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Revealing physical interaction networks from statistics
of collective dynamics
Mor Nitzan,1,2,3 Jose Casadiego,4,5 Marc Timme4,5,6,7,8*

Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental
inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at
a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled
states of the system in response to driving signals, and use compressed sensing to reveal physical interaction net-
works. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally
disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear
dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for ex-
istence as well as type of interactions. These results advance our ability to reveal physical interaction networks in
complex synthetic and natural systems.
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INTRODUCTION
Many complex systems in physics and biology constitute networks of
dynamically interacting units (1). Examples range from gene regula-
tory networks in the cell (2–5) and neural circuits in the brain (6–8) to
food webs in ecosystems (9) and power grids (10–13), as well as other
supply systems of engineering (14, 15). These systems’ interaction net-
works fundamentally underlie their collective dynamics and function,
thus rendering the knowledge of their interaction topology essential.
For instance, identifying new pathways in gene regulatory networks
and understanding long-range feedback in engineering systems re-
quire exact knowledge of their physical interaction networks.

A fundamental question about both natural and artificial networks
is thus which units directly act upon which other units. For instance, for
networks of interacting units i ∈ {1, …, N} described by ordinary non-
linear differential equations dxi/dt = Fi(x), this question mathemat-
ically becomes which of the variables xj among (x1, …, xN) =: x
explicitly appear in Fi(x). In many settings, this physical connectivity
is not directly accessible. Revealing these interaction networks then
poses a high-dimensional nonlinear reconstruction problem. Evaluat-
ing the dynamics of the system exploiting heuristic approximations,
such as thresholding correlations or other measures of statistical de-
pendency between units’ dynamics, is simple, efficient, and generally
feasible, yet often an unreliable predictor for physical connectivity
(16). A conceptual reason is that more than one statistical dependency
network may emerge for the same physical network, for example, due
to multistability (17–19). In turn, methods aiming at directly identify-
ing physical interactions generally require either a priori knowledge of
a detailed model of the system, rely on the system being in simple
states (such as close to fixed points), or need high-resolution, synchro-
nized, temporally ordered observations for all units with connections
of interest (20). For example, transfer entropy (21) and cross-embedding
(22) require temporally ordered measurements; a direct method for
inferring structural connectivity described by Shandilya and Timme
(23) requires synchronous, temporally ordered, high-resolution measure-
ments and prior knowledge of the system’s model; and the system iden-
tification method described by Gardner et al. (5) requires the system to
be at steady state and the dynamics to be essentially linear in the activity
of the nodes of the network. However, real systems, such as genetic
regulatory networks, other biological circuits, and even some human-
made systems (24), often do not fulfill these requirements. To the best
of our knowledge, a method capable of inferring physical interaction
networks without requiring at least one of these constraints does not
exist to date.

Here, we propose a generic strategy to reveal physical interactions
from responses of invariant measures (that is, distributions of points
sampled in state space) to small driving signals. The strategy does not
rely on any of the requirements above. Via compressed sensing, the
resulting equations obtained from driving-response experiments yield
the network structure even if the number of available experiments is
small compared to the network size. Because only statistics of recorded
system states are evaluated to reveal the physical connectivity, mea-
surements of dynamic states can be temporally disordered, be
acquired at large sampling intervals, come from different experiments,
and be collected at different times for different units. In addition, no
detailed prior knowledge for the model of the system is required.
THEORY BASED ON TIME INVARIANTS
To introduce the basic strategy of reconstructing networks from time
invariants (Fig. 1), we consider networks of units i ∈ {1, …, N} repre-
sented by state variables xiðtÞ∈R evolving in time t according to

x:iðtÞ ¼ FiðxÞ þ xiðtÞ ð1Þ

Here, x
�
t
� ¼ �

x1ðtÞ;…; xNðtÞ
�
∈RN is the state vector of the entire

network, x:i tð Þ≡ d
dt xi tð Þ denotes the temporal derivative of the variable

xi(t), and xi(t) represents noise with zero average. Systems of higher
dimensional units, xiðtÞ∈Rd, d > 1, are discussed further below and in
note S1.

Driving the system (Eq. 1) with signals IðmÞ
i ðtÞ

x:ðmÞ
i ¼ FiðxðmÞÞ þ xðmÞ

i þ IðmÞ
i ð2Þ
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modifies its dynamics. For temporally constant or otherwise stationary
driving signals, the temporal trajectories of the system after potential
transients may exhibit collective dynamics that generate a defined sta-
tistics of points in state space. These states are recorded underM different
driving conditions m ∈ {1, …, M} with signals IðmÞ

i and, for each exper-
iment, generate an invariant density r(m) characteristic of the dynamics
defined by Eq. 2. One simple quantity induced by such a density is given
by its center of mass zðmÞ ¼< xðmÞ>rðmÞ . If these data sample the in-
variant measure well (25), then the average may be approximated by
the sample mean z(m) = < x(m)(t) > t∈T = |T|−1∑t∈Tx

(m)(t) (see note
S1 for a more detailed discussion). Here, T is the set of time points
at which the data are recorded.

How can we reconstruct interaction networks from these data? Ap-
proximating Eq. 2 up to first order around z(0) yields

x:ðmÞ
i ≈ Fi zð0Þ

� �
þ ∑

N

j¼1

∂Fi
∂xj
jzð0Þ

�
xðmÞ
j � zð0Þj

�
þ xðmÞ

i þ IðmÞ
i ð3Þ

The exact conditions under which this approximation is justified
are elaborated in note S1. By averaging over the recorded sample
points T, we get

z:ðmÞ
i ≈ Fi zð0Þ

� �
þ ∑

N

j¼1

∂Fi
∂xj
jzð0Þ

�
zðmÞ
j � zð0Þj

�
þ �IðmÞ

i ð4Þ

where I ðmÞ
i :¼< IðmÞ

i ðtÞ>t∈T are temporal averages of the stationary
driving signals, and we set Ið0Þi ≡ 0 for all i. Last, substituting the ex-
pression for the undriven dynamics Fi(z

(0)) by setting m = 0 in Eq. 4,
we obtain (see note S1 for a detailed derivation)

z: l
ðmÞ � z: l

ð0Þ ≈ ∑
N

j¼1
Jij
�
zðmÞ
j � zð0Þj

�
þ �IðmÞ

i ð5Þ

where Jij :¼ ∂Fi
∂xj

���
zð0Þ

are the elements of the Jacobian J ¼ DF zð0Þj . We

take z: l
ðmÞ ¼ z: l

ð0Þ ¼ 0, because the centers of mass do not change in
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time if the recorded points sample the invariant density well (see note
S2 for error estimates for sampling). This yields

��Ii ≈ Dz JTi ð6Þ

where I i ∈ RM�1 is the vector of averaged driving signals �IðmÞ
i ,

Dz ∈ RM�N is the matrix of response differences zðmÞ
j � zð0Þj of the

centers of mass, and Ji ∈ R1�N is the respective row of the Jacobian
matrix.

Evidently, the differences in the invariant density’s centers of
mass are jointly determined by the driving vector and the network
topology. We remark that the reconstruction problem decomposes
over nodes in the network such that the set of incoming interac-
tions to each node can be reconstructed independently. A sufficient
number of driving-response experiments thus yield a set of linear
equations (Eq. 6) for each node i, restricting the potential inter-
action networks estimated by J. Our goal of identifying which
variables xj appear in Fi(x) is thus equivalent to finding those pairs
(i, j) where Jij ≠ 0 such that unit j directly acts on i (and thus also
those where no such direct interactions exist, Jij = 0). Notice that,
because the Jacobian is evaluated at the center of mass of the un-
perturbed invariant density, the reconstruction approach is
expected to recover the correct interactions if they consistently exist
across the relevant fractions of state space, which include the ob-
served driven dynamics and the unperturbed centers of mass. Here,
we consider constant driving signals, IðmÞ

i ðtÞ ¼ �IðmÞ
i , complemented

by additive noise. If the numberM of experiments is larger than the
network size N, then reconstructing a given network becomes pos-
sible via a least squares solution to Eq. 6. However, in many exper-
imental settings, the number of available experiments is relatively
small. To overcome this limitation, we exploit compressed sensing
theory by determining an L1-norm minimum solution J^i to Eq. 6
such that the number of experiments M can be much smaller than
the network size N [see Methods; (26–29)]. Last, we rank the result-
ing absolute values J^ij

�� �� and vary a threshold Jc to distinguish be-
tween existing ð J^ij

�� ��≥JcÞ and absent ð J^ij
�� �� < JcÞ interactions. Hence,

evaluation of inference performance is done in a parameter-free
manner (note S3).
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Fig. 1. Strategy of network reconstruction from responses of time invariants. (A) A networked dynamical system with unknown topology (gray) is perturbed by external
driving signals Im, m ∈ {1, …, M}. (B) Potentially noisy, disordered, low-resolution data are collected from several different experiments. (C) The centers of mass z(m) of each of
these distributions of points sampled in state space are calculated. (D) The changes zðmÞ

i � zð0Þi in response to driving signals I (m) yield the network topology.
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PERFORMANCE ON ARTIFICIAL AND REAL
NETWORK TOPOLOGIES
Our strategy is successful in reconstructing the topology of physical
interaction networks across a range of systems and collective dynam-
ics (Figs. 2 to 5). To evaluate the quality of reconstruction, we initially
consider a class of random networks where each unit is a Goodwin
oscillator (30), a prototypical biological oscillator that characterizes
various biological processes from circadian clocks to somitogenesis
(see Methods for model description) (31–33). Under mild constraints,
the strategy readily generalizes to systems of other, also higher-dimensional
units (see below) and more complex dynamics (see note S1 for a
complete derivation).

We first analyze one network realization (Fig. 2A) and collect in-
dividual results to network ensembles to obtain a robust quality anal-
ysis. Reconstruction quality is quantified by the area under the receiver
operating characteristic (ROC) curve (AUC), a score typically between
one-half (chance level) and one (perfect ranking of the reconstructed
interactions) (see note S3). As expected, the reconstruction quality im-
proves with the number of driving-response experiments (Fig. 2B).
Nitzan, Casadiego, Timme Sci. Adv. 2017;3 : e1600396 10 February 2017
With compressed sensing methods [see (34–38) and Methods], the
number of experiments required to obtain a given quality increases
sublinearly with network size and continuously changes with increasing
noise (Fig. 2C). Furthermore, the sparser a given network is, the lower
the number of required experiments for robust reconstruction (see note
S4). The invariants-based reconstruction strategy works analogously
for different network topologies and different nodal coupling strengths,
both homogeneous and heterogeneous (note S5) and for various dy-
namic processes; beyond networks of noisy oscillators, robust recon-
struction is achieved for networks exhibiting qualitatively distinct
dynamics, such as a biological network of transcription factor regula-
tors close to a fixed point and a network of Rössler oscillators exhibit-
ing chaotic dynamics (notes S6 and S7). Finally, the invariants-based
strategy outperforms available standard reconstruction baselines, in-
cluding measures of mutual information and correlation between
the activity patterns of every two nodes in the network, partial correla-
tion between the pairwise activity patterns (given the activity patterns of
the other nodes in the network), and transfer entropy (note S8 and figs.
S7 and S8).
 on July 24, 2
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Fig. 2. Evaluation scheme illustrating robust reconstruction. (A) Representative adjacency matrix indicating network connectivity as defined by present (black) and
absent (white) links. (B) ROC curve obtained by varying a threshold Jc separating links classified as existing ðjJ^ij j ≥ JcÞ from those classified as absent ðjJ^ij j < JcÞ (see note
S3). The AUC increases with decreasing noise level, with perfect ranking of reconstructed links in the limit of noiseless dynamics. Inset: The quality of network recon-
struction, as specified by the AUC, increases with the number of driving-response experiments. (C) The number of experiments required for high-quality reconstruction
(here, AUC > 0.95) increases sublinearly (compared to the dotted line) with network size and (inset) changes only weakly with the noise level. Data are shown for
random networks of (default size) N = 50 Goodwin oscillators with a regular incoming degree of 4, a default noise level of 0.5, a default number of experiments of 25,
and a number of sampled time points of 100; shading indicates SD across ensembles of network realizations.
018
A B

Fig. 3. Revealing interaction types. (A) Beyond distinguishing existing from missing interactions (schematically represented by the medium gray and white adjacency
matrix), activating and inhibiting interactions may be separately detected (dark gray, light gray, and white matrix). (B) The reconstruction quality (AUC) benefits from the
separate reconstruction of different types of interactions (green curve) compared to joint reconstruction of existing and missing interactions (gray curve), and increases with
the number of driving-response experiments. Data are shown for random networks of N = 50 Goodwin oscillators with a regular incoming degree of 4 and a number of
sampled time points of 100; shading indicates SD across ensembles of network realizations.
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In addition to disentangling existing and missing interactions with-
in a network, the strategy can be extended to reveal finer topological
features and to require only partial, lower dimensional dynamical
information. First, separately ranking the reconstructed Jij values as
deduced from Eq. 6 to find activating interactions above a certain
threshold and negative ones below a second threshold yields two sets,
one for consistently activating and one for consistently inhibiting in-
teractions (Fig. 3). The separate identification of different types of in-
teractions not only provides more information about their nature but
also enhances the quality of reconstruction (Fig. 3 and note S9). Sec-
ond, partial dynamical information, such as experimental data for net-
works of high-dimensional units limited to only one out of several
dynamical variables for each unit, may suffice to reconstruct complete
interaction networks (Fig. 4). See note S10 for a systematic evaluation
of the effect of missing dynamical information on the quality of recon-
struction. These results establish that reconstruction of network inter-
actions is possible in a generic class of dynamical systems under a
broad range of conditions.
Nitzan, Casadiego, Timme Sci. Adv. 2017;3 : e1600396 10 February 2017
Beyond generic model systems, the reconstruction strategy also
yields promising results for specific biological settings. We demon-
strate this on a genetic regulatory network characterizing the circadian
clock in Drosophila (see note S11 for model description) (39). This
clock coordinates the biological response to the day-night cycle. The
quality of reconstruction of the circadian clock benefits from increasing
the number of driving-response experiments and is robust to noisy
signals (Fig. 5).
DISCUSSION
The presented theory relating responses of invariant measures and re-
sulting observables to small driving signals enables us to reveal
physical interaction networks from statistics of essentially arbitrary dy-
namical data that are sufficiently broadly sampled. The theory relies
on the system being stationary or otherwise exhibiting an invariant
measure that is sampled well by the data. It also relies on the option
to drive the system with signals that are sufficiently small to still yield
 on July 24, 2018
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Fig. 5. Reconstruction of the circadian clock network in Drosophila. The quality of reconstruction (AUC) of the circadian clock (A) increases with the number of driving-
response experiments, for both noiseless (gray curve) and noisy (green curve) dynamics (B), and changes only weakly with noise level (inset). Number of sampled time points,
300; default number of experiments, 20; noise level for noisy case, 0.01; shading indicates SD across ensembles of network realizations. (A) Modified with permission from
Leloup and Goldbeter (39) (Fig. 1).
A B

Fig. 4. Robust reconstruction from one-dimensional sampling of multidimensional unit dynamics. (A) Scheme illustrates three-dimensional units (encircled), coupled
through one observed variable (colored), whereas the other two variables are unobserved (gray). (B) The reconstruction quality (AUC) stays robust and reduces only slightly for
reconstruction based on partial, one-dimensional measurements (green curve) relative to reconstruction based on three-dimensional measurements (gray curve), and in-
creases with the number of driving-response experiments. Data are shown for random networks of N = 50 Goodwin oscillators with a regular incoming degree of 4 and
a number of sampled time points of 100; shading indicates SD across ensembles of network realizations.
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linear responses and, at the same time, sufficiently large to outweigh
the noise and finite sampling influence. However, no fine-tuning of
the driving signals is needed (see note S12). In addition, the method
relies on changes in the stationary dynamics of the system following
perturbations. Hence, it suits systems that do not exhibit an extreme
form of perfect saturation or systems that adapt on fast time scales in
response to external signals. If adaptation time scales are slow relative
to the period during which the dynamic sampling is performed, then
the method we suggest naturally becomes applicable again, because
the system does not fully adapt and is effectively stationary during
the measurement time. Thus, shifts in averages can be naturally ob-
served following the same framework. The strategy is successful for
generic mathematical model schemes and specific biological settings.
Extended options include distinguishing between activating and
inhibiting interactions as well as revealing the existence of interactions
even if access is limited to only one out of several dynamical variables
for individual units.

Because the strategy relies solely on the invariant density, state space
points recorded may be used without known temporal order, may have
been recorded at varying sampling intervals, and may even come from
several experiments (performed under the same conditions). Further-
more, different units of the same system may, in principle, be recorded
separately and at different times. All these options emerge because only
statistical information (a rough estimate of an observable, such as
center of mass) of the dynamical data is used. This strategy for revealing
physical interactions from statistics thus constitutes a previously un-
known intermediate approach between purely statistical methods for
inferring effective connectivity (for example, correlations) and
approaches inferring physical connectivity from high-resolution, time-
ordered recordings of the full dynamics (5, 20, 27, 40–42).

The full range of features may be useful under various experimen-
tal conditions. For instance, many high-quality measurements of
single-cell gene expression levels obtained simultaneously are available
either at a system-wide level for a single time point [for example,
Taniguchi et al. (43)] or for a few genes for several time points (44), yet
there is no restriction in principle tomeasuring all genes in a sequence of
different experiments. Together, these results offer a novel perspective on
inferring physical and not only correlative (effective) connectivity of net-
worked systems from statistically sampling their dynamics.
18
METHODS
Goodwin oscillators
To evaluate the quality of the reconstruction approach in a controlled
setting, we considered networks of N prototypical Goodwin oscillators
i ∈ {1,…, N} (30), each with three variables—xi , yi, and zi—evolving in
time according to x:i ¼ f ðziÞ � aizi , y

:
i ¼ xi � biyi � ∑Nj¼1Jijgðyi; yjÞ,

and z
:
i ¼ yi � cizi. In addition, f(zi) = vo/[1 + (zi/Km)

n] constitutes a local
nonlinearity and g(yi, yj) = yi − yj constitutes the diffusive interactions.
In direct numerical simulations, the parameters are ai= bi= ci=0.4, vo=
Km = 1, and n = 17.

Network topologies
For generic evaluations (Figs. 2 to 4), we used random networks of
N = 50 Goodwin oscillators with a regular incoming degree of 4. We
fixed the degree for Figs. 2 to 4 and varied it to compare networks of
different degrees in fig. S2. In addition, we used an Erdős Rényi ran-
dom network of N = 50 genetic regulators, with edge probability p =
0.01, where a genetic regulator is chosen to be either an activator or a
Nitzan, Casadiego, Timme Sci. Adv. 2017;3 : e1600396 10 February 2017
repressor with equal probability (fig. S3). For the topology of a real
biological system, we considered the circadian clock network of
Drosophila [(39, 45); see note S11] (Fig. 5).

Compressed sensing
The framework of compressed sensing (34–38) enables us to recon-
struct a high-dimensional sparse signal based on linear measurements,
where the number of measurements is small relative to the dimension
of the signal. In our context, the goal was to reconstruct the network
physical connections Ji ∈ R1�N for a given unit i, by solving the linear set
of equations��Ii ¼ Dz JTi (Eq. 6) for averaged driving signals�Ii ∈ RM�1,
driving-response matrixDz ∈ RM�N, andM≪N. Given that Ji is suf-
ficiently sparse and Dz fulfills certain conditions, as elaborated in
note S13, this problem can be posed as an L1-norm convex optimiza-
tion problemwith guarantees for a robust and stable solution, and solved
using standard software such as CVX, aMATLABpackage for specifying
and solving convex problems (46, 47).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/2/e1600396/DC1
note S1. Details of the derivation of invariant-based reconstruction.
note S2. Error estimates for observables from sampled invariant density.
note S3. Reconstruction evaluation.
note S4. Moderate influence of link density.
note S5. Reconstructing homogeneous and heterogeneous networks.
note S6. Reconstruction of systems near fixed points.
note S7. Reconstruction of chaotic systems.
note S8. Performance compared with available standard baselines.
note S9. Distinguishing activating from inhibiting interactions.
note S10. The effect of missing information.
note S11. Model descriptions.
note S12. The effect of various driving conditions on reconstruction quality.
note S13. Compressed sensing.
fig. S1. Approximating the center of mass of invariant densities by the sample mean.
fig. S2. Sparser networks require fewer experiments for robust reconstruction.
fig. S3. Reconstruction is robust across network topologies.
fig. S4. The quality of reconstruction increases with the number of experiments for a network
of genetic regulators.
fig. S5. Reconstruction of a network of Rössler oscillators exhibiting chaotic dynamics.
fig. S6. Comparison of reconstruction quality across different approaches.
fig. S7. Comparison of reconstruction quality against transfer entropy.
fig. S8. Separate reconstruction of activating and inhibiting interactions enhances the quality
of reconstruction.
fig. S9. Quality of reconstruction (AUC score) decreases gradually with the fraction of hidden
units in the network.
fig. S10. Quality of reconstruction increases as driving signals overcome noise and finite
sampling effects.
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