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INTRODUCTION: Understanding and treating
disease requires deep, systematic character-
ization of different cells and their interactions
across human tissues and organs, along with
characterization of the genetic variants that
causally contribute to disease risk. Recent
studies have combined single-cell atlases of
specific human tissues and organs with genes
associated with human disease to relate risk
variants to likely cells of action. However, it
has been challenging to extend these studies
to profile multiple tissues and organs across
the body, conduct studies at population scale,
and integrate cell atlases frommultiple organs
to yield unified insights.

RATIONALE: Because of the pleiotropy and spe-
cificity of disease-associated variants, system-
atically relating variants to cells andmolecular
processes requires analysis across multiple tis-

sues and individuals. Prior cell atlases primar-
ily relied on fresh tissue samples from a single
organ or tissue. Single-nucleus RNA sequencing
(snRNA-seq) can be applied to frozen, archived
tissue and captures cell types that donot survive
dissociation across many tissues. Deep learning
methods can integrate data across individuals
and tissues by controlling for batch effects
while preserving biological variation.

RESULTS:Weestablished a framework formulti-
tissue human cell atlases and generated an atlas
of 209,126 snRNA-seq profiles from eight tis-
sue types across 16 individuals, archived as
frozen tissue as part of the Genotype-Tissue
Expression (GTEx) project. We benchmarked
four protocols and show how to apply them in
a pooled setting to enable larger studies. We
integrated the cross-tissue atlas using a con-
ditional variational autoencoder, annotated it

with 43 broad and 74 fine categories, and dem-
onstrated its use to decipher tissue residency,
such as a macrophage dichotomy and lipid as-
sociations that are preserved across tissues, and
tissue-specific fibroblast features, including lung
alveolar fibroblastswith likely roles inmechano-
sensation.We relate cells to human disease biol-
ogy and disease-risk genes for both rare and
common diseases, including rare muscle dis-
ease gene groups enriched in distinct subsets
ofmyonuclei and nonmyocytes, and cell type–
specific enrichment of expression and splicing
quantitative trait locus (QTL) target genes
mapped to genome-wide association study loci.

CONCLUSION: Our framework will empower
large, cross-tissue population and/or disease
studies at single-cell resolution. These frame-
works and the cross-tissue perspective provided
here will form a basis for larger-scale future
studies to improve our understanding of cross-
tissue and cross-individual variation of cellular
phenotypes in relation to disease-associated
genetic variation.▪
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Cross-tissue snRNA-seq atlas in
eight frozen, archived adult
human tissues. Tissue sites and
experimental pipeline (top row). The
resulting atlas enables a cross-
tissue census of tissue-specific and
shared cell types (middle left).
Differentiation trajectories and
compositional analysis of dichoto-
mous macrophage populations
improve our understanding of
tissue residency (middle center
and right). Analyses of fibroblasts
across tissues reveal tissue-
specific and shared fibroblast
features and their functional
interpretation (bottom left).
Robust and scalable computational
methods enable comprehensive
associations of monogenic and
complex diseases to tissue-
specific and shared cell populations
(bottom center and right).
E. mucosa, esophagus mucosa;
E. muscularis, esophagus muscularis;
Sk. muscle, skeletal muscle.
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Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular
and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing
methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-
tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with
a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-
specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular,
metabolic, and immune components of monogenic diseases and the biological processes involved in their
pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex
traits analyzed by genome-wide association studies.

T
issue homeostasis and pathology arise
from an intricate interplay between dif-
ferent cell types, such that disease risk
is influenced by variation in genes that
affect the cells’ functions and interactions.

Human genetics studies, to date, have mapped
tens of thousands of loci that either underlie
rare monogenic disease or are associated with
complex polygenic disease risk (1–3), including
many in regulatory regions, whereas single-
cell genomics has become instrumental in
constructing cell atlases of both healthy organs
and diseased tissues (4–6).

Coupling these advances in human genetics
and single-cell genomics should enhance our
understanding of cell type–specific changes in
the function and regulation of disease genes.
In particular, tissue (7), cell type (8–11), time
point, and stimulation (12–14) all affect gene
expression in disease-associated genetic loci.
Recently, studies combining single-cell expres-
sion atlases and genetic signals have been able
to associate risk genes with specific cell types
and states in relevant tissues (15–18).
Because complex diseases often manifest in

and implicate cells across multiple tissues,
fully understanding the way in which genetic
variation affects disease requires generating
atlases from diverse tissues across the body
and from many individuals, spanning differ-
ent populations. This poses several challenges.
First, collecting fresh tissue samples at scale is
logistically challenging, and some tissues, such
as brain, muscle, and adipose, are difficult to
process into single-cell suspensions (19–23). As
a result, large-scale single-cell profiling studies
in humanpopulations (24, 25) have focused on
peripheral blood mononuclear cells, which can
be frozen and thawed for multiplexed single-
cell analysis. Single-nucleus RNA sequencing
(snRNA-seq) offers a compelling alternative
because it can be applied to archived, frozen
tissues (26, 27) from multiple organs and cap-
tures diverse cell types. Second, annotation
and classification of cell types and states re-
quire defining biological relationships be-
tween parenchymal, immune, and stromal cells
across tissue types. Finally, data integration
and interpretation require cross-tissue ana-
lytical frameworks to remove unwanted vari-

ation while preserving biological differences;
identify cell types and states; and relate cell
types and states to monogenic and complex
trait genetics.

Results
A multitissue, multi-individual single-nucleus
reference atlas from archived, frozen
human tissues

We constructed a cross-tissue snRNA-seq atlas
from 25 archived, frozen tissue samples, pre-
viously collected and banked by the Genotype-
Tissue Expression (GTEx) project (7), that span
three or four samples from each of eight tissue
sites—breast, esophagus mucosa, esophagus
muscularis, heart, lung, prostate, skeletal mus-
cle, and skin—from 16 individuals (sevenmales
and nine females) (Fig. 1A). We selected the
samples by RNA quality, tissue autolysis score,
and the availability of existing bulk RNA-seq
and genome sequencing data [(28); table S1].
Histology slides corresponding to each tissue
were reviewed by a pathologist to provide de-
tailed annotations (table S1). Because different
nucleus extraction protocols can be optimal
for different tissues (26, 29), we isolated nuclei
from each sample using four protocols that
vary in detergents, salt, buffer, andmechanical
preparationmethodology [CST (0.49%CHAPS
detergent, salts, and Tris buffer), NST (NP-40,
salts, and Tris buffer), TST (0.03% Tween 20
detergent, salts, and Tris buffer), and the EZ
nuclei isolation kit (proprietary composition;
NUC101, Sigma-Aldrich); (26, 28, 29); table S1],
followed by droplet-based single-cell RNA-seq
(scRNA-seq) (28).
We processed the initial snRNA-seq profiles

to retain high-quality nuclei profiles and re-
move the effects of contaminant transcripts
from ambient RNA (28). In breast and skin, the
majority of nuclei profiles were recovered from
only one individual sample for each tissue
(breast: 61.3%, skin: 93.1%; table S1). Some
tissues and protocols had higher ambient RNA
contamination, reflected as spurious expres-
sion of highly expressed transcripts from one
cell type in nuclei profiles of other cell types.
Such effects were more prominent in skeletal
muscle and heart [false discovery rate (FDR) <
0.05], irrespective of protocol, but were also
present in other tissues [(28); fig. S1]. We cor-
rected for ambient RNA contamination with
CellBender v2.1 (30) (fig. S1) and further ap-
plied standard quality control metrics (28),
retaining 209,126 nuclei profiles across the
eight tissues, with a mean of 918 genes and
1519 transcripts (unique molecular identifiers)
detected per profile.

Cross-tissue atlas annotation recovers diverse
cell types, including difficult-to-profile and rare
cell subsets

We integrated data from all samples andmeth-
ods using a conditional variational autoencoder
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(cVAE), which is designed to correct for multi-
ple sources of variation in expression, such as
individual-, sex-, and protocol-specific effects,
while preserving tissue- and cell type–specific
variation [(28); Fig. 1, B to F, and figs. S2A and

S3]. We benchmarked the cVAE against sev-
eral other data integrationmethods, obtaining
comparable or improved results and providing
guidelines for future integration efforts [fig. S4
and supplementary text note S1; (28)]. Cells

grouped first by cell type and then by tissue-
specific subclusters (Fig. 1, B to D), suggest-
ing that the variation between cell types is
larger than the variation within a cell type
across tissues.

Eraslan et al., Science 376, eabl4290 (2022) 13 May 2022 2 of 17

Breast

Esophagus mucosa
Esophagus muscularis

Heart
Lung
Prostate

Skeletal muscle

Skin

Tissues
CST
EZ
NST
TST

Protocol
GTEX-1CAMR
GTEX-1CAMS
GTEX-1HSMQ
GTEX-1l1GU
GTEX-1lCG6
GTEX-1MCC2
GTEX-1R9PN
GTEX-12BJ1
GTEX-13N11
GTEX-15CHR
GTEX-15EOM
GTEX-15RlE
GTEX-15SB6

GTEX-16BQI
GTEX-144GM
GTEX-145ME

Donor

vs.

T
is

s
u

e

Experimental pipeline and analysis

Tissue collectionI.

II.

Tissue Processing

Frozen
Post-mortem snRNA-Seq

Analysis

Cross
tissue
analysis

Profiling

Breast

2x left
1x right 

Esophagus
mucosa

Squamous
region

Esophagus
muscularis

Squamous
region

Heart

Left
ventricle

Lung

Left
upper lobe

Muscle

Gastro-
cnemius

Prostate

Non-nodular
region

Isolation of
single nuclei

Protocols tested
TST/ CST/
NST/ EZ

GWAS,
monogenic
diseases

RNA:
Nuclear/
cellular

Skin

Ambient
correction

Integration
(preps/ tissues/
individuals)

Cellular compartment
Adipose
Endothelial
Epithelial
Fibroblast
Immune
Muscle
Other

Broad cell type (color legend for C and G)

Broad cell type

1. Adipocyte

2. Lymphatic
Endothelial

Epithelial

Immune

Myonuclei

3. Vascular

4. Hillock
5. Alveolar type I
6. Alveolar type II
7. Basal keratinocyte
8. Basal
9. Ciliated
10. Club
11. Cornified keratinocyte
12. Luminal
13. Mature keratinocyte
14. Squamous
15. Suprabasal keratinocyte
16. Suprabasal

17. Fibroblast
18. ICCs

19. B cell
20. Dendritic cell (DC)
21. DC/macrophage
22. Langerhans
23. NK cell
24. T cell
25. Alveolar macrophage
26. Mast

27. Melanocyte
28. Mucous cell

29. NMJ-localized
30. Cardiac
31. Cardiac, cytoplasmic
32. Skeletal muscle
33. Sk. muscle, cytoplasmic
34. Smooth muscle

35. Myoepithelial (basal)
36. Myofibroblast

37. Neuroendocrine

43. Sweat gland

38. Neuronal
39. Pericyte/SMC
40. Satellite
41. Schwann cell
42. Sebaceous gland

32

30 31
3

26

23
24

19

20

25

27
42 11

13
157

8
35

16

4

10
40

18

14

17

1228

43

22

21

2

9

6

5

1

41

33

34
36

38
37

29

39

0 25 50

Cell type composition (%)
75 100

1
10

0

10
,0

00

Skin

Skeletal muscle

Number of nuclei

Prostate

Lung

Heart

Esophagus muscularis

Esophagus mucosa

Breast9,769

31,061

30,877

4,828

35,284

36,574

34,173

26,060

1 12 35

3

3

3

8

8

7

17 34

17 21 30

17

17 32

17

5 6 25

10 12

A

D

G

E F

B C
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We annotated cell types within each tissue
after dimensionality reduction and graph-based
clustering (28) by identifying genes that are
differentially expressed between clusters and
comparing them with literature-based marker
genes [(28); tables S2 and S3]. We curated
comprehensive lists of cell-type markers from
the literature for each tissue (figs. S5 and S6
and table S3), including markers for relatively
poorly characterized cells, such as interstitial
cells of Cajal (ICCs). We defined cellular com-
partments shared across tissues (e.g., adipose,
endothelial, epithelial, fibroblast, immune,
muscle) (Fig. 1B), broad cell types (e.g., luminal
epithelial cells, vascular endothelial cells) (Fig.
1C and fig. S5), and granular cell subsets (e.g.,
luminal epithelial cell 1 and 2) (fig. S6). The
annotations were consistent across extraction
protocols, tissues, and donors (figs. S2, B and
D, and S7).
The atlas features 43 broad cell classes (Fig.

1C and tables S2 and S3), with both tissue-
shared cell types and tissue-specific subsets
(e.g., Fig. 1G and figs. S2, B and D, and S5).
For example, tissue-specific cell types such
as pneumocytes (alveolar type I and II) and
keratinocytes were the predominant cell types
in the lung and skin, respectively. Many shared
broad cell types such as immune and stromal
cells were detected across all tissues (fig. S2,
D and E), but with tissue-specific specializa-
tions (discussed later in the text). For example,
macrophages made up the largest immune
population, with diverse subsets of tissue-
resident cells.
The atlas captured profiles from cell classes

that are difficult to profile by dissociation-based
scRNA-seq (23, 31, 32), including 2350 adipo-
cytes, 21,607 skeletal muscle myonuclei, and
9619 cardiac myonuclei. We detected adipo-
cytes in five of the eight tissue types (breast,
muscle, heart, esophagusmuscularis, and skin),
with 86% of adipocytes from breast tissue (fig.
S2D), making up 18% of all breast nuclei pro-
files (Fig. 1G) (28). Skeletal and cardiac myo-
nuclei included key subsets (33, 34). Cardiac
myonuclei primarily included the previously
distinguished classical myonuclei as well as
the recently reported “cytoplasmic myonu-
clei” (33) (fig. S8 and supplementary text note
S2). Other myonuclei subsets included neuro-
muscular junction (NMJ)–localized skeletal
muscle myonuclei, which have also been ob-
served in scRNA-seq and snRNA-seq studies
in mice (21, 31, 35), and “fast-twitch” and “slow-
twitch” subtypes (Fig. 1, B and C, and fig. S6G),
which are characterized by differentially ex-
pressed genes (fig. S9, A and B) that are con-
cordant with previously reportedmarkers (36)
(fig. S9, C and D).
Cross-tissue and cross-sample integration

enhanced our ability to resolve multiple rare
cell subsets (Fig. 1C and figs. S2, B and D, S5,
and S6). For example, we detected Schwann

cells that support peripheral nerves (37) in
multiple tissues (esophagus mucosa and mus-
cularis, heart, prostate, and skeletal muscle),
rare neuroendocrine cells in the prostate (38),
and rare (26) ICCs and enteric neurons in the
esophagus. Because these rare cells can contrib-
ute to various pathologies, their profiling in hu-
man tissues will enable disease studies (26, 37).

snRNA-seq protocols perform well across
tissues and correspond to scRNA-seq

We benchmarked the performance of our nu-
cleus extraction and profiling protocols (26, 29)
relative to each other across all eight profiled
tissues and to other snRNA-seq, scRNA-seq,
and bulk RNA-seq datasets in relevant tis-
sues. For each dataset, we compared standard
quality control metrics per profiled cell or
nucleus, as well as the diversity and propor-
tions of captured cell types.
Of the four tested nucleus isolation pro-

tocols (CST, NST, TST, and EZ; table S1), the
EZ protocol displayed lower performance in
each of the eight profiled tissues by multiple
quality metrics (28, 39) (Fig. 2A and fig. S10).
These included the lowest total number of
nuclei captured (fig. S10, A and B), higher levels
of ambient RNA (FDR < 0.05; fig. S1, A and B),
and separate grouping of EZ-profiled samples
[fig. S2C; (28)].
The extraction protocols also varied in the

proportion of nuclei recovered from each cell
type (figs. S2, B and D, and S11A; supplemen-
tary text note S3), consistent with our pre-
vious observations in tumors (29). The TST,
CST, and NST protocols had comparable cell-
type diversity as measured by Shannon en-
tropy [Fig. 2A; (28)], whereas the EZ protocol
resulted in significantly lower diversity (Fig.
2A; linear mixed-effects model effect size of
−1.08, P = 5 × 10−11). Overall, TST yielded the
highest cell-type diversity, on average, across
tissues (Fig. 2A) and significantly higher pro-
portions of T cells, fibroblasts, and vascular
endothelial cells (FDR < 10%; fig. S11A). Be-
cause the protocols varied by their perform-
ance (most diverse, high capture of the desired
cell types), users should choose protocols by
matching protocol features to scientific goal,
tissue type, and complexity; and further pro-
tocol optimization may still be required (29)
(for further details and guidance, see supple-
mentary text note S3).
We compared cell-type compositions be-

tween our four protocols and other snRNA-seq
studies, focusing on our frozen heart left-
ventricle samples, for which two recently pub-
lished snRNA-seq studies evaluated similar
samples (33, 34). We found agreement in
broad cell types such as mast cells, adipocytes,
“cytoplasmic” cardiac myonuclei, and Schwann
cells (fig. S11, B and C, and table S4)—but
differences in some of their proportions (fig.
S11, D and E). Protocols used in the published

studies and the EZ protocol in our study cap-
tured a higher proportion of muscle nuclei,
whereas CST, NST, and TST yielded a higher
proportion of endothelial cells (fig. S11E). There
was also high concordance between the expres-
sion profiles of bulk RNA-seq [from GTEx; (7)]
and pseudobulk profiles derived from our
snRNA-seq (accuracy 92.3%; fig. S12). A few
samples showed lower agreement (heart-EZ,
breast-EZ, and two breast-TST samples), sug-
gesting that these particular tissue-protocol
combinationsmay not reflect cellular compo-
sition as accurately.
We next compared snRNA-seq data to fresh-

tissue scRNA-seq data from lung (40), skin
[current study; (28)], and prostate (38). For
cell composition (Fig. 2B), we recovered the
samemain cell groups across compartments.
We confirmed the accuracy of our annotations
by training a multiclass random forest classi-
fier on snRNA-seq data and predicting cell
types on scRNA-seq data [(28); Fig. 2, C to E],
and vice versa (fig. S11, F toH). In addition, cell-
type intrinsic (pseudobulk) profiles of protein-
coding genes were overall similar between
snRNA-seq and scRNA-seq [average Spearman
r across cell types of 0.58 (skin), 0.69 (prostate),
and 0.47 (lung); table S4]. Moreover, integrat-
ing cell and nuclei profiles from prostate, skin,
and lung and annotating the cells with a ran-
dom forest classifier that is trained on our
nuclei profiles with our granular annotations
yielded well-mixed groupings, similar marker
genes, and high concordance between proto-
cols (fig. S13).
Divergences observed include the greater ex-

pression in cells versus nuclei of a dissociation-
induced stress signature (41, 42) (Wilcoxon rank
sum test, Benjamini-Hochberg FDR < 10−16;
Fig. 2F and fig. S14, A and B), as reported (29),
and of ribosomal and nuclear-encoded mito-
chondrial protein genes [Fig. 2G; (28); linear
model], consistent with their longer half-lives
and higher cytoplasmic levels (43, 44). Con-
versely, nuclei profiles had higher levels of
longer transcripts (fig. S14, H and I) and of
transcripts with a larger number of adenine
stretches (Fig. 2G and fig. S14, C to G), con-
sistent with previous reports (45).
Notably, our snRNA-seq generally captured

relatively lower proportions of lymphocytes.
For example, for lung and skin, respectively,
T cells represented 1.7 and 1.4% of all cells
(aggregated) compared with 8.73 and 6.83%
by scRNA-seq. We observed similar patterns
for B cells in skin. Furthermore, these immune
cell proportions varied across samples and
protocols. A study comparing snRNA-seq
and in situ measurements (46) suggested that
scRNA-seq may oversample immune cells.

Myeloid populations across tissues

Our cross-tissue atlas allowed us to charac-
terize tissue-specific and shared features of
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Fig. 2. Concordance of cell-type diversity and cell-intrinsic profiles
between snRNA-seq and scRNA-seq. (A) Cell-type diversity (Shannon entropy,
y axis) of each protocol (color) in each sample (dot) and tissue (x axis). Dashed
lines indicate the average across samples. (B) Differences in cell proportions.
The proportions (y axis) of cells from major categories (color) in each individual
by tissue and protocol (x axis) are shown. (C to E) Concordance of cell-intrinsic
programs. Proportions of cells (dot color and size) of a manually annotated group
(rows) predicted to belong to a given nucleus profile annotation label (columns) by a
random forest classifier trained on nuclei and applied to cells of the same tissue for
skin (C), lung (D) or prostate (E) are shown. (F) Tissue dissociation expression

signatures in scRNA-seq. Scores [y axis, average background corrected log(TP10K+1)]
of a dissociation-related stress signature (41) in scRNA-seq (pink) and snRNA-seq
(blue) profiles in each major lung cell type (x axis) are shown (***Benjamini-Hochberg
FDR < 10−16, Wilcoxon rank sum test). Box plots show median, quartiles, and
whiskers at 1.5 times the interquartile range (IQR). (G) Divergent genes between
cell and nucleus profiles. Averaged pseudobulk expression (28) of protein-
coding genes (dots) in skin basal keratinocyte nuclei (x axis) and cells (y axis) is
shown. Divergent genes are represented by a black dot outline. The color scale
shows the total length of polyA stretches with at least 20 adenine bases in log2
scale. Epi., epithelial; sm., smooth; SMC, smooth muscle cell.
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tissue-resident immune cells, which play key
roles in immune surveillance and tissue sup-
port (47, 48). Integration and annotation of
14,156 myeloid nuclei profiles (28) (60% of im-
mune nuclei) revealed 14 distinct monocyte,
macrophage, and dendritic cell (DC) subsets
(Fig. 3A; fig. S15, A and B; and table S5).
These included CD16+monocytes, CD14+mono-
cytes, two transitional Mo/MF FCGR3Alow and
Mo/MF FCGR3Ahigh populations with coex-
pression of both monocyte and macrophage
markers (see next section), DC1s, DC2s (49),
mature DCs, and Langerhans cells (Fig. 3B).
Tissuemacrophage states further included lung
macrophages expressing an alveolarmacrophage
signature (50) (fig. S15C), proliferating macro-
phages, cytokine- and chemokine-expressing
inflammatory macrophages, and two addi-
tional macrophage subsets: MF LYVE1high and
MF HLAIIhigh (Fig. 3B), where HLAII is HLA
class II. Finally, lipid-associated macrophage
(LAM)–like nuclei highly expressed LAM signa-
ture (Fig. 3B and fig. S15C) (51) as well as lipid
metabolism-related, myeloid cell immune ac-
tivation, and macrophage migration genes
(fig. S15D). Although most myeloid subsets
were present in multiple tissues, notable ex-
ceptions includedPPARGhigh lungmacrophages,
which were present only in lung, and CD207/
Langerin+ Langerhans cells, which were pre-
sent only (97%) in skin and esophagusmucosa,
consistent with their role in antigen sampling
within stratified epithelia (52, 53) (Fig. 3C and
fig. S15, F and I).
Myeloid cell proportions were more highly

correlated between samples within a tissue
type (fig. S15, E and F) than between different
tissues (fig. S15, E to H), confirming the re-
producibility of tissue-specific myeloid state
proportions. Moreover, related tissues—such
as muscle (heart, esophagus muscularis, skel-
etal muscle) or epithelial barriers (esophagus
mucosa, skin)—grouped by theirmyeloid com-
position profiles (fig. S15H). Macrophage types
and proportions varied by tissue, with breast,
esophagus mucosa, esophagus muscularis,
heart, and skeletal muscle having signifi-
cantly higher proportions of MF LYVE1high

macrophages [P < 10−6, Dirichlet regression
likelihood ratio test (LRT); (28)] and lung and
prostate having significantly higher propor-
tions of MF HLAIIhigh [P < 10−8, Dirichlet re-
gressionLRT; (28)] (Fig. 3C and fig. S15, F and I).

A dichotomy between LYVE1- and
HLAII–expressing macrophages is preserved
across tissues

Two expression states of LYVE1high andHLAIIhigh

macrophage populations were dichotomous—
either LYVE1highHLAIIlow or LYVE1lowHLAIIhigh—
and represented the end points of two alterna-
tive branches. Specifically, low-dimensional
representation of monocytes, macrophages,
andMo/MF populations as a continuumwith

diffusion maps captures the HLAIIhigh and
LYVE1high cells as “terminal” points in two
branches that emanate fromCD14+monocytes
at the root. Each of the two terminals is pre-
ceded by distinct earlier putative transitional
states: a Mo/MF FCGR3Alow state between
CD14+ monocytes and the LYVE1highHLAIIlow

population and a Mo/MF FCGR3Ahigh state
between the monocytes and the LYVE1low

HLAIIhigh cells (Fig. 3D and fig. S16, A and B).
(There is also a putative secondary path be-
tween FCGR3Alow and LYVE1lowHLAIIhigh cells
through a FCGR3Ahigh intermediate.) The po-
sition of the FCGR3Ahigh transitional state is
consistent with lung data from a humanized
mouse model (54, 55). These key features are
consistent overall in the map that is con-
structed only from macrophage nuclei from a
single tissue (fig. S16A). Thus, FCGR3Alow and
FCGR3Ahigh states might be Mo/MF popu-
lations that are less-differentiated or less-
activated states of LYVE1high and HLAIIhigh

MFs, respectively.
Each of the LYVE1high andHLAIIhigh subsets

expressed a combination of a common signa-
ture and tissue-specific markers (Fig. 3E, fig.
S16C, and table S5) and was enriched for dis-
tinct functions, mirroring those of Lyve1high

MHCIIlow and Lyve1lowMHCIIhigh resident mac-
rophage populations in mouse tissues (47)
(fig. S16, C and E). HLAIIhigh cells were en-
riched for immune-related processes and
expressed higher levels of complement com-
ponents APOE and C1QA, C1QB, and C1QC
(Fig. 3B and fig. S16, C and D). Genes differ-
entially expressed between human HLAIIhigh

and LYVE1high subsets corresponded to those
in murine counterparts (fig. S16E), but with
higher expression in humanHLAIIhigh macro-
phages of C1QB and C1QC complement genes
in lung and phagocytic receptorsMARCO and
CD36 inheart (fig. S16E).HLAIIhighmacrophages
were also enriched for immune interactions
with B cells, DCs,mast cells, natural killer (NK)
cells, and T cells (fig. S16G). LYVE1high profiles
were enriched for tissue-supporting mod-
ules and had putative receptor-ligand inter-
actions (28) with lymphatic endothelial cells,
fibroblasts, adipocytes, andmyocytes (fig. S16F).
In mice, MF Lyve1high cells were located near
blood vessels (47) and regulated vascular tone
(56), and cardiac LYVE1+ macrophages have
been implicated in regulating the lymphatic
network (57). Thus, LYVE1high macrophages
may have a homeostatic role in the human
heart, lung, and esophagus.

LAM-like macrophages are prevalent across
human tissues and share a regulatory program

In our atlas, we identified LAM-like cells as
widely distributed across healthy human tis-
sues, with the vast majority of LAMs (97%,
268 of 283) from the breast, heart, lung, and
prostate (Fig. 3C). LAMs and LAM-like cells

have been previously reported in disease con-
texts in adipose tissue from obese humans and
mice (51), injured and fibrotic liver (58–60),
obese liver (61), fibrotic lung (50, 62), athero-
sclerotic aortic tissue (63, 64), leprosy (65), and
the brains of individuals with Alzheimer’s dis-
ease (66–68). However, an understanding of
their distribution and heterogeneity across
human tissues is still lacking.
To characterize LAMs across the body, we

analyzed LAM-like cells in the expanded con-
text of our study and 17 other published atlases
spanning 14 tissues. We trained a linear classi-
fier with published omental adipose scRNA-
seq containing LAMs (28, 51) and classified
each myeloid profile in our dataset and the
published compendium as LAM-like macro-
phages, non-LAM macrophages, and non-
macrophages. From this, we recovered 283
LAM-like cells in our study and 4285 LAM-
like cells in the 17 published studies (Fig. 3,
F to H; fig. S17, A to D; and table S6).
LAM-like cells were present among tissue-

resident macrophages across a broad range of
tissues and pathologies. These included adi-
pose (51, 69) and atherosclerotic (70, 71) tissue,
as reported, as well as healthy tissues [pla-
centa (72), testis (73), kidney (74), pancreas
(75), prostate (38), decidua (72), liver (76),
ovary (76, 77), skeletal muscle (78), and intes-
tine (26)] and other disease contexts [acne
(79), leprosy (79) and atopic dermatitis (80, 81)
(skin), and Crohn’s disease (ileum) (82)]. Mi-
croglia from the central nervous system of
epileptic patients (83) were also classified as
LAM-like cells, indicating that microglia that
express LAM signature genes extend beyond
Alzheimer’s disease (66–68). LAM signature
genes were enriched for genome-wide asso-
ciation study (GWAS) genes associated with
levels of high-density lipoprotein (HDL) and
low-density lipoprotein (LDL) cholesterol, tri-
glycerides, type 2 diabetes, and the tau to
Ab1-42 ratio in cerebrospinal fluid (fig. S17H
and table S7), further supporting their role in
lipid homeostasis.
Although a core set of signature LAM genes

was expressed across most tissues and studies,
many other genes varied across tissues. For
example, both CHIT1 and CTSK were highly
expressed in LAMs from leprosy skin samples
(but had very low expression in other skin
LAMs) (Fig. 3H and fig. S17F), in line with
higher serum chitotriosidase activity in leprosy
patients (84). Select lipid pathway genes, in-
cluding fatty-acid binding protein FABP4,
lipoprotein lipase LPL, and phagocytic lipid
receptor CD36, were highly expressed in LAMs
from tissues with high adipose content, in-
cluding adipose, atherosclerotic lesions, and
intestine creeping fat samples, possibly reflect-
ing increased lipid-induced transcriptional
stimulation of these target genes under these
conditions (85). LAMs in creeping fat from
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Fig. 3. A dichotomy between LYVE1- and HLAII–expressing macrophages and
LAM-like populations across tissues. (A) Myeloid profiles (dots), colored by cell type
and state and overlaid with a PAGA graph of myeloid states (large nodes). (B) Expression
of marker genes (columns) associated with each subset (rows). (C) Myeloid cell
distribution across tissues. The overall proportion of myeloid cell subsets (colors) in each
tissue (bars) is shown at the top, and the overall proportion of cells from each tissue in
each subset (bars) is shown at the bottom. (D) LYVE1high and HLAIIhigh macrophages are
end points of two differentiation trajectories. A diffusionmap of monocytes, macrophages,
and transitional subsets (colors) is shown. Large circles represent centroids (sizes are
proportional to population size). (E) Cross-tissue and tissue-specific markers. Expression
of marker genes (columns) associated with two myeloid subsets (left) in each tissue

(rows) is shown. The right bar plot shows the number of nuclei. (F to H) LAM-like cells
across tissues. Myeloid cells (dots) colored by their classification [legend; (28)] are shown
in (F). Classification scores (y axis) of LAM-like and other macrophages across tissues
(x axis) are shown in (G). Expression of LAM marker genes (columns) in LAM-like profiles
from other studies (rows) is shown in (H). (I and J) Inferred TFs regulating the LAM-like
program. TF differential activity scores between LAMs and other macrophages (y axis)
for each TF (dot) ranked by score (x axis) are shown in (I). TF differential activity scores
(x axis) for three TFs with significantly high scores (two tailed t test; Benjamini-Hochberg
*FDR < 0.05, **FDR < 0.01, and ***FDR < 0.001) in LAMs or other macrophages
are shown in (J). Box plots show median, quartiles, and whiskers at 1.5 times the IQR.
E., esophagus; ENS, enteric nervous system; Sk., skeletal.
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Crohn’s intestine and atherosclerotic lesions
were additionally characterized by higher
expression of interleukin IL1B and multiple
chemokines (CXCL8, CXCL3, CCL4), possibly
reflecting the inflammatory environment under
these conditions (fig. S17F).
We predicted transcription factors (TFs) that

could mediate LAM-like gene expression by
inferring TF activity from target expression (28)
and ranking TFs by the mean difference be-
tween their activities in LAMs versus non-LAM
macrophages [(28); Fig. 3I]. LAM-associated
TFs inferred across all classified LAM-like cells
included PPARG, USF1, and NR1H3 (LXRA)
(Fig. 3J and fig. S17G), suggesting a shared
core regulatory mechanism. These are major
regulators of lipid metabolism–related expres-
sion (86) and have been proposed to regulate
Trem2 expression in mice (87).

Shared and tissue-specific features
of fibroblasts

To characterize fibroblast heterogeneity (88),
we analyzed 32,421 fibroblast nuclei profiles
across the eight profiled tissues (fig. S18A),
identifying shared and tissue-specific signa-
tures. The cross-tissue, shared fibroblast ex-
pression program consisted of markers that
were significantly more highly expressed in
fibroblasts than in nonfibroblast cell types
within each tissue (FDR < 0.05, Welch’s t test)
and included multiple extracellular matrix
(ECM) constituents (Fig. 4A and table S8).
Conversely, the tissue-enriched fibroblast sig-
natures were defined based on genes exclusive
to or highly enriched in fibroblasts from a
given tissue versus fibroblasts from all other
tissues (Fig. 4, B to D, and fig. S18B).
Tissue-enriched fibroblast features were con-

sistent with the specific functions and inter-
actions required in the respective tissues. For
example, the esophagus mucosa fibroblast sig-
nature (table S8) included genes involved in
neuron and axon development (e.g., NTN1,
PLXNB1, FGF13), suggesting interactions with
the enteric nervous system, possibly through
NTN1-DCC and NTN1-UNC5C interactions
(fig. S18E). The cardiac fibroblast signature
genes included TFs involved in cardiac devel-
opment (e.g., GATA4 and GATA6), revealing
that expression of these developmental TFs is
retained in the adult cardiac fibroblast com-
partment (89–92). The skeletal muscle signa-
ture showed increased expression of theCXCL14
and CXCL12 chemokines and of components
of the renin-angiotensin-aldosterone system
(AGTR1 and MME), which regulate skeletal
muscle mass (93, 94) [reminiscent of the ex-
pression of the same components by WNT2B+

fibroblasts in a local renin-angiotensin system
in the colon (16)].
Lung fibroblast signatures were enriched

for ECM, cation transport, and contractile func-
tions (Fig. 4E), includingmultiple components

of the basement membrane (BM) that are re-
quired for epithelial-mesenchymal adhesion
[nephronectin (NPNT), FRAS1, hemicentin-1
(HMCN1), and integrin ITGA8 (Fig. 4, F and
G), which form a protein complex (95–98) that
anchors NPNT to the BM (99–103)].Mutations
in ITGA8,FRAS1, andHMCN1have been linked
to Fraser syndrome, a congenital disorder
that affects cell adhesion and results in skin,
kidney, lung, and craniofacial abnormalities
(104–107), and common variants in NPNT are
significantly associated with chronic obstruc-
tive pulmonary disease (COPD) and forced
expiratory volume (FEV) in GWASs (Fig. 4H).
Granular annotation of the lung fibroblast pro-
files (40, 108) (fig. S18C) suggests that the
adhesion complex is expressed by alveolar fi-
broblasts (Fig. 4F and fig. S18D). Alveolar fibro-
blasts also specifically expressed FGFR4 (Fig.
4B), which is essential for alveologenesis in
mice (109) and is genetically linked with bron-
chopulmonary dysplasia that affects alveoli in
humans (110).
Of all tissue fibroblasts, lung alveolar fibro-

blasts distinctively expressed a calcium sig-
naling and actomyosin contractility program
(Fig. 4, E and F, and fig. S18D), including the
mechanosensitive calcium ion channel PIEZO2
(Fig. 4G), which has been proposed to sense
pulmonary stretch (111, 112); multiple calcium
channels and adrenergic and purinergic recep-
tors, which have been implicated in stimulat-
ing calcium release from intracellular stores
(CACNA1D, TRPC6,MCOLN2/TRPML2); and
myosin light chain kinase (MYLK), which is
involved in mediating calcium-induced acto-
myosin contraction (113). This suggests that
alveolar fibroblasts could integrate mechani-
cal stretch and forces (through PIEZO2) and
neuronal excitatory signals (40), which could
affect their migratory or mechanical proper-
ties. Notably, although alveolar fibroblasts
express myofibroblast markers (e.g., ACTA2;
fig. S18D), they are distinct from previously
reported myofibroblasts (40), and our data
suggest that they constitute a distinctive con-
tractile and excitable fibroblast state.

Intra- and cross-tissue cell-type associations
with monogenic disorders

Human genetics has identified numerous rare
monogenic disease genes, andmany have been
experimentally mapped to cell type(s) of ac-
tion (114, 115). To characterize the expression
of monogenic disease genes across cell types,
we related disease genes associated with dif-
ferent phenotypes or disease categories in the
OnlineMendelian Inheritance inMan (OMIM)
database (116) to the cell populations in which
they are expressed in our cross-tissue atlas.
Because OMIM entries are not organized by
disease categories, we leveraged topic model-
ing to aggregate 5812 genotype-phenotype
associations based on similarities in text

descriptions of clinical features, resulting in
229 distinct disease topics [(28); figs. S19 and
S20).We then related topics to a cell type based
on the enriched expression of the topic genes
in the cell type (Fig. 5A, figs. S21 and S22, and
table S9).
Many topics mapped to their expected cell

populations. For example, cardiac disease topics
(topics 65 and 66)mapped to cardiacmyonuclei
and/or endothelial cells, immune and infec-
tion topics (topics 132, 205, and 217) mapped
to immune cells across tissues, and a diabetes
and lipodystrophy topic (topic 222) mapped to
adipocytes in skeletal muscle and skin (Fig. 5A
and fig. S23A). Male infertility and spermmo-
tility topic (topic 129) was associated with
ciliated lung cells and stromal cells (fig. S23B).
The link between sperm dysmotility and bron-
chitis is well established, with genes common
to flagella and cilia perturbed across both
sperm and lung (117); we further detect this
specific link in topic 155, which associates
ciliary dyskinesias and the lung ciliated epi-
thelium (fig. S23C).

Genes from monogenic muscle disease groups
are enriched in distinct subsets of myocyte and
nonmyocyte nuclei in three muscle types

Among the monogenic disorders, muscle dis-
ease phenotypes are a well characterized sub-
set and are known to arise from mutations in
genes that are expressed in myocytes (e.g.,
structural genes involved in contraction) and/
or other cells in the surrounding tissue (e.g.,
NMJ, ECM, and adipose tissue) (118–121). We
leveraged the three muscle types represented
in our atlas—cardiac, skeletal, and smooth
muscle—to map 605 well-curated monogenic
muscle disease genes (118) (table S10), recover-
ing known biology and extending hypotheses
beyond those obtained frombulk-tissue RNA-seq
(122, 123). We tested disease groups (e.g., hered-
itary cardiomyopathies, motor neuron diseases)
for their enrichment with cell type–specific
markers across our muscle tissues (FDR < 0.1)
[(28); Fig. 5B, fig. S24, and table S11].
As expected, different disease gene sets were

associated with different myonuclei subsets
(113 of 605 genes; table S11) in patterns that
recapitulated known disease mechanisms
(Fig. 5B). For example, skeletal muscle myo-
nuclei were associated with congenital myop-
athy genes (FDR = 7.07 × 10−5), and cardiac
myonuclei were associated with hereditary
cardiomyopathy genes (FDR = 4.24 × 10−12).
Some associations highlighted finer myonuclei
subsets. For example, genes linked to congen-
ital myasthenic syndrome, a disorder affecting
neuromuscular transmission (124), were spe-
cifically expressed inNMJ-localizedmyonuclei
but not in other skeletal myonuclei (tables S2
and S12). These included acetylcholine recep-
tor subunits (CHRNE, CHRNA1, CHRND), the
NMJ-organizing receptor tyrosine kinaseMUSK,
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andNMJ-enriched ECMcomponents (COL13A1,
LAMA2).
Other disease gene sets were associated with

nonmyocyte accessory cells, including neu-

rons, Schwann cells, fibroblasts, and adipo-
cytes (127 genes; table S12), often mirroring
clinical features, such as nervous system cells
in neuropathies or adipocytes in metabolic

myopathies. In particular, Schwann cells were
associated with hereditary motor and sensory
neuropathies in all three tissues (FDR = 0.015 to
0.06), but their association with Dejerine-Sottas
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Fig. 4. Shared and tissue-specific fibroblast features. (A and B) Expression
in each tissue subset (rows) of marker genes (columns) distinguishing fibroblasts
from nonfibroblasts across all tissues (A) or enriched in fibroblasts in one versus
other tissues (B). (C and D) Fibroblast profiles (dots) colored by tissue (C) or
expression of the most exclusive marker (D). (E) Significance [−log10(FDR),
x axis] of gene sets (y axis) enriched (FDR < 5%) in genes covarying with the

lung-specific fibroblast signature. (F) Expression of ECM and cation transport genes
(columns) in the covarying gene module in each granular fibroblast subtype in
each tissue (rows). (G) ITGA8 and PIEZO2 (columns) expression in granular cell types
(rows) in lung. (H) Significance (x axis) and Open Targets Genetics locus-to-gene
score (color) of themost significant variantsmapped to NPNTwith a high (>0.5) locus-
to-gene score in GWASs (y axis). FEV, forced expiratory volume.
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Fig. 5. Monogenic muscle disease genes related to cell types and interac-
tions across cardiac, skeletal, and smooth muscle tissues. (A) Enrichment of
monogenic disease groups to broad cell types. Effect size (log odds ratio,
dot color) and significance [−log10(FDR), dot size] of enrichment of genes
from disease topics [rows; (28)] in broad cell-type markers in each tissue
(columns) are shown. A red outline indicates an FDR less than 0.1. Topic names
consist of the topic identifier and five words with the highest loadings. Red stars
indicate highlighted topics. (B) Relation of broad cell types to monogenic
muscle disease groups. Effect size and significance of enrichment of genes from
monogenic muscle disease groups (rows) for broad cell type markers in each
tissue (columns) are shown. A red outline indicates an FDR less than 0.1. Color
shading indicates disease groups associated with only nonmyocytes (green),
only myonuclei (yellow), or both (light purple). (C and D) DMD expression in

human (C) and mouse (D) muscle. Cell types (x axis) are ordered, left to right,
such that the cell types that are shared between human and mouse within a
tissue are presented first and species-specific cell types follow. (E and
F) Putative cell-cell interactions in muscle implicating muscle disease genes.
Shown are cell types (inner color) from muscle tissues (outer color) connected
by putative interactions (dotted edges) between a receptor (left square)
expressed in one cell type and a ligand (right square) expressed in the other in
interactions involving myocytes (E) or only nonmyocytes (F). Black and
gray connecting lines between cell types and genes indicate high and low
expression, respectively. Bold formatting indicates a muscle disease gene.
(G) Diseases highlighted in (E) and (F). ALS, amyotrophic lateral sclerosis; AD,
autosomal dominant; AR, autosomal recessive; CMT, Charcot-Marie-Tooth
disease; XR, X-linked recessive.
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hypertrophic neuropathy (a subtype of Charcot-
Marie-Tooth disease) was specific to skeletal
muscle (FDR = 2.28 × 10−5), consistent with
the need to maintain innervation to prevent
muscle atrophy (125). Thus, distinctive cell
expression patterns can provide insight into
onset (Dejerine-Sottas is an early-onset dis-
ease), severity, and the predominant peripheral
nerves that are affected (i.e., motor, senso-
ry, or autonomic), where heart can possibly
act as a proxy for autonomic nerves. In other
examples, adipocytes from esophagus mus-
cularis were associated with metabolic myop-
athies related to lipid metabolism (FDR =
0.0003); the congenital muscular dystrophies
genes COL6A1, COL6A2, and COL6A3 are ex-
pressed in fibroblasts, consistent with joint lax-
ity and progressive contractures along with
muscle weakness (126); and the recessive limb
girdle muscular dystrophies gene DYSF is ex-
pressed in immune cells, consistentwith the role
of more aggressive monocytes in disease pro-
gression (127). Some of the enrichments in non-
myocytes are also present in the same cell types
in other nonmuscle tissues (e.g., breast adipo-
cytes for metabolic myopathies or breast and
skin pericytes for cardiomyopathies; fig. S25I),
highlighting that tissue-specific pathology
may arise from the relation between an acces-
sory cell’s broader function and specialized
tissue demand.
There were differences in the expression of

monogenic muscle disease genes between slow
and fast myocyte subsets for both classical and
cytoplasmic myonuclei (fig. S9). As expected,
slow myocytes preferentially expressed type
1 fiber markers (36, 128) and disease genes
MYH7 (FDR < 10−15 in cytoplasmic myonuclei)
and PPARGC1A (FDR < 10−15 in regular myo-
nuclei). Fast myocytes specifically expressed
the type 2 fiber markerMYH2 (FDR < 10−15 in
cytoplasmic myonuclei), in line with respec-
tive clinical myosinopathy phenotypes (129).
Congenital myopathy disease genes, which
include genes known to be active in slow and
fast myocytes, were enriched in both groups.
The myotonic dystrophy (MD) type 2 gene
CNBP, was enriched in regular myonuclei from
fast myocytes [FDR < 10−12; (28); fig. S9, E
and F], which are preferentially affected in
MD type 2 (130, 131). By contrast, MD type 1
disease gene DMPK was preferentially ex-
pressed in cytoplasmic myonuclei from slow
myocytes (P < 0.036, Welch’s t test), which are
perturbed in MD type 1 (132). Regular myo-
nuclei subsets from slow myocytes were also
enriched in TPM3 [FDR < 10−15; (28); fig. S9, E
and F], which has been linked to congenital
fiber type disproportion, a condition charac-
terized by smaller slow myocyte fibers (133).
Metabolic myopathy disease genes (GBE1,
ETFDH, and SLC25A20) were also enriched in
slowmyocyte markers (P < 0.05, Fisher’s exact
test; fig. S9, E and F).

Many of the cell-type associations for mono-
genic muscle disease genes were conserved
between our human muscle atlas and corre-
sponding mouse snRNA-seq data (26, 28) (fig.
S25), but there were also notable differences.
In both mouse and human, there were signi-
ficant associations between skeletal muscle
myonuclei and various dystrophies and myo-
pathies (FDR < 0.1, Fisher’s exact test), between
cardiacmyonuclei and cardiomyopathies (FDR<
0.1), between adipocytes (in skeletal muscle,
esophagus, and heart) and metabolic myopa-
thies (FDR < 0.1), and between Schwann cells
in skeletal muscle and hereditary motor and
sensory neuropathies (FDR < 0.1) (fig. S25H).
However, dystrophin (DMD) expression across
accessory cell types varied between human
and mouse. In humans, high levels of DMD
expression (comparable to that in myonuclei)
were observed in adipocytes in all muscle
types; pericytes and Schwann cells in skeletal
muscle and esophagusmuscularis; and enteric
neurons in esophagus muscularis [mean ex-
pression log(TP10K+1) > 2.0; Fig. 5C]. Lower,
intermediate levels of DMD expression were
observed in skeletal muscle fibroblasts and
satellite cells, as well as esophagus muscula-
ris ICCs [mean expression log(TP10K+1) < 2.0;
Fig. 5C]. DMD expression in adipocytes sup-
ports the possibility of local metabolic pertur-
bation (134) (Fig. 5C), whereas its expression
in the enteric nervous system and ICCs raises
the possibility that perturbation of these cells
contributes to the gastrointestinal dysfunction
phenotype in Duchenne muscular dystrophy
(135). In mouse, whereas Dmd expression is
high in myonuclei, pericytes, satellite cells,
and Schwann cells, it is low in adipocytes and
fibroblasts across all three muscle tissue types
[mean expression log(TP10K+1) < 1.0; Fig. 5D].
These differences suggest that the effects ofDMD
mutation on accessory cells and their contri-
bution to disease (135, 136) may differ between
human patients andmouse disease models (137).

Cell-composition and cell-intrinsic secondary
effects in muscle disease tissue

Muscle dystrophies commonly display a sec-
ondary shift in cellular composition, with fi-
brotic or adipogenic replacement of muscle
tissue (138), which can introduce secondary
pathologic processes that exacerbate muscle
loss (139). To characterize the cellular expres-
sion patterns of disease genes whose bulk-
tissue expression levels are altered in muscle
diseases, we analyzed the cell-type specificity
of genes up-regulated in bulk RNA-seq data
frommuscle tissues from 43 patients with rare
muscle disorders (122) compared with healthy
muscle tissues (140) (fig. S26). Some of the cell
type–specific expression patterns reflected
known biology, including up-regulation of
hallmark fibroblast, adipocyte, and immune
genes, likely because of changes in cell pro-

portions (e.g., COL6A2, ADIPOQ, and HLA-A,
respectively). Other patterns suggest additional,
cell-intrinsic regulatory events (beyond cell
composition changes) that may modify dis-
ease progression. For example, dermatopon-
tin (DPT), an adipokine that promotes ECM
remodeling and inflammation (141), is ex-
pressed in adipocytes but is not correlated with
ADIPOQ expression across adipocytes from dif-
ferent tissues. This suggests that its expression
is regulated and is notmerely reflecting changes
in cell composition. Similarly, ELK3, which is
expressed in endothelial cells, suppresses angi-
ogenesis (142) andmay contribute to functional
muscle ischemia in muscle disease (143), which
is otherwise typically attributed to nitric oxide
signaling (136). Thus, the increased resolution
of a single-cell atlas can help disentangle sec-
ondary effects related to cell-composition and cell-
regulatory events in accessory cells duringdisease.

Disease genes may affect
receptor-ligand interactions

Some disease genes encode receptors or lig-
ands that participate in cell-cell interactions,
such that loss-of-functionmutations can affect
tissue function through non–cell autonomous
effects through these cell-cell interactions. We
related cell types in muscle tissue to one
another through receptor-ligand interactions
(16, 26, 144) that included at least one mono-
genic disease gene (28) in every tissue in our
atlas (table S13).
Our analysis suggests thatmutations in some

disease-causing genes may disrupt interactions
between myocytes and other cell types. For
example,mutations inERBB3 (the disease gene
for lethal congenital contracture syndrome)
may disrupt interactions between myocytes
and Schwann cells (Fig. 5E and table S13) and
contribute to joint contractures as an associ-
ated, but not primary, disease phenotype (145).
Mutations in DAG1 (the disease gene for con-
genital muscular dystrophy), although known
to interact primarily with laminin produced
by fibroblasts (146, 147), may additionally dis-
rupt interactions with immune cells through
LGALS9 and alter their function (148). Puta-
tive cell-cell interactions involving only non-
myocytes included the disease genes L1CAM
(MASA syndrome), MET (arthrogryposis and
muscular dysplasia), andNGF (hereditary sen-
sory and autonomic neuropathy), each poten-
tially affecting multiple cell pairs, including
neurons and Schwann, satellite, immune, and
stromal cells (Fig. 5, F and G, and table S13).

Cell type–specific enrichment of QTL genes
mapped to GWAS loci

Single-cell atlases can also provide insights into
cell-type specificity and mechanisms of action
of the genes in disease-associated loci identi-
fied by GWASs. Studies associating genetic var-
iants to changes in gene expression or splicing
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quantitative trait loci (eQTL or sQTL, respec-
tively) showed tissue-specific colocalizationwith
multiple loci from GWASs of human traits,
including disease risk (7, 149–151), but lacked
cellular resolution (11). To prioritize cell types
of action and causal genes for complex diseases
and traits in specific cells and tissues, we used
ECLIPSER (28, 152) to test whether GWAS loci
from 21 complex traits (table S14), with likely ef-
fects in at least one of the eight tissues analyzed,
are enriched for genes with high cell type–
specific expression in each tissue. We defined
putative causal genes for each GWAS locus
as the set of genes whose eQTLs and sQTLs
(7) were in linkage disequilibrium [squared
genotype correlation (r2) > 0.8] with the lead
GWAS variant(s) [Fig. 6A; (28)]. We further in-
cluded genes prioritized by additional genom-
ic data [e.g., Hi-C and protein QTLs (pQTLs)]
and linkage to predicted deleterious protein-
coding variants (153, 154). Because more than
one gene typicallymaps to a GWAS locus using
this approach (mean = 2, and maximum = 37
for selected traits and 170 for null traits), we
scored loci by the fraction of cell type–specific
genes in the locus [Fig. 6A; (28)]. We assessed
enrichment for each GWAS locus set against
a null distribution of GWAS loci associated
with tissue-unrelated traits using a Fisher’s
exact test [Fig. 6A; (28)].
Seventeen of the traits were enriched in

both expected and previously undescribed cell
types at a tissue-wide FDR less than 0.05
(Benjamini-Hochberg), 16 of which were sig-
nificant (FDR < 0.05) across tissues (Fig. 6B,
figs. S27 and S28, and tables S15 and S16).
Among the expected associations are skin pig-
mentation traits in melanocytes, autoimmune
and inflammatory diseases in T and NK cells,
COPD in lung fibroblasts, prostate cancer in
luminal epithelial cells, atrial fibrillation and
heart rate in myonuclei, and heart rate in
lymphatic endothelial cells (155) (Fig. 6B).
Type 2 diabetes loci were enriched in skeletal
muscle adipocytes and in lymphatic endothe-
lial cells in multiple tissues, which might con-
tribute to the predisposition of type 2 diabetes
to vascular disease (156, 157) (Fig. 6B). Less
well-characterized cell type–trait associations
included DCs (in almost all tissues) with non-
melanoma skin cancer (158) and adipocytes
(breast) with atrial fibrillation (table S15).
GWAS loci enriched in a specific cell type from
a known tissue of action frequently showed
similar enrichment in the same cell type from
other uninvolved tissues. For example, atrial
fibrillation GWAS loci were enriched in myo-
nuclei in heart, skeletalmuscle, esophagusmus-
cularis, and prostate (Fig. 6, B and C); coronary
artery disease and heart rate loci were enriched
in pericytes in five or six tissues in addition to
heart; and prostate cancer loci were enriched
in luminal epithelial cells in both prostate and
breast (Fig. 6B and figs. S29 and S30).

Cell-type enrichment helped identify puta-
tive causal genes in GWAS loci with multiple
QTL-mapped genes (tables S15 and S16). On
average, about two-thirds of genes driving the
cell type–specific enrichment for a given trait
in a relevant tissue [mean = 66%, 60 to 71.4%
(95% confidence interval)] were also driving
the enrichment in the same cell type in other
tissues. For example, in the case of atrial fib-
rillation and cardiac myonuclei, 26 out of 31
myonuclei-specific genes that drove the enrich-
ment signal in myonuclei in heart and were
shared with at least one other tissue (Fig. 6D)
were enriched in muscle system–related pro-
cesses, such asmuscle contraction (FDR< 0.05;
table S17). The five myonuclei-specific genes
that were specific to heart only (pink vertical
lines in Fig. 6D) were instead enriched in heart
development processes, such as cardiac muscle
tissue development (FDR < 0.05; table S18).
Cardiac myonuclei were also found to be the
most relevant cell type for atrial fibrillation in
two separate snRNA-seq studies of the human
heart (33, 34) and based on ECLIPSER analysis
of these two studies [fig. S31 and table S19; (28)].
CASQ2, which encodes a cardiac muscle mem-
ber of the calsequestrin family, and the myosin
heavy chain 6 and 7 genes (MYH6 and MYH7)
were the top myonuclei-specific genes driving
the enrichment signal for atrial fibrillation in all
three studies (table S19).

Associating GWAS genes with gene programs
across cell types reveals six main trait groups

To chart cellular programs and processes that
may be affected by genetic variants, we asso-
ciated a larger set of >2000 complex pheno-
types with cell types and the covarying gene
modules that these cell types express (28). We
defined gene modules in the cells in our atlas
by hierarchically clustering genes based on
correlation across all cells, as well as within cell
types.We then scoredmodules for their overlap
with GWAS genes [defined by variant to gene
mapping in Open Targets Genetics (153, 154)]
that are also highly expressed by cell type
[(28); fig. S32 and table S20]. Next, we grouped
GWAS phenotypes into major groups by the
similarity of their module enrichment across
cell types (Fig. 7, A and B, and fig. S33). Finally,
for each major group of traits, we identified the
relevant cell types associated with the under-
lying modules (Fig. 7, A and C) and tested the
GWAS genes that overlapped with genemodules
for functional enrichments (Fig. 7, A, D, and E).
Traits and diseases partitioned into six

major groups, spanning immune hypersensi-
tivity, cardiovascular, calcium channel–related,
cognitive and psychiatric, pigmentation, and
HDL cholesterol–related based on their asso-
ciations with cell types (Fig. 7B). The immune
hypersensitivity disorders were associated
with T cells, including the expected relation be-
tween lung T cells andhay fever, allergic rhinitis,

and respiratory disease [(159, 160); Fig. 7C].
GWAS genes in the modules associated with
these traits were enriched for lymphocyte ac-
tivation and differentiation and T cell recep-
tor signaling and cell-cell adhesion (Fig. 7D),
with interleukin-35 (IL-35) signaling genes en-
riched in hypothyroidism and inflammatory
bowel disease (IBD), consistent with IL-35 up-
regulation inHashimoto’s thyroiditis (161) and
IBD (162) and down-regulation in Graves’ dis-
ease (163). The cardiovascular traits group was
associated with pericytes and smooth muscle
cells and enriched with blood circulation,
smooth muscle contraction, muscle structure
development, and cardiocyte differentiation
genes. The cardiovascular group overlapped
with the calcium channel–related group—which
included blood pressure medication, pulse
rate, medication use of calcium-channel block-
ers, and vascular system traits, as well as
schizophrenia and autism spectrum disorder,
which are psychiatric disorders with known
calcium channel associations (164)—and was
enriched with membrane depolarization and
calcium ion channel genes (Fig. 7D). Other
cognitive and psychiatric phenotypes grouped
separately and were enriched with neuronal
synapseorganization, structure, andactivitygenes
(Fig. 7D) Finally, a group of HDL cholesterol
traits was associated with adipocytes in all
three muscle tissues and enriched for fatty
acid, triglyceride, and lipid homeostasis and
related metabolic processes (monocarboxylic
and glycerol metabolism), including ANGPTL8
and PNPLA3 (Fig. 7E and table S20), which
are genes involved in lipolysis regulation in
adipocytes thatmight affect extrahepatic choles-
terol transport via HDLs (165, 166).

Toward large-scale snRNA-seq of human
tissues with pooling

To enable future studies at the population
scale, we tested whether frozen samples from
different individuals can be pooled for snRNA-
seq, followed by computational demultiplex-
ing, as a cost-effective and scalable approach
(167), as previously applied to large-scale studies
of human peripheral blood mononuclear cells
(24). We processed lung or prostate samples
jointly from three individuals using the CST
and TST protocols. We pooled tissue samples
from three individuals and processed the pool
for single-nucleus extraction, thus minimizing
technical batch effects and wet-lab time. After
sequencing, we removed ambient RNA (30)
and performed de novo genotype-based de-
multiplexing to assign nuclei to donors [using
souporcell (168); fig. S34; (28)]. We validated
the demultiplexing by comparing the genotype-
based assignments to those from an expression-
basedmultinomial logistic classifier that assigned
donor identity to each nucleus profile after
training with unpooled samples of the same
donors, which showed high concordance
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Fig. 6. Cell type–specific enrichment of eQTL and sQTL target genes mapped
to GWAS loci. (A) Schematic of the method (ECLIPSER). (B) Cell-type enrichment
of genes mapped to GWAS loci for 17 of the 21 complex traits tested with at
least one tissue-wide significant result (FDR < 0.05, correcting for all cell types tested
per tissue per trait) across eight GTEx tissues. Gray, orange, and red borders indicate
nominal, tissue-wide, and experiment-wide significance (FDR < 0.05, correcting for
all cell types tested across eight tissues and 21 traits), respectively. Only cell types with
at least one tissue-wide enrichment are shown. (C andD) Myonuclei and pericyte genes
enriched in atrial fibrillation GWAS loci (tissue-wide FDR < 0.05, Bayesian Fisher’s

exact test). Fold-enrichment (x axis) of cell types (y axis) for atrial fibrillation GWAS in
heart (top) and skeletal muscle (bottom) is shown in (C). Error bars represent 95%
credible intervals. Red indicates tissue-wide significance, orange indicates nominal
significance, and blue indicates nonsignificance (P≥ 0.05, Bayesian Fisher’s exact test).
Differential expression in myonuclei versus other cell types from heart (red), skeletal
muscle (blue), esophagus muscularis (orange), and prostate (brown) of the genes
(x axis) driving enrichment of atrial fibrillation GWAS loci in heart cardiac myonuclei is
shown in (D). Gray and pink vertical lines indicate log2(fold change) > 0.5 and FDR < 0.1
in myonuclei in all four tissues or only in heart, respectively. FC, fold change.
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between the two approaches (accuracy 88 to
96%; fig. S34). Moreover, genotype-based
doublet calls were concordant with expression-
based doublet calls in both lung and prostate
(mean balanced accuracy of 63%) (fig. S34).

Discussion

Cross-tissue atlases allow us to characterize
tissue-specific and tissue-agnostic features of
cells of a common type that serve accessory
roles in tissues, such as immune and stroma
cells (fig. S35A). For example, for LYVE1- and

HLAII–expressing macrophages, our results
reinforce the notion of functional specification
of these two macrophage states into tissue
support and tissue immunity, respectively (47),
and propose a model for their differentiation
(fig. S35, B and C). In mice, Lyve1high macro-
phages are localized perivascularly, whereas
MHCIIhigh macrophages are found in proxim-
ity to neurons (47). Future studies can address
this localization in humans, and signals that
govern the tissue-specific ratios of LYVE1- versus
HLAII–expressing cells.

Our data demonstrate the prevalence of
LAM-like cells across tissue contexts and
pathologies, including breast and heart, where
we recovered both adipocytes and LAM-like
cells (Figs. 1 and 3C and fig. S2). In line with a
model of lipid-induced differentiation of macro-
phages toward the LAM state (85), our classi-
fier recovered LAMs in pathologies characterized
by lipid accumulation: atherosclerosis, Crohn’s
disease, and acne. The inferred role for PPARG
andNR1H3 in driving the LAM expression pro-
gram suggests a model in which signaling
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Fig. 7. Cell types and gene modules relevant for trait and disease groups by
GWAS module enrichment. (A) Schematic of the module-based enrichment method.
Shaded edges indicate associations between cell types and phenotypes through
modules (middle). (B to E) Trait and disease groups identified by GWAS-cell type
relationships. Similarity (Spearman correlation coefficient) between GWAS traits and
diseases (rows and columns) by enriched cell types is shown in (B). Dashed lines
demarcate trait and disease groups. Shown in (C) is the cell-type enrichment for each
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through lipid-bound receptors onmacrophages,
such as TREM2 or CD36, up-regulates the ex-
pression of more lipid receptors, as well as of
lipid-modifying enzymes through PPARG and
NR1H3. Because we observed LAMs in healthy
organs and in conditions linked to lipid accu-
mulation, future studies may identify other
tissue-specific signals or conditions that can
trigger LAM-like states.
In lung alveolar fibroblasts, we identified an

interconnected functional module that may
enable an adequate response to alveolar dis-
tortion, through transduction of mechanical
cues from the ECM to cytosolic calcium-
induced cytoskeletal contraction (fig. S35, D
and E). These include BM adhesion genes,
including ITGA8 and its interacting partner
NPNT (95–100); a calcium transport module
featuring neurotransmitter receptors and
multiple calcium ion channels, including the
mechanosensitive channel PIEZO2; and an
actomyosin contractility program that fea-
turesMYLK and mediates cytosolic calcium-
induced cytoskeletal contraction, which is
required for the transduction of mechanical
cues from the ECM (169). PIEZO2 and ITGA8
are also coexpressed in intraglomerular mesan-
gial cells (170, 171), where PIEZO2may sense
mechanical forces resulting from changes in
blood flow and ITGA8 confers contractility
and adhesion (172). Because the alveolus and
glomerulus are stretch sensors of air pressure
and blood pressure, respectively, PIEZO2+/
ITGA8+ alveolar fibroblasts may contribute to
mechanosensing of alveolar tension, which so
far has been mainly attributed to Piezo2+ sen-
soryneurons inmice (111), suggesting conserved
features inmechanosensing across organs. Both
lung alveolar fibroblasts and myofibroblasts
have been localized to alveoli (40), suggesting
a possible relationship, possibly through FGFR4
in alveolar fibroblasts and its ligand FGF18 in
myofibroblasts (fig. S18D) (109, 173).
We further demonstrated the utility of our

tissue atlas for monogenic and polygenic dis-
ease biology. Many monogenic disease gene
modules that are defined by comorbidity [e.g.,
diabetes and lipodystrophy (174)] or similarity
of clinical phenotypes (e.g., muscle diseases)
were enriched in expected cell types (fig. S35F).
Focusing on the pathobiology of monogenic
muscle diseases (fig. S35G), we highlighted
nonmyocyte cell populations with a potential
role in muscle diseases, including nervous sys-
tem, immune, and stromal cells (118), as well
as specific myonuclei subsets that express
muscle disease genes. Whether the multiple
myonuclei subsets we observed are related to
multinucleation and specialization of different
nuclei in one syncytium (31) remains unclear.
Some disease-risk genes may also disrupt cell-
cell interactions in the muscle. Notably, we
observed varying levels of DMD expression
across cell types, as well as between human

and mouse. Variation in DMD isoform expres-
sion,whichhas critical implications inDuchenne
muscular dystrophy (135), can be investigated
in future studies. For common complex dis-
eases, we found significant enrichment in spe-
cific cell groups for multiple traits (fig. S35H).
For more than half of the traits, there was
enrichment for the same cell type in different
tissues driven by both common and tissue-
specific genes. Future work will be needed to
extend these analyses across a broad set of
tissues and cell types and examine the role of
disease-associated genes and cell types in a dis-
ease context in patient samples.
Advances in single-cell epigenomics (175) and

multi-omics (176–178) should further enable
linking GWAS variants to their target genes
and the cell types and programs in which they
act. Recent findings indicating that a large
fraction of genetic regulatory effects linked
to GWAS variants can only be detected at the
cellular level (11, 25) suggest that cell-level
eQTLmaps will be essential. The experimen-
tal and computational methods we developed
for a cross-tissue atlas, and the biological
queries we defined, will provide a basis for
scaling such efforts to hundreds of individuals
and diverse populations.

Methods summary

Tissue samples were selected from among a
subset of GTEx project samples that were flash
frozen and banked. Nuclei from each sample
were extracted using the EZ, CST, NST, and
TST protocols described in (26). Libraries for
snRNA-seq were generated using the Chro-
mium Single Cell 3′ v2 Reagent Kit (10x Geno-
mics), and sequencing was performed with
Illumina HiSeq X (96 samples) or NextSeq
(three samples), according to themanufacturer’s
protocols. The resulting snRNA-seq data were
aligned and quantified using CellRanger v2.1.0
(10x Genomics), ambient RNA correction was
performed using CellBender (30), and low-
quality nuclei were filtered out using standard
criteria (28). The resulting snRNA-seq expres-
sion profiles were integrated across samples
using a total correlation variational autoen-
coder (28). Detailed descriptions of all compu-
tational analyses are provided in (28).
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Single-nucleus cross-tissue molecular reference maps toward understanding
disease gene function
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Cartography of human cells
The function of disease genes active in different cell types is modulated to meet the needs of the different tissues and
organs in which the cells reside. Resolving these differences is critical to understanding homeostasis and disease.
However, single-cell atlases generated to date have largely focused on individual tissues. Eraslan et al. applied
single-nucleus RNA sequencing to frozen, banked samples from eight healthy human organs from 16 donors and
characterized cell populations across tissues, including tissue-resident myeloid and fibroblast populations, and their
role in tissue support and immunity (see the Perspective by Liu and Zhang). Using this cross-tissue atlas, the authors
linked specific cell populations to monogenic and polygenic diseases, suggesting cell- and tissue-specific programs. —
LZ and DJ
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