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Abstract—In the big data era, scalability has become a crucial
requirement for any useful computational model. Probabilistic
graphical models are very useful for mining and discovering
data insights, but they are not scalable enough to be suitable for
big data problems. Bayesian Networks particularly demonstrate
this limitation when their data is represented using few random
variables with a massive set of outcome values for each of them.
With hierarchical data - data that is arranged in a treelike
structure with several levels - one would expect to see hundreds
of thousands or millions of values distributed over even just a
small number of levels. When modeling this kind of hierarchical
data across large data sets, Bayesian networks become unsuitable
for representing the probability distributions for the following
reasons: i) each level represents a single random variable with
hundreds of thousands of values, ii) the number of levels is
usually small, so there are also few random variables, and iii)
the structure of the network is predefined since the dependency
is modeled top-down from each parent to each of its child
nodes. In this paper we propose a scalable probabilistic graphical
model to overcome these limitations for massive hierarchical data.
We believe the proposed model will lead to an easily-scalable,
more readable, and expressive implementation for problems
that require probabilistic-based solutions for massive amounts
of hierarchical data. We successfully applied this model to
solve two different challenging probabilistic-based problems on
massive hierarchical data sets for different domains, namely,
bioinformatics and latent semantic discovery over search logs.

I. INTRODUCTION

Probabilistic graphical models (PGM) refer to a family
of techniques that merge concepts from graph structures and
probability models [16]. They represent the conditional de-
pendencies among sets of random variables [9]. In the age of
big data, PGMs can be very useful for mining and extracting
insights from large-scale and noisy data. The major challenges
that PGMs face in this emerging field are the scalability and the
restriction that they can only be applied on domains of limited
size (e.g. propositional domain) [8], [4]. Some extensions have
already been proposed to address these challenges, such as
hierarchical probabilistic graphical models (HPGM) which aim
to extend the PGM to work with more structured domains [8],
[6]. The focus of these models is to make Bayesian networks
applicable to structured domains, but they do not solve the
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scalability issues that arise when they are applied to massive
data sets.

Massive data sets often exhibit hierarchical properties,
where data can be divided into several levels arranged in tree-
like structures. Data items in each level depend on or are
influenced by only the data items in the immediate upper level.
For this kind of data the most appropriate PGM to represent
the probability distribution would be a Bayesian network, since
the dependencies in this kind of data are not bidirectional. A
Bayesian network is appropriate when it can provide a concise
representation of a large probability distribution where the
joint probability cannot be efficiently handled using traditional
techniques such as tables and equations [5]. Such a scenario
is not the case with massive hierarchical data, as traditional
Bayesian networks become infeasable to use. For example,
in the glycan ontology "GlycO", [17] describes 1300 glycan
structures whose theoretical tandem mass spectra (MS) can
be predicted by GlycoWorkbench [3]. If the maximum of
cleavages is set to two and the number of cross-ring cleavages
is set to one, the theoretical MS2 spectrum contains 2,979,334
ions, which themselves can be fragmented to form tens of
millions of ions in MS3. To represent this data set of only two
levels of the MS data using a Bayesian network it will require
two nodes, MS! and MS?, with a single path M S! — MS?
while the conditional probability table (CPT) for the node
M S? will contain 3,873,134,200 (2,979,334 x 1300) entries.

The main contributions of this paper are as follows. First,
we propose an efficient and scalable probabilistic-based model
for massive hierarchical data (PGMHD). Second, we success-
fully apply PGMHD to the bioinformatics domain described
above in which we automatically classify and annotate high-
throughput mass spectrometry data. Finally, we successfully
apply this model to large-scale latent semantic discovery
by using 1.6 billion search log entries provided by Career-
Builder.com within a Hadoop Map/Reduce framework.

II. BACKGROUND

Graphical models can be classified into two major cate-
gories: (1) directed graphical models (the focus of this paper),
which are often referred to as Bayesian networks, or belief
networks, and (2) undirected graphical models which are often
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Fig. 1. Bayesian Network [5]

referred to as Markov Random Fields, Markov networks,
Boltzmann machines, or log-linear models [11]. Probabilistic
graphical models (PGMs) consist of both graph structure and
parameters. The graph structure represents a set of condition-
ally independent relations for the probability model, while the
parameters consist of the joint probability distributions [16].

A Bayesian network is a concise representation of a
large probability distribution to be handled using traditional
techniques such as tables and equations [5]. The graph of
a Bayesian network is a directed acyclic graph (DAG) [9].
A Bayesian network consists of two components: a DAG
representing the structure (as shown in Figure 1), and a set of
conditional probability tables (CPTs). Each node in a Bayesian
network must have a CPT which quantifies the relationship
between the variable represented by that node and its parents
in the network. Completeness and consistency are guaranteed
in a Bayesian network since there is only one probability
distribution that satisfies the Bayesian network constraints [5].
The constraints that guarantee a unique probability distribution
are the numerical constraints represented by CPT and the
independence constraints represented by the structure itself.
The independence constraints are shown in Figure 1. Each
variable in the structure is independent of any other variables
other than its parents, once its parents are known. For example,
once the information about A is known, the probability of L
will not be affected by any new information about F or T, so
we call L independent of F and T once A is known.

Bayesian networks are widely used for modeling causality
in a formal way, for decision-making under uncertainty, and
for many other applications [5].

III. RELATED WORK

This section describes the most related work to the pro-
posed model from different perspectives. First, we describe the
related hierarchical probabilistic models, then we describe the
current techniques used to automate the annotation of Mass
Spectrometry (MS) data for glycomics, which is one of the
scenarios that we use to test the proposed model. We close
this section by describing how we applied the proposed model
to discover the latent semantic similarity between keywords
extracted from search logs for the purposes of building a
semantic search system.

A. Probabilistic Graphical Models for Hierarchical Data

Probabilistic graphical models require simple domains [8].
To overcome this common limitation some extensions were
proposed to extend those models to structured domains. In [8],
the authors introduced a hierarchical Bayesian network which
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Fig. 2. Glycan structure in CFG format. The circles and squares represent
the monosaccharides which are the building blocks of a glycan while the lines
are the linkages between them

extends the expressiveness of a regular Bayesian network by
allowing a node to represent an aggregation of simpler types
which enables the modeling of complex hierarchical domains.
The main idea is to use a small number of hidden variables
as a compressed representation for a set of observed variables
with the following restrictions: 1) Any parent of a variable
should be in the same or immediate upper layer, and 2) At
most one parent from the immediate upper layer is allowed
for each variable.

So, the idea is mainly to compress the observed data.
Although hierarchical Bayesian network models extended the
regular Bayesian network to represent structured domains, they
have not been able to solve the issue of the scalability of
Bayesian networks for massive amounts of hierarchical data.

B. Automated Annotation of Mass Spectrometry Data for
Glycomics

One use case of the proposed model is the automated
annotation of Mass Spectrometry (MS) data for glycomics.
Glycans (Figure 2) are the third major class of biological
macro-molecules besides nucleic acids and proteins [1]. Gly-
comics refers to the scientific attempts to characterize and
study glycans, as defined in [1] or an integrated systems
approach to study structure-function relationships of glycans as
defined in [14]. The importance of this emerging field of study
is clear from the accumulated evidence for the roles of glycans
in cell growth and metastasis, cell-cell communication, and
microbial pathogenesis. Glycans are more diverse in terms of
chemical structure and information density than nucleic acids
and proteins [14]. Unlike proteins, which can be represented
as linear sequences, glycans are branched structures that are
often represented as trees. Thus glycan identification, which is
a proven NP-hard problem [15], is much more difficult than
protein identification.

Although MS has become the major analytical technique
for glycans, no general method has been developed for the
automated identification of glycan structures using MS and tan-
dem MS data. The relative ease of peptide identification using
tandem MS is mainly due to the linear structure of peptides and
the availability of reliable peptide sequence databases. In pro-
teomic analyses, a mostly complete series of high abundance
fragment ions is often observed. In such tandem mass spectra,
the mass of each amino acid in the sequence corresponds to the
mass difference between two high-abundance peaks, allowing
the amino acid sequence to be deduced. In glycomics MS
data, ion series are disrupted by the branched nature of the
molecule, significantly complicating the extraction of sequence
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information. In addition, groups of isomeric monosaccharides
commonly share the same mass, making it impossible to
distinguish them by MS alone. Databases for glycans exist
but are limited, minimally curated, and suffer badly from
pollution from glycan structures that are not produced in
nature or are irrelevant to the organism of study. Several
algorithms have been developed in attempts to semi-automate
the process of glycan identification by interpreting tandem
MS spectra, including CartoonistTwo [7], GlycoWork-bench
[3], and SimGlycan [2] (commercially available from Premier
Biosoft). However, each of these programs produces incorrect
results when using polluted databases to annotate large MS”
datasets containing hundreds or thousands of spectra. Inspec-
tion of the current literature indicates that machine learning
and data mining techniques have not been used to resolve this
issue, although they have a great potential to be successful
in doing so. PGMHD attempts to employ machine learning
techniques (mainly probabilistic-based classification) to find a
solution for the automated identification of glycans using MS
data.

C. Semantic Similarity

Semantic similarity, which is a metric that is defined over
documents or terms in which the distance between them
reflects the likeness of their meaning [10], is well defined
in Natural Language Processing (NLP) and Information Re-
trieval (IR) [13]. The major techniques to calculate semantic
similarity are Pointwise Mutual Information (PMI) and Latent
Semantic Analysis (LSA), though PMI outperform LSA on
mining the web for synonyms [18]. We applied the proposed
PGMHD model to discover related search terms by measuring
probabilistic-based semantic similarity between those search
terms.

IV. MODEL STRUCTURE

In this section, we discuss the proposed PGMHD model,
describing the computation of a probabilistic-based classifica-
tion, calculation of a probabilistic-based similarity score, and
the progressive learning aspects of the model.

Consider multi-level directed graph G = (V, A) where V
and A C V xV denote the sets of nodes and arcs, respectively,
such that:

1) V is partitioned into m levels Lg,..., L,—1 such
that V = U 'L;, and L; U L; = 0) for i # j.

2) The arcs in A only connect one level to the next,
ie., if a € A then a € L;_; x L; for some i =

1,...,m—1.
3) Anarc a = (vj_1,v;) € L;_1 X L; represents the
dependency of v; with its parent v;_1,¢ =1,...,m—

1. Moreover, let pa: V' — P(V) be the function that
maps every node to its parents, i.e.,

pa(v) = {w: (w,v) € A}

4)  The nodes in each level L; represent all the possible
outcomes of a finite discrete random variable, namely
X, i=1,...,m—1.

YveV.

Note that the nodes in the first level Ly can be seen as root
nodes and the ones in L,,_; as leaves. Also, an observation x

in our probabilistic model is an outcome of a random variable,
namely X € Lo X -+ X L,,_1, defined as

X = (Xo, X1,...,Xm), (1)

which represents a path from Ly to L,,_; such that

(Xi—h Xl) c A.

In addition, we assume that there are n observations of X,
namely x',... 2", and let f : V x V — N be a frequency
function defined as

fla) = Hx] : (wj_l,xg):a,ie{1,...,m—1}7j6{1,...,n}}

for every a € V' x V. Moreover, these latter n observations are
the ones used to train our model, so that f(a) > 0 for every
ac A.

)

It should be observed that the proposed model can be
seen as a special case of a Bayesian network by consider-
ing a network consisting of a single directed path with m
nodes. However, we believe that a leveled directed graph
that explicitly defines one node per outcome of the random
variables (as described above): i) leads to an easily scalable
(and distributable) implementation of the problems we con-
sider; ii) improves the readability and expressiveness of the
implemented network; and iii) simplifies and facilitates the
training of the model.

A. Probabilistic-based Classification

Given an outcome at level ¢ € {1,...,m — 1}, namely
v € L;, we calculate the classification score Cl;(w|v) of v to
the parent outcome w € L;_; by estimating the conditional
probability P(X;_; = w|X; = v) as follows

P(X1 = ’U|Xi,1 = ’U)) .

P(Xi_l = ’U)|XZ = ’U) =

| (Gi) - (55) _ o

() (o)~ Chlwlv)
where
In(v) = Y  f(wv), VeV,
uepa(v)
and
Out(w) := Z flw,u), Yw e V.

w:(w,u)EA

B. Probabilistic-based Similarity scoring

Fix a level ¢ € {1,...,m — 1}, and let XY €
Lo X ---x Ly,—1 be identically distributed random variables
as in (1). We define the probabilistic-based similarity score be-
tween two outcomes x;,¥y; € L; by computing the conditional
joint probability

CO;(xi, i) == P(Xi = x4, Ys = vi| Xi—1 € pa(z;),Yi—1 € pa(y;))
as

CO;(z;,y:) = H pi(v, i) - H pi(v, yi),

vepa(z;) vepa(y:)
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Fig. 3. PGMHD for tandem MS data. The root nodes are the glycans that
annotate the peaks at MS! level, while the level 2 nodes are the glycan
fragments that annotate the peaks at MS? level and the edges represent
dependency associating the glycans with their MS? fragments.

where p;(v,w) = P(X;_1 = v, X; = w) for every (v,w) €
L;_y x L;. Recalling that n is the number of observations, we
can naturally estimate the probabilities p; (v, w) with p(v, w)
defined as

Hence, we can obtain the related outcomes of x; € L; (at
level 7) by finding all the w € L; with a large estimated
probabilistic-based similarity score CO;(z;, w).

C. Progressive Learning

PGMHD is designed to allow progressive learning'. Pro-
gressive learning is a learning technique that allows a model
to learn gradually over time. Training data does not need to be
given at one time to the model. Instead, the model can learn
from any available data and integrate the new knowledge with
the represented one. This learning technique is very attractive
in the big data age for the following reasons:

1)  Training the model does not require processing all
data upfront

2) It can easily learn from new data without the need to
re-include the previous training data in the learning.

3) The training session can be distributed instead of
doing it in one long-running session.

4)  Recursive learning allows the results of the model

to be used as new training data, provided they are
judged to be accurate by the user.

V. EXPERIMENTAL RESULTS

PGMHD can be used for different purposes once it is built
and trained. PGMHD can be used to predict the class from
level [ for the observations of random variables at level /+1.
For example, in the annotation of the MS data, PGMHD is
used to predict the best Glycan at level MS! to annotate a
spectrum by evaluating the annotated peaks at level MS? with
probability scores that represent how well the selected glycan
correlates to the manually curated annotations that were used
to train the model.
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Fig. 4. MSI annotation using GELATO. Scan is the ID number of the scan
in the MS file, peak charge is the charge state of that peak in the MS file,
peak intensity represents the abundance of an ion at that peak, peak m/z is
the mass over charge of the given peak, cartoon is the annotation of that peak
(glycan) in CFG format, feature m/z is the mass over charge for the glycan,
and glycanlD is the ID of the glycan in the Glycan Ontology(GlycO).
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Fig. 5. Fragments of Glycan GOG166 at the MS? level. Each ion observed
in MS? is selected and fragmented in MS? to generate smaller ions, which
can be used to identify the glycan structure that most appropriately annotates
the MS? ion. Theoretical fragments of the glycan structure that had been used
to annotate the MS! spectrum are used to annotate the corresponding MS?
spectrum.

A. PGMHD to automate the MS annotation

This model is well suited for representing MS data. We
recently implemented the Glycan Elucidation and Annotation
Tool (GELATO), which is a semi-automated MS annotation
tool for glycomics integrated within our MS data processing
framework called GRITS (http://www.grits-toolbox.org/). Fig-
ures 4, and 5 show screen shots from GELATO for annotated
spectra. Figure 4 shows the MS profile level and Figure 5
shows the annotation of MS? peaks using fragments of a
selected candidate glycan for annotation of the MS! data.

To represent the data shown in these figures using the
proposed model, a top-layer node is assigned to each row in
the MS profile table, which corresponds to the MS! data. Then,
for each row in the MS?2 tables, a unique node is created and
connected with its parent node using a directed edge from the
parent node (at the MS profile layer) to the child node (at the
MS? layer). Each top-layer node stores a value representing
how frequently a parent has been seen in the training data.
However, each child node in the MS? layer has more than
one parent. The edge’s weight represents the co-occurrence
frequency between a child and a parent, storing frequencies
rather than probabilities facilitates progressive learning. The
child node stores the total frequency of observing that child
regardless of the identity of its parents. The combined fre-
quency data makes it possible to design a progressive learning
algorithm that can extract information from massive data sets.
Figure 3 shows the PGMHD for the given MS data in these
figures. As shown in the model, two layers are created: one

IThe progressive learning approach for PGMHD can be found on
http://www.aljadda.net/ProgLearn.pdf.
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Fig. 7. Progressive Learning Time Over Different Experiments

for the MS! level and a second one for the MS? level. Several
different nodes at the MS! level can be annotated with the
same fragment ion at the MS2 level, so MS? nodes can have
several parents. The frequency values are not shown because
of space constraints.

Experiments were performed using MS data collected from
stem cell samples. The size of this data set is 1,746,278 peaks
distributed over 1713 MS scans from 10 MS experiments.
Figure 7 shows the learning time using the progressive learning
technique. In this test we introduced one new experiment at
a time to the model for training, and we recorded the total
time required to train the model. These performance results
demonstrate how efficiently the progressive learning works
with PGMHD.

To test the accuracy of PGMHD, we trained the model
by randomly selecting one of 10 available experiments, while
the other 9 experiments were used to test the trained model
by annotating the experiments’ peaks using PGMHD. The
baseline in our evaluation was the annotations generated by
the commercial tool SimGlycan. Figure 6 shows the average
precision and recall for PGMHD compared to the average
precision and recall of GELATO using the same dataset of
1,746,278 peaks distributed over 10 MS experiments.

B. PGMHD for latent semantic discovery over Hadoop

We also implemented a version of PGMHD over Hadoop
[12] to be used for latent semantic discovery between users’
search terms extracted from search logs provided by Career-
Builder.com.

1) Problem Description: CareerBuilder operates the largest
job board in the U.S. and has an extensive and growing global
presence, with millions of job postings, more than 60 million
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Read Input Row
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Class,
(Term,Class) Freq

Key: Classificatiop  count p—

Class Freq

Value: UserlD Frequency

Fig. 8. PGMHD Over Hadoop
TABLE 1. INPUT DATA TO PGMHD OVER HADOOP
UserID Classification Search Terms

userl Java Developer Java, Java Developer, C, Software Engineer
RN, Rigistered Nurse, Health Care
C, ASP, VB, Software Engineer, SE
Java, JEE, Struts, Software Engineer, SE

Health Care Rep, HealthCare

Nurse
.NET Developer
Java Developer

Health Care

user2

user3

user4d

userS

actively-searchable resumes, over one billion searchable docu-
ments, and more than a million searches per hour. The search
relevancy and recommendations team wanted to discover latent
semantic relationships among the search terms entered by
their users in order to build a semantic search engine that
understands a user’s query intent in order to provide more
relevant results than a traditional keyword search engine. To
tackle this problem, CareerBuilder cannot use typical synonym
dictionaries since most of the keywords used in the employ-
ment search domain represent job titles, skills, and companies
that would not be found in a traditional English dictionary.
Additionally, CareerBuilder’s search engine supports over a
dozen languages, so they were in search of a model that is
language-independent.

2) PGMHD over Hadoop: Given the search logs for all
the users and the users’ classifications as shown in Table I,
PGMHD can represent this kind of data by placing the classes
of the users as root nodes and placing the search terms for all
the users in the second level as children nodes. Then, an edge
will be formed linking each search term back to the class of the
user who searched for it. The frequency of each search term
(how many users search for it) will be stored in the node of that
term, while the frequency of a specific search term searched
for by users of a specific class (how many users belonging to
that class searched for the given term) will be stored in the
edge between the class and the term. The frequency of the
root node is the summation of the frequencies on the edges
that connect that root node with its children (Figure 9).

Figure 8 shows how PGMHD was implemented over
Hadoop using Map/Reduce jobs and Hive tables. After we
created PGMHD on Hadoop we calculated the probabilistic-
based semantic similarity score between each pair of two terms
with shared parents. The size of the data set we analyzed in
this experiment is 1.6 billion search records. To decrease the
noise in the given data set we applied a pre-filtering technique
by removing any search term used by less than 10 distinct
users. The final graph representing this data contains 1931 root
nodes, 16,414 child nodes, and 439,435 edges.
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Fig. 9. PGMHD representing the search log data

TABLE II. PGMHD RESULTS FOR LATENT SEMANTIC DISCOVERY
Term Related Terms
hadoop big data, hadoop developer, obiee, java, python

rn registered nurse, rn, registered nurse manager, nurse,
nursing, director of nursing

machine learning, data scientist, analytics, business
intellegence, statistical analyst

lucene, hadoop, java

registered nurse

data mining

solr

3) Results of latent semantic discovery using PGMHD:
The experiment performing latent semantic discovery among
search terms using PGMHD was run on a Hadoop cluster
with 63 data nodes, each having a 2.6 GHZ AMD Opteron
Processor with 12 to 32 cores and 32 to 128 GB RAM. Table II
shows sample results of 10 terms with their top 5 related terms
discovered by PGMHD. To evaluate the model’s accuracy, we
sent the results to data analysts at CareerBuilder who reviewed
1000 random pairs of discovered related search terms and
returned the list with their feedback about whether each pair of
discovered related terms was “related" or “unrelated". We then
calculated the accuracy (precision) of the model based upon
the ratio of the number of related results to the total number
of results. The results show the accuracy of the discovered
semantic relationships among search terms using the PGMHD
model to be 0.80.

VI. CONCLUSION

Probabilistic graphical models are very important in many
modern applications such as data mining and data analytics.
A major issue with existing probabilistic graphical models is
their scalability to handle large data sets, making this a very
important area for research given the tremendous focus on big
data due to the growing number of data points produced by
modern computers systems and sensors. PGMHD is a proba-
bilistic graphical model that attempts to solve the scalability
problems with existing models for scenarios involving massive
hierarchical data. PGMHD is designed to fit hierarchical data
sets of any size, regardless of the domain to which the data
belongs. In this paper, we present two experiments from
different domains: one being the automated annotation of high-
throughput mass spectrometry data in bioinformatics, and the
other being latent semantic discovery using search logs from
the largest job board in the U.S. The two use cases in which
we tested PGMHD show that this model is robust and can
scale from a few thousand entries to billions of entries, and
can also run on a single computer (for smaller data sets), as
well as in a parallelized fashion on a large cluster of servers
(63 were used in our experiment).
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