Dialogue on Reverse-Engineering
Assessment and Methods

The DREAM of High-Throughput
Pathway Inference

GUSTAVO STOLOVITZKY,* DON MONROE,” AND ANDREA CALIFANO®

4IBM Computational Biology Center, Yorktown Heights, New York 10598, USA
bScience Writer, Berkeley Heights, New Jersey, USA

¢Department of Biomedical Informatics, Columbia University, New York,
New York, USA

ABSTRACT: The biotechnological advances of the last decade have con-
fronted us with an explosion of genetics, genomics, transcriptomics, pro-
teomics, and metabolomics data. These data need to be organized and
structured before they may provide a coherent biological picture. To ac-
complish this formidable task, the availability of an accurate map of the
physical interactions in the cell that are responsible for cellular behavior
and function would be exceedingly helpful, as these data are ultimately
the result of such molecular interactions. However, all we have at this time
is, at best, a fragmentary and only partially correct representation of the
interactions between genes, their byproducts, and other cellular entities.
If we want to succeed in our quest for understanding the biological whole
as more than the sum of the individual parts, we need to build more com-
prehensive and cell-context—specific maps of the biological interaction
networks. DREAM, the Dialogue on Reverse Engineering Assessment
and Methods, is fostering a concerted effort by computational and ex-
perimental biologists to understand the limitations and to enhance the
strengths of the efforts to reverse engineer cellular networks from high-
throughput data. In this chapter we will discuss the salient arguments of
the first DREAM conference. We will highlight both the state of the art
in the field of reverse engineering as well as some of its challenges and
opportunities.
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INTRODUCTION

The idea of a “systems” or holistic approach to biology was very much in
the minds of physiologists several decades ago. So what is today’s systems-
biology buzz all about? The driving force behind this burgeoning discipline
is, in great part, the development of new tools that have opened the floodgates
to data flowing from molecular events in the cellular realm.

Concerted efforts are now being made to create tools to consolidate, stan-
dardize, visualize, and manipulate knowledge from multiple sources.'> This
should make the data easily available to improve understanding and to attempt
the decoding of the design principles of biological pathways.

Although not a hard and fast rule, we can think of the many efforts in
the field of systems biology as attempts to infer networks of interactions of
cellular components from biological data, and use those networks as scaffolds
on top of which increasingly more accurate predictive models can be built. For
instance, one may attempt to use such predictive models to make hypotheses
of how cells would react to exogenous perturbations and to design appropriate
experiments to validate the model.

The complexities of biological systems are orchestrated by networks com-
prising thousands of interacting molecular species, including DNA, RNA,
proteins, and smaller molecules. One of the goals of systems biology is thus to
map these networks in ways that may provide fundamentally new understand-
ing of cell biology at the molecular level. Unfortunately, even though modern
biotechnology can provide rich data sets by simultaneously monitoring thou-
sands of different types of molecules, dissecting the underlying network of
physical interactions from these observations—that is, reverse engineering—
remains a daunting challenge.

It is clear that a sense of the reliability of the reconstructed networks can only
arise from our understanding of the limitations of reverse-engineering methods
from precise quantitative metrics. In order to address this simple requirement
we conceived the initiative we call DREAM (Dialogue on Reverse Engineering
Assessment and Methods). The fundamental question for DREAM is simple:
How can reverse engineers assess how well they are doing? The answer is
not so simple. Researchers have used a variety of algorithms to deduce the
structure of very different biological and artificial networks, and evaluated
their success using various metrics. What is still needed, and what DREAM
aspires to, is a fair comparison of the strengths and weaknesses of the methods
and a clear sense of the reliability of the network models they produce.

On September 7-8, 2006, about 150 researchers gathered to discuss the re-
verse engineering of biological networks in the Wave Hill Conference Center,
overlooking the Hudson River in the Bronx, New York. This first DREAM
conference was co-organized by Gustavo Stolovitzky (IBM Research), An-
drea Califano (Columbia University), and Jim Collins (Boston University).
The meeting was sponsored by the Center for Discrete Mathematics and
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STOLOVITZKY et al. 3

Theoretical Computer Science (DIMACS), the Columbia University Center for
the Multiscale Analysis of Genetic Networks (MAGNet), the NIH Roadmap
Initiative, and the IBM Computational Biology Center.

DREAM conference attendees included computer scientists, physicists,
mathematicians, and experimental biologists. In fact, systematically reach-
ing out broadly to the community of experimental biologists is a key aim of
the DREAM effort. During this meeting, although participants often empha-
sized contrasting aspects of the reverse-engineering challenge, some common
themes emerged, both during the lectures and informal discussions:

* Even though many of the networks inferred by reverse-engineering meth-
ods may not be “realistic” (in the sense of mechanistically accurate), they
can still be useful to understand cell function and behavior.

* It is critical to explore biological networks within a specific cellu-
lar/molecular context, because network topology and properties can be
quite different in different tissues and under diverse biological conditions.

* Some well-understood biological networks may serve as “gold standards”
for assessing the quality of reverse-engineering algorithms, but their
identity is not easily hidden from researchers to create a truly “blind”
test.

* Artificial networks, which are easily generated and blinded, will con-
tinue to be important for understanding the strengths and weaknesses of
algorithms. However, experimental biologists are unlikely to trust any
conclusions reached via these approaches.

» Assessment requires balancing errors in predicting interactions that are
present as well as those that are not, because biological networks are
sparsely connected.

* [tmay be time to take the first steps toward a formal assessment process, in
which researchers test their methods against a set of common challenges.

Even though researchers have proposed a variety of algorithms for network
reconstruction, comparing them on an objective basis can prove quite difficult.
As the conference made clear, some of the challenges arise because the various
methods target different problems. The problems at the time of algorithm-
performance comparison differ in many dimensions, including:

(1) sources of biological data (e.g., high-throughput screens or carefully
validated interactions);

(2) biological function of the network (e.g., metabolic, signaling, transcrip-
tional, protein—protein interactions, etc.)

(3) generative network (biological, mathematical, or in vivo synthetic);

(4) types ofperturbation (e.g., varied environmental conditions or knocking
out entire nodes);

(5) network behavior modeled (steady-state versus dynamic, continuum
versus discrete, topological versus differential equations);
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(6) quality of data (including noise and coverage); and
(7) metrics (e.g., topological versus quantitative, tradeoffs of accuracy and
discrimination).

In the following sections we describe the salient arguments that emerged during
the conference. They constitute a good snapshot of the state of the field, and
at the same time they help understand the areas where a concerted effort will
help advance the field.

TYPES OF NETWORK INFORMATION
What Data Best Capture Network Behavior?

Biological networks involve interactions between several types of molecular
species, including DNA, RNA, proteins, and metabolites. The best-developed
high-throughput technology, microarrays, lets researchers monitor average
mRNA concentrations in a cell population on a genome-wide scale. Other
high-throughput techniques, such as transcription-factor binding microarrays
(ChIP-chip), compound library screening, protein and metabolite profiles,
and genome-wide identification of protein—protein interactions and post-
translational modifications, are less mature but improving quickly.

Researchers can also exploit reliable quantitative data from lower-
throughput, more laborious techniques, such as functional reporter-gene as-
says. As they aid in reverse engineering massive networks, these smaller but
better-understood systems can provide critical sanity checking. Other impor-
tant clues come from evolutionary conservation, a property often exploited in
other areas of biological research, where known conservation of an interaction
in some species may be used to predict its existence in another species.

Most pathway inference approaches address a specific “layer” of biochemi-
cal interactions, such as transcriptional (protein-DNA), signaling (protein—
protein, protein—DNA), protein complex (protein—protein), or metabolic
(protein—metabolite) interactions. Different layers can have a different network
character than that of gene expression networks. For example, as discussed by
Pedro Mendes® and Ilya Nemenman,* metabolic networks tend to be resistant
to change. They are constrained by a few co-factors that influence myriad
reactions, and the corresponding graphs have many branches and loops.

The deepest biological insight will require combining different layers, in-
cluding data on gene expression, proteins, and small molecules, among others.
Several participants described efforts to do this: Allister Bernard,® for example,
combined electrophysiological and expression underlying songbird behavior
in songbirds, with information on gene expression and protein-DNA inter-
action in yeast. Michael Samoilov® also described an algorithm for reverse-
engineering combined data.
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Combining these layers can yield surprises, even when all the ingredients
are known. For example, Pedro Mendes® described a network including 20
genes, 23 proteins, and 16 metabolites, interacting by transcription, transla-
tion, metabolism, and signal transduction. Although simpler than real biolog-
ical networks, this network showed unexpected behavior, including apparent
connections between unconnected species, and proved quite resistant to early
attempts to reverse engineer it. This issue begs the simple question of how to
draw the basic network of interactions that best represents the behavior of the
set of chemical reactions.

The emergence of RNA interference has highlighted a previously unrecog-
nized layer of biological control. Networks that omit this layer must incorporate
its influence through effective but indirect interactions. Indeed, since all data
sources will be incomplete, a critical feature of reverse-engineering algorithms
is whether they deal gracefully with missing data, whether from the same layer
or from other layers. This issue of how to deal with a network with latent vari-
ables, that is, cellular players that are unknown and thus are not represented in
the network, is addressed in Adam Margolin’s article’ in this volume.

Types of Network Models

Biological networks are often represented as graphs, with “edges” connect-
ing “nodes” (F1G. 1). This is not necessarily an ideal representation as often
it may not even be clear whether the nodes correspond to a unique molecular
species, such as a specific protein isoform in a given cellular compartment.
Researchers, such as Dana Pe’er,® for example, have found that reverse en-
gineering is more robust at the level of “modules” of coherently regulated
species. In that case, a node may represent an entire collection of mRNAs.
Other researchers have suggested the use of individual domains and binding
sites as network-nodes, achieving greater granularity of the representation.

Similarly, complex multivariate dependencies cannot be adequately repre-
sented and are shown as collection of pairwise relationships. In other cases,
such as for protein—protein “interactomes,” an edge may have a more obvious
meaning, indicating for instance that two proteins have been shown to form
a complex in laboratory assays. The true significance of an edge, however, is
more subtle, especially when multiple layers interact (for instance, a directed
edge may indicate that the kinetics of one species is a function that depends on
other species). As the field matures, researchers will need to be increasingly
more precise about what “edges” represent in a particular context.

In many applications of reverse engineering, researchers attempt only to
reconstruct the topology of the networks (FI1G. 1A) rather than the nature of the
individual relationships (i.e., the type of interactions and its kinetic constants).
In these cases a graph, possibly a directed one indicating the direction of
influence, constitutes an adequate representation, as in FIGURE 1B. A more
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FIGURE 1. Types of network models in biology. Biological networks are often rep-
resented as graphs, with “edges” connecting ‘“nodes.” The nodes can represent genes,
proteins, metabolites, or other biological entities. The connections represent physical inter-
actions (i.e., protein—protein binding or substrate-product linkages) or functional linkages
(i.e., expression of gene D inhibits expression of gene G). In increasing order of detail,
the edges can be: (A) Undirected edges: connections between the interacting nodes. (B)
Directed edges: connections showing an indication of how incoming edges affect (possibly
in a causal way) nodes. As is typically shown, arrows indicate positive or activating con-
nections, and lines terminated with perpendicular segments indicate negative or inhibitory
connections. (C) Quantitative edges: edges can also be endowed with a quantitative function
of how the inputs control the output. For example, G = fg(D,H) would explicitly describe
the co-dependence of the expression gene G with respect to expression levels of genes
D and H.

complete recapitulation of the behavior of a biological network, however,
requires a quantitative description (FIG. 1C), such as that provided by a set
of ordinary differential equations, or even partial differential equations if the
volume of the cell must be accounted for. Reverse engineering these models
equates to not only finding the topology of the network, but also finding the
kinetic constants in the equations. Both goals are obviously important, but
the algorithms that attempt to achieve them must be assessed with different
metrics.

Similarly, reproducing the dynamic response of a network emphasizes dif-
ferent aspects of a model than capturing its steady-state behavior. Representing
network response discretely, perhaps as overexpression, underexpression, or
no change, as done by Kundaje et al.’ is not as rich as a full quantitative de-
scription, but may be more robust in light of limited and noisy experiments.

How to Perturb Networks?
A classic way to reverse-engineering cellular networks or to test their power

as predictive models is to perturb the cellular system and observe its response.
A large set of gene expression profiles, for instance, corresponding to distinct
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STOLOVITZKY et al. 7

biochemical or environmental perturbations, can activate distinct pathways,
forcing the cell to find new equilibrium points and thus providing much greater
information about its dynamic landscape. Similarly, network models may be
used to infer how the cell would react to specific perturbations, and thus one
may be able to experimentally validate the predictions. There are basically
three kinds of perturbations: biochemical, genetic, and environmental ones.

Biochemical perturbations are based on the administration of chemical
compounds and tend to directly affect one or more pathways. For instance, one
may use a ligand that binds a specific receptor or a nonspecific inhibitor, such
as TSA, which affects an entire class of HDAC enzymes. Such an approach
was recently used by the Golub lab'? to dissect the activity profile of a wide
class of compounds in different cell lines.

Genetic perturbations are based on the use of specific molecules that can
inhibit an individual gene (knockout) or on the introduction of constructs in
the cell that allow the exogenous expression of a gene (knockin). This is of-
ten accomplished by transfecting cell lines with siRNA or expression vector
constructs. Jim Collins, for example, described a set of experiments to use
such techniques to study the regulatory networks of E. coli bacteria. While
these perturbations should in theory be razor sharp, affecting only the gene of
interest, the complexity of cellular networks can result in complex and unex-
pected effects that can both help and hinder the process of reverse engineering
from perturbation data. Arnie Levine,'""!? for instance, emphasized that the
effects of gene knockouts in mice are sometimes masked by the homeostatic
machinery of the cell so that the transgenic animal is undistinguishable from
its wild-type counterpart.

Environmental perturbations are related to the change of physiochem-
ical variables in the cellular environment (e.g., growth media). For in-
stance, changes in nutrient concentration, heat-shock, or oxygen concentration
changes can all activate alternative “programs” of cellular responses, leading
to a vast change in the repertoire of expressed genes.

Choosing the right perturbation set depends on the specific cellular context
of interest since a compound that is active in a B cell may have no effect in a
fibroblast.

HOW SHOULD THE DATA FOR REVERSE-ENGINEERING
ASSESSMENT BE GENERATED?

Before we can assess how well or how poorly a reverse-engineering al-
gorithm is performing on a network, we must ensure that we have accurate
knowledge about the network itself. Specifically, we must make sure that we
know precisely whether a specific interaction is present or not within the
network. The collection of all interactions that are known to be present in a
network is called a positive gold standard (GS+), while the collection of all
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interactions that are known not to be present in a network is called the negative
gold standard (GS—). Moreover, if we want the test to be truly blind, we must
ensure that only the evaluation team knows the identity of the interactions in
the gold-standard sets.

Creating an adequate set of gold standards for different problems in reverse
engineering is probably the single biggest challenge of the DREAM initiative.
The reason for this is manifold. First, most of the known networks are in the
public domain. Thus it would be close to impossible to generate blind GS sets
from them. Second, interactions that are experimentally validated may only
be valid in a specific cellular context and may not be used in other contexts.
Third, even experimentally validated interactions may be false positives. For
instance, it is expected that close to 20% of all interactions predicted by the
most accurate yeast-2-hybrids technology are false positives. Thus the positive
gold standard may contain a significant number of interactions that are not
really present in the network. Fourth, and most important, our network structure
knowledge is highly incomplete and anywhere from 50% to 95% of the true
interactions may be missing, leading to difficulties in compiling the negative
gold-standard (i.e., which interactions are not present in the network).

The following sections in this chapter will describe some of the attempts by
the DREAM community to work around these obstacles.

Synthetic in Silico Networks

In silico networks offer an ideal model of the network. Basically, all interac-
tions are known exactly and thus the positive and negative gold-standard sets
contain no errors. Furthermore, they can be simulated under any condition or
perturbation, yielding a virtually infinite flexibility of the reverse-engineering
assessment studies. Thus, these models are currently the only ones that offer a
“guaranteed correct” gold standard to test reverse-engineering algorithms and
that can be guaranteed to be really “blind” to anybody but the evaluation team.

However, even the most biologically inspired among synthetic models is
far removed from an actual biological counterpart. They may omit important
aspects of regulation that are indeed present in real, multilayered biological
systems. They may also omit the natural biological noise as well as the ex-
perimental noise present in any measurement setting. In addition, since they
have not been honed by evolution, they may lack important features of real
networks, such as redundancy and canalization, or have other features that
real networks lack. But the most important challenge is a cultural one. Ex-
perimental biologists, as it became obvious during the first DREAM meeting,
are not ready to trust any reverse-engineering algorithm based on its perfor-
mance on synthetic data. Thus, their use at this time is more targeted toward
computational researchers that may hone their techniques using this kind of
model.
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STOLOVITZKY et al. 9

Some of the richest in silico networks were described by Pedro Mendes,?
whose group has made artificial networks as realistic as possible. For exam-
ple, Mendes believes that saturation of response is an important feature of
biological networks, so it should be part of model networks as well.

An advantage of synthetic-network models is that they may allow the re-
searchers to rapidly explore what data types may be more convenient for
network inference: is it mRNA expression profiles, proteomics data, mea-
surements of phosphorylation states? They also can be used to assess how
sensitive their methods are to changes in topology, parameter values, kinetics,
data availability, and noise.!>"!”

In general it was thought that, despite their limitations, in silico networks
have an important role to play in the assessment of reverse-engineering meth-
ods and will be included in the first round of DREAM challenges.

Experimental Biology

A major stimulus for the reverse-engineering community has been the avail-
ability of high-throughput data, for mRNA transcription as well as other types
of data. At the simplest level of analysis, efforts in this direction looked for
correlations in the mRNA levels of different genes as evidence of linkage
between them. These techniques are very powerful and have driven the ini-
tial spurt of systems biology results. However, new integrative methods are
proving to be better suited to reverse engineering.

For example, correlations are of limited use without knowing the direction
of influence. Eric Schadt!® describes how genetic-sequence data help to solve
this problem, even for the complex expression patterns of real tissues from
animals or humans with disease. Because genetic variation influences, but is
not influenced by, variations in expression, these data provide the same sort
of directional cause-and-effect information. The DNA data help distinguish
between “causal” expression changes and those that are merely reacting to
the disease state. Interestingly, the DNA changes that predict disease almost
all involve non-protein-coding regions. These methods go under the name of
genetical genomics.

Another example of powerful biological tools used to probe signaling
networks was discussed by Dana Pe’er, who, with her collaborators,® !
approach the problem of reconstruction a signaling network using single-
cell monitoring of phosphorylated proteins in T cells. Although the tech-
nique probes only a dozen species, she and her colleagues probed the
patterns of variation in large numbers of individual cells using flow cy-
tometry. They also used a host of small-molecule interventions that tar-
get specific parts of the network, allowing them to distinguish correlation
from causation in the post-translational modifications that drive signaling
networks.
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In yet in another example of biological experimentation for reverse engi-
neering, Ilya Nemenman* is exploring networks that go beyond expression
data. He describes plans for a robotically sampled chemostat to monitor hun-
dreds of metabolites in small batches of cells. The metabolic networks he
probes represent another important layer in the complex reality of biological
systems.

Synthetic in Vivo Networks

Artificially designed synthetic networks, embedded into real biological sys-
tems, play an intermediate role between the control promised by in silico
systems and the complexities of real biology. To combine the strengths of the
two types of systems, the tools of bioengineering can be used to insert rela-
tively simple “designer networks” in an organism, such as yeast, or cell lines.
Unlike natural systems, such bioengineered systems would be almost perfectly
known. (The “almost” is because remnant interactions between the synthetic
network and the host network might create indirect unintended influences that
affect the synthetic network.) Moreover, researchers who want to extend the
results will not be limited to analyzing experimental data: they can be given the
actual yeast strain and the corresponding perturbation plasmids. Results from
such in vivo networks may be more likely to be accepted as relevant by the
experimental biology community than purely in silico models. The criticism
might be that this approach will not scale to larger networks easily.

Diego di Bernardo and his colleagues? integrated a synthetic regulatory net-
work into the genome of budding yeast. This network is small, comprising only
five added genes, but it provides a uniquely well-understood in vivo network
for assessing reverse-engineering techniques according to di Bernardo. The
researchers selected five interacting genes and introduced new promoter/gene
combinations directly into the chromosomal DNA.

METRICS FOR ASSESSMENT

The evaluation of the performance of reverse-engineering methods depends
to a great measure on the metrics used to evaluate them. Since there are
many types of data, and many ways to organize these data into networks and
models, coming up with metrics that are good for all methods is extremely
hard. Comparison between reverse-engineering methods are subject to the
same caveats.

The most basic comparison between a gold-standard network and its target
is the topology: which nodes connect to which others? One popular test of a
putative network is whether the inferred “edges” between nodes exist or do not
exist in the gold-standard network. Precision indicates the percent of inferred
interactions that exist in the gold-standard, while Recall indicates the percent
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STOLOVITZKY et al. 11

of interactions in the gold-standard network that were inferred by the method.
Thus plotting the precision versus the recall performance of a method as a
function of some of the method’s parameters provides an excellent metrics for
comparison.

In general, as emphasized by Mark Gerstein,?! making a test more stringent
eliminates false positives (higher precision), but at the cost of an increasing
number of false negatives (lower recall). Therefore metrics should be equally
sensitive to both false positives and false negatives. Because biological net-
works tend to be sparse, there are typically many more negative pairs of nodes
not joined by an edge than otherwise. This imbalance can influence the met-
rics for network reconstruction. In this sense PRC (precision—recall curve)
plots are preferable to standard ROC (receiver operating curve) plots where
recall is plotted against the false positive rate (i.e., the fraction of negative
examples that are misclassified as positive), even when there is a close sim-
ilarity between ROC and PRC plots.?? This is so because as the number of
negative examples greatly exceeds the number of positive examples in typical
biological networks, a large change in the number of false positives can lead
to a small change in the false positive rate used in ROC analysis. On the other
hand, precision captures the effect of the large number of negative examples
on the algorithm’s performance by comparing false positives to the number of
inferred edges rather than to the much larger number of true negatives.

The PRC plot shows quantitatively how a reverse-engineering algorithm
trades precision for recall: neither precision nor recall, by themselves, provides
useful characterization. The typical summarization of this trade-off between
precision and recall is achieved by estimating the area under the PRC, or
AU-PRC. The closer to 1 this number is, the better the predictions of the
reverse-engineering algorithm.

Pedro Mendes and collaborators®!” have used the “confusion matrix” as a
metric of performance. A confusion matrix organizes in a tabular format the
information about actual and predicted classifications done by a classification
system. When the classification system is binary (e.g., positives and negative
cases), a confusion matrix contains the information to draw just one point in
either the ROC or the PRC. As it is unclear what the best point is to compute
the confusion matrix in the PRC, it is customary to choose 3 or 4 values of
recall where to predict the precision. For example, a valid metric of comparison
can be the precision at 10%, 20%, 50%, and 80% recall.

An alternative test, which recognizes the lack of a gold standard for real
biological networks, is to compare observed behavior (which could be quali-
tative, such as over- and underexpression, or quantitative, such as response to
perturbations, time courses, etc.) between the model and data collected from
its target. The resulting metric will depend critically on what importance is
ascribed to different features of agreement and disagreement.

In silico models of real biological processes are quite sensitive to the values
of'a handful of parameters. Most other parameters, however, can vary over wide
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12 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

ranges without any obvious effect. It is important to recognize this limitation
when assessing reverse-engineering algorithms, although it is often hard to
know in advance which parameters will be poorly determined.

The precise form of the metric depends on the type of network model the
methods generate. In a few cases, such as the gap-gene system described by
Theodore Perkins,?*2* this model includes differential equations characteriz-
ing the interactions. Many of the reverse-engineering methods, however, only
aim to predict a graph that summarizes which nodes are connected to which
other nodes by an edge. For these models, the metric should quantify how well
the method classifies edges as present or absent.

SPECIFIC ALGORITHMS

This symposium included some descriptions of specific algorithms to
infer network structure. Many participants employed Bayesian network
analysis, which goes beyond simple pair-wise correlations. By examining
the conditional dependence and independence of a quantity in the con-
text of other variables, it can pick up associations that are not obvious
in the correlations because of confounding variables, including omitted
nodes.

As these techniques typically start from a random seed, and each seed
may lead to slightly different results, researchers replicate the same method
hundreds of times starting with different seeds. Each individual replica is
assigned a score according to how well the converged network explains the
existing data. The final result is summarized in a consensus network, whose
edges are those that appear in a large fraction of the resulting high-scoring
networks. A pure Bayesian network approach reports statistical dependences,
with directionality. Both Dana Pe’er® and Eric Schadt!® showed that some
types of data allowed them to deduce the direction of influence.

One shortcoming of Bayesian network analysis is that each one of the
individually inferred networks has no feedback loops, in which the influence
of one node on others eventually acts back on the original node. Thus, the
final consensus network will likely miss feedback loops that are central to
the behavior of many real networks. One way to deal with that weakness is
to “unfold” the data in time. In this “dynamic” Bayesian network analysis,
as described by Chris Wiggins,?>?¢ each node affects others only at a later
time step, so loops at any time step are impossible. This requires time-series
data, however, which is often hard to get at the appropriate time-resolution for
complex, living organisms.

Regression-based algorithms are also a method of choice to reverse-engineer
networks. Jim Collins, Tim Gardner, and collaborators have used this class of
methods to identify the targets of antibiotics in E. coli.?’-?
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STOLOVITZKY et al. 13

Several participants used results from ARACNE,'>?° a method pioneered

by a team including DREAM organizers, Andrea Califano and Gustavo
Stolovitzky. Riccardo Dalla-Favera,*® for example, used it to elucidate the
transcriptional network of B cells, while Ilya Nemenman*3! showed that it
worked well in extracting an artificial metabolic network. Rather than us-
ing the statistical correlation, which assumes a linear relation between nodes,
ARACNE uses mutual information to capture potentially nonlinear statistical
dependences between nodes. In this way ARACNE captures edges that may
not have been predicted by correlation methods.

Boris Hayete’? compared the performance of different algorithms, including
ARACNE, relevance networks, and Bayesian networks. He also described a
new scheme called CLR, for context likelihood of relatedness.>> This new
algorithm computes the mutual information between nodes in the network,
and assigns a statistical significance to it that is based on the local network
context.

Christina Leslie addressed the overfitting of often inadequate data sets by
using a technique known in machine learning as “boosting.” Embodied in a
tool for identifying motifs of transcription factors called MEDUSA (Motif
Element Discrimination Using Sequence Agglomeration), this scheme itera-
tively employs an intentionally weak prediction rule, instead of quickly locking
in mediocre networks.’

Brandilyn Stigler** formally analyzed time-series data in which the param-
eters, such as expression levels, are drawn from a discrete set. Such a system
can often be described as a polynomial dynamical system, which allows a
systematic accounting of the possible “wiring diagrams” that are consistent
with its observed temporal evolution.

Michael Samoilov® described an algorithm called ENRICHed (for Enhanced
Network Reconstruction via Inference of Connectivity/Control from Hetero-
geneous data). The driving idea is to use “data fusion” to combine disparate
types of data for simultaneous analysis. The algorithm also imposes biochem-
ical constraints on the underlying network from the beginning.

Andre Levchenko explored a specific developmental network in which the
progression of mouse red blood cells between different stages is governed by
signals from populations of cells in other stages. His approach focused not
on the specific parameters governing the model, but on the larger question of
which population influences which.

The set of methods discussed in this section is only a small sample of a
wide variety of algorithms that the community is developing. This surge in
creativity—and to some extent redundancy of efforts—is a response to the
enormous amounts of data that current advances in biotechnology are making
possible. The question naturally arises as to which class of algorithms (if any)
is the most adequate given a data set and set of constraints. This is where the
aim of DREAM becomes most clear and timely.
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HOW WELL CAN WE DO?
Going for the Gold Standard

Reverse engineers would like to test their methods against a “gold-standard”
biological network whose detailed interactions are perfectly known (or at
least known with high confidence) about both linkages and their absence.
To serve as the most objective test, a gold standard would be perfectly un-
known to those trying to reverse engineer it, although this “blinding” might
deprive researchers of relevant biological context. There are many well-
understood biological systems, but they are also widely publicized. Confer-
ence participants described many sources of extensively validated network
information.

Gap Genes in Fruit Flies

Theodore Perkins®>2* described the gap gene system of Drosophila
melanogaster, a very well-understood developmental network. The gap genes
are active in the earliest stages of Drosophila development, and control the
establishment of anterior-posterior structure. The developing spatial patterns
of expression emerge as the gene products act as transcription factors for
one another. Researchers have modeled early development using systems of
coupled differential equations, which capture both local expression changes
and spatial diffusion of proteins. By developing methods to measure evolving
expression profiles for each gene during development, experimentalists cre-
ate a huge number of conditions (concentrations varying in both space and
time) to constrain the network model and equations. Of course, the results are
widely known, and so could not be used as blinded tests of reverse-engineering
methods.

Physical Interactions of Proteins

Joel Bader® asserted that a gold standard needs to have a measurable
physical reality. Influence networks, such as Bayesian networks, he noted, are
prone to uncertainties, depending on which nodes are included in the modeling.
Even if you believe there is an interaction between two molecular species, you
do not know what intermediates the interaction goes through. Bader proposed
assessing methods based on the “physical reality of biochemical interactions
between proteins and proteins and [between] proteins and DNA.” The protein—
protein interaction data are available from high-throughput two-hybrid screens,
while information about protein—DNA interactions comes from chromatin
immunoprecipitation (ChIP).
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Established Pathways in Cancer

Arnold Levine'!"'? described the signal transduction pathway associated
with the p53 tumor suppressor gene. The interactions have been painstakingly
validated, and researchers have clarified the detailed biological mechanisms
along much of the pathway. A similarly detailed pathway was summarized
by Riccardo Dalla-Favera® in the context of B cells. These well-established
and robust pathways bring both the confidence and the interest of a larger
biological community.

Genetic Expression in E. coli
Boris Hayete’?3? used the RegulonDB network of genetic expression in E.
coli for comparing different reverse-engineering algorithms. This database has
modest coverage, however, so finding an edge that it doesn’t contain is not
necessarily a false positive.

The issue of blinding the data remains contentious, since experimentalists
have little reward for withholding their hard-won results for the benefit of
reverse engineers. Withholding a fraction of high-throughput data is more
promising. Some researchers, however, questioned whether removing data
from their biological context even makes sense. The second DREAM confer-
ence will contain blinded data removed from biological context, as indicated in
FIGURE 2. Therefore the usefulness or lack thereof of these kinds of exercises
will be demonstrated.

Can We Ever Get Enough Data?

Even the best data may not differentiate between different network models.
Thomas Maiwald®® built a software framework to test numerically how accu-
mulating experiments discriminate between proposed models. He found that
some kinds of data are never adequate to let researchers distinguish between
some models.

Winfried Just®”*® took a mathematical approach, developing theorems for a
system in which concentrations assume discrete values and evolve in discrete
time steps, but he said that many of his conclusions should apply to other types
of dynamic systems as well. Given a set of observations of the concentrations,
the task is to find a rule, relating the values to those at the preceding time step,
that reiterates the observations. The problem of generalizing to a rule from a
finite number of observations is well known. For this type of problem, Just’s
“no free lunch” theorem states that a huge number of rules will match a data
set equally well, unless there are prior constraints on the structure of the rule
or the nature of the data. At first blush, this theorem appears to doom the en-
tire reverse-engineering endeavor to failure. In practice, however, biologically
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Undisclosed Network
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FIGURE 2. The algorithm performance assessment method proposed in the context of
the DREAM project. A biological system is used to produce a high-throughput data set.
The data set is distributed through the DREAM project web site to the participants of the
DREAM challenge, without disclosing the identity of the network underlying the biological
system. The predictors are invited to infer the network from which the data originated.
The actual networks will be pitted against the reconstructed networks through a number
of network comparison metrics to determine the quality of the network reconstruction
algorithm and of the appropriateness of the data to reconstruct the underlying network.

reasonable constraints and experimental protocols provide important “priors”
that may limit the number of choices.

BIOLOGICAL RELEVANCE

High-throughput data collection is blind to important aspects of biology,
including cellular geometry and compartmentalization as well as large protein
complexes. A network-centric view of biology is bound to have serious flaws
if too much biological context is removed in lieu of simple models. Some
speakers were invited to remind the participants of the larger biological picture.

Leslie Loew coordinates the Virtual Cell project, which aims to simulate
realistic spatial features of biology along with the reaction kinetics. In his
presentation,® Loew described the growth of actin filaments which depends
on much more than mass-action kinetics typical of bulk chemistry. He also
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described the long-term depression of nerve signals in Purkinje cells, which
occurs when two types of fibers fire simultaneously. An accurate model of
this process requires specification of the geometry of the dendritic spines.

In another important talk, Michael Rout reminded participants that many
of the proteins in the cell interact by forming complexes with precise spa-
tial relationships. In particular, the nuclear pore complex, which transports
macromolecules between the nucleus and the cytoplasm, includes at least
thirty different proteins.** To understand how they fit together Rout’s team
breaks cells apart and rapidly freezes them. This method identifies interacting
proteins that a more generic technique might well miss.

Throughout the molecular-biology era, biologists have been steadily uncov-
ering the molecular events and interactions that govern diverse phenomena.
Traditionally, they depict these interactions as chains or “pathways,” although
such a linear picture often oversimplifies the true networks. Arnold Levine
surveyed the traditional'""!? techniques for elucidating pathways. In particu-
lar, he focused on signal transduction pathways, especially the one involving
the p53 cancer-suppressor gene. Biologists have now clarified dozens of such
pathways, in which post-translational modifications play a critical role.

Riccardo Dalla-Favera®® describes the power of reverse engineering in clar-
ifying the networks of B cells. Unlike traditional gene expression profiling,
the network analysis gives researchers like him a clear indication of promising
potential targets.

WHAT IS TO BE DONE?

In a final discussion session of the First DREAM conference, and in a
follow-up questionnaire,*' the participants in the first DREAM conference
expressed their opinions about how to move the process forward. Although
they expressed enthusiasm for the goals of evaluating the reverse-engineering
enterprise, they held different views on how—and even whether—to create
any formal process.

CASP-Like Competition?

One possible role model is the biannual CASP (Critical Assessment of
Protein Structure Prediction) challenge for evaluating protein structure pre-
dictions.*” In CASP, once proteins’ structures are solved experimentally, com-
petitors make predictions based on the sequence data, over a prescribed period.
These data are “blinded,” in the sense that no structural information is made
available. The experimental structure is then revealed and the deviations of the
various predictions are computed (FIG. 2).

Participants noted many objections to applying this model to reverse engi-
neering:
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* There are many relevant types of input data, and there is no consistent
format.

» Data on networks often emerges in stages, not all at once.

* Different underlying network models will produce different types of detail
in their predictions.

» Unlike protein structure, there is no “right answer”; as yet there is no
gold-standard experiment on which to compare predictions.

* The only precisely understood data sources are those with questionable
biological relevance.

* Experimenters may be reluctant to sequester their hard-won results while
the competition proceeds.

* Studying “blind” data, with restricted scope and removed from its bio-
logical context, runs the danger of becoming an abstract exercise with
no relevance to the larger community, as well as degrading the quality of
predictions.

An incremental approach would start with a formal, blinded assessment
process based on limited data from artificial or synthetic networks. This as-
sessment may have little importance for biologists at first. However, internal
quality control within the reverse engineering community could develop the
procedures, and buy credibility among experimenters to address problems that
are more relevant.

A Repository

DREAM could provide a repository for two types of data: model predictions
for validation by experimenters, and experimental data for evaluation by mod-
elers. Establishing and enforcing standards of statistical rigor could improve
the quality of papers.

Many attendees felt that DREAM could provide a clearinghouse for ongoing
reverse-engineering activities. One idea that found a good following suggested
maintaining a list of predictions made by various modeling papers, which could
be a resource for experimentalists. There could also be a complementary list
of biological networks under active investigation.

DREAM Database

The DREAM project will maintain a database that will serve as a clearing-
house for three important classes of data. One is a “database of high-probability
predicted interactions” in search of validation by experimental biologists. Crisp
predictions about the results of removing specific interactions in a real biologi-
cal context should also get the attention of experimental biologists. The second
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is “a database of high-value cellular circuitry data that requires concerted at-
tention by the reverse-engineering community.” The third one is a database of
predictions of observable changes in cell behavior resulting from specific cel-
lular perturbations. These resources along with the recurring workshops will
help unite computational and experimental biologists as a community around
the reverse-engineering goal.

Challenge for the DREAM Database

The diversity of data sources and their uneven (albeit rapidly improving)
quality pose a challenge for DREAM in providing a repository for data useful
for the task of inference of biological networks. A mechanism must be created
to determine which data sets will be initially be made available to the commu-
nity. The availability of predictions from a consistent set of data will make it
somewhat easier to compare results in the absence of a perfect gold standard.
What procedures can best ensure the quality of data in the DREAM database?
This question needs further exploration.

CONCLUSIONS

At the time of this writing, we are the midst of the organization of DREAM?2,
the Second DREAM conference, where we create what seems to be a suitable
set of gold standards to explore the strengths and limitations of different
algorithms through network inference challenges. The challenges are:

* the identification of the actual targets of a transcription factor in a mam-
malian cell, in a set containing both actual targets and decoys;

* the inference of a protein—protein interaction sub-network from the list
of yeast genes;

* the network of interaction in a synthetic biology circuit transfected to an
in vivo organism, from both gene expression and qPCR data;

* the reverse engineering of three in silico—generated networks, with qual-
itatively different topologies from in silico—generated gene expression
data; and

* the gene regulatory network of a model organism from high-throughput
gene expression data.

The participants in this exercise will be tasked to use reverse-engineering
algorithms to infer the connectivity of the networks underlying the curated
data sets. We will adopt a double-blind competitive assessment style in which
the participants will not know the structure of the network they are trying
to predict, and the evaluators will not know who made the predictions. We
expect that these efforts will enhance our understanding of the merits and
limitations of different methods. We also hope that these challenges will help
us to advance by a notch our understanding and thus organization of the current
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bewildering plethora of reverse-engineering methods as well as test the limits
of the whole conception of reverse engineering from integrated data sets of
cellular networks.

As we continue to collect information and consolidate the knowledge emerg-
ing from these networks, it might be possible to extract from them some clues
to the basic design principles of these circuits. Some hints that there might be
some general design principles have emerged from the analysis of biological
networks using the tools of graph theory. For example, it has been observed
that many biological networks have the scale-free property,*> meaning that a
few cellular components (nodes in the graph) are highly connected to other
cellular components, much more so than most of the other nodes in the graph.
These highly connected nodes tend to be essential for cellular function. An-
other level of network analysis has identified local network properties, such as
topological motifs. A topological motif is a recurring sub-structure in the net-
work that may represent a reused circuit pattern within the network appearing
at a significantly higher rate than would be expected by chance.**

The network of interactions provides us with a global view of the connec-
tivity of cellular components and hints of generic design principles. These
networks are useful to make general inferences, and generate some qualita-
tive hypotheses. Ultimately, however, quantitative models with some degree
of predictive power and mechanistic detail best demonstrate that a complex
system is understood well enough to resolve how subtle differences in the cel-
lular machinery may result in substantially different behavior. Reaching such
understanding is arguably the ultimate goal of systems biology.
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