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Abstract

The Bayesian framework is a well-studied and successful framework for inductive reasoning, which includes hypothesis testing
and confirmation, parameter estimation, sequence prediction, classification, and regression. But standard statistical guidelines for
choosing the model class and prior are not always available or can fail, in particular in complex situations. Solomonoff completed
the Bayesian framework by providing a rigorous, unique, formal, and universal choice for the model class and the prior. I discuss
in breadth how and in which sense universal (non-i.i.d.) sequence prediction solves various (philosophical) problems of traditional
Bayesian sequence prediction. I show that Solomonoft’s model possesses many desirable properties: strong total and future bounds,
and weak instantaneous bounds, and, in contrast to most classical continuous prior densities, it has no zero p(oste)rior problem,
i.e. it can confirm universal hypotheses, is reparametrization and regrouping invariant, and avoids the old-evidence and updating
problem. It even performs well (actually better) in non-computable environments.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

“... in spite of it’s incomputability, Algorithmic Probability can serve as a kind of ‘Gold Standard’ for induction
systems”
— Ray Solomonoff (1997)

Given the weather in the past, what is the probability of rain tomorrow? What is the correct answer in an IQ test
asking to continue the sequence 1, 4, 9, 16,7 Given historic stock-charts, can one predict the quotes of tomorrow?
Assuming that the sun rose 5000 years every day, how likely is doomsday (that the sun does not rise) tomorrow?
These are instances of the important problem of induction or time-series forecasting or sequence prediction. Finding
prediction rules for every particular (new) problem is possible but cumbersome and prone to disagreement or
contradiction. What is desirable is a formal general theory for prediction.
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The Bayesian framework is the most consistent and successful framework developed thus far [11,21]. A Bayesian
considers a set of environments = hypotheses = models M which includes the true data-generating probability
distribution . From one’s prior belief w, in environment v € M and the observed data sequence x = xy...x,,
Bayes’ rule yields one’s posterior confidence in v. In a prequential [10] or transductive [43, Sec.9.1] setting, one
directly determines the predictive probability of the next symbol x, | without the intermediate step of identifying
a (true or good or causal or useful) model. With the exception of Section 4, this paper concentrates on prediction
rather than model identification. The ultimate goal is to make ‘good’ predictions in the sense of maximizing one’s
profit or minimizing one’s loss. Note that classification and regression can be regarded as special sequence prediction
problems, where the sequence x1yi ...x,ynX,4+1 of (x, y)-pairs is given and the class label or function value y,
shall be predicted.

The Bayesian framework leaves open how to choose the model class M and prior w,. General guidelines are
that M should be small but large enough to contain the true environment p, and w, should reflect one’s prior
(subjective) belief in v or should be non-informative or neutral or objective if no prior knowledge is available. But
these are informal and ambiguous considerations outside the formal Bayesian framework. Solomonoff’s [41] rigorous,
essentially unique, formal, and universal solution to this problem is to consider a single large universal class My
suitable for all induction problems. The corresponding universal prior wy is biased towards simple environments
in such a way that it dominates (=superior to) all other priors. This leads to an a priori probability M (x) which
is equivalent to the probability that a universal Turing machine with random input tape outputs x, and the shortest
program computing x produces the most likely continuation (prediction) of x.

Many interesting, important, and deep results have been proven for Solomonoff’s universal distribution M [47,42,
13,29,15,19]. The motivation and goal of this paper is to provide a broad discussion of how and in which sense
universal sequence prediction solves all kinds of (philosophical) problems of Bayesian sequence prediction, and
to present some recent results. Many arguments and ideas could be developed further. I hope that the exposition
stimulates such a more detailed investigation in future.

In Section 2, I review the excellent predictive and decision-theoretic performance results of Bayesian sequence
prediction for generic (non-i.i.d.) countable and continuous model classes. Section 3 critically reviews the classical
principles (indifference, symmetry, minimax) for obtaining objective priors, and introduces the universal prior inspired
by Occam’s razor and quantified in terms of Kolmogorov complexity. In Section 4 (for i.i.d. M) and Section 5 (for
universal M) I show various desirable properties of the universal prior and class (non-zero p(oste)rior, confirmation
of universal hypotheses, reparametrization and regrouping invariance, no old-evidence and updating problem) in
contrast to (most) classical continuous prior densities. I also complement the general total bounds of Section 2 with
some universal and some i.i.d.-specific instantaneous and future bounds. Finally, I show that the universal mixture
performs better than classical continuous mixtures, even in uncomputable environments. Section 6 contains critique,
summary, and conclusions.

The reparametrization and regrouping invariance, the (weak) instantaneous bounds, the good performance of M
in non-computable environments, and most of the discussion (zero prior and universal hypotheses, old evidence) are
either new or new in the light of universal sequence prediction. Technical and mathematical non-trivial new results
are the Hellinger-like loss bound (8) and the instantaneous bounds (14) and (17).

2. Bayesian sequence prediction

I now formally introduce the Bayesian sequence prediction setup and describe the most important results. I consider
sequences over a finite alphabet, assume that the true environment is unknown but known to belong to a countable or
continuous class of environments (no i.i.d. or Markov or stationarity assumption), and consider general prior. I show
that the predictive distribution converges rapidly to the true sampling distribution and that the Bayes-optimal predictor
performs excellently for any bounded loss function.

Notation. Tuse letters 7, n € N for natural numbers, and denote the cardinality of a set S by #S or |S|. I write X'™* for
the set of finite strings over some alphabet X', and X'*>° for the set of infinite sequences. For a string x € X™* of length
L(x) = n, [ write x1x3 ...x, with x; € X, and further abbreviate x;., := x/Xr41...Xp—1X, and X, = X1 ... Xp—1.

I assume that sequence @ = w.oo € X is sampled from the ‘true’ probability measure w, i.e. u(xy,) =
Plw1:n = x1:n|14] is the p-probability that w starts with x1.,. I denote expectations w.r.t. & by E. In particular, for a
function f : X" — R, we have E[f] = E[f(®w1:n)] = D, w(x1:n)f(x1:). Note that, in Bayesian learning, the
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measures, environments, and models coincide, and are the same objects; let M = {vy, v2, ...} denote a countable
class of these measures. Assume that (a) u is unknown but known to be a member of M, (b) {H, : v € M}
forms a mutually exclusive and complete class of hypotheses, and (¢) w, := P[H,] is the given prior belief in

H,. Then &(x1.,) = Plw1y, = x10] = Zve./\/l Plwi.n = x1.x|H,]P[H,] must be our (prior) belief in xi.,, and
P[wlzl;;[:x]:anv]l]D[Hv]
W1:n=X1:n

For a sequence ay, az, . . . of random variables, Z?i 1 E[atz] < ¢ < oo implies attjf 0 with u-probability 1 (w.p.1).
Convergence is rapid in the sense that the probability that a? exceeds & > 0 at more than 5 times ¢ is bounded by 8.
I sometimes loosely call this the number of errors.

Sequence prediction. Given a sequence x1x7 ...Xx;—1, we want to predict its likely continuation x;. I assume that
the strings that have to be continued are drawn from a ‘true’ probability distribution w. The maximal prior information
that a prediction algorithm can possess is the exact knowledge of 1, but often the true distribution is unknown. Instead,
prediction is based on a guess p of u. While I require x to be a measure, I allow p to be a semi-measure [29,19]':
Formally, p : &* — [0, 1] is a semi-measure if p(x) > )" _y p(xa)Vx € X™*, and a (probability) measure if
equality holds and p(€) = 1, where € is the empty string. p(x) denotes the p-probability that a sequence starts with
string x. Further, p(a|x) := p(xa)/p(x) is the ‘posterior’ or ‘predictive’ p-probability that the next symbolisa € X,
given the sequence x € X*.

wy(X1:) = P[Hy |1 = X1:0] = must be our posterior belief in v by Bayes’ rule.

Bayes mixture. We may know or assume that p belongs to some countable class M := {vj,vp,...} 2 u of
semi-measures. Then we can use the weighted average on M (Bayes-mixture, data evidence, marginal)
E) =) wyvx), Y wy <1, w, >0 (1)
veM veM

for prediction. One may interpret w, = P[H, ] as prior belief in v and £(x) = P[x] as the subjective probability of x,
and p(x) = Plx|u] is the sampling distribution or likelihood. The most important property of semi-measure £ is its
dominance:

£(x) = wyv(x) VxandVYveM, inparticular £(x) > wyu(x) 2)

which is a strong form of absolute continuity.

Convergence for deterministic environments. In the predictive setting we are not interested in identifying the true
environment, but to predict the next symbol well. Let us consider deterministic x4 first. An environment is called
deterministic if u(og.,) = 1Vn for some sequence o, and u = 0 elsewhere (off-sequence). In this case we identify
with o and the following holds:

o0
D l—&la)l < Inw,' and E(emlar) - 1 forn >t — oo 3)
=1

where w, > 0 is the weight of «=u € M. This shows that &(a;|a~,) rapidly converges to 1 and hence also
E(ar|la<s) — O for @y # a, and that & is also a good multi-step lookahead predictor.
Proof. £(a1.,) — ¢ > 0, since &(ay.,) is monotone decreasing in n and &(ay.,) > wyp(ar,) = wy, > 0. Hence
E(ay:)/E(1y) — c¢/c = 1 for any limit sequence t,n — oo. The bound follows from Z?Zl 1 —E(xslx<y) <
- Z?:l In&(xslx<;) = —In&(x1:) and E(a1:) > We.

Convergence in probabilistic environments. In the general probabilistic case, we want to know how close & (x;|x ;)
is to the true probability 1 (x;|x~;). One convenient distance measure is the (squared) Hellinger distance

hi(w<) =Y (VE@alw) — vilalwo))*. “)

aeX
One can show [16,19] that

2
y s(|ox) ; w(win) -1
2E e ! Elh] < Dy(ull§) = E |1 S .
- ( rlo) ) < DCEIN < Dl [ng(whn)] - “

! Readers unfamiliar or uneasy with semi-measures can, without loss, ignore this technicality.
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The first two inequalities actually hold for any two (semi-)measures, and the last inequality follows from (2). These
bounds (with n = oco) imply #; — 0 and hence

E(x/lw<) — p(xilw) —> 0 foranyx; and §@lo<)

(wrlw<)

both rapid w.p.1 for t — oo. An improved bound E[exp(% Zt hy)] < w,Il/ 2 [14] even shows that the probability that

>, by additively exceeds In w;l by ¢ (e.g. ¢ > 10) is tiny e /2. One can also show multi-step lookahead convergence
E(Xpp, lw<r) — w(xpp, lwo<;) — 0O (even for unbounded horizon 1 < n; —t + 1 — o0), which is interesting for
delayed sequence prediction and in reactive environments [19]. Since £ rapidly converges to 1, one can anticipate that
decisions based on & are also good.

Bayesian decisions. Let £,y, € [0, 1] be the received loss when predicting y; € ), but x, € X turns out to be the

true tth symbol of the sequence. The p-optimal predictor

y,A" (w<y) = arg n;m Z pxrlw<)byy, ©
t Xz

minimizes the p-expected loss. For instance, for X = Y = {0, 1}, 4, is a threshold strategy with y,AP = 0/1 for

p(llw<;)Z vy, where y 1= %. The instantaneous loss at time ¢ and the total u(= true)-expected loss for
the first n symbols are

n
(<) = Elloytoloo] and L = > Ellyy]. 7
t=1

Let A be any prediction scheme (deterministic or probabilistic) with no constraint at all, taking any action )’zA ey
with total expected loss L,/ll. If p is known, A, is obviously the best prediction scheme in the sense of achieving
minimal expected loss L,/llﬂ < L,/l1 for any A. For the predictor A¢ based on the Bayes mixture £, one can show that
(see the proof in the Appendix; see also [32,16] for related bounds)

W = VLI ? < SBR[ - Vi ?] < 3" 2Eh) ®)
=1 t=1

which actually holds for any two (semi-)measures. Chaining with (5) implies, for instance, that Z,AE — l,AH rapid

w.p.1, /L& exceeds \/LAx by at most /21n wljl, L,/llf/L,/llM — 1 for L,/llﬂ — o0, or if Léloﬂ is finite, then also
Lélg. This shows that & (via /Ag) also performs excellently from a decision-theoretic perspective, i.e. suffers loss only
slightly larger than the optimal A,, predictor.

One can also show that Ag is Pareto-optimal (admissible) in the sense that every other predictor with smaller loss
than A¢ in some environment v € M must be worse in another environment [18].

Continuous environmental classes. 1 will argue later that countable M are sufficiently large from a philosophical
and computational perspective. On the other hand, countable M exclude all continuously parameterized families
(like the class of all i.i.d. or Markov processes), common in statistical practice. I show that the bounds above remain
approximately valid for most parametric model classes. Let

M = {vy:0 € OCRY

be a family of probability distributions parameterized by a d-dimensional continuous parameter 6, and u = vg, € M
the true generating distribution. For a continuous weight density? w(#) > 0, the sums (1) are naturally replaced by
integrals:

E(x1n) = /w(9)-Ve(X1:n)d9, /w(9)d9 = L €))
e e

2 w() will always denote densities, and w(y probabilities.
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The most important property of £ was the dominance (2) achieved by dropping the sum over v. The analogous
construction here is to restrict the integral over 6 to a small vicinity of 6. Since a continuous parameter can typically be
estimated to accuracy o< n~ /2 after n observations, the largest volume in which vy as a function of 6 is approximately
flatis oc (n~1/2)4, hence E(x1:) 2 n_d/zw(éo)u(xkn). Under some weak regularity conditions, one can prove [4,18]

. d 1
W(@rn) Inw@) ™ + S 1n 2= + = Indet j,(do) + o(1) (10)

Dy (ull§) = Elnm =< i

where w(6p) is the weight density (9) of 1 in &, and o(1) tends to zero for n — o0, and the average Fisher information
matrix j,(0) = —%E[Vg VOT In vg (w1:,)] measures the local smoothness of vy and is bounded for many reasonable
classes, including all stationary (kth-order) finite-state Markov processes. See Section 4 for an application to the i.i.d.
(k = 0) case. We see that, in the continuous case, D, is no longer bounded by a constant, but grows very slowly
(logarithmically) with n, which still implies that e-deviations are exponentially seldom. Hence, (10) allows us to
bound (5) and (8) even in the case of continuous M.

3. How to choose the prior

I showed in the last section how to predict if the true environment w is unknown, but known to belong to some
class M of environments. In this section, I assume M to be given, and discuss how to (universally) choose the prior
w,. After reviewing various classical principles (indifference, symmetry, minimax) for obtaining objective priors
for ‘small’ M, I discuss large M. Occam’s razor in conjunction with Epicurus’ principle of multiple explanations,
quantified by Kolmogorov complexity, leads us to a universal prior, which results in a better predictor than any other
prior over countable M.

Classical principles. The probability axioms (implying Bayes’ rule) allow us to compute posteriors and predictive
distributions from prior ones, but are mute about how to choose the prior. Much has been written on the choice of
priors (see [26] for a survey and references). A main classification is between objective and subjective priors. An
objective prior w, is a prior that is constructed on the basis of some rational principles, which ideally everyone
without (relevant) extra prior knowledge should adopt. In contrast, a subjective prior aims to model the agent’s
personal (subjective) belief in environment v prior to observation of x, but based on his past personal experience
or knowledge (e.g. of related phenomena). In Section 6, I show that one way to arrive at a subjective prior is to start
with an objective prior, make all past personal experience explicit, determine a ‘posterior’ and use it as subjective
prior. So in the following I concentrate on the more important objective priors.

Consider a very simple case of two environments, e.g. a biased coin with head or tail probability 1/3. In the
absence of any extra knowledge (which I henceforth assume) there is no reason to prefer head probability 6 = 1/3
over 6 = 2/3 and vice versa, leaving wy/3 = w3 = % as the only rational choice. More generally, for finite M, the
symmetry or indifference argument [27] suggests setting w, = I/\l/l_l Vv € M. Similarly, for a compact measurable

parameter space ©, we may choose a uniform density w(6) = [Vol(6)]~!. But there is a problem: if we go to a
different parametrization (e.g. 6 ~ 0" := /6 in the Bernoulli case), the prior w(#) ~ w’(") becomes non-uniform.
Jeffreys’ [22] solution is to find a symmetry group of the problem (like permutations for finite M) and require the
prior to be invariant under group transformations. For instance, if 6 € R is a location parameter (e.g. the mean), then
it is natural to require a translation-invariant prior. Problems are that there may be no obvious symmetry, the resulting
prior may be improper (as for the translation group), and the result can depend on which parameters are treated as
nuisance parameters.

The maximum entropy principle extends the symmetry principle by allowing certain types of constraints on the
parameters. Conjugate priors are classes of priors such that the posteriors are themselves again in the class. While this
can lead to interesting classes, the principle itself is not selective, since e.g. the class of all priors forms a conjugate
class.

Another minimax approach by Bernardo [2,4] is to consider bound (10), which can actually be improved within
o(1) to an equality. Since we want D, to be small, we minimize the r.h.s. for the worst © € M. Choice
w(B) o /det j,(0) equalizes and hence minimizes (10). The problems are the same as for Jeffrey’s prior (actually,
often both priors coincide), and also the dependence on the model class and potentially on n.
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The principles above, although not unproblematic, can provide good objective priors in many cases of small discrete
or compact spaces, but we will meet some more problems later. For the ‘large’ model classes in which I am interested,
i.e. countably infinite, non-compact, or non-parametric spaces, the principles typically do not apply or break down.

Occam’s razor et al. Machine learning (the computer science branch of statistics) often deals with very large model
classes. Naturally, machine learning has (re)discovered and exploited quite different principles for choosing priors,
appropriate for this situation. The overarching principles put together by Solomonoff [41] are: Occam’s razor (choose
the simplest model consistent with the data), Epicurus’ principle of multiple explanations (keep all explanations
consistent with the data), (Universal) Turing machines (to compute, quantify and assign codes to all quantities of
interest), and Kolmogorov complexity (to define what simplicity/complexity means).

I will first ‘derive’ the so-called universal prior, and subsequently justify it by presenting various welcome
theoretical properties and by examples. The idea is that a priori, i.e. before seeing the data, all models are ‘consistent’,
so a priori Epicurus would regard all models (in M) possible, i.e. choose w, > 0 Yv € M. In order to also do (some)
justice to Occam’s razor, we should prefer simple hypotheses, i.e. assign high (low) prior w,, to simple (complex)
hypotheses H, . Before I can define this prior, I need to quantify the notion of complexity.

Notation. A function f : § — R U {z£oo} is said to be lower semi-computable (or enumerable) if the set
{(x,y) 1 y < f(x), x € S, y € Q} is recursively enumerable. f is upper semi-computable (or co-enumerable) if
— f is enumerable. f is computable (or recursive) if f and — f are enumerable. The set of (co)enumerable functions
is recursively enumerable. I write O (1) for a constant of reasonable size: for instance, a sequence of length 100
is reasonable, maybe even 230 but 259 is not. T write fx) < t g(x) for f(x) < gx) + 0(1) and f(x) < < g(x) for
f(x) <290 . ¢(x). Corresponding equalities hold if the me%gahtles hold in both directions.’ We say that a property
A(n) € {true, false} holds for most n, if #{t <n: A@®)}/n—1.

Kolmogorov complexity. We can now quantify the complexity of a string. Intuitively, a string is simple if it can be
described in a few words, like “the string of one million ones”, and is complex if there is no such short description, as
for a random object whose shortest description is specifying it bit by bit. We are interested in effective descriptions, and
hence restrict decoders to Turing machines (TMs). Let us choose some universal (so-called prefix) Turing machine
U with binary input = program tape, Xary output tape, and bidirectional work tape. We can then define the prefix
Kolmogorov complexity [6,12,24,28] of string x as the length £ of the shortest binary program p for which U outputs x:

K(x) = min{t(p) : U(p) =x).

Simple strings like 000...0 can be generated by short programs and, hence have low Kolmogorov complexity, but
irregular (e.g. random) strings are their own shortest description, and hence have high Kolmogorov complexity. For
non-string objects o (like numbers and functions) we define K (0) := K ({0)), where (0) € X* is some standard code
for o. In particular, if (f;){2, is an enumeration of all (co)enumerable functions, we define K (f;) = K (i).

An important property of K is that it is nearly independent of the choice of U. More precisely, if we switch from
one universal TM to another, K (x) changes at most by an additive constant that is independent of x. For natural
universal TMs, the compiler constant is of reasonable size O(1). A defining property of K : X* — N is that it
additively dominates all co-enumerable functions f : X* — N that satisfy Kraft's inequality 3°, 2~ f© < 1, ie.
Kx)< t f(x) for K(f) = O(1). The universal TM provides a shorter prefix code than any other effective prefix code.
K shares many properties with Shannon’s entropy (information measure) S, but K is superior to S in many respects.
To be brief, K is an excellent universal complexity measure, suitable for quantifying Occam’s razor. We need the
following properties of K:

(a) K is not computable, but only upper semi-computable;

(b) the upper bound K (n) % log,n + 2log, logn; (11D
(c) Kraft’s inequality Zx 2-K® < 1, which implies 2-Kn) < % for most n;

(d) information non- 1ncrease K(f(x)) < £ K (x) + K (f) for recursive f : X* — X*;

(e) the MDL bound K (x) < £ _ log, P(x) + K(P)if P : X* — [0, 1] is enumerable and ) P(x) <1;

) X pymy 2” K@) X0=KO) if fis recursive and K (f) = O(1).

The proof of (f) can be found in the Appendix and the proofs of (a)—(e) in [29].

31will ignore these additive and multiplicative fudges in the discussion until Section 6.
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The universal prior. We can now quantify a prior biased towards simple models. First, we quantify the complexity
of an environment v or hypothesis H,, by its Kolmogorov complexity K (v). The universal prior should be a decreasing
function in the model’s complexity, and of course sum to (less than) one. Since K satisfies Kraft’s inequality (11c),
this suggests the following choice:

wy = wl = 27K, (12)

For this choice, the bound (5) on D,, (which bounds (5) and (8)) reads

Y Elh] < Ds < K(wn2 (13)
t=1

i.e. the number of times that £ deviates from u or [ deviates from 14u by more than ¢ > 0 is bounded by
O(K(u)), i.e. it is proportional to the complexity of the environment. Could other choices for w, lead to better
bounds? The answer is essentially no [19]. Consider any other reasonable prior w),, where reasonable means (lower
semi- )computable with a program of size 0(1) Then, the MDL bound (11¢) Wlth PO ~ w() and x ~ (u) shows

K(pn) < f_ logzw + K (w( ), hence In w;_l > K (1) In2 leads (within an additive constant) to a weaker bound. A
counting argument also shows that O (K (u)) errors for most p are unavoidable. So this choice of prior leads to very
good prediction.

Even for continuous classes M, we can assign a (proper) universal prior (not density) weU = 27K® - 0 for
computable 6, and 0 for uncomputable ones. This effectively reduces M to a discrete class {vg € M : wg > 0}
which is typically dense in M. We will see that this prior has many advantages over the classical prior densities.

4. Independent identically distributed data

I now compare the classical continuous prior densities to the universal prior on classes of i.i.d. environments. I
present some standard critiques to the former, illustrated on Bayes—Laplace’s classical Bernoulli class with uniform
prior: the problem of zero p(oste)rior, non-confirmation of universal hypotheses, and reparametrization and regrouping
non-invariance. I show that the universal prior does not suffer from these problems. Finally, I complement the general
total bounds of Section 2 with some i.i.d.-specific instantaneous bounds.

Laplace’s rule for Bernoulli sequences. Let x = x1x...x, € X" = {0, 1}"* be generated by a biased coin with
head = 1 probability 8 € [0, 1], i.e. the likelihood of x under hypothesis Hp is vg(x) = P[x|Hp] = 0™ (1 — 6)"0,

where n; = x1 + --- + x, = n — ng. Bayes [1] assumed a uniform prior density w(f) = 1. The evidence is
£(x) = fol vo(Xw(@)do = 3,1:’10)!! and the posterior probability weight density w(f|x) = vo(x)w(8)/E(x) =
(:]J!r—n])!!Q”l(l — 0)" of 0 after seeing x is strongly peaked around the frequency estimate 6 = ’jq—l for large n.
Laplace [27] asked for the predictive probability £(1|x) of observing x,4+; = 1 after having seen x = x1...xy,,
which is &(1]x) = fgg; 1)) = “LEL (Laplace believed that the sun had risen for 5000 years = 1826213 days since

creation, so he concluded that the probability of doom, i.e. that the sun won’t rise tomorrow is 18le') This looks
like a reasonable estimate, since it is close to the relative frequency, asymptotically consistent, symmetric, even defined
for n = 0, and not overconfident (never assigns probability 1).

The problem of zero prior. But also Laplace’s rule is not without problems. The appropriateness of the uniform
prior has been questioned in Section 3 and will be detailed below. Here I discuss a version of the zero prior problem.
If the prior is zero, then the posterior is necessarily also zero. The above example seems unproblematic, since the prior
and posterior densities w(6) and w(0|x) are non-zero. Nevertheless, it is problematic, e.g. in the context of scientific
confirmation theory [11].

Consider the hypothesis H that all balls in some urn, or all ravens, are black (=1). A natural model is to assume
that balls (or ravens) are drawn randomly from an infinite population with fraction 6 of black balls (or ravens) and to
assume a uniform prior over 6, i.e. just the Bayes—Laplace model. Now we draw n objects and observe that they are
all black.

We may formalize H as the hypothesis H' := {6 = 1}. Although the posterior probability of the relaxed hypothesis
H, :={0 > 1— ¢}, P[H|1"] = f117€ w@[1")do = fllfs(n +1)6"dd = 1 — (1 — &)"*! tends to 1 for n — oo for
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every fixed ¢ > 0, P[H'|1"] = P[Hp|1"] remains identically zero, i.e. no amount of evidence can confirm H’'. The
reason is simply that zero prior P[H'] = 0 implies zero posterior.

Note that H’ refers to the unobservable quantity & and only demands blackness with probability 1. So, maybe a
better formalization of H is purely in terms of observational quantities: H” := {w].co = 1°°}. Since £(1") = m +1 ,
the predictive probability of observing k further black objects is g(1K1M) = Eél(lr)) = n_’;{i] . While for fixed k this
tends to 1, P[H"|1"] = limg_, o0 £(1¥|1") = 0 Vn, as for H'.

One may speculate that the crux is the infinite population. But for a finite population of size N and sampling with
(similarly without) repetition, P[H"|1"] = £(1N7"|1") = ;z,frl] is close to one only if a large fraction of objects
has been observed. This contradicts scientific practice: although only a tiny fraction of all existing ravens have been
observed, we regard this as sufficient evidence for believing strongly in H. This quantifies [31, Thm.11] and shows
that Maher does not solve the problem of confirmation of universal hypotheses.

There are two solutions of this problem: We may abandon strict/logical/all-quantified/universal hypotheses
altogether in favor of soft hypotheses like H,. Although not unreasonable, this approach is unattractive for several
reasons. The other solution is to assign a non-zero prior to § = 1. Consider, for instance, the improper density
w(d) = %[1 4+ 8(1 — 0)], where § is the Dirac-delta (f f(©6)3(6 —a)dbd = f(a)), or equivalently P[0 > a] =1 — %a
We get £(x1.,) = %[ ng! + 80n, 1, Where 8;; = (Lifi=71 is Kronecker’s 8. In particular, £(1") = 12%2 is much larger

m+D! 0 else — 2n+1
than for uniform prior. Since £(1%]1") = Zﬂiﬁ Zié,we get P[H"|1"] = limg_, o0 £E(1¥[17) = Zié — 1,i.e. H” gets

strongly confirmed by observing a reasonable number of black objects. This correct asymptotlcs also follows from
the general result (3). Confirmation of H” is also reflected in the fact that £(0[1") = @ +2)2 tends much faster to zero
than for uniform prior, i.e. the confidence that the next object is black is much higher. The power actually depends on
the shape of w(6) around # = 1. Similarly, H' is confirmed: P[H'|1"] = u; (1")P[0 = 1]/£(1") = % — 1. On the
other hand, if a single (or more) 0 is observed (ng > 0), then the predictive distribution &(-|x) and posterior w(8|x)
are the same as for uniform prior.

The findings above remain qualitatively valid for i.i.d. processes over finite non-binary alphabet |X'| > 2 and for
non-uniform prior.

Surely, to get a generally working setup, we should also assign a non-zero prior to & = 0 and to all other ‘special’ 8,
like % and %, which may naturally appear in a hypothesis, like “is the coin or die fair”. The natural continuation of this
thought is to assign non-zero prior to all computable 6. This is another motivation for the universal prior wé] =2"K®
(12) constructed in Section 3. It is difficult but not impossible to operate with such a prior [34,35]. One may want to
mix the discrete prior wS’ with a continuous (e.g. uniform) prior density, so that the set of non-computable 6 keeps a
non-zero density. Although possible, we will see that this is actually not necessary.

Reparametrization invariance. Naively, the uniform prior is justified by the indifference principle but, as discussed
in Section 3, uniformity is not reparametrization invariant. For instance, if in our Bernoulli example we introduce a
new parametrization 8’ = /6, then the 6’-density w’(8’) = 2+/6w(#) is no longer uniform if w(6) = 1 is uniform.

More generally, assume that we have some principle which leads to some prior w(6). Now we apply the principle
to a different parametrization 0’ € ©’ and get prior w’(0’). Assume that @ and 0’ are related via bijection 0 = f(6’).
Another way to get a ’-prior is to transform the §-prior w(6) ~ w(0’). The reparametrization invariance principle
(RIP) states that w’ should be equal to 1.

For discrete O, simply Wy = w (g, and a uniform prior remains uniform (wy, = Wy = wy = ﬁ) in any
parametrization, i.e. the indifference principle satisfies RIP in finite model classes.

In the case of densities, we have w(0") = w(f (")) d{ié@,/), and the indifference principle violates RIP for nonlinear
transformations f. But Jeffrey’s and Bernardo’s principles satisfy RIP. For instance, in the Bernoulli case we have
Jn®) = § + 15, hence w(®) = L[0(1 — )72 and w'(©") = L1 £ )1 — fODITV2LP =5 (0.

Does the universal prior wé] = 27 K©) gatisfy RIP? If we apply the ‘universality principle’ to a #’-parametrization,

we get w)! = 27K@)_On the other hand, wy simply transforms to %% = w?(g,) = 2= K@) (wy is a discrete (non-
density) prior, which is non-zero on a discrete subset of M). For computable f we have K (f(0')) < t K@®)+ K(f)
by (11d), and similarly K(f~ 1(6?)) b2 K@) + K(f) if f is mvertlble Hence for simple bijections f, i.e. for
K(f) = 0O(1), we have K(f(0' )) K (0"), which implies wg, = wg,, i.e. the universal prior satisfies RIP w.r.t.
simple transformations f (within a multiplicative constant).
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Regrouping invariance. There are important transformations f which are not bijections, which we consider in
the following. A simple non-bijection is 6 = f(8’) = 0’> if we consider 8’ € [—1, 1]. More interesting is the
following example. Assume that we had decided not to record the blackness versus non-blackness of objects, but
their ‘color’. For simplicity of exposition, assume that we record only whether an object is black or white or colored,
ie. X’ = {B, W, C}. In analogy to the binary case, we use the indifference principle to assign a uniform prior
on6’ € O := Az, where Ay := {0’ € [0,1]¢ : Z;izl ! = 1}, and vy (x],,) = []; 6/". All inferences regarding
blackness (predictive and posterior) are identical to the binomial model vy (x;.,) = 6™1(1—0)"0 withx;, = B~ x; = 1
andx; = WorC ~ x; =0and 6 = (') = 6 and w(0) = fA3 w’(0")8 (6 — 6)d6’. Unfortunately, for uniform
prior w’(8”) o 1, w() o< 1 — 6 is not uniform, i.e. the indifference principle is not invariant under splitting/grouping,
or general regrouping. Regrouping invariance is regarded as a very important and desirable property [44].

I now consider general i.i.d. processes vg(x) = ]_[f{=1 6" Dirichlet priors w(f) o ]_[l‘.lzl 6% =1 form a natural
conjugate class (w(f]x) o 1—[[{1:1 91_n,~+a[_

alphabet X" of size d. Note that £(a|x) = % generalizes Laplace’s rule and coincides with Carnap’s [3]

confirmation function. Symmetry demands that ¢y = --- = «y; for instance, « = 1 for uniform and o = % for
Bernard—Jeffrey’s prior. Grouping two ‘colors’ i and j results in a Dirichlet prior with «;&; = «; + «; for the group.
The only way to respect symmetry under all possible groupings is to set « = 0. This is Haldane’s improper prior,
which results in unacceptably overconfident predictions £(1|1") = 1. Walley [44] solves the problem that there is no
single acceptable prior density by considering sets of priors.

I now show that the universal prior wg = 27K ® s invariant under regrouping, and more generally under all
simple (computable with complexity O (1)) even non-bijective transformations. Consider prior wé,. Ifo = f(©@),
then w(;, transforms to wg = Zeltf(g,)zg w/e, (note that for non-bijections there is more than one wé, that is consistent

1) and are the default priors for multinomial (i.i.d.) processes over finite

with ). In §’-parametrization, the universal prior reads wéV =2-K®) Using (11f) with x = (9’) and y = (9), we
get

~ U 2—K®) X =K (®) wY
2 = = Wy
0': £ (0')=0

i.e. the universal prior is general transformation and hence regrouping invariant (within a multiplicative constant)
w.r.t. simple computable transformations f.

Note that reparametrization and regrouping invariance hold for arbitrary classes M and are not limited to the i.i.d.
case.

Instantaneous bounds. The cumulative bounds (5) and (10) stay valid for i.i.d. processes, but instantaneous bounds
are now also possible. For i.i.d. M with continuous, discrete, and universal prior, respectively, one can show that (in
preparation; see [25,34,35] for related bounds)

Elh,] < Linw@)™" and Efh,] < Linwg' = 1K@)In2. (14)

Note that, if summed up over n, they lead to weaker cumulative bounds.
5. Universal sequence prediction

Section 3 derived the universal prior and Section 4 discussed i.i.d. classes. What remains and will be done in this
section is to find a universal class of environments, namely Solomonoff-Levin’s class of all (lower semi-)computable
(semi-)measures. The resulting universal mixture is equivalent to the output distribution of a universal Turing machine
with uniform input distribution. The universal prior avoids the problem of old evidence, and the universal class avoids
the necessity of updating M. I discuss the general total bounds of Section 2 for the specific universal mixture, and
supplement them with some weak instantaneous bounds. Finally, I show that the universal mixture performs better
than classical continuous mixtures, even in incomputable environments.

Universal choice of M. The bounds of Section 2 apply if M contains the true environment p. The larger the M,
the less restrictive is this assumption. The class of all computable distributions, although only countable, is pretty
large from a practical point of view. (Finding a non-computable physical system would overturn the Church—Turing
thesis.) This is the largest class, relevant from a computational point of view. Solomonoff [41, Eq. (13)] defined and
studied the mixture over this class.
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One problem is that this class is not enumerable, since the class of computable functions f : A* — R is
not enumerable (halting problem), nor is it decidable whether a function is a measure. Hence £ is completely
incomputable. Levin [47] had the idea to ‘slightly’ extend the class and include also lower semi-computable semi-
measures. One can show that this class My = {v1, vy, ...} is enumerable, hence

)= Y wlv (15)
veMy

is itself lower semi-computable, i.e. &y € My, which is a convenient property in itself. Note that, since

" lolgzn % wg’ < % for most n by (11b) and (11c), most v, have prior approximately reciprocal to their index n,

as advocated by Jeffreys [23, p. 238] and Rissanen [36].

In some sense My is the largest class of environments for which & is in some sense computable [17,20], but
see [38] for even larger classes. Note that including non-semi-computable v would not affect &y, since wy = 0 on
such environments.

The problem of old evidence. An important problem in Bayesian inference in general, and (Bayesian) confirmation
theory [11] in particular, is how to deal with ‘old evidence’ or equivalently with ‘new theories’. How shall a Bayesian
treat the case when some evidence E=x (e.g. Mercury’s perihelion advance) is known well before the correct
hypothesis/theory/model H=pu (Einstein’s general relativity theory) is found? How shall H be added to the Bayesian
machinery a posteriori? What is the prior of H? Should it be the belief in H in a hypothetical counterfactual world
in which E is not known? Can old evidence E confirm H? After all, H could simply be constructed/biased/fitted
towards ‘explaining’ E.

The universal class My and universal prior w? formally solve this problem: The universal prior of H is 2
This is independent of M and of whether E is knowE or not. If we use E to construct H or fit H to explain E, this
will lead to a theory which is more complex (K (H) > K (E)) than a theory from scratch (K (H) = O(1)), so cheats
are automatically penalized. There is no problem of adding hypotheses to M a posteriori. Priors of old hypotheses are
not affected. Finally, My includes all hypotheses (including as-yet unknown or unnamed ones) a priori. So, at least
theoretically, updating M is unnecessary.

Other representations of &y. Definition (15) is somewhat complex, relying on the enumeration of semi-measures
and Kolmogorov complexity. I now approach &y from a different perspective. Assume that our world is governed by
a computable deterministic process that is describable in < [ bits. Consider a standard (not prefix) Turing machine U’
and programs p generating environments starting with x. Let us pad all programs so that they have a length of exactly
1. Among the 2! programs of length I there are N;(x) := #{p € {0, 1}/ : U’(p) = xx} programs that are consistent
with observation x. If we regard all environmental descriptions p € {0, 1} a priori as equally likely (Epicurus), then
we should adopt the relative frequency N;(x)/2' as our prior belief in x. Since we do not know / and we can pad
every p arbitrarily, we could take the limit M (x) := lim;_ o N;(x)/ 2! (which exists, since N;(x)/ 2! increases). Or
equivalently: M (x) is the probability that U’ outputs a string starting with x when provided with uniform random
noise on the program tape. Note that a uniform distribution is also used in the No Free Lunch theorems [46] to
prove the impossibility of universal learners, but in our case the uniform distribution is piped through a universal
Turing machine which defeats these negative implications. Yet another representation of M is as follows. For every
g printing x*, there exists a shortest prefix (called minimal) p of ¢ printing x. p possesses 2! ~¢(”) prolongations to
length , all printing xs. Hence all prolongations of p together yield a contribution 2/=¢() /2! = 2=¢(P) to M (x). Let
U(p) = xx iff p is a minimal program printing a string starting with x. Then

M(x) = Z 2-tp) (16)

p:U(p)=x*

—K(H)_

which may be regarded as a 2~¢(")-weighted mixture over all computable deterministic environments v p (p(x) =1
if U(p) = xx and O otherwise). Now, as a positive surprise, M (x) coincides with &y (x) within an irrelevant
multiplicative constant. So it is actually sufficient to consider the class of deterministic semi-measures. The reason
is that the probabilistic semi-measures are in the convex hull of the deterministic ones, so they do not need to be
taken extra into account in the mixture. One can also get an explicit enumeration of all lower semi-computable semi-
measures My = {vy, v2, ...} by means of v;(x) := Y 274P) where T;(p) = U((i)p),i = 1,2,...,isan
enumeration of all monotone Turing machines.

p:Ti(p)=xx
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Bounds for computable environments. The bound (13) surely is applicable for £ = &y and now holds for
any computable measure p. Within an additive constant, the bound is also valid for M =, That is, & and
M are excellent predictors with the only condition that the sequence is drawn from any computable probability
distribution. Bound (13) shows that the total number of prediction errors is small. Similarly to (3), one can show
that Y7, |1 — M (x¢|x<;)| < Km(x1,) In2, where the monotone complexity Km(x) := min{€(p) : U(p) = xx} is
defined as the length of the shortest (non-halting) program computing a string starting with x [47,29,19].

If x1.00 1S @ computable sequence, then Km(x1.x) is finite, which implies M (x;|x~;) — 1 on every computable
sequence. This means that if the environment is a computable sequence (whichsoever, e.g. 1°° or the digits of 7 or
e), after having seen the first few digits, M correctly predicts the next digit with high probability, i.e. it recognizes
the structure of the sequence. In particular, observing an increasing number of black balls or black ravens or sunrises,
M(1]1") — 1 (Km(1°°) = O(1)) becomes rapidly confident that future balls and ravens are black and that the sun
will rise tomorrow.

Total bounds (3) and (13) are suitable in an online setting but, given a fixed number of n observations, they give no
guarantee on the next instance.

Weak instantaneous bounds. In Section 4, I derived good instantaneous bounds for i.i.d. classes. For coin or die flips
or balls drawn from an urn, this model is appropriate. But ornithologists do not really sample ravens independently at
random. Although not strictly valid, the i.i.d. model may in this case still serve as a useful proxy for the true process.
But to model the rise of the sun as an i.i.d. process is more than questionable. On the other hand, it is plausible that
these examples (and other processes like weather or the stock market) are governed by some (probabilistic) computable
process. So model class My and predictor M seem appropriate. While excellent total bounds (3) and (13) exist, the
essentially only instantaneous bound that I was able to derive (see the proof in the Appendix) is

27K 2 M (%, |xo,) < 22Kme=K (17)

valid for all n and x;., and X, # x,. I discuss the bound for the sequence x1.oc = 1°°, but most of what I say remains
valid for any other computable sequence. Since Km(1") = O(1), we get

MQo|1"y £ 27 KM

Since 27K < % for most n, this shows that M quickly disbelieves in non-black objects and doomsday, similarly as
in the i.i.d. model, but now only for most 7.

Magic numbers. This ‘most’ qualification has interesting consequences: M (0|1") spikes up for simple n. So M is
cautious at magic instance numbers, e.g. fears doom on day 2°° more than on a comparable random day. While this
looks odd and pours water on the mills of prophets, it is not completely absurd. For instance, major software problems
have been anticipated for the magic date, 1st January 2000. There are many other occasions, where something happens
at ‘magic’ dates or instances; for instance, solar eclipses.

Also, certain processes in nature follow fast-growing sequences like those of the powers of two (e.g. the number of
cells in an early human embryo) or the Fibonacci numbers (e.g. the number of petals or the arrangement of seeds in
some flowers). Finally, that numbers with low (Kolmogorov) complexity cause high probability in real data bases can
readily be verified by counting their frequency in the world wide web using Google [9].

On the other hand (returning to sequence prediction), on most simple dates nothing exceptional happens. Due to
the total bound Zi’,io M(O|1™) < O(1), M cannot spike up too much too often. M tells us to be more prepared, but
not to expect the unexpected on those days. Another issue is that often we do not know the exact start of the sequence.
How many ravens exactly have ornithologists observed, and how many days exactly did the sun rise so far? In the
absence of this knowledge, we need to Bayes-average over the sequence length which will wash out the spikes.

Universal is better than continuous M. Although I argued that incomputable environments p can safely be ignored,
one may be nevertheless uneasy using Solomonoff’s M = £, (16) if outperformed by a continuous mixture £ (9) on
such u € M \ My, for instance if M would fail to predict a Bernoulli(8) sequence for incomputable 6. Luckily, this
is not the case: although vg() and wy can be incomputable, the studied classes M themselves, i.e. the two-argument
function vy () and the weight function w(y and hence &(), are typically computable (the integral can be approximated
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to arbitrary precision). Hence M (x) = £y (x) > 27 K®g(x) by (15) and K (&) is often quite small. This implies for all
A that

Dp(u|M) = E [mm]

_ w(wi:n) E(w1:n) +
M) ] E[I“s(a)_hn)]“*? [In—] < Dy(ull§)+K(€) In2.

M(w1:)

So any bound (10) for D, (u||€) is directly valid also for D, (u||M), save an additive constant. That is, M is
superior (or equal) to all computable mixture predictors & based on any (continuous or discrete) model class M
and weight w(6), even if environment u is not computable. Furthermore, while, for essentially all parametric classes,
Dy, (u]|&) ~ %’ Inn grows logarithmically in n for all (including computable) u € M, then D, (u||M) < K(u)In2is
finite for computable . Bernardo’s prior even implies a bound for M that is uniform (minimax) in € ©. Many other
priors based on reasonable principles are argued for (see Section 3 and [26]). The above shows that M is superior to
all of them. Actually, the existence of any computable probabilistic predictor p with D, (u||p) = o(n) is sufficient for
M to predict u equally well.

Future bounds. Another important question is how many errors are still to come after some grace or learning period.
Formally, given x1.,, how large is the future expected error r,, := Zfin 11 Elht|lorn = x1:1]? The total bound (5)
+ (13) only implies that r,, asymptotically tends to zero w.p.1, and the instantaneous bounds (14) and (17) are weak
and do not sum finitely. Since the complexity of x bounds the total loss, a natural guess is that something like the
conditional complexity of u given x (on an extra input tape) bounds the future loss. Indeed, one can show that [19,5]

e8]

3 Elhlora] < [K (o) +K@]n2 (18)
t=n+1

i.e. if our past observations wy., contain a lot of information about u, we make few errors in the future. For instance,
consider the large space X of pixel images, and all observations, are identical 4 =w = x1x1x] ..., where x| is a
‘typical’ image of complexity, say K (x1) £105 L km (w). Obviously, after seeing a couple of identical images, we
expect the next one to be the same again. While the total bound (13) quite uselessly tells us that M makes less than
10° errors, future bound (18) with n = 1 shows that M makes only K (u|x;) = O(1) errors. The K (n) term can be
improved to the complexity of the randomness deficiency of w., if a more suitable variant of algorithmic complexity

that is monotone in its condition is used [5,7]. No future bounds analogous to (18) for general prior or class are known.
6. Discussion

Critique and problems. In practice, we often have extra information about the problem at hand, which could and
should be used to guide the forecasting. One way is to explicate all our prior knowledge y and place it on an extra
input tape of our universal Turing machine U, which leads to the conditional complexity K (-|y). We now assign
the ‘subjective’ prior w‘(}]‘ y = 2=K0IY to environment v, which is large for those v that are simple (have a short
description) relative to our background knowledge y. Since K (u|y) < K (1), extra knowledge never misleads us (see
(13)). Alternatively, we could prefix our observation sequence x by y and use M (yx) for prediction [19].

Another critique concerns the dependence of K and M on U. Predictions for short sequences x (shorter than typical
compiler lengths) can be arbitrary. But, taking into account our (whole) scientific prior knowledge y and predicting
the now long string yx leads to good predictions (less sensitive to ‘reasonable’ U) [19]. For an interesting attempt to
make M unique, see [33].

Finally, K and M can serve as ‘gold standards’ that practitioners should aim at but, since they are only semi-
computable, they have to be (crudely) approximated in practice. Levin complexity [29], the speed prior [39], the
minimal message and description length principles [37,45], and off-the-shelf compressors like Lempel—Ziv [30] are
such approximations, which have been successfully applied to a plethora of problems [8,40].

Summary. I have compared traditional Bayesian sequence prediction based on continuous classes and prior densities
to Solomonoff’s universal predictor M, prior wY, and class My. I discussed the following advantages (+) and
problems (—) of Solomonoff’s approach:

+ general total bounds for generic class, prior, and loss;
+ universal and i.i.d.-specific instantaneous and future bounds;
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+ the D,, bound for continuous classes;

+ indifference/symmetry principles;

+ the problem of zero p(oste)rior and confirmation of universal hypotheses;
+ reparametrization and regrouping invariance;

+ the problem of old evidence and updating;

+ that M works even in incomputable environments;

+ how to incorporate prior knowledge;

— the prediction of short sequences;

— the constant fudges in all results and the U-dependence;

— M'’s incomputability and crude practical approximations.

In short, universal prediction solves or avoids or meliorates many foundational and philosophical problems, but has to
be compromised in practice.

Conclusion. The goal of the paper was to establish a single, universal theory for (sequence) prediction and
(hypothesis) confirmation, applicable to all inductive inference problems. I started by showing that Bayesian
prediction is consistent for any countable model class, provided that it contains the true distribution. The major
(agonizing) problem that Bayesian statistics leaves open is how to choose the model class and the prior. Solomonoff’s
theory fills this gap by choosing the class of all computable (stochastic) models, and a universal prior inspired by
Ockham and Epicurus, and quantified by Kolmogorov complexity. I discussed in breadth how and in which sense this
theory solves the inductive inference problem, by studying a plethora of problems from which other approaches suffer.
In one line: all you need for universal prediction is Ockham, Epicurus, Bayes, Solomonoff, Kolmogorov, and Turing.
By including Bellman, one can extend this theory to universal decisions in reactive environments [19].
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Appendix. Proofs of (8), (11f), and (17)

Proof of loss bound (8). Let X and Y be real-valued random variables. Taking the square root of the well-known
Schwarz inequality (E[XY1])?> < E[X2]E[Y?], we get

El(x—Y)] - (VEX?]- ¢E[Y2) = 2/E[X2]E[Y?] — 2E[XY] > 0.

Substituting X ~» /a;, ¥ ~» Vbi, E[...] ~ é > i vi.. with vy == )" v;, we get, after multiplying with vy, the
‘Hellinger’ bound

2
via — vibi| <Y v — Vbi)? (A.1)
2 2 2 viai

for real a;, b;, v; > 0 (also valid for vy, = 0). I will use (A.1) three times in proving (8). With the abbreviations
m= ytAM and s = ytAg and

X = {17 ""N}7 N = |X|a iz-xf’ Yi zﬂ(xt|a)<l)a Zi =$(xt|a)<t)

the loss (7) and Hellinger distance (4) can then be expressed by ZZAE Z yilis, Z yilim and hy =
> (VZi — /302 By definition (6) of y/!» and y/'¢ we have

Zyt im = Zyz ij and ZZ,E,S < ZZZ ij for all j. (A2)
i
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Actually, I need the first constraint only for j = s and the second for j = m. From (A.2) we get

\/Zyiﬁis—\/Zyiéim >0 and (A3)
i i

9 9 3 1 1
b s — S il | = 2 - <o.
[am azim} \/ 2.t \/ 2t | = (¢Z,~ ilis VT yﬂim)

That is, if we decrease £;5 ~ E;x = {5 — ; and £;, ~ Z;m := £, — §; by the same amount §;, then (A.3) increases.
The maximal possible §; := min{¢;,, £;,,} makes £; or £ zero,hence 0 < ¢, + ¢, < 1.Similarly,

0 < \/Zz,-z,-m— \/Zz,-e,-s < \/Zz,-e;m— \/Zmﬁ;s-
i i i i
This implies that

0 < VI7% — /i

\/Zyiﬂis—\/zyz'ﬁim

i i

S\/Zyiﬁﬁs—\/zyz'%m + \/ZZJQ,,,—\/ZZ%S
i i i i

- \/Ze;s(ﬁ—ﬁ)2+ \/Zz;mwﬁ—ﬁ)z

= \/zz(féﬁﬁém)(ﬁ—ﬁ)z < \/22(\/371'_«/1—1')2 = J2h,.

In the third inequality T used the Hellinger bound (A.1) twice, and in the fourth inequality T used \/a + vb <
V2(a + b). Without the reduction £ ~ ¢ the bound would have been a factor of /2 worse. Taking the square,
expectation, and sum over ¢ proves the last inequality in (8). The first inequality in (8) is again an instantiation of
(A1) with i ~ (1, w<,) and v; ~ (@), ie. Y, vi... ~ S, E[...] and g; ~ [} and b; ~ ['v. m

Proof of Eq. (11f). Function P(y) := Zx:f(x):y 2=K™ s lower semi-computable, since K (x) is upper semi-
computable, all x € X'* can be enumg:rrated, and f(x) = y is decidable. Further, Zy P(y) = Zx 2-K® < 1, hence
MDL bound (11e) implies that K (y) < —log, P(y) + K(P). Let g(y) = min{x : f(y) = x} be the lexicographically
first inverse of f. With K(P) < K(f) = O (1), function g also has complexity O (1). Hence

2—K) % P(y) = Z 2—Kx) > 2—K(g()) § 2—K)
x:f(x)=y
where I dropped all but the contribution from g(y) in the sum, and used (11d) forg. B

Proof of bound (17) M (X, |x<y) § 2-KM Forx =x_, € X" landa = %, € X we have

2—t(p) Z 2—L(p) ©
Malx) @ M (xa) (2 p:U(p)=xax (g p:U(p)=xa @ H—tlgn®) X 5=K(n)
M(x) Z 2—t(p) Z 2—¢(p)
p:U(p)=xx p:U(p)=xx

In (a) and (b) I simply inserted the definition (16) of M. I now (c) restrict the sum over all p : U(p) = xax in the
numerator to programs p of the following form: p = gn*p, where U(p) = xx*, n* is the shortest code of n, and ¢
simulates p until n — 1 symbols are printed, then prints a, and thereafter halts, i.e. U(p) = xa. The numerator now
sums over exactly the same programs p as the denominator. Since 2~ ¢(?) = 2=t and 2-4@"") ig a constant
that is independent of p, the numerator and denominator cancel and (d) follows. (e) follows from the definition of n*
and from £(g) = O(1). N
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Proof of bound (17) M (%, |x <) < 22KmGx1a)=K®)  Agsume that x|.o, is a computable sequence, X’ is binary, and
Xn # xp,and define P (n) := M (x<,X,). Given x1.o0, P can be semi-computed from below, hence K (P) < Km(x1.00)-
Also ), P(n) < 1, since {x.,%, : n € N} forms a prefix-free set. Hence K(n)J<r — log, P(n) + K(P)
by (11e), wh1ch implies that M(x<,,x,,)<2K’"(X1°°) K Since M(x.,) > 27Km&<) > p=Kmxieo)  we get
M (xy|xn) < < 92Km(x1.00) =K (m) , which is nearly (17). Since the Lh.s. is independent of x;,{1.c0, @ bound 1ndependent of
it should be (and is) possible, as we will now show.

Consider sequence xi., and the shortest program p printing x1.,%*. Let U, be U stopped after ¢ time steps and
define corresponding M;. Then U;(p) = x1.,, (for some x4 1., if n; > n). I define Py (n’) := Za#n, M, (x_,ra) for
n’ < n; and O for n’ > n;. Together with n,, P, is also computable and increasing, hence P(n') := lim,_. o P;(n’) =
sup, P;(n) is lower semi-computable. Clearly, P(n’) = Z#xn/ M(x_ya) for n' < ne and P(n’) = 0 for
n > ne (nl, = lim n, <+oo) Hence ),  P(n') < 1, since {x_ya : a # xy, n' <+noo} is a prefix free
set, which implies that K(n) < —log,P(n) + K(P) by (1le). Since n < ne and K(P) <£(p) = Km(x1.),
we get 3, M(xopa) < Z2KmG) =K Using M (x_,) > 2-KmG<n) > 2=Kmim) | we get the desired bound
MGnlxan) < Ygsy, M(alxoy) < 22KnGr=Ko - g
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