a definition of partial autocorrelations and Huerta and West 
{1999) for a different perspective for placing priors on autoregressive parameters.

We use a recursive formula of Durbin (I960), to transform tlie autoregressive parameters 
to and from the partial autocorrelations. Let a cj represent tlie p partial autocorrelations for 
county c; we specify that

0.51og{(l + « f)/(l -  « f)} -  N«, Ea),

where the Fisher's Z transformation, log{(l +  a)/{ 1 — a)}, is assumed to operate componen
twise on vectors. Here, taking Fisher's Z transformation is useful as the partial correlations 
are bounded by 1 in absolute value for stationary series.

We use a diffuse normal prior for < and an inverse Wishart distribution centered at an 
identity matrix with 10 degrees of freedom. The prior on <j ~2 is gamma with a mean set at 
Hie county-specific method of moments estimates and a coefficient of variation of 10. Note 
that we chose not to shrink variance estimates across counties, as they appear to be wTell 
estimated from the data.

20.5 B a y e s ia n  Im p u ta tio n

20.5.1 Sampler

Here we give an overview of the Bayesian imputation algorithm. Let brackets genetically 
denote a density, and let Xt-jDbs and Xf,miss be the collection of Xtc observed and missing 
components for county c respectively, Yf be Hie collection of Ytc/ Pf = ctic, . . ctpt7 af}, 
P be the collection of between-county parameters and H denote hyperparameters. Then, 
the full join posterior is

PQ),miss/ - - -/^C—l,miss/ Oo, . . .,&C-1/% - ■ -,PC-l/P I 0̂/ ■ ■ ■/Vc-l/Xofabs/Xc-lfabs/H]

OC n i Y r l W X ^ e  f][Xr,miss,X Cf0bs | Pc][Pf | P, H] J [P | H],

Here, recall that [Yf | X ^ -m ^ X ^s, f)r] uses the profile likelihood, rather than the actual 
likelihood. Our sampler proceeds as follows (where EE is "everything else"):

[Xô miss I EE] tX [Yo | Xo,miss) XoiQbsj ®o][Xo,miss/Xo Qj,s | Pq],,
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[Xl,m.iss I EE] oc [\ i  | Xo ,missy^-0,absv | P 1 ],

[Xc—l,mis5 I EE] °C [*C I ^C—l,miss/XC—l,absi ®C—l][Xc—l,miss( ^C—l,obs I P(T—lL

[P 0 I EE] oc [Y 0 |-̂ -cvmiss* ĉ,abs/ ^0][^0fmiss/̂ 0,obs I ôl/

[Pi | EE] ex [Yi | ĉvmiss* ĉ,abs/ ®l]P̂ l,mis5/ ̂ l,obs I Pi]/

[ P c - l  I EE] CX [ Y c - l  | X c-l^niss/X c-l,abs/0c][X c-l,m iss/ X c-l,obs I P C -lL

[P | EE] cx [Pf | P, H][F | H].

Because of the Gibbs-friendly priors, jjl and t, have multivariate normal full conditionals. 
Moreover, Ig and have inverse Wishart full conditionals, while the {<r̂ } have an inverted 
gamma. The county-specific distributed lag parameters and AR parameters, {ftr} and a c, 
require a Metropolis step. We use a variable-at-a-time, random-walk update. Further details 
on Hie full conditionals are given in the Appendix to this chapter.

The update of Hie missing data deserves special attention. We use a variable-at-a-time 
Metropolis step to impute <Eff for each missing day conditional on the remaining. Consider 
p = 4 and let ef5 be a missing day to be imputed. We use the autoregressive prior for the 
day under consideration given all of the remaining days as the proposal, For example, the 
distribution of ec5 given {eri, . . . ,  ef4, eg, . . . ,  e9} is used to generate the proposal for that 
is, Hie four neighboring days before and after the day under consideration. Because of tlie 
AR{4) assumption, this is equivalent to the distribution of £5 given all of the days. After 
imputation, X r5 =  exp(Wf5i]yf + f t-s), is calculated. By simulating from Hie prior distribution 
of the current missing day given die remainder, only Hie contribution of X f5 to tlie profile 
likelihood remains hi the Metropolis ratio. To summarize, the distribution of tlie current 
day given the remainder, disregarding the profile likelihood, is used to generate proposals; 
the profile likelihood is then used in a Metropolis correction. Of course, since PM2.5 has a 
relatively weak relationship with the response, Hie acceptance rate is high.

20.5.2 A Parallel Imputation Algorithm

Given tlie large number of days that need tobe imputed for the counties with missing data, 
and the difficult calculation of the county-specific profile likelihoods, the time for running 
such a sampler is quite long, hi this section we propose a parallel computing approach that 
can greatly speed up computations.

Notice that tlie conditional-independence structure from Section 20.5.1 illustrates that 
a11 o f  the county-specific full conditionals are conditioniilh/ independent. Thus, the imputation 
of the missing predictor data, the simulation of the county-specific parameters, and Hie 
calculation of the profile likelihoods canbe performed simultaneously. Hence, it represents 
an ideal instance where we can increase the efficiency of Hie simulation of a single Markov 
chain with parallel computation.

To elaborate, let / be the tune required to update [P | EE], go,g i, ■ ■ -,gc-1  be the time 
required to transfer Hie relevant information to and from the separate nodes for parallel 
processing, and ho, hi, . . . ,  /fc-i be the time required to perform the processing, as depicted 
in Figure 20,5. Suppose that C nodes are available for computation Then, conceptually, the
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FIGURE 20.5
Parallel computing diagram.

run-time perparallel MCMC iteration is/ + maxf(gf + hc). In contrast the single processor 
run-time would be/ + £ r(J/-c). Clearly, if tlie transfer times, (gf} are small relative to the 
county-spedfic processing times, {hc\, then substantial savings canbe made by parallelizing 
the process, with Hie gains scaling proportional to the number of conditionally independent 
full conditionals. This is exactly the setting of Hie Medicare daims data, where the profile 
likelihood and imputation county-spedfic calculations are very time-consuming. Of course, 
this simple schematic is extremely optimistic in not accounting for several factors, such as 
variability in the number of available nodes, node-spedfic run-times and tlie added time 
for the software to manage the parallelizatioii. However, it does suggest that substantial 
gains canbe made withparallelization.

While we know of few implementations of parallel MCMC of this scope, this approach 
to parallelizing Markov chains and its generalizations has been discussed previously 
{Kontogliiorghes, 2006; Rosenthal, 2000; Winkler, 2003). Moreover, other approaches could 
be used for parallelizing Markov chains. When applicable, perfect sampling (Fill, 1998; Fill 
et al., 2000; Propp and Wilson, 1998) could be easily parallelized. Specifically, each perfect 
sample is an independent and identically distributed draw from the stationary distribu
tion and hence can be generated independently. Also regeneration times (Hobert et al., 
2002, Jones et al., 2006; Mykland et al,, 1995) create independent tours of the chain from 
other regeneration times. Therefore, given a starting value at a regeneration time, the tours 
could be generated in parallel These two techniques have the drawback that a substantial 
amount of mathematics needs to be addressed to simply implement the sampler prior to 
any discussion of parallel implementation. A less theoretically justified, yet computation
ally simple, approach parallelizes and combines multiple independent chains (Gelman and 
Rubin, 1992; Geyer, 1992).

Most work on statistical parallel computing algorithms depends on existing network- 
based parallel computing algorithms, such as Parallel Virtual Machines (Beguelin et al., 
1995) or Message Passing Interface (Snir et al., 1995), such as implemented in the R 
package s n o w  (Rossini et a l, 2007). These programs are not optimized for particular 
statistical problems or computational infrastructures and, furthermore, require direct 
computer-to-computer communication. While such parallel computing architectures are 
used, large computing dusters that employ queuing management software often cannot 
take advantage of these approaches.

In contrast, our approach uses a disk-based shared memory blackboard system which 
required building the parallelization software. Specifically in our approach, a collection 
of tokens, one for each county, are used to represent which comities currently need pro
cessing. A collection of identical programs, which we refer to as spiders, randomly select 
a token from the bin and move it to a bin of tokens representing counties currently being
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operated on. We have adopted several strategies to avoid race conditions, where two spi
ders simultaneously attempt to grab the same token, including: using file system locks 
and creating small random delays before the spider grabs tlie token, The spider then per
forms the county-specific update and moves its token to another bin of counties with 
finished calculations. The spider then goes back to the original bin and repeats the pro
cess. If there are no tokens remaining, the first spider to discover this fact then performs 
the national update while the remaining sit idle. It then moves the tokens back to the 
original bin to restart the process. Disk-based shared memory is used for ah of the data 
transfer.

The benefits of this strategy for parallel MCMC are many Notably, nodes or spiders 
can be dynamically added or subtracted. Moreover, load balancing can be accomplished 
easily, hi addition, the system allowed us to use a storage area network (SAN) as tlie 
shared memory resource (blackboard). While having much slower data transfer than direct 
computer-to-computer based solutions, this approach allowed us to implement a parallel 
programming in spite of scheduling software tliat predudes more direct parallelization As 
an added benefit, using Hie SAN for data transfer builds hi automatic checkpointing for 
the algorithm. We've also found that this approach facilitates good MCMC practice, such 
as ii sing the ending value from initial runs as the starting value for final runs. Of course, 
an overwhelming negative property of this approach is the need to create Hie custom, 
setting-specific, parallelization software.

20.6 A n aly sis  of the M ed icare D ata

We analyzed the Medicare data using our parallel MCMC algorithm. We used 30 processors, 
resulting in a run-time of 5-10 seconds per MCMC iteration, hi contrast, the run-time for 
a single processor was over 2 minutes, Tliat is, there is a 90% decrease in run-time due to 
parallelization,

The sampler was run for 13,000 iterations. This number was used as simply the laigest 
feasible in the time given. Final values from testing-iterations were used as starting values. 
Trace plots were investigated to evaluate Hie behavior of the chains, and were also used to 
change the step size of the random-walk samplers.

Figure 20.6 displays an example imputation for 1000 monitoring days for a county 
The black lhies coimeds observed days while the gray line depirts the estimated trend. 
The points depirt the imputed data set. Figure 20.7 depicts a few days for a comity where 
pollution data is observed every three days; tlie separate lines are iterations of the MCMC 
process. These figures illustrate the reasonableness of the imputed data. A possible con
cern is that the imputed data are slightly less variable than the actual data. Moreover, Hie 
data is more regular, without extremely high air pollution days. However, this produces 
conservatively wider credible intervals for the distributed lag estimates.

Figure 20.8 show's the estimated posterior medians for tlie exponential of tlie cumulative 
effect for a 10-unit increase in air pollution, along with 95% credible intervals. The estimates 
range from 0.746 to 1.423. Tlie cumulative effect is interpreted as the relative increase or 
decrease in the rate of COPD corresponding to an across-the-board 10-unit increase in PM?5 
over tlie prior six days. Therefore, for example, 1.007 (the national average) represents a 0.7% 
increase in the rate of COPD per microgram per 10 cubic meter increase hi fine particulate 
matter over six days.
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FIGURE 20.6
Example imputation from the M CM C sampler for a specific county. The black line connects observed points while 
the gray line shows the estimated trend. The points are from a specific iteration of the MCMC sampler.

The national estimate, |i i, represents the variance-weighted average of the county-spedfic 
cumulative effects. The 95% equi-tail credible interval ranges from an estimated 2.6% 
decrease to a 4.0% increase in the rate of COPD. The posterior median was a 0.7% increase, 
hi contrast, a meta-analysis model using the maximum likelihood fits and variances for 
only those counties with adequate data for fitting the distributed lag model results in a 
confidence interval for the national cumulative effect ranging from a 5.1% decrease to a 
7.5% increase, while the mean is a 1.0% increase. That is, adding tlie data from the counties 
with systematic missing data does not appear to introduce a bias, but does greatly reduce 
the width of the interval 

The shape of the distributed lag function is of interest to environmental health researchers, 
as different diseases can have very different profiles, such as rates of hospitalization, recur
rence, and complications. Examining the shape of the distributed lag function can shed light 
on Hie potential relationship of air pollution and the disease. For example, a decline over 
time could be evidence of the "harvesting" hypothesis, whereby a large air pollution effect 
for early lags would deplete the risk set of its frailest members, through hospitalization or 
mortality. Hence, the latter days would have lower effects, Figure 20,9 shows the exponent 
of 10 times the distributed lag parameters' posterior medians, and 0*3, by county.
Here 0*x is Hie current-day estimate, while 6*2 and 6*3 are cuiitulative effect for days lag 
1 to 2 and 3 to 6, respectively The current-day effect tends to be much larger, and more 
variable, by comity. The comparatively smaller values for the later lags are supportive of 
the harvesting hypothesis, though we emphasize that other mechanisms could be in place. 
Further, this model is not ideal for studying such phenomena, as the bin smoothing of 
the distributed lag parameters may be too crude to explore the distributed lag function's 
shape.

1 0 0

40

Day
60

FIGURE 20,7
Several example imputations for a subset of the days for a county. The lines converge on observed days.
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Region

FIGURE 20.8
Estim ates and credible intervals for the exponential of the distributed lag cumulative effect by  county for a 10- 
unit increase in air pollution, 100ci- The solid middle line shows the posterior medians; the gray area shows the 
estimated 95% equi-tail credible intervals. A horizontal reference line is drawn at 1. Hash m arks denote counties 
w ith systematic m issing data, where the distributed lagm odel could not be fit w ithout imputation.

Figure 20.10 sliows 95% credible intervals for tlie AR parameters across comities. The 
counties are organized so that Hie rightmost 97 counties have the systematic missing 
data. Notice that hi these counties, their estimate for the AR(1) parameter is attenuated 
toward zero over the counties with complete data, The estimated posterior median of < 
is (0.370, -0.010, —0.011, -0 .025)f. The primary AR(1) parameter is slightly below tlie 0.5, 
because of Hie contribution of those counties with missing data. Regardless, we note that
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FIGURE 20.9
Exponent of ten times the distributed lag parameters' posteriorm edians: 0 ^  (top), 0^  (middle), and 0*3 (bottom), 
b y  county.
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FIGURE 20.10
Posterior credible intervals for the AE parameters by county.

this shrinkage estimation greatly improves on county-spedfic estimation {see Figure 20.3) 
for those dtes with incomplete data.

20.7 Su m m ary

In this chapter, we propose an MCMC algorithm for fitting distributed lag models for time 
series with systematically missing predictor data. We emphasize that our analysis oidy 
scratches the surface for the analysis of the Medicare claims data. One practical issue is the 
effect of varying degrees of confounder adjustment in terms of both the degrees of freedom 
employed in nonlinear fits and the confounders induded. Moreover, a more thorough 
analysis would consider other health outcomes and different numbers of lags included. 
Also, commonly air pollution effects are interacted with age or age categories, because of 
the plausibility of different physical responses to air pollution with aging. In addition, the 
PM measurements are aggregates of several chemical pollutants. Determining the effects 
of individual component parts may help explain some of the county variation in the effect 
of air pollution on health.

The bin smoother on the distributed lag parameters allows for a simpler algorithm and 
interpretation. However, more reasonable smoothers, such as setting A to the design matrix 
for a regression-spline model, shouldbe considered. This would allow much more accurate
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exploration of Hie shape of the distributed lag model, as well as variations in its shape by 
counties.

The use of tlie profile likelihood instead of the actual likelihood raises numerous issues 
and concerns. Foremost is the propriety of the posterior and hence tlie validity of tlie 
sampler and inference. The theoretical consequences of this approach shouldbe evaluated. 
Moreover, comparisons with other strategies, such as placing independent diffuse priors 
on Hie nuisance parameters, are of interest.

Also of interest is to eliminate the attenuation of the estimates of the autoregressive 
parameters for Hie counties with missing data. To highlight this problem more dearly, 
suppose that instead of 97 comities with missing data, we had 9700 with data recorded 
every other day. Then the accurate inf oniiation regarding < and Tf, contained in tlie counties 
with complete data wouldbe swamped by tlie noisy bimodal likelihoods from the counties 
with systematic missingness. More elaborate hierarchies on this component of the model 
may allow for the counties with observed data to have control over estimation of these 
parameters.

In addition, the potential informativeness of counties having missing data (see Little 
and Rubin, 2002) should be investigated. To elaborate, clearly the pattern of missing data 
is uninformative for any given county; however, whether or not a county collected data 
every day or every third day may be informative. For example, counties with air pollutions 
levels well below or above standards may be less likely to collect data every day. Such 
missingness may inipad national estimates.

We also did not use external variables to impute the missing predidor data, Ideally, a 
completely observed instrumental variable that is causally assodated with tlie predictor, 
yet not with the response, would be observed, Such variables could be used to impute 
the predidor, but would not confound its relationship with the response. However, such 
variables are rarely available. More often variables that are potentially causally associated 
with Hie predictor are also potentially causally assodated with response. For example, 
seasonality and temperature are thoughttobe causally assodated with PM levels and many 
health outcomes. Hence, using those variables to impute the missing predictor data would 
immediately raise tlie critidsm that any assodation found was due to residual confounding 
between tlie response and the variables used for imputation.

These points notwithstanding, this work suggests potential for the ability to impute miss
ing data for distributed lag models. The Bayesian model produces a marked decrease in 
the width of the inter-comity estimate of the cumulative effed. Moreover, the imputed data 
sets are consistent with Hie daily observed data, though perhaps being more regular and 
less variable. However, we note the bias incurred by lower variability in the imputed air 
pollution is conservative, and would attenuate the distribute lag effeds.

A second accomplishment of this chapter is tlie parallelization algorithm and software 
development. The computational overhead for the parallelization software was small, and 
hence the decrease in run-time was nearly linear with the number of nodes.

Race conditions, times wThen multiple spiders attempted to access the same token, rep
resent a difficult implementation problem. For example, after the county-specific updates 
finish, all spiders attempt to obtain the token representing the national update simultane
ously. A colleague implementing a similar system proposed a potential solution (Fernando 
Pineda, personal commmiication). Specifically, he uses atomic operations on a lock file 
to only allow access to the bin of tokens to one program at a time. As an analogy, this 
approach has a queue of programs waiting for access to the bins to obtain a token hi con
trast, our approach allows simultaneous access to tlie bins, thus increasing speed, though 
also increasing the likelihood of race conditions. A fundamental problem we have yet to
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solve is the need for truly atomic operations on networked file systems to prevent these 
race conditions. Our use of file system locks when moving files as the proposed atomic 
operation made the system very fragile, given tlie complex nature and inherent lag of an 
NFS-mounted SAN.

Our current solutions to these problems are inelegant. First, as described earlier, random 
waiting times were added. Secondly, spiders grabbed tokens in a random order. Finally, 
a worker program was created that searched for and cleaned up lost tokens and ensured 
that the appropriate number of spiders were operational We are currently experimenting 
with the use of an SQL database, with database queries, rather than file manipulations to 
manage the tokens.

A p p en d ix : F u ll C o n d itio n als

We have

oc exp (^ (6 C) -  -  |i)),

H ~  N { (CZ9 1 +  G r1) " 1 Z , 1£  (CZ91 +  G f ) ^

— Wishart ^G2 +  ^ ( 6 f -  -  tO^/l 4- ,

« c ~  N [ (E'Ec/o? + (E*Er/o? + E” 1)),

$ ~  N j ( r S ' 1 + G -1) ' S ' :1 £  1 +  l) '":1 X *1 j,

T.a ~  Wishart ^GE + -  <)(“<.- -  +  c j ,

c - i  / v \ 2 '

C/2 + G6lJ 2 U c t - J 2  11 J + Gy
f=0 \ H=1 /

Here ef = (eri, . . . ,  erj r/, where are the residuals after fitting model (Equation 20.2). The
matrix Ec denotes the lagged values of «r. GyG-i, ■ ■ ■ denote generic hyperparameters whose 
values are described in the chapter, while df\ and correspond to prior Wishart degrees 
of freedom That is, Gi is the prior variance on jjl; G2 represents the Wishart scale matrix for 
£ 9; (Gj, G4) represent the prior means and variance on t,; G5 represents the Wishart scale 
matrix for I a; and Gg and G7 are tlie ganmia shape and rate onc^ 2.
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21
MCMC for State-Space Models

Paul Fearnhead

21.1 In tro d u ctio n : S ta te —S p a ce  M o d e ls

III this chapter, we look at Markov chain Monte Carlo (MCMC) methods for a class of time 
series models called sM e-space models. The idea of state-space models is that there is an 
unobserved state of interest (he evolves through time, and that partial observations of the 
state are made at successive time points. We will denote the state by X  and observations by 
Y, and assume that our state-space model has the following structure:

Here, and throughout, we use the notation x i. t =  (x i, xt), and write p(- | ■) for a generic 
conditional probability density or mass function (with the arguments making it dear which 
conditional distribution it relates to). To fully define the distribution of tlie hidden state we 
further specify an initial distribution pUi | 0). We have made explidt tlie dependence of the 
model on an unknown parameter G, which may be multidimensional. The assumptions in 
this model are that, conditional on the parameter 0, the state model is Markov, and that 
we have a conditional independence property for the observations: observation Yf only 
depends on the state at that time, Xf.

For concreteness we give three examples of state-space models:

Example 21.1: Stochastic Volatility

The following simple stochastic volatility (SV) model has been used for model mg the time-vaiymg
variance of log-returns on assets; for fuller details, see Hull and White (1987) and Shephard [1996).
The state-space model is

The parameters of the model are 6 = (fi, tj>, c). The idea of the model is that the variance of the 
observations depends on the unobseived state, and the unobserved state is modeled by an AR(1) 
process.

Xf | {*l:f—l,yi:f_l} ~ p(Xt |-̂-1,6), 
~p(yt\Xt, 9).

(21.1)

(21.2)

I {X1 :t-1 < Xi :f—11 W('t)-Yf- 1, 0 ),

where | <|) | < 1,with initial distribution X| ~  N (0, o-2/(1 — t|r)), and

Yt I 1*1 :f, y i 1} ~  JV(0, p: exp|xt}).

513
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A general class of models occurs when the underlying state is a discrete-valued Markov model, 
with a finite state space. Thus we can assume without loss of generality that Xt e (1,2, ■ ■ ■, K) and 
that the model for the dynamics of the state (Equation 21.1) is defined by a K x K transition matrix 
P. Thus, for all e {1___ ,K },

Pr(Xt = j\ X t_ i = irx] .t_ 2ry] .t_ ^ =  Piy

Usually it is assumed that the distribution for X\ is given by the stationary distribution of this 
Markov chain. The observation Equation 21.2 will depend on the application, but there will be K 
observation regimes (depending on the value of the state). Thus we can write

Yt I {Xt = k, X i ; f _ - | , y i  :t_l } — ffcO-'f I*))- (21.3)

The parameters of this model will be the parameters of Equation 21.3 and the parameters of the 
transition matrix P.

Examples of such models include models of ion channels (Ball and Rice, 1992; Hodgson, 1999), 
DNA sequences (Boys et al., 2000), and speech (Juang and Rabiner, 1991).

Example 2 1 .2 : D iscrete Hidden Markov Model

Example 21.3: Change-Point Model

Change-point models partition the data into homogeneous regions. The model for the data is the 
same within each region, but differs across regions. Change-point models have been used for 
modeling stock prices (Chen and Gupta, 1997), climatic time series (Beaulieu et al., 2007; Lund 
and Reeves, 2002), DNA sequences (Didelot et al., 2007; Fearnhead, 2008), and neuronal activity 
in the brain (Ritov et al., 2002), among many other applications.

A simple change-point model can be described as a state-space model with the following state 
equation:

Xt I {*1 :f —1, Vi :f— I } =
xf_ i ,  with probability 1 — p, 
Z f, otherwise,

where the Z fs are independent and identically distributed random variables with density function 
Initially Xi = Z |,and the  observation equation is given by

Vf I {*l:f,yi :f—11 ~  p(yt I Xt)-

The parameters of this model are 0 = (p, (j)), where p governs the expected number of change 
points in the model, and cf> the marginal distribution for the state at any time.

W e will focus on models for which we can calculate, for any f < s,

Q ( t,s) = n P ^ I ^ I  Pz(x|f|))dx. (21.4)

This is the marginal likelihood of the observations yt-Sl given that the observations come from 
a single segment. The functions Q (f, s) depend on ()>, but for notational convenience we have 
suppressed this.
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21.2 B ayesian  A n aly sis  and M C M C  Fram ew ork

Our aim is to perform Bayesian inference for a state-space model given data j/i:„. We assume 
a prior for the parameters, pffi), has been specified, and we wish to obtain the posterior of 
the parameters p(Q \y\m), or in some cases we maybe interested in the joint distribution of 
the state and the parameters /'(6, x i:„ | _i/i:?? ).

How can we design an MCMC algorithm to sample from either of these posterior distri
butions? In both cases, this canbe achieved using data augmentation (see Chapter 10, this 
volume). That is, we design a Markov chain whose state is (6, Xi^), and whose stationary 
distribution is ;>(0, | yi;71) (samples from the margmal posterior p(Q | y i:?,) canbe obtained
from samples fronip(0,:*1;„ | y 1;jl) just by discarding the jc1:„ component of each sample). The 
reasonfor designing an MCMC algorithm on this state space is that, for state-space models 
of the form Equations 21.1 through 21.2, we can write down the stationary distribution of 
the MCMC algorithm up to proportionality:

■ <215>

Hence, it is straightforward to use standard moves within our MCMC algorithm,
In most applications it is straightforward to implement an MCMC algorithm with 

Equation 21.5 as its stationary distribution. A common approach is to design moves that 
update 0 conditional on the current values of X i:„ and then update X i:„ conditional on 0. 
We will describe various approaches within this framework. We first focus on the problem 
of updating the state; and to evaluate different methods we will consider models where 6 
is known. Then we will consider moves to update the parameters.

1:ji lyim) Ocp(e)f>(*l

21.3 U p d atin g  the S tate

The simplest approach to updating the state X i:„ is to update its components one at a time. 
Such a move is called a single-site update. While easy to implement, this move can lead to 
slow mixing if there is strong temporal dependence in Hie state process, hi these cases it 
is better to update blocks of state components, Xf:s, or the whole state process X 1;!I in a 
single move. (As we will see, in some cases it is possible to update the whole process X 1:?l 
directly from its full conditional distributionp(x i;„ \y\m, 0), in which case these moves are 
particularly effective.)

We will give examples of single-site moves, and investigate when they do and do not 
work well, before looking at designing efficient block updates. For convenience we drop 
the conditioning on G in tlie notation that we use within this section,

21.3.1 Single-Site Updates of the State

The idea of siugle-site updates is to design MCMC moves that update a single value of the 
state, xt, conditional on all other values of the state process (and on 0). Repeated application 
of this move for t =  1, . . n will enable the whole state process to be updated.
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Let x.-t =  (xy ..  .. ,,xn) denote the whole state process exduding Xf. So a
single-site update will update xt for fixed ;x_f, 0, The target distribution, of such a move 
is the full conditional distribution p(xt \ which as mentioned above we will
write as p(xt \ X-t,yi-t), dropping the conditioning on 0 in the notation that we use, as we 
are considering moves for fixed 0. Due to the Markov structure of our model, this sim
plifies to p(xt\xt-i,x t+ h y t)  for t = 2, 1, p(xi\x2jy i)  for f = 1, and p(xn \ x7l_ i/ yn)
for t =  n. Sometimes we can simulate directly from these full conditional distributions, 
and such (Gibbs) moves will always be accepted. Where this is not possible, then if 17 is 
low-dimensional we can often implement an effident independence sampler {see below).

We now give details of single-site update for Examples 21.2 (Gibbs move) and 21.1 (inde
pendence sample), and in both cases we investigate the mixing properties of the move in 
updating X i;„.

Example 21.4: Single-Site Gibbs Move

For the hidden Markov model (HMM) of Example 21.2, with state transition matrix, P, we have 
for f = 2, . . n -  1 that

Pr(X, = fclXf.-i = /,Xf+1 = j ,y f) oc Pr(Xf = k | X(_\ = /)Pr(Xf+1 = j\x t = k)p(yt | Xt = k)

= P.kPkjtkiyt),

for k = K. Now as Xf has a finite state space, we can calculate the normalizing constant of 
this conditional distribution, and we get

Pr(Xf = k | X ,_ i = i, X ,+ 1 = j, yt) = klPk{yt)
E/=i pnpij¥yt)

Similarly, we obtain Pr(X| =  k \ x? = j, y-\) oc Pr(Xi = ) and Pr(Xn = k | X „_ i =
/, yn) oc Piiifii(yn). In both cases the normalizing constants of these conditional distributions can 
be obtained.

Thus for this model we can simulate from the full conditionals directly, which is the optimal 
proposal for Xf for fixed x_f. Note that the computational cost of simulation is O(K), due to 
calculation of the normalizing constants. For large K it may be more computationally efficient 
to use other proposals (such as an independence sample) whose computational cost does not 
depend on K.

W e examine the efficiency of this MCMC move to update the state X-\-n by focusing on an 
HMM for DNA sequences (see, e.g. Boys et al., 2000). The data consists of a sequence of DNA, so 
yt g {A,C,G,T} for all f. For si mplicity we consider a two-state HMM, with the likelihoodfunction 
for k = 1,2 being

Pr( V/ = y\ X( = k) = for y  e |A,C,G,T).

W e denote the parameter associated with Xf = k as = ( n ^ ,  H q ', t t^ ) ,
W e will consider the effect of both the dependence in the state dynamics, and the information

in the observations, on the mixing rate of the MCMC move. To do this we will assume that state 
transition matrix satisfies P i2 = P: 1 = a, and

n<1> = (1,1, 1 ,1)/4 + P(1, 1, - 1 ,- 1 ), tt(-) = (1,1, 1 ,1)/4 - p (1 ,1, -1 ,-1 ),

for 0 < a < 1 and 0 < < 1/4. Small values of a correspond to large dependence in the state
dynamics, and small values of (J correspond to less informative observations,
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a  a

FIGURE 21.1
Lag-1 autocorrelation values for differing a  for a  two-state hidden M arkov model: (a) n =  200; (b) n =  500. In  
each plot, different lines refer to different values of p; from top to bottom: ft =  D,02;f> =  0 ,065; p =  0.11; fi =  D.1 55; 
and (S =  0.2.

To measure the mixing properties of the single-site MCMC update we (i) simulated data for a 
given value of (a, f>); (ii) ran an MCMC algorithm with single-site updates; and (iii) calculated an 
autocorrelation function for the MCMC output after discarding a suitable burn-in. For simplicity, 
we summarized the output based on the autocorrelation at lag-1 (all MCMC runs suggested auto
correlations that decayed approximately exponentially). W e calculated the autocorrelation for the 
number of differences between the true value of the hidden state and the inferred value of the 
state.

Results are shown in Figure 21.1, where we see that the value of a is the main determinant of 
the mixing of the MCMC algorithm. Small values of ot, which correspond to large dependence, 
result in poor mixing, Similarly, as (5 decreases, which relates to less informative observations, the 
mixing gets worse— though the dependence on is less than on a, Qualitatively similar results 
are observed for the two values of n, but for smaller n we see that the value of p has more impact 
on the mixing properties.

Example 21.5: Single-Site Independence Sampler

Now consider the SV model of Example 21.1. W e describe an independence sampler that was 
derived by Shephard and Pitt (1997), With this model we obtain, for t = 2, . . n — 1,

p(Xi|xf_ i , x f+1,y f) ocp(Xf |x,_i)p(xf+i |xf)p(y, |x() ( 2 1 . 6 )
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where we have removed any constants of proportionality that do not depend on x( ; the first term 
of the final expression corresponds to the two state transition densities, and the final two terms 
come from the likelihood.

Simulating directly from this conditional distribution is not possible, so we resort to approx
imation. Our approximation is based on a Taylor expansion of logp(Xf | xf_-|, xf_|_-|, yt) about 
an estimate of Xt, which we call Xt. Now if we define = cJ)Cxf_| -|-xf_|_|)/(1 +t|>: ) and 
t "  = cr-/(1 + (|>-), then thefirstterm in Equation 21.7 can be rewritten, uptoa constant of propor
tionality, as exp(—(Xf — |if)-/(2T-)}, Thus without any observation, our conditional distribution 
of Xf would have a mean |Xf, and this appears a sensible value about which to take a Taylor 
expansion. Doing this leads to

, xf yr / 1 -A
logp(xf |X [- i,X [+1,y f) ss---- ^ ----- — - ^ e x p [- ( A .t}^1 -  ( *  -  , f ) +  ^ (v t -  „ ) - j .

As this approximation to the log-density is quadratic, this gives us a normal approxima
tion to the conditional distribution, which we denote by q(xt | xf_ i , xf+-|, yf). (For full details 
of the mean and variance of the approximation, see Shephard and Pitt, 1997.) Thus we 
can implement an MCMC move of Xf by using an independence sampler with proposal 
c/(xf | x(+1,y ( ).

Similar normal approximations can be obtained for p(x-| | x2,y 1) andp(xn | x,,.-], yn), the only 
difference being in the values of and i. Note that better estimates of can be found, for 
example, by numerically finding the mode of p(Xf | X f_ i, x(+i , yt) [Smith and Santos, 2006), but 
for single-site updates any increase in acceptance rate is unlikely to be worth the extra computation 
involved.

W e investigate the efficiency of single-site updates for the SV model via simulation. W e fix 
P = 1  and consider how mixing of the MCMC algorithm depends on the time dependence of 
the state process, <)>, and marginal variance of the state process, x- = 0-/(1 -  i j r ). As above, we 
evaluate mixing by looking at the lag-1 autocorrelation of the mean square error in the estimate 
of the state process. Results are shown in Figure 21.2, where we see that (j) has a sizeable effect 
on mixing— with <(> *» 1, which corresponds to strong correlation in the state process, resulting in 
poor mixing. By comparison both /7 and i- have little effect. For all MCMC runs the acceptance 
rate of the MCMC move was greater than 99%.

21.3.2 Block Updates for the State

While the single-site updates of Section 21.3.1 are easy to implement, we have seen that 
the resulting MCMC algorithms can mix slowly if there is strong dependence in the state 
process. This leads to the idea of black updates— updating the state at more than one time 
point in a single move. Ideally we would update the whole state process in one move, 
and in some cases it turns out that this is possible to do from the full conditional, so that 
moves are always accepted. These include the linear Gaussian models, where we can use 
the Kalman filter (see, e.g. Carter and Kohn, 1994; Harvey, 1989), as well as the HMM of 
Example 21.2 and the change-point model of Example 21.3. We give details of the methods 
used for the latter two below.

hi situations where it is not possible to update the whole state process from its full con
ditional, one possibility is to use an independence proposal to update jointly a block of 
state values. We will describe such an approach for the SV model of Example 21.1, and 
then discuss alternative approaches for block updates for models where it is not possible 
to draw from the full conditional distribution of the state.
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0

FIGURE 21.2
Lag-1 autocorrelation values for differing (|> for the stochastic volatility model: (a) n =  200; (b) n  =  500. In  each 
plot, different lines refer to different values o f t 2: t 2 =  0.5 (full lines); i 2 =  1 (dashed lines); t 2 =  2.0 (dotted lines).

Example 21.6: Updating the State from its Full Conditional

The forward-backward algorithm is a method for sampling from the full conditional of the state pro
cess for discrete HMMs. See RabinerandJuang[1986)fora review of this method, andScott(2002) 
for further examples of its use within Bayesian inference. Here we describe its implementation for 
the model of Example 21.2.

The algorithm is based upon a forward recursion which calculates the filtering densities 
Pr(Xf | y i ;j) for t=  1, ..., n; followed by a backward simulation step that simulates from 
Pr(X „ | yi .„) and then Pr(Xf \y-\-nr x(+i ) for t = n — 1, ..., 1. The forward recursion is initialized 
with

PrfA'i = k | y-|) oc Pr(Xi = /OfcCyi), for k = 1, ..., K, 

where the normalizing constant is p(y-f) = I ^ - i  P r(X-| = /)f)(y-|). Then for t = 1, ..., n we have

K
Pr(Xf = t  |y1;f) oc fk(yt) Pr(X(_ i  = /1 ;f_ | )P!k, for k = 1,

1= I

where the normalizing constant is p(yt \ y-[ ; f _ i ). (Note that a byproduct of the forward recur
sions is that we obtain the likelihood as a product of these normalizing constants, as p (y i ;n) =
p ( y i ) n ?=2 p(yt i/ i

Once these filtering densities have been calculated and stored, we then simulate backwards. 
First, we simulate Xn from thefilteringdensity Pr(Xn \ y-\ then, for t = n — 1, ..., 1, we iteratively 
simulate Xt given our simulated value for Xf+-\, from

Pr(Xf =  I \ yi X,+1 = k )  =  Pr(Xf =  I \ y, Xf+1 =  k )  a  Pr(Xf =  I \ Y] .t )Plk.
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The computational complexity of the forward-backward algorithm is 0 (n K 2) for the forward 
recursion, and 0 (/iK ) for the backward simulation. This compares with 0(m/C) for applying the 
single-site update to all state values. Thus, particularly for values large K, it may be computationally 
more efficient to use single-site updates. As seen above, whether this is the case will depend on 
the amount of dependence in the state model.

In the above description, we suppressedthe dependence on the unknown parameter 9. Standard 
MCMC algorithms will update X-\ n given 6 and then 0 given X i ;n in one iteration. Thus each 
iteration will (potentially) have a new 9 value, and will require the reapplication of the forward- 
backward algorithm to simulate X] :n. One approach to reducing the computational cost of using 
the forward-backward algorithm within MCMC, suggested by Fearnhead (2006), is to (i) obtain 
a good point estimate of the parameters, 9; (ii) apply the forward recursion for this value of the 
parameter; and (iii) use Pr(X| •n \y-\ ;n, 6) as an independence proposal for updating the state. The 
advantage of this is that the costly forward recursion is only required once, as opposed to at every 
iteration of the MCMC algorithm. Furthermore, Fearnhead (2006) describes an efficient algorithm 
for simulating large samples of X| ;n from the backward simulation step. In applications, providing 
a good estimate is obtained in [i), this approach has shown to produce efficient MCMC updates. 
Note that estimation in (i) could be performed in an adaptive manner during the burn-in period 
of the MCMC algorithm.

Our forward-backward description has focused on discrete-time processes. It is possible 
to extend the idea to continous-time (though still discrete-valued) HMMs; see, for example, 
Fearnhead and Meligkotsidou [2004) and Fearnhead and Sherlock (2006).

Example 21.7: Updating the State from its Full Conditional

W e now show how the foward-backward algorithm can be applied to the change-point model 
of Example 21.3. The idea behind this application dates back to Yao (1954), but see also Barry and 
Hartigan (1992), Liu and Lawrence (1999), and Fearnhead [2006).

W e introduce a new state variable, Q , which we define to be the time of the most recent change 
point prior to t, Mathematically this is a function of x-|;f, with

Ct = max{s : x5 ^  r̂s+1 for s  < f},

and Q  = D if there has been no change point prior to t (i.e. the set on the right-hand side is empty). 
Note that Q  e [0, ..., t — 1}, and Q is a Markov process with

P r ( Q = j \ C t _ , = i )  =  \ P ' =

l i - p ,  'f '= y .

with all other transitions being impossible. Note that these two transitions correspond to there 
either being or not being a change point at time f — 1.

W e can now derive the forward-backward algorithm. The forward recursion is initialized with 
Pr(C| = 0| y-\) = 1, and for f = 2, ..., n we have

Pr(Cf = j\yv .t) oc (1 Pr<Cf-i = / IX i: f- i) ' for 7 = 0----t -  2,

Pr(Q  = f  —  1 | y-|;[) cx pQ(t, t).

The first equation corresponds to there not being a change point at time t — 1. This happens 
with probability 1 — p, and in this case Q  = Ct_ |. The second corresponds to there being a 
change point, which happens with probability p. The Q(-, ■) are defined in Equation 21.4. In both 
equations, the term involving Q(-, ■) is the likelihood of the observation yt given Ct and .
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Once the filtering recursions have been solved, backward simulation proceeds using the 
conditional distributions

P r ( Q  = j | Cf+1 = f, y 1 .„) = P r ( Q  = j\ y l :f),

where conditioning on Q +i = t is equivalent to conditioning on a change point at t. Thus we can 
simulate the time of the last change point from Pr(C „ | y-\ ■„), and then recursively, given a change 
point at t, simulate the next most recent change point from Pr(Q  | yi ;f), This simulation continues 
until we simulate Cf = 0, which corresponds to no more change points,

The computational complexity of this algorithm is O (r r ). The main cost is in solving the recur
sions, and one approach to reduce computational cost is to solve these for a specific value 
of the parameters, and then use the resulting conditional distribution for X| n as an indepen
dence proposal (see Fearnhead, 2006, and the discussion for Example 21.2 above). Note that 
this forward-backward algorithm can be generalized to allow for different distributions of time 
between successive change points (see Fearnhead, 200B), and for HMM dependence in the state 
value for neighbouring segments (Fearnhead and Vasileiou, 2009).

Example 21.8: Block Independence Sampler

For the SV model of Example 21.1, we cannot sample directly from the full conditional distribution 
P (xi :n I Ŷ  :n)- Instead we follow Shephard and Pitt (1997) and consider an independence sampler 
for block updating, The proposal distribution for the independence sampler is based on a natural 
extension of the independence sampler for singe-site updates.

Consideran update for Xf;s for s > f. Foran efficient independence proposal we require a good 
approximation to p(Xf;s I Xt-1, xs-H r yt-.s)- (If f = 1 we would drop the conditioning on x(_ i , and 
if 5 = n we would drop the conditioning on xs+i here and in the following.) Now we can write

5

P ( * f : s  I * f - 1  - * S+ 1  , Yt'.s) K  P ( X f  ;s | X ( _ !  , X 5 + 1  )  ]~~[ ptyj \ X j ) ,

i=>

where the first term on the right-hand side is a multivariate Caussin density. Thus if, for all j  = 
t, s, we approximate p(yy | xp by a Gaussian likelihood, we obtain a Gaussian approximation 
to p(Xf;s | x(_ i , xs+i , yt-.s) which can be used as an independence proposal. W e can obtain a 
Gaussian approximation to p(yj | xp by using a quadratic (in xp approximation to logp(yy | xp via a 
Taylor expansion about a suitable estimate Xj. The (details of this quadratic approximation are the 
same as for the single-step update described above. Further details can be found in Shephard and 
Pitt (1997). The resulting quadratic approximation to p(xt;s | xf_ i , xs+1, y f;s) can be calculated 
efficiently using the Kalman filter (Kalman and Bucy, 1961), or efficient methods for Gaussian 
Markov random field models (Rue and Held, 2005), and its complexity is 0 (s  — f).

Implementation of this method requires a suitable set of estimates xt;5 = (Xf, . . . , x5). If we 
denote by q(xts | Xf;s) the Gaussian approximation to p(xt,5 | X f_ i, x ^ i , yt;s) obtained by using 
the estimate xf;s, then one approach is to: (i) choose an initial estimate x|^; and [ii) for / =
1, ..., /, set xf.j to be the mean of cf(Xf:s | x^-1 )̂. In practice, choosing x ^  to be the mean of 
p(Xf;s | X f_ i, x5-|-i) and using small values of I appears to work well.

This approach to designing independence proposals can be extended to other models where 
the model of the state is linear Gaussian (see Jungbacker and Koopman, 2007). Using the resulting 
independence sampler within an MCMC algorithm is straightforward if it is efficient to update the 
complete state path X\ n. If not, we must update the state in smaller blocks. A  simplistic approach 
would be to split the data into blocks of (approximately) equal size, t  say, and then update in 
turn X |.T, X(T+i ) ;2T, and so on. However, this approach will mean that state values toward the 
boundaries of each block will mix slowly due to the conditioningon the state values immediately
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outside the boundary of the blocks. To avoid this, Shephard and Pitt (1557) suggest randomly 
choosing the blocks to be updated for each application of the independence proposal. Another 
popular alternative is to choose overlapping blocks, for example, Xf ;2X, ^ x+i):3x< ^(21-1-1 ):4x an^ 
so on.

A further important consideration in implementation is the choice of block size. Too small and 
we will obtain poor mixing due to the strong dependence of Xt-S on X(_ i  and ; too large and 
we will have poor mixing due to low acceptance rates. (One approach is to use adaptive MCMC 
methods to choose appropriate block sizes; see Roberts and Rosenthal, 2009.) Here we will look 
at the effect that block size has on acceptance probabilities for the SV model.

Plots of average acceptance rates for different block sizes and different data sets are shown 
in Figure 21.3. Two features are striking. The first is that efficiency varies substantially with 0, 
with values of 0*»1 producing higher average acceptance rates. This is because for <|> ^  1 there 
is stronger dependence in the state process, and thus the (Gaussian) p(Xf;s |xt_ i ,x J+ i )  dom
inates the (non-Gaussian) likelihood p (y [;s | Xf;s). The second is that there is great variability 
in acceptance rates across different runs: thus choice of too large block sizes can lead to the 
chain becoming easily stuck [e.g. acceptance probabilities of 10-8 or less were observed for 
blocks of 2000 or more obseivations when 0 = 0.S). This variability suggests that a sensible strat
egy is either to randomly choose block sizes, or to adaptively choose block sizes for a given 
data set.

However, overall we see that the block updates are particularly efficient for the SV model. For 
block updates, acceptance rates greaterthan 0.01 are reasonable, and the average acceptance rate 
was greater than this for all combinations of 0 and block size that we considered. Even looking 
at the worse-case acceptance rates across all runs, we have acceptances rates greater than 0.01 
for blocks of size 400 when 0 = 0.8, and for blocks of size 2500 when 0 = 0.99.

= 0.90

jj ie-01 -

1000 1500 2000
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3000

6 = 0.9& *  = 0.99

& le-03  -
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FIGURE 21.3
Average acceptance rates for different block sizes, and different 0  values. Dots show m ean acceptance rates for 
20 different data-sets for each block size, l in e s  show m ean acceptance rates for each block size. All runs had 
t- =  <i-/(1 — 0 - )  =  0.2. (Som eM C M C  runs had acceptance rates that are too small to appear on the plot.)
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21.3.3 Other Approaches

Our examples have shown how to simulate directly from the full conditional of the state, or 
how to approximate the full conditional for use within anindependence proposal. However, 
the former method can only be applied to a limited dass of models/ and the latter used 
the linear Gaussian nature of Hie state model It is possible to obtain good independence 
proposals for more general state models, but this can become challenging, particularly for 
high-dimensional states and models with strong nonlinearities.

One general approach to block up dates of the states has recently been proposed in Andrieu 
et al. (2010), which is based upon using sequential Monte Carlo methods (see Liu and Chen, 
1998) within MCMC. Sequential Monte Carlo methods canbe effident for analysing state- 
space models where parameters are known, and the idea is that these are used to generate 
a proposal distribution for the path of the state within an MCMC algorithm.

21.4 U p d atin g  the P aram eters

We now consider how to update the parameter, 0, within the MCMC algorithm The natural 
approach is to update 0 conditional on the current value of Hie state path x i ;„. Often this is 
simple to implement as either conjugate priors for 0 can be chosen so that we can sample 
directly from p(Q \ or 0 is of suffidently low dimension tliat we can use effident
independence proposals, hi some cases we need to update components or blocks of 0 at a 
time, rattier than the updating tlie whole parameter vector in one go.

However, even if we can sample from the full conditional p(01 ), the overall effi
dency of the MCMC algorithm can still be poor if there is strong correlation between O 
and The rate of convergence of an algorithm that alternates between sampling from 
p(x l-.n 16/ i/1:?e ) and p(B | is given by Liu (1994) and Roberts and Sahu (1997). If, for
a square-ititegrable function / of the parameters, we define the Bayesian paction o f  missing 
information,

E(var(/(0)|Xi:?1,y i:?1) \yi^)
yf /r,a. . \  ̂(2i./)' var (/(0) |yi:„)

then the geometric rate of convergence of the MCMC algorithm is y = supf- yj. Values of 
1 suggest a poorly mixing MCMC algorithm. This will occur when, after conditioning 

on the data, there are functions/ for which most of the variation in/(0) is explained by the 
value of the state, X i:„.

When there is strong dependence between 0 and X\m, there are two techniques for improv
ing mixing. The first is to consider a different parameterization, with the hope that for this 
new parameterization there will be less dependence between the state and the parameter. 
The second is to use moves that jointly update 0 and X i:„. We will describe and eval
uate approaches for updating 0 given X i:„, and then consider these two approaches for 
improving mixing in turn.

21.4.1 Conditional Updates of the Parameters

Here we focus on Examples 21.1 and 21.2, and give outlines of how parameter updates can 
be made with these models. We will also investigate the mixing properties of tlie resulting 
MCMC algorithms.
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Following Shephard and Pitt (1997), we will consider independent priors for {5, cr-, and <J>. As P is 
a scale parameter, we choose the canonical uninformative prior, p({3) oc 1 /{3. For cr- our prior is 
-SoXp"' it is normal to restrict | 0 | <1, we choose a Beta(a, £>) prior for (0 + 1)/2. For these 
choices we have that, conditional on {y-| yi n}, f> is independent of 0, cr, and has distribution

Example 2 1 .9 : Conditional Parameter Updates

P2 I {*1 :n, y i:n l X fT  X !  Yt e x p {- X [}. 
f=1

To update c|> andcr it is simplest to use their conditional distributions,

I {*1 :n, yi 4>1 ~ u l p 0̂ + *{(1 -  02 ) + <*t ~

[21.8)

P(<H*1:n, Ki;n,a )  oc (1 +<())a V -(1 - 0 ) b+1/- exp
(1 -0 -)^ :

t=2

The distribution for cr2 can be sampled from directly. For 0, a simple procedure isan independence 
sampler with Gaussian proposal. The Gaussian proposal is chosen proportional to

exp
(1 - 0 - ) x T

which corresponds to a mean of J2't=2 xtxt-\f x7 an^ a variance of cr-/ X f . (Note 
that this distribution can propose values outside ( — 1, 1), and such values will always be rejected,) 

An example of how the mixing of the MCMC algorithm is affected by the dependence within 
the state model is shown in the top row of Table 21.1 (labeled noncentered parameterization). We 
notice that as 0 increases— that is, the dependence in the state model increases— so the mixing 
deteriorates. This is because in this limit the amount of information about £ contained in the state 
path remains roughly constant as 0 increases, but the amount of information about p contained 
just in the observations is decreasing. This means that the Bayesian fraction of missing information 
is increasing, andthus the MCMC algorithm mixes more poorly.

Example 21.10: Conditional Parameter Updates

Let Pk denote the fcth row of the transition matrix, P. Consider the case where the parameter 
vector can be written as 0 = (P, <f>i, ..., <(./<-), with the likelihood function given Xt = k is of the

TABLE 21.1

Lag-1 Autocorrelation for P for Both Noncentered and Centered 
Param eterizations

0.8 0.9 0.95 9.75 0.99

Noncentered 0.11 0.21 0.37 0.62 0.98

Centered 0.89 0.79 0.64 0.43 0.29

Results are fo ra - =  0 .0 2 - , p =  1 and n =  200, and different values of 0.
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form f^y  | 0) = f^iy | That is, we have a disjoint set of parameters for each of the K likelihood 
models. Further assume first that the distribution of X-| is independent of 9. In this case, if our 
priors for the P^ and <t>t  are independent, then the full conditional p(& | x-| ;n, .„) simplifies.
Conditional on {x-| yi ;n), we have independence of P-|, ..., P̂ -, 4>i, ..., c|>K . Thus we can perform 
independent updates of each of these 2K parameters in turn. [If the distribution ofX| depends on 
P, then this will introduce weak dependence in the posterior distribution of the P(,.)

If we choose a Dirichlet prior for the entries of P^, then the p(P^ | x-| y i ;n) will be a 
Dirichlet distribution. Updating of will depend on the specific likelihood model and pri
ors used. However, for the DMA model introduced in Section 21.3.1, we have =

ari^ 'f we have a Dirichlet prior then p((|>t | x-| y-|.„) will again be
Dirichlet.

21.4.2 Reparameterization of the Model

We have seen that dependence between X i:„ and 6 can result in an MCMC algorithm 
for (X i;„,0) that mixes poorly. One approach to alleviate this is to consider alternative 
parameterizations.

Papaspiliopoulos et al. (2007) describe two possible general parameterizations for hier
archical models (see also Gelfand et al., 1995; Papaspiliopoulos et al., 2003), and these can 
be used for state-space models. These are centered parameterizations, which in our setup 
are definedby a model where p(B | = /'(01 i:ri), and noncentered parameterizations,
where apriori 0 andXi:?1 are independent. If we consider Examples 21.9 and 21.10 above, then 
for the SV model of Example 21.9 our parameterization for P is noncentered—as our model 
for X iji does not depend on p. By comparison, for Example 21.10 our parameterization for 
P is a centered parameterization.

While it is nontrivial to introduce a noncentered parameterization for Example 21.10— 
though Papaspiliopoulos (2003) and Roberts et al. (2004) propose approaches that couldbe 
used—it is straightforward to introduce a centered parameterization for Example 21.9. We 
define n = 2 log (3 and a new state model X'1.n where

Xf I +  <H4-1 “  |J0'C\

withX^ ~  AT(h, ct2/ (1 -  4>2))f and

Yt I ~  N(Q,exp{4})-

For this parameterization we have (Pitt and Shephard, 1999)

H I ~ N(b/a,(j2/a),

where a  =  (n -  1)(1 -  $)2 +  (1 -  (j>2) and& =  (1 -  <t>)E7=2(-rt ~ <K_iJ + * i ( l  -  4>2)- 
For large n we can compare yf  (Equation 21.7) for/(0) = (j. for both centered and noncen

tered parameterizations. If we conjecture thaty % then these values will inform us about
Hie relative efficiency of the two parameterizations. To compare y/ for the two parameteriza
tions we need only compare E(var(21og p | X i^ y i^ ) \ y\ : j j ) and E(var(|i | X  ̂ ,y i;7J)
If the former is larger, than the centered parameterization will have a smaller value for yp  
and we may conjecture will have a better rate of convergence. Otherwise yy willbe smaller 
for the noncentered parameterization.
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Now for the noncentered parameterization we have var( n | =  1/a a 2/(u( l  -
4>)2). Thus, as this does not depend onX'h ,w e have

a2
E(var(|i |X2 |y ln ) «s — — —T

#i.(l -  <)>)

For the centered p arameterization, from Equation 21.8, we have thatE(var(21og p |
I .i/i:,,) =  var{log y 2), thus for large ii,

E(var(21og p | X i |  y i;„) ^

Thus yf is smaller for the centered parameterization if 2/u > o 2/(/t( 1 — fy)1) or

This suggests that as 4> -*■ 1 we should prefer using the centered parameterization, but 
for small <f> the noncentered parameterization would be preferred. This is confirmed by 
simulation (see Table 21.1). Similarly, when a is small we should prefer the centered 
parameterization.

For the specific model we consider in Example 21.1, we have centered parameterizations 
for cj and <f> It is possible to extend the noncentered parameterizations for P to one for (P, a) 
and even ((3,o, cf/). For (P,w) we introduce a state X'lm where

X f I ~ !>/

w ithX ' -  N (0,1/(1 -  ty2)), and

Yt I {x’l& yi-t-i) -  W(0/p2 exp{a4}).

For (p, a, (f>) we can parameterize the state in terms of the standardized residuals in the 
AR model, (Xf -  <J>Xf_i)/a, and X iv 'l — if2, which are independent standard normal ran
dom variables. Together with related ideas, this idea has been used extensively within 
continuous-time S V models (see Gohghtly and Wilkinson, 2008; Roberts and Stramer, 2001).

21.4.3 Joint Updates of the forameters and State

One way of thinking about why strong correlation between 0 and X i:„ produces poor 
mixing, is that large moves of 0 are likely to be rejected as they will be inconsistent with Hie 
current value of the state. This will happen even if the proposed new value for 9 is consistent 
with tlie data. This motivates jointly updating 0 andXi;?1 from a proposalq(&, 10/J£i:n) =
ij(0' | | 0'). Thus (/(O' | 0) could propose large moves, and then values of the state
process consistent with 0' will be simulated from | &').

This is most easily and commonly implemented for models where we can simu
late directly from p(xi:„ | in which case we choose | 0') = p(x'i.n 19', Tlie
resulting acceptance ratio then simplifies to
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This acceptance ratio does not depend on or . Hie marginal chain for 0 is equivalent
to an MCMC chain for p (0 1 vi:„) with proposal distribution q(& | G).

Providing an efficient proposal //(O' 10) can be found, such an MCMC algorithm will 
always be more efficient than one that updates 0 and X i:„ independently. However, the 
difficulty with implementing this idea is how to choose i/(0' | G). For Markov modulated 
Poisson processes, Sherlock et al. (2008) found that a Gibbs sampler that updated X i;„ 
given 6 and 0 given X i:„ performed better than this joint update where i/(0' | G) was chosen 
to be a symmetric random walk. Afurther advantage of the Gibbs sampler is that it avoids 
tuning (/(O' | 6), though this problem can be alleviated by using adaptive MCMC schemes 
(Andrieu and Thoms, 2008; Sherlock et al., 2008).

A simple extension of this joint updating idea is possible if we have an efficient inde
pendence proposal for jti:„ given 6—as this proposal could be used as I 6'). Here the 
efficiency of the resulting algoritlmi will depend on both tlie efficiency of (/(G' 16) as a pro
posal for an MCMC algorithm that explores p(0' | yi:„), and also the doseness of I 9') 
to p(x'lm |

21.5 D iscu ssio n

This chapter has given an introduction to MCMC methods for state-space models. Two 
main issues have been covered. Firstly, if there is strong, or long-range, dependence in the 
state-space model, then an efficient MCMC algorithm will need to update blocks of the state 
process in a single move. Secondly, strong correlationbetween the parameters and the state 
process can lead to slow mixing of the MCMC algoritlmi (even if there are efficient methods 
for updating the state process). To improve mixing, either reparameterization of the model, 
or joint updates of tlie state and the parameters will be needed.

While we have looked at examples where it is possible to construct efficient moves for 
updating the state, in many applications this canbe difficult to achieve. Recent research has 
looked at the use of sequential Monte Carlo methods within MCMC (Andrieu et al., 2010), 
and these ideas show promise for providing a general-purpose approach for updating the 
whole state process (or large batches of it) in a single MCMC move. Related methods are 
able to allow for efficient joint updates of the state and parameter process (Andrieu et al., 
2010) or for methods that mix over the marginal posterior of Hie parameters (Andrieu and 
Roberts, 2009).

While we have focused on discrete-tiiiie state processes, many of the issues extend nat
urally to continuous-tiiiie processes. For example, the issue of model parameterization for 
diffusion models is discussed in Roberts and Stranier (2001), and for these models certain 
parameterizations can lead to MCMC algorithms which are reducible. Extensions of the 
forward-backward algorithm to continuous-time models are considered in Fearnhead and 
Meligkotsidou (2004), and independence sampler updates for the state process in diffusion 
models are developed in GolightLy and Wilkinson (2008).
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22
MCMC in Educational Research

Roy Levy, Robert J. Mislevy, and John T. Behrens

22.1  In tro d u c tio n

Quantitative educational research has traditionally relied oil a broad range of statistical 
models that have evolved in relative isolation to address different facets of its subject mat
ter. Experiments on instructional interventions employ Fisherian designs and analyses of 
variance, observational studies use regression techniques, and longitudinal studies use 
growth models in the manner of economists. The sodal organization of schooling—of stu
dents within classrooms, sometimes nested within teachers, of dassrooms within schools, 
schools within districts, districts within states, and states within nations—necessitates hier
archical analyses. Large-scale assessments employ the complex sampling methodologies 
of survey research. Missing data abound across levels. And most characteristically, mea
surement error and latent variable models from psychometrics address the fundamental 
fact that what is ultimately of most interest, namely what students know and can do, can
not be directly observed: a students performance on an assessment may be an indicator 
of proficiency but, no matter how well the assessment is constructed, it is not the same 
thing as proficiency. This measurement complexity exacerbates computational complexity 
when researchers attempt to combine models for measurement error with models address
ing tlie aforementioned structures. Further difficulties arise from an extreme reliance on 
frequentist interpretations of statistical methods that limit the computational and inter
pretive machinery available (Behrens and Smith, 1996). In sum, most applied educational 
research has been marked by interpretive limitations inherent in the frequentist approach 
to testing, estimation, and mo del building, a plethora of independently created and applied 
conceptual models, and computational limitations in estimating models that would capture 
the complexity of this applied domain,

This chapter discusses how a Markov diain Monte Carlo (MCMC) approach to model 
estimation and associated Bayesian underpinnings address these issues in three ways. First, 
the Bayesian conceptualization and Hie form of results avoid a number of interpretive prob
lems in Hie frequentist approach while providing probabilistic information of great value to 
applied researchers. Second, the flexibility of the MCMC models allows a conceptual uni
fication of previously disparate modeling approaches. Third, the MCMC approach allows 
for the estimation of the more complex and complete models mentioned above, thereby 
providing conceptual and computational unification.

Because MCMC estimation is a method for obtaining empirical approximations of pos
terior distributions, its impact as calculation per se is joint with an emerging Bayesian 
revolution in reasoning about uncertainty—a statistical mindset quite different from that of
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hypothesis testing, parameter estimation, and model-fitting in the classical paradigm that 
has characterized educational research, Afertile groundwork was laid in this field from tlie 
1960s through the 1980s by Melvin Novick. Two lines of Novick's work are particularly 
relevant to the subject of this chapter. First is the subjectivist Bayesian approach to model- 
based reasoning about real-world problems—building models in terms what one knows 
and does not know, from experience and theory, and what is important to the inferential 
problem at hand (see, e.g. Lindley and Novick, 1981, on exchangeability). His application 
of these ideas to prediction across multiple groups (Novick and Jackson, 1974) foreshadows 
the modular model-building to suit tlie complexities of real-world problems that MCMC 
enables, hi particular, the ability to "borrow" information across groups to a degree deter
mined by the data, rather than pooling the observations or estimating groups separately, 
was a major breakthrough of tlie time—natural from a B ayesian perspective, but difficult to 
frame and interpret under tlie classical paradigm. Second is the realization that broad use 
of the approach would require computing frameworks to handle the mathematics, so Hie 
analyst could concentrate on Hie substance of the problem His Computer-Assisted Data 
Analysis (CAD A; Libby et al., 1981) pioneered Bayesian reasoning aboutposteriorsinways 
that are today reflected in the output of MCMC programs such as WinBUGS (Spiegelhalter 
et al., 2007).

22.2 S ta tis tica l M od els in  E d u ca tio n  R esearch

Hierarchical or multilevel models extend more basic statistical models to model depen
dencies between subjects or measures that have a hierarchical structure (e.g. test scores 
over time nested within students, students within classrooms, classrooms within schools, 
schools within districts/ states, etc.). Regression-like models are formulated at the lowest 
level (level 1) of analysis, Parameters from this level of analysis are in turn modeled, fre
quently by regression-like models, to specify level-2 parameters that capture the effects of 
covariates at that level, such as school policies. This maybe extended to any number of lev
els. Applications in education typically employ linear regression-like models at each level, 
frequently assuming normality in each case. The effects of primary interest differ from one 
study to another, but properly modeling the structure better captures patterns of shared 
influence and appropriately models the levels at which effects occur.

Within models for educational effects, the lowest level of modeling often addresses stu
dents' responses conditional on unobservable or latent variables that characterize students. 
These psychometric models facilitate inference from observations of behaviors made by 
subjects to more broadly conceived statements about the subjects and/or the domain of 
interest. Though surface features vary, modem psychometric modeling paradigms are char
acterized by tlie use of probabilistic reasoning in the form of statistical models to facilitate 
such inferences in light of uncertainty (Mislevy and Levy, 2007).

Table 22.1 summarizes several of Hie more popular psychometric models in terms of 
assumptions about the latent variables capturing subject proficiency and the observables 
serving as indicators of Hie latent variable s. Factor analysis {FA; B ollen, 1989; Gorsuch, 1983) 
posits that both the observables and latent variables are continuous and frequently addi
tionally assumes the observables to be normally distributed, Structural equation modeling 
(SEM, Bollen, 1989) canbe historically viewed as extending the factor-analytic tradition
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TABLE 22.1

Taxonomy of Popular Psychometric Models

Observable

Variables

Latent Variable(s)

Continuous Discrete

Univariate Multivariate Univariate Multivariate

Diehotomous Item response Multidimensional Latent class Bayesian networks

theory item response analysis Cognitive diagnosis

theory models

Poly tom ous Item response Latent class Bayesian networks

unordered theory analysis Cognitive diagnosis

models

Poly tom ous Item response Multidimensional Latent class Bayesian networks

ordered theory item response analysis Cognitive diagnosis

theory models

Factor analysis

Normal Factor analysis Factor analysis

Structural equation Structural equation

m odeling m odeling

with regression-like structures that relate latent variables to one anther. Item response the- 
ojy (IRT; Lord., 1980) assumes the observables to be discrete and, whenpolytomous, usually 
ordered. Latent dass analysis (LCA; Lazarsfeld and Henry, 1968) and related models (dis
cussed in more detail below) assume tliat both Hie observables and latent variables are 
discrete.

The nomenclature in Table 22,1 reflects historical traditions, with assodated purposes, 
assum ption and estimation frameworks. As each of tlie modeling frameworks have 
expanded the historical lines have become blurred, For example, multidimensional latent 
variable models for discrete data may be framed as either a multidimensional extension of 
(unidimensional) IRT models or Hie application of common factor models to discrete data 
(Takane and de Leeuw, 1987). Moreover, the models can be combined in nuanced ways, 
such as tlie recently developed mixtures of IRT models that synthesize hitherto separate 
streams of work in IRT and latent dass modeling (Rost, 1990).

This treatment is far from exhaustive and beyond tlie intent of this chapter (though in 
later sections we will discuss these and other models in use in education research, some 
of which can be viewed as extensions or combinations of those already mentioned). For 
the focus of this chapter, it is important to recognize that these modeling paradigms grew 
out of their own independent traditions, with at best only partially overlapping fod, liter
atures, notational schemes, and—principally related to the current discussion—estimation 
frameworks and routines. For example, FA and SEM have historically been employed to 
model relationships among constructs, rather than features of subjects. Estimation typi
cally involves least squares or maximum likelihood using first- and second-order moments 
from sample data, with an emphasis on the estimation of structural parameters, that is, 
parameters for the conditional distributions of observed scores given latent variables, 
here interpreted as factor loadings and fador covariances, but not on the values of the 
latent variables for individual persons, here factors (Bollen, 1989). In contrast, IRT models 
are commonly employed to scale test items and examinees. Estimation usually involves
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the analysis of individual-level data or frequencies of response patterns and assump
tions regarding the distribution of the latent variables for individuals, here interpreted 
as student proficiencies. Once again the estimation of structural parameters, now inter
preted as item parameters, is important, but here, estimation of students' proficiencies is 
important to guide desired inferences about individuals {Lord, 1980). Disparate estimation 
approaches that optimized these different target of inferences evolved in IRT and in FA and 
SEM, with the unfortunate consequence of obscuring fundamental similarities among tlie 
models.

As a consequence of these fragmented strands of development, analysts faced choos
ing from a palette of partial and incomplete solutions as to both models and computer 
programs. The most sophisticated techniques available for IRT and LCA, for example, 
assumed simple random sampling, while the most widely used programs for hierarchical 
analysis and for complex-sampled data offered at best simple error models for student 
proficiencies. Each of tlie features addressed in the various models, however, represented 
a recurring structure in educational research settings, often at the same tune. It is to solv
ing this problem that the Bayesian inferential approach and MCMC estimation make their 
greatest contribution.

22.3 H isto rica l and C u rren t R esearch  A ctiv ity

This section traces key developments and current applications of MCMC in educational 
research The focus is on research settings where the power and flexibility of MCMC are 
leveraged to conduct modeling that, without MCMC, would prove difficult computation
ally or in terms of desired inferences. It is no coincidence that this collection of work is 
mainly Bayesian in nature, though we note that MCMC estimation has been employed 
in frequentist applications as well (Song and Lee, 2003). Aside from the natural linkage 
between MCMC estimation and Bayesian inference, a Bayesian approach in which models 
are formulated hierarchically, prior information can be easily incorporated, and uncer
tainty in unknown parameters is propagated offers advantages regardless of the estimation 
routine.*

22.3.1 Multilevel Models

Applications of multilevel models commonly assume linearity and normality within a 
level, either of the random effects themselves or of residuals given covariates at that level. 
A thorough overview7 of Bayesian and Gibbs sampling approaches to hierarchal models 
of this type as they are used in education is given by Seltzer et al. (1996). Anticipating 
the growth in popularity of MCMC, Draper {1995) points out that marginal likelihoods 
of variance parameters at level-2 units may be considerably skewed with few level-2 
units (the logic of which may extended for hierarchies with more levels). The impli
cation is that maximum likelihood (ML) estimation of point estimates fails to account 
for such skewness and will poorly account for the heterogeneity implied by higher- 
level variance components. Raudenbush et al. (1999) echoed this concern, and employed 
Gibbs sampling in an analysis of data on the Trial State Assessment from 41 states. They 
further noted a concern with a classical approach, as the 41 states were a nonrandom

* See Lindley and Smith (1972) and M islevy (1986) for illustrative applications not involving MCMC.
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sample and were better treated as strata; however, the traditional approach to treating 
strata as fixed effects contradicts the goal of modeling between-state variation. Kasim 
and Raudenbush (1998) noted the importance of properly accounting for uncertainty in 
higher levels of multilevel models, and turned to Gibbs sampling for estimation of variance 
components.

Assuming linearity and normality permits estimation via Gibbs sampling, in a straight
forward way of applying MCMC. A key strength of MCMC, however, lies in its flexibility 
to be applied to models that pose challenges for other estimation strategies, such as those 
with nonnormal distributional assumptions, hi the context of multilevel models, MCMC 
has proven useful hi conducting sensitivity analysis for distributional assumptions at vari
ous levels of hierarchical models (Seltzer, 1993; Seltzer et al., 2002) and hi fitting hierarchical 
structures hi multilevel logistic regression models (Schulz et al., 2004).

A related use of hierarchical modeling ideas appears in meta-analysis (Glass, 1976; Glass 
et al., 1981), which was originated to synthesize evidence across studies in educational, 
medical, and social science research. The most common statistical procedures (see Hedges 
and Olkin, 1985) rely on a fixed effects model and a series of binary decisions regard
ing which set of studies constitutes a homogeneous set of sub-studies from which to 
estimate effects. Unfortunately this approach uses y 2 tests that suffer from tlie sample 
size sensitivity that meta-analysis was designed to solve in the first place: large studies 
lead to conclusions of separateness regardless of effect size and small studies lead to the 
opposite conclusion. The Bayesian approach (supported by MCMC estimation) takes a 
random effects view tliat models the degree of homogeneity of effects, thereby sidestep
ping the bifurcations required hi the classical approach (Smith et al., 1995; Sutton and 
Abrams, 2001).

hi meta-analytic hierarchical linear modeling, as in other contexts, a Bayesian MCMC 
approach provides probabilistic information through the posterior distributions that are 
of great interest to researchers and consumers of research alike; for example, "what is the 
probability that an effect will be negative?" or "what is the probability that school X had 
an effect greater than school Y?" These are common-sense questions that are unaddressed 
in tlie non-Bayesian framework (Gelman et a l, 1995), but flow naturally from a Bayesian 
inferential framework and MCMC estimation (Gelman and Hill, 2007).

22.3.2 Psychometric Modeling

Table 22.1 classifies several popular psychometric models hi terms of their assumptions 
regarding tlie latent and observable variables and serves to guide tlie current discussion.

22.3.2.1 Continuous Latent and Observable Variables

Standard factor-analytic and structural equation models, characterized by linear equations 
relating tlie latent and observed variables and (conditional) normality assumptions, do not 
pose challenges for traditional estimation routines. However, in detailing the use of Gibbs 
sampling for such models, Schemes et al. (1999) pointed out many advantages of Gibbs 
sampling over normal-theory ML estimation: Gibbs sampling does not rely on asymptotic 
arguments for estimation or model checking, inequality constraints maybe easily imposed, 
information about multhnodality—undetectable by standard ML estimation—maybe seen 
in marginal posterior densities, and information for underidentified parameters may be 
supplied via informative priors,
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A key advantage of MCMC for SEM lies in its power to estimate nonstandard mod
els that pose considerable challenges ior ML and least-squares estimation. Examples of 
such applications include models with quadratic, interaction, and other nonlinear relation
ships among latent variables (Arminger and Muthen, 1998; Lee et al., 2007), covariates (Lee 
et al., 2007), finite (latent) mixtures of structural equation models (Lee and Song, 2003; Zhu 
and Lee, 2001), heterogeneous factor analysis (Ansari et al., 2002), complex growth curve 
models (Zhang et a l, 2007), and nonignorable missingness (Lee and Tang, 2006). Contrary 
to a common belief, the computation and programming necessary to implement a Bayesian 
solution via MCMC in such complex models is less intense than that necessary to conduct 
ML estimation (Ansari et al., 2002; Zhang et al., 2007).

22.3.2.2 Continuous Latent Variables and Discrete Observable Variables

Models in which a set of discrete, possibly ordinal observables (say, scored task or item 
responses) are modeled via continuous latent variables are widely used in assessment set
tings. hi this section, we survey applications of MCMC to these models from both an IRT 
and FA perspective, highlighting aspects in which existing estimation traditions limit our 
modeling potential.

Working in an IRT framework, Albert's (1992) seminal work considered a model for 
didiotomous observables based on the normal distribution function {i.e. a probit model) 
and showed how posterior distributions for person and item parameters couldbe estimated 
via a Gibbs sampler. The algorithm was extended to handle polytomous data by Albert 
and Chib (1993); Sahu (2002) described a similar Gibbs sampling approach to modeling 
dichotomous item responses allowing for examinee guessing in assessment contexts.

A turning point in the application of MCMC for IRT and psychometric modeling more 
generally arrived with the work of Patz and Junker (1999a), who considered a model 
for didiotomous observables based on the logistic distribution function and offered a 
Metropolie^Hastings-within- Gibbs sampling approach, in which a Metropolis-Hastings 
step is employed to sample from the full conditional distributions. A particularly note
worthy aspect of the MetropoHs{-Hastmgs)-within-Gibbs approach is its applicability to 
situations in which it is not possible to sample directly from the full conditional distribu
tions. This flexibility has produced anexplosionintheuseof MCMCfor complex, IRT-based 
models. Examples indude models for polytomous data (Patz and Junker, 1999b), nominal 
data (Wollack et al., 2002), missing data (Patz and Junker, 1999b), rater effects (Patz and 
Junker, 1999b), testlets (Bradlow et al., 1999), multilevel models (Fox and Glas, 2001), and 
hierarchical models for mastery dassification (Janssen et al., 2000).

An alternative perspective on continuous latent variable models for discrete data stems 
from the FA tradition, which views the observables as discretized versions of unobservable 
continuous data. Following the normality assumptions of FAfor continuous variables, this 
approach is akin to a probit model. In surveying estimation approaches to such models, 
Wirth and Edwards (2007) conduded that traditional factor-analytic methods, even with 
corrections to estimates and standard errors for discrete data, can fail to capture the true 
fit. Tlie underlying problem is that tlie traditional fa dor-analytic estimationbased on mini
mizing some function of residual covariances or correlations was developed for continuous 
data, not discrete data. This illustrates the restrictions and limitations imposed by remain
ing within an estimation paradigm when trying to fit models beyond the scope of those 
originally intended for the estimation routine. What is needed is an estimation frame
work flexible enough to handle a variety of assumptions about Hie distributional features
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of the data and tlie data-generating process, not to mention the all too real potential for 
missingness or sparseness, MCMC provides such a framework.

An arena where the intersection of different modeling paradigms and their associated 
traditional estimation routines poses unnecessary limits involves multidimensional mod
els for discrete observables, which may be viewed from an IRT perspective as an increase 
in the number the latent variables (over traditional unidimensional models) or from a 
(multidimensional) factor-analytic perspective as the factor analysis of discrete data. Inter
estingly, Wirth and Edwards (2007) tied common misconceptions assodated with each 
perspective to the historical traditions of estimation within each paradigm. Traditional 
fador-analytic estimation approaches to discrete data have relied on integration over the 
distribution of the f e n r f i t  variables. As the number of observables increases, this integra
tion becomes increasingly difficult, and tlie applicability of ML and weighted least squares 
routines requiring large sample sizes relative to Hie number of observables becomes sus- 
ped. Hence, an FA perspective prefers (relatively) few observables in the model, without 
regard to the number of latent variables, hi contrast, traditional estimation approaches in 
IRT focus oil tlie integration over the laten t variable(s), whichbecomes increasingly difficult 
as tlie number of latent variables increases. Hence, an IRT perspective prefers (relatively) 
few latent variables in the model, but is silent with resped to the number of observables. 
Thus the particulars of Hie estimation paradigms restrict the scope of the models to be 
employed. MCMC maybe seen as a unifying framework for estimation, freeing the analyst 
from these restrictive (and conflicting) biases. Examples of tlie use of MCMC in multi
dimensional modeling from both IRT and FA perspectives indude the consideration of 
dichotonious data (Begum and Glas, 2001; Bolt and Lall, 2003; Lee and Song, 2003), poly- 
tomous data (Yao and Boughton, 2007), combinations of continuous, dichotomous, and 
polytomous data (Lee and Zhu, 2000; Shi and Lee, 1998), multiple group models (Song and 
Lee, 2001), missing data (Song and Lee, 2002), and nonlinear relationships among latent 
variables (Lee and Zhu, 2000).

22.3.2.3 Discrete Latent Variables and Discrete Observable Variables

Traditional, unrestricted latent dass models that model discrete observables as dependent 
on discrete latent variables are commonly estimated via ML. MCMC may still be advanta
geous for such models in handling missingness by design, large data sets with outliers, and 
constructing credibility intervals for inference when an assumption of multivariate nor
mality (of ML estimates or posterior distributions) is unwarranted (Hoijthik, 1998; Hoijtink 
and Notenboom, 2004).

Turning to more complex models, MCMC has been shown to be useful in tlie estimation 
of models with covariates (Chung et al., 2006) and with ordinal and inequality constraints 
(van Qnna, 2002). hi assessment, cognitive diagnostic models involve modeling discrete 
observables (i.e. scored item responses) as dependent on different combinations of the 
latent, typically binary, attributes charaderizing mastery of componential skills necessary 
to complete the various tasks. The models frequently involve conjunctive or disjunctive 
effects among parameters to model Hie probabilistic nature of student responses. These 
models pose estimation difficulties for traditional routines but can be handled by MCMC 
(de la Torre and Douglas, 2004; Hartz, 2002).

Such models may be also be cast in a graph-theoretic tight as Bayesian networks, which 
allow for the estimation of a wide variety of complex effeds via MCMC. Examples indude 
compensatory, conjunctive, disjunctive, and inhibitor relationships for dichotomous and
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polytomous data assuming dichotomous or ordered latent student skills or attributes 
(Almond et a l, 2007; Levy and Mislevy, 2004).

We note that the import oi cognitive theory is receiving ail increasing amount of atten
tion here and across psychometric modeling more generally. Other examples indude 
the use of multidimensional IRT models that posit conjunctive relationships among tlie 
latent variables in attempt to align the models with cognitive theories of student process
ing in solving tasks. Applications of these models have been limited due to difficulties 
assodated with traditional estimation. Bolt and Lall (2003) fit a conjunctive multidimen
sional model via MCMC, illustrating how the flexibility of MCMC opens tlie door for 
the application of complex statistical models aligned with substantive theories regarding 
students.

22.3.2.4 Combinations o f  Models

The preceding discussions have been couched in terms of traditional divisions between 
models (Table 22.1), highlighting applications that pose difficulties for estimation routines 
typically employed. Expanding on that theme, an advanced approach to model construction 
takes a modular approach in which the statistical model is construded in a piecewise man
ner, interweaving and overlaying features from the traditionalparadignis. Simple examples 
include the models that bridge the FA and IRT divide by modeling discrete and continuous 
observables simultaneously (Lee and Zhu, 2000; Shi and Lee, 1998). More complex exam
ples embed IRT and FA models in latent dasses to construd finite mixtures of IRT or FA 
models (Bolt et al., 2001; Cohen and Bolt, 2005; Lee and Song, 2003; Zhu and Lee, 2001). 
Table 22.1 no longer refleds choices that m ustbe made about models and assodated esti
mation procedures,, but rather modules of recurring relationships that canbe adapted and 
assembled to suit the substantive problem at hand, then fit to data using the overarching 
framework of Bayesian inference and MCMC estimation

Missing data are dealt withnaturally under MCMC insuchmodels when they are missing 
at random (see, e.g. Chung et a l, 2006, in LCA). Indeed, there is no distinction conceptu
ally between latent variables and missing data (Bollen, 2002), and under MCMC no new 
impediments are introduced.

Furthering this theme, recent work has sought to simultaneously address two key 
hallmarks of educational research, namely hierarchical structures of data and the pres
ence of measurement error. Examples of the use of MCMC for multilevel psychometric 
models can be found in Ansari et al. (2002), Fox and Glas (2001), and Mariano and 
Junker (2007). Traditional estimation strategies have not been established for these mod
els. Prior to MCMC, overlaying hierarchical structures on latent variable models in a 
single analysis was intractable. In the following section, we extend these ideas further 
and consider a model that interweaves hierarchical structures, regression models, and IRT 
models.

22.4 N A EP E xam p le

This section describes a practical application that combines several of tlie prototypical 
structures of educational research discussed above. Johnson and Jenkins (2005) model tlie 
distribution of latent profidendes of student populations, from dustered student-sampling
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designs, with matrix-sampled item presentation (a version with a lmdtivariate model is 
given in Johnson, 2002). After reviewing the problem context we note how previous anal
yses addressed some aspects of the complex whole while simplifying or ignoring others. 
We then describe Johnson and Jenkins's solution a unified Bayesian model, made viable 
through tlie use of MCMC.

Large-scale educational assessments such as the National Assessment of Educational 
Progress (NAEP), the National Adult Literacy Survey (NALS), and the Trends in Inter
national Mathematics and Science Study (TIMSS) are developed to collect information 
on the knowledge and skills of targeted populations, and report how that knowledge 
varies across different groups in the population and may be related to demographic and 
educational background variables (Johnson and Jenkins, 2005). These projects simultane
ously exhibit several of the recurring structural features that are common to educational 
research:

» Hierarchical organization of the focal groups, hi design, analysis, and interpre
tation, large-scale educational surveys must address the fact that schooling is 
organized in terms of students within classes, sometimes crossed with teachers, 
nested within schools, typically within districts, within states, and, in international 
surveys, within countries.

> Complex sampling designs for students. Related to tlie structure of education is the 
necessity of stratified and duster sampling designs for schooling. In NAEP, primary 
sampling units (PSUs) are standard metropolitan sampling areas or similar regions, 
from which schools are sampled, from which in turn students are sampled.

• Complex sampling designs for tasks. Students' knowledge is better representedby 
abroad sampling of tasks than by a small single sample of tasks. To reduce respon
dent burden, many overlapping blocks of tasks are presented to different students 
in order to better cover content domains at the level of populations. Furthermore, 
item samples frequently differ across time points and age or grade populations.

• Latent variables, hi order to synthesize data across the different samples of tasks 
tliat different students take, many projeds use latent variables models, notably IRT 
models. Key inferences are thus based on variables tliat are not observed from any 
respondent.

> Regression models. Covariates related to educational outcomes are available, 
and have effeds, at all levels in tlie hierarchy, NAEP indudes student back
ground questionnaires on demographic and educational history teacher surveys 
on pedagogical practices, and school-level data on sodoeconomic variables.

The history of large-scale educational surveys exhibits continual efforts to incorporate 
these complexities in analysis. Limitations of spedal-purpose software would allow ana
lysts to address some features, at the expense of simplifying or ignoring others. Until 
the 1980s, for example, NAEP accounted for duster sampling with balanced half repli
cate designs and employed matrix sampled booklets of tasks, but reported results only in 
terms of single items or total scores in small sets (Chromy et al., 2004). Longford (1995) 
and Raudenbush et a l (1999) provide superpopulation-based analyses for educational sur
veys with hierarchical structures, but consider only error-free dependent variables. The 
multiple-iniputatioii NAEP analyses introduced in 1984 (Beaton, 1987) accounted for the 
sampling design with jackknife procedures and used IRT to combine information across 
booklets, but the point estimates of the IRT item parameters and latent regression models
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were treated as known. Scott and Ip (2002) demonstrated a Bayesian framework for Hie 
multivariate IRT model that NAEP employs, but did not address the complex sampling 
design

III contrast the Johnson and Jenkins (2005) model allows the analyst to simultaneously 
estimate parameters for a joint model that addresses all of these design features. Its com
ponents are as follows. The item responses X,y of each sampled student i are modeled as 
conditionally independent given the latent proficiency 0, through an IRT model:

p (Xi | 0,, P) = Y [ t> (x >l | ^  Py)/

where f>; are parameters for item j  with independent prior distributions //(Py). The forms 
and parameterizations of the IRT models depend on item types, with the three-parameter 
logistic IRT model for multiple-choice items and the partial credit graded response model 
for open-ended tasks with ordered rating scales. (Johnson and Jenkins did not model effects 
for individual raters and multiple ratings, but cotddhave done so using the aforementioned 
Patz and Junker approach.)

Aregression structure is employed to model the relationship between 0 and student-level 
covariates with school-level and PSU-level clustering accountedfor a linear mixed effects 
model {Laird and Ware, 19S2). Letting student i attend school s(i) and school s belong to 
PSU p(s), Johnson and Jenkins posit

0 \{yi> V/ Us<;>) ~  N  (L ’eiO +  Y V l, oir(i:i ) ,

u s 11 ~ N  ( r ip (s ) ,T 2) ,

rip «  —  N  ( 0 , (jo2)  ,

again with independent prior distributions on the vector of regression coefficients y, resid
ual variances a , and school and PSU effects and their variances. To estimate any function 
G (0) of the finite population, Johnson and Jenkins calculate the appropriately weighted 
mean of that function calculated with the MCMC draws of sampled students in each cyde, 
and monitor its distribution in the Gibbs chain Figure 22.1 provides a "plate diagram" of 
the model (with covariates for schools added to illustrate where they would appear in Hie 
hierarchy).

Johnson and Jenkins compared the results from this unified model to the standard NAEP 
analysis with its piecewise approximations, using both simulations and data from oper
ational NAEP assessments. They found that both Hie standard analysis and their unified 
model provided consistent estimates of subpopulation features, but Hie unified model more 
appropriately captured the variance of those estimates; the standard analysis, by treating 
IRT item parameters and population variances as known, tended to underestimate posterior 
uncertainty by about 10%. Furthermore, the unified model and MCMC estimation provided 
more stable estimates of sampling variance than the standard jackknif e procedures, hi sum, 
the use of MCMC estimation supported an analytic model that at once better captured sig
nificant features of the design and providedbetter-calibrated inferences for population and 
subpopulation characteristics of interest.
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hp(iii) M »l) hp(i) lipfy) hp(o)

FIGURE 22.1
Plate diagram based on Johnson and Jenkins (2005), w ith school-level covariateszs added. Solid rectangles repre
sent observed data, rounded rectangles represent variables, and hp(.) represent highest-level prior distributions 
for indicated variables. Plates indicate replication over structurally similar relationships for PSUs, schools, stu
dents, and items. Wj>, W f, and W( are known weights for PSUs, schools, and students respectively that are used 
in the calculation of the target statistic G((-)).

22.5 D iscu ssio n : A d v an tag es o f M C M C

While many of the above examples highlight complex statistical models that caimot be 
practically estimated by conventional means, MCMC canbe gainfully employed in settings 
where alternative estimation routines already exist. For example, traditional estimation of 
IRT and LCA models proceed first with the estimation of conditional probability param
eters for the observables which are then treated as known in estimating values of the 
latent variables. This divide-and-conquer approach understates the uncertainty in esti
mation,, whereas a fully Bayesian analysis (facilitated by MCMC) propagates uncertainty 
appropriately.

A common criticism critique of MCMC is that it is difficult, both computationally in terms 
of computing resources and conceptually in terms of constructing the chains. As to the 
former, the availability of general use software such as WinBUGS (Spiegelhalter et a l, 2007) 
and the publishing of code for various models represent considerable steps forward. As to 
the latter, there is no debate but that a certain level of technical sophistication is required to 
properly conduct an MCMC analysis. However, the eritidsm that MCMC is conceptually 
difficult is somewhat ironic, given that—for substantively motivated, statistically complex 
models—it is actually easier to set up an MCMC estimation routine than it is to proceed 
through the necessary steps (e.g. solving for first- and second- order derivatives) in ML 
and least squares estimation routines. A number of historically reoccuning features and 
assumptions of models in educational research (e.g, linear relationships, independence 
and normality of errors, few latent variables in IRT, few discrete observables in FA) have
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evolved in part from limitations on estimation routines. The flexibility of MCMC frees Hie 
analyst from tlie bonds associated with other estimation approaches, to construct models 
based on substantive theory. The lasting impact of the work by Patz and Junker (1999a, 
1999b) was not only that MCMC could be employed to estimate existing models of varying 
complexity, but also that MCMC was a general approach to estimation flexible enough to 
handle any model that could h e  constructed. Hie explosion of MCMC in education research 
in the past decade serves as a testament to this new state of affairs. Applications of MCMC 
estimation for models such as cognitive diagnosis and mixtures of latent growih curves 
illustrate an interplay among statistical advances, more encompassing substantive models, 
and increasingly ambitious applications.

22.6 C o n clu s io n

The subject matter of educational researchis inherently complex. Schooling is hierarchically 
organized, with distinct covariates and resulting effects at eachlevel. Concomitant variables 
for students must be included to address preexisting sources of variation. The dependent 
variables of interest, namely aspects students' knowledge and skill, are not directly observ
able and are often multivariate. Advances in tlie learning psychology ground increasingly 
complex within-student models, which interact with characteristics of tasks {as addressed 
in cognitive diagnosis). Hie tradition of disparate models that could each address only a 
few of these features, and did so in terms of hypothesis tests and point estimates of effects, 
was dearly inadequate to the substantive challenges of the field.

The way forwTard, as Novick realized nearly half a century ago, wTas the Bayesian 
inferential paradigm; a conceptual wTay to create models that address questions of sub
stantive importance, built up from model fragments that addressed recurring structures 
and problems, that would enable researchers to understand patterns of variation in com
plex situations and properly account for both wThat could be learned and wThat remained 
uncertain. The advent of MCMC estimation makes this vision eminently achievable. Con
tinued progress in user-friendly analytic framewTorks, further examples of the superiority 
of the inferential approach, and infusion of this wTay of reasoning into the training of Hie 
next generation of educational researchers will complete tlie task.
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23
Applications o f  MCMC in Fisheries Science

Russell B. Millar

23.1 B ack g rou n d

It has been said that counting fish is like counting trees, except that you can't see them, 
and they move, In a sea of uncertainty and variability fisheries science has the daunting 
task of providing advice to fisheries managers who are charged with exploiting fisheries 
for maximum sustainable sodal and economic benefit,

There has been some progress toward ecosystem-based models of fisheries {see Brownian 
and Stergiou, 2004, for a perspective), but typically, sdentific advice about fisheries is pro
vided to managers on a case-by-case basis. Afishery for a particular spedes is often spatially 
partitioned into separate management units, particularly if there is little movement of the 
species from one management unit to another (as detemunedby tagging studies, say). These 
management units are called stocks, and each stock of suffident importance ■will be the sub- 
je d  of a stock assessment. Stock assessments are as varied as the spedes they assess, but in 
a nutshell, they seek to predid the consequences of exploiting the fishery under alternative 
regulations on the harvest. These regulations could indude specification of total allowable 
catch, minimum (and / or maximum) legal size, duration of fishing season, area openf or fish
ing, size and type of fishing gear, maximum size or horsepower of fishing vessel and so on.

The amount of effort and expense invested in a stock assessment is typically commen
surate with the percdved sodal and economic value of the stock, and the will of relevant 
stakeholders to fund the work. The latter can be particularly problematic for a stock that 
straddles or traverses geopolitical boundaries. In simpler cases, tlie stock assessment may 
utiliz e oidy the annual commercial catch rate (Section 23.4.1). At the other extreme, a high- 
value stock may be surveyed annually by a dedicated research vessel. A subset of the 
commercial and/ or research catch may be measured for length, and where appropriate 
also for wdght, sex, sexual maturity and age. Age canbe determined by counting annual 
rings deposited in hard body parts -  in fish this is typically the otolith (ear bone). Aging is 
more challenging for crustaceans because they molt their exoskeleton, and also for annuals 
in the tropics because annual growth rings will notbe formed if there is little seasonal vari
ability. Larval surveys may also be conduded regularly, by research fishing with a small 
trawl with a very fine mesh (finer than 1 mm, for example). In addition, further research 
may be undertaken to investigate other features of the dynamics of the fishery, such as the 
effects of environmental change and variability, the relationship between recruitment (the 
number of young fish entering the fishery) and the size of the stock that spanned them 
(Section 23.4.3), behavior of fish to the fishing gear (Section 23.4.2), impad of recreational 
fishers, or the amount of (often unaccounted) wastage from the discard of fish that are not 
of legal or commercially viable size.
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Unfortunately, even in tlie most data-rich situations, stock assessment models are often 
ill-conditioned and vastly different models can achieve similar fits to the available data, 
It is commonly die case that a stock will have been fished for many years prior to tlie 
establishment of a formal stock assessment and assodated data collection. Iti this case, the 
two following scenarios may fit the data about equally well first, tliat the stock is potentially 
highly productive but has been overfished to the extent that recruitment and productivity 
have been severely reduced; second, that the stock is of relatively low productivity and is 
being fished at an optimal level. The difficulty of distinguishing between scenarios arises 
because, even if the stock assessment is able to estimate overall mortality reasonably well, it 
caimot easily separate natural mortality from fishing-induced mortality. In the first case, a 
temporary reduction in fishing mortality should allow the biomass of the stock to increase, 
with a corresponding increase in recruitment and theref ore long-term productivity. Failure 
to do so may push the stock to commercial extinction. In the second case, the prevailing 
management strategies for the stock are appropriate and any temporary reductionin fishing 
mortality would merely result in a temporary loss of economic benefit from the resource.

As a consequence of the ill-conditioning of many stock assessment models, it has been 
traditional to take certain key parameters to be known For example, the value of 0.2 lias 
ubiquitously been used as the rate of instantaneous natural mortality of cod* and many 
other ground-fish species {Myers and Cadigan, 1995). Atypical stock assessment would be 
implemented by fitting a baseline model using fixed values of key parameters, and a sen
sitivity analysis would subsequently be performed using alternative values of those fixed 
parameters. However, there would generally be no cohesive framework for producing dear 
expressions of risk and uncertainty to managers. Moreover, the collection of stock assess
ments produced from the sensitivity analysis presented management with the opportunity 
to emphasize the particular model that best suited political objectives, or to rejed the stock 
assessments outright due to their perceived unreliability. These were contributing factors 
in the demise of the Grand Banks cod fishery where, in particular, overweighting of com- 
merdal data (relative to research data) in the 1989 assessment produced considerably less 
pessimistic estimates of tlie fishery. Even so, there was a strong reluctance to make the reduc
tion in total allowable catch tliat was indicated under even the least pessimistic assessment 
(Shelton, 2005), and the reductions that were made were insuffident to prevent die end of 
this thousand-year-old fishery in 1992 (Rurlansky, 1997).

A second major feature of traditional stock assessment models was their lack of realism 
and, in particular, their inability to indude sources of variability in addition to observation 
error in the measured data. Until recently, a typical stock assessmentmodel assumed that Hie 
population dynamics of a stock were deterministic. In effed, given the model parameters, 
these models provide a perfect prediction of the status of die stock, past and present. This 
deterministic ideology gave rise to nebulous practice. For example, maximum sustainable 
yield (MSY) is defined to be "The largest average catch or yield that can continuously 
be taken from a stock under existing environmental conditions" (Ricker, 1975). Mangel 
et al. (2002) argue that this definition of MSY gives a useful management concept and 
note that it implidtly allows for variability. The failure of deterministic models to include 
this variability gave the false impression that MSY was effectively "the yield that could 
continuously be taken." Fisheries managers were aware of tlie danger of interpreting MSY

* In  the absence of fishing, =  —■mN[, where in is instantaneous natural m ortality and Nf is the number of 
fish in any given cohort (i.e. from the same spawning year} at time f. Wizened fisheries scientists tell the story 
of a fractious round-table m eeting where agreement on a suitable value for the natural m ortality of cod could 
not be achieved. The minute-keeper of the meeting recorded this lack of consensus by  w riting™  = ?  on the 
handwritten minutes. This was later mistyped by a secretary as m =  .2.
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m this naive way, and it was usual practice to incorporate a small safety factor factor by 
setting a target yield slightly lower than MSY. However, this was not based on any formal 
assessment of risk.

The major shortcomings of the early stock assessment models were well known, and 
were the subject of regular attention in the fisheries literature (see, for example, Hilden, 
1988; Walters and Ludwig, 1981). Bayesian approaches appearing in the fisheries literature 
during the 1980s and early 1990s (see Hilbom et al., 1994, for a list) made some progress 
in this regard, but were necessarily confined to relatively simple models, often employed 
nd. hoc or approximate methods of calculation, and were not applicable to mainstream stock 
assessments. These works had little impact on the implementation of stock assessments.

It was not until later in the 1990s that methodological and computational advances pro
vided the opportunity for more realistic representation of uncertainty and variability in 
stock assessment models. Of particular note, Sullivan (1992) presented a linear-normal 
state-space model for incorporating uncertainty in the dynamics of a length-structured 
stock assessment, and demonstrated a maximum likelihood implementation via the clas
sical Kalman filter. Schnute (1994) presented the general matrix recursion formulas for the 
Kalman filter and included the extended Kalman filter for nonlinear-normal state-space 
models. He also noted Hie natural Bayesian interpretation of Hie state-space framework. 
At about the same time, the first fully Bayesian stock assessment models appeared in 
the primary literature. McAllister et al. (1994) and McAllister and Lrnelli (1997) used the 
sampling-importance resampling (SIR) algoritlmi to fit age-structured models that used 
deterministic stock dynamics, but did incorporate random variability in initial conditions. 
Raftery et al, (1995) also used the SIR algoritlmi in a deterministic population dynamics 
model for bowhead whales. Formal use of Bayesian hierarchical models for a fisheries 
meta-analysis was presented by Liennann and Hilbom (1997), notwithstanding that the 
posterior was approximated using profile likelihood to eliminate nuisance parameters.

The firstmention of Markov chain Monte Carlo (MCMC) in tlie primary fisheries literature 
appears to be a brief comment in McAllister et al. (1994). Subsequently, in their discussion of 
methodologies for Monte Carlo sampling from the posterior, McAllister and Ianelli (1997) 
reported that they had also fitted their age-structured model using the Metropolis-Hastings 
algorithm, but preferred the SIR algoritlmi. Punt and Hilbom (1997) provided a descrip
tion of several approaches for approximating or sampling from the posterior. This included 
the Metropolis-Hastings algoritlmi, but did not provide an example of its implementa
tion. The first fully described implementation of MCMC in tlie primary fisheries literature 
appears to be Meyer and Millar (1999a), who fitted a nonlinear state-space model using 
Metropolis-within-Gibbs sampling with tlie aid of adaptive rejection sampling routines 
provided by Gilks et al. (1995). Patterson (1999) also used this algorithm, to fit an age- 
structured model which included model uncertainty in the choice of the error distribution 
and shape of the assumed stock-recruitment curve. Later that same year, Meyer and Millar 
(1999b) introduced fisheries scientists to the BUGS language, in the context of a state-space 
surplus production model, and Millar and Meyer (2000) provided more detail concerning 
the evaluation of this model This is the example presented in Section 23.4,1,

23.2 The C u rren t S itu atio n

Bayesian stock assessments are now routinely used by fisheries agencies around the globe. 
For example, at present, of the ten most commercially important species assessed by the
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New Zealand Ministry of Fisheries, seven use formal models of stock dynamics and these 
seven utilize Bayesian inference in some or all of the assessment.* At fisheries agencies 
where classical models are still used, it is often due to inertia rather than deliberate rejec
tion of Bayesian principles. For example, the 2006 Workshop on Advanced Fish Stock 
Assessment of the International Coundl for Exploration of tlie Sea+ regarded Bayesian 
methodology as a specialist area (ICES, 2006).

23.2.1 Software

WinBUGS is frequently used for simpler fisheries models, but the AD MB (Automatic Dif
ferentiation Model Builder, freely available from http: / / admb-project.org/) software has 
made by far the biggest contribution to the widespread use of Bayesian methodology and 
MCMC in fisheries. Automatic differentiation gives ADMB great ability to find the pos
terior mode and to evaluate the Hessian of the log-posterior to high precision, even for 
models that may contain thousands of parameters. This software is aided by additional 
features to improve stability of the optimization, and to enhance Hie efficiency of its imple
mentation of Hie Metropolis-Hastings algorithm (Section 23.3.2). Command-line options 
enable an ADMB executable to switch from Bayesian mode to classical (penalized) max
imum likelihood, with tlie priors either ignored or treated as penalty terms. It therefore 
also has wide acceptance by fisheries agencies which continue to use classical methods. 
Moreover, classical mode canbe used as a preliminary model selection tool, leaving full 
Bayesian analysis and risk assessment to a smaller subset of models.

ADMB was first made available as commercial proprietary software (Otter Research, 
2007). Its extensive modeling capabilities earned it a loyal and proactive following among 
the fisheries modeling community, but its cost and proprietary restrictions limited its use 
by a broader audience. The nonprofit ADMB Foundation {http:/ / admb-foundation.oig/) 
was incorporated in 2007, with one objective being to coordinate development of ADMB 
and promote its use amongst the wider scientific community. Through generous grants, 
the ADMB Foundation was able to purchase the rights to the ADMB software, and it was 
made freely available in late 2008 from the ADMB Project website. ADMB was made open 
source a few months later.

The ADMB Project has greatly improved tlie experience of installing and using ADMB. 
hi particular, there are now utilities for running ADMB from within tlie R language, and 
for input and output of data files and model results between ADMB and R. Nonetheless, 
there is a steep learning curve to using ADMB because the model must be explicitly coded 
in a C++ like ADMB template language.

Programming in the ADMB template language can be prohibitively complicated to tlie 
vast majority of fisheries scientists, especially given the required complexity of many types 
of fisheries models. Consequently, several freely available stock assessment packages have 
been created using an ADMB executable {or dynamic link library) as the computational 
engine behind a user-friendly interface. Three such packages are ASAP {Age Structured 
Assessment Program), Stock Synthesis, and Coleraine (named for a New Zealand-made 
Cabernet Merlot). The first two can be downloaded from the US National Oceanic and 
Atmospheric Administration (NOAA) Fisheries Toolbox {http: / / nft.nefsc.noaa.gov/). Tlie

* In  decreasing order of2006 commercial value: hoki, lobster, paua(abalone), arrow squid, orange roughy, snapper, 
lingcod, hake, scampi and tarakihi. Arrow squid (a reoccurring annual stock), scampi and tarakihi assessments 
currently do not utilise stock dynamic models. A Bayesian m odel for scampi is currently under development. 

f  The ICES organization has 20 m ember countries, and is responsible for coordinating marine research in the 
N orth Atlantic. See www.ices.dk.

http://www.ices.dk
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ASAP technical manual also includes an appendix containing the AD MB template program. 
Coleraine is available from the School of Aquatic and Fisheries Sciences at the University of 
Washington, Seattle (www.fish.Washington.ed\i/ research/ coleraine/). As the name would 
suggest, Coleraine has the strongest Bayesian flavor of these three packages.

23.2.2 Perception of MCMC in Fisheries

In fisheries modeling, MCMC is often touted as an alternative to bootstrapping for the 
purpose of induding uncertainty. This is so much the case that many users of MCMC are 
unaware that they are operating within the Bayesian paradigm. For example, because it uses 
an AD MB computational engine, the ASAP software offers an MCMC option to "estimate 
uncertainty in the model solution," However, searches of the ASAP documentation for the 
words "Bayes," "Bayesian," "prior/' and "posterior" all drew blanks, Agood proportion of 
fisheries stock assessment reports exhibit the same characteristics. That is, some fisheries 
modelers are performing stock assessments using the convenient "MCMC option/' with 
no conceptual understanding that they are employing a Bayesian model and hence with 
no notion of tlie priors that are implicitly being assumed.

23.3 A D M B

In its base form, ADMB is a sophisticated tool for general-purpose optimization. It includes 
many features for coping with high-dimensional problems. These include implicit trans
formation of bounded parameters, centering of parameter vectors, and the ability to fit a 
model in phases (Section 23.3.2). However, the raw7 optimiz a tion p ower of ADMB is derived 
from its use of automatic differentiation, giving it the ability to perform qua si-Newton 
optimization using accurate and computationally efficient calculation of derivatives.

23.3.1 Automatic Differentiation

Whenusing ADMB iiiBayesianmode, the negative log joint density function, -  log/(y, 6), is 
specified within an ADMB template file using operator-overloaded C++ code. Automatic 
differentiation facilitates exact algebraic calculation (to within machine precision) of the 
derivative of the joint density with respect to all elements of the parameter vector 0. The 
calculation is efficient, and the Jacobian vector is typically obtained in less than three times 
tlie number of operations (Griewank, 2003) required to evaluate log/(y, 0).

In crude form, automatic differentiation can be considered an application of tlie chain 
rule of differentiation, By way of example, the hierarchical model in Section 23.4,2 uses the

of the form
assumption r;, — N(n?, ojr), where is the log catchability of stock i. This contributes a term

1 (<7i — Mmj)
-  log aq ------- 2g2 (23.1)

to tlie log joint density. The Jacobian of Equation 23.1 with respect to model parameters 
is zero except for partial derivatives with respect to qir \iq, and aq, and attention will be 
restricted to these three partial derivatives only. In ADMB, the objects f\ = log <yq and

http://www.fish.Washington.ed/i/
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In Equation 23.2, the derivative (with respect to ) is obtained directly from overloading of 
the log operator, so that it evaluates its derivative in addition to its value, In Equation 23.3, 
the derivatives are obtained by overloading of Hie unary power operator and the binary 
multiplication/division and addition/ subtraction operators, and successive application of 
the chain rule. For example, the partial derivative with respect to a,? is obtained as

 ̂<<7e —M- ?>2
2a;

4q4

(*?i i j t'.)

x 2 x 2a„

Griewank (2003) notes that obtaining tlie derivative is far from "automatic" and recom
mends "algorithmic" differentiation as a more apt name for this methodology.

23.3.2 Metropolis-Hastings Implementation

The ADMB template program uses overloaded C++ code to specify an objective function to 
be minimized. In the Bayesian context this is the (negative of the) log joint density function 
log/(y, 9), and hence the optimization finds the mode of the posterior density /(H | y). 
Moreover, Hie Jacobian of -  log/(9, y) is efficiently obtained to machine precision, and so 
the Hessian can quickly be obtained from first-order differences. In Bayesian mode, ADMB 
uses tlie Metropolis-Hastings algoritlmi with the default initial proposal density being 
multivariate normal with covariance matrix, E, obtained as the inverse of this Hessian. Hie 
posterior mode is the default initial parameter value.

Gelman et al. (2003, Section 11.9) state that they found the above simple form of 
Metropolis-Hastings algorithm to be useful for problems with up to 50 parameters. ADMB 
provides several enhancements to this simple form of implementation and has success
fully been deployed for Bayesian fisheries models containing at least several hundred 
parameters. For example, Hie 2007 Gulf of Alaska walleye pollock assessment contained 
308 parameters and the posterior was sampled using a chain of length 1 million with a 
thinning factor of 200.
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The ADMB implementation of tlie Metropolis-Hastings follows the recommendation in 
Gelman et al. {2003, Section 11.9) to enhance the algorithm by adjusting the rejection rate 
through scaling the covariance matrix of the multivariate normal proposal density Notable 
additional features of ADMB include

• Automatic methods (e.g. smooth transformations) to cope with bounded 
parameters.

> The ability to fit the model in phases. Tliat is, in optimization mode, it can introduce 
model parameters in steps (see the next item).

• Automatic centering of blocks of parameters. This is particularly useful whenfitting 
random effects because the (centered) random effects can be introduced into the 
optimization at a later stage, having allowed ADMB to first fit tlie mean effects.
In Bayesian mode this feature is likely to be highly beneficial to mixing of the 
Metropolis-Hastings algorithm, due to reduced correlations in E.

• Command-line options for the ADMB executable are used to specify MCMC 
options, hi addition to specifying standard options (such as length of tlie chain, 
degree of thinning, input-output options) there is an option to allow it to use a 
mixture proposal density to fatten the tails relative to the multivariate normal, and 
another to reduce the extreme correlations in E.

23.4 B ayesian  A p p lica tio n s to F ish eries

The examples below have been chosen to give a taste of the variety of modeling challenges 
that have been met by application of MCMC in fisheries. However, they do not include a 
formal stock assessment. A complete assessment of a liigh-value stock canbe very lengthy 
and the interested reader will find that numerous Bayesian assessments are publidy avail
able online. For instance, the 118-page Gulf of Alaska walleye pollock assessment for 2007 
canbe found a twww.afsc.noaa.gov/REFM/docs/2007/ GOApollock.pdf.

The first example presents a state-space formulation of a surplus production model, 
and it is employed to assess a stock of albacore tuna where oidy annual catch and 
catch rate information is available. This example is demonstrative only—it uses histori
cal data taken from Polacheck et al. (1993), but these data have since been substantially 
revised and extended. Moreover, length-disaggregated data are now measured on this 
species and the Highly Migratory Spedes Division of the US National Marine Fisheries 
Service is currently implementing a length-structured model for this stock using the 
MULTIFAN-CL software (another ADMB-engined stock assessment tool, freely available 
from www.niultifan-d.org/). The second and third examples demonstrate two different 
meta-analyses that have been applied to North-East Pacific (i.e. West Coast of USA and 
Canada) rockfish stocks.

23.4.1 Capturing Uncertainty

23.4.1.1 State-Space Model o f  South Atlantic Albacore Tuna Biomass

Surplus production models are widely used in fisheries stock assessment and are appropri
ate when tlie measurements on the fishery consist of just the annual catches and a measure

http://www.afsc.noaa.gov/REFM/docs/2007/
http://www.niultifan-d.org/
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of relative abundance. The deterministic version of these models takes the form

= Ef-l + s(B f_i) -  C(_ i, (23.4)

where Bt is the fishable biomass at the start of year t and Q  is the catch during year t 
(for simplicity, assumed known). The surplus production function s(£) denotes the overall 
change in biomass due to fish growth, recruitment of fish reaching legal size, and natural 
mortality.

The simplest plausible form for s(E) is the quadratic Schaefer (1954) surplus production 
function, s(B) =  j'Bi' l — B/K), where r is the intrinsic growth rate of Hie population and K 
is virgin biomass. The Schaefer surplus production function takes its maximum value of 
rK/ 4 when biomass is half of virgin, B = K /2 . This maximum, value of surplus production 
is often regarded by management as the maximum sustainable yield of the fishery and is 
the unknown quantity of primary interest.

Surplus production models are fitted to an annual index of abundance, y = O/i,. . .  ,yn). 
These couldbe obtained from research surveys, butmost often catch-per-unit-effort (CPUE) 
data are used. CPUE is simply the catch divided by the fishing effort expended. For tlie 
example herein, the tuna are caught by longjine, and CPUE was calculated as the catch 
weight (in kilograms) per 100 hooks deployed (Figure 23.1). The index of abundance is 
commonly assumed to be proportional to the biomass (but see Harley et a l, 2001, who 
investigated a power relationship between CPUE and biomass) and the assumption of 
lognormal error is most commonly used. That is,

yt =  QBte‘*  (23.5)

where vt are independent and identically distributed (i.id.) jV(0, x2). The parameter Q is 
the so-called "catchability coefficient,"

Previously, Schaefer surplus production models had traditionally been fitted using non
linear least squares (Hilbom and Walters, 1992; Polacheck et al., 1993). If year f =  1 denotes 
the year in which fishing commenced, the nonlinear least squares model sets S i — K  and 
uses the deterministic process (Equation 23.4) to obtain Hie predicted values Bf, t =  2 , . . . ,  n. 
The primary deficiency of tills classical approach is tliat subsequent risk assessments fail to 
incorporate variability in the process equation. For example, recruitment of fish can vary 
an order of magnitude due to environmental variability.

QA j* 
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FIGURE 23-1
Catch rate and catch of South Atlantic albacore tuna, 1968-1989. The Bayes estimate of maximum surplus 
production (19,400 tonnes) is shown with a dotted line,
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Meyer and Millar (1999b) applied a Bayesian state-space implementation of the Schaefer 
surplus production model to the albacore tuna data. They also chose to use the terminology 
"maximum surplus production" instead of the potentially misleading "maximum sustain
able yield." The state-space implementation modeled variability in the process equation 
and the Bayesian framework permitted existing prior knowledge to be utilized. Under this 
model the biomass in year t is given by

Bi = Ke1l\

Bt =  (Bt- i  +  rBf_ i ( l  -  Bt- i/K )  -  Cf_i) e"', t > 1,

where nt are l id .  N(0, cr2).
Meyer and Millar (1999b) specified lognormal priors for model parameters K and r. The 

prior on r was obtained from formal hierarchical modeling of six other albacore tuna stocks. 
Punt et al. (1995) specified that the virgin biomass of this tuna stock was between 80 and 
300 {10001) and the lognormal prior on K was derived by setting 80 and 300 as its 5th and 
95th percentiles, respectively. Model parameters a2 and t 2 were assigned inverse gamma 
priors, The hyperparameters of these priors were based on knowledge from other tuna 
stocks and indices of biomass. The catchability parameter, Q, was given a reference prior 
(uniform on the log scale). All model parameters were assumed a priori independent, that 
is, n(K, r,Q ,a2, i 2) = Tr(K)ji(r):rT(Q)ji(c2)Tr(T2).

23.4.1.2 Implementation

The state-space Schaefer surplus production model was applied to the albacore tuna data 
using WinBUGS, and tlie program code is available from www. stat. auddand.acnz j  ~  
miliar / Bayesian/ Bayeshidex.html. The implementation reparameterized the model using 
Pt =  Bf/Kbecause this was found to greatly reduce autocorrelation of the samples from the 
joint posterior. Note that Pf gives the biomass in year f as a proportion of virgin biomass. 
The process equation thenbecomes

Pi =

Pt = (Pt- i  + rP t-i( l -  Pt- 1) -  C t-i/K ) eut, t > 1.

A few additional lines of WinBUGS code enable the biomass trajectory to be extended 
beyond tlie last year of available data under different harvest scenarios (Figure 23.2). Such 
presentation of biomass uncertainty is instantly meaningful to fisheries managers. Itis quick 
and convenient to produce (WinBUGS can draw a plot very much like Figure 23.2 with a 
couple of mouse clicks using the Inference > Compare menu), yet is also formally 
rigorous, subject to validity of the model.

23.4.2 Hierarchical Modeling of Research Trawl Catchability

The absolute catchability of a fishing gear can loosely be defined as the proportion of fish 
contacting the gear that are caught by the gear. For example, a small-meshed research 
trawl has absolute catchability of unity if it catches all fish in its path. For bottom dwelling 
fish, this gives rise to the swept-area estimate of biomass. This is applicable if the sea-bed 
habitat is sufficiently homogeneous (within strata) thatit canbe assumed that fish are evenly 
distributed, so that the biomass canbe estimated by scaling up the catch using the fraction 
of habitat "swept" by the research trawl.
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FIGURE 23.2
Boxplots of the posterior distribution of albacore biomass, fitted to data from 1967 to 1989, and projected to 2001. 
The top plot assumes catch equal to the Bayes estimate of maximum surplus production (19,400 tonnes) from 
1990 onwards. The bottom plot assumes a moratorium on fishing in 1990 and 1991, and catch equal to maximum 
surplus production from 1992 onwards.

However, fish are not trees, and they do not remain still when the reaper calls. Bigger fish 
tend to be faster and more durable swimmers, and they maybe able to swim away from Hie 
trawl before it engulfs them, hi addition, some bottom fish may swim sufficiently high tliat 
they go over the top of a ground trawl. Smaller fish may be able to go under a ground trawl 
because the footrope of this gear typically rides over the sea floor on rollers and does not 
make direct contact with the sea bed. Also, some rougher bottom habitats are not amenable 
to trawling (due to the chance of ripping the trawl mesh, or losing the entire trawl if it gets 
stack on rocks) and so trawls may notbe viable in habitats of potentially higher abundance. 
These factors would result in the swept-area estimate of biomass tending to underestimate 
true biomass. On. Hie other hand, the warps and bridles of trawl gears (Figure 23.3) can 
herd fish into Hie path of a trawl, so that it catches fish that are outside of its swept path, in 
which case the swept-area estimate of abundance could overestimate true biomass.

Swept-area estimates of rockfishbiomass are calculated from research trawls off the West 
Coast of the USA. However, due to the factors noted above, these are regarded as a rel
ative index of biomass. They are typically modeled according to Equation 23.5, with yt 
being the swept-area estimate of biomass in year f, and parameter Q now called the bulk 
catchability. To combine information about bulk catchability across similar rockfish species 
Millar and Methot (2002) used the ADMB software (Section 23.3.2) to implement an age- 
structured meta-analysis of six West Coast rockfish spedes. Information required for the
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FIGURE 23.3
Sketch of an otter trawl. Reproduced from Figure 7.±Ein {Hayes et al., 1996, p. 199) by  permission of the American 
Fisheries Society.

model included catch-at-age data and knowledge about weight-at-age. This information 
was taken from tlie most recent stock assessment for each species. These assessment docu
ments also provided a relative index of recruitment in each year. For each stock, the biomass 
Bt was obtained by summing tlie product of numbers-at-age and weight-at-age, over all 
relevant ages.

The hierarchical model of Millar and Methot (2002) assumed exchangeability of Q across 
the different spedes of rock fish. Denoting q =  log(Q), it was assumed that

q -  N f i^ c j 2).

Two different hyperpriors were used:

\hj ~ N (0 ,1), a2 ~  r -1 (l,2),

and

M-ij ~  N(—1, 1), Oq ~  r _1( lf 1),

where r _1(a, p) denotes an inverse gamma distribution with the assodated gamma distri
bution having mean ap and variance aP2. The first induces a vague prior for Q with median 
slightly in excess of unity and an extremely long and slowly decaying right tail. The second 
prior is mildly inf ormative and reflects a higher prior belief that catchability is below unity 
{Figure 23.4).

The posterior distribution of Q was reasonably insensitive to the choice of prior. In partic
ular, Hie prior probabilities of Q being in excess of unity were 0.51 and 0.27 under the vague 
and mildly informative priors respectively, and the corresponding posterior probabilities 
were 0.06 and 0.05.

23.4.3 Hierarchical Modeling of Stock-Recruitment Relationship

It is generally considered that the number of recruits (young fish) joining the stock in any 
given year is highly dependent on conditions prevailing during their early life history,
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FIGURE 23.4
Prior and posterior densities for bulk catchability, Q.

espedally Hie availability of food and extent of predation during the larval stage. These 
conditions can be highly variable, and this high variability often obscures the relation
ship between the size of tlie spawning parent stock and the number of resulting recruits. 
Nonetheless, if this relationship is not taken into consideration then the stock could suffer 
"recruitment over-fishing," that is, reach the point where the reductionin spawners results 
in substantial loss of recruitment. Proper risk assessment of fisheries policies must include 
this possibility.

hi addition to laige amiual variability inrecruitnient (possibly with considerable temporal 
autocorrelation)., estimates of spawning stock size and recruitment generally have high 
estimation uncertainty. Not surprisingly, the stock and recruitment estimates from a single 
stock often show little dear pattern of any relationship. To address this issue, a publidy 
available worldwide stock-recruit database, now containing approximately 700 data sets, 
was set up by the late Professor Ram Myers in the early 1990s to facilitate meta-analysis of 
this relationship (www.mathstat.dal.ca/ -myers/welcome.html).

hi a stock-recruit meta-analysis of US West Coast rockfish, Dorn (2002) considered Hie two 
most commonly employed stock-recruit curves, the Beverton-Holt and the Ricker curves. 
Here, attention will be confined to the Beverton-Holt curve, which canbe expressed in Hie 
form

where S is Hie spawning stock size (usually expressed as biomass) and R is the resulting 
number of recruits. This curve lias recruitment asymptote at a, and b is the spawning stock 
biomass at which recruitment is 0.5ri.

It would not be sensible in a stock-recruit meta-analysis to assume that either of param
eters a or b could be assumed exchangeable over different rockfish stocks because these 
parameters depend on tlie overall size of the stock, which in turn depends on habitat range 
and suitability. Instead, the Beverton-Holt stock-recruit curve canbe uniquely determined 
by specifying the point (Sq,Ro), where So and R q are tlie spawner size and recruitment of 
the stock in the absence of fishing, and tlie so-called "steepness" parameter, Ji, where IiRq 
is the recruitment when the stock is at 20% of Sq (Figure 23.5). The steepness parameter 
necessarily lies in the interval (0.2,1), with a value dose to unity corresponding to a stock 
with recruitment tliat is robust to fishing, and a value dose to 0.2 corresponding to a near 
proportional decrease in R with S. It is this parameter that is assumed exchangeable across 
different stocks of the same or similar spedes. In practice, if there is suffident knowledge

http://www.mathstat.dal.ca/
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FIGURE 23.5
Beverton-H olt stock—recruit curve for a stock with steepness h.

about the rates of growth, (natural) mortality and. fecundity of the stock, then the ratio 
between So andi\Q canbe determined, say So = (f>Ro- Then the Beverton-Holt curve canbe 
expressed as a function of (Ro,h),

The meta-analysis of Dorn (2002) was implemented in ADMB and used stock-recmit data 
from 11 rockfish speries. It used vague priors on individual values of Ro for each stock, and 
a hierarchical prior on the scaled logit (mapping the interval (0.2,1) to R) of h. That is,

with, relatively ominformative priors on hyperparameters |i and x. For simplidty, temporal 
structure was not included in tlie model, spawner biomasses were assumed known without 
error, and fy was also assumed known for each stock. Conditional on (Ro,h), recruitment 
was modeled as lognormal, with mean given by Equation 23.6.

hi the case of black rockfish, stock-recruit data were extremely limited, with only seven 
data points (Figure 23.6). For this spedes, <\> =  1.21 was calculated from biological infor
mation. If fitted to tlie black rockfish data only, the maximum likelihood estimate of h is 
dose to unity, corresponding to a stock that appears immune to recruitment overfishing, 
hi contrast, within the meta-analysis, the posterior modal value of h for black rockfish is 
shrunk to 0.68 (Figure 23.6).

Dorn (2002) incorporated the results of the stock-recruit meta-analysis into a reevalua
tion of the harvest polia.es for US West Coast rockfish He conduded that, notwithstanding 
limitations due to simplifying assumptions used in the model, the fishing mortality of US 
West Coast rockfish generally exceeded the limits established by the Pacific Fishery Man
agement Council to meet the requirements of the Magnuson-Stevens Fishery Conservation 
and Management Act (www.mnfs,noaa.gov/ sfa / magact/).

K =
O.8R0hS

(23.6)
0.24>R0(1 -  h) +  (J/ -  0.2)S"
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FIGURE 23.6
"Beverton-Holt stock-recruit curve far black rockfish from a meta-analysis including 10 other similar stocks, using 
the posterior m odal values of parameters h and R q (obtained from ADMB) for this stock.

23.5 C o n clu d in g  R em ark s

The above three examples give just a flavor for the application of MCMC to fisheries mod
eling. Iti particular, state-space models are natural tools for the temporal modeling of Hie 
unknown biomass of a stock, and MCMC has provided a viable computational frame
work for their general implementation. More generally, iti an age-structured model Hie 
unknown state would be a vector of the numbers at different ages. The notion of deter
ministic population trajectories has no place in the sustainable management of fisheries 
resources.

Relatively simple examples were used here for readability. In comparison, a full Bayesian 
stock assessment model for an important commercial spedes may use data of many dif
ferent types and can contain several hundred parameters, many of which will be random 
effects used to quantify variability in the population dynamics of the stock and. uncer
tainties in measurements. For such highly parameterized models, the use of somewhat 
informative priors is often necessary. Tlie hierarchical analyses in tlie last two examples 
demonstrated typical application of Bayesian meta-analysis to obtain, such knowledge from 
similar stocks.

There is now a feeling among some fisheries sdentists that tlie last few decades have been 
the Golden Age of fishery modeling (Quinn, 2003). MCMC has been prominent in tlie last 
part of this age and has allowed modelers to use more realism, and to incorporate prior 
knowledge. Nonetheless, the models caimot parsimoniously indude all sources of relevant 
uncertainty (Cotter et a l, 2004), some of which may be the dominant fadors affecting Hie 
fishery. Examples of these rogue uncertainties indude tlie response of fishers to regulation 
change (which often differs from tliat intended), the extent of poaching (often by organized 
crime), predator / prey shifts (due to halting of seal culls, say) or Hie effeds of environmental 
change in the medium (e.g. El Nino and La Nina osdllations) or long term (e.g. global 
warming). To this end, much effortisnowbeing direded at embeddingfisheries modeling as 
a step within the wider conceptual framework of fisheries management evaluation (Hilbom, 
2003). This willbe a natural arena for application of dedsion theory, and it will be interesting 
to see what role Bayesian methods and MCMC eventually play in this larger scheme of 
things,
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24
Model Comparison and Simulation for Hierarchical 
Models: Analyzing Rural-Urban Migration 
in Thailand

Filiz Gaiip and Bruce Western

21.1 In tro d u ctio n

Sociologists often aigue that sodal context matters. Features of the social context not just 
the characteristics of individuals, help produce aggregate outcomes such as the distribution 
of economic rewards, or paths of development. Multilevel designs where individuals are 
nested within social contexts provide a strong design for observing both contextual effects 
and the aggregate outcomes those effects might produce.

We present an analysis of migration in rural Thailand, in which survey respondents are 
nested within villages, providing annual reports on migration for the 1980s and 1990s. 
Rural-urban migration has propelled economic development as rural migrants remit their 
earnings back to their villages and return with news of economic opportunities for friends 
and family members. Though our data describe thousands of individual migration deci
sions, our interest focuses on aggregate differences across villages. The rural northeast of 
Thailand varies tremendously in the degree to which villages are integrated into the urban 
economies further south. The evolution of inequality in migration across villages is thus 
important for our understanding patterns of poverty and development in the rural areas 
of countries experiencing rapid growth

Hierarchical mo dels provide a valuable tool for studying multilevel sociological da ta such 
as the Thai migration surveys {Mason et al., 1983; Western, 1999). hi sociology and demog
raphy, panel surveys of individuals and households, survey data from many countries, and 
pooled time series data from US states and dties have all been analyzed with hierarchical 
models {DiPrete and Fomstal, 1994). Sometimes sociological applications have studied the 
heterogeneity of parameters across units, though more commonly hierarchical models offer 
a way to account for clustering in inferences about fixed parameters, hi these cases, random 
effects are a nuisance, integrated out for correct inference.

Hierarchical models are common hi sociology, but applied research often neglects two 
important topics. First, sociological analysis of hierarchical models rarely provides a 
detailed examination of model fit. hi our analysis of the Thai migration data we study 
the fit of several alternative models by comparing the deviance information criterion (DIC) 
and posterior predictive statistics. Model fit is an important applied topicbecause sociolog
ical theory is often indifferent to alternative specifications of random effects. The structure 
of random effects may also have important implications for substantive conclusions, hi
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particular, substantively important aggregate outcomes tliat are not directly modeled— 
like inequality in a response across units or response variable quantiles—may be sensitive 
to the specification of random effects, A second limitation of applied sociological research 
with hierarchical models is that these aggregate implications of model estimates typically 
go unexamined. Our analysis of rural-uiban migration in Thailand examines several hier
archical models. In our analysis, Markov chain Monte Carlo (MCMC) computation for 
hierarchical models provides a convenient framework for studying aggregate patterns of 
variation by simulating migration given different hypothetical distributions of covariates.

24.2 T h a i M ig ra tio n  Data

The Thai migration data are based on the Nang Rong Survey* of men and women aged 
13-41 from 22 villages in the Nang Rong district of northeastern. Thailand (Curran et al., 
2006). We combine data from two waves {1994 and 2000) of the life history survey. The 1994 
wave begins with men and women aged 13-35 in 1994, and asks about respondents' migra
tion experiences since the age of 13. This design is replicated in 2000: men and women aged 
18-41 are asked about their migration behavior starting at tlie age of 13. Some respondents 
were living away from the village at the time of the survey, and they wTere followed up and 
interviewed.1" We merge these data with household censuses conducted in 1984, 1994, and 
2000 to obtain household and village characteristics. The resulting data contain information 
on migration of 6768 respondents nested within 22 villages over a 16-year time period from 
1984 to 2000 (N =  93,914).

Our interest focuses on how the level of migration in a village might subsequently pro
mote more migration among individuals. Figure 24.1 shows the distribution of village 
migration rates, i/jt =  from 1984 to 2000. The survey data are retrospective, and
the age distributions vary over time. The figure displays the migration rates for men and 
women aged 18-25, the age group that we observe every year. Migration rates generally 
increase until 1996. hi 1984, around a quarter of young residents in Nang Rong left their 
district for at least two months. By 1996, the migration rate for the region had increased to 
about 50%. hi 1996, the Asian financial crisis precipitated recession in Thailand. Migration 
rates declined over the next four years, hi some villages, migration declines were partic
ularly steep, with migration rates falling to around 10%. Trends for a high-migration and 
low-migration village are also shown in the plot. These trends share some common features, 
such as the increase in migration in the first decade and tlie decline from 1996.

Part of our substantive interest focuses on how the accumulation of migration experi
ences within villages is associated with an individual's likelihood of migration. Migration 
for an individual may become more likely if they five in a village in which many others 
have migrated. This phenomenon, called the cumulative causation of migration, occurs 
because prior migration generates resources orinfluence thatmake individuals more likely

* The Hang Rong Survey is a collaborative effort betw een investigators at the Carolina Population Center; Uni
versity of North Carolina at Chapel Hill, and investigators at the Institute for Population and Social Research 
(IPSE), M ahidol University, Salaya, Thailand. It is partially funded by Grant RQ1-HD254S2 from the National 
Institute of Child H ealth and Human Development to the Carolina Population Center. Inform ation about the 
survey and the data analysed in this chapter are available at http://www.cpc.unc.edu/projects/nangrong.

+ Related project m anuscripts report that success in finding migrants was relatively high (Rindfuss et a l , 2007) 
On average, about 44% of the mi grants were successfully interviewed at some point in the six months following 
the village surveys.

http://www.cpc.unc.edu/projects/nangrong
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FIGURE 24,1
Boxplots of annual village migration rates for m en and w om en aged 18-25, Hang Rong, Thailand, 1984^2000. 
M igration rates for villages w ith the largest and smallest migration rates in 1984 are shown by the trend lines.

to migrate (Massey, 1990). Extensive empirical evidence documents how past migration 
becomes a primary engine for future migration flows, eventually diminishing tlie impor
tance of alternative explanations (Garip, 2008; Massey and Espinosa, 1997; Massey and 
Zenteno, 1999).

We study the effect of social context by a constructing a "village trips" variable that 
records the number of trips taken in a village in the years preceding the current year. A 
scatterplot of village trips and annual village migration rates for the 1984-2000 period is 
shown hi Figure 24,2 hi any given year, villages with the highest migration rates have a 
history of high levels of migration, This pattern is not surprising, but it remains an open 
empirical question whether a village's history of migration is a s so date d with an individual's 
likelihood of migration, after accounting for their own history of migration, their family's 
migration history, and other covariates.

To study the effect of village trips for these multilevel data we write several hierarchical 
logistic regression models. For respondent i (i =  1 , . . . ,  utj) in village j  ( j  =  1 , . . . ,  22) in 
year t ( t — 1984, . . . ,  2000), y,,; denotes tlie binary migration outcome, taking the value 1 if 
the respondent travels away from tlie village for more than two months hi the year, and
0 otherwise. Individual- and village-level covariates are collected hi vectors, and Zjt. 
hi each of the following logistic regressions, conditional on fixed and random effects 
coUectedin the vector 0, is assumed to be Bernoulli, P(i/|0) = plJ (1 — with expectation
E(y) = p and likelihood I (6; y) = ]”[ P(j/,y(|0).

If wTe consider only the panel aspect of Hie data design, we can fit a respondent-level 
random effect, to allow for the correlation of observations for the same respondent,
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Trips per person in village

FIGURE 24.2
Scatterplot of village trips and village migration rates for m en and wom en aged 18-25, Nang Rong, Thailand, 
1984^2000. Villages with the smallest and largest m igration rates in 1984 are indicated separately

yielding the logistic regression;

logit( pijt) = a,' + S( + + fez,*, (24.1)

for Xijt and Zjt as described in Hie previous paragraph, with corresponding fixed effects 
and p2- This specification also includes a time effect, Sf, that captures the common trend in 
migration across villages. The two levels of dustering, by respondent and village, could be 
modeled with separate effects, where a village effed, yy, captures a migration propensity 
that is common to all residents of the same village:

logit( pijt) =  +  yy +  ht +  p^yf +  $2zjt- (24.2)

Finally, heterogendty in village effects over time can be captured with a village-by-year 
effed, Yjt:

logit(p^t) =  ct; 4- yjt +  Sf + pjXijt +  02z/f■ (24.3)

Given the observed variability in migration trends, this last model seems most realistic. 
It is sliown as a direded acydic graph in Figure 24.3. The parameters, |i and a 2, are Hie 
means and variances of the hyperdistributions from which the random effeds are drawn. 
Boxes and ovals denote covariates and parameters, respectively. Solid arrows indicate prob
abilistic dependencies, whereas dotted arrows are deterministic relationships, The clustered 
structure of tlie data (individuals within villages for eachyear) is denotedby stacked sheets.
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FIGURE 24,3
Three-level logit model w ith individual, village, and year effects on individual m igration outcome.

Ill this figure, the year sheet is dotted, indicating that year-specific effects will induce cor
relations among observations from same tune point though individuals and villages are 
not nested within years.

The full Bayesian specification requires hyperdistributions for the random effects, and 
proper priors for their hyperparameters. hi our analysis, tlie random effects for our three 
models are each given a normal distribution. The means are given diffuse normal prior dis
tributions. Tlie standard deviations are given uniform distributions. The priors, displayed 
in Table 24.1, are intended to be uninformative so the sample data dominates estimation of 
the hyperparameters (Gelman, 2006). We experimented with several alternative priors and 
obtained essentially the same results as those reported here.

TABLE 24.1

Hyper-distributions and Prior Distributions for Hierarchical 
Logistic Regression Models of Thai Migration

Model Random Effects Prior Distributions

<*i N ([.ia ,a a ) -  N (0,ID 6)

a« ~  U(D, 1000)

a ; ~ 1^  -  N(0, ID6)

~  U(D, 1000)

W (nv,a ^ ) HV ~ N C 0 ,1 0 6 )

<Jy ~  U (0, 1000)

m, -  N(0, ID6)

aft — U ( 0 ,1000)

y/f ~  W(HY, ay) ~ N (0 ,1 0 6)
CFy ~  17(0, 1000)
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24.3 R eg ressio n  R esu lts

We can easily explore the model fit and run simulation experiments with draws from Hie 
posterior obtained by MCMC simulation. The results below are based on 10,000 iterations 
from parallel chains, after a bum-in of 2500 iterations. Convergence diagnostics, including 
that of Gelman and Rubin {1992), for parallel chains indicate convergence for all parameters 
{results available upon request).

Posterior means and standard deviations for Hie regression coefficients are reported in 
Table 24.2. All variables are standardized to have zero mean and unit variance. Tlie results 
show the positive association of tlie village history of migration with an individual's migra
tion decision in a given year. A standard deviation difference in the trips per village nearly 
doubles Hie odds of migration for an individual (e0 644 a; 1.9). A household's and individ
ual's history of migration are also strongly associated with migration. All these effects are 
consistent across model specifications. Unsurprisingly, individual trips are estimated to 
have the strongest effect on individual migration. Less expected, however, is the relatively 
strong effect of the village level of migration. Covariate effects are also similar across models, 
Men, the unmarried, and the more educated are all somewhat more likely to migrate.

Most of the point estimates for the coeffidents are insensitive to alternative specifications 
of the random effects, though some models may still fit the data better than others. The DIC 
statistic, proposed by Spiegelhalter et al. (2002), is readily calculated from MCMC output. 
The DIC is based on the usual deviance statistic, D(y, 6) =  - 2 log L(f), y), evaluated at Hie 
simulated values of tlie parameters. Like the deviance, better-fitting models have lower 
DIC statistics. DIC statistics are virtually Hie same for the individual and village random 
effects models. Hie DIC statistic for the village-year model, wrhich indudes random effects 
for each village in each year, is 137 points lower.

TABLE 24.2

Logistic Regression Coefficients (Standard Errors) for Hierarchical Models of 
M igration, N angRong, Thailand, 1984-2000

Individual Village Village-Year

Village trips 0.644 (0.006)

Household trips 0.115 (0.021)

Individual trips 1.457 (0.022)

Age -0 .2 4 8 (0.040)

Male 0.266 (0.069)

Married -1 .1 8 3 (0.03S)

Education 0.756 (0.031)
"Land —0.Q56 (0.019)

“i 2.600 (0.036)
at, — —
o-jy

DIC

VD
0

4955

0.663 (0.063) 0.681 (0.073)

0.11S (0.021) 0.114 (0.022)

1.454 (0.023) 1.462 (0.022)

-0 .2 2 8 (0.039) -0 .2 4 3 (0.041)

0.250 (0.067) 0.265 (0.070)

-1 .1 8 5 (0.037) -1 .1 8 8 (0.038)

0.774 (0.032) 0.763 (0.031)

-0 .0 6 0 (0.019) -0 .0 5 2 (0.019)

2.578 (0.036) 2.610 (0.037)
0.431 (0.092) — —

- 1 4

4946

0.190

- 1 3 7

5094

(0.019)

Note: N =  93,914 for 6768 individual respondents in 22 villages. D IC is adjusted by a constant 
(—61,811) to equal zero for the individual model.
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A component of the DIC statistic, the p jj, is given by the difference between the posterior 
mean deviance and tlie deviance evaluated at tlie posterior mean and has been proposed 
as a measure of tlie effective number of parameters of a Bayesian model The village-year 
model is parametrically the most complex and this is reflected in the relatively high pu 
statistic. The village-year model indudes an additional 352 random effeds over the village 
model, an effective addition of 139 new parameters according to the pu-

24.4 P o ste rio r P red ictiv e  C h eck s

The DIC statistic is an omnibus measure of fit, and tlie p d can yield odd results in some 
applications. An alternative approach, tailored to the substantive objectives of the research, 
examines model predictions for quantities of key substantive interest (Gelman et al., 1996). 
The posterior predictive distribution is the distribution of future data, y, integrating over 
tlie posterior parameter distribution for a given model:

p(y\y) =

To study the posterior predictive distribution the researcher must define a test statistic 
which canbe calculated from the observed data. Because we are interested in tlie inequality 
in migration across villages and over time, we define the test statistic in year t as

_  max(j/jt) 
f “  m in t f/jf) '

the ratio of the largest to the smallest annual village migration rate. A well-fitting model 
shotdd yield posterior predictions tliat track the observed trend in village inequality in 
migration.

Figure 24.4 compares the observed trend inRf to the 95% posterior predictive confidence 
interval for Rf under the individual, village, and village-year models. For the individual- 
level model with respondent-level random effeds, Figure 24.4a shows that the predictive 
distribution generally captures the U-shaped trend in inequality in village migration rates. 
Inmostyears, the observed level of inequality falls within the predictive interval, indicating 
that Hie data are not extreme under the model. Several of the most extreme observations, 
however, fall well outside the predictive interval.

The village model adds time-invariant random effeds for each village to the individual 
model that indudes only respondent random effeds. Figure 24.4b shows the posterior 
predictive interval for the village model. Adding village-level random effeds does little to 
improve the model's fit to longitudinal patterns of inequality in village migration rates. 
As for the individual model, several extreme values at the ends of the time series are poorly 
predided under tlie village model.

Finally, tlie village-year model adds a random effed for each village in each year. The 
posterior predictive distribution in this case covers the observed trend in inequality in 
all years but one. The flexibility of the village-year model is refleded in the relatively 
wide predictive distribution displayed in Figure 24.4c. Accounting for yearly differences in 
village effeds adds significantly to predictive uncertainty about possible migration rates.
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(c)

FIGURE 24.4
Inequality in village migration, and the 95% confidence region for the posterior predictive distribution of the 
(a) individual, (b) village, and (c) village-year models.

As a consequence, however, the observed trend in inequality is relatively likely under Hie 
village-year model.

24.5 E xp lo rin g  M od el Im p lica tio n s w ith  S im u latio n

The posterior predictive check allows us to study the fit of tlie model, but we have not 
yet examined tlie implications of model estimates for understanding aggregate patterns. 
We explore the implications of the estimated model for inequality in village migration 
rates using simulations. Coefficient estimates show the strong effect of village trips on 
individuals' migration probabilities. Those living in villages with a high number of prior 
trips are more likely to migrate. In those villages, more trips accumulate over time, fur
ther increasing the likelihood of migration. This phenomenon, the cumulative causation 
of migration, suggests a dynamic mechanism of stratification in migration patterns across 
villages (Massey, 1990),
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Due to cumulative causation, small initial differences in village trips may lead to large 
inequalities in. village migration rates over time (Gaiip, 2008}. Our model does not account 
for the initial distribution of village trips. Tlie observed distribution of village trips in 
the data is one among many possible configurations. To observe the full extent of the 
implications of our model for inequality in village migration, we use a simulation exercise.

Keeping the aggregate trips constant, we alter the initial distribution of trips across vil
lages in the data. We simulate the migration patterns from 1985 to 2000 using tlie following 
procedure. For each year, we compute individuals' predicted migration probabilities from 
our estimated model. We randomly assign migrants based on that probability. We then 
update the cumulative individual, household and village trips, and compute individu
als' expected migration probabilities for the next year. We repeat this procedure many 
times (N =  1000), and compute average village migration rates over repetitions. In simula
tion runs, we take random draws from die MCMC-generated posterior distribution of the 
parameters to simulate inter-village inequality in migration. By drawing from the whole 
posterior distribution, simulation results reflect posterior uncertainty about parameters.

If we collect all the covariates and indicators for the random effects and the fixed time 
effect in the matrix X, and the regression coefficients and random and fixed effects are in 
the vector p, so the logistic regression in Equation 24.3 is written logit(p) = X(i, then the 
pseudo-algorithm is as follows:

1. Distribute the initial number of village trips, Vf0, across villages j =  1, 
according to scenario S such that 5^/=i u/fo — Vf0.

2. Sample parameters, j3, from tlie MCMC-generated posterior distribution.
3. From the fitted model, logit(p) = Xp, obtain predicted probabilities p,,i for all i ,j  at 

time period t.
4. Simulate data y* from the fitted model, that is, j/*t+1 ~  Binomial! 1, pijt) for all i,j.

5. Update cumulative independent variables (individual, household, and village 
trips), Jtyt+i =  Xijt + / ( where /(-) is a function transforming migration in 
t + 1 into trips for all i,j, yielding an updated covariate matrix, X *.

6. Compute predicted probabilities from the fitted model logitfp*) =  X*fi using the 
updated independent variables,

7. Increment time period t to f +  1.
8. Repeat steps 3-7 T times, thatis, generate a path of fitted values for T time periods.
9. Repeat steps 2-S M  times independently

10. Compute typical values (e.g. means) of the predicted probabilities over the M 
replications.

This algorithm is repeated for each scenario S of the initial distribution of village trips.
Figure 24.5 shows the average migration rate observed in simulations under two 

scenarios. With minimum initial inequality, we distribute the aggregate number of trips 
equally across villages in 1984 With maximum initial inequality, we assign the total num
ber of trips to one randomly selected village, giving all other villages zero initial trips. The 
minimum initial inequality case leads to slightly lower average migration until 1990, and 
the two scenarios are indistinguishable thereafter.

Figure 24,6 displays the observed ratio of the largest to the smallest annual village migra
tion rates, Rf, and compares these to series under the two simulation scenarios, hi the
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FIGURE 24.5
Annual migration rates and the 95% confidence region in simulations w ith maximum and minimum initial 
inequality in the distribution of village trips.

minimum initial inequality case, since all villages start at tlie same point, inequality in 
village migration rates does not grow over time. In this case, the cumulative mechanism 
identified in the model does not lead to increasing inequality in village migration, By con
trast, with maximum initial inequality, initial inequality increases at a high rate after 1995, 
The observed inequality in the data, as expected, falls between the miimrauii and maximum 
inequality cases. The two extreme case scenarios provide upper and lower bounds for Hie 
potential inequality outcomes.

This simulation exercise thus links our estimates from the individual-level model to 
aggregate patterns of inequality between villages. Depending on tlie initial distribution 
of village trips, in a period of 16 years, the cumulative mechanism identified in our model 
could sustain or double inequality in village migration rates.

24.6 C o n clu sion

Hierarchical models are commonly used in sociology chiefly to study the effects of social 
context on individual outcomes, hi our application, we examined the effects of households 
and villages on rural-urban migration in northern Thailand. With survey data on indi
viduals at many points in time, individuals also formed contexts for migration decisions 
in any particular year. In data with this structure, we could specify as many as four 
hierarchies of random effects: at the individual, household, village, and village-year 
levels.
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FIGURE 24,6
Inequality in village migration rate, R  f, and the 95% confidence region in simulations w ith maximum and minimum 
initial inequality in the distribution of village trips.

The nesting of observations within layers of sodal context creates data-analytic and sub
stantive challenges. From the viewpoint of data analysis, a variety of equally plausible 
models canbe specified to capture the multilevel structure of tlie data. From a substantive 
viewpoint, individual outcomes may aggregate to reshape the contexts in which the actions 
of individuals are determined. Though hierarchical models are common in sodology, the 
data-analytic problem of model comparison and the substantive problem of the aggregative 
effects of individual outcomes are often ignored.

Our analysis takes advantage of MCMC methods to fit hierarchical models, compare 
alternative models, and study the aggregate implications of the models. The problem 
of model fit was studied with both DIC statistics and posterior predictive checks. Both 
approaches yielded similar answers. Migration models inducting individual and village 
random effects fitted similarly well, but both were inferior to a model that allowed vil
lage effeds to vary over time. The DIC statistic indicated the superior fit of the village-year 
model, and posterior predictive checks showed that this modelbetter captured the observed 
trend in inequality in migration across villages.

We conduded a simulation exercise to help interpret the model parameters. The simula
tion experiment showed how the initial inequality in patterns of migration across villages 
influenced inequality in migration 16 years later. Inequality in migration nearly doubled 
where the initial distribution of migration was highly unequal Had the initial distribution 
been equal across villages, this distribution would have remained la te ly  unchanged.

In sum, MCMC computation for hierarchical provides an enormously flexible tool for 
analyzing contextual data. Far beyond tlie problems of estimation and inferences, posterior
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simulation with MCMC provides an important basis for data analysis and model inter
pretation. Though MCMC methods have so far seen relatively little application, they hold 
enormous promise for the analysis of hierarchical models in sociology
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Absolute catchability, fishing gear, 555 
Acceptance rate, 31 ,101 ,150 . See also Optimal 

scaling 
asymptotic, 97,102 
HMC, 114 
jump updates, 308 
LMC, 150 
for MALA, 99 
optimal, 96,141 
scaling and, 95, 96, 97 
within-component updates, 308 

Acceptance/rejection method, 227, 236 
algorithm, 237 
running time, 237-23S 

ACF. See Autocorrelation function (ACF) 
Adaptive MCMC methods. Sf? Markov chain 

Monte Carlo (MCMC) methods, 
adaptive

Adaptive Metropolis algorithm (AM algorithm), 
104. See also Markov chain M onte Carlo 
(MCMC) methods, adaptive 

hrst coordinate trace plot, 105 
inhomogeneity factor trace plot, 106 
proposal distribution, 104,105 
RAMA, 107 

ADMB. See Automatic Differentiation Model 
Builder (ADMB)

Advance underlying state to time 0, 240 
Aero me trie Information Retrieval Service

(AIRS), 494. See Air Quality System 
(AQS)

Age Structured Assessment Program (ASAP), 
550, 551 

Air Quality System (AQS), 494 
AIRS. See Aerometric fnformation Retrieval 

Service (AIRS)
Alleles, 341. See also Locus 
Alzheimer's disease, 365. See also Bayesian

model; Functional magnetic resonance 
imaging (fMRI) 

disease symptoms, 365, 366 
£MRf paradigm, 366 
image acquisition area, 366 

AM algorithm. See Adaptive Metropolis 
algorithm (AM algorithm)

Anti mo notone distributions, 203, 204 
Antithetic perfect sampling, 220-221. See also 

Perfect sampling; Swindles

Antithetic variates, 220, See also
Swindles— antithetic perfect sampling 

Approximate Bayesian computation. See
Likelihood-free (LF) computation 

AQS. See Air Quality System (AQS)
AR(1) process, 9-10 
Arbitrary time-dependence model, 422 
ARE. See Asymptotic relative efficiency (ARE) 
Areal (regionally aggregated) data. See Lattice 

data
ASAP See Age Structured Assessment Program 

(ASAP)
Asymptotic relative efficiency (ARE), 268 
Asymptotic variance, 6

consistent overestimate, f 6  
delayed-rejection schemes, 77 
estimation methods, 6 ,8  
estimators, 16 
formula, 8 

Attractive distributions. Monotone 
distributions 

Augmented sampler, 4f 4
approximation to true posterior, 321 
formulation, 414 
joint distribution, 321
likelihood-free posterior approximation, 320
model adequacy assessment, 321
model errors, 321
posterior distributions, 332
pseudo-prior; 320
sequence, 4f5
univariate error distributions, 321 

Autocorrelation function (ACF), 9, f 2, 436 
Auto covariance function, 9 
Automatic Differentiation Model Builder 

(ADMB), 550 
automatic differentiation, 551-552 
features, 551, 553
Me tro p ol i s-Hasti ngsim plementation, 

552-553
Autoregressive A R (f) process, 9 

autocorrelation plot, 13 
batch mean plot, f 5 
digression, 10 
running averages plot, 12 
technical report, 11 
time series plot, 11 

Auxiliary variable, 222
in augmented formulation, 4f 4 
finite mixtures, 214
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Auxiliary variable, (Continued) 
likelihood of count data, 435 
Markov chain construction, 469 
method. Sw D ata augmentation (DA)
M H step, 244^245

6

Bad event, 246-247, 248 
Batch, 13—16. See also Markov chain 
Batch means, 13,14, See also Batch; Markov chain 

estimator of variance, 14,15 
expectations estimation, 172 
initial sequence methods and, 17 
outputting, 36 
overlapping, 182 
plot for AR(1) process, 15 

Bayes factors, 303. See also Umbrella 
sampling (US) 

discussion, 309-310 
estimation, 82-84
Monte Carlo approximation, 308—309 
practice, 305
reversible jump MCMC algorithms, 83-84 
setup, 305-307 
theory, 303-305 
trial and error, 307-308 
unnorm alized, 303, 304 

Bayesian
fraction of missing information, 523 
networks, 537—538 
nonparametrics, 70 

Bayesian application 
to fisheries 553 
target distribution, 166n 

Bayesian imputation, 496 
lag models, 496-498 
parallel imputation algorithm, 502-504 
sampler, 501-502 

Bayesian inference using Gibbs sampling 
(BUGS), 49,58 

history, 49 
WinBUGS, 420,550 

Bayesian model, 142, 469, 508
Bayesian neural network models, 143-144 
hyperparameter, 142 
Johnson and Jenkins's model, 539 
low-level parameters, 143,144 
prior distributions, 453 
selection, 45, 73 
state spaces, 304 

Bayesian stock assessment, 549-550. See also 
Fisheries science; Stock assessment 
models 

ADMB, 550 ,551-552 
hierarchical modeling, 555, 556-560

MCMC in fisheries, 551 
posterior distribution of albacore biomass, 

555, 556
Schaefer surplus production function, 554 
state-space implementation, 555 

Beverton-H olt stock-recruit curve, 558 
for black rockfish, 560 
determination, 558 
for stock with steepness h, 559 

BGR, See Brooks-Gelm an-Rubin (BGR)
Billiards, 148. See also Hamiltonian 

dynam ics— sym pleeticness 
Black Box

MCMC, 18, 21 
multigrid, 403, 412 
testing, 36 

Block Gibbs, 25
MCMC update, 350 
samplers, 349 

Block updates, 443,518. See also Single-site 
updates; Parameter updates 

block independence sampler, 521-522 
dimension, 370 
Langevin-Hastings, 463 
sequential M C methods, 523 
updating from full conditional, 519-521 

Blood oxygenation level dependent (BOLD), 364 
BOLD. See Blood oxygenation level dependent 

(BOLD)
Boltzmann distribution, 51 
Bounded convergence condition. See 

Containment condition 
Bounding chain, 204

essential requirements, 205 
step, 241—242 

Brooks-Gelm an-Rubin (BGR), 424 
Brute-force

coupling, 202-203 
likelihood-free computation, 328 
path monitoring, 201 

BUGS. See Bayesian inference using Gibbs 
sampling (BUGS)

Burn-in, 19,168—170
merits and demerits, 20-21 
p-dimensional vector, 178,182 
restart property, 3 2 ,3 6

C

Canonical distribution, 122-123. See also 
Detailed balance condition 

Catchability 
absolute, 555 
bulk, 556
coefficient, 554, 555
prior and posterior densities, 558
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Catch-per-unit-effort (CPUE), 554
CCFTP See Concatenated CFTP (CCFTP)
Centering point, 74-75
centim organ (cM), 344
Central limit theorem (CLT), 6, 59, 107, 108.

See also Harris ergodicity 
alternative form, 270, 272, 274 
ergodicity, 193-194, 267-269 
M C error assessment, 176 
M C sample size, 264 
monitoring convergence, 60 
multivariate Markov chain, 8 -9  
variance in, 7 ,10  

CFTP. See Coupling from the past (CFTP) 
Change-point model, 69, 514. See also 

State-space— m odel 
Chib's model transition matrix, 481 
Chronic obstructive pulmnonary disease 

(COPD), 494 
CLT. See Central limit theorem (CLT)
Cluster coalescence, 219 
dvl See centim organ (cM)
Coalescence path assessment, 201.

See also Coupling 
block coalescence, 207 
bounding chains, 204-206 
brute-force coupling, 202-203 
common proposal, 212 
Fill's algorithm, 208, 210 
monotone coupling, 201-202, 203-204 

Coleraine, 550, 551
Common random numbers, 295-296. Secnlso 

Importance sampling 
Complete data

log likelihood, 351 
posterior density, 257 

Complex sampling designs, 539 
large-scale assessments, 531 

Concatenated CFTP (CCFTP), 218 
Containment condition, 104,105 
Continuous-time spatial birth-death chains, 233 

continuous-time birth-death chain, 234 
convergence, 236
Preston spatial birth-death chain, 234 
shifting moves with, 236 
updating, 234 

Convergence assessment, 81 
CLT, 59
for enzymatic activity data set, 83 
finite mixture univariate normals, 82 
parallel chains, 568 

COPD. St’t’ Chronic obstructive pulmnonary 
disease (COPD)

Count data, 433, 460. Sec also Ring-recovery data 
integrated analysis, 435-440 
likelihood, 435

mining disaster, 69 
model selection, 439, 440-442 
and recovery probabilities, 440 
SGLMs, 460
state-space models, 434-435 

Coupling, 240, 245. See also Coalescence 
path assessment 

brute-force, 202 
common proposal, 212 
data augmentation, discrete, 213-215 
Markov chains, 322 
methods, 210 
monotone, 201, 203 
perfect slice sampler, 216 
with proposals, 214 
running time analysis, 245 
slice sampling, 215 
splitting technique, 211 
time, 206 
types, 210 

Coupling from the past (CFTP), 59 ,199  
algorithm, 199 
antithetic, 220, 221 
application challenges, 201 
brute-force implementation, 202 
composite/block map, 207 
concatenated, 218 
DCFTP, 238 
drawbacks, 206 
hitting limit, 200-201 
horizontal, 59
MCMC implementation, 200 
read-once, 206 
stopping time, 200, 201 
time sequence, 200 

Covariate analysis, 422. Sec also 
Mixed effects model 

covariate values, 422, 444 
demographic parameters, 422, 444 
posterior conditional distributions, 423-424 
posterior means and SD, 425 
prior sensitivity analysis, 425 
proposal parameter values, 424 

CPUE. See Catch-per-unit-effort (CPUE)

D

DA. S ^ D a ta  augmentation (DA)
DA algorithm, 253, 279^-280.

See also Data augmentation (DA) 
basic ideas, 253
Bayesian probit regression, 259 
iteration, 255
marginal augmentation algorithms, 280 
and MCMC algorithm, 287 
missing data concept, 257
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DA algorithm {Continued) 
operator theory, 284-285 
parameter expansion theory, 57 
PX-DA, 280, 288
and PX-DA algorithm comparison, 286 
simple slice sampler, 257 

D A Markov chain properties, 261 
central limit theorems, 267-269 
convergence properties, 263 
drift method, 264-267 
geometric ergodidty, 264-267 
n-step Markov transition function, 263 
regularity conditions, 261-263 

D ata augmentation (DA), 3, 55, 213-215, 253.
See also Coupling— methods; Gibbs 
sampler; Markov chain Monte 
Carlo (MCMC) 

algorithm, 253 
discrete, 214 
EM  algorithm, 384 
MCMC algorithm, 444 
method, 244
parameter expanded, 280 
standard Gibbs sampler construction, 394 

DCFTP See Dominated coupling from 
the past (DCFTP)

Delayed acceptance scheme, 402, 411 
algorithm, 415
Metropolis-based formulation, 413 
sampler, 413-414 

DE-MCMC, See Differential evolution 
MCMC (DE-MCMC)

Density, 233
estimation, 189-191 

Detailed balance condition, 67-68,
126-127, 254. See also Random-walk 
Metropolis (RWM) 

acceptance probability, 68 
Markov chain construction, 68,317 
Metropolis update, 126,142 
mixture transition kernel, 390 

Deviance information criterion (DIC), 563 
statistic, 568,569 

DIC. See Deviance information criterion (DIC) 
Differential acceptance Metropolis, 413.

See also Delayed acceptance scheme 
Differential evolution MCMC (DE-MCMC), 

402 ,409 ,410 , 411 
Dimension jumping.

See M etropolis-Hastings—Green 
with Tacobians (MHGT)

Dimension matching, 71, 7Z See also 
Reversible jump MCMC 
sampler— implementation 

Diminishing adaptation condition, 104

Diploid, 340
Discrete hidden Markov model, 514 
Discretization methods erroi; 122 
Disk-based shared memory system, 493,503, 504 
Distributed lag models, 493 

AR, 497, 498,500 
average air pollution, 499-500 
Bayesian imputation, 496 
data set, 494-495
distributed lag function shape, 505 
and notation, 498, 499 
Poisson law, 499 
prior and hierarchical model 

spedfication, 501 
DN A variants, 341
Dominated coupling from the past (DCFTP), 

238. See also Acceptance/rejection 
method 

aooupling, 240
advance underlying state to time 0, 240 
algorithm, 242 
births and deaths, 239 
bounding chain step, 241-242 
dominated event generator, 240 
dominating process, 238, 239 
running time, 248 
underlying process, 238, 239 

Dominated event generator, 240 
Drift function, 264 
Dynamic ideal point estimation, 480 

dynamic ideal point method, 481 
statistical methods development, 479 

Dynamic IRT model, 481, 489-490.
See also Hidden Markov IRT model 

hidden Markov IRT model, 482 
ideal point comparison, 487, 488, 489

E

Educational assessments, large-scale, 538 
Educational research 

hallmarks, 538 
quantitative, 531 
statistical models in, 532—534 
structural features, 539 

Effective sample size (ESS), 396 
EIT. See Electrical impedance tomography (EIT) 
Electrical impedance tomography (EIT), 402 

DE-MCMC, 410
first-order neighborhood MRF, 404
inverse problem, 402-403
MRF prior, 404
multigrid simulator, 412
Neumann boundary-value problem, 403
posterior density, 405
posterior exploration, 405-407
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synthetic EIT application, 403 
tricube function, 404 

EM  algorithm, 351
missing data concept, 257 

Empirical autocorrelation function, 9. See also 
Autocorrelation function (ACF) 

Empirical autocovariance function, 9 
Ergodic theorem, 59—60 

Birkhoff, 175 
Harris ergodicity, 264 

Ergodicity, 51
adaptive MCMC, 103 
geometric, 193, 264 
Harris, 193 
HMC, 127 
uniform, 193 

ESS. See Effective sample size (ESS)
E-step, 351 
Euler's method, 119

Hamiltonian dynamics approximation, 120 
modification, 121 

Exact sampling. See Perfect sampling 
Exponential covariance, 452 

Gaussian process, 450 
Exponential model, 326

LF-MCMC sampler performance,
325 ,326 ,327  

posterior accuracy, 32S

F

Fake-data check, 164
Fill's algorithm, 208—210. See also Markov chain 
Fine particles, 494

distributed lag models, 494 
missing-data pattern, 495 
observed data patterns, 493-494 

Finite mixture models, 69-70, 85 
auxiliary variable, 214 
convergence assessment, 82 
marginalization in, 74 
mixture component parameters, 80 
moment matching, 72 

Fisher's Z transformation, 501 
Fisheries science, 547

Bayesian approaches, 549, 553 
CPUE, 554 
MCMC in, 549,551 
regulations, 547 
surplus production models, 553 
WinBUGS, 550 

Fixed scan Gibbs sampler, 26 
Fixed-time rule, 192
fMRI. See Functional magnetic resonance 

imaging (fMRI)

Founders, 340. See also Pedigree 
genomes, 346,347, 348 

Full conditionals, 25, 370, 509 
distribution, 454 
Gibbs updates, 26, 27 
state-independent mixing, 27 
updating state from, 519, 520 

Full-locus Gibbs sampler, 349 
Functional connectivity, 363 
Functional magnetic resonance imaging 

(fMRI), 363,364 
activation results, 371-374 
chain analyzing, 371 
connectivity, 365 ,374-376,368 
data preprocessing, 367 
HRF.368
image acquisition area, 366 
inter-group analysis, 365 
simulating Markov chain, 369-371 
two-stage analysis, 364 

Functional neuroimaging technologies, 363

Gaussian Markov random held models (GMRF 
models), 406, 451, 458, 468. See also 
Linear Gaussian Markov random held 
models; Non-Gaussian Markov 
random field models (NMRF models) 

intrinsic, 456 
linear, 454 
MCMC for, 457 
Poisson-GMRF model, 465 

Gaussian process (GP), 155, 416, 450 
linear, 452 
MCMC for, 453-454 

Gaussian random held models, 451.
See also Gaussian Markov random 
held models (GMRF models); 
Gaussian process (GP)

Genetic data analysis, MCMC in, 339, 341 
block Gibbs samplers, 349 
causal loci localization, 357-358 
complete-data log likelihood, 351 
conditional independence structures, 341 
genetic data inheritance structure, 344-346 
genotypes and meioses, 349 
Gibbs and restricted updates, 350 
ibd structure, 346-348 
ibcf-graph computations, 348 
importance sampling reweighting, 353—354 
inheritance sampling, 351 
inheritance uncertainty, 356 
likelihood ratio estimation, 352 
linkage detection, 357 
lod score, 354
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Genetic data analysis, MCMC in (Continued) 
marker data density impact, 355 
MC EM, 351-352 
MCMC realizations, 354 
MCMC sampling variables, 349 
pedigree data genotypic structure,

342-344 
prerequisites, 339 
SNP data, 356 

Genetic model structure, 342 
Genomic inheritance, 340 
Genotypic peeling, 343 
Geostatistical data. See Point-lev el data 
Gibbs chain, 270. Seenlso Markov chain 

convergence, 56 
simulation, 271 
split chain and, 273-274 

Gibbs move, single-site, 516-517 
Gibbs sampler, 3, 28, 29,53,109.

See also Data augmentation (DA); 
Reversible jum p MCMC sampler 

advantage, 527 
automaticity, 29 
block, 349 
construction, 390 
fixed scan, 26 
four-step, 387-388 
full-locus, 349 
implementation, 54 
Metropolis-within, 28 
parent, 394, 395 
partially collapsed, 384 
random scan, 27, 389 
standard, 394 
three-step, 385, 386 
two-stage, 55 

Gibbs sampling, 53, 54, 534-535 
advantages, 535 
BUGS, 58
dimensionality and distributions, 139
drawback, 56
hyperparameters, 144
invariance, 134
linear mixed models, 57
strategy, 52
variance components estimation, 535 

Gibbs update, 24-25, 27, 29, 350 
MHG ratio, 42 
single-site, 349 

Global error, 122
GMRF models. See Gaussian Markov random 

held models (GMRF models) 
Goldilocks principle, 94 
Good event, 246, 247. See also Bad event 
GP See Gaussian process (GP)

Graphical methods, 176,189 
Green ratio, 41, 45 
Green's recipe, 41

H

Haar PX-DA algorithm, 288. See also Param eter 
expanded-data augmentation (PX-DA) 

iteration, 289
and PX-DA algorithm, 290 

Hamilton's equations, 114 
discretizing, 119, 122 
energy, 115
equations of motion, 114-115 
Euler's method, 119-120,121 
leapfrog method, 121-122 
one-dimensional example, 116 

Hamiltonian dynamics, 113,114.
See also Hamilton's equations; 
Hamiltonian Monte Carlo (HMC) 

approximation, 120 
data subsets, 147
Hamiltonian conservation, 116-117 
handling constraints, 148 
in HMC algorithm, 124 
MCMC from, 122-123,124 
nonphysical MCMC applications, 114 
partial analytical solutions, 146 
potential energies, 146-147 
probability and Hamiltonian, 122-123 
properties, 116 
reversibility, 116 
splitting, 145 
symplecticness, 119 
vector held divergence, 117 
volume preservation, 117-119 

Hamiltonian Monte Carlo (HMC), 113. Seenlso 
Hamiltonian dynamics; Leapfrog 
method 

acceptance rate, 150 
algorithm, 123-124 ,125 ,127  
detailed balance, 126-127 
disadvantage, 156 
ergo di city, 127 
Hamiltonian functions, 115 
for hierarchical models, 142 
illustrations, 127
linear transformation effect, 133—134 
and MCMC updates, 138-139 
in practice and theory, 133 
random-walk behavior avoidance, 130 
sampling, 128-130,130-132 
steps, 124,125-126 
trajectories, 127-128 

Hamiltonian Monte Carlo (HMC), extensions 
and variations, 144
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discretization by splitting, 145 
Langevin method, 148 
partial momentum refreshment, 150-152 
short-cut trajectories, 156-157 
tempering, 157-160 
trajectory computation, 155—156 
windows of states, 152—155 

Hamiltonian Monte Carlo (HMC), scaling with 
dimensionality, 139 

distribution creation, 139 
HMC and Random-Walk Metropolis, 139 
independent point obtaining cost, 141 
Jensen's inequality, 140 
optimal acceptance rates, 141 
potential energy distribution, 142 

Hamiltonian Monte Carlo (HMC), tuning,
134,156 

multiple stepsizes, 137-138 
preliminary runs, 134 
stepsize, 135-137,156-157 
trace plots, 134 
trajectory length, 137 

Hamiltonian, shadow. See Shadow Hamiltonian 
Hammersley-Clifford theorem, 53, 451 
Haploid, 340 
Haplotype, 341, 342, 344 
Harris ergodicity, 193-194, 261 

CLTs, 267
drift condition, 264 
for ergodic theorem, 264 

Hastings, W. K, 52
Hastings ratio, 35. See also Green ratio 

Metropolis update, 24 
M etropolis-Hastings update, 22, 26,300 
v ari ab 1 e- at- a- ti m e Me trop o 1 i s-Hasti ng s 

update, 25
Hemodynamic response function (HRF), 368 
Hidden Markov IRT model, 481. See also 

Dynamic IRT model 
agent-specitic regime changes, 481-482 
Gibbs sampling algorithm, 482 
ideal point simulation, 4S6-487 
item parameter simulation, 4S2—4S3 
latent state vector simulation, 483-485 
latent utility simulation, 4S2 
MCMC sampling algorithm, 482 
on preference changes, 484, 485, 486, 487, 488 
transition probability simulation, 485-486 

Hidden Markov model (HMM), 345 
w ith IRT model, 479 
pedigree data dependence structure, 346 
single-site Gibbs move, 516-517 

Hierarchical modeling, 555,556. Sec also 
Fisheries science 

absolute catchability, 555

Beverton-Holt stock-recruit curve, 
558-559, 560 

bulk catchability, 556, 558 
hyperpriors, 557 
otter trawl, 557
of stock—recruitment relationship, 557, 558 
swept-area estimate of biomass, 556 
uses, 535 

Hierarchical models
applied research limitations, 563-564 
HMC for, 142-144 
logistic regression coefficients, 568 
migration inequality, 571 ,572 ,573  
model implications, 570-571 
parameterizations, 525 
posterior predictive distribution, 569 
pseudo-algorithm, 571 

Hierarchical organization, 539 
High-energy astrophysics, 392 
Hit and run sampler, 27 
HMC. See Hamiltonian Monte Carlo (HMC) 
HMM. See Hidden Markov model (HMM) 
HRF. Sec Hemodynamic response 

function (HRF)
Hybrid Monte Carlo. See Hamiltonian 

Monte Carlo (HMC) 
Hyperparameter, 76, 142

Bayesian neural network models, 143 
high-level, 135 
lognormal priors, 555 
mixed effects model, 426 

Hypothesis tests, nonparametric, 81

I

i.i.d. See Independent and identically 
distributed (i.i.d.) 

ibd. See Identical by  descent (ibd)
Ideal point, 479

using Chib's model, 481 
comparison, 487, 488, 489 
estimation, 484, 486 
hidden Markov IRT model, 479 
normal distribution use, 482 

Idempotent, 25 
Identical by descent (ibd), 346

computations for markers and traits,
348 ,355 ,356  

graph, 346,347 
Identity kernel, 38-39 
Importance sampling, 295 

estimator, 296 
MCSEs, 295 
reweighting, 353-354 
target distribution, 297 
umbrella sampling, 302
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Independence sampler 
block, 521-522 
single-site, 517-518 

Independent and identically distributed (i.i.d.), 
200, 269,554 

Monte Carlo, 6 
sequence, 268 
theory 274 

Inference, 163
direct simulation, 167-166 
likelihood-free, 314 
for linear GP model, 453 
maximum likelihood, 467 
noniterative simulations, 167 
parameters vs. target distribution functions, 

166-167
point estimation vs. MCMC, 164-165 
posterior, 426-427 
for SGLM model, 459
from simulations after convergence, 171-172 

Inheritance, 341 
(M-graph, 347 
MCMC sampling, 351 
structure of genetic data, 344 

Inheritance vector, 344 
hidden layer, 345 
(M-graph, 346,355 

Initial distribution, 4. See also Transition 
probability distribution 

Markov chain, 8 
stationary, 5 
village trips, 571 

Initial sequence method, 16-17 
Integral computation, 50 
Integrated analysis, count data, 435-436.

Seenlso Count data— model selection; 
State-space—model 

ACF plots, 436, 437, 438 
MCMC algorithm, 436, 437 
posterior distribution, 439, 440 
posterior mean and SD, 437, 438 

IRT. See Item response theory (IRT)
Ising model, ???
Item response theory (IRT), 479, 533 

dynamic, 481, 490 
with HMM, 481-482 
two-parameter, 480

J
Johnson and Jenkins's model, 538,539.

See a Iso Bayesian model 
parameter estimation, 540 
plate diagram based on, 541

Joint posterior distribution, 67, 426, 429 
Jump diffusion, 84 
Jump diffusion sampling, 84 
Jump processes. See Continuous-time 

spatial birth-death chains

K

Kernel, 37
identity, 38-39 
Markov, 38, 55 
MHG elementary update, 42 
mixing approach, 471 
weighting, 316 

Kinetic energy, 114,115,126 
uses in HMC, 129,137,140 
zero-mean multivariate Gaussian 

distribution, 124

L

Label switching, 80 
Lag-k autocovariance, 9 
Langevin equation, 149 
Langevin method, 148 
Langevin Monte Carlo (LMC), 149. See also 

Hamiltonian Monte Carlo (HMC); 
Random-walk Metropolis (RWM) 

M etropolis-Hastings form, 150 
properties, 150 

Langevin-Hastings MCM C, 461 
for SGLM, 463-464
for spatial zero-inflated Poisson model, 

464-465
Latent variables, 214, 342 ,533 ,539  

continuous, 536 
discrete, 537
genotype determination, 345 
inheritance structure, 344 
MCMC sampling, 349 

Lattice data, 449
GMRF model on, 456 
non-Gaussian, 468 

LD. See Linkage disequilibrium (LD)
Leapfrog method, 121-122,145. Seenlso

Hamiltonian Monte Carlo (HMC) 
Hamiltonian symmetrical splitting, 145-146 
local error, 150
modification to handle constraints, 149 
nested, 147
partial analytical solutions, 146 

Lebesgue decomposition, 39 
Likelihood, 401

ratio estimation, 313,352,354.
See also Log-odds (lod) score
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Likelihood-free (LF) computation.
See Likelihood-free (LF)-MCMC 

Likelihood-free (LF) posterior 
approximation, 315 

comparison, 317 
concessions, 315-316 
deviation from target posterior, 316, 317 
posterior distribution, 319-320 
weighting kernel, 316 

Likelihood-free (LF) rejection sampling 
algorithm, 313—314 

Likelihood-free (LF)-MCMC 
algorithm, 318-319 
alternative MCMC samplers, 321-322 
error-distribution augmented samplers, 

320-321 
exploratory analysis, 322-324 
improving mixing, 329-330 
L F  approximation, 315—317 
L F  basics, 314-315 
Mahalanobis distance, 327 
marginal space samplers, 319-320 
M etropolis-Hastings sampler, 317-318 
model misspecifi cation evaluation, 330—331 
performance, 325 ,326 ,327  
summary statistics choice, 327-329 
tempering parameter effect, 324, 325, 326 
weighting density effect, 326-327 

Linear Gaussian Markov random held models, 
454. See also Non-Gaussian Markov 
random held models (NMRF models) 

full conditional distribution, 454 
intrinsic GMRF, 456 
intuitive conditional specification, 456 
joint distribution, 455 
pairwise-difference form, 456 
spatial dependence, 457 

Linear Gaussian process models, 452 
Bayesian model specification, 453 
exponential covariance, 452 
interpolated flowering dates, 455 
Matern covariance, 452 
raw flowering date, 455 

Linear spatial models, 451. See also Spatial 
generalized linear model (SGLM) 

linear Gaussian Markov random held 
models, 454-457 

linear Gaussian process models, 452-453 
MCMC for Linear GMRFs, 457 
MCMC for linear GPs, 453-454 
SGLM approximation, 465—467 

Linkage disequilibrium (LD), 354 
Liouville's theorem, 117 
LMC. See Langevin Monte Carlo (LMC) 
LM-samplei; 349-350 
Local error, 122, 150

Locus, 341
Log joint density function, negative, 551 
Logistic regression, 566 

coefficients, 568 
multilevel, 164 
problem, 30 
village trips for, 565 

Log-odds (lod) score, 355 
latent test statistic, 357 
trait locus location, 356 

L-sampler. See Full-locus Gibbs sampler

M

Mahalanobis distance, 327 
MALA. See Metropolis-Adjusted Langevin 

algorithm (MALA)
MANIAC. See Mathematical Analyzer,

Numerical Integrator and Computer 
(MANIAC)

Marginal augmentation. See Parameter
expanded-data augmentation (PX-DA) 

Marginal posterior distribution, 80 ,396 , 406 
unbiased pointwise estimate, 319 

Marginal space samplers, 319
likelihood-free posterior distribution, 

319-320
marginal posterior distribution, 319 

Marginalization, 74 ,386 ,387  
Marker. See also Traits 

genetic marker data, 339 
ibd-graph  computations, 348 
likelihood comparison, 355 
loci, 345 

Markov
kernel, 38, 55 
point processes, 233 
sampler, 87 

Markov chain, 4, 49, 94-95 ,175 , 232, 254 
aperiodic, 233
central limit theorems, 193-194 
discrete-time, 230 
drawback, 236
empirical finite-sample properties, 176
Harris ergodicity, 193—194
initial output examination, 176-178
invariant density, 254
limit theorems, 107-108,193-194
multigamma coupler, 211
nonmonotone, 205
parallel tempering, 298
pseudo-convergence, 18
recurrent chain, 233
reversibility, 6, 284
serial tempering, 297
simulation, 255
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Markov chain (Continued) 
spatial point processes, 227 
with stationary law, 200 
time-reversal version, 208 
with transition kernel, 230 
transition probability distribution, 4 

Markov chain Monte Carlo (MCMC), 3, 49,57, 
67, 94 ,113 ,163 ,175 ,199 , 253,313,363, 
531 ,549 ,564 . See also Second- 
generation MCMC revolution; 
Metropolis algorithm; Ordinary Monte 
Carlo (OMC); Spatial modeling 

advantages, 536, 541-542 
black box, 18 
burn-in, 19-21 
central limit theorem, 59-60 
code, 3 5 ,3 6
for complex trait inference, 354—358 
diagnostics, 21 
EM  precursor, 53 
in fisheries, 551 
history, 49-60
importance sampling, 295,353-354 
Langevin-Hastings, 463—465 
limitation, 164,199 
for linear GMRFs, 457 
for linear GPs, 453—454 
method, 86, 223
models, 532 ,533 ,534-535 ,535-538  
parallelization, 493 
p-dimensional vector, 178-189 
perfect sampling, 5S-59 
posterior exploration, 402 
practice of, 17-21 
run, 31
sampler monitoring convergence, 164, 165 
second-generation, 49 
for SGLMs, 463
simulation termination, 192-193
spatial data Bayesian analysis, 243
state-independent mixing, 26, 44
stationary distribution, 515
theory, 8 -9 , 22,56. See also. Square root law
tools, 419
updates and HMC, 138 
variance estimation, 13—16, 60 

Markov chain Monte Carlo (MCMC) algorithm, 
482. See also Metropolis algorithm 

ideal point simulation, 486-487 
integration, 221—222 
item parameter simulation, 4S2-483 
latent state vector simulation, 483-485 
latent utility simulation, 482 
pairwise-difference form, 456 
transition probability simulation, 485-486

Markov chain Monte Carlo (MCMC) methods, 
adaptive, 94, 102, 156 

algorithm, 94, 108 
AM algorithm, 104 
AM-within-Gibbs, 105 
containment condition, 104 
diminishing adaptation condition, 104 
ergo di city, 103
frequently asked questions, 108-109 
HMC, 156
limit theorems, 107-108 
sampler, 3S9
state-dependent proposal scalings, 107 
transition probabilities, 4 
trial and error, 103 

Markov random held (MRF), 404.
See also Gaussian Markov random 
field models (GMRF models)

Markov transition density (Mtd), 254 
complex, 276 
generic, 2S4 
PX-DA algorithm, 286 

m- array, 420 
Marriage node, 340 
Marriage node graph, 340 
Matern covariance, 452 
Maternal genome, 340
Mathematical Analyzer, Numerical Integrator 

and Computer (MANIAC), 50n, 405 
Maximum likelihood (ML), 534 

estimate, 32, 326 
inference, 427, 453 
MCMC, 469 

Maximum likelihood, 469 
Maximum likelihood estimator (MLE), 467 
Maximum sustainable yield (MSY), 54S—549 
MCEM. See Monte Carlo

expectation-maximization (MCEM) 
MCMC. See Particle systems, 58 
MCSE. See M onte Carlo standard error (MCSE) 
Medicare claims data, 503 
Medicare data analysis, 504-507 
Meiosis, 340 

model, 345 
sampler, 349 

Mendel's first law, 341
factored hidden Markov structure, 346 
inheritance vector, 344 
meioses, 353 

Metropolis, Nicholas, 50 
Metropolis algorithm, 3, 28, 50. Seenlso Gibbs 

sampling; Markov chain Monte Carlo 
(MCMC) algorithm 

acceptance ratio, 221-222 
adaptive, 104-105 
generalization, 52



Index 585

iterations, 51 
random-walk, 213 
simulated annealing algorithm, 51 

Metropolis ratio, 24, 235 
Metropolis rejection, 22, 23, 41 
Metropolis update, 24,126, 299 

fraction, 31
in HMC algorithm, 124,127 
posterior exploration, 405-407 
sequence distribution, 153 

Metropolis-Adjusted Langevin algorithm
(MALA), 99. Seen Iso Random-walk 
Metropolis (RMW); State-dependent 
proposal scalings 

M etropolis-Hastings (MH) algorithm, 3, 26, 93, 
222, 466, 467,552-553 

acceptance probability, 320 
generalization, 42 
implementation, 444 
independence, 29, 466 
random-walk, 29 
to reversible jump, 67-68 
single-up date, 427, 436 

M etropolis-Hastings (MH) reversible jump 
chains, 230 

birth, 231 
convergence, 232 
death, 231 
M H  ratio, 230
M H  step in shift-birth-death, 231 
shifting, 230 

Metropo 1 i s-H as ti ngs
acceptance ratio, 222,526 
ratio, 230, 231 

M etropolis-Hastings (MH) sampler, 213, 230, 
383. See also Markov chain;
Path- adap tiv e Me trop o 1 i s-Hasti ng s 
sampler (PAMH sampler) 

acceptance probability, 149 
detailed-balance condition, 317, 318 
feature, 319 
Gibbs, 26
green algorithm, 37 
LMC, 150
proposal distribution, 317 
theorem, 23-24 
transition kernel, 388 
transition probability, 318 
update, 22-23 
uses, 390

M etropolis-Hastings—Green algorithm 
(MHG algorithm), 5 ,3 5 ,3 7 -4 7  

ideas, 37
Markov kernel, 38 
M H  algorithm generalization, 42 
theorem, 42-43

M etropolis-H astings-Green theorem (MHG 
theorem), 42—43 

M etropolis-H astings-Green with Jacobians 
(MHGJ), 45 

proposal, 46 
theorem, 46-47 

Metropolis-within-Gibbs algorithm, 105. See also 
Adaptive Metropolis algorithm (AM 
algorithm)

Metropolis-within-Gibbs sampler, 28, 52,383 
adaptive, 105-106 

MHG algorithm. See
Me tro pol i s-H as ti ngs-Gre en algori thm 
(MHG algorithm)

MHG theorem. See M etropolis-Hastings-Green 
theorem (MHG theorem)

MHGJ. See M etropolis-H astings-Green 
with Jacobians (MHGJ)

Migration data, 564. See also Hierarchical models 
DIC statistic, 568,569 
hyperdistributions and prior 

distributions, 567 
logistic regression, 566 
logistic regression coefficients, 568 
migration causation, 564, 565 
migration rates, 564, 565, 566 
three-lev el logit model, 566-567 
village trip, 565, 566 

Minorization condition, 272 
construction, 277-279 
Mtd, 273

Mixed effects model, 425. See also Covariate 
analysis

first-year survival probabilities, 425-426 
posterior conditional distributions, 427 
posterior inference, 426-427 
posterior means and SD, 427-428, 429 
prior sensitivity analysis, 428 

ML. Sec Maximum likelihood (ML)
MLE. Sec Maximum likelihood estimator (MLE) 
MLUPS. See Multilevel Upscaling (MLUPS) 
MNI. See Montreal Neurological Institute (MNI) 
M olecular simulation

importance sampling, 58 
MCMC, 113 

Monitoring convergence. See also Inference 
burn-in, 168-170 
in chains, 170-171 
problem, 164,165 

Monotone coupler, 201, 202 
Monotone coupling, 201-202

antimonotone distributions, 203, 204 
general classes, 203-204 
monotone SRS, 202 

Monotone distributions, 203 
Monte Carlo approximation, 7, 13, 308-309
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Monte Carlo calculation. See. Monte Carlo 
approximation 

M onte Carlo error, 166, 176
asymptotic normal distribution, 187,189 

M onte Carlo expectation-maximization 
(MCEM), 352, 467 

M onte Carlo methods 
history, 50
Markov chain, 164, 227 
sequential, 523 

M onte Carlo posterior draws, 243—245 
M onte Carlo sample size, 7

classical Monte Carlo, 269-270 
CLT, 275
Markov chains related to X , 270-272 
minorization condition, 272-273, 277-279 
regeneration, 273—274 
split chain simulation, 275-276 

M onte Carlo standard error (MCSE), 7 ,176 
calculation, 33-34, 309 
importance sampling, 295, 296 

Montreal Neurological Institute (MNI), 368 
MRF. See Markov random held (MRF) 
M-sampler. See Meiosis— sampler 
M-step, 351
MSY. See Maximum sustainable yield (MSY) 
Mtd. See Markov transition density (Mtd)
Multi model sampling methods, 84-86 
Multigamma coupler, 211 

Ro-CFTP, 212 
Multigrid solver, robust. See Black 

Box— multigrid 
Multilevel statistical models, 384 
Multilevel Upscaling (MLUPS), 412 
Multimodality. See. Pseudo-convergence 
Multi-model optimization sampling, 85-86 
Multi-model sequential Monte Carlo 

sampling, 86 
Multistage backward coupling algorithm, 219 
Multivariate updating schemes, 402, 408

differential evolution and variants, 409-411 
RW M  scheme, 408-409

N

NA. See Negative association (NA)
NAEP See National Assessment of Educational 

Progress (NAEP)
NALS. See National Adult Literacy 

Survey (NALS)
Nang Rong Survey, 564n 
National Adult Literacy Survey (NALS), 539 
National Assessment of Educational Progress 

(NAEP), 539 
Bayesian framework, 540 
Johnson and Tenkins model, 540, 541

National Oceanic and Atmospheric
Administration, US, (NOAA), 550 

Negative association (NA), 220 
Neumann boundary-value problem, 403 
NhB distribution. See Nonhomogenous 

binomial distribution 
(NhB distribution)

NMRF models. See Non-Gaussian Markov
random held models (NMRF models) 

NOAA. See US National Oceanic and
Atmospheric Administration (NOAA) 

Nonfounders, 340
Non-Gaussian Markov random held models 

(NM RF models), 468-469, See also 
Li near Gaussian Markov random held 
models; Gaussian Markov random 
held models (GMRF models)

Nonhom ogenous binom ial distribution 
(NhB distribution), 215 

Nonoverlapping batch means, 13-16. See also 
Overlapping batch means (OLBM) 

Non-Poisson process, 44

O

OLBM. See Overlapping batch means 
(OLBM)

OMC. See Ordinary Monte Carlo (OMC) 
Optimal algorithmic scaling, 412 
Optimal scaling, 93—94

optimal acceptance rate, 96 
random-walk metropolis, 95 

Ordinary Monte Carlo (OMC), 6 -7  
Otter trawl, 557
Overlapping batch means (OLBM), 182-184.

See also Nonoverlapping 
batch means

P

Palindromic compositions, 26 
PAMH sampler. See Path-adaptive

Metropolis-Hastings sampler 
(PAMH sampler)

Parallel imputation algorithm, 502-504 
Parallel tempering (PT), 297, 298 

annealing analogy, 299 
odds ratio, 299 
update, 299-300 

Parameter expanded-data augmentation 
(PX-DA), 280. See also Data 
augmentation (DA)— algorithm 

Haar PX-DA and, 290 
iteration, 282-283 
Mtd, 286 
performance, 288
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Parameter updates, 523. See also Block updates; 
Single-site updates 

conditional parameter updates, 523—525 
joint updates, 526-527 
reparameterization, 525-526 

Partially collapsed Gibbs sampler (PCG
sampler), 384. See also Gibbs sampler; 
Path- ad ap tiv e Me trop o 1 i s-Hasti ng s 
sampler (PAMH sampler) 

aim, 385
convergence and correlation, 385 
ESS, 396
Gibbs sampler, 385 ,386 ,367-388  
marginalization, 386,387 
MCMC sampler comparison, 386 
permutation, 367 
trimming, 387 

Particle 
energy, 51 
hi ter method, 58 
systems, 58 

Paternal genome, 340
Path-adaptive M etropolis-Hastings sampler 

(PAMH sampler), 366. See also 
Partially collapsed Gibbs sampler 
(PCG sampler) 

bivariate distribution, 390 
Gibbs sampler construction, 390 
kernel density estimation, 389 
MCMC sampler, 389,390-391 
PCG sampler use, 391-392 
transition kernel, 388, 389, 390 

PCG sampler. See Partially collapsed Gibbs 
sampler (PCG sampler) 

pdf. See Probability density function (pdf) 
p-dimensional vector, 175 

of coefficients, 452, 458, 460 
estimation, 169 
interval estimates, 182-189 
point estimates, 178-181 

Pedigree, 340. See also Marriage node graph 
accumulated probability, 343 
dependence structure, 347 
DNA descent, 341 
E-step, 351
genotypic configurations on, 349 
genotypic data structure, 342 
genotypic peeling, 343 
graphical representation, 340 
HMM dependence data structure, 346 
ibd, 346
28-member, 341 

Penetrance model, 342
Perfect sampling, 21, 49 ,58-59, 236, 469. See also 

Markov chain Monte Carlo (MCMC); 
Multigamma coupler

acceptance ratio, 777
acceptance/rejection method, 236-238
algorithm, 199, 236, 469
antithetic, 220-221
applications, 223
black box MCMC, 21
DCFTP, 238-243
difficulty in continuous state spaces, 210 
drawback, 21, 236 
Fill's algorithm, 208-210 
implementation, 206 
independence, 503 
multistage, 219 
vs. nonperfect sampling, 223 
Ro-CFTP, 206-206 
strategies for, 206 
successes of, 223 

Perfect simulation method, 248 
Permutation, 387. See also Marginalization 

methods, 365 
Peskun ordering, 95
PET. See Positron emission tomography (PET) 
Phase transition, 158n 
Point process, 244, 246 

data, 449 
formulations, 85 
horizontal CFTP, 59 
Markov, 233 
Poisson, 227 
spatial, 43, 227 

Point-level data, 449 
Poisson law, 499
Poisson point process, 227. Sec also Spatial point 

processes 
algorithm, 228 
configurations, 226 
DCFTP, 238
with distribution tt ,  230 
unnormalized density, 228-229 

Poisson-GMRF model, 465 
Population MCMC sampling, 86 
Population model, 342 
Positivity constraint, 53 
Positron emission tomography (PET), 363 
Posterior density, 405 

complete data, 257 
HPDI, 428
hyperparameters and low-level 

parameters, 143 
unnormalized, 155 

Posterior exploration, 402 
GMRF prior, 406 
via MCMC, 402 
posterior mean, 406, 407 
posterior realizations, 406, 407 
via single-site metropolis, 405-406
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Posterior variances, Monte Carlo 
estimates, 33 

Potential energy, 114,115 
approximation, 155-156 
constraints, 148 
distribution, 142 
posterior distribution, 123 
splitting, 146, 147 

Potential scale reduction factor 
(PSRF), 81 ,170 

Predictive distribution, posterior;
453, 459,569-570 

Preston spatial birth-death chain, 234, 238, 245 
Prim ary sampling unit (PSU), 539 
Probabilistic model, 243 
Probability density function (pdf),

122, 253, 280 
joint, 267 

Process convolution prior, 407, 416 
continuous Gaussian process, 416 
posterior mean, 416, 417 
smoothing kernel, 417 

Product space formulations sampling, 85 
Proposal density, 25, 46 

automatic scaling, 74 
fastest-converging, 94 
M etropolis-Hastings acceptance 

probability, 320 
Proposal distribution, 26, 42,395, 431 

adaptive MCMC, 94 
AM algorithm, 104,105 
Gaussian, 396
mapping functions and, 72—73 
parameters, 75 

Pseudo-algorithm, 571 
Pseudo-convergence, 18, 19 
Pseudo-prior, 85, 308, 320 

log, 309
ST/US chain, 304,307 

PSRF. Sf? Potential scale reduction 
factor (PSRF)

PSU, See Primary sampling unit (PSU) 
Psychometric models, 532, 533 

combinations, 538
continuous latent and discrete observable 

variables, 536-537 
discrete latent and discrete observable 

variables, 537-538 
latent and observable variables, 535-536 

PT. See Parallel tempering (PT)
PX-DA. Sec Parameter expanded-data 

augmentation (PX-DA)

Q

Qin and Liu's procedure, 154-155 
Quasars, 393

R

R. hat. Sec Potential scale reduction factor 
(PSRF)

Radon-nikodym derivatives, 230. See also 
Metropolis ratio 

calculation, 40, 41, 44, 46 
in MHG Algorithm, 39 

RAMA. See Regional adaptive Metropolis 
algorithm (RAMA)

Random number generator (RNG), 32, 36 
Random scan Gibbs sampler, 27, 389 
Random sequence scan Gibbs sampler, 27 
Random-walk Metropolis (RWM), 408, 213.

See also Langevin Monte Carlo (LMC); 
Parallel tempering (PT); Serial 
tempering (ST); Single-site Metropolis 

acceptance rate, 150 
behavior of, 130-132 
benefit of avoiding, 130 
frequently asked questions, 10-102 
Hastings algorithm, 29, 56 ,194  
vs. HMC, 128-130
independent point obtaining cost, 141 
inhomogeneity factor, S8 
inhomogeneous covariance, 100—101 
inhomogeneous target distributions,

98-99,101 
invariance to rotation, 134 
MALA, 99
in Markov chain iteration, 430 
MCMC traces, 409 
multivariate, 402, 408-409 
off-diagonal covariance, 100 
optimal acceptance rate, 96-96 
optimal scaling of, 95 
partial momentum refreshment, 150 
in posterior conditional distributions, 427 
and proposal distribution, 73 
proposals, 408
reversible jump analogy of, 78 
scaling of, 139-141,150 
symmetric, 94
symmetric proposal distribution, 140 

Rao-Blackwellized estimator (RB estimator), 
179,180

RB estimator. See Rao-Blackwellized estimator 
(RB estimator)

Read-once CFTP (Ro-CFTP), 206-208 
with blocks of fixed length, 207
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and CFTP, 207 
deterministic map, 208 

Recovery probabilities 
HFDI, 428
posterior estimates, 440 
posterior model probabilities, 432 
survival probabilities and, 429 
time, 422, 425 

Recruitment over-fishing, 558 
Regeneration theory, 60 
Regional adaptive Metropolis algorithm 

(RAMA), 107 
Regions of interest (ROIs), 366, 367 
Regression model, 539. See also Bayesian model 

hierarchical logistic, 565, 567 
linear, 483
multilevel logistic, 535 
multivariate linear, 482 
regression coefficients, 142 

Repulsive distributions. See Antimonotone 
distributions 

Reverse peeling sampling, 349 
Reversible jump. See Metropolis-Hastings (MH) 

reversible jump chains 
Reversible jump algorithm, 6, 67, 70, 430.

See also. M etropolis-Hastings-Green 
algorithm (MHG algorithm)

Markov chain, 59 
MCMC sampler, 67 
sampler of Stephens, 85 

Reversible jump MCMC sampler, 67. See also 
M etropolis-Hastings (MH) algorithm 

acceptance probability, 71 
application areas, 68 
Bayes factors estimation, 82-84 
Bayesian modeling context, 67 
Bayesian nonparametries, 70 
centering and order methods, 74-77 
change-point models, 69 
convergence assessment, 81 
dimension matching, 71, 72 
finite mixture models, 69-70 
future directions, 86 
generic samplers, 78-80 
implementation, 71 
joint posterior distribution, 67 
label switching, 80-81 
mapping functions, 72-73 
marginalization and augmentation, 73-74 
Markov chain construction, 68 
M etropolis-Hastings algorithm, 67—68 
moment matching, 72 
multi model sampling methods, 84 
multi-step proposals, 77-78 
w ith N  iterations, 68 
one-to-one mapping function, 71

post simulation, 80-84 
proposal distributions, 72,73 
second-order method, 76-77 
time series models, 70 
variable selection, 70 
zeroth-order method, 75—76 

Reweighting, 353-354 
Ring-recovery data, 420. See also Count data 

count data and, 435-438, 441 
covariate analysis, 422-425 
m-array, 420
mixed effects model, 425-428 
model uncertainty, 428, 429-432 
multinomial probabilities, 421 
for UK Lapwings, 421 

RNG. See Random number generator (RNG) 
Ro-CFTP See Read-once CFTP (Ro-CFTP)
ROIs. See Regions of interest (ROIs)
Running time analysis, 245 

bad event, 246-247 
good event, 246
on perfect simulation methods, 24S—250 

Rural-urban migration, 563 
migration data, 564-569 

R W M  See Random-walk Metropolis (RWM)

S

SAEM. See Simulated annealing EM  (SAEM) 
Sampling. See Perfect sampling 
Sampling-importance resampling algorithm.

(SIR algorithm), 549 
SAN. See Storage area network (SAN)
SBM. See Subsampling bootstrap method (SBM) 
Scanner drift, 368
Schaefer surplus production function, 

quadratic, 554 
SD. See Standard deviation (SD) 
Second-generation MCMC revolution, 49 
Sequential Monte Carlo (SMC), 86 
Serial tempering (ST), 297, 298. See also Parallel 

tempering (PT) 
annealing analogy, 299 
Hastings ratio, 300 
tuning, 301-302 

SGLM. See Spatial generalized linear 
model (SGLM)

Shadow Hamiltonian, 144 
Simple slice sampler, 257. See also Data 

augmentation (DA)— algorithm 
Simulated annealing EM  (SAEM), 54 
Simulated tempering (ST), 297 

annealing analogy, 298 
augmented sampler, 414 
effectiveness, 300-301 
parallel tempering, 299-300
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Simulated tempering (ST) {Continued) 
serial tempering, 300, 301-302 
during trajectory, 157 
umbrella sampling, 302-303 

Simulators, fast approximate, 402, 411. See also
Electrical impedance tomography (EIT) 

approximate solver production, 412, 413 
augmented sampler, 4=14—4=15 
delayed acceptance Metropolis, 413-414 
ML UPS algorithm, 412 
for multigrid EIT simulator, 412 
utilizing approaches, 411, 412 

Single-lag models, 496 
Single-site Metropolis, 405. See also

Random-walk Metropolis (RWM) 
chains from, 411 
MCMC traces, 409 
posterior mean, 406, 407, 416 
realizations, 406, 407 
scan, 417 
updates, 415 

Single-site updates, 515—516. See also Block 
updates; Parameter updates 

in posteriormean image, 407 
in samplers, 349 
single-site Gibbs move, 516-517 
single-site independence sampler, 517-518 

SIR algorithm. See Sampling-importance
resampling algorithm. (SIR algorithm) 

Slice sampler. Sec also Gibbs sampler; 
M ultigamma coupler 

perfect, 216-217 
simple, 257 

Slice sampling, perfect, 215-217. See also 
Coupling— methods 

SLLN. See Strong law of large numbers (SLLN) 
Slowly varying trend terms, 366 
Small set, 211
SMC. See Sequential Monte Carlo (SMC)
Soft core model, 229 
Sojourn length, 329 

distribution of, 330 
Sou ter's preference shift, 489 
Spatial data, 449

Bayesian analysis of, 243 
categories, 449 
geodesic distances, 452 
in point processes, 227 

Spatial generalized linear mixed models. See 
Spatial generalized linear model 
(SGLM)

Spatial generalized linear model (SGLM), 458. 
See also Linear spatial models; 
Non-Gaussian Markov random field 
models (NM RF models)

binary data, 459-460 
count data, 460, 461 
framework, 458-459 
GMRF formulation, 459 
infant mortality rates, 461 
Langevin-Hastings MCM C, 461-462, 

463-465 
likelihood-based inference, 467 
MCMC for, 463 
Poisson-GMRF model, 465 
posterior mean infant mortality rates, 461 
zero-inflated data, 462-463 

Spatial modeling, 449-450. See also Markov 
chain Monte Carlo (MCMC) 

for dependence, 450 
joint distributions, 466 
Markov random held specification, 451 
for spatially varying mean, 450-451 

Spatial point processes, 43, 227. See also 
Poisson point process 

Spatial random effects 
integration, 457 
and mixing, 467 
in modeling dependence. 471 
regression parameter interpretation, 459 

Spectral analysis
in high-energy astrophysics, 392-393 
MCMC sampler comparison, 396 
using M H sampler, 395,396 
PCG I construction, 394r-395 
PCG II construction, 395 
probability vector computation, 395 
quasar's spectrum, 393-394 
sampler's ESS, 396-397 
standard Gibbs sampler failure, 394 

Spectrum, 392
Split chain, 273. See also Gibbs chain;

Markov chain 
regeneration and, 60, 274, 277 
simulation, 275-276 

Splitting technique, 211. Seenlso 
Coupling— methods 

Square root law, 7
SRS. See Stochastic recursive sequence (SRS)
ST. See Serial tempering (ST); Simulated 

tempering (ST)
Standard deviation (SD), 425 
State-dependent proposal scalings, 107. See also 

Metropolis-Adjusted Langevin 
algorithm (MALA)

State-space, 4  See also Count data— model
selection; Integrated analysis, count 
data; Markov chain Monte Carlo 
(MCMC)

Bayesian analysis, 515 
block updates, 518—523
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centered parameterizations, 525 
change-point model, 514 
in continuous, 201 
in count data analysis, 433 
discrete HMM, 514 
disjoint union, 46 
equilibrium distribution, 46 
full, 114,127,128 
functional, 6 
Hastings ratio and, 35 
Markov chain, 14,135, 286 
of MCMC, 74 
M HG with, 45
model, 434, 435, 513, 549, 553 
observation process, 434 
parameter updates, 523-527 
of Poisson process, 44 
pseudo-convergence, 18 
sampler and, 32
Schaefer surplus production, 555 
single-site updates, 515-518 
in singular proposals, 43 
SV, 513
system process, 43 
trajectory length, 137 
variables, 152, 200 

Statistical ecology
Bayesian methods in, 419 
count data analysis, 433 
covariate analysis, 422 
ecological data forms, 420 
integrated analysis, 435-436 
marginal posterior probability, 432 
MCMC algorithm, 436-437 
model, 425-426, 428-429, 430, 439 
posterior conditional distributions, 

423-424, 427 
posterior inference, 426-427 
proposal distribution, 431 
reversible jump algorithm, 430-431 
ring-recovery data analysis, 420-421 
state-space model, 434 

Statistical models 
complex, 541
in educational research, 531, 532-534 
multilevel, 384,534-535 
psychometric models, 533, 535 

Stepsize
in approximating Hamiltonian dynamics, 

119-122 
leapfrog, 130 ,135-137 ,156-157  
in 2D Gaussian distribution, 128 

Stochastic process, 5
Markov chains and, 4 ,14  
variance estimation, 13 

Stochastic recursive sequence (SRS), 200

bounding chain's, 204 
monotone, 202, 205 

Stochastic volatility (SV), 513 
autocorrelation values, 519 

Stock, 547
hyperparameters of priors, 555 
recruit meta-analysis, 558, 559, 560 

Stock assessment models, 547. See also 
Fisheries science 

CPUE, 554 
features, 548 
fully Bayesian, 549 
ill-conditioned, 548 
shortcomings of, 549 
surplus production models, 553-554 

Storage area network (SAN), 504 
Strauss process, 229 

density, 238 
locally stable, 233, 242 

Strong law of large numbers (SLLN), 107,108, 
175, 263 

Subsampling, 27-28
Subsampling bootstrap method (SBM), 187-189. 

See also CHrerlapping batch means 
(OLBM)

Surplus production models, 553-554 
SV See Stochastic volatility (SV)
Swindles, 217

antithetic perfect sampling, 220-221 
exact and approximate MCMC algorithms, 

221
exact samples, 218-219 
M etropolis-Hastings algorithm, 222 
multistage perfect sampling, 219 
parallel antithetic backward CFTP processes, 

221
perfect tour, 218 

Symplectic integration methods, 145

Tempering method, 157 
Jacobian matrix, 158 
limitation, 160
multiple mode distributions, 144 
trajectories, 159 

Thinning, 235 
Df, 238
purpose of, 171 

Three-lev el logit model, 566-567 
Time series models, 70. See also 

State—sp ace— m o d el 
Time-backward sequence, 200 
Time-forward sequence, 200 
HMSS. See Trends in International Mathematics 

and Science Study (TIMSS)
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Traits
(M-graph computations, 348 
marker genotype information and,, 354, 358 
on MCMC, 339 

Trajectory length 
choosing, 137 
error in H , 144 
optimal choice of, 156 
stepsize, 140 

Transition probability distribution, 4 
asymptotic variance formula and, 8 
initial distribution, 5, 6 

Transmission model, 342 
Trends in International Mathematics and 

Science Study (HM SS), 539 
Trimming, 387

u

Umbrella sampling (US), 297,302-303 
Unnormalized Bayes factor, 303, 304, 308-309 
Update mechanism, 22 

combining updates, 26 
Gibbs update, 24-25, 26 
Metropolis update, 24 
M etropolis-Hastings, 22-24, 25 

US. See Um brella sampling (US)

V

Vanishing adaptation condition. See
Diminishing adaptation condition 

Variable selection, 70 
marginalization in, 74 
in regression, 57 
RJMCMC, 59

Variance reduction factor (VRF), 221 
V-cycle multigrid iterative algorithm, 412 
Village migration

causation of, 564, 565, 570-571 
inequality in, 569-570,573 
rates, 564,565, 566 

Village trip, 565, 566
hierarchical model migration, 568 
for men and women, 566 
on migration, 570-572, 573 

Village-year model, 569 
DIC statistic for, 568,573 
predictive distribution, 569-570 

VRF. See Variance reduction factor (VRF)

W

Weak law of large numbers (WLLN), 107,108 
White box approach, 36 
WinBUGS, 445,550 

code for, 420
as MCMC programs, 532,541 
surplus production model code, 555 

Windowed HMC procedure, 152-154. Seenlso 
Qin and Liu's procedure 

Windows of states 
accept window, 153
acceptance probability, 114,144,152-155 
advantage, 154 
HMC performance, 154 
rej e ct wi n d ow, 153 

Winsorized Poisson automodel, 468 
Wishart distribution 

in prior, 501
for variance components, 377 

WLLN. See Weak law of large numbers (WLLN)
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