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ABSTRACT
This paper surveys the 2003 KDD Cup, a competition held
in conjunction with the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD)
in August 2003. The competition focused on mining the
complex real-life social network inherent in the e-print arXiv
(arXiv.org). We describe the four KDD Cup tasks: citation
prediction, download prediction, data cleaning, and an open
task.

1. INTRODUCTION
The 2003 KDD Cup competition was concerned with the
mining of complex networks; it was based on a dataset from
the e-print arXiv (arXiv.org), together with a set of tasks
designed to capture some of the challenges inherent in ana-
lyzing large social networks. There has been a surge of re-
cent interest in the study of networks across many domains,
ranging from communication and information networks such
as the Internet and the Web to social and biological inter-
action networks (for recent surveys, as well as books aimed
at more general audiences, see e.g. [1; 3; 5; 7; 10]). This
work has been characterized by an emphasis on networks
as complex phenomena to be studied, rather than simply as
artifacts to be designed; it has been stimulated by a growing
awareness that complex networks arising in many different
settings have a surprising number of qualitative features in
common.

Our focus in the KDD Cup was on social networks. Roughly
speaking, a social network is a structure in which the nodes
represent social entities such as people or organizations, and
the edges represent some form of relationship or interaction
among them (see e.g. [8]). Social network analysis is a natu-
ral domain in which to apply data mining techniques, and a
growing body of work has explored some of the potential ap-
plications of social network mining. By way of illustration,
consider the following pair of examples.

• A large community of Internet users engaged in chat or
instant messaging naturally defines a social network,
and understanding the structure of this network can
help one design services that improve the experience
of users in such a system.

• The set of collaborations among employees in a large

organization or company naturally defines a social net-
work; understanding its structure can help one im-
prove the efficiency of information flow and collective
problem-solving, and to identify the people who play a
critical role in the functioning of the organization. In
some cases, as in recent studies of terrorist networks,
the organization is a structure that tries to remain hid-
den from observation, and the goal is to infer enough
about its functioning so as to effectively disrupt it.

A major obstacle in the evolution of social network mining
research is the lack of datasets that are simultaneously com-
plex, realistic, and reasonably complete. Most work to date
has dealt with datasets that only exhibit two of these three
properties: studies in sociology have thoroughly mapped so-
cial networks in the real world, but the enormous effort in-
volved in such activities has necessarily limited their size;
simulation can produce large, complex networks, but it is
not clear how well they map onto real social networks.

In view of this, a promising line of work has studied collabo-
ration networks, whose nodes are people working in a partic-
ular field or profession, and whose edges join pairs of paper
who have collaborated on a project together. Examples that
have by now received extensive study are the collaboration
graph of movie actors and actresses drawn from the Internet
Movie Database (see e.g. [9]), and the co-authorship graphs
of researchers who have papers appearing in the physics e-
print arXiv, Medline, or other venues [4; 6]. Such networks
have the advantage that they are very large and complex,
yet they have been completely “mapped”. Their applica-
bility to general network mining research is based on the
argument that they capture many of the fundamental prop-
erties of large-scale social networks. Thus, even if our goal is
to study social networks in general (rather than the behav-
ior of movie performers or scientific researchers per se), such
networks can serve as high-quality “model systems” for ex-
periments and for the evaluation of data mining algorithms.

It is in this spirit that we employ the e-print arXiv as a
rich dataset for network analysis. By way of background,
the arXiv was started by Paul Ginsparg in 1991; while it
was initially created to serve a small research community, it
has since grown enormously to become the primary means
of disseminating research results in many areas of physics.
As of this writing, it contains roughly a quarter of a mil-
lion papers, with about 40000 new papers added each year.
Unlike systems such as CiteSeer, which collect papers by
crawling the Web, the arXiv receives papers directly by au-
thor submission. The arXiv has an active readership as well;
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it receives roughly 10 million requests per month, with the
full text of each paper downloaded over 300 times on average
within the first few years of submission. (The most popular
papers can receive tens of thousands of downloads.)

At the heart of the KDD Cup data is the citation graph of
papers in the high-energy physics section of the arXiv; this
is the graph whose nodes are papers and whose (directed)
edges connect papers to the other papers that they cite.
(The full text of the papers contains an implicit represen-
tation of the citation graph, and an easily usable, “ground
truth” representation of the graph is maintained by a group
at SLAC/SPIRES.) Like a collaboration graph, a citation
graph encodes information about the social structure of the
scientific community; the field of bibliometrics has a long his-
tory of studying citation networks using the tools of social
network analysis [2].

Building on this citation structure, we also provide for the
KDD Cup the full text of the papers, and some limited
download data. Thus, we have a simultaneous view of the
content (paper text), structure (citations), and usage (down-
loads) of the arXiv network, and hence have the ability to
pose a wide range of data mining questions. The KDD Cup
tasks make explicit use of all aspects of this data.

2. THE TASKS
The Cup consisted of four tasks. We will describe the tasks
out of order, starting with Tasks 1 and 3 and then mov-
ing on to Tasks 2 and 4. Overall, we received 57 submis-
sions from countries around the world including Australia,
China, France, Germany, India, Japan, South Korea, Slove-
nia, Switzerland, and the United States. Most groups had
three or fewer members; the largest group had 12 members.

2.1 Task 1: Citation Prediction
In the first task we asked the question: Can we understand
how the network evolves over time, and which nodes gain
and lose in importance? We implemented this by asking
participants to predict changes in the number of citations
received by well-cited papers over time; we defined a pa-
per to be well-cited if it received six or more citations from
February to April 2003. (There were 441 well-cited papers
overall in the selected database.) The specific task was to
predict, for each well-cited paper, the difference between (a)
the number of citations it received during the period from
February 1, 2003 to April 30, 2003, and (b) the number of
citations that it received during the period from May 1, 2003
to July 31, 2003. A vector of predicted changes was formed,
with one coordinate for each well-cited paper, and the eval-
uation metric was the L1 distance between this vector and
the vector comprised of the true changes.

The task used a subset of papers categorized as “hep-th”,
which is the High Energy Physics Theory section of the
arXiv. There were 30,119 papers written by 57,448 authors
comprising in total 1.7GB of LaTeX sources with 719,109
total citations in the papers. 363,812 of these citations
were external citations (citing a paper outside hep-th), and
355,297 citations were internal citations.

Contestants had information about both the content and
structure of the citation graph. SLAC/SPIRES provided
the citation graph, and from the arXiv contestants received
the LaTex sources of each paper, including a separate user-
submitted abstract and the arXiv submission date.

There were three entries with L1 difference scores between
1300 and 1400, and four between 1400 and 1500. This
task was very difficult; for example, simply predicting zero
change for all papers would have been placed 11th among
all entries. In addition, the L1 difference was not dominated
by the most highly-cited papers; the 20 most-cited papers
accounted for only a few percent of the overall L1 difference.

First place in Task 1 went to J N Manjunatha, Raghaven-
dra Kumar Pandey, S R Sivaramakrishnan, and Narasimha
Murty from the Indian Institute of Science; they describe
their approach in the paper “Citation Prediction Using Time
Series Approach,” which appears later in this issue. Second
place went to Claudia Perlich, Foster Provost, and Sofus
Kacskassy from New York University; their paper “Predict-
ing citation rates for physics papers: Feature construction
for an ordered probit model” also appears later in this issue.
Third place went to David Vogel from A. I. Insight, Inc.

2.2 Task 3: Download Estimation
In Task 1, the goal was to predict the evolution of explicit
links in the network — the citations that are created as new
papers are submitted to the arXiv. But these links are only
manifestations of past activity “behind the scenes,” namely
the usage patterns of the arXiv. The question that we asked
in Task 3 was: Can we find patterns in this usage behavior?
The goal of Task 3 was to predict the number of downloads
that a paper receives in its first two months in the arXiv.

Estimating downloads is interesting since it creates a link be-
tween the explicit structure of the network and its usage —
between an ephemeral activity and something long-lasting.
For example, when looking at both download and network
structure, we can observe that growth in download activity
is followed by growth in citations. Similar to fingerprints
at crime scenes or frozen specimens in glaciers, we can see
citations as frozen evidence of usage. A second tie between
content and usage is provided by the arXiv’s topic-specific
mailing lists, which causes papers on similar topics to have
similar download histories.

For Task 3, the contestants were provided with the data
from Task 1 as well as the following download data: for
each paper submitted to the arXiv in February 2000, March
2000, February 2001, April 2001, March 2002, and April
2002, they were given the total number of times the paper
was downloaded from the main arXiv site in the first 60
days after its submission. The contestants needed to submit
estimates of the corresponding quantity for papers submit-
ted in April 2000, March 2001, and February 2002. The
evaluation metric was the absolute difference between the
predicted and true download counts, summed over the 50
papers with the most downloads from each period. (Contes-
tants were allowed to make predictions for all papers.)

This task was also very hard since there were external influ-
ences that were essentially impossible to predict just from
the papers alone. For example, one paper, hep-th/0103239,
received 7160 downloads – significantly more than any other.
This spike resulted from a story about that paper that ap-
peared in New Scientist on April 14, 2001; the story included
a link to the paper, bringing a large number of readers out-
side the “standard” pool to the arXiv.

First place in Task 3 went to Janez Brank and Jure Leskovec
from Jozef Stefan Institute in Slovenia; their paper “The
Download Estimation Task on KDD Cup 2003” appears
later in this issue. Second place went to Joseph Milana,
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Joseph Sirosh, Joel Carleton, Gabriela Surpi, Daragh Hart-
nett, and Michinari Momma from Fair Isaac Corporation;
their paper “Model Builder for Predictive Analytics & Fair
Isaac’s Approach to KDD Cup 2003” also appears later in
this issue. Third place went to Kohsuke Konishi from the
University of Tokyo in Japan. The 150 most downloaded
papers predicted by his submission had the highest intersec-
tion with true top 150.

2.3 Task 2: Data Cleaning
Task 2 was designed as a challenge for data cleaning tools.
Recall that SLAC/SPIRES provides the actual citation graph
of the papers. This citation graph is created by automated
heuristics followed by human post-processing; the automated
portion of this process achieves reasonable accuracy, having
been refined over many years using extensive domain knowl-
edge. The challenge is that the actual citations in the papers
are unclean; for example, they contain spelling variations
on author names, abbreviations, typos, and other sources of
noise. Moreover, citations in the physics community usu-
ally do not contain the paper title. To illustrate, here is an
example of three citations to the same article:

• Lisa Randall and Raman Sundrum, Physical Review
Letters, 83(17):3370–3, 25 October 1999

• L. Randall and R. Sundrum, PRL 83, 3370 (1999)

• Lisa Randall, Raman Sundrum, Phys.Rev.Lett. 83:
3370–3373, 1999

Note that this is an easy example in which all the informa-
tion is present; there are many more obscure examples in the
LaTeX sources. In the physics community, citations often
contain unique arXiv identifiers, for example:

• Lisa Randall, Raman Sundrum, Phys.Rev.Lett. 83:
3370-3373, 1999, hep-ph/9905221

— these identifiers are explicitly used by the SLAC/SPIRES
heuristics.

The goal of this task was to recreate the citation graph for
papers from a category called hep-ph (High Energy Physics
Phenomenology), using only the LaTeX sources of the pa-
pers. Concerned the task might be too “easy”, we removed
occurrences of unique paper identifiers by running a perl
script over the sources that removed arXiv id’s (alphameric
plus 7 consecutive digits), thus effectively making Task 2
harder than that faced by SLAC/SPIRES. The evaluation
metric was the size of the symmetric difference between the
true and submitted sets of citation links.

With limited time and no domain knowledge, this problem
turned out to be very difficult. The true citation graph
for hep-ph has about 421,000 edges between 35,000 papers.
Only one entry outperformed the empty graph on this eval-
uation metric. This entry by David Vogel from A.I. Insight,
Inc. consisted of only four hand-crafted citations, and it won
first place. Second place went to Sunita Sarawagi, Kapil
M. Bhudhia, Sumana Srinivasan, and V.G. Vinod Vydis-
waran from IIT Bombay, who had the highest number of
correct citations with about 40,600 correct citations out of
over 175,800 predicted citations. Their paper, “Resolving
citations in a paper repository,” appears later in this issue.
Third place went to Martine Cadot and Joseph di Martino
from LORIA, the Laboratoire Lorrain de Recherche en In-
formatique et ses Applications in France. Their paper, “A
Data Cleaning Solution by Perl Scripts for the KDD Cup
2003 Task 2,” also appears later in this issue.

2.4 Task 4: The Open Task
In Task 4, we left the definition of the problem to the par-
ticipants: The goal was to take the data, define the most in-
teresting questions possible, and mine the answers to these
questions from the data. A committee of judges selected the
winning entry based on novelty, soundness of methods and
evaluation, and relevance to the arXiv dataset. The commit-
tee consisted of the the three KDD-Cup co-chairs, together
with Mark Craven, David Page, and Soumen Chakrabarti.

First place went to Amy McGovern, Lisa Friedland, Michael
Hay, Brian Gallagher, Andrew Fast, Jennifer Neville, and
David Jensen from the University of Massachusetts, Amherst.
They describe their work in the paper titled “Exploiting
Relational Structure to Understand Publication Patterns in
High Energy Physics”. Second place went to Shou-de Lin
and Hans Chalupsky from the University of Southern Cali-
fornia, for their paper “Using Unsupervised Link Discovery
Methods to Find Interesting Facts and Connections in a
Bibliography Dataset”. Third place went to Shawndra Hill
and Foster Provost from New York University for their pa-
per “The Myth of the Double-Blind Review”, and the fourth
place went to Grigorii Pivovarov and Sergei Trunov for their
paper “EqRank: A Self-Consistent Equivalence Relation on
Graph Vertexes”.
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