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Abstract.  We propose a method for recovering the structure of a sparse 
undirected graphical model when very few samples are available. The method 
decides about the presence or absence of bonds between pairs of variable by 
considering one pair at a time and using a closed form formula, analytically 
derived by calculating the posterior probability for every possible model 
explaining a two body system using Jereys prior. The approach does not rely 
on the optimization of any cost functions and consequently is much faster than 
existing algorithms. Despite this time and computational advantage, numerical 
results show that for several sparse topologies the algorithm is comparable to 
the best existing algorithms, and is more accurate in the presence of hidden 
variables. We apply this approach to the analysis of US stock market data and 
to neural data, in order to show its eciency in recovering robust statistical 
dependencies in real data with non-stationary correlations in time and/or space.
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1.  Introduction

Natural images and sounds, along with many other signals in the world admit sparse 
representations: models with only a small number of non-zero parameters suce to 
uniquely identify the signal. Similarly, many real networks, such as neuronal and gene 
regulatory networks are sparse that is each node connects to a relatively small frac-
tion of all possible nodes. In the typical situation, in these cases, the dimensionality 
of the data exceeds by far the number of available observations, and even when many 
samples are available one is hardly ever in the situation where one can regard them as 
being drawn independently from the same distribution. In addition, typically only a 
fraction of the relevant variables are sampled and the observed behaviour is potentially 
influenced by an unknown number of hidden variables. In these cases, typically, any 
inferred model is far from being an accurate description of the data generating pro-
cess. Models that are very complex aord a predictive power that exceeds what can be 
validated statistically, whereas simpler (sparse) models are more likely to perform well 
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out of sample. Therefore sparse model selection is an important tool for both sparse 
recovery, when the specific instance or phenomenon of the world we are investigating 
admit a sparse representation, and statistical modelling in the under-sampled regime, 
where learning more complex models instead would inevitably lead to overfitting issues.

Understanding the theoretical foundations of sparse signals and network recovery 
from a small set of high-dimensional observations has thus become an important area of 
research in the past few years. This theory is not only of important practical use, but it 
also is likely to shine light on fundamental aspects of biological information processing. 
Biological systems in their environment usually face the same problem that scientists 
do when trying to understand a complex system: identifying signals and relationships 
between them from limited noisy measurements and as fast as possible.

In recent years, approaches based on optimizing cost functions that favor sparse 
representations have been shown to be very successful for sparse recovery. From ear-
lier work on Lasso [1] to more recent ones on compressed sensing [2], a large body of 
research has shown the asymptotic power of the sparsity prior in the exact or almost 
exact recovery of signals from a small sample of observations.

In network reconstruction, the standard platform for studying network recovery is 
that of an Ising model, or a pairwise Markov Random Field as is known in the machine 
Learning literature. This takes the form of a distribution

{ }
( )

→
| =

∑ +∑<
P S J h

J S S h S

Z
,

exp i j ij i j i i i
� (1)

over n binary spin variables =±S 1i , where the partition function Z ensures normalisa-

tion. Given a sample Ŝ of N observations of the vector ( )
→
= …S S S, , n1  of spin variables, 

the general problem is that of finding the interactions Jij and fields hi that best describe 
the data. In the case where the data is generated as independent random draws from 

( )|P S J h,  in equation (1), with unknown Jij and hi, the problem is that of recovering 
these parameters. In the sparse regime, only a small number of the couplings are non-
zero, so the problem amounts to recovering the network of interactions and then esti-
mating the values of the non-zero parameters. When Ŝ comes from a real experiment or 
from observation of a complex system, equation (1) becomes a tool that can be used to 
infer a putative network of statistical dependencies among the variables Si.

In the general setting where sparsity is not necessarily imposed, starting from the 
work on ‘Boltzmann machine learning’ [3], many approximations for inferring the 
model parameters have been proposed and studied [4–7].

Similarly, structure estimation has been the subject of many studies over the 
last decades, especially in the machine learning and statistics community. Classical 
approaches based on penalising cost functions by their complexity [8, 9] or on con-
straining the search in the model space [10] have been exploited and extended over 
the years making the way for new algorithms and ideas. In general, two main classes 
of algorithms can be distinguished: constrained based [11–15] and optimisation based 
algorithms [16–22]. Algorithms in the first class apt to recover the structure of the net-
work employing a series of local independence tests which are appropriately combined 
together to yield an estimate for the structure. On the other hand, optimisation based 
approaches rest on the definition of a penalised cost function which integrates a more 
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global information of the status of the network and its optimisation over the models 
space. The size of that space grows exponentially with at least the square of the net-
work size making hard the optimisation already for small sizes. Therefore, beyond the 
issues that eventually the evaluation of ‘global’ cost function might arise, it is crucial 
devising methods for performing eciently such an optimisation in the model space. An 
elegant and popular solution converts the optimisation over the space of models into 
an optimisation over the space of parameters typically by minimising an �1 regularised 
function of the parameters of the model [16–18]. In this direction an important contrib
ution was made by Ravikumar et al [18], who showed that in the high-dimensional 
regime, defined as the asymptotic regime where the size of the system is larger than 
the number of samples (while both go to infinity), exact recovery of the set of non-zero 
bonds is possible via the optimization of the �1 regularized pseudo-likelihood func-
tion. In the following we denote this method by PLM+�1. Although asymptotic high-
dimensional analysis ensures the reconstruction of the connectivity pattern by an �1 
regularized logistic regression, a more recent approach [23] was shown to outperform 
the �1 regularized approach in certain regimes with finite datasets. This algorithm 
by Decelle and Ricci-Tersenghi [23] does not require the selection of a regularization 
parameter. Typically, the regularization parameter can be chosen by cross-validation, 
but this is not a straightforward task when very few data points are available. This 
recipe has two main ingredients: the pseudo-likelihood function [24] and the decimation 
algorithm which enables a fast and ecient walk in the space of models.

All these methods mainly concentrate on an high-dimensional setting where the 
number of samples can be smaller than the size of the network while both growing 
large. Conversely, we focus our analysis on a more noisy regime driven by the fact that 
in many real world applications the number of samples which can be approximately 
considered as independently drawn by the same distribution, might be very small and 
the presence of hidden variables makes the data even more noisy. In what follows we 
present a simple local algorithm built on the idea that only very sparse representations 
can be statistically validate in this regime. The simplicity of the algorithm allows it to 
be used as an on-line tool which leads to a huge computational advantage and makes 
the algorithm appealing especially for large-scale applications.

1.1. Overview of the method and results

In this work we study the problem of sparse network recovery from a Bayesian model 
selection perspective. In brief, network recovery amounts to finding which model best 
describes the data. Yet the number of possible pairwise graphical models grows expo-
nentially with the (square of the) network size n, which makes Bayesian model selection 
unfeasible in practice. However, Bayesian model selection penalises models for their 
complexity, which grows with the number of parameters they depend on. This penalty 
is particularly severe when the number N of samples is not very large (compared to the 
dimensionality)—which we will call the under-sampling regime in what follows. In this 
regime, sparse networks are the most likely representation because they are simpler. 
Indeed, in the deep under-sampling regime, the most likely models are those where the 
network of interactions is so sparse that spins hardly interact. In other words, only 
sparse representations of the world can be learnt because only those representations 

http://dx.doi.org/10.1088/1742-5468/2016/09/093404
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can be validated statistically. Therefore, in this regime, it makes sense to consider each 
pair of spins as if they were independent of all other spins, and to decide about the pres-
ence or absence of a bond between them independently from all others. This reduces 
the problem to n(n  −  1)/2 simpler problems of Bayesian model selection for systems of 
two spins, that we treat in full detail.

Another main ingredient of our recipe concerns the choice of the prior over 
parameters. In the under-sampling regime, this choice becomes relevant and that is 
why we use Jereys prior [25]. Among the many interesting properties of such an 
uninformative prior, it is worth remembering its reparametrization invariance: it 
makes the Bayesian posterior invariant under reparametrization leading to predic-
tions which are independent of the subjective choice of the parametrization made 
by the observer. Furthermore, another interesting fact comes from its geometrical 
interpretation. It has been shown [26, 27] that such a prior assigns a weight to 
a given set of parameters according to how many ‘distinguishable’ distributions 
are indexed by them. This means that all distinguishable distributions which are 
embedded in the manifold spanned by the parametric family in the space of distri-
butions, are assigned the same prior probability, e.g. a uniform prior in the space 
of the parametric family distributions. Finally, for exponential families, Bayesian 
predictions with Jereys prior are closely related to the Minimum Description 
Length principle in its refined form, giving to Jereys prior an universal coding 
interpretation [28–30].

As a result of the above discussion and of the following analysis, we observe that 
if the recovered network contains no loops, we expect this to be an accurate recon-
struction whereas if it contains loops or cliques, it is expected to over-estimate the 
number of bonds. In the weakly interacting regime and for sparse topologies admitting 
few loops, we find that the method is able to classify relevant features predicting the 
probability of having a direct connection between a pair of nodes in a network. In the 
under-sampling regime this task is performed quite well and with the same accuracy 
of more complex optimisation based methods. This makes it possible to save compu-
tational time, thus facilitating large scale network applications. Moreover, our method 
has been found particularly successful in revealing the absence of a direct connection 
between two spins, becoming more and more accurate as the number of samples grows. 
Therefore, our method can also be used as a pre-processing step to prune the set of 
possible interactions, before applying more complex inference methods. These results 
are supported by simulations and discussed in detail in section 3. In particular in this 
section we contrast MS with PLM+�1 on synthetic data from systems with known 
topology. Our numerical results demonstrate that, when all the variables on the nodes 
of the graph are observed PLM+�1 oers a superior performance, though the results 
of our method still aord a good performance and are computationally advantageous. 
For data on partially observed graphs, where the data only accounts for a fraction of 
the variables while the remaining ones act as hidden nodes (unknown unknowns), the 
procedure proposed here is both computationally advantageous and it has superior 
performance, specially in the limit of few samples.

On the computational side, our approach is remarkably fast, as it entails solving a 
two spin problem and building a look-up table, using which the decision of which bond 
is present or not can be taken. It is worth noticing that the decision table needs to be 

http://dx.doi.org/10.1088/1742-5468/2016/09/093404
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built only once for a given sample length and then the resulting discriminator can be 
applied as an on-line tool to any couple of nodes in any dataset of the same length.

This approach is particularly suited to study real data where the number of avail-
able samples is necessarily limited. For example, in the study of non-stationary data 
or in the presence of an external relevant variable. In these cases, taking a too large 
time window or neglecting the eect of the external variable induces correlations that 
result in eective interactions that do not reflect genuine statistical dependence. This 
eect can be controlled by performing inference on small time windows or by partition-
ing the data conditioning on the external variable. This leads to inference problems 
where the number of samples is very small, for which our method is ideally suited. In 
this situation, a model selection approach is necessary in order to correctly evince how 
much structure can be inferred from the data. Hence the MS approach is a valuable 
alternative to other approaches [31, 32] to inference in the presence of hidden variables. 
We illustrate these points for the specific cases of a dataset of daily returns of n  =  41 
stocks from US stocks market and a dataset on the neural activity of cells in the ento-
rhinal cortex of a moving rat (the same data studied in [33] and [34] respectively). At 
odds with other methods that need longer samples, our approach is able to spot the 
non-stationary nature of the financial data by focusing on small time windows, and in 
eliminating spurious correlations arising from co-variation in the neural data by focus-
ing on small cells.

The paper is organized as follows. In the first section, we describe the model selec-
tion approach for topology reconstruction in a network of interacting variables. Then 
we focus on two-spins clusters, deriving the key equations of Bayesian model selection 
which lie at the heart of our method. The third section is aimed at exhibiting results 
with synthetic data drawn from an equilibrium Ising distribution and comparing them 
with those obtained with a pseudo-likelihood method. Finally we discuss the applica-
tion of our method to real data.

2. A model selection approach to topology reconstruction

Suppose we have N observations ˆ ( )
→ → →

=S S S S, , ...,
N1 2

 of a vector ( )
→
=S S S S, , ..., n1 2  of n 

variables Si. We think of 
→
S  as a configuration of a graphical model, i.e. a model of n 

variables whose interaction is defined by a network between the n variable nodes [35]. 
Let us consider a collection of dierent mathematical models, Mi each with a possibly 
dierent set of connections. Each Mi is a possible hypothesis to explain the data and 

the probability ( ˆ)|MP Si  of Mi given the data, is related to the likelihood ( ˆ )|MP S i  that 

the model Mi has generated the data Ŝ, through Bayes theorem:

( ˆ)
( ˆ ) ( )

( ˆ ) ( )
| =

|

∑ |
M

M M

M M
P S

P S P

P S P
.i

i i

j j j

0

0
� (2)

Here ( )MP i0  is the prior probability of model Mi. Each model employs a dierent vec-
tor of parameters 

→
θ whose length and properties depend on the particular model Mi. 
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The a priori knowledge on the value of 
→
θ is encoded in the prior distribution ( )

→
θ |MP i . 

Hence, the likelihood ( ˆ )|MP S i  can be written as

( ˆ ) ( ˆ ) ( )
→ → →

∫ θ θ θ| = | |M M MP S P S Pd ,i i i� (3)

where ( ˆ )
→
θ| MP S , i  is the conditional probability of observing the data Ŝ given a par

ticular choice of the parameters 
→
θ of model Mi.

We focus on systems of binary variables, or Ising spins, where each variable takes 
values S 1i =± , and on models in the exponential family, i.e.

( )
( )

( )
→

→ →

→θ
θ

| =
θ∑ =

Θ

MP S
Z

,
e

,i

f Sj j j1

� (4)

where the number of parameters Θ depends on the particular model Mi, ( )
→

f Sj  are 

coecients multiplying the parameters and depending on spins 
→
S  and, finally, ( )

→
θZ  is the 

partition function. Given this and a set of independent observations ˆ ( )
→ → →

=S S S S, , ...,
N1 2

, 

the probability of observing the collected data given a particular choice of the param

eters within model Mi is ( ˆ ) ( )
→ → →
θ θ| = ∏ |µ

µ
M MP S P S, ,i i  with µ = N1, 2, ...,  or

( ˆ )
( )

→ →
→

→θ
θ

| =
φ θ⋅

MP S
Z

,
e

i

N

N
� (5)

where

( )
→

∑φ =
µ

µ

N
f S

1
.j j� (6)

and 
→ →
φ θ φ θ⋅ = ∑j j j The probability of observing the data under model Mi can then be 

written as

( ˆ )   ( )( )
→ → →→ →

∫ θ θ| = |φ θ θ⋅ −M MP S Pd e .i
N N Z

i
log

� (7)

Our problem is to choose from these models by calculating ( ˆ)|MP Si  through equa-

tion  (2). The prior on models ( )MP i0  can account for any prior belief regarding the 
structure of the network, for instance the degree of sparsity.

For large N, the integral in equation  (7) is dominated by the maximum of 

( )
→ → →
φ θ θ⋅ − Zlog  and it can be evaluated by the saddle point method (see e.g. [26]). This 
produces a leading term in ( ˆ )|MP Slog i  that is proportional to N, which is given by the 

likelihood evaluated at the saddle point 
→
θ ∗. Besides this, a term proportional to 

Θ
Nlog

2
 

also arises from the Gaussian integration over the Θ parameters. This term, which 
penalises models with many (Θ� 1) parameters, is the basis of the Bayesian informa-
tion criterium (BIC) [9]. Finally, further constant terms, that depend on the choice of 

the prior ( )
→
θ |MP i  also appear. In the under-sampling regime, when N is not very large, 

all these terms become important, and as N increases one expects the most likely model 
to become more and more complex.

http://dx.doi.org/10.1088/1742-5468/2016/09/093404
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A direct and exact application of the above scheme for deriving the network would 

require ranking the evidence ( ˆ)|MP Si  for all possible network models Mi, that number 

to at least 2n(n+1)/2 possible models. Apart from the complications related to calculating 
the partition function for a single evaluation of equation (7), this exponentially large 
number of graphs makes it impossible to work out the above approach based on the 
model posterior.

Yet, for many real life applications, and in the under-sampling regime, we expect 
the most likely models to correspond to sparse graphs composed of many disconnected 

components. In this case, ( )
→ →
θ| MP S , i  becomes a product of factors corresponding to 

each component, which are easier to handle. In the extreme limit where components 
are formed of isolated spins or of dimers of interacting spins, calculations can be done 
by considering minimal clusters of only two spins which are taken to interact with the 
rest of the network through some eective fields. As we will show, this approach proves 
to be eective when there are few data points, performing as well as �1 regularized 
pseudo-likelihood methods. Given the simplicity of the minimal cluster of two spins, 
we are able to perform all calculations analytically and rank the models. Last but not 
least an important advantage of such an approach is that it can be parallelized up to 
n(n  −  1)/2 times since all pairs are assumed to be independent of each other and can 
be analysed in parallel.

2.1. The minimal cluster

A two spin system has at most three parameters: two fields and one coupling. The 
number of possible models for two spins is thus 10, as shown in figure 1. The models 
exhibit a growing degree of complexity with parameters representing fields acting on 
each spin (h, h1 and h2) and a direct connection between them (J ), increasing the num-
ber of parameters from Θ = 0 (top left model in the figure) where the spins are thought 
as two independent spins without any field, to Θ = 3 (bottom right) for spins connected 

by a bond and being aected by two dierent eective fields. The vector 
→
φ in equa-

tion (5) is made up of combinations of the empirical mean values of the activity of each 
spin (m1 and m2) and the empirical correlation c12.

As for the prior ( )
→
θ |MP i , we have already discussed in the Introduction a number 

of advantages for selecting the uninformative Jereys prior when no informations about 
the distribution of parameters are available a priori:

P deti
1( ) ( )θ θ| = −→ →

M N J� (8)

where J is the Fisher Information matrix whose components are given by the follow-

ing expression ( ) ( )
→ →
θ θ= ∂ ∂θ θJ Zlogij i j  and ( )

→ →

∫ θ θ=N Jd det . This choice of the prior is 

appealing not only because it assumes a flat distribution on the space of samples, but 
also because it corresponds to the same information theoretic assumption for all mod-
els. This avoids introducing unintended biases among the models. Using the Jereys 
prior, the probability of the observed data under model Mi can be written as

http://dx.doi.org/10.1088/1742-5468/2016/09/093404
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P S
Z

d
e

det .i

N

N
1( ˆ )

( )
( )∫ θ θ
θ| =

φ θ
−

⋅
→ →

→

→

→
M N J� (9)

The heart of the problem is then solving equation (9) for each model, and ranking 
the resulting probabilities in order to identify which model is the most likely in each 
region of the ( )m m c, ,1 2 12  space which is what we will do in the following.

We first note that the determinant of the Fisher Information matrix is related to 
the partition function in the following way (see table 1)

( ) ( ) ( )
→ → →
θ δ θ θ= − + εJ Z

1

2
log det log .� (10)

The values of the coecients δ and ( )
→
θε  depend on the particular model as shown in 

table 1: δ is a constant while epsilon is at most linear in 
→
θ . Consequently, performing 

the saddle point approximation and the Gaussian integral around the saddle, the int
egral in equation (9) becomes

( )
( )

( ) ( )
→ →→

→∫ θ
π
θ

∼
| |

θ θΨ
Θ

Θ
Ψ

�

�

HN
d e

2

det
eN N

� (11)

where the argument of the exponential is

( ) ( ) ( )→ → → →
→

⎜ ⎟
⎛
⎝

⎞
⎠θ φ θ
δ

θ
θ

Ψ = ⋅ − + +
ε

N
Z

N
1 log� (12)

Figure 1.  The ten competiting models for a two spins system. The simplest one 
(top left of the figure) has no parameters: the two spins are independent of each 
other (dotted line) and from the rest of the network; the most complex model 
(bottom right) is the one with 3 parameters: the two spins are linked by a direct 
connection J (solid line) and influenced by eective fields h1 and h2 (spots on the 
edges) representing external biases and other spins’ influence. Models on the left 
do not employ a direct connection between spins whereas the other five models on 
the right do. The parameter h is used to depict situations in which both spins are 
conditioned by the same bias.
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and ( ) ( ) → →
→ →
θ θ= ∂ ∂ Ψ |θ θ θ θ=
�

�Hij i j  is the Hessian matrix calculated at 
→
θ � which is the solu-

tion of the saddle point equations

( )
( )→

→

⎜ ⎟
⎛
⎝

⎞
⎠φ
δ

θ
θ

− + ∂ +
∂

=θ
θ ε�

�

N
Z

N
1 log 0.i i

i
� (13)

Using equation (12), it is not hard to see that the determinant of the Hessian matrix is 
related to the determinant of the Fisher Information at the saddle point by the simple 

relation ( )( ) ( )
→ →
θ θ= − + δ Θ� �H Jdet 1 det

N
.

Putting all the previous results together, we can estimate the conditional probabil-

ity ( ˆ )|MP S i  as

( )
( ˆ ) ( )

( )

→ →

→
π

θ
| =

+ δ

φ θΘ

Θ Θ

⋅
M

N
�

�

P S
N Z

2

1

e
.i

N

N

N2� (14)

As anticipated, the resulting expression in equation (14) is made up of two terms: 
the maximum likelihood one which counts for the goodness of fit, and a complexity 
cost which depends on the dimensionality of the models Θ and on the shape of the prior

C
N

Complexity Cost e
2

log
2

log d det .C  ( )J∫π
θ θ=

Θ
+− → →

�� (15)

Similar to the Bayesian information criterion [9], this complexity cost consists of 
a term proportional to Nlog  that arises from the dimensionality of the model and a 

Table 1.  The ten competing models for a two spin system.

Mi Θ
→
θ

→
φ ( )

→
θZ ( )

→
θJdet N δ ( )

→
θε

M1 0 — — 4 1 — 1 2 log 2

M2 1 h1 m1 ( )h4 cosh 1 ( )
Z

4 2 π 1 2 log 2

M3 1 h2 m2 ( )h4 cosh 2 ( )
Z

4 2 π 1 2 log 2

M4 1 h +m m1 2 ( )h4 cosh2

Z

8 π2 1

2
log 2

3

2

M5 2 ( )h h,1 2 ( )m m,1 2 ( ) ( )h h4 cosh cosh1 2 ( )
Z

4 2 π2 1 2 log 2

M6 1 J c12 ( )J4 cosh ( )
Z

4 2 π 1 2 log 2

M7 2 (h1,J ) ( )m c,1 12 ( ) ( )h J4 cosh cosh1 ( )
Z

4 2 π2 1 2 log 2

M8 2 (h2,J ) ( )m c,2 12 ( ) ( )h J4 cosh cosh2 ( )
Z

4 2 π2 1 2 log 2

M9 2 (h,J ) ( )+m m c,1 2 12 ( ) ( )h J4 cosh cosh2 e

Z

2 J7

3

π2 3

2
+log 2

J7

2 2

( ) ( )+ h J4 sinh sinh2

M10 3 ( )h h J, ,1 2 ( )m m c, ,1 2 12 ( ) ( ) ( )h h J4 cosh cosh cosh1 2 ( )
Z

4 4 π2 2 4 log 2

( ) ( ) ( )+ h h J4 sinh sinh sinh1 2
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second term accounting for the geometric complexity pertaining to the number of dis-
tinguishable probability distribution encoded in a parametric family distribution [26]. 
The criterion described here matches exactly the Minimum Description Length prin-
ciple [29] and therefore the maximisation of this cost function would ensure the great-
est compression of the data description. As one can notice from the results obtained so 
far, the corrections related to the complexity term are ( )O Nlog  and consequently they 
are evident when /N Nlog  is not negligible. For →∞N  one recovers MLE of a two spins 
system [4].

2.2. The selected model

As described in the previous section, the probability ( ˆ )|MP S i  is fully determined, through 

equation (14) from the measured statistics { }m m c, ,1 2 12 . In this section we discuss how 
the space of observations { }m m c, ,1 2 12  is partitioned among the models: for each point 
in this space, we rank the posterior probability of each model to see which is the most 
likely model. It is worth noting that not all the points in this space are achievable in 
the limit →∞N , therefore we will discard un-physical points lying outside the tetrahe-
dron identified by the following double inequality: m m c m m1 11 2 12 1 2⩽ ⩽− + | + | − | − |.

In figures  2 and 3 the division of the parameters space is sketched for N  =  50. 
Figure 2 illustrates the parts of the { }m m c, ,1 2 12  space where the first five models in 

table 1 are the most likely according to ( ˆ)|MP Si  for a data length of N  =  50. These 

five models are the ones in which the two spins are not directly connected. The region 

of the space covered by the union of these five models, shown in the last picture with 
dierent colors for each subregion, lies around the surface =c m m12 1 2. In the limit 

→∞N , as one expects, the union of these five models will become identical to the 
surface =c m m12 1 2.

The last five models in table 1 describe models in which the spins do interact with 
each other. Figure 3 shows the regions in the { }m m c, ,1 2 12  space where these models are 
preferred over the first (disconnected spin) models.

In figure 4 we show the partitioning of the parameter space among the models for 
the case N  =  500: left panel of figure 4 summarizes the case of models with no interac-
tions between the spins and the right one represents models with interactions. One can 
see that for large N, models with less parameters extend over smaller regions. In this 
case, the regions belonging to the first five models shrink around the surface =c m m12 1 2 
and more complex models (M5 among the first five models and M10 among the rest of 
them) occupy more volume. In fact, as remarked in the previous section, the penalty 
arising from the complexity of models is greater for smaller samples, and for very large 
values of N, the maximum likelihood estimates become predominant and models with 
more non-zero parameters are preferred.

From what we have said so far, one can calculate the conditional probability ( ˆ)|P b S  

that the two spins are directly interacting. If we assume a priori all models have the 

same probability, it follows from equation (2) that ( ˆ)|P b S  is proportional to the sum of 

( ˆ )|MP S i  over all models Mi in which there is a bond between the pair of spins, that is 

the last 5 models in the table 1
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Figure 2.  The figures show the regions of the space { }m m c, ,1 2 12  where the first 

five models in table  1 are the most likely according to ( ˆ)|MP Si  given N  =  50 

measurements. The region of the space covered by all five models is shown in the 
last figures, with dierent colors for dierent models, and it encloses the surface 
=c m m12 1 2 which represents the limit of independent spins for →∞N .
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Figure 3.  The figures show the regions of the space { }m m c, ,1 2 12  where the last 

five models in table  1 are the most likely according to ( ˆ)|MP Si  given N  =  50 

measurements. All these models employ the parameter J meaning that the spins 
are thought to be directly interacting here in contrast with the first five models. 
The last figure summarizes how the { }m m c, ,1 2 12  is partitioned among these models 
(model M10 has not been included in the last figure for reasons of clarity).
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( ˆ) ( ˆ )∑| = Γ |−

=

MP b S P S .
i

i
1

6

10

� (16)

Γ is given by

( ˆ )∑Γ = |
=

MP S
i

i

1

10

� (17)

and ensures normalization ( ˆ) ( ˆ)| + | =P b S P nb S 1, with ( ˆ) ( ˆ )| = Γ ∑ |−
= MP nb S P Si i

1
1

5  

denoting the probability of no bonds (nb). It follows that if the quantity 

( ˆ) ( ˆ)η = | − |P b S P nb S , which we will refer to as the confidence in the following, is 

greater than or equal to zero, we put a bond between the spins, otherwise we don’t 
(Notice that confidence is defined as the dierence between the probability of having a 
bond and the probability of not having it when a uniform prior on models is assumed). 
Accordingly the space { }m m c, ,1 2 12  becomes divided into two regions: one in which 
the probability of not having a bond is bigger and one in which the opposite is true. 
This subdivision is shown in figure 5 for two data set of dierent length: N  =  50 and 
N  =  500. The no-bond region contains the surface =c m m12 1 2 with a thickness that 
decreases as N increases.

This procedure for the identification of the bond will be performed for each pair of 
spins in a network independently in order to recover its topology.

2.3. A self consistent procedure for selecting the sparsity priors

The assumption that the models are all a priori equally likely that we made in the last 
section can be easily relaxed in order to exploit additional knowledge or beliefs on the 
degree of sparsity of the network. For instance, we can assume that ( ) ( )=MP P bi0 0  for 
all models that employ a bond ( = …i 6, , 10) and ( ) ( ) ( )= = −MP P nb P b1i0 0 0  for the 
rest ( = …i 1, , 5). The ratio ( )/ ( )=ε P b P nb0 0  is the only parameter to choose. The value 

Figure 4.  Similarly to the previous figures  for N  =  50, these figures  show the 
partitioning of the space of observations { }m m c, ,1 2 12  among models without a 
parameter for direct interaction between spins (left) and models with it (right) for 
N  =  500.
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of ε reflects the a priori belief about the sparsity of the network and it is often compared 
in the text with the actual ratio between the number of ‘bonds’ and the number of ‘no-
bonds’ in the graph, i.e. /=r n nb nb. The sparsity of the network is usually defined as the 
ratio between the number of bonds and the total number of possible connections which 
is equal to r/(1  +  r). However, for sparse matrices �r 1, the ‘bond’-‘no-bond’ ratio r 
approximates very well the sparsity of the network ( )∼ +r O r 2 . With the introduction 

of the above priors, the quantity ( ˆ) ( ˆ)| − |P b S P nb S , now called η̃, takes the following 

expression

( ˆ) ( ˆ) ¯
⎛
⎝
⎜

⎞
⎠
⎟η| − | =

Γ
Γ
−
−
+
ε
ε

P b S P nb S
2

1

1
� (18)

where η is the confidence, Γ has been defined in the previous section and

¯ ( ˆ ) ( ˆ )∑ ∑Γ =
+

| +
+

|
= =

ε
ε ε

M MP S P S
1

1

1
.

i

i

i

i

6

10

1

5

� (19)

Therefore ( ˆ) ( ˆ) ⩾| − |P b S P nb S 0 if and only if ⩾ ( )/( )η − +ε ε1 1 . This means that add-

ing a prior of that kind basically implies a non-zero threshold for the quantity η (for 
=ε 1, the case of a flat prior is indeed retrieved).

An interesting procedure for deciding about the choice of ε is a self consistent one: 
one chooses ε such that after the graph recovery is performed, the ratio of the present 
to absent bonds in the recovered graph also equals ε, that is ( / ( )/ ( ))=n n P b P nbb nb 0 0 . A 
non-trivial self consistent choice for ε may not exist4, but as we have seen in our numer
ical simulations, it often does. When it exists, it can be reached as the fixed point of an 
iterative procedure where at step = …t 0, 1, , given εt, one computes rt and sets =+ε rt t1  
for the next iteration. In all cases we studied, either convergence to a fixed point =ε r 
was chosen, regardless of the first guess ε0, or a completely disconnected graph retrieved 
( =ε 0). In the latter case, when the point = =εr 0 becomes stable, a fixed prior could 
be used to check the result.

Figure 5.  Portion of the space of observations in which the probability of not 
having a bond is greater than the one of having a bond for N  =  50 (left) and 
N  =  500 (right).

4 0=ε  or = +∞ε  are always trivially self-consistent.
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3. Numerical results for network recovery

To assess the performance of the model selection (MS) approach described in the pre-
ceding sections in recovering a network topology, we applied it to synthetic data from 
an equilibrium Ising model with dierent connectivity patterns and analysed the good-
ness of reconstruction. In doing so, we also studied the eect of dierent parameters on 
the performance of the MS approach, such as the strength of couplings, the number of 
samples, the prior belief ε on the sparsity and the size of the network. In addition, we 
compared the results with the ones obtained with PLM+�1, which is among the best 
algorithms for recovering the connectivity. Unfortunately we found that the approach 
proposed in [23] was not stable and convergent in the very low data limit that we were 
interested in, and therefore we do not discuss it below.

The graphs we investigated are:

	 1.	Gas of dimers in which each node is connected to one and only one other node,

	 2.	Star graph

	 3.	Erdös Rényi graphs with the average degree c  =  2

	 4.	Erdös Rényi graphs with the average degree c  =  3

	 5.	 two dimensional (2D) regular grid connectivity.

	 6.	diluted two dimensional regular grid

Across these graphs the bond-to-no-bond ratio r ranges from 0.01 to 0.06 (for n  =  64), 
we also studied network sizes ranging from n  =  16 to 100 nodes and sample sizes from 
N  =  50 to 2000. The couplings are drawn from a bimodal distribution β=±J , but we 
also investigated the ferromagnetic case ( β=J ), for dierent values of β. We did not 
analyse situations in which the couplings were drawn from a continuous distribution 
around zero because in order to distinguish a indefinitely small coupling from an absent 
one a very large sample would have needed and this is surely not the case of the regime 
we are investigating.

For the sake of brevity, we discuss the results highlighting few representative cases, 
while referring to the appendix. We shall contrast the case of fully observed graphs, 
where all the variables on the nodes of the graph are observed, to that of partially 
observed ones, where the data only accounts for a fraction of the variables while the 
remaining ones act as hidden nodes or unknown unknowns.

3.1. Fully observed graphs

Figure 6 summarizes the results for the representative case of the Erdös Rényi graph 
with c  =  3, for dierent samples sizes N, strength of the couplings β and dierent 
choices of the prior sparsity ε. The coordinates of each point in the figure represent the 
average values over one hundred independent realisations of true negative rate (TNR) 
and the true positive rate (TPR) for a given value of N, ε and β, where TPR (TNR) 
stands for the fraction of bonds (no-bonds) correctly recovered.
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A perfect inference of the graph corresponds to a point on the top right corner of the 
graph. For graphs with very few bonds and no loops (e.g. a gas of dimers) MS achieves 
almost perfect recovery (see appendix). Figure 6 shows instead a typical case where 
MS is expected to provide only an approximate reconstruction. MS network recovery 
works best for weak interactions (β = 0.5), because when interaction gets strong (e.g. 
β = 1.5) the eects of indirect interactions, that are neglected by MS, become impor-
tant. Interestingly, in the case of a gas of dimers we see the opposite, i.e. reconstruction 
improves when the interaction gets stronger (see appendix). Secondly, the dependence 
of TPR and TNR with N conforms to what is expected from the discussion in the previ-
ous sections: for small samples, MS favours simpler models, i.e. those with few bonds. 
Hence one expects the TPR (TNR) to increase (decrease) with N, as in figure 6.

Finally, we observe that the choice of the prior is very important, and it gauges the 
trade o between true positives and true negatives: with larger value of ε the recon-
structed network is denser, hence the TPR is larger. Besides this, we observe that the 
reconstruction becomes more accurate for values of ε that are closer to the true sparsity r.  
This shows that the self-consistent procedure for the choice of the prior is an impor-
tant ingredient of the MS method. Figure 7 (left) shows that indeed the self-consistent 
procedure selects points close to the top-right corner of the plot. For small sample sizes 
(N  =  50) MS selects too few bonds, which results in a low TPR. This can be improved 
by an ad hoc correction for small sample sizes (see figure caption).

Figure 6.  Testing MS method on synthetic data for an Erdös Rényi graphs with 
average degree c  =  3. The coordinates of each point in the figure represents the 
average over one hundred realisations of the true negative rate (TNR) and the true 
positive rate (TPR) for a given value of N and ε. Contours have been drawn to 
cluster the points corresponding to the same value of β. The average sparsity, i.e. 
the ratio between the number of connected pairs of spins and the number of not 
connected ones, is ⟨ ⟩ =r 0.0507. Similar plots for other topologies can be found in 
the appendix.
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Figure 7 (left) also reports the comparison of the MS reconstruction with the one 
obtained with the PLM+�1 method for the case of Erdös Rényi graphs with average 
degree c  =  3 (see the appendix for similar results on other topologies and dierent net-
work sizes). Surprisingly, even for a graph with loops as the one in the figure 7, the MS 
algorithm exhibits performance comparable to those of PLM+�1, when N is small. In 
fact, the curves of the two methods in the ROC plot are almost always superimposed 
and this fact implies an equivalent discriminative power. We found the same results 
even in the presence of small external fields. As expected, as N becomes large (see 
figure 7 right), MS produces many false positives even when using the self-consistent 
procedure for selecting the prior. Yet the FNR stays below that of PLM+�1 even for 
large N, and it tends to zero with very small error bars. This fact makes MS interest-
ing as a pruning algorithm for large sparse network and as a pre-treatment procedure 
for pseudo-likelihood based techniques in order to save computational time and enlarge 
their domain of application to larger networks. In summary, in the investigated cases 
of sparse graphs with few loops, MS demonstrated its ability in classifying relevant 
feature in the deep under-sampling regime as well as one of the best existing algorithm 
and, moreover, its quality in spotting irrelevant couplings, especially for large N.

Figure 7.  (Left) Comparison between MS (blue lines) and PLM+�1 (red lines) for 
Erdös Rényi graphs with average degree c  =  3, of n  =  64 nodes. Each point of 
the curves represents the average of TNR and TPR over one hundred dierent 
realisations. The comparison is drawn for two dierent values of N and in the weak 
couplings regime (β = 0.5). The curves for PLM+�1 are obtained by varying the 
regularizer; the ones for MS by varying ε. Two dierent points are highlighted for 
each curve showing the eects of employing the self-consistent (coloured markers) 
procedure for selecting the models’ prior coecient, and an ad hoc N-dependent 
(white markers) procedure ( ) ( ) ( / )= + − −ε N r r N1 exp 50g g , where rg represents 
our belief of the sparsity of the network (rg=  0.01 in the figures). (Right) FPR 
( 1 TNR= − ) with dotted lines and FNR (= −1 TPR), solid lines, versus the size of 
the sample N. The reconstruction using MS (blue lines plus error bars) is compared 
to that using PLM+�1 (red lines plus shaded error bars). The thresholding procedure 
employed for MS is the N-dependent one; the regularizer used for PLM+�1 is half 
of the maximal regularizer for which the inferred network becomes empty. We 
found that the latter fixed choice of the regularizer optimise PLM+�1 results across 
the investigated topologies and sample sizes.
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Before moving to partially observed graphs, we discuss a simple way to improve the 
quality of the MS reconstruction, that originates from the excessive number of bonds 
recovered.

3.2. Removing indirect interactions by conditioning

The excess of false positives in the interaction graph recovered by MS can be cured, at 
least partially, by considering model selection on larger graphs. An even simpler recipe, 
that requires a minimal additional complexity, is that of re-running the algorithm con-
ditioning on the value of a spin or of a subset of them. Let us take the simple example 
of three spins, where all the bonds between spins 1,2 and 3 have been recovered by 
MS. In order to ascertain whether the interaction between 1 and 2 is genuine, one can 
condition on the value of S3 and perform the inference, separately, on the sample where 

S3  =  +1 and S3  =  −1. This produces two predictions η̃+1,2 and η̃−1,2, for the dierence 

between the probabilities of having and not having a bond between spins 1 and 2. If 
the quantity ˜ ˜   ( ) ˜   ( )η η ν η ν= = + = −|

+ −S S1 11,2 3 1,2 3 1,2 3 , where ( )ν =±S 13  represents the 

fraction of times S 13 =±  in the dataset, is greater than zero then the interaction 
between S1 and S2 is genuine and is not induced by S3. Furthermore, one can extend 
this argument to all the other spins Sk that interact with both S1 and S2 in the recov-
ered graph, and check whether the interaction between S1 and S2 is fictitiously induced 
by some other spin. There are dierent ways in which the eect of dierent spins can 
be combined to arrive at a prediction on whether the bond between S1 and S2 exists. 
We refer to the appendix for a detailed discussion. Here we just report the result for 

the conservative case where we take the minimal value of η̃ |k1,2  over all the common 
neighbours Sk of S1 and S2 on the recovered graph. Figure 8 shows the performance of 
the corrected reconstruction for the case of an Erdös Rényi graph and the hard case 
of the star graph, i.e. a graph built on one node to which all the others are connected, 
which is a particularly hard situation for MS: each pair of not directly connected nodes 
are conditionally independent given the node in the centre of the star. Therefore typi-
cally MS returns a fully connected matrix with many false positives. It is interesting 
to notice that also PLM+�1 is quite inaccurate when dealing with stars and only for 
large sample sizes N one recovers satisfactory results. In this regime and in general for 
all the investigated topologies, we observed that the corrections explained above allow 
for lowering the false positive rate to at least one order of magnitude while keeping 
the false negative rate almost always below the PLM+�1 curve. Even for hard cases 
this recipe is able to substantially improve MS performance in the large N regime, as 
is shown in figure 8 (right panel) for the case of a star graph (see appendix for similar 
results on other topologies). In summary this simple correction allow for an extension 
of the domain of applicability of our method to hard classes of sparse topologies and to 
larger samples’ length, where usually ordinary MS returns many false positive, reaching 
results comparable to those of PLM+�1.

Finally, it is worth to stress that this correction requires almost the same computa-
tional eort as the original algorithm: in the first case given the length of the sample N 
one needs to evaluate only one classifier (i.e. the borders of the partitions of figure 5); 
when adding this correction, the number of classifiers required grows with the number 
of loops of 3 nodes found in the recovered graph and with the polarisation of the nodes 
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involved in those structure. In fact if these nodes are all 1 or  −1 roughly half of the 
times then again approximately only one classifier is needed.

3.3. Partially observed graphs

Let us now discuss the case where the data contain only a partial observation of the 
nodes of the graph. For example, figure 9 shows the results of the inference on a Erdös 
Rényi random graph of 250 nodes where only n  =  64 of them are observed (see caption 
for details). From the figure it is clear that PLM+�1 looses accuracy with respect to MS 
in the case of a partial observed network. In fact, PLM+�1 returns more false positives 
than MS for small N, at odds with the case of fully observed graphs. Even for large N, 
the number of false positives remains high with respect to the fully observed case. On 
the other hand, the number of false negatives is, as usual, always bigger than the one 
resulting from MS algorithm, except for very small values of N where, as previously 
discussed, the self consistent approach turns out to be extremely selective. However, 
this value can be reduced by employing an ad hoc correction for small sample sizes (see 
caption in figure 7). As a consequence, for small N, the graph recovered by PLM+�1 
is always denser than the correspondent one with MS whereas in the fully observed 
case the opposite is true. This tendency of overestimating the number of bonds of the 
graph is due to the fact that PLM+�1 tries to explain accurately all observed statistical 
dependences in the data which are noisy and often mediated by hidden variables. As 
a consequence, it tends to assign a bond, and therefore give the same distance on the 
graph, to each of the identified statistical dependencies, failing in discerning between 
direct and indirect interactions. This is particularly interesting for real data applica-
tions, where often the observations of the system under investigation are few and con-
cern only a small portion of it. In fact, as we will see in the following sections when 
dealing with real data in this regime, networks recovered with PLM+�1 will always 
contain more bonds.

Figure 8.  FNR and FPR for network recovery from data generated from 
simulations of an Ising model with n  =  64 spins and β = 0.5 on Erdös Rényi c  =  3 
(left) and star (right) topologies. The performances of MS (blue) and PLM+�1 (red) 
are compared with the corrected MS algorithm described in section 3.2 (violet, see 
text and appendix).
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4. Application to real data

In this section we apply our method (MS) to real data and we compare its predictions 
with those from PLM+�1. We discuss a dataset of financial returns of the stocks in the 
Dow Jones index and a dataset on the neural activity of cells in the medial entorhinal 
cortex of a moving rat. In both cases, the statistics of the data is likely non-stationary, 
so that inference on the whole dataset may lead to confounding eects. The virtue of 
the MS method is that it is ideally suited to very small samples, and hence it allowed 
us to study the dynamics in these datasets on smaller windows of time for financial 
data, and space for the neural data, thereby revealing genuine statistical dependencies.

4.1. US stock market data

In this section we apply our method (MS) to real data and as usual compare predictions 
with those from PLM+�1. The dataset is the same as the one studied in [33], which was 
taken from Yahoo Finance and consists of the returns (i.e. the logarithm of the ratio 
between the closing price and the opening one) for 41 stocks in the Dow Jones index 
from 1st Jan 1980 to 25 June 2007 for each trading day. In order to subtract the over-
all market trend and focus on the correlations between the stocks, the average values 
of the returns for each day has been subtracted from the values of the returns. Finally 
we took the sign of the resulting returns in order to get configurations of 41 spins, i.e. 

( ) =S t iwith 1, .., 41i  for each day t. This is expected to remove, at least partly, long-
term auto-correlation eects in the (absolute) size of returns—the so-called volatility 
[33, 36]. The list of stocks taken into account along with the industrial sector are listed 
in table B1 in appendix B.

Figure 9.  FNR and FPR for network recovery from data generated from simulations 
of an Ising model with β = 0.5 on a Erdös Rényi graph with c  =  3 and 250 nodes. 
The data contains observations of the spins on n  =  64 randomly chosen nodes. Each 
point on the curves in the figures represents the average over one hundred dierent 
realisations of the same topology and the standard deviations are depicted with 
(shaded) error bars. The performances of MS (blue) are compared to the PLM+�1 
(red) algorithm: (left) false positive rate (FPR), false negative rate (FNR) and 
(right) sparsity of the reconstructed graphs versus the length of the data sample. 
The value of the regularizer used is the same as the case of a fully observed graph.
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As a preliminary step, we check that auto-correlation

( ) ( ) ( )∑τ τ= +′ ′
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ij
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t N

i j
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are statistically insignificant for τ≠ 0 (see appendix). This is consistent with the ecient 
market hypothesis, that states that current prices fully reflect all available information, 
and hence future returns cannot be predicted [36]. Yet, the time series of returns is 
far from stationary, as evidenced by the plot in figure 11 of the equal time connected 
correlation
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i
1 1 , between a selected set of pairs of stocks (see later). This 

shows periods of high correlations interspersed with stretches where stocks dependen-
cies are weaker. In situations like this one, any eort of representing the evolution of 
the statistical dependence by an inferred interaction network, faces the unavoidable 
limit that the sample size N cannot be arbitrarily large. Inference on the whole dataset 
would mix dierent market phases. On the contrary, it is reasonable to assume the 
market to be ‘locally’ in equilibrium at a given time t, if N is taken to be small enough. 
From our analysis (see appendix) N  =  200 is large enough to aord statistically stable 
results, that are consistent with results obtained with smaller values of N, but that 
capture the non-stationary evolution of market correlations.

We performed inference of the underlying interaction network using MS with a 
fixed and self-consistent threshold and with PLM+�1, on rolling windows of N days. 
Here we present the main results for N  =  200, that correspond roughly to 10 months, 
and refer to the appendix for a detailed derivation.

For each pair i  <  j, we compute the confidences ( )η tij  of the MS inference on win-
dows of N  =  200 days and their average ηij  over t. Figure 10 (left) shows that the links 

separate nicely into a group with η > 0ij  that correspond to those pairs that are often 

connected by a bond in the reconstructed network, and those with η < 0ij  that are 

hardly or never connected. This implies a persistent underlying network structure, 
which is shown in figure 10 (right, thick bonds). Inspection of table B1 reveals that all 
the components highlighted correspond to stocks in the same economic sector: a large 
clique groups stocks in the utilities sector (PEG, AEP, CNP, ED, EIN and PCG), 
whereas other isolated bonds connect stocks in the Airline industry (AMR, LUV), Oil 
(CVX, XOM) and Healthcare (MRK, JNJ).

Likewise, we infer the couplings Jij(t) on the same data, with PLM+�1 and com-

pute the average Jij  over t. The resulting histogram exhibits a long tail for positive 

values of Jij  (see appendix) that can be distinguished from a noisy bulk by setting a 

threshold. The links corresponding to values >J 0.02ij  are shown in figure 10 (solid and 

dashed lines). In addition to the bonds retrieved with MS, this PLM+�1 procedure also 
retrieves other bonds that connect the Healthcare cluster to stocks in the Consumer 
Goods sector (KO, MO, PG) and it identifies three additional components, in the 
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Chemicals (DD, DOW) and Financial (AXP, C) sectors, and one that mixes General 
Electrics (GE) with Technology firms (IBM, HPQ).

The full power of our approach, however, lies in its ability to fully account for the 
non-stationary nature of the correlations. This is evidenced by figure 11, that reports, 
besides the value of the connected correlations (top panel), the results of network infer-
ence with MS (middle panel) and PLM+�1 (bottom panel). Each row corresponds to 
one of the 31 pairs of links identified in figure 10 and presence or absence of a bond at 
time t is indicated by a bright to dark spot. Visual inspection reveals that MS accounts 
much better for the non-stationary nature of correlations than PLM+�1.

More precisely, figure 12 (left) shows the time evolution of the sparsity of the net-
work inferred with MS and with PLM+�1. While with the former, the rises and falls 
of the network are rather sharp, for PLM+�1 the density of the network appears to be 
higher and much smoother. We also run MS on a reshued dataset, where each time 

N configurations ( )
→
S t  are chosen at random. Figure 12 (left) also reports the average 

and typical fluctuations that one would expect from MS on these system sizes. Clearly, 
density fluctuations in the true dataset are much more pronounced than what would 
be expected in the shued one. This also shows that the average density of bonds in 
MS is smaller than what PLM+�1 would predict.

The right panel of figure 12 relates the behaviour of the network to the dynam-
ics of the correlations. As a proxy of the latter we take the root mean square value 

( )C toff  of the connected correlations ( )C tij
N  (i  <  j ) and compare it to the sparsity of the 

inferred networks at the same time. While the network inferred by MS follows closely 
the dynamics of correlations, that inferred by PLM+�1 does not. Figure 12 also shows 
the eect of the self-consistent prior in making the MS algorithm more sensible to non-
stationary eects, with respect to MS with a fixed prior.

It is important to stress that, in spite of these dierences, MS produces results that 
are highly consistent with those of PLM+�1. Indeed 94% of the bonds identified by MS 

Figure 10.  Histogram of the averaged confidence ηij  (left) and resulting equilibrium 
graph (right, thick links). Dashed links refer to additional links inferred by the 
PLM+�1 method, whereas the dotted one between EIX and EXC indicates the 
only connection not recovered by PLM+�1. The names of the stocks present in this 
graph are listed in table B1 and highlighted with dierent colours: one for each 
connected component recovered by MS.
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are also found by PLM+�1. This confirms, as could be anticipated by its vary nature, 
that MS delivers rather conservative predictions on network inference.

Still, a sparser and more dynamic network of interaction does not per se makes of 
MS a method which is superior to PLM+�1. A more stringent test is possible by analys-
ing the ability of the reconstructed network to describe data out-of-sample. In practice, 
we estimate the network of interactions and the values of parameters in a window of N 
data points (training sample) and evaluate the likelihood of the data in the subsequent 
window of N data points (test sample). For completeness, we also compare the results 
with a sample of N data points randomly generated (random sample). In order to avoid 
problems of non stationarity, we focus on windows of N  =  50 and N  =  100 points. In 
this way, the train and the test samples together fills a time window smaller than the 
assumed stationary time scale.

For each t which is a multiple of N, we recover the MS (blue lines) and the PLM+�1 
(red lines) networks on the training sample, estimate the non zero parameters using an 
expectation consistent inference method following [37] and evaluate the likelihood of the 
training (dash–dot lines), test (solid lines) and random (dotted lines) samples, for both 

Figure 11.  Connections between the stocks belonging to the investigated clique 
from the 1st of January 1980 to the 25th of June 2007 obtained with MS (middle) 
and with PLM+�1 (bottom panel). For comparison, the absolute values of the 

correlations ( )| |C tij
N  between the same stocks, during the same period, is also shown 

(top panel). Colour maps: (top) very small correlations are in blue and very high 
ones in red; (middle and bottom) green corresponds to no-bond and yellow means 
a bond. MS results have been obtained with a self-consistent threshold whereas 
PLM+�1 assumes a regularizer that is half of the maximal regularizer for which 
the inferred network becomes empty. For such a small samples and across the 
considered graph, the latter recipe for the regularizer was found to work better on 
synthetic data than the one given in [18].
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networks. The resulting values of the likelihood are shown in figure 13 over the whole 
timespan of the dataset.

The maximum likelihood values on the training samples (dash–dot lines) are always 
above the others, as expected, since they corresponds to the maximum likelihood values 
on the training samples. In addition, since PLM+�1 always recovers a more complex 
model (denser graph), it fits better the in-sample data and consequently the correspon-
dent likelihood of the training set is larger than the MS one. The situation is reversed, 
however, when analysing the values of the likelihood in the test samples (solid lines). 
There the MS method achieves a larger likelihood with respect to the PLM+�1 method, 
both for N  =  50 and for N  =  100. The dierence in likelihood is smaller in periods of 
strong correlations (e.g. after 2000) where the MS network is denser. In addition, the 
dierence between the likelihoods of the training and the test samples are much smaller 
for MS than for PLM+�1.

The likelihoods of the random sample (dotted lines) are smaller than those of the 
test set, but while the dierence is negligible for MS it is considerable for PLM+�1. This 

is related to the fact that the sample is also reasonably well described by a model of 

random spins, where ( )
→
= −P S 2 n does not depend on any parameter. The corresponding 

normalised log-likelihood (−n log 2) is shown as a black dashed line in figure 13 and it 
lies above the likelihood of the test samples of MS and PLM+�1 for most of the time.

When using directly the couplings inferred with PLM+�1 for estimating the like-
lihood on test data (yellow solid lines), the outcomes become comparable to those 
obtained with MS (blue solid lines). However, this is accompanied by a decrease in the 
training likelihoods that now assume values close to the corresponding ones from MS. 
This result is a consequence of the fact that the couplings inferred using PLM+�1 (i.e. 
the symmetrised version of them: [ ]/+J J 2ij ji ) are penalised by the regularizer and are, 
therefore, smaller than those obtained via optimising the likelihood over graph recov-
ered using the training sample. In particular, the couplings corresponding to no-bonds 

Figure 12.  Left: comparison between the recovered ‘bond’-‘no-bond’ ratio with 
MS assuming a self consistent approach (blue), a fixed threshold (green) and with 
PLM+�1 (red). The yellow shaded band corresponds to results obtained by MS with 
a self consistent approach on a reshued dataset (mean  ±  standard deviation). 
Right: scatter plot of the sparsity for MS with self-consistent (blue) and fixed 
(green) priors, and for PLM+�1 (red) versus the o diagonal r.m.s. values of the 
connected correlations ( ( )C toff ).
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in MS graphs are significantly smaller and this makes the results close to those of a 
null model and to MS. Moreover, for such a small samples, the asymmetry in the cou-
plings may assume non-negligible values such that a symmetrization actually mixes 
two noticeably dierent estimates. Given the issues caused by the regularizer and the 
symmetrization procedure, we feel that a fair likelihood based comparison between two 
algorithm for graph selection should invoke the same method for the couplings’ esti-
mation step, which is what we discussed in the previous paragraphs, namely using a 
maximum likelihood estimate for non-zero couplings for both algorithms.

In summary, the very sparse topologies recovered by MS represent better the US 
stock market interactions with respect to the ones of PLM+�1. The MS topologies are 
very similar to the ones obtained with an independent spin or zero-parameters model 
and they have very similar out-of-sample likelihoods. This suggests that the eects 
of interactions need to be invoked only sporadically and especially in the last years 
(around 2000–2007) which are characterised by a correlated dynamics. This shows that 
MS is a quite sensitive inference method in situations where sample sizes are small (e.g. 
for non-stationary eects) and the data is quite noisy.

4.2. Neural data

The dataset is the same as the one studied in [34]. It consists of the recording of the 
activity of 65 neurons from the entorhinal cortex of a rat moving in a ×1.5 1.5 meters 
box. The position of the head of the rat is also recorded (see [38] for experimental 
details). A detailed analysis [38] reveals that 27 of the recorded cells are grid cells, 5 of 
them are interneurons and the remaining ones are of unknown type.

Here we use the model selection (MS) method to address the issue of inferring the 
interactions between these cells. It has long been observed that inference of interactions 

Figure 13.  Normalised log-likelihood, ( ˆ)
→
θ |L Slog

N

1
, on the training (dash–dot 

lines), test (solid lines) and random (dotted lines) samples as a function of time t, 
for N  =  50 (left) and N  =  100 (right). Blue lines refer to networks inferred on the 
training sample with the MS method with the self consistent prior, whereas the 
red lines refer to PLM+�1 inference. As a reference, the normalised log-likelihood 
of a random spin model with no parameters is also reported as a black dashed line. 
Finally yellow solid lines indicate the likelihoods on test samples evaluated using 
directly the couplings inferred with PLM+�1.
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between neurons is a particularly dicult problem (see e.g. [39] for a discussion). In 
fact, the recorded neurons are sampled from a large pool of dierent kinds of neurons 
and other cells interacting with characteristic time scales through directed connections. 
Given the experimental limitations and the scarce amount of data, resolving directed 
synaptic connections remains an hard task. Therefore, our approach, as well as all 
Inverse Ising inference methods, aims at detecting eective connections, i.e. strong 
statistical dependencies between neurons which can also arise as the result of indirect 
connections mediated by unobserved components of the network.

One relevant issue, for this dataset, is that neural activity depends on the position 
of the rat. If inference is carried out using data recorded when the rat is in dierent 
positions, the spatial dependence of the neural activity induces correlations that result 
in eective couplings between neurons that do not reflect genuine statistical depend
ence. If inference can be performed controlling for the position of the rat, these eects 
can be avoided and genuine (hopefully) direct statistical dependencies can be revealed. 
For this reason, we divide the dataset in many parts, each corresponding to a dierent 
spatial position. As in [34], we divided the box in a grid of ×20 20 cells, divided the 
database correspondingly and performed the analysis on the recording in each cell 
separately. This again brings us to an inference problem where the number of samples 
is very limited and for which we expect a sparse interaction network. We expect the 
network to be sparse also because the dataset documents the activity of only a frac-
tion of the cells that are actually involved in spatial cognition and navigation tasks. In 
other words, this is a problem where inference has to be performed in the presence of 
many missing degrees of freedom. The eect of these hidden variables is to make our 
dataset very noisy. In this situation, a model selection approach is necessary in order 
to correctly evince how much structure can be inferred from the data. Hence the MS 
approach is a valuable alternative to other approaches [31, 32] to inference in the pres-
ence of hidden variables.

We limit our discussion here to the typical properties of our algorithm, some illus-
trative example and the comparison with PLM+�1, leaving a full analysis of the neural 
activity for a future publication. We considered the neural activity in time bins of 5, 10 
and 20 ms and partition the time series into subsets where the position of the rat is in 
one of the 400 cells. For each cell, we defined spin variables to attain a value Si (t )  =  −1 
if neuron i is inactive in time bin t and Si(t)  =  +1 if it is active (here = …i 1, , 65 runs 
over neurons whereas t runs over all the time bins where the rat is in the given cell). 
On each of the sub-samples obtained in this way for the dierent cells, we run both 
PLM+�1 and the MS method in each of the 400 cells. A further clue that MS detects 
genuine interactions arises from the expectation that interaction should be more likely 
between neighbouring cells. A proxy of the spatial location of cells is the tetrode index, 
i.e. cells recorded by the same tetrode are expected to be closer than those recorded by 
dierent tetrodes. At 10 ms we found that out of the 9820 interactions detected, 1606 
correspond to cells recorded by the same tetrode. Since there are 10 tetrodes, the prob-
ability that two cells are recorded by the same tetrode is 10%. We then tested the null 
hypothesis that the recovered bonds connect two randomly selected neurons regardless 
of their location (belonging to the same tetrode). In this case the z-score, which measures 
the distance between the sample mean and the expected value of the number of intra-
tetrode connections in units of standard deviations, is 20,99 ( − = ⋅ −P Value 2.93 10 82) 
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and since the z-score is positive we can conclude that they mostly connect neurons 
belonging to the same tetrode. We found the same results also for 5 ms and 20 ms. By 
contrast, the same analysis for PLM+�1 (77 883 contacts of which 8204 inter-tetrode) 
yields a much lower z-score of 4,97 ( − = ⋅ −P Value 9.18 10 5).

One key aspect, is that dierent positions are visited with dierent frequency by 
the rat. Hence dierent cells correspond to samples of widely varying size and about 
75% of them have length less than 300 data-points. This is documented in figure 14 
(see inset). The left panel of the figure shows that PLM+�1 estimates way more links 
than MS. The number of interactions detected with MS increases with the size of the 
sample, which means that the inferred network is denser in cells that are visited more 
often. This is expected in the MS approach. The results of MS are highly consistent 
with those of PLM+�1 in that 99% of the interactions detected by MS are also detected 
by PLM+�1. Conversely, PLM+�1 detects many more interactions, many of which are 
attached a very low confidence by MS. Indeed, we found PLM+�1 to suer from insta-
bility problems in cases of very small samples. The top interactions inferred by MS are 
found to be very consistent across the grid in the sense that their confidence is positive 
in several dierent cells. Interestingly, the network of the most frequent interactions 
connect the five interneurons. Moreover the number of connections found for grid cells 
and interneurons do not correlate with their activity making the detected dependency 
stable against high fluctuations in the neural activity (right panel).

The firing rates of grid cells exhibits a remarkable variation across space that reveals 
the characteristic hexagonal patterns [38], whereas interneurons have a more uniform 
firing activity in space. Figure 15 shows a representative example for a particular grid 

Figure 14.  (Left) Bond-to-no-bond ratio for inferred graphs with MS (blue circles) 
and PLM+�1 (red circles) versus the length of the samples (left panel). The time 
bin employed for the figure is 10 ms but the same results are found also for dierent 
choices. The inset in the figure shows the distribution of the length of samples and 
the relative cumulative function (right y-axis). (Right) We report the logarithm of 

the firing rate, φlog , for a given neuron normalised with its mean over cells, φlog , 

and averaged over cells and neurons belonging to the same class (i.e. interneurons 
and grid cells) conditioned upon the number of connections (solid lines in the 
figure on the right panel). The standard deviations are depicted with error bars for 
interneurons and shaded error bars for grid cells.
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cell. The pattern of interactions between grid cells and between grid cells and inter-
neurons follows the spatial dependence of their activity, but it exhibits a more hetero-
geneous behaviour. This is expected, because in regions where the firing activity of the 
grid cell is very low, simpler models with fewer parameters (i.e. without a bond) are 
preferred because the corresponding spin is almost frozen. Yet we found no statistically 
significant dependence on the spatial position of the interactions that were detected, 
i.e. statistically the interactions found for a given neuron in one cell do not depend on 
the position of the cell in the space, suggesting that these correspond to genuine inter-
actions. The grid cell shown in figure 15 has significant interaction with the interneu-
rons that is statistically independent from the spatial position. This was found to be 
true of several other grid cells, but we also found examples of grid cells preferentially 
interacting with grid cells. This shows that neighborhoods of interaction networks are 
very heterogeneous, which is to be expected if one thinks of this network as being a 
very sparse sub-sampling of a much larger network.

In summary, the application of the MS approach to neural data shows its potential 
for statistical dependencies between the neural activity of dierent cells that is not 
aected by the confounding eect of the spatial position variable. Furthermore, at 
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Figure 15.  The figure  shows the spatial spiking pattern (a) and the spatial 
connectivity pattern (b) of the grid cell T7C1, namely the number of spikes and 
the number of connections inferred by MS with a time bin of 10 ms for the above 
mentioned grid cell versus the spatial position of the rat in the box. Interestingly 
for this particular grid cell, the connectivity pattern follows the spiking one, a 
feature not common to all the grid cell in the considered ensamble. This neuron 
makes connection mostly with the five interneurons (70%) but also with grid cells 
(20%) and other neurons (10%). This is illustrated in detail in panel (c) with the 
following color code: cyan for interneurons, red for grid cells and yellow for all 
other neurons. In particular, panel (c) reports the number of connections inferred 
between the grid cell T7C1 and all the other neurons which are listed on the x axis.
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odds with other methods, our approach naturally takes into account the fact that only 
a tiny region of a larger network of interactions is observed and recognizes statistical 
dependencies on the basis of the quality of the observations, being more selective when 
only few observations are available.

5. Conclusions

In this paper we presented a model selection approach for topology reconstruction of 
a network of interacting binary nodes. Our approach explores the idea of calculating, 
in a fully Bayesian fashion, the posterior probabilities of all possible graphical models 
and it relies on the observation that in the small sample limit, complex models are 
heavily penalised with respect to simpler one. It makes sense, in this limit, to consider 
only minimal clusters composed of just two spins. Therefore, we derive a full Bayesian 
approach to model selection for a system of two spins, potentially interacting with each 
other and with the rest of the network through eective fields. The use of such minimal 
clusters reduces the problem to a simple two body system with a relative small number 
of possible graphs allowing a fully analytic treatment and a direct geometric visualiza-
tion. This choice is justified in the noisy data regime when usually simple schemes may 
capture better the underlying structure than more complex techniques, better suited 
for high quality data. In fact, we have proven on very noisy synthetic data sets that 
such a simple method is at least equivalent, if not superior, to the well known �1 regular-
ized pseudo-likelihood method for sparse networks and weakly coupled spins. Moreover 
a list of advantages accompanies the use of our method: it is a fully automatic pro-
cedure and does not need selecting additional ad hoc parameters as the choice of the 
regularizer and the thresholding value in PLM+�1; it is computationally convenient 
since it can be implemented as a direct online tool: the boundaries of the partitions in 
the parameters space are computed once for a given value of N, and they can then be 
used for all pairs. This sounds particularly appealing for large networks applications 
where pseudo-likelihood methods typically becomes slow. Furthermore in section 4 we 
have shown that MS is a method that is particularly suited to study non-stationary 
data, as shown by the analysis of the US stock market data, or to remove confounding 
eect of external variables, as in the case of neural data, because it is ideally suited 
to work on small samples. Finally, when the network of interactions is only partially 
observed, it represents a valuable alternative to existing algorithm for dealing with hid-
den variables. In fact, our method is able to detect significative statistical dependences 
among the observed spins given a limited amount of data and return stable predictions, 
since they are not influenced by how much of the network we are able to probe. This 
is very interesting for biological applications, as we discussed in in section 4, where 
existing experimental techniques might not be able to record from the whole network. 
Our methods looses accuracy when less sparse networks are taken into account and 
when more loops arise from the connectivity pattern of spins. In these cases it would be 
straightforward and very interesting to extend our approach to 3-body or 4-body clus-
ters of spins in order to count for small loops in the network. There are several other 
directions where the MS approach could be generalised in a straightforward manner 
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as, e.g. to non-equilibrium spin models [40], to Potts spin models such as those used in 
contact prediction for proteins [41] etc.

Even for high quality data, for sparse topologies and weak couplings, the above 
presented model selection approach exhibits the interesting property of recognizing 
all direct connections in the network at the cost of a reasonable small number of false 
positive. Therefore our method candidates as an ecient pruning algorithm for sparse 
networks of any size and as a pre-treatment tool for reducing the number of features 
and saving computational time in subsequent applications of more involved methods, 
as the pseudo-likelihood ones. Furthermore the excess of false positive can be cured at 
least partially in a very simple way improving significantly the accuracy of our method 
especially in the large N regime.
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Appendix A. Synthetic data: methods and supplementary analysis

In the appendices we present two sections with details about the main results of the 
paper. In the first section we report additional simulations for the dierent topologies 
discussed in the paper and give further insights on the methods; in the second sec-
tion we will focus on US stock market interactions showing that, under our assump-
tions, configurations of stocks at time t are uncorrelated with those at time τ+t  for 
τ≠ 0 and for dierent values of N; moreover we also further contrast MS and PLM+�1 
and compare their outcomes with respect to the absolute values of connected correla-
tions. Finally we provide a Matlab implementation of our method.

In figure A1 we summarize the performances of our method at varying the length 
of the sample N, the strength of the couplings β and the value of ε for some of the 
sparse topologies investigated: gas of dimers, Erdos Renyi graphs with c  =  2 and 
c  =  3, a full and diluted (30% of dilution) bidimensional grid. In particular for each 
topology and each choice of β, we generated one hundred dierent instances of the 
same topology and for each of them we generated samples with dierent N through 
Monte Carlo sampling. For all cases of figure A1, the size of the network has been 
fixed to n  =  64 and the value of the couplings β have been drawn from a unimodal 
distribution for the bidimensional grids and from a bimodal distribution in the other 
cases. After having evaluated the matrix of the confidence for each single realisation 
and each N, we calculated the TPR and TNR for dierent choices of ε and aver-
aged their values over all realisations with the same topology, β, N and ε. The ideal 
case is the one of the gas of dimers for which the method provides an almost perfect 
recovery, especially for high values of β. In all other cases the best performances are 
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achieved in the weak coupling regime (β = 0.5) and for topologies with few bonds and 
loops. In this respect, the case of the full bidimensional grid is representative since it 
shows the failure of our method in recovering a graph with many loops even in the 
weakly interacting regime.

Figure A1.  Testing MS method on synthetic data generated assuming five sparse 
topologies: gas of dimers, Erdos Renyi graphs with c  =  2 and c  =  3, a full and 
diluted bidimensional grid.
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The comparison with PLM+�1 in the weak coupling regime (β = 0.5) is in figure A2 
for all the previous topologies except for the grid. The curves are drawn at varying ε for 
MS and the �1 regularizer λ for PLM+�1 (λ ranging from 0 to λ⋅1.5 max where λmax rep-
resents the threshold above which the inferred graph is completely disconnected). The 
comparison between MS and PLM+�1 for these topologies exhibits the same features 
discussed for the representative case of an Erdos Renyi graph c  =  3. It is interesting 
to note how this inference tecnique behaves almost perfectly (the curve pass through 
the right upper corner), even with only N  =  100 data points, in the ideal case of a gas 
of dimers. Important points outlined in the paper regarding the performance of MS, 
expressed now in terms of FPR and FNR, at varying N and n: the algorithm improves 
at enlarging the size of the network n and the FNRs resulting from the application of 

Figure A2.  Comparison between MS (blue lines) and PLM+�1 (red lines) for 
network of n  =  64 nodes arranged in four dierent topologies. Each point of 
the curves represents the average of TNR and TPR over one hundred dierent 
realisations of the same topologies with a mean ‘bond’-‘no-bond’ ratio ⟨ ⟩r  (r when 
its value is constant across realisations). The comparison is drawn for two dierent 
values of N and in the weak couplings regime (β = 0.5). Two dierent points 
are highlighted for each curve showing the eects of employing a self consistent 
(coloured markers) and a N-varying procedure (white markers) for selecting the 
models’ prior coecient.
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MS go to zero faster and with smaller error bars than those of PLM+�1. This is shown 
more in detail in figure A3 for all the topologies investigated along with the comparison 
with PLM+�1 outcomes for a fixed value of the regularizer λ λ= 0.5 max which optimizes 
PLM+�1 results.

Figure A3.  Comparison between MS (blue lines plus error bars) and PLM+�1 (red 
lines plus shaded error bars) for network of dierent sizes n  =  16,64,100 with nodes 
arranged in four dierent topologies. FPR (dotted lines) and FNR (solid lines) are 
shown versus the size of the sample N.
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As already pointed out in the paper and shown in detail in figure A3, when N 
becomes large enough the number of false positive becomes important and more evi-
dent in less sparse networks. Even though our approach is thought to be used in the 
highly under-sampled regime where only poor predictions are possible and one expects 
to find a very sparse matrix, one simple recipe is actually available to overcome this 
problem under the framework we have developed in the paper with a small additional 
computational cost. The main idea is already described in the paper in section 3.2, 
therefore here we just summarise it including a few further details and simulations. The 
recipe can be schematized as follows:

	 1.	use MS with a self consistent thresholding procedure for recovering the graph. 
Typically for topologies containing many loops (e.g. a regular grid) or many 
conditional independencies (e.g. a star graph), the self consistent approach fails 
and retrieves a densely or fully connected graph, namely a self consistent point 
= >εr 1. In the latter case, if no additional knowledge about the expected spar-

sity of the network is available, the choice of a uniform prior, =ε 1, represents 
the only possibility;

	 2.	 check for each couple of connected nodes if their neighbourhood sets share some 
vertices (i.e. find the number of loops of length three based on the considered 
connected couple);

	 3.	 in the latter case, given the two values of the confidence for the couple (i, j ) in 
the two sub-sets made up by conditioning on the value of a common neighbour k, 
i.e. η | =ij S Sk

, evaluate the dierence between the probability of having a bond and 
the one of not having a bond in both the sub-sets as follows

˜ ( ˆ ) ( ˆ ) ¯
⎛
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		 An unique estimate for the latter probability is given by the weighted average 

˜ ˜ ( )η η ν= ∑ =| =± | = S Sij k S ij S S k1 k
 where ( )ν =S Sk  represents the cardinality of the 

sub-sets.

	 4.	After having calculated η̃ |i j k,  for each node k belonging to the intersection set, 
I , of the neighbourhoods of node i and j, there are dierent ways to obtain a 
new estimate, η̃ij

1 , for the dierence between the probability of having a bond 

and the one of not having a bond. Given the fact that couples are considered as 
being independent each other, the posterior probability of finding a node in the 

intersection set I of the neighbourhoods of i and j, denoted as ( )∆P ij
k , is given by
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Figure A4.  Simulations comparing the performances of MS (blue) and PLM+�1 
(red) with the ones of MS employing corrections for high quality data for all 
topologies investigated. The corrections are depicted in the graph with the following 
color code: MS avg (yellow), MS min (violet) and MS prod (green).
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		 where ( ˆ)|P b S  corresponds to the posterior probability of having a bond. We 

tested the following three approaches:

		 MS avg: ˜ ˜ ( )η η= ∑ ∆∈ |I Pij k i j k ij
k1

,

		 MS min: ˜ ( ˜ )η η= ∈ |Iminij k i j k
1

,

		 MS prod: ( )˜
˜

η = ∏ −
η

∈
+ |

I2 1ij k
1 1

2

ij k

According to the above prescriptions, η̃ = 0ij
1  represents the threshold above which the 

bond between spins i and j is considered genuine and not induced by the fact that the 
nodes share common neighbours. The results are shown in figure A4 for all investigated 
topologies. It is clear that this simple recipe allows for lowering considerably the false 
positive rate while keeping the false negative rate almost always below the PLM+�1 
curve in the high N regime. The three approaches exhibit dierent degree of selectiv-
ity being MS prod the most selective and MS avg the least one. Even in hard cases, 
e.g. star graph and 2D grid in figure A4, these corrections proves their eectiveness in 
improving ordinary MS performance in the high N regime and in doing sometimes even 
better than PLM+�1.

Appendix B. Additional results on US stock market interactions

As a first step in this section we are going to investigate the behaviour of the correla-

tion functions ( )τc t,ij
N  at varying τ. In particular we focused on the r.m.s of the diagonal 

and o-diagonal elements of the correlation matrices

( ) ( ) ( )
( )

( )∑ ∑τ τ τ τ= =
−= <

c t
N

c t c t
N N

c t,
1

, ,
2

1
,N

i

N

ii
N N

i j
ij
N

diag
1

2

off

2

� (B.1)

as a measure of the mean magnitude of the diagonal and o-diagonal terms of the cor-
relation matrices. The time delay τ and the size of the window N are reported in trad-
ing days, whereas the reference point t for the time window in years. In figures B1 and 

B2, we show ( )τc t,N
diag  and ( )τc t,N

off  and compare them with the corresponding values 

for a shued version of the data. As one can see from the left panels in these figures, 
both the diagonal and the o diagonal terms decay very quickly with τ for any given 
value of t and at N  =  200: they reach the limiting plateau already for    τ = 1 or 2 and 
then oscillate around it. The right panels in figures B1 and B2 display the fluctuating 

behaviour of ( )τc t,N
diag  and ( )τc t,N

off  as a function of t for three increasing values of τ, 
i.e.    τ = 1, 15 and 30, showing that the fluctuations for τ = 1 have in general almost the 
same magnitude as those for    τ = 15 and 30 although they seem to be slightly bigger 

in some time regions especially in the case of ( )τc t,N
off . This behaviour suggests that 

on average there is no memory in the data, i.e. the configurations at time t are uncor-
related with those at time τ+t  already for τ = 1, although in certain regions a short 
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memory term seems to be present. This conclusion is further supported by comparing 
the correlations between the shued and un-shued data: a shuing of the dataset 
provides a new dataset in which the configurations at dierent times t are uncorrelated. 
This comparison shows that the average magnitude of the fluctuations for the shued 
and un-shued datasets are almost the same and that, as already said above, excep-
tions, i.e. bigger fluctuations in the un-shued dataset for τ = 1, are limited to some 
time windows. In the latter cases the configurations of returns at time t are weakly cor-
related with those at time t  +  1 but uncorrelated with the configurations at time τ+t  
for ⩾τ 2. As an example of the highest time correlated scenarios, we plot in figure B3 

( )τ∗c t ,N
diag diag  and ( )τ∗c t ,N

off off  as a function of τ for two values of t, ∗tdiag and ∗toff that rep-

resent the times at which ( )τ =c t, 1N
diag  and ( )τ =c t, 1N

off  assume their maximum values, 
namely the values corresponding to the biggest fluctuations of the blue line in the right 

Figure B1.  ( )τc t,N
diag  versus τ and t for N  =  200 and comparison with the same 

quantity calculated from a shued version of the data (left); ( )τc t,N
diag  versus t 

at N  =  200 and τ = 1, 15, 30 (right on the top) and comparison with the same 
quantity calculated from a shued version of the data (right on the bottom)

Figure B2.  ( )τc t,N
off  versus τ and t for N  =  200 and comparison with the same 

quantity calculated from a shued version of the data (left); ( )τc t,N
off  versus t 

at N  =  200 and τ = 1, 15, 30 (right on the top) and comparison with the same 
quantity calculated from a shued version of the data (right on the bottom).
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top panels of figures B1 and B2. As one can see in this extreme case, both diagonal and 
o diagonal terms seem to be correlated for τ = 1 but then the correlations decay and 
fluctuate around a plateau for τ> 1. In figure B4, we show the correlations for three 
dierent values of the time window N  =  100,200,300 noting the same same general 
behaviour for the fluctuations: the magnitude of fluctuations for τ = 1 are almost the 

Figure B3.  Diagonal and o diagonal correlations versus the time delay τ in the 
highest correlated scenario.

Figure B4.  Same figures  as the right insets of figures B1 and B2 for dierent 
values of the time window N  =  100,200,300.
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same or just a little bit bigger in certain regions than the ones for τ = 15 and τ = 30 
meaning that the configurations decorrelate very quickly in time. Therefore, this trend 
seems to be preserved when varying the size of the window.

Given the finding that the returns are largely uncorrelated for τ≠ 0, we then focused 
on equal time connected correlations ( )C tij

N . Looking at the evolution of ( )C tij
N  for each 

pair of spins i, j we noticed that, for the majority of the pairs, the connected correla-
tion fluctuates in time around some small value close to zero while for a few of them 
the connected correlations take on average values dierent from zero. Indeed looking 

at the histogram of the time averaged connected correlation functions Cij
N  for each pair 

shown in figure B5, one can distinguish a big peak around zero and a small but separate 
one centered at a positive value. Performing a shuing in time and building again the 

Figure B5.  Histograms of the time averaged connected correlation functions Cij
N  

for each couple for three values of N  =  100,200,300 showing a big peak around 
zero and a small one a bit separated representing couples which tend to be more 
correlated than others.

Figure B6.  Histogram of time averaged inferred couplings Jij  showing a long tail 

for positive values of Jij  (left). Since a clear gap is not evident here and in order 

to obtain an ‘equilibrium graph’ as in the other cases, we thresholded Jij  at 0.02 

(red dotted line) since qualitatively below that value the distribution seems to be 
symmetric and centered around zero; histograms of the ‘bond’-‘no-bond’ ratio 
with a self consistent approach (right top) and its counterpart from a time shued 
version of the data (right bottom).
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previous histograms does not change their shape5. These couples, exhibiting a bigger 
average values of the connected correlations, correspond exactly to those which are 
recognised by MS as the ones which are most often linked by a direct connection (see 
main text). The same connections are also recognised by PLM+�1 and make up the long 
tail in the histogram of the average values of the inferred couplings (see left inset of 
figure B6). Finally changing the size of the window does not influence the ‘equilibrium’ 
graph we got: in other words, this division between more and less correlated pairs holds 
for the dierent investigated time scales. Above this ‘equilibrium’ graph, time varying 
fluctuations occur and determine the temporal evolution. An eect of non stationarity 
in the data is highlighted in figure B6 (right) for N  =  200: the long tail in the histo-
gram of the ‘bond’-‘no-bond’ ratio is suppressed after a shuing of the dataset which 
spreads uniformly the time variability along the entire dataset. The clear modification 
of the histogram after the shuing is a strong evidence of the presence of time depen-
dent fluctuations in the data.

A closer comparison between the absolute values of the connected correlations and 
the outcomes of the two methods under investigation is shown in figure B7 for N  =  200. 
In particular, as one can appreciate by looking at left panel of figure B7, MS approach 
can be understood as a quantitative and unambiguous way of thresholding connected 
correlations. The relation between Jij and the connected correlations is also depicted 

in figure B7 (central panel). PLM+�1 technique creates a gap along the | |Jij  axis and 
the pairs with a value of | |Jij  beyond that gap are assigned a bond, while the others are 

considered to be disconnected. Therefore looking at the figure, not surprisingly, it turns 

out that higher values of correlations ( )| |C tij  mean direct connections, very low ones 
are assigned to disconnected pairs and values in between belong to a transition region 

( ( )| |� �C t0.1 0.3ij  ) whose width is more or less the same as the one observed in the 
PLM+�1 case. However, in the PLM+�1 case the relation between the absolute values of 
the inferred couplings and the ones of the connected correlations is not as simple as in 
the MS case, and its complexity reflects the more involved recipe underlying PLM+�1 

Figure B7.  Relation between ( )η tij  and the absolute values of connected 

correlations ( )C tij
N  while varying i,j and t (left); same plot showing the relation 

between ( )| |C tij  and ( )| |J tij  (centre); A comparison between MS reconstructions and 
PLM+�1 reconstructions for several values of t along the dataset. The red circles 
are pairs found to be directly connected by the self consistent approach. The 94% 

of them are located beyond the gap along the ( )| |J tij  axis meaning that they are also 
recognised as direct connections by the PLM+�1 approach (right).

5 This is not obvious since a shuing in time changes data points inside each time window. Therefore the fact 
that we found the same histograms enforces our finding of pairs more correlated than others in time
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Table B1.  List of the 41 stocks in the Dow Jones index along with their economic 
sector.

Ticker Name Sector Industry

AA Alcoa Inc Materials Aluminium
PEG Public Serv. Enterprise Utilities Electric utilities
AEP American Electric Power Utilities Electric utilities
AXP American Expess Co Financials Consumer finance
CNW Con-Way Inc Services Trucking
AMR American Airline Group 

Inc
Industrials Airlines

BA Boeing Company Industrials Aereospace and defence
BNI Burlington Northern Santa 

Fe
Industrials Rail freight

CAT Caterpillar nc Industrials Farm and construction 
machinery

C Citigroup Inc Financials Banks
CNP Center Point Energy Utilities Multiutilities
CVX Chevron Corp Energy Integrated oil and gas
DD E. I. du Pont de Nemours 

and company
Basic 
materials

Agricultural chemicals

DIS The Walt Disney 
Company

Services Entertainment—
diversified

DOW The Dow Chemical 
Company

Basic 
materials

Chemicals—major 
diversified

ED Consolidated Edison, Inc Utilities Electric utilities
EIX Edison International Utilities Electric utilities
EK Eastman Kodak Co. Consumer 

goods
Electronic equipment

EXC Exelon Corporation Utilities Diversified utilities
FDX FedEx Corporation Services Air delivery and freight 

services
FO Fortune Brands, Inc. Consumer 

goods
Home and security, 
spirits, and golf

GE General Electric Company Industrial 
goods

Diversified machinery

GM General Motors Company Consumer 
goods

Auto manufacturers—
major

GT The Goodyear Tire and 
Rubber company

Consumer 
goods

Rubber and plastics

HON Honeywell International 
Inc.

Industrial 
goods

Diversified machinery

HPQ Hewlett-Packard Company Technology Diversified computer 
systems

IBM International Business 
Machines Corporation

Technology Information technology 
services

IP International Paper 
Company

Consumer 
goods

Packaging and 
containers

(Continued )
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technique. Finally, as already discussed in the paper, PLM+�1 typically recovers more 
bonds than MS, but 94% of the direct connections retrieved with MS using the self con-
sistent approach are also recognized by PLM+�1 as direct connections. This is shown 
in the right panel of figure B7 and this further emphasizes the rather conservative and 
relevant predictions obtained with MS.

Finally in table B1, we report here the list of the 41 stocks in the Dow Jones index 
along with their economic sector. Stocks belonging to dierent connected components 
of the equilibrium graph inferred with MS are highlighted with dierent colours.

Appendix C. A Matlab implementation of the MS method

Here we include a simple Matlab code for a direct implementation of our approach. The 
function receives as an input the mean activities of two nodes and their correlation and 
gives back the value of the confidence.

1 % FUNCTION: MODEL SELECTION DISCRIMINATOR

2 % �INPUT: MEAN ACTIVITY, CORRELATION AND NUMBER OF POINTS 

IN THE SAMPLE

JNJ Johnson &; Johnson Healthcare Drug manufacturers—
major

KO The Coca-Cola Company Consumer 
goods

Beverages—soft drinks

LUV Southwest Airlines Co. Services Regional airlines
MCD McDonald’s Corp. Services Restaurants
MMM 3M Company Industrial 

goods
Diversified machinery

MO Altria Group Inc. Consumer 
goods

Cigarettes

MRK Merck &; Co. Inc. Healthcare Drug manufacturers—
major

NAVZ Navistar International 
Corporation

Consumer 
goods

Trucks and other 
vehicles

PCG PG&;E Corporation Utilities Electric utilities
PG The Procter &; Gamble 

Company
Consumer 
goods

Personal products

UTX United Technologies 
Corporation

Industrial 
goods

Aerospace/defense 
products &; services

WMT Wal-Mart Stores Inc. Services Discount, variety stores
XOM Exxon Mobil Corporation Basic 

materials
Major integrated oil 
and gas

Note: Stocks belonging to dierent component in the equilibrium graph of figure 10 inferred with MS 
(thick lines) are highlighted with dierent colours.

Table B1.  (Continued )

Ticker Name Sector Industry
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3 % OUTPUT: CONFIDENCE

4

5 function eta  =  MS_discriminator(m1,m2,C,N)

6

7 A  =  [pi sqrt(2)  *  pi 2  *  pi pi^2];

8 dlt  =  [1 1/2 3/2 2];

9

10 % SOLVING SADDLE POINT EQUATIONS FOR ALL MODELS

11 [fh1]  =  Mind_saddlepoint(m1,N,dlt(1));

12 [fh2]  =  Mind_saddlepoint(m2,N,dlt(1));

13 [fJ]  =  Mind_saddlepoint(C,N,dlt(1));

14 [fh]  =  Mind_saddlepoint((m1  +  m2)/2,N,dlt(2));

15 [phi]  =  M2_saddlepoint(m1,m2,C,N,dlt(3));

16 [psi]  =  M3_saddlepoint(m1,m2,C,N,dlt(4));

17

18 % MODEL WITH 0 PARAMETERS (M_1)

19 PM0  =  -log(4);

20

21 % MODELS WITH 1 PARAMETERS (M_2, M_3, M_4, M_6)

22 PM1a  =  fh1 -log(2)  +  log(2  *  pi/(N  *  (1  +  dlt(1)/N)  *  A(1)^2))/(2  *  N);

23 PM1b  =  fh2 -log(2)  +  log(2  *  pi/(N  *  (1  +  dlt(1)/N)  *  A(1)^2))/(2  *  N);

24 PM1c  =  fJ -log(2)  +  log(2  *  pi/(N  *  (1  +  dlt(1)/N)  *  A(1)^2))/(2  *  N);

25 PM1d  =  2  *  fh  +  log(2  *  pi/(N  *  (1  +  dlt(2)/N)  *  A(2)^2))/(2  *  N);

26

27 % MODELS WITH 2 INDEPENDENT PARAMETERS (M_5, M_7, M_8)

28 PM2a  =  fh1  +  fh2  +  log(2  *  pi/(N  *  (1  +  dlt(1)/N)  *  A(4)))/N;

29 PM2b  =  fh1  +  fJ  +  log(2  *  pi/(N  *  (1  +  dlt(1)/N)  *  A(4)))/N;

30 PM2c  =  fh2  +  fJ  +  log(2  *  pi/(N  *  (1  +  dlt(1)/N)  *  A(4)))/N;

31

32 % MODEL WITH 2 DEPENDENT PARAMETERS (M_9)
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33 PM2d  =  phi  +  log(2  *  pi/(N  *  (1  +  dlt(3)/N)  *  A(3)))/N;

34

35 % MODEL WITH 3 PARAMETERS (M_10)

36 PM3  =  psi  +  3  *  log(2  *  pi/(N  *  (1  +  dlt(4)/N)  *  A(4)^(2/3)))/(2  *  N);

37

38 % VECTOR OF PROBABILITIES

39 logPM  =  [PM0 PM1a PM1b PM1d PM2a PM1c PM2b PM2c PM2d PM3];

40 PM  =  exp(N  *  logPM);

41

42 % EVALUATING THE CONFIDENCE

43 NB  =  PM(1)  +  PM(2)  +  PM(3)  +  PM(4)  +  PM(5);

44 B  =  PM(6)  +  PM(7)  +  PM(8)  +  PM(9)  +  PM(10);

45 eta  =  (B-NB)/(B  +  NB);

46 end

47

48 % �FIND THE SADDLE POINT FOR MODELS WITH 1 AND 2 INDEPENDENT 

PARAMETERS

49 function [y]  =  Mind_saddlepoint(a,N,delta)

50 xguess  =  0;

51 opts  =  optimset(‘Diagnostics’,‘off’,‘Display’,‘off’);

52 B  =  (1  +  delta/N);

53 x  =  fsolve(@(x) a - B  *  tanh(x),xguess,opts);

54 y  =  a  *  x - log(2  *  cosh(x));

55 end

56

57 % FIND THE SADDLE POINT FOR MODEL M_9

58 function [phi]  =  M2_saddlepoint(m1,m2,C,N,delta)

59 xguess  =  zeros(1,2);

60 opts  =  optimset(‘Diagnostics’,‘off’,‘Display’,‘off’);
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61 B  =  (1  +  delta/N);

62 x  =  fsolve(@(x)M2system(x,m1,m2,C,N,B),xguess,opts);

63 h  =  x(1);

64 J  =  x(2);

65 fh  =  h  *  (m1  +  m2) - 2  *  log(2  *  cosh(h));

66 fJ  =  J  *  C - log(2  *  cosh(J));

67 sigma  =  (1  +  tanh(J)  *  tanh(h)^2)/2;

68 phi  =  fh  +  fJ-log(sigma);

69 end

70

71 %FIND THE SADDLE POINT FOR MODEL M_10

72 function [psi]  =  M3_saddlepoint(m1,m2,C,N,delta)

73 xguess  =  zeros(1,3);

74 opts  =  optimset(‘Diagnostics’,‘off’,‘Display’,‘off’);

75 B  =  (1  +  delta/N);

76 x  =  fsolve(@(x)M3system(x,m1,m2,C,B),xguess,opts);

77 h  =  [x(1) x(2)];

78 J  =  x(3);

79 fh1  =  h(1)  *  m1 - log(2  *  cosh(h(1)));

80 fh2  =  h(2)  *  m2 - log(2  *  cosh(h(2)));

81 fJ  =  J  *  C - log(2  *  cosh(J));

82 sigma  =  (1  +  tanh(h(1))  *  tanh(h(2))  *  tanh(J))/2;

83 psi  =  fh1  +  fh2  +  fJ-log(sigma);

84 end

85

86 function y  =  M2system(v,m1,m2,C,N,B)

87 y  =  [m1  +  m2 - 2  *  B  *  tanh(v(1)) - 2  *  B  *  (1-tanh(v(1))^2)  *  tanh(v(1))  *...

88 tanh(v(2))/(1  +  tanh(v(1))^2  *  tanh(v(2)));

89     C  +  1/(2  *  N) - B  *  tanh(v(2)) - B  *  ((1-tanh(v(2))̂ 2)  *  tanh(v(1))̂ 2)/...
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90  (1  +  tanh(v(1))^2  *  tanh(v(2)))];

91  end

92

93  function y  =  M3system(v,m1,m2,C,B)

94  y   =  [m1 - B  *  tanh(v(1)) - B  *  ((1-(tanh(v(1)))̂ 2)  *  tanh(v(2))  *  tanh(v(3)))/...

95  (1  +  tanh(v(1))  *  tanh(v(2))  *  tanh(v(3)));

96   m2 - B  *  tanh(v(2)) - B  *  ((1-(tanh(v(2)))^2)  *  tanh(v(1))  *  tanh(v(3)))/...

97  (1  +  tanh(v(1))  *  tanh(v(2))  *  tanh(v(3)));

98   C - B  *  tanh(v(3)) - B  *  ((1-(tanh(v(3)))^2)  *  tanh(v(1))  *  tanh(v(2)))/...

99  (1  +  tanh(v(1))  *  tanh(v(2))  *  tanh(v(3)))];

100 end
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