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Inverse problems in statistical physics are motivated by the challenges of ‘big data’ in differ-
ent fields, in particular high-throughput experiments in biology. In inverse problems, the usual
procedure of statistical physics needs to be reversed: Instead of calculating observables on the
basis of model parameters, we seek to infer parameters of a model based on observations. In
this review, we focus on the inverse Ising problem and closely related problems, namely how to
infer the coupling strengths between spins given observed spin correlations, magnetizations, or
other data. We review applications of the inverse Ising problem, including the reconstruction
of neural connections, protein structure determination, and the inference of gene regulatory
networks. For the inverse Ising problem in equilibrium, a number of controlled and uncon-
trolled approximate solutions have been developed in the statistical mechanics community. A
particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse
Ising problem in the non-equilibrium case, where the model parameters must be reconstructed
based on non-equilibrium statistics.

PACS: 02.30.Zz inverse problems; 02.50.Tt inference methods; 89.75.-k complex systems
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1. Introduction and applications

The primary goal of statistical physics is to derive observable quantities from microscopic laws
governing the constituents of a system. In the example of the Ising model, the starting point
is a model describing interactions between elementary magnets (spins), the goal is to derive
observables like spin magnetizations and correlations.

In an inverse problem, the starting point is observations of some system whose microscopic
parameters are unknown and to be discovered. In the inverse Ising problem, the interactions
between spins are not known to us, but we want to learn them from measurements of magnetiza-
tions, correlations, or other observables. In general, the goal is to infer the parameters describing
a system (for instance, its Hamiltonian) from extant data. To this end, the relationship between
microscopic laws and observables needs to be inverted.

In the last two decades, inverse statistical problems have arisen in different contexts, spark-
ing interest in the statistical physics community in taking the path from model parameters to
observables in reverse. The areas where inverse statistical problems have arisen are character-
ized by (i) microscopic scales becoming experimentally accessible and (ii) sufficient data storage
capabilities being available. In particular, the biological sciences have generated several inverse
statistical problems, including the reconstruction of neural and gene regulatory networks and the
determination of the three-dimensional structure of proteins. Technological progress is likely to
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to open up further fields of research to inverse statistical analysis, a development that is currently
described by the label ‘big data’.

In physics, inverse statistical problems also arise when we need to design a many-body
system with particular desired properties. Examples are finding the potentials that result in a
particular single-particle distribution [48,122], interaction parameters in a binary alloy that yield
the observed correlations [142], the potentials between atoms that lead to specific crystal lat-
tices [252], or the parameters of a Hamiltonian that lead to a particular density matrix [47]. In the
context of soft matter, a question is how to design a many-body system that will self-assemble
into a particular spatial configuration or has particular bulk properties [184,226]. In biophysics,
we may want to design a protein that folds into a specified three-dimensional shape [120]. For
RNA, even molecules with more than one stable target structure are possible [78]. As a model
of such design problems, DiStasio et al. [66] and Marcotte et al. [136] study how to find the
parameters of Ising Hamiltonian with a prescribed ground state.

In all these examples, ‘spin’ variables describe microscopic degrees of freedom particular to
a given system, for instance, the states of neurons in a neural network. The simplest description
of these degrees of freedom in terms of random binary variables then leads to Ising-type spins.
In the simplest non-trivial scenario, correlations between the ‘spins’ are generated by pairwise
couplings between the spins, leading to an Ising model with unknown parameters (couplings
between the spins and magnetic fields acting on the spins). In many cases of interest, the couplings
between spins will not all be positive, as is the case in a model of a ferromagnet. Nor will they
couplings conform to a regular lattice embedded in some finite-dimensional space.

For a concrete example, we look at a system of N binary variables (Ising spins) {si}, i =
1, . . . , N , with si = ±1. These spins are coupled by pairwise couplings Jij and are subject to
external magnetic fields hi.

P({si}) = 1

Z
exp

⎡
⎣∑

i

hisi +
∑
i<j

Jijsisj

⎤
⎦ (1)

is the Boltzmann equilibrium distribution P({si}) = e−H({si})/Z, where we have subsumed tem-
perature into the couplings and fields. (We will discuss this choice in Section 2.1.) The
Hamiltonian

H({si}) = −
∑

i

hisi −
∑
i<j

Jijsisj (2)

specifies the energy of the spin system as a function of the microscopic spin variables, local
fields, and pairwise couplings. The inverse Ising problem is the determination of the couplings
Jij and local fields hi, given a set of M observed spin configurations. Depending on the particular
nature of the system at hand, the restriction to binary variables or pairwise interactions may need
to be lifted, or the functional form of the Hamiltonian may be altogether different from the Ising
Hamiltonian with pairwise interactions (2). For non-equilibrium systems, the steady state is not
even described by a Boltzmann distribution with a known Hamiltonian. However, the basic idea
remains the same across different types of inverse statistical problems: even when the frequencies
of spin configurations may be under-sampled, the data may be sufficient to infer at least some
parameters of a model.

The distribution (1) is well known not only as the equilibrium distribution of the Ising model.
It is also the form of the distribution which maximizes the (Gibbs) entropy

S[P] = −
∑
{si}

P({si}) ln P({si}) (3)
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under the constraint that P({si}) is normalized and has particular first and second moments, that is,
magnetizations and correlations. We will discuss in Section 2.2.3 how this distribution emerges
as the ‘least biased distribution’ of a binary random variable with prescribed first and second
moments [107]. The practical problem is then again an inverse one: to find the couplings Jij

and local fields hi such that the first and second moments observed under the Boltzmann distri-
bution (1) match the mean values of si and sisj in data. In settings where third moments differ
significantly from the prediction of (1) based on the first two moments, one may need to con-
struct the distribution of maximum entropy given the first three moments, leading to three-spin
interactions in the exponent of Equation (1).

Determining the parameters of a distribution such as Equation (1) is always a many-body
problem: changing a single coupling Jij generally affects correlations between many spin vari-
ables, and conversely a change in the correlation between two variables can change the values of
many inferred couplings. The interplay between model parameters and observables is captured
by a statistical mechanics of inverse problems, where the phase space consists of quantities nor-
mally considered as fixed model parameters (couplings, fields). The observables, such as spin
correlations and magnetizations on the other hand, are taken to be fixed, as they are specified by
empirical observations. Such a perspective is not new to statistical physics; the analysis of neural
networks in the seventies and eighties of the last century led to a statistical mechanics of learn-
ing [72,95,237], where the phase space is defined by the set of possible rules linking the input into
a machine with an output. The set of all rules compatible with a given set of input/output relations
then defines a statistical ensemble. In the inverse statistical problems, however, there are gener-
ally no explicit rules linking the input and output, but data with different types of correlations or
other observations, which are to be accounted for in a statistical model.

Inverse statistical problems fall into the broader realm of statistical inference [31,131], which
seeks to determine the properties of a probability distribution underlying some observed data.
The problem of inferring the parameters of a distribution such as (1) is known under different
names in different communities; also emphasis and language differ subtly across communities.

• In statistics, an inverse problem is the inference of model parameters from data. In our
case, the problem is the inference of the parameters of the Ising model from observed
spin configurations. A particular subproblem is the inference of the graph formed by the
non-zero couplings of the Ising model, termed graphical model selection or reconstruc-
tion. In the specific context of statistical models on graphs (graphical models), the term
inference describes the calculation of the marginal distribution of one or several variables.
(A marginal distribution describes the statistics of one or several particular variables in a
many-variable distribution, for example, P(x1) =∑x2,x3

P(x1, x2, x3).)
• In machine learning, a frequent task is to train an artificial neural network with symmet-

ric couplings such that magnetizations and correlations of the artificial neurons match
the corresponding values in the data. This is a special case of what is called Boltzmann
machine learning; the general case also considers so-called hidden units, whose values are
unobserved [1].

• In statistical physics, much effort has been directed towards estimating the parameters of
the Ising model given observed values of the magnetization and two-point correlations.
As we will see in Section 2.2, this is a hard problem from an algorithmic point of view.
Recently, threshold phenomena arising in inference problems have attracted much interest
from the statistical physics community, due to the link between phase transitions and the
boundaries separating different regimes of inference problems, for instance solvable and
unsolvable problems, or easy and hard ones [144,247].
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Common theme across different applications and communities is the inference of model
parameters given observed data or desired properties. In this review, we will focus on a prototype
inverse statistical problem: the inverse Ising problem and its close relatives. Many of the
approaches developed for this problem are also readily extended to more general scenarios. We
will start with a discussion of applications of the inverse Ising problem and related approaches
in biology, specifically the reconstruction of neural and genetic networks, the determination of
three-dimensional protein structures, the inference of fitness landscapes, the bacterial responses
to combinations of antibiotics, and flocking dynamics. We will find that these applications define
two distinct settings of the inverse Ising problem; equilibrium and non-equilibrium. Part 2 of this
review treats the inverse Ising problem in an equilibrium setting, where the couplings between
spins are symmetric. Detailed balance holds and results from equilibrium statistical physics can
be used. This setting arises naturally within the context of maximum entropy models, which seek
to describe the observed statistics of configurations with a simplified effective model captur-
ing, for instance, collective effects. We introduce the basics of statistical inference and maximum
entropy modelling, discuss the thermodynamics of the inverse Ising problem, and review different
approaches to solve the inverse Ising problem, pointing out their connections and comparing the
resulting parameter reconstructions. Part 3 of this review considers asymmetric coupling matri-
ces, where in the absence of detailed balance couplings can be reconstructed from time series,
from data on perturbations of the system, or from detailed knowledge of the non-equilibrium
steady state (NESS).

We now turn to applications of the inverse Ising problem, which mostly lie in the analysis
of high-throughput data from biology. One aim of inverse statistical modelling is to find the
parameters of a microscopic model to describe these data. A more ambitious aim is achieved
when the model is informative about the processes which produced the data, this is, when some
of the mechanisms underlying the data can be inferred. The data are large-scale measurements
of the degrees of freedom of some system. In the language of statistical physics, these describe
the micro-states of a system: states of neurons, particular sequences of DNA or proteins, or the
concentration levels of RNA. We briefly introduce some of the experimental background of these
measurements, so their potential and the limitations can be appreciated. The models are simple
models of the microscopic degrees of freedom. In the spirit of statistical physics, these models
are simple enough so the parameters can be computed given the data, yet sufficiently complex
to reproduce some of the statistical interdependences of the observed microscopic degrees of
freedom. The simplest case, consisting of binary degrees of freedom with unknown pairwise
couplings between them, leads to the inverse Ising problem, although we will also discuss several
extensions.

1.1. Modelling neural firing patterns and the reconstruction of neural connections

Neurons can exchange information by generating discrete electrical pulses, termed spikes, that
travel down nerve fibres. Neurons can emit these spikes at different rates, a neuron emitting
spikes at a high rate is said to be ‘active’ or ‘firing’, a neuron emitting spikes at a low rate or
not at all is said to be ‘inactive’ or ‘silent’. The measurement of the activity of single neurons
has a long history starting in 1953 with the development of micro-electrodes for recording [68].
Multi-electrodes were developed, allowing one to record multiple simultaneous neural signals
independently over long time periods [162,208]. Such data present the intriguing possibility to
see elementary brain function emerge from the interplay of a large number of neurons.

However, even when vast quantities of data are available, the different configurations of a
system are still under-sampled in most cases. For instance, consider N neurons, each of which
can be either active (firing) or inactive (silent). Given that the firing patterns of thousands of
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neurons can be recorded simultaneously [197], the number of observations M will generally
be far less than the total number of possible neural configurations, M � 2N . For this reason, a
straightforward statistical description that seeks to determine directly the frequency with which
each configuration appears will likely fail.

On the other hand, a feasible starting point is a simple distribution, whose parameters can
be determined from the data. For a set of N binary variables, this might be a distribution with
pairwise interactions between the variables. In [195], Bialek and collaborators applied such a
statistical model to neural recordings. Dividing time into small intervals of duration �τ = 20 ms
induces a binary representation of neural data, where each neuron i either spikes during a given
interval (si = 1) or it does not (si = 0). The joint statistics observed in 40 neurons in the retina
of a salamander was modelled by an Ising model (1) with magnetic fields and pairwise sym-
metric couplings. Rather than describing the dynamics of neural spikes, this model describes
the correlated firing of different neurons over the course of the experiment. The symmetric cou-
plings Jij in Equation (1) describe statistical dependencies, not physical connections. The synaptic
connections between neurons, on the other hand, are generally not symmetric.

In this context, the distribution (1) can be viewed as the form of the maximum entropy distri-
bution over neural states, given the observed one- and two-point correlations [195]. In [52,203],
a good match was found between the statistics of three neurons predicted by Equation (1) and the
firing patterns of the same neurons in the data. This means that the model with pairwise couplings
provides a valid statistical description of the empirical data, one that can even be used to make
predictions. Similar results were obtained also from cortical cells in cell cultures [216].

The mapping from the neural data to a spin model rests on dividing time into discrete bins
of duration �τ . A different choice of this interval would lead to different spin configurations; in
particular, changing �τ affects the magnetization of all spins by altering the number of intervals
in which a neuron fires. In [190], Roudi, Nirenberg, and Latham show that the pairwise model (1)
provides a good description of the underlying spin statistics (generated by neural spike trains),
provided N�τν � 1, where ν is the average firing rate of neurons. Increasing the bin size beyond
this regime leads to an increase in bins where multiple neurons fire, as a result couplings beyond
the pairwise couplings in Equation (1) can become important.

As a minimal model of neural correlations, the statistics (1) has been extended in several ways.
Tkačik et al. [224] and Granot-Atedgi et al. [88] consider stimulus-dependent magnetic fields, that
is, fields which depend on the stimulus presented to the experimental subject at a particular time
of the experiment. Ohiorhenuan et al. [163] looks at stimulus-dependent couplings. When the
number of neurons increases to ∼ 100, limitations of the pairwise model (1) become apparent,
which has be addressed by adding additional terms coupling triplets, etc. of spins in the exponent
of the Boltzmann measure (1) [82].

The statistics (1) serves as a description of the empirical data: the couplings between spins in
the Hamiltonian (2) do not describe physical connections between the neurons. The determina-
tion of the network of neural connections from the observed neural activities is thus a different
question. Simoncelli and collaborators [168,178] and Cocco et al. [52] use an integrate-and-fire
model [40] to infer how the neurons are interconnected on the basis of time series of spikes in all
neurons. In such a model, the membrane potential of neuron i obeys the dynamics

C
dVi

dt
=
∑
j �=i

Jij

∑
l

K(t − tjl) + Ii − gVi + ξi(t), (4)

where the first term on the right-hand side encodes the synaptic connections Jij and a mem-
ory kernel K; tjl specifies the time at which neuron j emitted its lth spike. The remaining
terms describe a background current, voltage leakage, and white noise. Finding the synaptic
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connections Jij that best describe a large set of neural spike trains is a computational challenge;
Paninski [167] and Cocco et al. [52] develop an approximation based on maximum likelihood
(ML), see Section 2.2. A related approach based on point processes and generalized linear mod-
els is presented in [228]. We will discuss this problem of inferring the network of connections the
context of the non-equilibrium models in Section 3.

Neural recordings give the firing patterns of several neurons over time. These neurons may
have connections between them, but they also receive signals from neural cells whose activity is
not recorded [133]. In [229], the effect of connections between neurons is disentangled from cor-
relations arising from shared non-stationary input. This raises the possibility that the correlations
described by the pairwise model (1) in [195] and related works originate from a confounding
factor (connections to a neuron other than those whose signal is measured), rather than from
connections between recorded neurons [121].

1.2. Reconstruction of gene regulatory networks

The central dogma of molecular biology is this: Proteins are macromolecules consisting of long
chains of amino acids. The particular sequence of a protein is encoded in DNA, a double-stranded
helix of complementary nucleotides. Specific parts of DNA, the genes, are transcribed by poly-
merases, producing a single-stranded copy called m(essenger)RNAs, which are translated by
ribosomes, usually multiple times, to produce proteins.

The process of producing protein molecules from the DNA template by transcription and
translation is called gene expression. The expression of a gene is tightly controlled to ensure that
the right amounts of proteins are produced at the right time. One important control mechanism
is transcription factors, proteins which affect the expression of a gene (or several) by binding to
DNA near the transcription start site of that gene. This part of DNA is called the regulatory region
of a gene. A target gene of a transcription factor may in turn encode another transcription factor,
leading to a cascade of regulatory events. To add further complications, the binding of multiple
transcription factors in the regulatory region of a gene leads to combinatorial control exerted by
several transcription factors on the expression of a gene [37]. Can the regulatory connections
between genes be inferred from data on gene expression, that is, can we learn the identity of
transcription factors and their targets?

Over the last decades, the simultaneous measurement of expression levels of all genes have
become routine. At the centre of this development are two distinct technological advances to mea-
sure mRNA levels. The first is microarrays, consisting of thousands of short DNA sequences,
called probes, grafted to the surface of a small chip. After converting the mRNA in a sam-
ple to DNA by reverse transcription, cleaving that DNA into short segments, and fluorescently
labelling the resulting DNA segments, fluorescent DNA can bind to its complementary sequence
on the chip. (Reverse transcription converts mRNA to DNA, a process which requires a so-
called reverse transcriptase as an enzyme.) The amount of fluorescent DNA bound to a particular
probe depends on the amount of mRNA originally present in the sample. The relative amount
of mRNA from a particular gene can then be inferred from the fluorescence signal at the corre-
sponding probes [98]. A limitation of microarrays is the large amount of mRNA required: The
mRNA sample is taken from a population of cells. As a result, cell-to-cell fluctuations of mRNA
concentrations are averaged over. To obtain time series, populations of cells synchronized to
approximately the same stage in the cell cycle are used [84].

The second way to measure gene expression levels is also based on reverse transcription
of mRNA, followed by high-throughput sequencing of the resulting DNA segments. Then, the
relative mRNA levels follow directly from counts of sequence reads [236]. Recently, expression
levels even in single cells have been measured in this way [241]. In combination with barcoding
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(adding short DNA markers to identify individual cells), 104 cells can have their expression
profiled individually in a single sequencing run [134]. Such data may allow, for instance, the
analysis of the response of target genes to fluctuations in the concentration of transcription factors.
However, due to the destructive nature of single-cell sequencing, there may never be single-cell
data that give time series of genome-wide expression levels.

Unfortunately, cellular concentrations of proteins are much harder to measure than mRNA
levels. As a result, much of the literature focuses on mRNA levels, neglecting the regulation of
translation. Advances in protein mass-spectrometry [177] may lead to data on both mRNA and
protein concentrations. These data would pose the additional challenge of inferring two separate
levels of gene regulation: gene transcription from DNA to mRNA and translation from mRNA
to proteins.

As in the case of neural data discussed in the preceding section, gene expression data presents
two distinct challenges: (i) finding a statistical description of the data in terms of suitable observ-
ables and (ii) inferring the underlying regulatory connections. Both these problems have been
addressed extensively in the machine learning and quantitative biology communities. Cluster-
ing of gene expression data to detect sets of genes with correlated expression levels has been
used to detect regulatory relationships. A model-based approach to the reconstruction of regula-
tory connections is Boolean networks. Boolean networks assign binary states to each gene (gene
expression on/off), and the state of a gene at a given time depends on the state of all genes at a
previous time through a set of logical functions assigned to each gene. See [64] for a review of
clustering and Boolean network inference and [96] for a review of Boolean network inference.

A statistical description that has also yielded insight into regulatory connections is Bayesian
networks. A Bayesian network is a probabilistic model describing a set of random variables
(expression levels) through conditional dependencies described by a directed acyclic graph.
Learning both the structure of the graph and the statistical dependencies is a hard computational
problem, but can capture strong signals in the data that are often associated with a regulatory
connection. In principle, causal relationships (like the regulatory connections) can be inferred, in
particular if the regulatory network contains no cycles. For reviews, see [79,116]. Both Boolean
or Bayesian networks have been applied to measurements of the response of expression levels
to external perturbations of the regulatory network or of expression levels, see [103,173]. A full
review of these methods is beyond the scope of this article, instead we focus on approaches
related to the inverse Ising problem.

For a statistical description of gene expression levels, Lezon et al. [126] applied a model with
pairwise couplings

P({xi}) = exp

⎡
⎣∑

i≤j

Jijxixj +
∑

i

hixi

⎤
⎦ /Z, (5)

fitted to gene expression levels. The standard definition of expression levels {xi} is log2-values
of fluorescence signals with the mean value for each gene subtracted. Since Equation (5) is a
multi-variate Gaussian distribution, the matrix of couplings Jij must be negative definite. These
couplings can be inferred simply by inverting the matrix of variances and covariances of expres-
sion levels. In [126], the resulting couplings Jij were then used to identify hub genes which
regulate many targets. The same approach was used in [128] to analyse the cellular signalling
networks mediated by the phosphorylation of specific sites on different proteins. Again, the dis-
tribution (5) can be viewed as a maximum entropy distribution for continuous variables with
prescribed first and second moments. This approach is also linked to the concept of partial
correlations in statistics [9,119].
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Again, the maximum entropy distribution (5) has symmetric couplings between expression
levels, whereas the network of regulatory interactions is intrinsically asymmetric. One way to
infer the regulatory connections is time series [204]. Bailly-Bechet et al. [12] use expression
levels measured at different times to infer the regulatory connections, based on a minimal model
of expression dynamics with asymmetric regulatory connections between pairs of genes. In this
model, expression levels xt

i at successive time intervals t obey

sign(xt+1
i ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if
∑

j

Jijx
t
j > κ ,

−1 if
∑

j

Jijx
t
j < κ ,

(6)

where κ is a threshold. The regulatory connections Jij are taken to be discrete, with the values
−1, 1, 0 denoting repression, activation, and no regulation of gene i by the product of gene j. The
matrix of connections is then inferred based on Bayes’ theorem (see Section 2.2) and an iterative
algorithm for estimating marginal probabilities (message passing, see Section 2.2.11).

A second line of approach that can provide information on regulatory connections is per-
turbations [217]. An example is gene knockdowns, where the expression of one or more genes
is reduced, by introducing small interfering RNA (siRNA) molecules into the cell [67] or by
other techniques. siRNA molecules can be introduced into cells from the outside; after various
processing steps they lead to the cleavage of mRNA with a complementary sequence, which is
then no longer available for translation. If that mRNA translates to a transcription factor, all tar-
gets of that transcription factor will be upregulated or downregulated (depending on whether the
transcription factor acted as a repressor or an activator, respectively). Knowing the responses of
gene expression levels to a sufficient number of such perturbations allows the inference of reg-
ulatory connections. Molinelli et al. [148] consider a model of gene expression dynamics based
on continuous variables xi evolving deterministically as ∂txi = ai tanh(

∑
j Jijxj) − cixi. The first

term describes how the expression level of gene j affects the rate of gene expression of gene i
via the regulatory connection Jij, the second term describes mRNA degradation. The stationary
points of this model shift in response to perturbations of expression levels of particular genes (for
instance through knockdowns), and these changes depend on regulatory connections. In [148],
the regulatory connections are inferred from perturbation data, again using belief propagation.

1.3. Protein structure determination

Tremendous efforts have been made to determine the three-dimensional structure of proteins.
A linear amino acid chain folds into a convoluted shape, the folded protein, thus bringing amino
acids into close physical proximity that are separated by a long distance along the linear sequence.

Due to the number of proteins (several thousand per organism) and the length of individual
proteins (hundreds of amino acid residues), protein structure determination is a vast undertaking.
However, the rewards are also substantial. The three-dimensional structure of a protein deter-
mines its physical and chemical properties, and how it interacts with other cellular components:
broadly, the shape of a protein determines many aspects of its function. Protein structure determi-
nation relies on crystallizing proteins and analysing the X-ray diffraction pattern of the resulting
solid. Given the experimental effort required, the determination of a protein’s structure from its
sequence alone has been a key challenge to computational biology for several decades [60,65].
The computational approach models the forces between amino acids in order to find the low-
energy structure a protein in solution will fold into. Depending on the level of detail, this approach
requires extensive computational resources (Figure 1).
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Figure 1. Correlations and couplings in protein structure determination. Both figures show the three-di-
mensional structure of a particular part (region 2) of the protein SigmaE of E. coli, as determined by X-ray
diffraction. This protein, or rather a protein of similar sequence and presumably similar structure, occurs in
many other bacterial species as well. In (B), lines indicate pairs of sequence positions whose amino acids
are highly correlated across different bacteria: for each pair of sequence positions at least 5 amino acids
apart, the mutual information of pairwise frequency counts of amino acids was calculated, and the 20 most
correlated pairs are shown here. Such pairs that also turn out to be close in the three-dimensional structure
are shown with full lines, those whose distance exceeds 8Å are shown as dashed lines. We see about as
many highly correlated sequence pairs that are proximal to one another as correlated pairs that are further
apart. By contrast, in (A), lines show sequence pairs that are strongly coupled in the Potts model (7), whose
model parameters are inferred from the correlations. The fraction of false contact predictions (dashed lines)
is reduced considerably. The figures are adapted from [154].

An attractive alternative enlists evolutionary information: Suppose that we have at our dis-
posal amino acid sequences of a protein as it appears in different related species (so-called
orthologs). While the sequences are not identical across species, they preserve to some degree
the three-dimensional shape of the protein. Suppose a specific pair of amino acids that inter-
act strongly with each other and bring together parts of the protein that are distal on the linear
sequence. Replacing this pair with another, equally strongly interacting pair of amino acids would
change the sequence, but leave the structure unchanged. For this reason, we expect sequence dif-
ferences across species to reflect the structure of the protein. Specifically, we expect correlations
of amino acids in positions that are proximal to each other in the three-dimensional structure. In
turn, the correlations observed between amino acids at different positions might allow to infer
which pairs of amino acids are proximal to each other in three dimensions (the so-called contact
map, see Figure 2). The use of such genomic information has recently lead to predictions of the
three-dimensional structure of many protein families inaccessible to other methods [166], for a
review see [51].

Early work looked at the correlations as a measure of proximity [87,92,129,206]. However,
correlations are transitive; if amino acids at sequence sites i and j are correlated due to prox-
imity in the folded state, and j and k are correlated for some reason, i and k will also exhibit
correlations, which need not stem from proximity. This problem is addressed by an inverse
approach aimed at finding the set of pairwise couplings that lead to the observed correlations or
sequences [39,55,58,71,99,138,154,212,238]. Since each sequence position can be taken up by
one of 20 amino acids or a gap in the sequence alignment, there are 212 correlations at each pair
of sequence positions. In [154,238], a statistical model with pairwise interactions is formulated,
based on the Hamiltonian

H = −
∑
i<j

Jij(si, sj) −
∑

i

hi(si). (7)
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Figure 2. Protein contact maps predicted from evolutionary correlations. The two figures show contact
maps for the ELAV4 protein (left) and the RAS protein (right). x- and y-axes correspond to sequence posi-
tions along the linear chain of amino acids. Pairs of sequence positions whose amino acids are in close
proximity in the folded protein are indicated by the shaded area (experimental data). Pairs of sequence posi-
tions with highly correlated amino acids are shown by small dots (mutual information, bottom triangle).
Pairs of sequence positions with high direct information (8) calculated from Equation (7) are shown with
large crosses. The coincidence of crosses and shaded area shows excellent agreement between predictions
from direct information with the experimentally determined structure of the protein. The figure is adapted
from [138].

This Hamiltonian depends on spin variables si, one for each sequence position i = 1, . . . , N .
Each spin variable can take on one of 21 values, describing the 20 possible amino acids at
that sequence position as well as the possibility of a gap (corresponding to an extra amino
acid inserted in a particular position in the sequences of other organisms). Each pair of amino
acids si, sj in sequence position i,j contributes Jij(si, sj) to the energy. The inverse problem is to
find the couplings Jij(A, B) for each pair of sequence positions i,j and pair of amino acids A,B,
as well as field hi(A), such that the amino acid frequencies and correlations observed across
species are reproduced. The sequence positions with strong pairwise couplings are then predicted
to be proximal in the protein structure. A simple measure of the coupling between sequence
positions is the matrix norm (Frobenius norm)

∑
si,sj

(Jij(si, sj))
2. The so-called direct informa-

tion [238] is an alternative measure based on information theory. A two-site model is defined
with pij(si, sj) = exp{Jij(si, sj) + hi(si) + hj(sj)}/Zij. Direct information is the mutual information
between the two-site model and a model without correlations between the amino acids

DIij =
∑
si,sj

pij(si, sj) ln

(
pij(si, sj)

pi(si)pj(sj)

)
. (8)

The Boltzmann distribution resulting from Equation (7) can be viewed as the maximum entropy
distribution with one- and two-point correlations between amino acids in different sequence
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positions determined by the data. There is no reason to exclude higher order terms in the Hamilto-
nian (7) describing interactions between triplets of sequence positions, although the introduction
of such terms may lead to overfitting. Also, fitting the Boltzmann distribution (7) to sequence data
uses no prior information on protein structures; for this reason it is called an unsupervised method.
Recently, neural network models trained on sequence data and protein structures (supervised
learning) have been very successful in predicting new structures [109,235].

The maximum entropy approach to structure analysis is not limited to evolutionary data.
In [251], Zhang and Wolynes analyse chromosome conformation capture experiments and use the
observed frequency of contacts between different parts of a chromosome in a maximum entropy
approach to predict the structure and topology of the chromosomes.

1.4. Fitness landscape inference

The concept of fitness lies at the core of evolutionary biology. Fitness quantifies the average
reproductive success (number of offspring) of an organism with a particular genotype, i.e. a
particular DNA sequence. The dependence of fitness on the genotype can be visualized as a
fitness landscape in a high-dimensional space, where fitness specifies the height of the landscape.
As the number of possible sequences grows exponentially with their length, the fitness landscape
requires in principle an exponentially large number of parameters to specify, and in turn those
parameters need an exponentially growing amount of data to infer.

A suitable model system for the inference of a fitness landscape is HIV proteins, due to
the large number of sequences stored in clinical databases and the relative ease of generating
mutants and measuring the resulting fitness. In a series of papers, Chakraborty and co-workers
proposed a fitness model the so-called Gag protein family (group-specific antigen) of the HIV
virus [59,74,135,201]. The model is based on pairwise interactions between amino acids. Retain-
ing only the information whether the amino acid at sequence position i was mutated (si = 1) with
respect to a reference sequence or not (si = 0), Chakraborty and co-workers suggest a minimal
model for the fitness landscape given by the Ising Hamiltonian (2). Again, one can view the land-
scape (2) as generating the maximum entropy distribution constrained by the observed one- and
two-point correlations.

Adding a constant to Equation (2) in order to make fitness (expected number of offspring)
non-negative does not alter the resulting statistics. The inverse problem is to infer the couplings
Jij and fields hi from frequencies of amino acids and pairs of amino acids in particular sequence
positions observed in HIV sequence data. Of course, it is not clear from the outset that a model
with only pairwise interactions can describe the empirical fitness landscape. As a test of this
approach, Ferguson et al. [74] compare the prediction of Equation (2) for specific mutants to the
results of independent experimental measurements of fitness.

Statistical models of sequences described by pairwise interactions may be useful to model a
wide range of protein families with different functions [100], and have been used in other contexts
as well. Santolini et al. [194] model the statistics of sequences binding transcription factors using
Equation (7), with each spin taking one of four states to characterize the nucleotides A,C,G,T.
A similar model is used in [153] to model the sequence diversity of the so-called IgM protein,
an antibody which plays a key role in the early immune response. The model with pairwise
interactions predicts non-trivial three-point correlations which compare well with those found in
the data, see Figure 3.

1.5. Combinatorial antibiotic treatment

Antibiotics are chemical compounds which kill specific bacteria or inhibit their growth [115,233].
Mutations in the bacterial DNA can lead to resistance against a particular antibiotic, which is a
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Figure 3. Three-point correlations in an amino acid sequences and their prediction from a model with pair-
wise interactions. Mora et al. look at the so-called D-region in the IgM protein (maximum length N = 8).
The D-region plays an important role in immune response. The frequencies at which given triplets of con-
secutive amino acids occur were compiled (x-axis, normalized with respect to the prediction of a model with
independent sites). The results are compared to the prediction from a model with pairwise interactions like
Equation (2) on the y-axis. The figure is taken from [153].

major hazard to public health [127,242]. One strategy to slow down or eliminate the emergence
of resistance is to use a combination of antibiotics either simultaneously or in rotation [115,233].
The key problem of this approach is to find combinations of compounds which are particularly
effective against a particular strain of bacteria. Trying out all combinations experimentally is
prohibitively expensive. Wood et al. [243] use an inverse statistical approach to predict the effect
of combinations of several antibiotics from data on the effect of pairs of antibiotics. The avail-
able antibiotics are labelled i = 1, . . . , N ; in [243], a distribution over continuous variables xi is
constructed, such that 〈xi〉 gives the bacterial growth rate when antibiotic i is administered, 〈xixj〉
gives the growth rate with both i and j are given, etc. for higher moments. Choosing this dis-
tribution to be a multi-variate Gaussian P({xi}) = exp[

∑
i≤j Jijxixj +∑i hixi]/Z results in simple

relationships between the different moments, which lead to predictions of the response to drug
combinations that are borne out well by experiment [243].

1.6. Interactions between species and between individuals

Species exist in various ecological relationships. For instance, individuals of one species hunt
and eat individuals of another species. Another example is microorganisms whose growth can
be influenced, both positively and negatively, by the metabolic output of other microorganisms.
Such relationships form a dense web of ecological interactions between species. Co-culturing
and perturbation experiments (for instance species removal) lead to data which may allow the
inference of these networks [73,94].

Interactions between organisms exist also at the level of individuals, for instance when birds
form a flock, or fish form a school. This emergent collective behaviour is thought to have
evolved to minimize the exposure of individuals to predators. In [28,29], a model with pairwise
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interactions between the velocities of birds in a flock is constructed. Individual birds labelled
i = 1, . . . , N move with velocity 
vi in a direction specified by 
si = 
vi/|
vi|. The statistics of the
these directions is modelled by a distribution

P({
si}) = exp

⎡
⎣∑

i,j

Jij
si · 
sj

⎤
⎦ /Z, (9)

where the couplings between the spins 
si need to be inferred from the experimentally observed
correlations between normalized velocities. This model can be viewed as the maximum entropy
distribution constrained by pairwise correlations between normalized velocities. From the point
of view of statistical physics, it describes a disordered system of Heisenberg spins. As birds fre-
quently change their neighbours in flight, the couplings are not constant in time and it makes sense
to consider couplings that depend on the distance between two individuals [29]. An alternative is
to apply the maximum entropy principle to entire trajectories [46].

1.7. Financial markets

Market participants exchange commodities, shares in companies, currencies, or other goods and
services, usually for money. The change in prices of such goods are often correlated, as the
demand for different goods can be influenced by the same events. In [41,42], Bury uses a spin
model with pairwise interactions to analyse stock market data. Shares in N different companies
are described by binary spin variables, where spin si = 1 indicates ‘bullish’ conditions for shares
in company i with prices going up at a particular time, and si = −1 implies ‘bearish’ conditions
with decreasing prices. Couplings Jij describe how price changes in shares i affect changes in
the price of j, or how prices are affected jointly by external events. Bury fit stock marked data
to this spin model, and found clusters in the resulting matrix of couplings [41]. These clusters
correspond to different industries whose companies are traded on the market. In [34], a similar
analysis finds that heavy tails in the distribution of inferred couplings are linked to such clusters.
Slonim et al. [205] identified clusters in stocks using an information-based metric of stock prices.

2. Equilibrium reconstruction

The applications discussed above can be classified according to the symmetry of pairwise
couplings: In network reconstruction, couplings between spins are generally asymmetric, in max-
imum entropy models they are symmetric. A stochastic dynamics based on symmetric couplings
entails detailed balance, leading to a steady state described by the Boltzmann distribution [118],
whereas asymmetric couplings lead to an NESS. This distinction shapes the structure of this
review: In this section, we discuss the inverse Ising problem in equilibrium, in Section 3 we turn
to non-equilibrium scenarios.

2.1. Definition of the problem

We consider the Ising model with N binary spin variables {si = ±1}, i = 1, . . . , N . Pairwise
couplings (or coupling strengths) Jij encode pairwise interactions between the spin variables, and
local magnetic fields hi act on individual spins. The energy of a spin configuration s ≡ {si} is
specified by the Hamiltonian

HJ ,h(s) = −
∑
i<j

Jijsisj −
∑

i

hisi. (10)
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The equilibrium statistics of the Ising model is described by the Boltzmann distribution

p(s) = 1

Z
e−HJ ,h(s), (11)

where we have subsumed the temperature into couplings and fields such that kBT = 1: The statis-
tics of spins under the Boltzmann distribution exp{−βH}/Z depends on couplings, magnetic
fields, and temperature only through the products βJij and βhi. As a result, only the products βJij

and βhi can be inferred and we set β to 1 without loss of generality. The energy specified by the
Hamiltonian (2) or its generalization (7) is thus a dimensionless quantity.

Z denotes the partition function

Z(J , h) =
∑

s

e−HJ ,h(s). (12)

In such a statistical description of the Ising model, each spin is represented by a random variable.
Throughout, we denote a random spin variable by σ , and a particular realization of that random
variable by s. This distinction will become particularly useful in the context of non-equilibrium
reconstruction in Section 3. The expectation values of spin variables and their functions then are
denoted

〈Q(σ )〉 ≡
∑

s

p(s)Q(s), (13)

where Q(s) is some function mapping a spin configuration to a number. Examples are the equilib-
rium magnetizations mi ≡ 〈σi〉 =∑s p(s)si or the pair correlations χij ≡ 〈σiσj〉 =∑s p(s)(sisj).
In statistics, the latter observable is called the pair average. We are also interested in the connected
correlation Cij = χij − mimj, which in statistics is known as the covariance.

The equilibrium statistics of the Ising problem (11) is fully determined by the couplings
between spins and the magnetic fields acting on the spins. Collectively, couplings and magnetic
fields are the parameters of the Ising problem. The forward Ising problem is to compute statistical
observables such as the magnetizations and correlations under the Boltzmann distribution (11);
the couplings and fields are taken as given. The inverse Ising problem works in the reverse direc-
tion: The couplings and fields are unknown and are to be determined from observations of the
spins. The equilibrium inverse Ising problem is to infer these parameters from spin configurations
sampled independently from the Boltzmann distribution. We denote such a data set of M samples
by D = {sμ} for μ = 1, 2, . . . , M . (This usage of the term ‘sample’ appears to differ from how
it is used in the statistical mechanics of disordered systems, where a sample often refers to a
random choice of the model parameters, not spin configurations. However, it is in line with the
inverse nature of the problem: From the point of view of the statistical mechanics of disordered
systems in an inverse statistical problem, the ‘phase space variables’ are couplings and magnetic
fields to be inferred, the ‘quenched disorder’ is spin configurations sampled from the Boltzmann
distribution.)

Generally, neither the values of couplings nor the graph structure formed by non-zero cou-
plings is known. Unlike in many instances of the forward problem, the couplings often do not
conform to a regular, finite-dimensional lattice; there is no sense of spatial distance between
spins. Instead, the couplings might be described by a fully connected graph, with all pairs of
spins coupling to each other, generally all with different values of the Jij. Alternatively, most
of the couplings might be zero, and the non-zero entries of the coupling matrix might define
a structure that is (at least locally) treelike. The graph formed by the couplings might also be
highly heterogeneous with few highly connected nodes with many non-zero couplings and many
spins coupling only to a few other spins. These distinctions can affect how well specific inference



212 H. Chau Nguyen et al.

methods perform, a point we will revisit in Section 2.4, which compares the quality of different
methods in different situations.

2.2. Maximum likelihood

The inverse Ising problem is a problem of statistical inference [31,131]. At the heart of many
methods to reconstruct the parameters of the Ising model is the maximum likelihood framework,
which we discuss here.

Suppose a set of observations x1, x2, . . . , xM drawn from a statistical model p(x1, x2, . . . ,
xM | θ). In the case of the Ising model, each observation would be a spin configuration s. While
the functional form of this model may be known a priori, the parameter θ is unknown to us and
needs to be inferred from the observed data. Of course, with a finite amount of data, one cannot
hope to determine the parameter θ exactly. The so-called maximum likelihood (ML) estimator

θML = argmax
θ

p(x1, x2, . . . , xM | θ) (14)

has a number of attractive properties [57]: In the limit of a large number of samples, θML con-
verges in probability to the value θ being estimated. This property is termed consistency. Also
for large sample sizes, there is no consistent estimator with a smaller mean-squared error. For a
finite number of samples, the ML estimator may, however, be biased, that is, the mean of θML

over many realizations of the samples does not equal θ (although the difference vanishes with
the sample size). The term likelihood refers to p(x1, x2, . . . , xM | θ) viewed as a function of the
parameter θ at constant values of the data x1, x2, . . . , xM . The same function at constant θ gives
the probability of observing the data x1, x2, . . . , xM .

The ML estimator (14) can also be derived using Bayes’ theorem [31,131]. In Bayesian infer-
ence, one introduces a probability distribution p(θ) over the unknown parameter θ . This prior
distribution describes our knowledge prior to receiving the data. Upon accounting for additional
information from the data, our knowledge is described by the posterior distribution given by
Bayes’ theorem

p(θ | x1, x2, . . . , xM ) = p(θ , x1, x2, . . . , xM )

p(x1, x2, . . . , xM )

= p(x1, x2, . . . , xM | θ)p(θ)

p(x1, x2, . . . , xM )
. (15)

For the case where θ is a priori uniformly distributed (describing a scenario where we have
no prior knowledge of the parameter value), the posterior probability distribution of the param-
eter conditioned on the observations p(θ |x1, x2, . . . , xM ) is proportional to p(x1, x2, . . . , xM | θ).
(This line of argument only works if the parameter space is bounded, so a uniform prior can be
defined). Then, the parameter value maximizing the probability density p(θ | x1, x2, . . . , xM ) is
given by the ML estimator (14). Maximizing the logarithm of the likelihood function, termed the
log-likelihood function, leads to the same parameter estimate, because the logarithm is a strictly
monotonic function. As the likelihood scales exponentially with the number of samples, the log-
likelihood is more convenient to use. (This is simply the convenience of not having to deal with
very small numbers: the logarithm is not linked to the quenched average considered in the statis-
tical mechanics of disordered systems; there is no average involved and the likelihood depends
on both the model parameters and the data.)

We now apply the principle of ML to the inverse Ising problem. Assuming that the con-
figurations in the dataset were sampled independently from the Boltzmann distribution (1), the
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log-likelihood of the model parameters given the observed configurations D = {sμ} is derived
easily:

LD(J , h) = 1

M
ln p(D|J , h)

=
∑
i<j

Jij
1

M

∑
μ

sμ
i sμ

j +
∑

i

hi
1

M

∑
i

sμ
i − ln Z(J , h)

=
∑
i<j

Jij〈σiσj〉D +
∑

i

hi〈σi〉D − ln Z(J , h) (16)

gives the log-likelihood per sample, a quantity of order zero in M since the likelihood scales expo-
nentially with the number of samples. The sample averages of spin variables and their functions
are defined by

〈Q〉D = 1

M

∑
μ

Q(sμ). (17)

Beyond the parameters of the Ising model, the log-likelihood (16) depends only on the corre-
lations between pairs of spins observed in the data 〈σiσj〉D and the magnetizations 〈σi〉D. To
determine the ML estimates of the model parameters, we thus only need the pair correlations and
magnetizations observed in the sample (sample averages); at least in principle, further observ-
ables are superfluous. In the language of statistics, these sets of sample averages provide sufficient
statistics to determine the model parameters.

The log-likelihood (16) has a physical interpretation: The first two terms are the sample aver-
age of the (negative of the) energy, the second term adds the free energy. Thus, the log-likelihood
is the (negative of the) entropy of the Ising system, based on the sample estimate of the energy.
We will further discuss this connection in Section 2.2.5.

A second interpretation of the log-likelihood is based on the difference between the Boltz-
mann distribution (11) and the empirical distribution of the data in the sample D, denoted
pD(s) ≡ (1/M )

∑
μ δsμ,s. The difference between two probability distributions p(s) and q(s) can

be quantified by the Kullback–Leibler (KL) divergence

KL(p|q) =
∑

s

p(s) ln
p(s)
q(s)

, (18)

which is non-negative and reaches zero only when the two distributions are identical [56]. The
KL divergence between the empirical distribution and the Boltzmann distribution is

KL(pD|p) =
∑

s

pD(s) ln
pD(s)
p(s)

= −LD(J , h) +
∑

s

pD(s) ln pD(s). (19)

The second term (the negative empirical entropy) is independent of the model parameters; the
best match between the Boltzmann distribution and the empirical distribution (minimal KL
divergence) is thus achieved when the likelihood (16) is maximal.

Above, we derived the principle of ML (14) from Bayes’ theorem under the assumption
that the model parameter θ is sampled from a uniform prior distribution. Suppose that we had
the prior information that the parameter θ was taken from some non-uniform distribution, the
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posterior distribution would then acquire an additional dependence on the parameter. In the case
of the inverse Ising problem, prior information might, for example, describe the sparsity of the
coupling matrix, with a suitable prior pJ ∼ exp[−γ

∑
i<j |Jij|] that assigns small probabilities to

large entries in the coupling matrix. The resulting (log) posterior is

ln p(J , h | D) = MLD(J , h) − γ
∑
i<j

|Jij| (20)

up to terms that do not depend on the model parameters. The maximum of the posterior is now
no longer achieved by maximizing the likelihood, but involves a second term that penalizes
coupling matrices with large entries. Maximizing the posterior with respect to the parameters no
longer makes the Boltzmann distribution as similar to the empirical distribution as possible, but
strikes a balance between making these distributions similar while avoiding large values of the
couplings. In the context of inference, the second term is called a regularization term. Different
regularization terms have been used, including the absolute-value term in Equation (20) as well as
a penalty on the square values of couplings

∑
i<j J2

ij (called �1- and �2-regularizers, respectively).
One standard way to determine the value of the regularization coefficient γ is to cross-validate
with a part of the data that is initially withheld, that is to probe (as a function of γ ) how well the
model can predict aspects of the data not yet used to infer the model parameters [93].

2.2.1. Exact maximization of the likelihood

The ML estimate of couplings and magnetic fields

{JML, hML} = argmaxLD(J , h) (21)

has a simple interpretation. Since ln Z(J , h) serves as a generating function for expectation values
under the Boltzmann distribution, we have

∂LD

∂hi
(J , h) = 〈σi〉D − 〈σi〉,

∂LD

∂Jij
(J , h) = 〈σiσj〉D − 〈σiσj〉.

(22)

At the maximum of the log-likelihood, these derivatives are zero; the ML estimate of the param-
eters is reached when the expectation values of pair correlations and magnetizations under the
Boltzmann statistics match their sample averages

〈σi〉 = 〈σi〉D,

〈σiσj〉 = 〈σiσj〉D.
(23)

The log-likelihood (16) turns out to be a concave function of the model parameters, see
Section 2.2.2. Thus, in principle, it can be maximized by a convex optimization algorithm. One
particular way to reach the maximum of the likelihood is a gradient-descent algorithm called
Boltzmann machine learning [1]. At each step of the algorithm fields and couplings are updated
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according to

hn+1
i = hn

i + η
∂LD

∂hi
(Jn, hn), (24)

Jn+1
ij = Jn

ij + η
∂LD

∂Jij
(Jn, hn). (25)

The parameter η is the learning rate of the algorithm, which has Equation (23) as its fixed point.
In order to calculate the expectation values 〈σi〉 and 〈σiσj〉 on the left-hand side of these equa-

tions, one needs to perform thermal averages of the form (13) over all 2N configurations, which
is generally infeasible for all but the smallest system sizes. Analogously, when maximizing the
log-likelihood (16) directly, the partition function is the sum over 2N terms. Moreover, the expec-
tation values or the partition function needs to be evaluated many times during an iterative search
for the solution of Equation (23) or the maximum of the likelihood. As a result, also numer-
ical sampling techniques such as Monte Carlo sampling are cumbersome, but have been used
for moderate system sizes [36]. Habeck [91] proposes a Monte Carlo sampler that draws model
parameters from the posterior distribution. A recent algorithm uses information contained in the
shape of the likelihood maximum to speed up the convergence [75]. An important development in
machine learning has led to the so-called restricted Boltzmann machines, where couplings form a
symmetric and bipartite graph. Variables fall into two classes, termed ‘visible’ and ‘hidden’, with
couplings never linking variables of the same class. This allows fast learning algorithms [76] at
the expense of additional hidden variables.

We stress that the difficulty of maximizing the likelihood is associated with the restriction of
our input to the first two moments (magnetizations and correlations) of the data. On the one hand,
this restriction is natural, as the likelihood only depends on these two moments. On the other
hand, computationally efficient methods have been developed that effectively use correlations
in the data beyond the first two moments. An important example is pseudolikelihood, which
we will discuss in Section 2.3. Other learning techniques that sidestep the computation of the
partition function include score matching [101] and minimum probability flow [207]. Also, when
the number of samples is small (compared to the number of spins), the likelihood need no longer
be the best quantity to optimize.

2.2.2. Uniqueness of the solution

We will show that the log-likelihood (16) is a strictly concave function of the model parameters
(couplings and magnetic fields). As the space of parameters is convex, the maximum of the
log-likelihood is unique.

We use the shorthands λ = {J , h} and {Qk(s)} = {sisj, si} for the model parameters and the
functions coupling to them and write the Boltzmann distribution as

p(s) = 1

Z(λ)
e
∑

k λkQk(s). (26)

For such a general class of exponential distributions [93], the second derivatives of the log-
likelihood LD with respect to a parameters obey

− ∂2LD

∂λi∂λj
(λ) = 〈QiQj〉 − 〈Qi〉〈Qj〉. (27)

This matrix of second derivatives is non-negative (has no negative eigenvalues) since∑
ij(〈QiQj〉 − 〈Qi〉〈Qj〉)xixj = 〈[∑k(xkQk − 〈xkQk〉)]2〉 ≥ 0 for all xi. If no non-trivial linear
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combination of the observables Qk has vanishing fluctuations, the Hessian matrix is even pos-
itive definite. For the inverse Ising problem, there are indeed no non-trivial linear combinations
of the spin variables σi and pairs of spins variables σiσj that do not fluctuate under the Boltz-
mann measure, unless some of the couplings or fields are infinite. As a result, the maximum of
the likelihood, if it exists, is unique. However, it can happen that the maximum lies at infinite
values of some of the parameters (for instance, when the samples contain only positive values of
a particular spin, the ML value of the corresponding magnetic field is infinite). These divergences
can be avoided with the introduction of a regularization term, see Section 2.2.

2.2.3. Maximum entropy modelling

The Boltzmann distribution in general and the Ising Hamiltonian (2) in particular can be derived
from information theory and the principle of maximum entropy. This principle has been invoked
in neural modelling [195], protein structure determination [238], and DNA sequence analy-
sis [153]. In this section, we discuss the statistical basis of Shannon’s entropy, the principle of
maximum entropy, and their application to inverse statistical modelling.

Consider M distinguishable balls, each to be placed in a box with R compartments. The num-
ber of ways of placing the balls such that nr balls are in the rth compartment (r ∈ 1, . . . , R)
is

W = M !∏R
r=1 nr!

, (28)

with
∑R

r=1 nr = M . For large M, we write nr = Mqr and exploit Stirling’s formula nr! ≈ enr nnr
r ,

yielding the Gibbs entropy

ln W/M ≈ −
R∑

r=1

qr ln qr. (29)

This combinatorial result forms the basis of equilibrium statistical physics in the classic treatment
due to Gibbs and can be found in standard textbooks. In the context of statistical physics, each
of the R compartments corresponds to a microstate of a system, and each microstate r is asso-
ciated with energy Er. The M balls in the compartments describe a set of copies of the system,
or a so-called ensemble of replicas. The replicas may exchange energy with each other, while
the ensemble of replicas itself is isolated and has a fixed total energy ME (and possibly other
conserved quantities). In this way, the replicas can be thought of as providing a heat-bath for
each other. If we assume that each state of the ensemble of replicas with a given total energy is
equally likely, the statistics of qr is dominated by a sharp maximum of W as a function of the qr,
subject to the constraint

∑
r qr = 1 and

∑
r Erqr = E. Using Lagrange multipliers to maximize

Equation (29) subject to these constraints yields the Boltzmann distribution [107].
This seminal line of argument can also be used to derive Shannon’s information entropy (3).

The argument is due to Wallis and is recounted in [108]. Suppose that we want to find a probabil-
ity distribution pr compatible with a certain constraint, for instance a specific expectation value∑

r prEr = E to within some small margin of error. Consider M independent casts of a fair die
with R faces. We denote the number of times outcome r is realized in these throws as nr. The
probability of a particular set {nr} is

M !∏R
r=1 nr!

R∏
r=1

(1/R)nr . (30)

In the limit of large M, the logarithm of this probability is −M
∑

r qr ln qr − M ln R with
qr = nr/M .
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Each set of M casts defines one instance of the {nr}. In most instances, the constraint will
not be realized. For those (potentially rare) instances obeying the constraint, we can ask what
are the most likely values of nr, and correspondingly qr. Maximising Shannon’s information
entropy −∑r qr ln qr subject to the constraint and the normalization

∑
r qr = 1 gives the so-

called maximum entropy estimate of pr. If the underlying set of probabilities (the die with R
faces) differs from the uniform distribution, so outcome r occurs with probability q0

r , it is not the
entropy but the relative entropy −∑r qr ln(qr/q0

r ) that is to be maximized. Up to a sign, this is
the KL divergence (18) between qr and q0

r .
The maximum entropy estimate can be used to approximate an unknown probability distribu-

tion qr that is under-sampled. Suppose that data are sampled several times from some unknown
probability distribution. With a sufficient number of samples M, the distribution qr can be eas-
ily determined from frequency counts qr = nr/M . Often this is not feasible; if qrM � 1, nr

fluctuates strongly from one set of samples to the next. This situation appears naturally when
the number of possible outcomes R grows exponentially with the size of the system, see e.g.
Section 1.1. Nevertheless, the data may be sufficient to pin down one or several expectation val-
ues. The maximum entropy estimate has been proposed as the most unbiased estimate of the
unknown probability distribution compatible with the observed expectation values [108]. For a
discussion of the different ways to justify the maximum entropy principle, and derivations based
on robust estimates, see [219].

Many applications of the maximum entropy estimate are in image analysis and spectral
analysis [90], for reviews in physics and biology see [14,30,151], and for critical discussion
see [5,230].

The connection between maximum entropy and the inverse Ising problem is simple: For a
set of N binary variables, the distribution with given first and second moments maximizing the
information entropy is the Boltzmann distribution (1) with the Ising Hamiltonian (2). We use
Lagrange multipliers to maximize the information entropy (3) subject to the normalization con-
dition and the constraints on the first and second moments (magnetizations and pair correlations)
of p(s) to be m and χ . Setting the derivatives of

∑
s

−p(s) ln p(s) + η

[
1 −

∑
s

p(s)

]
+
∑

i

hi

[
mi −

∑
s

p(s)si

]
+
∑
i<j

Jij

[
χij −

∑
s

p(s)sisj

]

(31)

with respect to p(s) to zero yields the Ising model (1). The Lagrange multipliers h and J need
to be chosen to reproduce the first and second moments (magnetizations and correlations) of the
data and can be interpreted as magnetic fields and couplings between spins.

While this principle appears to provide a statistical foundation to the model (1), there is no
a priori reason to disregard empirical data beyond the first two moments. Instead, the pairwise
couplings result from the particular choice of making the probability distribution match the first
two moments of the data. The reasons for this step may be different in different applications.

• Moments beyond the first and second may be poorly determined by the data. Conversely,
with an increasing number of samples, the determination of higher order correlations and
hence interactions between triplets of spin variables etc. becomes viable.

• The data may actually be generated by an equilibrium model with (at most) pairwise inter-
actions between spin variables. This need not be obvious from observed correlations of any
order, but can be tested by comparing three-point correlations predicted by a model with
pairwise couplings to the corresponding correlations in the data. Examples are found in
sequence analysis, where population dynamics leads to an equilibrium steady state [24,199]
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and the energy can often be approximated by pairwise couplings [153,194]. For a review,
see [210]. Surprisingly, also in neural data (not generated by an equilibrium model),
three-point correlations are predicted well by a model with pairwise interactions [221,225].

• A model of binary variables interacting via high-order coupling terms Jijk...sisjsk . . . can
sometimes be approximated surprisingly well by pairwise interactions. This seems to be
the case when the couplings are dense, so that each variable appears in several coupling
terms [143].

• Often one seeks to describe a subset of n variables s1, s2, . . . , sn from a larger set of N
variables, for instance when only the variables in the subset can be observed. The sub-
set of variables is characterized by effective interactions which stem from interactions
between variables in the subset, and from interactions with the other variables. If the sub-
set is sufficiently small, the resulting statistics is often described by a model with pairwise
couplings [190].

• The true probability distribution underlying some data may be too complicated to calculate
in practice. A more modest goal then is to describe the data using an effective statistical
model such as Equation (1), which is tractable and allows the derivation of bounds on the
entropy or the free energy. Examples are the description of neural data and gene expression
data using the Ising model with symmetric couplings (see Sections 1.1 and 1.2).

• There are also useful models which are computationally tractable but do not maximize the
entropy. An example is Gaussian models to generate artificial spike trains with prescribed
pair correlations [3,132].

2.2.4. Information theoretic bounds on graphical model reconstruction

A particular facet of the inverse Ising problem is graphical model selection. Consider the Ising
problem on a graph. A graph is a set of nodes and edges connecting these nodes, and nodes
associated with spin variables. Couplings between node pairs connected by an edge are non-zero,
couplings between unconnected node pairs are zero. The graphical model selection problem is to
recover the underlying graph (and usually also the values of the couplings) from data sampled
independently from the Boltzmann distribution. Given a particular number of samples, one can
ask with which probability a given method can reconstruct the graph correctly (the reconstruction
fluctuates between different realizations of the samples). Notably, there are also universal limits
on graphical model selection that are independent of a particular method.

In [193], Santhanam and Wainwright derive information-theoretic limits to graphical model
selection. Key result is the dependence of the required number of samples on the smallest and on
the largest coupling

α = min
i<j

|Jij|, β = max
i<j

|Jij| (32)

and on the maximum node connectivity (number of neighbours on the graph) d. Reconstruction
of the graph, by any method, is impossible if fewer than

max

{
ln N

2α tanh α
,

eβd ln(Nd/4 − 1)

4dα eα
,

d

8
ln

(
N

8d

)}
(33)

samples are available (the precise statement is of a probabilistic nature, see [193]). If
the maximum connectivity d grows with the system size, this result implies that at least
c max{d2, α−2} ln N samples are required (with some constant c) [193]. The derivation of this
and other results is based on Fano’s inequality (Fano’s lemma) [56], which gives a lower bound
for the probability of error of a classification function (such as the mapping from samples to the
graph underlying these samples).
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2.2.5. Thermodynamics of the inverse Ising problem

Calculations in statistical physics are greatly simplified by introducing thermodynamic potentials.
In this section, we will discuss the method of thermodynamic potentials for the inverse Ising
problem. It turns out that the ML estimation of the fields and couplings is simply a transformation
of the thermodynamic potentials.

Recall that the thermodynamic potential most useful for the forward problem, where cou-
plings and magnetic fields are given, is the Helmholtz free energy F(J , h) = − ln Z(J , h).
Derivatives of this free energy give the magnetizations, correlations, and other observables. The
thermodynamic potential most useful for the inverse problem, where the pair correlations χ and
magnetizations m are given, is the Legendre transform of the Helmholtz free energy with respect
to both couplings and fields [53,54,200]

S(χ , m) = min
J ,h

⎡
⎣−

∑
i

himi −
∑
i<j

Jijχij − F(J , h)

⎤
⎦ . (34)

This thermodynamic potential is readily recognized as the entropy function; up to a sign, it gives
the ML (16) of the model parameters. The transformation (34) thus provides a link between the
inference via ML and the statistical physics of the Ising model as described by its Helmholtz free
energy. The couplings and the fields are found by differentiation

Jij = − ∂S

∂χij
(χ , m),

hi = − ∂S

∂mi
(χ , m),

(35)

where the derivatives are evaluated at the sample correlations and magnetizations. These
relationships follow from the inverse transformation of (34)

F(J , h) = min
χ ,m

⎡
⎣−

∑
i

himi −
∑
i<j

Jijχij − S(χ , m)

⎤
⎦ , (36)

by setting derivatives of the term in square brackets with respect to χ and m to zero.
In practice, performing the Legendre transformation of both h and J is often not necessary;

derivatives of the Helmholtz free energy F(J , h) with respect to J can also be generated by
differentiating with respect to h, e.g.

∂F

∂Jij
(J , h) = ∂2F

∂hi∂hj
(J , h) − ∂F

∂hi
(J , h)

∂F

∂hj
(J , h). (37)

The thermodynamics of the inverse problem can thus be reduced to a single Legendre transform
of the Helmholtz free energy, yielding the Gibbs free energy

G(J , m) = max
h

[∑
i

himi + F(J , h)

]
. (38)

The magnetic fields are given by the first derivative of the Gibbs free energy

hi = ∂G

∂mi
(J , m). (39)
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To infer the couplings, we consider the second derivatives of Gibbs potential, which give

∂2G

∂mj∂mi
(J , m) = (C−1)ij, (40)

where C is the matrix of connected correlations Cij ≡ χij − mimj. Equation (40) follows from the
inverse function theorem,

[
∂(h1, . . . , hN )

∂(m1, . . . , mN )

]
ij

=
[(

∂(m1, . . . , mN )

∂(h1, . . . , hN )

)−1
]

ij

, (41)

and linear response theory

Cij = ∂mj

∂hi
(J , h) = − ∂2F

∂hi∂hj
(J , h), (42)

which links the susceptibility of the magnetization to a small change in the magnetic field with
the connected correlation [209].

The result (40) turns out to be central to many methods for the inverse Ising problem. The left-
hand side of this expression is a function of Jij. If the Gibbs free energy (38) can be evaluated or
approximated, Equation (40) can be solved to yield the couplings. Similarly, Equation (39) with
the estimated couplings and the sample magnetizations gives the magnetic fields, completing the
reconstruction of the parameters of the Ising model.

2.2.6. Variational principles

For most systems, neither the free energy F(J , h) nor other thermodynamic potentials can be
evaluated. However, there are many approximation schemes for F(J , h) [164], which lead to
approximations for the entropy and the Gibbs free energy. Direct approximation schemes for
S(χ , m) and G(J , m) have also be formulated within the context of the inverse Ising problem.
The key idea behind most of these approximations is the variational principle.

The variational principle for the free energy is

F(J , h) = min
q

{U[q] − S[q]} ≡ min
q

F[q], (43)

where q denotes a probability distribution over spin configurations. U[q] ≡ 〈H〉q and S[q] ≡
〈ln q〉q and the minimization is taken over all distributions q. This principle finds its origin in
information theory. Take an arbitrary trial distribution q(s), the KL divergence (18) quantifies
the difference between q and the Boltzmann distribution p is positive and vanishes if and only if
q = p [56]. One then arrives directly at Equation (43) when rewriting KL(q|p) = U[q] − S[q] −
F(J , h).

We will refer to F[q] ≡ U[q] − S[q] as the functional Helmholtz free energy, also called
the non-equilibrium free energy in the context of non-equilibrium statistical physics [170].
Another term in use is ‘Gibbs free energy’ [164], which we have reserved for the thermodynamic
potential (38).

So far, nothing has been gained as the minimum is over all possible distributions q, including
the Boltzmann distribution itself. A practical approximation arises when a constraint is put on q,
leading to a family of trial distributions q. Often the minimization can then be carried out over
that family, yielding an upper bound to the Helmholtz free energy [164].
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In the context of the inverse problem, it is useful to derive the variational principles for other
thermodynamic potentials as well. Using the definition of Gibbs potential (38) and the variational
principle for the Helmholtz potential (43), we obtain

G(J , m) = max
h

{∑
i

himi + min
q

{U[q] − S[q]}
}

. (44)

By means of Lagrange multipliers, it is easy to show that this double extremum can be obtained
by a single conditional minimization,

G(J , m) = min
q∈G

⎧⎨
⎩−

∑
i<j

Jij〈σiσj〉q − S[q]

⎫⎬
⎭ , (45)

where the set G denotes all distributions q with a given 〈σi〉q = mi [164]. We will refer to the
functional G[q] = {−∑i<j Jij〈σiσj〉q − S[q]} as the functional Gibbs free energy defined on G.

Similarly, the variational principle can be applied to the entropy function S(χ , m), lead-
ing once again to a close relationship between statistical modelling and thermodynamics. The
entropy (34) is found to be

S(χ , m) = max
q∈S

{S[q]}, (46)

where S denotes distributions with 〈σi〉q = mi and 〈σiσj〉q = χij. This is nothing but the maximum
entropy principle [108]: the variational principle identifies the distribution with the maximum
information entropy subject to the constraints on magnetizations and spin correlations, which are
set equal to their sample averages (see the section on maximum entropy modelling above).

2.2.7. Mean-field theory

As a first demonstration of the variational principle, we derive the mean-field theory for the
inverse Ising problem. The starting point is an ansatz for the Boltzmann distribution (11) which
factorizes in the sites [164,209,215]

pMF(s) =
∏

i

1 + m̃isi

2
, (47)

thus making the different spin variables statistically independent of one another. The parameters
m̃i of this ansatz describe the spin magnetizations; each spin has a magnetization resulting from
the effective magnetic field acting on that spin. This effective field arises from its local magnetic
field hi, as well as from couplings with other spin. The mean field giving its name to mean-field
theory is the average over typical configurations of the effective field.

Using the mean-field ansatz, we now estimate the Gibbs free energy. Within the mean-field
ansatz, the minimization of the variational Gibbs potential (45) is trivial: there is only a sin-
gle mean-field distribution (47) that satisfies the constraint G that spins have magnetizations m,
namely m̃ = m. We can thus directly write down the mean-field Gibbs free energy

GMF(m, J) = −
∑
i<j

Jijmimj

+
∑

i

[
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

]
. (48)
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The equation for the couplings J follows from the second-order derivative of G(m, J), cf.
Equation (40)

(C−1)ij = −JMF
ij (i �= j). (49)

Similarly, the reconstruction of the magnetic field follows from the derivative of G(m, J) with
respect to mi, cf. Equation (39),

hMF
i = −

∑
j �=i

JMF
ij mj + artanhmi. (50)

This result establishes a simple relationship between the observed connected correlations and the
couplings between spins in terms of the inverse of the correlation matrix. The matrix inverse in
Equation (49) is of course much simpler to compute than the maximum over the likelihood (16)
and takes only a polynomial number of steps: Gauß-Jordan elimination for inverting an N ×
N matrix requires O(N3) operations, compared to the exponentially large number of steps to
compute a partition function or its derivatives.

The standard route to mean-field reconstruction proceeds somewhat differently, namely via
the Helmholtz free energy rather than the Gibbs free energy. Early work to address the inverse
Ising problem using the mean-field approximation was performed by Peterson and Ander-
son [176]. In [112], Kappen and Rodríguez construct the Helmholtz functional free energy
FMF

m̃ (J , h) given by Equation (43) under the mean-field ansatz (47). FMF
m̃ (J , h) is then minimized

with respect to the parameters of the mean-field ansatz m̃ by setting its derivatives with respect to
m̃ to zero. This yields equations which determine the values mMF

i of the magnetization parameters
that minimize the KL divergence between the mean-field ansatz and the Boltzmann distribution,
namely the well-known self-consistent equations

mMF
i = th

⎛
⎝hi +

∑
j �=i

Jijm
MF
j

⎞
⎠ . (51)

Using mMF
i as an approximation for the equilibrium magnetizations mi, one can derive the

so-called linear response approximation for the connected correlation function CMF−LR
ij ≡

(∂mMF
i /∂hj)(h). Taking derivatives of the self-consistent Equations (51) with respect to local

fields gives ∑
j

(
δij

1 − m2
i

− Jij

)
CMF−LR

jk = δik , (52)

where we have used the fact that diagonal terms of the coupling matrix are zero. Identifying the
result for the connected correlations CMF−LR

jk with the sample correlations Cjk leads to a system of
linear equations to be solved for the couplings [112]. However, to obtain Equation (52), we have
used that the diagonal elements Jii are zero. With these constraints, the system of Equations (52)
becomes over-determined and in general there is no solution. Although different procedures have
been suggested to overcome this problem [105,112,185], there seems to be no canonical way out
of this dilemma. The most common approach is to ignore the constraints on the diagonal elements
altogether and invert Equation (52) to obtain

JMF−LR
ij = δij

1 − m2
i

− (C−1)ij. (53)

This result agrees with the reconstruction via the Gibbs free energy except for the non-zero diago-
nal couplings, which bear no physical meaning and are to be ignored. No diagonal couplings arise



Advances in Physics 223

in the approach based on the Gibbs free energy since Equation (40) with j = i does not involve
any unknown couplings Jij.

2.2.8. The Onsager term and TAP reconstruction

The variational estimate of the Gibbs free energy (48) can be improved further. In 1977, Thouless,
Anderson, and Palmer (TAP) advocated adding a term to the Gibbs free energy

GTAP(J , m) = GMF(J , m) − 1

2

∑
i<j

J2
ij(1 − m2

i )(1 − m2
j ). (54)

This term can be interpreted as describing the effect of fluctuations of a spin variable on the
magnetization of that spin via their impact on neighbouring spins [218]. It is called the Onsager
term, which we will derive in Section 2.2.13 in the context of a systematic expansion around
the mean-field ansatz. For the forward problem, adding this term modifies the self-consistent
Equation (51) to the so-called TAP equation

mTAP
i = th

⎛
⎝hi +

∑
j �=i

Jijm
TAP
j − mTAP

i

∑
j

J2
ij(1 − (mTAP

j )2)

⎞
⎠ . (55)

In the inverse problem, the TAP free energy (54) gives the equation for the couplings based on
Equation (40)

(C−1)ij = −JTAP
ij − 2(JTAP

ij )2mimj. (56)

Solving this quadratic equation gives the TAP reconstruction [112,214]

JTAP
ij = −2(C−1)ij

1 +
√

1 − 8(C−1)ijmimj

, (57)

where we have chosen the solution that coincides with the mean-field reconstruction when the
magnetizations are zero. The magnetic fields can again be found by differentiating the Gibbs free
energy

hi = artanh(mi) −
∑
j �=i

JTAP
ij mj + mi

∑
j �=i

(JTAP
ij )2(1 − m2

j ). (58)

2.2.9. Couplings without a loop: mapping to the minimum spanning tree problem

The computational hardness of implementing Boltzmann machine learning (24) comes from the
difficulty of computing correlations under the Boltzmann measure, which can require a com-
putational time that scales exponentially with the system size. This scaling originates from the
presence of loops in the graph of couplings between the spins. Graphs for which correlations can
be computed efficiently are the acyclic graphs or trees, so it comes as no surprise that the first
efficient method to solve the inverse Ising problem was developed for trees already in 1968. This
was done by Chow and Liu [50] in the context of a product approximation to a multi-variate
probability distribution. While the method itself can be used as a crude approximation for models
with loops or as reference point for more advanced methods, the exact result by Chow and Liu
is of basic interest in itself as it provides a mapping of the inverse Ising problem for couplings
forming a tree onto a minimum spanning tree (MST) problem. MST is a core problem in compu-
tational complexity theory, for which there are many efficient algorithms. This section on Chow
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and Liu’s result also provides some of the background needed in Section 2.2.10 on the Bethe
ansatz and Section 2.2.11 on belief propagation.

We consider an Ising model whose pairwise couplings form a tree. The graph of couplings
may consist of several parts that are not connected to each other (in any number of steps along
connected node pairs), or it may form one single connected tree, but it contains no loops. We
denote the set of nodes (vertices) associated with a spin of the tree T by VT and the set of edges
(couplings between nodes) by ET . It is straightforward to show that in this case, the Boltzmann
distribution for the Ising model can be written in a pairwise factorized form

pT (s) =
∏
i∈VT

pi(si)
∏

(i,j)∈ET

pij(si, sj)

pi(si)pj(sj)

=
∏

(ij)∈ET

pij(si, sj)
∏
i∈VT

pi(si)
1−|∂i|. (59)

∂i denotes the set of neighbours of node i, so |∂i| is the number of nodes i couples to. The
distributions pi and pij denote the one-point and two-point marginals of pT .

The KL divergence (19) between the empirical distribution pD(s) and pT is given by

KL(pD|pT ) =
∑

s

pD(s) ln
pD(s)∏

i∈VT
pi(si)

∏
(i,j)∈ET

pij(si,sj)

pi(si)pj(sj)

. (60)

For a given tree, it is straightforward to show that the KL divergence is minimized when the
marginals pi and pij equal the empirical marginals pD

i and pD
ij . This gives

min
{pi,pij}

KL(pD|pT ) = −H +
∑
i∈VT

Hi −
∑

(ij)∈ET

Iij, (61)

where H = −∑{s} pD(s) ln pD(s) is the entropy of the empirical distribution pD, Hi =
−∑si

pD
i (si) ln pD

i (si) is the single site entropy and Iij is the mutual information between a pair of
spins

Iij =
∑
si,sj

pD
ij (si, sj) ln

pD
ij (si, sj)

pD
i (si)pD

j (sj)
. (62)

Assuming that the graph of couplings is an (unknown) tree and that empirical estimates of all pairs
of mutual informations are available, the inverse Ising problem can then be solved by minimizing
the KL divergence (60) over all possible NN−2 trees T. The first two terms in Equation (61) do
not depend on the choice of the tree, so only the last term needs to be minimized over, which is a
sum over local terms on the graph. The optimal tree topology Topt is thus given by

ETopt = argmin
{ET }

⎛
⎝−

∑
(ij)∈ET

Iij

⎞
⎠ .

This is where the mapping onto MST problem emerges: Topt connects all vertices of the graph
and its edges are such that the total sum of their weights is minimal. In our case, each edge
weight is the (negative) pairwise mutual information Iij between spin variables. Finding the MST
does not require an infeasible exploration of the space of all possible trees. On the contrary, it
can be found in a number of steps bounded by O(|V |2 ln |V |) by greedy iterative procedures
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which identify the optimal edges to be added at each step (V is the set of nodes in the data).
The most famous algorithms for the MST problem date back to the 1950s and are known under
the names of Prim’s algorithm, Kruskal’s algorithms, and Boruvka’s algorithm (see, eg. [150]).
In practice, one has to compute the empirical estimates of the mutual information from samples
and then proceed with one of the above algorithms. An interesting observation which makes the
Chow–Liu approach even easier to apply is that one may use as edge weights also the connected
correlations between spins [50].

Once the optimal tree Topt has been identified, we still need to find the optimal values of
the couplings Jij of the Ising model. This is, however, an easy task: the factorized form of the
probability measure over the tree (59) allows one to compute the couplings using the independent
pair approximation, see Section 2.2.12.

2.2.10. The Bethe–Peierls ansatz

The factorizing probability distribution (59) can also be used as an ansatz in situations where the
graph of couplings is not a tree. In this context,

pBP({si}) =
∏

i

pi(si)
∏

(i,j)∈E

pij(si, sj)

pi(si)pj(sj)
(63)

is called the Bethe–Peierls ansatz [27,174]. (i, j) ∈ E runs over pairs of interacting spins, or equiv-
alently over edges in the graph of couplings. One can parameterize the marginal distribution pi

and pij using the magnetization parameters m̃i and the (connected) correlation parameters C̃ij,

pi(si) = 1 + m̃isi

2
,

pij(si, sj) = (1 + m̃isi)(1 + m̃jsj) + C̃ijsisj

4
(64)

subject to the constraints

−1 ≤ m̃i ≤ 1,

−1 + |m̃i + m̃i| ≤ C̃ij + m̃im̃j ≤ +1 − |m̃i − m̃j|. (65)

The Bethe–Peierls ansatz can be compared to the mean-field ansatz (47), which assigns a mag-
netization (or an effective field) to each spin. The Bethe–Peierls ansatz goes one step further;
it assigns to each coupled pair of spins correlations as well as magnetizations. These corre-
lations and magnetizations are then determined self-consistently. An important feature of the
Bethe–Peierls ansatz (63) is that its Shannon entropy (3) can be decomposed into spin pairs

S[pBP] =
∑

i

S[pi] +
∑
(i,j)

(S[pij] − S[pi] − S[pj]). (66)

For graphs containing loops, the entropy generally contains terms involving larger sets of spins
than pairs, a situation we will discuss in Section 2.2.12.

The Bethe–Peierls ansatz is well defined, and indeed exact, when the couplings form a tree.
When the graph of couplings contains loops, the probability distribution (63) is not normalized
and the ansatz is not well defined. In that case, the Bethe–Peierls ansatz is an uncontrolled approx-
imation, although recently progress has been made in the control of the resulting error [49,169].
We start with the assumption that there are no loops.
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To address the inverse Ising problem, we use the Bethe–Peierls ansatz (63) as a variational
ansatz to minimize the functional Gibbs free energy (45). Again the constraint G in (45) implies
m̃ = m. The remaining minimization is over the correlation parameters C̃,

GBP(J , m) = min
C̃

⎧⎨
⎩−

∑
(i,j)

Jij〈σiσj〉pBP − S[pBP]

⎫⎬
⎭ (67)

and yields

GBP(J , m) = −
∑
(ij)

Jij(C
BP
ij + mimj)

+
∑

i

(1 − zi)
∑

si

1 + misi

2
ln

1 + misi

2

+
∑
(i,j)

∑
si,sj

(1 + misi)(1 + mjsj) + CBP
ij sisj

4

× ln
(1 + misi)(1 + mjsj) + CBP

ij sisj

4
, (68)

where CBP ist the optimal value of C̃ and satisfies

Jij =
∑
si,sj

sisj

4
ln

(1 + misi)(1 + mjsj) + CBP
ij sisj

4
. (69)

zi denotes the number of neighbours (interaction partners with non-zero couplings) of node i.
From Equation (40), the equation for the couplings can be found again by equating the second
derivative of the Gibbs free energy with the inverse of the correlation matrix, that is,

(C−1)ij = CBP
ij

(CBP
ij )2 − (1 − m2

i )(1 − m2
j )

(j �= i). (70)

This quadratic equation can be solved for CBP
ij ; inserting the solution

CBP
ij = 1

2

{
1

(C−1)ij
−
√

1

(C−1)2
ij

− 4(1 − m2
i )

2(1 − m2
j )

2

}
(71)

for (C−1)ij �= 0 and CBP
ij = 0 for (C−1)ij = 0 into Equation (69) gives the couplings of the Bethe–

Peierls reconstruction [160,185]. For the special case mi = 0, one obtains a particularly simple
result

JBP
ij = − 1

2 arsinh[2(C−1)ij] (j �= i). (72)

In graph theory, this formula can be related to the expression for the distance in a tree whose
links carry weights specified by pair correlations between spin pairs [15]. Correspondingly, the
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magnetic fields follow from the first derivative of the Gibbs free energy as in Equation (39) giving

hBP
i = (1 − zi)artanh mi −

∑
j∈∂i

JBP
ij mj

+
∑
j∈∂i

∑
si,sj

si + mjsisj

4
ln

(1 + misi)(1 + mjsj) + CBP
ij sisj

4
. (73)

In Section 2.2.13, we will show that the Bethe–Peierls ansatz, and hence the resulting reconstruc-
tion, is exact for couplings forming a tree. However, the reconstruction of couplings and magnetic
fields based on the Bethe–Peierls ansatz can also be applied to cases where the couplings do not
form a tree. Although the results then arise from an uncontrolled approximation, the quality of
the reconstruction can still be rather good. For a comparison of the different approaches, see
Section 2.4.

2.2.11. Belief propagation and susceptibility propagation

Belief propagation is a distributed algorithm to compute marginal distributions of statistical mod-
els, like pi(si) and pij(si, sj) of the preceding sections. Again, it is exact on trees, but also gives a
good approximation when the graph of couplings is only locally treelike (so any loops present are
long). The term belief propagation is used in the machine learning [171] and statistical physics
communities, in coding theory the approach is known as the sum-product algorithm [81]. Belief
propagation shares a deep conceptual link with the Bethe–Peierls ansatz; Yedidia et al. [245]
showed that belief propagation is a numerical scheme to efficiently compute the parameters of
Bethe–Peierls ansatz.

A detailed exposition and many applications of belief propagation can be found in the
textbook by Mézard and Montanari [144]. Here, we briefly introduce the basics and discuss appli-
cations to the inverse Ising problem. We start by considering the ferromagnetic Ising model in
1D, that is, a linear chain of N spins. The textbook solution of this problem considers the par-
titions function of the system when the last spin is constrained to take on the values sN = ±1,
ZN (+1), and ZN (−1). The corresponding partition functions for the linear chain with N + 1 spins
are linked to the former via the so-called transfer matrix [20]. The partition function for a system
of any size can be computed iteratively starting from a single spin and extending the 1D lattice
with each multiplication of the transfer matrix. In fact, the transfer matrix can also be used to
solve the Ising model on a tree [70]. Belief propagation is similar in spirit, but can be extended
(as an approximation) also to graphs which are not trees. The best book-keeping device is again
a restricted partition function, namely Zi→j(si). It is defined as the partition function of the part
of the system containing i when the coupling present between spins i and j has been deleted from
the tree and spin i is constrained to take on si. (Deleting the edge (i, j) splits the tree containing i
and j into two disconnected parts.) On a tree we obtain the recursion relation

Zi→j(si) = ehisi
∏

k∈∂i\j

(∑
sk

Zk→i(sk) eJiksisk

)
, (74)

which can be computed recursively starting from leaves of the tree (nodes connected to a single
edge only). In statistical physics, Equation (74) is called the cavity recursion for partition func-
tions, since deleting a link can be thought of as leaving a ‘cavity’ in the original system. The
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partition function for the entire tree with spin i constrained to si is then

Zi(si) = ehisi
∏
k∈∂i

(∑
sk

Zk→i(sk) eJiksisk

)
. (75)

The marginal distribution pi(si) can be calculated by normalizing pi(si) ∝ Zi(si) and the marginal
distribution pij(si, sj) can be calculated by normalizing pij(si, sj) ∝ Zi→j(si) eJijsisj Zj→i(sj).

The power of the cavity recursion (76) lies in its application to graphs which are not trees. It is
particularly effective when the graph of couplings is at least locally treelike, so any loops present
are long. To extend the cavity recursion as an approximation to graphs which are not trees, it
makes sense to consider normalized quantities and define πi→j(si) = Zi→j(si)/

∑
s Zi→j(s) with

the recursion

πi→j(si) ∝ ehisi
∏
k∈∂i

(∑
sk

πk→i(sk) eJiksisk

)
(76)

leading to the estimate of the two-point marginals πij(si, sj) ∝ eJijsisjπi→j(si)πj→i(sj). (This step is
necessary, as deleting the link (i, j) on a tree leads to two disjoint subtrees with separate partition
functions and zero connected correlations. On a locally treelike graph, correlations between si and
sj can still be small once the link (i, j) has been cut, but the tree does not split into disjoint parts
with separate partition functions.) Associating each edge (i, j) in the graph with particular values
of πi→j(si) and πj→i(sj), one can update these values in an iterative scheme which replaces them
with the right-hand side of Equation (76) at each step. The fixed point of this procedure obeys
Equation (76). In this context, πi→j(si) is termed a ‘message’ that is being ‘passed’ between
nodes. Belief propagation is an example of a message passing algorithm.

Belief propagation has been used to solve the inverse Ising problem in two different ways. In
the first, belief propagation is used to approximately calculate the magnetizations and correlations
given some parameters of the Ising model, and then fields and couplings are updated according to
the Boltzmann learning rule (24). To estimate the correlations, one has to define additional mes-
sages also for the susceptibilities of each spin together with their update rules. This approach,
termed susceptibility propagation, was developed by Welling and Teh [239,240] for the forward
problem. Susceptibility propagation thus solves the ‘forward’ problem, that is, it offers a compu-
tationally efficient approximation to the correlations and magnetizations, which are then used for
Boltzmann machine learning.

A sophisticated variant of susceptibility propagation was developed by Mézard and
Mora [8,145] specifically for the inverse Ising problem, where also the couplings are updated at
each step. This approach gives the same reconstruction as the Bethe–Peierls reconstruction from
Section 2.2.10. However, the iterative equations can fail to converge, even when the analytical
approach (71)–(73) gives valid approximate solutions [160].

2.2.12. Independent pair approximation and the Cocco–Monasson adaptive-cluster expansion

We expect the Bethe–Peierls ansatz to work well when the couplings are locally treelike and loops
are long. Conversely, we expect the ansatz to break down when the couplings generate many short
loops. Cocco and Monasson developed an iterative procedure to identify clusters of spins whose
couplings form short loops and evaluate their contribution to the entropy (34) [53,54]. In the
context of disordered systems, the expansion of the entropy in terms of clusters of connected
spins is known as Kikuchi’s cluster variational method [114,246].

The Cocco–Monasson adaptive-cluster expansion (ACE) directly approximates the entropy
potential (34). We start by considering the statistics of a single spin variable described by its
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magnetization mi, with the entropy

S(1)(mi) =
∑

si

1 + misi

2
ln

1 + misi

2
. (77)

The simplest entropy involving coupled spins is the two-spin entropy

S(2)(mi, mj, χij) =
∑
si,sj

1 + misi + mjsj + χijsisj

4

× ln
1 + misi + mjsj + χijsisj

4
. (78)

When the two spins are statistically independent, we obtain S(2)(mi, mj, χij) = S(1)(mi) + S(2)(mj).
Hence, the residual entropy which accounts for the correlation between the two spins is
�S2(mi, mj, χij) ≡ S(2)(mi, mj, χij) − S(1)(mi) − S(1)(mj). To make the notation uniform, we also
define �S(1)(mi) ≡ S(1)(mi). A very simple approximation is based on the assumption that the
N-spin entropy (34) is described by pairwise terms

S(χ , m) ≈
∑

i

�S(1)(mi) +
∑
(i,j)

�S(2)(mi, mj, χij), (79)

where the pair (i, j) denotes a cluster of two distinct spins. The couplings and fields can then be
obtained via differentiation as in Equation (35),

Jij =
∑
si,sj

sisj

4
ln

1 + misi + mjsj + χijsisj

4
,

hi = 2 − N

2
ln

1 + mi

1 − mi

+
∑
j �=i

∑
si,sj

si

4
ln

1 + misi + mjsj + χijsisj

4
. (80)

This result is called the independent pair approximation for the couplings, see [187,192].
(Expressions (8a) and (8b) in [187] differ slightly from Equation (80) due to a typo.) When
the topology of couplings is known and forms a tree, Equation (79) gives the exact entropy of
the system when the second sum is restricted to pairs of interacting spins (see Sections 2.2.9
and 2.2.10). In this case, Equation (80) gives the exact couplings.

However, in most cases the topology is not known, so second sum in Equation (79) runs over
all pairs of spins. In this case, Equation (79) is only a (rather bad) approximation to the entropy.
However, the independent pair approximation (79) can serve as starting point for an expansion
that includes clusters of spins of increasing size

S(χ , m) =
∑

i

�S(1)(mi)

+
∑
(i,j)

�S(2)(χij, mi, mj)

+
∑
(i,j,k)

�S(3)(χij, χjk , χkl, mi, mj, mk) + · · · . (81)
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In this expansion, the contribution from clusters consisting of three spins is

�S(3) = S(3)(χij, χjk , χkl, mi, mj, mk)

− S(2)(χij, mi, mj) − S(2)(χjk , mj, mk)

− S(2)(χki, mk , mi) + S(1)(mi)

+ S(1)(mj) + S(1)(mk), (82)

where we have dropped the argument of �S(3) to simplify the notation. The residual entropies of
higher clusters are defined analogously.

The evaluation of S(3) is not as straightforward as S(2) and S(1), but still tractable. In general,
the evaluation of �S(k) requires the computation of order 2k steps and therefore becomes quickly
intractable. Cocco and Monasson argue that the contribution of �Sk decreases with k and can be
neglected from a certain order on [53]. This inspires an adaptive procedure to build up the library
of all clusters which contribute significantly to the total entropy of the system. Starting from 1-
clusters, one constructs all 2-clusters by merging pairs of 1-clusters. If the entropy contribution of
the new cluster is larger than some threshold, the new cluster is added to a list of clusters. One then
constructs the 3-clusters, 4-clusters in the same way until no new cluster gives a contribution to
the entropy exceeding the threshold. The total entropy and the reconstructed couplings and fields
are updated each time a new cluster is added. This procedure fares well in situations when there
are many short loops, like in a regular lattice in more than one dimension or when the graph of
couplings is highly heterogeneous and some subsets of spins are strongly connected among each
other.

The approaches introduced so far are each built on an ansatz for the Boltzmann distribution
such as the mean-field ansatz (47) or the Bethe–Peierls ansatz (63): They are all uncontrolled
approximations. In the next sections, we discuss controlled approximations based on either an
expansion in small couplings or small correlations.

2.2.13. The Plefka expansion

In 1982, Plefka gave a systematic expansion of the Gibbs free energy of the Sherrington–
Kirkpatrick (SK) model [202] in the couplings between spins [179]. Already 8 years earlier,
Bogolyubov Jr. et al. had used similar ideas in the context of the ferromagnetic Ising model on
a lattice [33]. The resulting estimate of the partition function can also be used to derive new
solutions of the inverse Ising problem. Zeroth- and first-order terms of Plefka’s expansion turn
out to yield mean-field theory (48), the second-order term gives the TAP free energy (54), and
correspondingly the reconstructions of couplings (49) and (57).

Plefka’s expansion is a Legendre transformation of the cumulant expansion of the Helmholtz
free energy F(J , h). Plefka introduced a perturbation parameter λ to the interacting part of the
Hamiltonian

H(s) = H0(s) + λV (s), (83)

where H0(s) = −∑i hisi and V (s) = −∑i<j Jijsisj. The perturbation parameter λ serves to dis-
tinguish the different orders in the strength of couplings and will be set to one at the end of the
calculation. The standard cumulant expansion of the Helmholtz free energy Fλ(J , h) then reads

Fλ(J , h) = F(0)(h) − λ〈V 〉0 + λ2

2
[〈V 2〉0 − 〈V 〉2

0] + · · · , (84)

where F(0)(h) =∑i 2cosh hi and 〈〉0 denotes the average with respect to the Boltzmann distri-
bution corresponding to the non-interacting part H0 of the Hamiltonian. Next, we perform the
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Legendre transformation of Fλ(J , h) with respect to h to obtain the perturbative series for the
Gibbs free energy

Gλ = G(0) + λG(1) + λ2G(2) + · · · , (85)

where we suppressed the dependence of G on J and m to simplify the notation. Using the
definition of the Gibbs free energy (38), we solve

Gλ(J , m) =
∑

i

himi + Fλ(J , h) (86)

with the local fields satisfying

mi = −∂Fλ(J , h)

∂hi
. (87)

Plugging the perturbative series

hλ = h(0) + λh(1) + λ2h(2) + · · · (88)

into Equation (87) and re-expanding the right-hand side in λ, one finds successive orders of h. In
particular, the lowest two orders are found easily as

h(0) = artanhmi,

h(1) = −
∑

j

Jijmj.
(89)

This gives the Gibbs free energy up to first order in λ,

G(0)(m) =
∑

i

{
1 + mi

2
ln

1 + mi

2
+ 1 − mi

2
ln

1 − mi

2

}
,

G(1)(m) = −
∑
i<j

Jijmimj.
(90)

Continuing to the second order, one obtains the Onsager term (54)

G(2)(m) = −1

2

∑
i<j

J2
ij(1 − m2

i )(1 − m2
j ). (91)

A systematic way to perform this expansion has been developed by Georges and Yedidia [85]
leading to

G(3)(m) = −2

3

∑
(i,j)

J3
ij mi(1 − m2

i )mj(1 − m2
j )

−
∑
(i,j,k)

JijJjkJki(1 − m2
i )(1 − m2

j )(1 − m2
k),
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G(4)(m) = 1

12

∑
(i,j)

J4
ij(1 − m2

i )(1 − m2
j )

× (1 + 3m2
i + 3m2

j − 15m2
i m2

j )

−
∑

(i,j,k,l)

JijJjkJklJli(1 − m2
i )(1 − m2

j )(1 − m2
k)(1 − m2

l )

− 2
∑
(i,j,k)

J2
ij JjkJkimi(1 − m2

i )mj(1 − m2
j )(1 − m2

k). (92)

The mean-field and TAP reconstructions of couplings (53) and (57) then follow from
Equation (40) and the first derivatives of G with respect to the magnetizations gives the cor-
responding reconstructions of the magnetic fields (50) and (58). Higher order terms of the Plefka
expansion are discussed by Georges and Yedidia [85,244], but have not yet been applied to the
inverse Ising problem. For a fully connected ferromagnetic model with all couplings set to J /N
(to ensure an extensive Hamiltonian), one finds that already the second-order term G(2) vanishes
relative to the first in the thermodynamic limit. For the SK model of a spin glass [202], cou-
plings are of the order of N−1/2, again to make the energy extensive. In that case, G(0), G(1),
and G(2) turn out to be extensive, but the third order vanishes in the thermodynamic limit. In
specific instances (not independently and identically distributed couplings), higher order terms of
the Plefka expansion may turn out to be important.

The terms in Jij, J2
ij , J3

ij , etc. appearing in Equations (90)–(92) resum to the results of the
Bethe–Peierls ansatz [85]. If the couplings form a tree, these terms are the only ones contributing
to the Gibbs free energy; terms like JijJjkJki in Equation (92) quantify the coupling strengths
around a closed loop of spins and are zero if couplings form a tree. This finally shows that the
Bethe–Peierls ansatz is exact on a tree. However, when the couplings contain loops, these terms
contribute to the Gibbs free energy. Beyond evaluating the Plefka expansion at different orders,
one can also resum the contributions from specific types of loops to infinite order. We will discuss
such an approach in the next section.

2.2.14. The Sessak–Monasson small-correlation expansion

The Sessak–Monasson expansion is a perturbative expansion of the entropy S(χ , m) in terms
of the connected correlation Cij ≡ χij − mimj [200]. For zero correlations Cij, the couplings Jij

should also be zero. This motivates an expansion of the free energy F(J , h) in terms of the
connected correlations around a non-interacting system; the Legendre transformation (34) then
yields the perturbative series of the entropy function S(χ , m). Equivalently, this is an expansion
of Equations (23) for the fields and the couplings in the connected correlation C. To make the
perturbation explicit, we replace C by λC, where the perturbation parameter λ is to be set to one
at the end. The couplings and fields are the solutions of

mi = −∂F(J , h)

∂hi
,

λCij + mimj = −∂F(J , h)

∂Jij
,

(93)

where the latter can be replaced by

λCij = −∂2F(J , h)

∂hi∂hj
. (94)
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We then expand the solution h and J in a power series around the uncorrelated case λ = 0

hλ = h(0) + λh(1) + λ2

2
h(2) + · · · ,

Jλ = J (0) + λJ (1) + λ2

2
J (2) + · · · .

(95)

At the zeroth order in the connected correlations, spins are uncorrelated, so J (0) = 0 and h(0) =
artanh(mi). The expansion of model parameters induces an expansion of the Hamiltonian

Hλ = H (0) + λH (1) + λ2

2
H (2) + · · · , (96)

where

H (k)(s) = −
∑
i<j

J (k)
ij sisj −

∑
i

h(k)
i si. (97)

Likewise, the free energy F(J , h) = − ln Z(J , h) (or the cumulant generator) can be expanded in
λ,

Fλ = F(0) + λF(1) + λ2F(2) + · · ·

= F(0) − λ〈H (1)〉0 + λ2

2
[−〈H (2)〉0 + 〈(H (1))2〉0 − 〈H (1)〉2

0] + · · · , (98)

where the subscript 〈〉0 refers to the thermal average under the zeroth-order Hamiltonian H (0)(s).
For example, the first-order term is

F(1) = −〈H (1)〉0

=
∑
i<j

J (1)
ij th(h0

i ) th(h0
j ) +

∑
i

h(1)
i th(h0

i ). (99)

Equations (93) and (94) then read

mi = − ∂Fλ

∂h(0)
i

= −∂F(0)

∂h(0)
i

− λ
∂F(1)

∂h(0)
i

− λ2 ∂F(2)

∂h(0)
i

− · · · ,

λCij = − ∂2Fλ

∂h(0)
i ∂h(0)

j

= − ∂2F(0)

∂h(0)
i ∂h(0)

j

− λ
∂2F(1)

∂h(0)
i ∂h(0)

j

− · · · .

(100)

Evaluating these equations successively gives solutions for the different orders of h(k)
i and J (k)

ij ,
which in turn yield expressions for reconstructed fields and couplings when the magnetizations m
and the connected correlations C are identified with their empirical values. Recalling the zeroth-
order solution h(0)

i = artanh(mi), the first-order contribution of the free energy (99) leads to

J (1)
ij = Cij

[1 − (mi)2][1 − (mj)2]
,

h(1)
i = −

∑
j �=i

J (1)
ij mj.

(101)

Higher order terms are given in [200]. Also in [200], Sessak and Monasson give a diagrammatic
framework suitable for the derivation of higher order terms in the couplings and sum specific
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terms to infinite order. Roudi et al. [192] simplified the results yielding the reconstruction

Jij = −(C−1)ij + J IP
ij − Cij

(1 − m2
i )(1 − m2

j ) − (Cij)2
(102)

for couplings with i �= j, where J IP
ij is the independent pair approximation (80). This result can

be interpreted as follows [192]: The first term is the mean-field reconstruction, which is of a
sub-series of the Sessak–Monasson expansion. One then adds the sub-series that constitutes the
independent pair approximation (80). The last term is the overlap of the two series: the mean-
field reconstruction of two spins considered independently, which needs to be subtracted. The
resummation of other sub-series for special cases is also possible [200]; in [105] loop diagrams
are resummed to obtain a reconstruction that is particularly robust against sampling noise.

2.3. Logistic regression and pseudolikelihood

Pseudolikelihood is an alternative to the likelihood function (16) and leads to the exact inference
of model parameters in the limit of an infinite number of samples [4,102,156]. The computational
complexity of this approach scales polynomially with the number of spin variables N, but also
with the number of samples M. In practice, this is usually much faster than exact maximization
of the likelihood function, whose computational complexity is exponential in the system size.
Pseudolikelihood inference was developed by Julian Besag in 1974 in the context of statistical
inference of data with spatial dependencies [25]. It is closely related to logistic regression. While
pseudolikelihood and regression have been used widely in statistical inference [26,110,182], this
approach was not well known in the physics community until quite recently [7,62,71,156].

Our derivation focuses on the physical character of regression analysis, which we then link to
Besag’s pseudolikelihood. Key observation is that although the likelihood function (16) depends
on the model parameters in a complicated way, one can simplify this dependence by separating
different groups of parameters. Let us consider how the statistics of a particular spin variable σi

depends on the configuration of all other spins. We split the Hamiltonian into two parts

H(s) = Hi(s) + H\i(s \ si)

= −hisi − si

∑
j �=i

Jijsj + H\i(s \ si), (103)

such that the first part Hi(s) depends on the magnetic field hi and the couplings of spin i to other
spins Jij, while the part H\i(s \ si) does not. s \ si denotes all spin variables except spin si. This
splitting of variables is possible since the statistics of σi conditioned on the remaining spins {sj}j �=i

is fully captured by hi and Jij, (j ∈ 1, . . . , N).
The expectation values of σi can be computed based on the partition function

Z(J , h) =
∑
s\si

2cosh

⎛
⎝hi +

∑
j �=i

Jijsj

⎞
⎠ e−H\i(s\si), (104)

where only spin i has been summed over. Differentiating the partition function in this form with
respect to hi and Jij yields the expectation values

〈σi〉 =
〈

th

⎛
⎝hi +

∑
k �=i

Jikσk

⎞
⎠〉 (105)
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〈σiσj〉 =
〈
σj th

⎛
⎝hi +

∑
k �=i

Jikσk

⎞
⎠〉 , (106)

where on both sides the thermal average is over the Boltzmann measure e−H(s)/Z, but on the
right-hand side only the spins s \ si are averaged over.

In statistical physics, these equations are known as Callen’s identities [44] and have been used
to compute coupling parameters from observables in Monte Carlo simulations for the numeri-
cal calculation of renormalization-group trajectories [213]. While these equations are exact, the
expectation values on the right-hand sides still contain an average over the N − 1 spins other than
i.

The crucial step and the only approximation involved is to replace the remaining averages in
Equation (106) with the sample means

〈σi〉D =
〈

th

⎛
⎝hPL

i +
∑
k �=i

JPL
ik σk

⎞
⎠〉

D

,

〈σiσj〉D =
〈
σj th

⎛
⎝hPL

i +
∑
k �=i

JPL
ik σk

⎞
⎠〉

D

.

(107)

We now have a system of non-linear equations to be solved for hi and Jij for fixed i and various
j, j �= i. Standard methods to solve such equations are Newton–Raphson or conjugated gradient
descent [93,180].

With these steps, we have broken down the problem of estimating the magnetic fields and the
full coupling matrix to N separate problems of estimating one magnetic field and a single row of
the coupling matrix for a specific spin i. Crucially, the Boltzmann average over 2N−1 states has
been replaced with an average over all configurations of the samples. As a result, the computation
of Equation (107) uses not only the sample magnetizations and correlations (sufficient statistics),
but all spin configurations that have been sampled. The time required to evaluate Equation (107)
is thus linear in the number of samples M. In general, the coupling matrix inferred in this way
will be asymmetric, Jij �= Jji due to sampling noise. A practical solution is to use the average
1
2 (Jij + Jji) as estimate of the (symmetric) coupling matrix.

The set of Equations (107) can be viewed as solving a gradient-descent problem of a logistic
regression [182]. The statistics of σi conditioned on the values of the remaining spins {sj}j �=i can
be written as

p(si|{sj}j �=i) = 1

2

⎡
⎣1 + si th

⎛
⎝hi +

∑
j �=i

Jijsj

⎞
⎠
⎤
⎦

= 1

1 + e−2si(hi+
∑

j �=i Jijsj)
. (108)

From this expression for the conditional probability, the ith row of couplings Ji∗ and the field hi

are simply the coefficients and the intercept in the multi-variate logistic regression of the response
variable σi on the variables {sj}j �=i. The log-likelihood for the ith row of couplings Ji∗ and the
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magnetic field hi of this regression problem is

Li
D(Ji∗, hi) = 1

M

∑
μ

ln p(sμ
i |{sμ

j }j �=i)

= 1

M

∑
μ

ln
1

2

⎡
⎣1 + sμ

i th

⎛
⎝hi +

∑
j �=i

Jijs
μ
j

⎞
⎠
⎤
⎦ . (109)

Setting the derivatives of this likelihood function with respect to the magnetic field hi and the
entries of Ji∗ to zero recovers (107).

Consider all couplings and fields together, one can sum (109) over all rows of couplings to
obtain the so-called (log)-pseudolikelihood [26]

LPL(J , h) =
∑

i

Li
D(Ji∗, hi), (110)

which can be maximized with respect to all rows of the coupling matrix, yielding an asymmet-
ric matrix as discussed above. The pseudolikelihood can also be maximized within the space
of symmetric matrices, although the maximization problem is harder [7]; rather than solving N
independent gradient-descent problems in N variables we have a single problem in N(N + 1)/2
variables. In practice, maximising the pseudolikelihood without the symmetry constraint on the
coupling matrix is preferred because of its simplicity and efficiency.

The reconstruction based on maximizing the pseudolikelihood is of a different nature than the
previous methods, which approximated the Boltzmann measure. The Boltzmann measure spec-
ifies the probability of observing a particular spin configuration s in equilibrium. On the other
hand, the conditional probability ln p(sμ

i |{sμ
j }j �=i) only gives the probability of observing a given

spin si conditioned on the remaining spin variables and cannot be used to generate the configu-
rations of all spins. Yet, as a function of the model parameters, the log-pseudolikelihood (109)
has the same maximum as the likelihood (16) in the limit of M → ∞, when the sample aver-
age in Equation (107) coincides with the corresponding expectation values under the Boltzmann
distribution.

Curiously, the pseudolikelihood can also be used to obtain a variant of the mean-field
and TAP reconstructions. We follow Roudi and Hertz [189] and replace expressions such as
〈th(hi +∑j �=i Jijσj)〉 by th(hi +∑j �=i Jij〈σj〉), thus replacing the effective local field by its mean.
The resulting approximation of Callen’s identity (105) is

mMF
i = th

⎛
⎝hi +

∑
j �=i

Jijm
MF
j

⎞
⎠ , (111)

which is the mean-field equation (51) for the magnetizations. Then, replacing σi by 〈σi〉 + (σi −
〈σi〉) in Equation (106) and expanding the equation to the lowest orders in (σi − 〈σi〉) gives

CPL−MF
ij = 1

1 − (mMF
i )2

∑
k �=i

JikCPL−MF
kj . (112)

Identifying the pseudolikelihood mean-field magnetizations mMF
i and connected correlations

CPL−MF
ij with the sample magnetizations mi and sampled correlations Cij, this linear equation
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can be solved for JPL−MF
ik for a fixed i, giving

JPL−MF
ik = [1 − m2

i ]
∑
j �=i

Cij × [(C\i)
−1]jk , (113)

where C\i is the submatrix of the correlation matrix with row and column i removed. This recon-
struction is closely related, but not identical to the mean-field reconstruction (53). In particular,
the diagonal terms are naturally excluded. Numerical experiments show that this reconstruc-
tion gives a good correlation between the reconstructed and true couplings, but the magnitude
of the couplings is systematically underestimated. Continuing the expansion to second order in
(σi − 〈σi〉) leads to a variant of the TAP reconstruction (57).

2.4. Comparison of the different approaches

Table 1 gives a classification of the different reconstruction methods based on the thermodynamic
potentials they employ and the approximations used to evaluate them. Some of these approxima-
tions are exact in particular limits, and fail in others. This has consequences for how well a
reconstruction method works in a given regime. For instance, the TAP equations become exact
for fully connected systems (with couplings between all spin pairs drawn from a distribution with
variance 1/N) in the thermodynamic limit. Hence, we expect the TAP reconstruction to perform
well when couplings are uniformly distributed across spin pairs, and couplings are sufficiently
weak, so there is no ergodicity breaking (see Section 2.5). Similarly, the Bethe–Peierls approxi-
mation is exact when the non-zero couplings between spin pairs form a tree. Hence, we expect the
Bethe–Peierls reconstruction to work perfectly in this case, and to work well when the graph of
couplings is locally treelike (so there are no short loops). The ACE, on the other hand, is expected
to work well even when there are short loops.

In this section, we compare the reconstruction methods discussed so far. We consider the
reconstruction problem of an Ising model (2) with couplings J0

ij between pairs of spins defined on
a certain graph. We explore two aspects of the model parameters: the type of the interaction graph
and the coupling strength (temperature). We consider three different graphs: the fully connected
graph, a random graph with fixed degree as a representative of graphs with long loops, and the
2D square lattice as a representative of graphs with short loops. In this section, we denote the
couplings of the model underlying the data by the superscript ‘0’ to distinguish them from the
inferred couplings. For each graph, every edge is assigned a coupling J0

ij drawn from a certain

distribution. We use the Gaussian distribution with zero mean and standard deviation β/
√

N
for couplings on the fully connected graph, leading to the SK model. For the tree and square

Table 1. Classification of reconstruction methods based on the thermodynamic potentials used and the
approximations employed to evaluate them.

Associated potential Exact Variational approximation Perturbative expansion

F(J , h) Convex non-linear
optimization

G(J , m) Mean-field, Bethe–Peierls Plefka, mean-field, TAP,
Bethe–Peierls

S(χ , m) Independent pair
approximation,
Cocco–Monasson

Sessak–Monasson

Note: Pseudolikelihood maximization falls outside this classification scheme, as it is not based on an approximation of the Boltzmann
measure.
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lattice, the uniform distribution on the interval [−β, β] is used for the couplings. By tuning β, we
effectively change the coupling strength. For the SK model, external magnetic fields field h0

i are
drawn uniformly from the interval [−0.3β, 0.3β].

At each value of β, we generate M samples (spin configurations) drawn from the Boltzmann
distribution. Each sample is obtained by simulating 104N Monte Carlo steps using the Metropolis
transition rule starting from a random configuration. Although this is not always sufficient to
guarantee that the system has reached equilibrium, the results are not sensitive to increasing this
breaking-in time.

Figure 4(top left) compares the reconstructed couplings with the couplings of the original
model at β = 1.3. We chose this value as it results in couplings which are sufficiently large so
that the different methods perform differently (we will see that at low β, all methods perform
similarly). On the fully connected graph, the ACE performs poorly as it sets too many couplings
to zero. Mean-field reconstruction somewhat overestimates large couplings [16]. This error also
affects the estimate of the magnetic fields. The TAP and Bethe–Peierls reconstructions correct this
overestimate quite effectively. The reconstruction by pseudolikelihood stands out by providing
an accurate reconstruction of the model parameters. One consequence is that in Figure 4, the
symbols indicating the results from pseudolikelihood are largely obscured by those from the
exact maximization of the likelihood (16). We also compare the correlations and magnetizations
based on the reconstructed parameters with those of the original model. The correlations and

Figure 4. Reconstructing a fully connected Ising model with different methods. The scatter plots are gen-
erated from a particular realization of the SK model with N = 20, β = 1.3 and M = 15,000 samples
(configurations drawn from the Boltzmann measure, see text). The colour legend indicates the different
reconstruction methods: mean-field (MF), TAP, Bethe–Peierls (BP), Sessak–Monasson (SM), the ACE,
maximum pseudolikelihood (MPL), and ML. The top plots show the reconstructed couplings/fields against
the couplings/fields of the original model. The bottom plots show the connected correlations and magne-
tizations calculated from M samples generated using the underlying model parameters (on the x-axis) and
the same quantities generated using the inferred parameters (y-axis). The Sessak–Monasson expansion was
computed as described in [200] with the series in the magnetic fields truncated at the third order excluding
the loop terms. The ACE was carried out using the ACE-package [17,53] with a maximum cluster size k = 6
and default parameters. The numerical maximization of the likelihood and pseudolikelihood was done using
the Eigen 3 wrappers [89] for Minpack [155].
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magnetizations are sampled as described above. We find significant bias in the results from all
methods except for likelihood maximization and pseudolikelihood maximization (bottom panels
of Figure 4).

Next, we explore how the reconstruction quality depends on the coupling strength β and the
number of samples M. To this end, we define the relative reconstruction error

γJ =
√√√√∑i<j(Jij − J0

ij)
2∑

i<j(J
0
ij)

2
, (114)

which compares the reconstructed couplings J to the couplings of the original model underlying
the data J0. Figure 5, large panel, shows the relative reconstruction error γJ as a function of
coupling strength β. At low β, the connected correlations are small, so all reconstruction methods
are equally limited by sampling noise: The relative reconstruction error increases with decreasing
β as the couplings become small relative to the sampling error. This is also compatible with the
result that at weak couplings the relative errors of all methods decrease with an increasing number
of samples, as seen in the six small panels of Figure 5.

We find that the pseudolikelihood reconstruction outperforms the other (non-exact) methods
over the entire range of β, and correctly reconstructs the model parameters even in the glassy
phase at strong couplings [7]. This is because the conditional statistics of a single spin (con-
ditioned on the other spins) is correctly described by Equation (108) at any coupling strength.
Although at strong couplings, the error of the pseudolikelihood reconstruction grows with β, this
can be compensated by increasing the number of samples (Figure 5, bottom right). This is not so
for all other approximate methods (Figure 5, small panels): At high β, the approximation each
method is based on breaks down, which cannot be compensated by a larger number of samples.

Figure 6 shows the reconstruction errors of different methods for a random graph of fixed
degree (column A) and the square lattice (column B). Again, pseudolikelihood performs well in
these cases, as does the Bethe–Peierls reconstruction. The ACE shows a remarkable behaviour:
For both graphs, it has a very small reconstruction error at weak coupling strength, but breaks
down at strong couplings. At weak couplings, where all other methods have similar reconstruc-
tion errors arising from sampling noise, however the ACE appears to avoid this source of error.
The ACE explicitly assumes some couplings are exactly zero, so the reconstruction is biased
towards graphs which are not fully connected. It thus uses extra information beyond the data.

Our comparison of the different methods is based on the knowledge of the underlying cou-
plings, so the reconstructed couplings can be compared to the true underlying ones. In practice,
the underlying couplings are not available. However, the likelihood (16) can be evaluated for dif-
ferent reconstructions, with the better reconstruction resulting in a higher value of the likelihood.
Alternatively, the correlations and magnetizations of the reconstructed model can be compared
with those observed in the data as in Figure 4. Whether regularizing terms improve the recon-
struction can be decided based on statistical tests such as the Bayesian information criterion [198]
or the Akaike information criterion [2].

An aspect not discussed so far is the inference of the interaction graph, this is, the distinc-
tion between non-zero and zero couplings. In practice, there is always some ambiguity between
small non-zero couplings and couplings which are exactly zero, particularly at high sampling
noise. A standard practice is to set a threshold and cut off small couplings below the threshold.
Two exceptions are the ACE and the pseudolikelihood reconstruction. The ACE has a built-in
procedure to set some couplings to zero. For the pseudolikelihood reconstruction, the problem
is related to feature selection. Many methods for feature selection are available from statis-
tics [93]; however, there is no consensus on the best method for the inverse Ising problem. One
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Figure 5. Reconstruction of a fully connected Ising model as a function of the coupling strength β and
the number of samples M. The top panel shows the reconstruction error γJ defined by Equation (114) as a
function of β at a constant M = 15,000 samples. The smaller panels show γJ as a function of the number
of samples M at different coupling strengths β and for different methods (mean-field, TAP, Bethe–Peierls,
Sessak–Monasson, ACE, and maximum pseudolikelihood). For these plots, a larger system size N = 64 was
used, so evaluating the likelihood is not feasible; at lower system sizes we found pseudolikelihood performs
as well as the exact maximization of the likelihood in the parameter range considered.

possibility is adding an �1-regularization term (known as Lasso, see Section 2.2) to the pseudo-
likelihood [182]. However, there is a critical coupling strength, below which the �1 regularization
of the pseudolikelihood fails to recover the interaction graph [149].

2.5. Reconstruction and non-ergodicity

At strong couplings, the dynamics of a system can become non-ergodic, which affects the
sampling of configurations, and hence the reconstruction of parameters. Reconstruction on the



Advances in Physics 241

Figure 6. Reconstruction of the Ising model on a random graph of fixed degree z = 3 (column A) and on the
square lattice (column B) as a function of coupling strength β and number of samples M. The underlying
couplings J0

ij are drawn from the uniform distribution on the interval [−β, +β], and the external magnetic
fields are set to zero for simplicity. The system size is N = 64. The top panel shows the reconstruction error
γJ defined by Equation (114) as a function of β at constant M = 15,000 samples. The smaller panels show
γJ as a function of the number of samples M at different coupling strength β and for different methods
(mean-field, TAP, Bethe–Peierls, Sessak–Monasson, ACE, and maximum pseudolikelihood).

basis of non-ergodic sampling is a fundamentally difficult subject where little is known to
date.

At low temperatures (or strong couplings), a disordered spin system can undergo a phase tran-
sition to a state where spins are ‘frozen’ in different directions. This is the famous transition to
the spin glass phase [146]. At the spin glass transition, the Gibbs free energy develops multiple
valleys with extensive barriers between them (thermodynamic states). These free energy barri-
ers constrain the dynamics of the system, and the system can remain confined to one particular
valley for long times. A signature of this ergodicity breaking is the emergence of non-trivial
spin magnetizations: At the phase transition, the self-consistent equations (51) and (55) develop
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multiple solutions for the magnetizations mi, corresponding to the different orientations the spins
freeze into. The appearance of multiple free energy minima and the resulting ergodicity breaking
has long been recognized as an obstacle to mean-field reconstruction [137]. In fact, all meth-
ods based on self-consistent equations (mean-field, TAP, Bethe–Peierls reconstruction) fail in the
glassy phase [145].

The mean-field equations (51) describe individual thermodynamic states, not the mixture of
many states that characterizes the Boltzmann measure. At large couplings (or low temperatures),
mean-field and related approaches turn out not to be limited by the validity of self-consistent
equations like (51) or (55), but by the identification of observed magnetizations and correla-
tions with the corresponding quantities calculated under one of the self-consistent equations.
The former may involve averages over multiple thermodynamic states, whereas each solution of
the self-consistent equations describes a separate thermodynamic state. A solution to this prob-
lem is thus to consider correlations and magnetizations within a single thermodynamic state,
where the mean-field result (52) is valid within the limitations of mean-field theory. The differ-
ent thermodynamic states (free energy minima) can be identified from the data by searching for
clusters in the sampled spin configurations. Collecting self-consistent equations from different
minima and jointly solving these equations using the Moore–Penrose pseudo-inverse allows the
reconstruction of couplings and fields [161].

The emergence of multiple states can lead to another problem: the samples need not come
from the Gibbs measure in the first place, but might be taken only from a single thermodynamic
state. In [35], the reconstruction from samples from a single thermodynamic state is studied for
the concrete case of the Hopfield model. In the so-called memory regime, the Hopfield model has
a number of thermodynamic states (attractor states) which scales linearly with the system size.
Samples generated from a single run of the model’s dynamics will generally come from a single
state only. (The particular state the system is ‘attracted’ to depends on the initial conditions.)
In this regime, the cavity-recursion equations (76) typically have multiple solutions, just like
the TAP Equations (55) in the low-temperature phase. These solutions can be identified as fixed
points of belief propagation, see Section 2.2.10. For a system where couplings do not form a
tree, each individual fixed point only approximates the marginal probability distributions inside
a single non-ergodic component of the full Gibbs measure. However, this approximation can
become exact in the thermodynamic limit. (A necessary condition is that loops are sufficiently
long, so connected correlations measured in a particular state decay sufficiently quickly with
distance, where distance is measured along the graph of non-zero couplings.)

Assuming that one is able to find a fixed point of the cavity-recursion equations, it is a straight-
forward computation to express the Boltzmann weight (1) in terms of the full set of the belief
propagation marginals and of the ratio between the cavity-recursion partition function and the
true partition function of the model. For any fixed point, labelled by the index α, the Boltzmann
weights are

p(s) = Zα
BP

Z(J , h)

∏
i

pα
i (si)

∏
i<j

pα
ij(si, sj)

pα
i (si)pα

j (sj)
. (115)

This result also applies to more general forms of the energy function [35]. It was first derived
for the zero-temperature case in the context of the so-called tree-reweighted approximation to the
partition function [117].

The probability distribution (115) can be used as the starting point for reconstruction in at least
two ways. The simpler one consists in replacing pα

ij(si, sj) and pα
i (si) by their sample estimates

inside state α and then solving the identity between (115) and (1) with respect to J and h: Z(J , h)

cancels out and one is left with the independent pair approximation of Section 2.2.12. Solving
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this identity can be done using belief propagation, see Section 2.2.11 and [35]. This approach
suffers from the fact that in general there is no belief propagation fixed point for real data sets.

A more promising approach is to guide the belief propagation equations to converge to a fixed
point corresponding to an appropriate ergodic component close to the empirical data. In fact,
ignoring the information that the data come from a single ergodic component results in a large
reconstruction error as one is effectively maximizing the wrong likelihood: the (reduced) free
energy − ln Z appearing in the likelihood (16) needs to be replaced by a free energy restricted to a
single thermodynamic state. An algorithmic implementation of this idea consists in restricting the
spin configurations to a subset of configuration �d(ξ), e.g. formed by a hypersphere of diameter
d centered around the centroid ξ of the data samples. The system is forced to follow the measure

pd(s)∝I[s ∈ �d(ξ)] eβ(
∑

i<j Jijsisj+
∑

i hisi), (116)

where the indicator function I[s ∈ �d(ξ)] for the set of configurations �d(ξ) is one for s ∈ �d(ξ)

and zero otherwise. The BP approach can be used to enforce that both magnetizations {m(d)
i } and

correlations {c(d)
ij } are computed within the subspace �d(ξ), see [35] for algorithmic details. In

this way, the reconstruction of the couplings and local fields can be done by maximising the
correct likelihood, i.e. replacing the partition function in the log-likelihood (16) with the partition
function computed over the subset of configurations �d(ξ). In this way, the parameters describing
all thermodynamic states can be inferred from configurations of the system sampled from a single
state.

Inverse problems in non-ergodic systems remain a challenging topic with many open ques-
tions, for instance if the approach applied above to the Hopfield model can be extended to infer
generic couplings from samples from a single thermodynamic state.

2.6. Parameter reconstruction and criticality

Empirical evidence for critical behaviour has been reported in systems as diverse as neural
networks [21,22] and financial markets [41,80], leading to the intriguing hypothesis that some
information-processing systems may be operating at a critical point [151]. A key signature of
criticality is broad tails in some quantities, for instance the distribution of returns in a financial
market, or avalanches of neural activity, whose sizes are distributed according to a power law. A
second sign of criticality involves an inverse statistical problem: A statistical model like the Ising
system with parameters chosen to match empirical data (such as neural firing patterns or financial
data) shows signs of a phase transition [141,151,152,211,221,223]. Specifically, the heat capac-
ity of an Ising model with parameters Jij and hi reconstructed from data shows a peak in the heat
capacity as a function of the temperature. Temperature is introduced by changing the couplings
to βJij and βhi. Varying the inverse temperatures β, the heat capacity Ch ≡ −β2∂〈H〉/∂β shows
a pronounced maximum near or at β = 1, that is, at the model parameter values inferred from the
data. The implication is that the parameters of the reconstructed model occupy a very particular
area in the space of all model parameters, namely one resulting in critical behaviour.

An example is shown in Figure 7. It is based on recordings of 160 neurons in the retina of a
salamander taken by the Berry lab [221,223]. As described in Section 1.1, time is discretized into
intervals of 20 ms duration, and the spin variable si takes on the values +1 if neuron i fires during
a particular interval, and −1 if it does not fire. Correlations and magnetizations are then computed
by averaging over 297 retinal stimulation time courses, where during each time course, the retina
is subjected to the same visual stimulation of 953 × 20ms duration. During most time intervals,
a neuron is typically silent. As a result, spin variables (each representing a different neuron) have
negative magnetizations, with mean and standard deviation −0.93 ± 0.06 over all spins. We note
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Figure 7. The Ising model with parameters matching the statistics of neural firing patterns. Couplings and
external fields are generated from neural data [221,223] as described in the text. The system size here is
N = 30. Left: Fields and couplings turn out not to be independent, but obey a linear–affine relationship,
which is due to neural firing rates and hence magnetizations being approximately constant across neurons.
Right: We simulate the model with reconstructed couplings at different temperatures using Monte Carlo sim-
ulations. The heat capacity (solid line) shows a peak near β = 1, and the magnetization m = (1/N)

∑
i mi

(dashed, axis on the right) goes from zero to minus one as the inverse temperature is increased.

that the magnetizations are fairly homogeneous across spins. Connected correlations between
spins are small, with a slight bias towards positive correlations; mean and standard deviation
over all spin pairs are 0.006 ± 0.017. Both points turn out to be important.

We use the pseudolikelihood method of Section 2.3 to reconstruct the model parameters from
the firing patterns the first N = 30 neurons. Similar results are found for different system sizes.
Figure 7(left) shows that the reconstructed model parameters indeed occupy a particular region of
the space of model parameters: External fields hi are linked to the sum over couplings

∑
j Jij by a

linear–affine relationship. If the magnetizations {mi} are all equal to some m, such a relationship
follows directly from the mean-field equation hi = artanh mi −∑j Jijmj, along with slope −m
and zero-offset artanh m.

Now, we simulate the Ising model with the reconstructed parameters, but rescale both cou-
plings and fields by β. At inverse temperature β = 1, magnetizations and correlations are close
to the magnetizations and correlations found in the original data. However, away from β = 1,
different fields hi = (1/β)artanhmi − (1/β)

∑
j Jijmj (in the mean-field approximation) would be

needed to retain the same magnetization. However, as the fields remain fixed, the magnetizations
change instead, reaching −1(0) in the limit β → ∞(0). Between these limits, the magnetizations,
and hence the energy changes rapidly, leading to a peak in the heat capacity. For small, largely
positive connected correlations Cij we expect couplings to scale as 1/N, resulting in a phase tran-
sition described by the Curie–Weiss model. Indeed, a finite-size analysis shows the peak getting
sharper and moving closer to β = 1 as the system size is increased [141,151,152,211,223]. From
this, we posit that the peak in the heat capacity indeed signals a ferromagnetic phase transition,
however, not necessarily one underlying the original system. Instead, we generically expect such
a ferromagnetic transition whenever a system shows sufficient correlations and magnetizations
that are neither plus nor minus one: The corresponding couplings and fields then lie near (not at)
a critical point, which is characterized by the emergence of non-zero magnetizations. Changing
the temperature will drive the system to either higher or lower magnetizations, and away from
the critical point.

This effect may not be limited to a ferromagnetic transition induced by the empirical magne-
tization. In [141], Mastromatteo and Marsili point out a link between the criticality of inferred
models and information geometry [13,157]: susceptibilities like the magnetic susceptibility can
be interpreted as the entries in the so-called Fisher information matrix used to calculated the
covariances of ML estimates [56]. A high susceptibility implies that different parameter values
can be distinguished on the basis of limited data, whereas low susceptibilities mean that the
likelihood does not differ sufficiently between different parameter values to significantly favour
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one parameter value over another. Thus, a critical point corresponds to a high density of models
whose parameters are distinguishable on the basis of the data [141].

3. Non-equilibrium reconstruction

In a model of interacting magnetic spins such as Equation (2), each pair of spins i < j contributes
a term Jijsisj to the Hamiltonian. The resulting effective fields on a spin i,

∑
j Jijsj + hi, involve

symmetric couplings Jij = Jji; spin i influences spin j as much as j influences i. A stochastic
dynamics based on such local fields, such as Monte Carlo dynamics, obeys detailed balance,
which allows one to determine the steady-state distribution [83].

In applications such as neural networks or gene regulatory networks discussed in Sections 1.1
and 1.2, we have no reason to expect symmetric connections between neurons or between genes;
a synaptic connection from neuron i to neuron j does not imply a link in the reverse direction.
Stochastic systems generally relax to a steady state at long times, where observables no longer
change with time. However, in systems with asymmetric couplings, the resulting NESS violates
detailed balance and differs from the Boltzmann distribution. As a result, none of the results of
Section 2 on equilibrium reconstruction apply to systems with asymmetric couplings.

In this section, we consider the inverse Ising problem in a non-equilibrium setting. We first
review different types of spin dynamics, and then turn to the problem of reconstructing the
parameters of a spin system from either time-series data or from samples of the NESS.

3.1. Dynamics of the Ising model

The Ising model lacks a prescribed dynamics, and there are many different dynamical rules that
lead to a particular steady-state distribution. One particularly simple dynamics is the so-called
Glauber dynamics [86], which allows the derivation of a number of analytical results. Other
dynamical rules can be used for parameter reconstruction in the same way at least in principle.
What dynamical rule is suitable for particular systems is however an open question. An approach
which sidesteps this issue is to apply the maximum entropy principle to stochastic trajectories,
known as the principle of maximum caliber [181]. In [139,158], such an approach is applied to
analyse neural dynamics.

3.1.1. Sequential Glauber dynamics

Glauber dynamics can be based on discrete time steps, and at each step either one or all spins
have new values assigned to them according to a stochastic rule. We first consider a sequential
dynamics: In the transition from time t to t + 1, the label of a spin variable is picked randomly,
say i. The value of the spin variable σi is then updated, with si = ±1 sampled from the probability
distribution

p(si(t + 1) | s(t)) = exp{si(t + 1)θi(t)}
2 cosh(θi(t))

, (117)

where the effective local field is denoted

θi(t) =
∑

j

Jijsj(t) + hi. (118)

One way to implement this dynamics is to set

si(t + 1) = sign(θi(t) + ξ(t)), (119)

where ξi(t) is drawn independently at each step from the distribution p(ξ) = 1 − th2(ξ).
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If the couplings Jij between spins are symmetric and there are no self-couplings Jii, the sequen-
tial Glauber dynamics (117) obeys detailed balance, and the distribution of spin configurations at
long times relaxes to a steady state described by the Boltzmann distribution (11). However, the
NESS arising at long times from Glauber dynamics with non-symmetric couplings is generally
not known. Nevertheless, there are several exact relations that follow from Equation (117), and
those can be exploited for inference.

Suppose that spin i is picked for updating in the step from time t to t + 1. Averaging over the
two possible spin configurations at time t + 1, we obtain the magnetization

mi(t + 1)s(t) ≡ 〈σi(t + 1)〉s(t) = th(θi(t)), (120)

where the average is conditioned on the configuration of all other spins at time t through the effec-
tive local field θi. If spin i is not updated in this interval, the conditioned magnetization is trivially
mi(t + 1)s(t) = si(t). In the steady state, effective fields �i =∑j Jijσj(t) + hi and spins configu-
rations σ are random variables whose distribution no longer depends on time; their averages
give

mi ≡ 〈σi〉 = 〈th(�i)〉 =
〈

th

⎛
⎝∑

j

Jijσj + hi

⎞
⎠〉 . (121)

Similarly, the pair correlation between spins at sites i �= j at equal times obeys in the NESS

χij ≡ 〈σiσj〉 = 1
2 〈σi th(�j)〉 + 1

2 〈σj th(�i)〉, (122)

with the two terms arising from instances where the last update of i was before the last update of j,
and vice versa. Likewise, the pair correlation of spin configurations at consecutive time intervals
is in the steady state

φij ≡ 〈σi(t + 1)σj(t)〉 = 1

N
〈th(�i)σj〉 + N − 1

N
χij. (123)

These relationships are exact, but are hard to evaluate since the averages on the right-hand sides
are over the statistics of spins in the NESS, which is generally unknown. Below, these equations
will be used in different ways for the reconstruction of the model parameters.

The dynamics (117) defines a Markov chain of transitions between spin configurations dif-
fering by at most one spin flip. Equivalently, one can also define an asynchronous dynamics
described by a Master equation, where time is continuous and the time between successive spin
flips is a continuous random variable.

3.1.2. Parallel Glauber dynamics

Glauber dynamics can also be defined with parallel updates, where all spin variables can change
their configurations in the time interval between t and t + 1 according to the stochastic update
rule

p(s(t + 1) | s(t)) = exp{∑i si(t + 1)θi(t)}∏
i 2 cosh(θi(t))

. (124)

This update rule defines a Markov chain consisting of stochastic transitions between spin con-
figurations. The resulting dynamics is not realistic for biological networks, as the synchronous
update requires a central clock. It is, however, implemented easily in technical networks, and
is widely used for its simplicity. For a symmetric coupling matrix, the steady state can still be
specified in closed form using Peretto’s pseudo-Hamiltonian [175].
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Magnetizations and correlations in the NESS obey simpler relationships for parallel updates
than for sequential updates; with the same arguments as above, one obtains

mi = 〈th(�i)〉,
χij = 〈th(�i) th(�j)〉,
φij = 〈th(�i)σj〉.

(125)

3.2. Reconstruction from time series data

The reconstruction of system parameters is surprisingly easy on the basis of time series data,
which specifies the state of each spin variable at M successive time points. An application where
such data is widely available is the reconstruction of neural networks from temporal recordings of
neural activity. Given a stochastic update rule like Equations (117) or (124), the (log-) likelihood
given a time series D = {s(t)} is

LD(J , h) = 1

M

M−1∑
t=1

ln p(s(t + 1) | s(t)). (126)

The likelihood can be evaluated over any time interval, both in the NESS or even before the
steady state has been reached. This approach is not limited to non-equilibrium systems; whenever
time series data are available, it can be used equally well to reconstruct symmetric couplings.

3.2.1. Maximization of the likelihood

For Glauber dynamics with parallel updates, the likelihood is

LD(J , h) = 1

M

M−1∑
t=1

∑
i

[si(t + 1)θi(t) − ln 2 cosh(θi(t))]. (127)

Unlike the likelihood (16) arising in equilibrium statistics, the non-equilibrium likelihood can be
evaluated easily, as the normalization is already contained in the term cosh(θ). Derivatives of the
likelihood (127) are

∂LD

∂hi
(J , h) = 1

M

M−1∑
t=1

t[si(t + 1) − th θi(t)],

∂LD

∂Jij
(J , h) = 1

M

M−1∑
t=1

[si(t + 1)sj(t) − th(θi(t))sj(t)].

(128)

These derivatives can be evaluated in MN2 computational steps and can be used to maximize the
likelihood by gradient ascent [189].

The derivatives of the likelihood can also be written as time averages over the data, which
makes a conceptual connection with logistic regression apparent [189]. The derivative with
respect to fields gives ∂LD/∂hi = 〈σi(t + 1)〉D

T − 〈th(
∑

j Jijσj(t) + hi)〉D
T and similarly for the

derivative with respect to the couplings (the subscript refers to the temporal average, the super-
script to configurations taken from the data). Parallel Glauber dynamics (124) defines a logistic
regression giving the statistics of σi(t + 1) as a function of {sj(t)}. In a hypothetical data set of P
trajectories of the system D = {sp(t)}M

t=1, each realization can be considered as M − 1 realizations
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(sp
i (t + 1), {sp

j (t)}) of such regression pairs. The discussion in Section 2.3 then applies directly,
giving rise to regression equations for fields and couplings.

For Glauber dynamics with sequential updates, the situation is not quite so simple. In each
time interval one spin is picked for updating, but if this spin is assigned the configuration it had
before it is impossible to tell which spin was actually chosen [249]. The solution is to sum the
likelihood (126) over all spins (each of which might have been the one picked for updating with
probability 1/N). It turns out that both the intervals when a spin was actually flipped, and the
intervals when no spin was flipped are required for the inference of couplings and fields.

3.2.2. Mean-field theory of the NESS

As in the case of equilibrium reconstruction, mean-field theory offers an approximation to the
ML reconstruction that can be evaluated quickly. The speed-up is not quite as significant as it is
in equilibrium, because the likelihood (127) can already be computed in polynomial time in N
and M.

In Section 2.2.13, the mean-field equation (51) and the TAP equation (55) were derived in
an expansion around a factorizing ansatz for the equilibrium distribution. Kappen and Span-
jers showed that, remarkably, exactly the same equations emerge as first- and second-order
expansions around the same ansatz for the NESS as well [113]. Suppose that the (unknown)
steady-state distribution of configurations p(s) in the NESS is ‘close’ to another distribution with
the same magnetizations, q(s) =∏i((1 + misi)/2). According to Equation (121), this distribu-
tion describes the NESS of a different model with fields h(q)

i = artanhmi and couplings J (q)

ij = 0.
Next, we consider a small change in these fields and couplings and ask how the magnetizations
change. To first order this change is given by the derivatives of Equation (121) evaluated at
hi = h(q)

i and Jij = 0

�mi =
∑

j

∂〈si〉
∂hj

∣∣∣∣
q

�hj +
∑

k,j

∂〈si〉
∂Jkj

∣∣∣∣
q

�Jkj + · · ·

= (1 − m2
i )�hi + (1 − m2

i )
∑

j

�Jijmj + · · · . (129)

Setting �hi = hi − h(q)

i and �Jij = Jij − J (q)

ij = Jij and demanding that magnetizations remain

unchanged under this change of fields and couplings gives to first order h(q)

i = hi +∑j Jijmj and
thus

mi = th

⎛
⎝hi +

∑
j

Jijmj

⎞
⎠ . (130)

Carrying the expansion (129) to second order in �hj and �Jjk yields the TAP equa-
tions (55) [113]. As the equations for the magnetizations (121) and correlations (125) are identical
for sequential and parallel dynamics, the mean-field and TAP equations apply equally to both
types of dynamics. Roudi and Hertz [188] extended these results to time scales before the NESS
is reached using a generating functional approach.

The next step is to apply the mean-field approximation to the correlations (125) for paral-
lel Glauber updates [188,250]. For sequential updates, analogous result can be derived from
Equations (122) and (123). We expand the effective local field �i = hi +∑j Jijmj +∑j Jijδσj

around the mean field θMF
i = hi +∑j Jijmj writing δσi ≡ σi − mi. Expanding the th �i -term of
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the two-time pair correlation (125) in a formal expansion in powers of δσ gives

φij = 〈th(�i)σj〉
= 〈th θMF

i σj〉 + (1 − th2θMF
i )

∑
l

Jil〈δσlσj〉 + · · ·

= mimj + (1 − m2
i )
∑

l

Jil(χlj − mlmj) + · · · . (131)

To first order, this equation can be read as a matrix equation in the connected correlations func-
tions, Dij ≡ φij − mimj =∑m,l AimJmlClj with Aim = δim(1 − m2

i ) and Cij = χij − mimj. Inverting
this relationship leads to the mean-field reconstruction

JMF = A−1DC−1, (132)

based on sample averages of magnetizations and connected correlations in the NESS. The recon-
struction based on the TAP equation can be derived analogously [188,250]; the result is of the
same form as Equation (132) with Aim = δim(1 − m2

i )(1 − Fi), where Fi is the smallest root of

Fi(1 − Fi)
2 = (1 − m2

i )
∑

j

(JMF)2
ij(1 − m2

j ). (133)

3.2.3. The Gaussian approximation

For an asymmetric coupling matrix, with no correlation between Jij and Jji, the statistics of the
effective local fields in the NESS is remarkably simple [147]: In the thermodynamic limit, �i

turns out to follow a Gaussian distribution at least in some regimes. This distribution is char-
acterized by a mean θMF

i , standard deviation �i, and covariance εij. Using the definition of the
effective local field (118), these parameters are linked to the spin observables by

gi = hi +
∑

j

Jijmj,

�2
i =

∑
lk

JilClkJik ,

εij =
∑

lk

JilClkJjk .

(134)

The key idea is that one can transform back and forth between {σi(t)} and {�i(t)} via

�(t) = Jσ (t) + h,

σ (t) = J−1(�(t) − h)
(135)

and evaluate the correlation functions within the Gaussian theory. With θi = θMF
i + √

�ix and
θj = θMF

j +√�jy, where x and y are univariate Gaussian random variables, one obtains from
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Dik = 〈th(�i)σk〉 − 〈th(�i)〉〈σk〉∑
k

JjkDik = 〈th(�i)(�j − hj)〉 − 〈th(�i)〉〈�j − hj〉

= 〈th(θMF
i +

√
�ix)

√
�jy〉

= εij〈1 − th2(θMF
i +

√
�ix)〉. (136)

In the last step, we have used the fact that covariances between spin variables are small [147].
Inserting the result for the covariance (134) gives again an equation of the same form as
Equation (132), however, with Aim = δim

∫
dx(1/

√
2π) e−x2/2[1 − th2(θMF

i + √
�ix)]. Mean-

field theory neglects the fluctuations here and renders this term as 1 − m2
i , whereas the fluc-

tuations can be captured more accurately under the Gaussian theory. However, Aim cannot be
determined directly from the data alone, but also require the couplings; Mézard and Sakellariou
[147] give an iterative scheme to infer the parameters of the effective local fields (134) as well
as the coupling matrix and magnetic fields. The typical-case performance of the Gaussian theory
in the thermodynamic limit has been analysed within the framework of statistical learning [10],
finding the Gaussian theory breaks down at strong couplings and a small number of samples.

The Gaussian distribution of local fields is not limited to the asymmetric Ising model. In fact,
the asymmetric Ising model is one particular example from a class of models called generalized
linear models. In this model class, the Gaussian approximation has been used in the context
of neural network reconstruction [227] already prior to its application to the asymmetric Ising
model.

3.2.4. Method comparison

We compare the results of the mean-field approximation, the Gaussian approximation, and the
maximization of the exact likelihood (127). As in Section 2.4, we draw couplings from a Gaussian
distribution with mean zero and standard deviation β/

√
N , but now couplings J0

ij are statistically
independent of J0

ji , so the matrix of couplings is in general asymmetric. Fields are drawn from a
uniform distribution on the interval [−0.3β, 0.3β]. We then sample a time series of M = 15,000
steps by parallel updates under Glauber dynamics (124). The scatter plots in the top row of
Figure 8 compares couplings and fields reconstructed by different methods with the couplings and
fields of the original model. It shows that couplings are significantly underestimated by the mean-
field reconstruction, a bias which is avoided by the Gaussian theory. The right-hand plot shows
the relative reconstruction error (114) against β. As in the equilibrium case shown in Figure 5,
reconstruction by any method is limited at small β by sampling noise. At strong couplings β,
mean-field theory breaks down. Also at strong couplings, the iterative algorithm for Gaussian
approximation reconstruction converges very slowly and stops when the maximum number of
iterations is reached (here set to 50,000 steps).

3.3. Outlook: reconstruction from the steady state

Time series data are not available in all applications. This prompts the question how to recon-
struct the parameters of a non-equilibrium model from independent samples of the steady state.
It is clear that, unlike for equilibrium systems, pairwise correlations are insufficient to infer cou-
plings: The matrix of correlations is symmetric, whereas the matrix of couplings is asymmetric
for non-equilibrium systems. Hence, there are twice as many free parameters as there are observ-
ables. Similarly, using an equilibrium model like Equation (1) (maximum entropy model) on data
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Figure 8. Reconstructing the asymmetric Ising model from time series. The scatter plots in the upper panels
compare the reconstructed couplings and fields with the couplings and fields underlying the original model.
The system size is N = 64, the standard deviation of the original couplings is β/

√
N with β = 1.5, the

original fields are uniformly distributed between [−0.3β, 0.3β], and M = 15,000 time steps are sampled.
The bottom plot gives the reconstruction error as a function of β, see text.

generated by a non-equilibrium model would give parameters matching the two-spin observables,
but entirely different from the true parameters underlying the data.

One solution uses three-spin correlations to infer the couplings [63]. One problem of this
approach is that connected three-spin correlations are small since the effective local fields are
well described by a multi-variate Gaussian distribution (see Section 3.2.3).

A second approach uses perturbations of the NESS: We measure one set of pair correlations
at certain (unknown) model parameters, and then a second set of pair correlations of a perturbed
version of the system. Possible perturbations include changing one or several of the couplings by
a known amount, changing the magnetic fields, or fixing particular spins to a constant value. This
generates two sets of coupled equations specifying two symmetric correlations matrices, which
can be solved for one asymmetric coupling matrix. Conceptually, such an approach is well known
in biology, where altering parts of a system and checking the consequences is a standard mode
of scientific inquest. Neural stimulation can lead to a rewiring of neural connections, and the
effects of this neural plasticity can be tracked in neural recordings [183]. An exciting development
is optogenetic tools, which allow to stimulate and monitor the activity of individual neurons
in vivo [220]. In the context of inferring gene regulatory networks from gene expression data,
perturbation-based approaches have been used both with linear [217] and non-linear models of
gene regulation [148,159], see also Section 1.2. In this context, it is also fruitful to consider
the genetic variation occurring in a population of cells as a source of perturbations. Such an
approach has already been used in gene regulatory networks [186,253], and with the expansion
of tools to analyse large numbers of single cells [43,248], it may soon spread to other types of
networks.
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4. Conclusions

At the end of this overview, we step back and summarize the aims and motivations behind the
inverse Ising problem, discuss the efficacy of different approaches, and outline different areas of
research that may involve the statistical mechanics of inverse problems in the future.

Motivation. The inverse Ising problem arises in the context of very different types of questions
connected with the inference of model parameters. The first and most straightforward question
appears when data actually is generated by a process obeying detailed balance and has pairwise
couplings between binary spins. The problem of inferring the parameters of such a model can then
be phrased in terms of the equilibrium statistics (11), the maximization of the likelihood (16), and
the use of approximation schemes discussed in Section 2.

The second question arises when data are generated by a different, and possibly entirely
unknown type of process, and we seek a statistical description of the data in terms of a sim-
pler model matching only particular aspects of the observed data. An example is models with
maximum entropy given pairwise correlations (Section 2.2.3) used to describe neural data in
Section 1.1.

The assumptions behind the Ising model (pairwise couplings, binary spins, etc.) can be
relaxed. For instance, multi-valued Potts spin variables have been used extensively in models
of biological sequences [194,238]. The extension of the Ising model to models with three- and
four-spin couplings has not been used yet in the context of inference. Nevertheless, for many of
the methods of Section 2, the extension beyond pairwise couplings would be straightforward. A
much larger rift lies between equilibrium and non-equilibrium models. Parameter inference of a
non-equilibrium model is often based on data beyond independent samples of the steady state,
specifically time-series data.

Methods. The practical question how to infer the couplings and fields that parametrize an
Ising model has been answered using many different approximations with different regimes of
validity. Section 2.4 gives an overview. For data sampled from the equilibrium distribution (1),
the pseudolikelihood approach of Section 2.3 gives a reconstruction close to the optimal one (in
fact, asymptotically close in the number of samples). However, this is paid for by a computational
effort that scales with the number of samples. For the non-equilibrium regime and a time series of
configurations sampled from the stochastic dynamics, the likelihood of a model can be evaluated
exactly comparatively easily.

Both the pseudolikelihood and the likelihood of a time series can be understood in the lan-
guage of regression. Thus a single framework links two of the most successful approaches, in
both the equilibrium and non-equilibrium setting. Regression singles out one spin variable as a
dependent variable and treats the remainder as independent variables. It then characterizes the
statistics of the dependent variable given configurations of the independent variables.

The application of novel concepts to the inverse Ising problem and the development of new
algorithms continues. An exciting new direction is interaction screening [130,232]. Vuffray,
Misra, Lokhov, and Chertkov introduce the objective function

1

M

M∑
μ=1

eHi(sμ) = 1

M

M∑
μ=1

exp

⎧⎨
⎩−

∑
j �=i

Jijs
μ
i sμ

j − his
μ
i

⎫⎬
⎭ (137)

to be minimized with respect to the ith column of the coupling matrix and the magnetic field on
spin i by convex optimization. Hi(s) denotes the part of the Hamiltonian containing all terms in si,
see Section 2.3. Sparsity or other properties of the model parameters can be effected by appropri-
ate regularization terms. This objective function aims to find those parameters which ‘screen the
interactions’ (and the magnetic field) in the data, making the sum over samples in Equation (137)
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as balanced as possible. To illustrate the appeal of this objective function, we look at the infi-
nite sampling limit, where the summation over samples in the objective function (137) can be
replaced by a summation over the configurations, reweighted by the Boltzmann distribution with
the true couplings J∗ and fields h∗,

1

M

M∑
μ=1

eHi(sμ) ≈
∑
s\si

1

Z(J∗, h∗)
e
∑

k>j;k,j �=i J∗
kjsksj+

∑
k �=i h∗

k sk

×
∑

si

e−∑j(Jij−J∗
ij )sisj−(hi−h∗

i )si . (138)

Since the last sum as a function of Jij and hi (for a fixed i) is convex and even when being reflected
around J∗

ij and h∗
i , so is the whole objective function. It follows immediately that this objective

function has a unique global minimum at Jij = J∗
ij and hi = h∗

i .
Of course, the sample average over eHi(s) is affected by sampling fluctuations when the number

of samples is small. However, nevertheless the minimum of this objective function nearly satu-
rates the information theoretic bounds on the reconstruction of sparse Ising models of Santhanam
and Wainwright [193] (see Section 2.2.4).

The flat histogram method in Monte Carlo simulations uses a similar rebalancing with respect
to the Boltzmann measure [234]. Also, there may be conceptual links between interaction screen-
ing and the fluctuations theorems like the Jarzynski equality [106], which also take sample
averages over exponentials of different thermodynamic quantities.

Another recent development concerning the sparse inverse Ising problem is the use of
Bayesian model selection techniques by Bulso et al. [38].

More to come. Over the last two decades, interest in inverse statistical problems has been
driven by technological progress and this progress is likely to continue opening up new appli-
cations. Beyond the extrapolation of technological developments, there are several broad areas
at the interface of statistical mechanics, statistics, and machine learning where inverse statistical
problems like the inverse Ising problem might play a role in the future.

• Stochastic control theory. Stochastic control theory seeks to steer a stochastic system
towards certain desired states [111]. An inverse problem arises when the parameters
describing the stochastic system are only partially known. As a result, its response to
changes in external control parameters (‘steering’) must be predicted on the basis of its past
dynamics. A recent application is the control of cell populations, specifically populations
of cancer cells [77]. Such cell populations evolve stochastically due to random fluctuations
of cell duplications and cell deaths. Birth and death rates of at least part of the population
can be controlled by therapeutic drugs.

• Network inference. Like regulatory connections between genes discussed in Section 1.2,
metabolic and signalling interactions also form intricate networks. An example where such
a network optimizes a specific global quantity is flux-balance analysis [165], which models
the flow of metabolites through a metabolic network. Inverting the relationship between
metabolic rates and metabolite concentrations allows in principle to infer the metabolic
network on the basis of observed metabolite concentrations [61].

• Causal analysis. The do-calculus developed by Judea Pearl seeks to establish causal rela-
tionships behind statistical dependencies [172]. do-calculus is based on interventions such
as fixing a variable to a particular value, and then observing the resulting statistics of other
variables. Recently, Aurell and Del Ferrano have found a link between do-calculus and the
dynamic cavity method from statistical physics [6].
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• Maximum entropy and dynamics. The notion of a steady-state distribution with maxi-
mum entropy has been generalized to a maximum entropy distribution over trajectories
of a dynamical system [181]. Like the maximum entropy models of Sections 1.1–1.3,
this approach can be used to derive simple effective models of the dynamics of a system,
whose parameters can be inferred from time series. In fact, Glauber dynamics with parallel
updates gives the maximum entropy distribution of σ (t + 1) given s(t). So far, applications
have been in neural modelling [139,158], in the effective dynamics of quantitative traits in
genetics [18,32], and in flocking dynamics [46].

• Hidden variables. Even in large-scale data sets, there will be variables that are unobserved.
Yet, those hidden variables affect the statistics of other variables, and hence the inferences
we make about interactions between the observed variables [19,69,191,222]. This can lead
to a signature of critical behaviour, even when the original system is not critical [140,196].

• High-dimensional statistics and inference. In many applications, the number of systems
parameters to be inferred is of the same order of magnitude or exceeds the sample size.
The field of high-dimensional statistics deals with this regime, and a fruitful interaction
with statistical physics has emerged over the last decade [247], spurred by applications
like compressed sensing. Vuffray et al. [232] propose the objective function (137) for the
inverse Ising problem in the high-dimensional regime. Other objective functions might
perform even better, and the optimal objective function may depend on the number of sam-
ples and the statistics of the underlying couplings. Berg [23] and Bachschmid-Romano and
Opper [11] use the statistical mechanics of disordered systems to find the objective function
which minimizes the difference between the reconstructed and the underlying couplings for
Gaussian distributed couplings.

• Restricted Boltzmann machines and deep learning. Recently, (deep) feed-forward neural
networks have re-established themselves as powerful learning architectures, leading to
spectacular applications in the area of computer vision, speech recognition, data visualiza-
tion, and game playing [123]. This progress has also demonstrated that the most challenging
step in data analysis is the extraction of features from unlabelled data. There is a wide
range of methods for feature extraction, the most well-known ones being convolutional net-
works for images [123,124], or auto-encoders [97,231], and restricted Boltzmann machines
(RBMs) [97] for less structured data. RBMs are possibly one of the most general methods,
although the algorithms used for finding the optimal parameters are heuristic and approx-
imate in many respects. For instance, in the case of multiple layers, RMBs correspond to
generic Boltzmann machines (with feedback loops), for which learning is a hard compu-
tational problem. Usually, the sub-optimal solution which is adopted is used to train each
layer independently. These observations are not surprising since RBMs are nothing but an
inverse Ising problem with a layer of visible spins connected to a layer of hidden spins.
Empirical data are available only for the visible spins. The role of the hidden variables is
to compress information and identify structural features in the data. Learning consists of
finding the visible-to-hidden couplings Jij = Jji and the local fields such that summing over
to the hidden variables gives back a (marginalized) probability distribution over the visible
variables which is maximally consistent with the data, i.e. has minimal KL divergence (18)
from the empirical distribution of the data.

• Learning phases of matter. One aspect of the emerging applications of machine learning
in quantum physics is the identification of non-trivial quantum states from data. This is
of particular interest in phases of matter where the order parameter is either unknown
or hard to compute (like the so-called entanglement entropy [104,125]). Techniques from
machine learning, specifically deep learning with neural networks, have recently been used
to classify quantum states without knowledge of the underlying Hamiltonian [45].
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[32] K. Bod’ová, G. Tkačik and N.H. Barton, Genetics 202(4) (2016) p.1523.
[33] N.M. Bogolyubov, V.F. Brattsev, A.N. Vasil’ev, A.L. Korzhenevskii and R.A. Radzhabov, Theor.

Math. Phys. 26(3) (1976) p.230.
[34] S.S. Borysov, Y. Roudi and A.V. Balatsky, Eur. Phys. J. B 88(12) (2015) p.1.
[35] A. Braunstein, A. Ramezanpour, R. Zecchina and P. Zhang, Phys. Rev. E 83(5) (2011) p.056114.
[36] T. Broderick, M. Dudik, G. Tkacik, R.E. Schapire and W. Bialek, Faster solutions of the inverse

pairwise Ising problem, preprint (2007). Available at arXiv:0712.2437
[37] N.E. Buchler, U. Gerland and T. Hwa, Proc. Natl. Acad. Sci. USA 100(9) (2003) p.5136.
[38] N. Bulso, M. Marsili and Y. Roudi, J. Stat. Mech. Theory Exp. 2016(9) (2016) p.093404.
[39] L. Burger and E. Van Nimwegen, PLoS Comput. Biol. 6(1) (2010) p.e1000633.
[40] A.N. Burkitt, Biol. Cybern. 95(1) (2006) p.1.
[41] T. Bury, Physica A 392(6) (2013) p.1375.
[42] T. Bury, J. Stat. Mech. Theory Exp. 2013(11) (2013) p.P11004.
[43] C. Cadwell, A. Palasantza, X. Jiang, P. Berens, Q. Deng, M. Yilmaz, J. Reimer, S. Shen, M. Bethge,

K. Tolias, R. Rickard Sandberg and T. Andreas, Nat. Biotechnol. 34 (2015) p.199.
[44] H.B. Callen, Phys. Lett. 4(3) (1963) p.161.
[45] J. Carrasquilla and R.G. Melko, Nat. Phys. 13 (2017) p. 431.
[46] A. Cavagna, I. Giardina, F. Ginelli, T. Mora, D. Piovani, R. Tavarone and A.M. Walczak, Phys. Rev.

E 89(4) (2014) p.042707.
[47] H.J. Changlani, H. Zheng and L.K. Wagner, J. Chem. Phys. 143(10) (2015) p.102814.
[48] J.T. Chayes, L. Chayes and E.H. Lieb, Commun. Math. Phys. 93(1) (1984) p.57.
[49] M. Chertkov and V.Y. Chernyak, J. Stat. Mech. (2006) p.P06009.
[50] C. Chow and C. Liu, IEEE Trans. Inf. Theory 14 (1968) p.462.
[51] S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson and M. Weigt, Inverse statistical physics of protein

sequences: A key issues review, preprint (2017). Available at http://arxiv.org/abs/1703.01222
[52] S. Cocco, S. Leibler and R. Monasson, Proc. Natl. Acad. Sci. USA 106(33) (2009) p.14058.
[53] S. Cocco and R. Monasson, Phys. Rev. Lett. 106(9) (2011) p.090601.
[54] S. Cocco and R. Monasson, J. Stat. Phys. 147(2) (2012) p.252.
[55] S. Cocco, R. Monasson and M. Weigt, J. Phys. Conf. Ser. 473 (2013) p.012010.
[56] T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley, Hoboken, NJ, 2006.
[57] H. Cramér, Mathematical Methods of Statistics, Princeton University Press, Princeton, NJ, 1961.
[58] A.E. Dago, A. Schug, A. Procaccini, J.A. Hoch, M. Weigt and H. Szurmant, Proc. Natl. Acad. Sci.

USA 109(26) (2012) p.E1733.
[59] V. Dahirel, K. Shekhar, F. Pereyra, T. Miura, M. Artyomov, S. Talsania, T.M. Allen, M. Altfeld, M.

Carrington, D.J. Irvine, B.D. Walker and A.K. Chakraborty, Proc. Natl. Acad. Sci. USA 108(28)
(2011) p.11530.

[60] D. de Juan, F. Pazos and A. Valencia, Nat. Rev. Genet. 14(4) (2013) p.249.
[61] D. De Martino, F. Capuani and A. De Martino, Phys. Biol. 13(3) (2016) p.036005.
[62] A. Decelle and F. Ricci-Tersenghi, Phys. Rev. Lett. 112(7) (2014) p.070603.
[63] S. Dettmer, H.C. Nguyen and J. Berg, Phys. Rev. 5(E 94) (2016) p.052116.
[64] P. D’haeseleer, S. Liang and R. Somogyi, Bioinformatics 16(8) (2000) p.707.
[65] K.A. Dill and J.L. MacCallum, Science 338(6110) (2012) p.1042.
[66] R.A. DiStasio Jr, É. Marcotte, R. Car, F.H. Stillinger and S. Torquato, Phys. Rev. B 88(13) (2013)

p.134104.
[67] Y. Dorsett and T. Tuschl, Nat. Rev. Drug Discov. 3(4) (2004) p.318.
[68] R.M. Dowben and J.E. Rose, Science 118(3053) (1953) p.22.

http://arxiv.org/abs/1703.01222


Advances in Physics 257

[69] B. Dunn and Y. Roudi, Phys. Rev. E 87(2) (2013) p.022127.
[70] T.P. Eggarter, Phys. Rev. B 9 (1974) p.2989.
[71] M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt and E. Aurell, Phys. Rev. E 87(1) (2013) p.012707.
[72] A. Engel and C. Van den Broeck, Statistical Mechanics of Learning, Cambridge University Press,

Cambridge, UK, 2001.
[73] K. Faust, J.F. Sathirapongsasuti, J. Izard, N. Segata, D. Gevers, J. Raes and C. Huttenhower, PLoS

Comput. Biol. 8(7) (2012) p.e1002606.
[74] A.L. Ferguson, J.K. Mann, S. Omarjee, T. Ndung’u, B.D. Walker and A.K. Chakraborty, Immunity

38(3) (2013) p.606.
[75] U. Ferrari, Phys. Rev. E 94(2) (2016) p.023301.
[76] A. Fischer and C. Igel, An introduction to restricted Boltzmann machines, in Iberoamerican Congress

on Pattern Recognition, Springer, Heidelberg, 2012, p. 14.
[77] A. Fischer, I. Vázquez-García and V. Mustonen, Proc. Natl. Acad. Sci. USA 112(4) (2015) p.1007.
[78] C. Flamm, I.L. Hofacker, S. Maurer-Stroh, P.F. Stadler and M. Zehl, RNA 7(02) (2001) p.254.
[79] N. Friedman, Science 303(5659) (2004) p.799.
[80] X. Gabaix, P. Gopikrishnan, V. Plerou and H.E. Stanley, Nature 423(6937) (2003) p.267.
[81] R.G. Gallager, IRE Trans. Inf. Theory 8(1) (1962) p.21.
[82] E. Ganmor, R. Segev and E. Schneidman, Proc. Natl. Acad. Sci. USA 108(23) (2011) p.9679.
[83] C. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences,

Springer, Heidelberg, 1985.
[84] A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein and P.O.

Brown, Mol. Biol. Cell 11(12) (2000) p.4241.
[85] A. Georges and J.S. Yedidia, J. Phys. A: Math. Gen. 24 (1991) p.2173.
[86] R.J. Glauber, J. Math. Phys. 4(2) (1963) p.294.
[87] U. Göbel, C. Sander, R. Schneider and A. Valencia, Proteins: Struct. Funct. Bioinform. 18(4) (1994)

p.309.
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