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Covariance Estimation

Given N i.i.d. samples {xi}Ni=1,, xi ∈ Rn xi ∼ N (µ,Σ)
estimate µ and Σ.

Sample mean: µ̂ = 1
N

∑N
i=1 xi

Sample covariance:

S =
1

N

N∑
i=1

(xi − µ)(xi − µ)>.

Covariance selection: estimate P = Σ−1 when P is a sparse
matrix. Note that S−1 is not sparse even when P is a sparse
matrix due to sample errors.
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Problem: Given an empirical covariance matrix S

S =
1

N

N∑
i=1

(xi − µ)(xi − µ)>.

find a sparse inverse covariance matrix P to represent the
data.

Approach: Minimize the convex objective function

min
P�0

F (P)
def
= L(P)+λ‖vec(P)‖1, L(P) = −log det(P)+trace(SP).

L is the negative log likelihood function and the `1 term is a
sparsity inducing regularizer.
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Why a sparse inverse covariance?

Why do we want to find a sparse matrix P?

Understanding: The sparsity structure of P corresponds to the
graphical model structure for a gaussian Markov random field.

Computation: We can save both memory and computation for
the log-likelihood evaluation when the matrix P is very sparse.

Accuracy: Knowing where the zeros of P are lead to better
statistical estimators.
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Graphical Models

X1

X3X2 X4

Σ−1 =


? ? ? ?
? ? 0 0
? 0 ? 0
? 0 0 ?


When two nodes (X2, X3) are not connected in a graphical
model they are conditionally independent given the other
variables.

For gaussian graphical models the inverse covariance matrix is
zero whenever there is a missing link.
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Non-gaussian graphical models

When the graphical model is not a gaussian:

The structure of tree based graphical model can be found
from the inverse covariance matrix

Otherwise the structure can be found by looking at
augmented inverse covariance matrices.

Po-Ling Loh and Martin J. Wainwright, “Structure estimation for
discrete graphical models: Generalized covariance matrices and
their inverses.” NIPS (2012).
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Covariance selection: the `0 approach

Optimize
−log det(P) + trace(SP).

subject to card(P) ≤ k .
Dempster solved the problem using a greedy forward method
starting from the diagonal empirical covariance and a greedy
backward elimination method starting from the full empirical
covariance.
Dempster, Arthur P., ”Covariance selection.” Biometrics, pp.
157-175, (1972).
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Covariance selection approach: the graphical LASSO

Graphical LASSO uses the convex relaxation

−log det(P) + trace(SP) + λ‖vec(P)‖1

Onureena Banerjee, Laurent El Ghaoui, Alexandre d’Aspremont
and Georges Natsoulis. ”Convex optimization techniques for fitting
sparse Gaussian graphical models.” ICML pp. 89-96, (2006).
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Covariance selection: Regression

Another approach is to find the set of neighbors of each node in
the graphical model by regressing that variable against the
remaining variables.
N. Meinshausen and P. Bühlmann, “High dimensional graphs and
variable selection with the LASSO.” Annals of statistics, 34, pp.
1436–1462, (2006).
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First Order Solvers

covsel A block-coordinate descent that solves the dual
problem one row at a time.
Onureena Banerjee, Laurent El Ghaoui, and
Alexandre d’Aspremont. ”Model selection through
sparse maximum likelihood estimation for
multivariate gaussian or binary data.” The Journal of
Machine Learning Research 9, pp. 485-516, (2008).

glasso Graphical LASSO. One of the more popular solvers.
It solves the primal problem one row at a time.
Alexandre d’Aspremont, Onureena Banerjee, and
Laurent El Ghaoui. ”First-order methods for sparse
covariance selection.” SIAM Journal on Matrix
Analysis and Applications 30(1), p. 56-66, (2008).
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First Order Solvers

psm Projected Sub-gradient Method.
J. Duchi, S. Gould, and D. Koller. “Projected
subgradient methods for learning sparse Gaussians.”
UAI (2008).

smacs Smooth Minimization Algorithm for Covariance
Selection. An optimal first order ascent method.
Zhaosong Lu. ”Smooth optimization approach for
sparse covariance selection.” SIAM Journal on
Optimization 19(4), pp. 1807–1827, (2009).
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More Solvers

sinco Sparse INverse COvariances. A method intended for
massive parallel computation. A greedy coordinate
descent method.
Katya Scheinberg and Irina Rish. ”SINCO-a greedy
coordinate ascent method for sparse inverse
covariance selection problem.” Technical Report,
IBM RC24837 (2009).

alm Alternating linear minimization. Uses an augmented
Lagrangian to introduce an auxilliary variable for the
non-smooth term.
Katya Scheinberg, Shiqian Ma, and Donald Goldfarb.
”Sparse Inverse Covariance Selection via Alternating
Linearization Methods.” NIPS (2010).
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More Solvers

IPM Interior Point Method. A second order interior point
method.
Lu Li, and Kim-Chuan Toh. ”An inexact interior
point method for l1-regularized sparse covariance
selection.” Mathematical Programming Computation
2(3-4), pp. 291-315, (2010).

quic A second order Newton method that solves the
LASSO problem using a coordinate descent method.
C. J. Hsieh, M. Sustik, I. S. Dhillon, and P.
Ravikumar. “Sparse inverse covariance matrix
estimation using quadratic approximation.” NIPS,
(2011).
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More Solvers

NL-FISTA A second order Newton method that solves the
LASSO problem using a Fast Iterative Shrinkage
Thresholding Algorithm (FISTA).

OBN OBN-LBFGS is an orthant based quasi Newton
method and OBN-CG is an orthant based conjugate
gradient method.
Peder Olsen, Figen Öztoprak, Jorge Nocedal and
Steven Rennie “Newton-Like Methods for Sparse
Inverse Covariance Estimation.” NIPS 2012.

SpaRSA A generalized spectral projected gradient method
that uses a spectral step length together with a
nonmonotone line search to improve convergence
Jason D. Lee, Yuekai Sun, and Michael A. Saunders.
”Proximal Newton-type methods for convex
optimization.” NIPS (2012).
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More Solvers

DC-QUIC Divide and Conquer QUIC. A method that iteratively
discovers better diagonal block approximations to the
solution.
C. J. Hsieh, I. S. Dhillon, P. Ravikumar, A. Banerjee,
“A Divide-and-Conquer Procedure for Sparse Inverse
Covariance Estimation.” NIPS (2012).

BIG & QUIC A solver that can handle million dimensional
problems with a trillion variables.
C. J. Hsieh, M. Sustik, I. S. Dhillon, P. Ravikumar,
and R. Poldrack, “BIG & QUIC: Sparse inverse
covariance estimation for a million variables.” NIPS
(2013).
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Problem Extensions

The penalty is a bit too simplistic. Consider the more general
penalty term ∑

ij

λij |Pij |

Since Pii > 0 is forced by the positive definite requirement we
choose λii = 0. We have found λij ∝ 1√

NSiiSjj
to work well for

i 6= j .

Another possible extension is to smooth towards Θ∑
ij

λij |Pij −Θij |

It’s also possible to consider “group LASSO” type of penalties with
blocking in the covariance or other structural constraints in the
sparsity of the inverse covariance.
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The Exponential Family

Another avenue of extension worthy of consideration is the
viewpoint of exponential families. The exponential family is
characterized by the features φ(x) and is given by

P(x|θ) =
eθ
>φ(x)

Z (θ)
, Z (θ) =

∫
eθ
>φ(x)dx.

Z (θ) is the partition function or normalizer. The covariance
selection problem corresponds to the features φ(x) = vec(xx>),
with parameters θ = vec(P) and log partition function
logZ (θ) = log det(P) + n

2 log(2π).
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The general normal distribution

By extending the features to φ(x) =

(
x

vec(xx>)

)
we can consider

the general normal distribution with parameters

θ =

(
ψ
P

)
=

(
Σ−1µ
Σ−1

)
.

The corresponding log likelihood function is

L(θ) = s>θ − log(Z (θ)), s =
1

T

T∑
t=1

φ(xt)

and the log partition function is

log(Z (θ)) =
1

2
ψ>P−1ψ − 1

2
log det(P) +

n

2
log(2π).
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Related Optimization Problems

Sparse multivariate regression with covariance
estimation: LASSO + covariance selection.
Adam J. Rothman, Elizaveta Levina, and Ji Zhu. ”Sparse
multivariate regression with covariance estimation.” Journal of
Computational and Graphical Statistics 19(4), pp. 947-962
(2010).

Covariance constrained to a Kronecker product: Leads to
two interconnected covariance selection problems.
Theodoros Tsiligkaridis, and Alfred O. Hero. ”Covariance
estimation in high dimensions via kronecker product
expansions.” IEEE Transactions on Signal Processing 61(21)
pp. 5347-5360 (2013).
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Applications

Speech Better estimates of covariance for data starved
situations.
Weibin Zhang and Pascale Fung ”Discriminatively
Trained Sparse Inverse Covariance Matrices for
Speech Recognition.” IEEE Transactions on Audio,
Speech and Language Processing, 22(5), pp.
873–882 (2014).

Clustering Clustering of sparse inverse covariances with the
clusters being sparse too.
GM Chin, J Nocedal, PA Olsen and SJ Rennie,
“Second Order Methods for Optimizing Convex
Matrix Functions and Sparse Covariance Clustering.”
IEEE Transactions on Audio, Speech, and Language
Processing 21(11), pp. 2244-2254 (2013).
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More applications

Finance Xiang Xuan and Kevin Murphy, ”Modeling changing
dependency structure in multivariate time series.”
ICML (2007).
Jianqing Fan, Jinchi Lv, and Lei Qi, ”Sparse high
dimensional models in economics.” Annual review of
economics 3, pp. 291-317 (2011).

Other Social Co-authorship networks, Web data, climate
data analysis, anomaly detection, fMRI brain analysis.
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The `0 problem

The `0 problem: Replace penalty with
card(P) = |{Pij |Pij 6= 0}|.
The true sparsity structure can be recovered under the
restricted eigenvalue property and enough data. We define d
as the maximum non-zero entries of a row in the true
covariance matrix (maximum row-cardinality).

`1 problem: Need O(d2 log(n)) samples.
`0 problem: Need O(d log(n)) samples.

PD Ravikumar, G Raskutti, MJ Wainwright, B Yu, “Model
Selection in Gaussian Graphical Models: High-Dimensional
Consistency of l1-regularized MLE.”, NIPS, pp. 1329-1336 (2008).
NIPS, 1329-1336
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The problem is convex because it is the sum of two terms that are
convex.

The log-likelihood of an exponential family is convex, since

∂2

∂θ∂θ>
logZ (θ) = Var[φ(x)].

This is probably the simplest and most elegant way to prove
that −log det(P) is convex.

The penalty term is convex by inspection. All norms are by
definition convex.
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Consider the function |x |p for p ≥ 0. The function is convex if
p ≥ 1 and sparsity promoting if p ≤ 1.
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Norms are convex and sparsity promoting

Convexity is insured by the triangle inequality. For any 0 ≤ α ≤ 1
with α + β = 1 we have by the triangle inequality

‖αx + βy‖ ≤ ‖αx‖+ ‖βy‖ = α‖x‖+ β‖x‖.

That any norm is sparsity inducing follows by |x | being sparsity
inducing, since along any direction x we have ‖αx‖ = |α|‖x‖.
‖x‖p is not a norm for p < 1, and convexity is lost, but it is still
sparsity inducing.

Peder Olsen Covariance Selection 101



The optimization problem
Newton LASSO Methods

Orthant Wise Optimization

Convexity
Simplicity
Dual Problem
Exact Solutions

How natural are `p norms?

They may seem unnatural except for p = 1, 2 and ∞, but consider
the `p ball for p = 2/3, 1, 2,∞.

x

y

-2 -1 0 1 2

-2

-1

0

1

2
`∞ ball
`2 ball
`1 ball
`2/3 ball
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When λ = 0 the problem becomes equivalent to the maximum
likelihood problem, and the solution is P∗ = S−1. Consider the
case when λ 6= 0 and the solution P∗ is not sparse with
Z∗ = sign(P∗). We then have

F (P∗) = L(P∗) + λ‖vec(P∗)‖1
= L(P∗) + λ trace(Z∗P∗)

= −log det(P∗) + trace(P∗(S + λZ∗))

Therefore, the solution is P∗ = (S + λZ∗)−1. In general if we
know sign(P∗) the function is smooth in all the non-zero (free)
variables and therefore the solution is “easy” to find.
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What is an Orthant Face?

If the value

Z = sign(P∗)

is known then the prob-
lem is smooth for the free
variables on the orthant
face

O(Z) = {P : sign(Z) = ε}.

The orthant faces are the
regions where the sign of
P does not change.
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The diagonal elements

Note that the diagonal elements of P always have to be strictly
positive to ensure the solution is positive definite. Therefore these
will always be free variables. Since P is symmetric we need only
determine the sign of

(n−1
2

)
variables.
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Even if the orthant problem can be solved efficiently there are still

3(n−1
2 ) orthant faces to search over. This discrete optimization

problem of selecting the orthant face seems equally hard. However,
if we guide the orthant face search by using the gradient on the
orthant surface the discrete problem is aided by the continuous.
The rest of the talk will show the structure of the problem and
how to do the optimization efficiently.
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Dual Formulation

min
P�0

F (P) = min
P�0

L(P) + λ‖vec(P)‖1

= min
P�0

L(P) + λ max
‖vec(Z)‖∞≤1

trace(ZP)

= min
P�0

max
‖vec(Z)‖∞≤1

−log detP + trace(PS) + λ trace(ZP)

= min
P�0

max
‖vec(Z)‖∞≤1

−log detP + trace(P(S + λZ))

= max
‖vec(Z)‖∞≤1

min
P�0
− log detP + trace(P(S + λZ))

= max
‖vec(Z)‖∞≤1

log det(S + λZ) + d
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At the optimum we have as shown F (P∗) = U(Z∗) with the primal
and dual variables satisfying the relation

λZ∗ + S− (P∗)−1 = 0

and P∗ � 0 and ‖vec(Z∗)‖∞ ≤ 1
Define the dual function to be

U(Z) = log det(S + λZ)− d

then we have

U(Z) ≤ U(Z∗) = F (P∗) ≤ F (P)

so that any pair of matrices P, Z satisfying P � 0 and
‖vec(Z)‖∞ ≤ 1 yields an upper an lower bound of the objective at
the optimal point.
Note that dual problem is smooth with a box constraint. Box
constraint problems can be solved using projected gradients,
something that has a long history.
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Relationships between the primal and dual

We have that

if


[P∗]ij = 0 then [Z∗]ij 6∈ {−1, 1}
[P∗]ij > 0 then [Z∗]ij = 1
[P∗]ij < 0 then [Z∗]ij = −1.

The corners of the box corresponds to a non-sparse solution P∗.
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The gradient at a point P of L is as we shall later see given by
G = vec(S−P−1). Using this we can get a good approximation to
Z∗ if we have a good approximation to P∗. Let P be an
approximation to P∗ and form the value

[Z]ij =


1 if [P]ij > 0
−1 if [P]ij < 0
−1 if [P]ij = 0 and [G]ij > λ
1 if [P]ij = 0 and [G]ij < −λ
− 1
λ [G]ij if [P]ij = 0 and | [G]ij | ≤ λ.
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We already know the solution for λ = 0. What other exact
solutions can we find? The following is a list of solutions known to
us:

For λ large the solution is diagonal and known.

For n = 2 we can give the exact solution.

For λ sufficiently close to zero the solution is not sparse and
we can give the exact solution.

For values of λ where the solution is block-diagonal the
blocking can be detected and the exact solution consists of
solving each block independently.
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For the lasso problem we can guarantee some features will be
zero in the solution without actually solving the problem. This is
very useful in reducing the problem size and thus the
computational complexity.
Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. ”Safe
feature elimination for the LASSO and sparse supervised learning
problems.” arXiv preprint arXiv:1009.4219 (2010).

Some of the ideas from the safe features for lasso was transferred
to covariance selection to automatically detect blocking structure
in the solution at a very low computational cost.
Rahul Mazumder and Trevor Hastie, “Exact covariance
thresholding into connected components for large-scale graphical
lasso.” The Journal of Machine Learning Research 13(1), pp.
781-794 (2012).
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Locating Exact Solutions

The key to finding exact solutions is to use the duality relationship

S− (P∗)−1 + λZ∗ = 0,

where P � 0 and ‖vec(Z)‖∞ ≤ 1. Z will try to zero out S, and
when it can’t P has to fill in the rest. Essentially it is easier to
solve the dual problem analytically, since it is smooth, and we can
simply guess the solution and verify it for the primal problem.

The key to proving that a solution is correct is the concept of the
sub-gradient. A sub-gradient is the slope of a line that touches F
at P and lies below F everywhere. If zero is a sub-gradient then
this is the global minimum. The sub-differential is the set of all
possible sub-gradients at a point.
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Derivatives Small and large

Frechet Differentiable: The good old derivative exists
(Frechet is the derivative extended to Banach spaces).

Gateaux Differentiable: The directional derivatives exists.

Sub-differential: The collection of all sub-gradients.

Clarke Derivative: An extension to the sub-differential.

Bouligard Derivative: An extension to directional derivative.

Pseudo-gradient: Not quite a gradient: A few screws short
of a hardware store.

Weak derivative: When a function is non-differentiable the
weak derivative works “under the integral sign”.

Financial Derivatives: The biggest scam of all...
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The diagonal solution

Recall that
S− (P∗)−1 + λZ∗ = 0,

where P � 0 and ‖vec(Z)‖∞ ≤ 1. For Z to zero out the
off-diagonal part we must have λ ≥ |Sij | for all i 6= j . Since the
sign of the diagonal elements must be positive we have Zii = 1 and
we get P∗ = (diag(S) + λI)−1. This is the solution if and only if
λ ≥ |Sij | for all i 6= j .
The solution can be verified by computing the sub-differential and
verifying that 0 is a sub-gradient. A more difficult proof uses
Hadamard’s inequality to verify that Z∗ is the solution to the dual
problem.
This simple method of locating zeros only worked because both P∗

and (P∗)−1 had the same sparsity structure (diagonal). This is
also the case for block-diagonal solutions.
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The 2 by 2 case

A 2× 2 matrix is diagonal if the only off-diagonal element is zero.
Therefore, we can guess that there are only two kinds of solutions:
(1) A diagonal solution when λ is large and (2) a non-sparse
solution in the orthant given by λ = 0, i.e. Z∗ = sign(S−1). We
have

S−1 =
1

det(S)

(
S22 −S12
−S12 S11.

)
and therefore

Z∗ =

(
1 −sign(S12)

−sign(S12) 1

)
.
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Complete 2 by 2 solution

Assuming that n = 2, S � 0 and λ ≥ 0 then the solution to the
covariance selection problem is

P∗ =


(diag(S) + λI)−1 if λ ≥ |S12|(

S11 + λ S12(1− λ/|S12|)
S12(1− λ/|S12|) S22 + λ

)−1
if 0 ≤ λ < |S12|.
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Block diagonal solutions

If λ is larger than the absolute value of all the off-block diagonal
elements of S then the solution P∗ is block-diagonal and each
block can be found by solving a covariance selection problem.
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Let λ = 0.14

S =



1.06 0.16 −0.03 −0.15 0.00 −0.04 0.01 −0.13 0.02
0.16 0.85 −0.11 −0.15 −0.01 0.00 0.03 0.00 0.01
0.03 −0.11 1.03 0.06 0.11 0.00 −0.04 0.02 −0.05
0.15 −0.15 0.06 0.89 0.02 −0.03 −0.01 −0.02 0.20
0.00 −0.01 0.11 0.02 0.93 0.04 −0.01 −0.02 0.14
0.04 0.00 0.00 −0.03 0.04 1.12 −0.12 −0.06 0.00
0.01 0.03 −0.04 −0.01 −0.01 −0.12 0.87 0.09 −0.09
0.13 0.00 0.02 −0.02 −0.02 −0.06 0.09 1.03 0.02
0.02 0.01 −0.05 0.20 0.14 0.00 −0.09 0.02 1.06


First locate all the elements for which |Sij | > λ
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1.06 0.16 −0.03 −0.15 0.00 −0.04 0.01 −0.13 0.02
0.16 0.85 −0.11 −0.15 −0.01 0.00 0.03 0.00 0.01
0.03 −0.11 1.03 0.06 0.11 0.00 −0.04 0.02 −0.05
0.15 −0.15 0.06 0.89 0.02 −0.03 −0.01 −0.02 0.20
0.00 −0.01 0.11 0.02 0.93 0.04 −0.01 −0.02 0.14
0.04 0.00 0.00 −0.03 0.04 1.12 −0.12 −0.06 0.00
0.01 0.03 −0.04 −0.01 −0.01 −0.12 0.87 0.09 −0.09
0.13 0.00 0.02 −0.02 −0.02 −0.06 0.09 1.03 0.02
0.02 0.01 −0.05 0.20 0.14 0.00 −0.09 0.02 1.06
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Let λ = 0.14

S =



? ? ?
? ? ?

?
? ? ? ?

? ?
?

?
?

? ? ?


We find the solution blocks by locating connected components of

the graph corresponding to the stars.
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The graph corresponding to S

1 2 3

4 5 6

7 8 9

A glance at the graph shows that there are 4 single element blocks
and one block with 5 elements. We know the solution for the
single component blocks and only need to solve the remaining
n = 5 block.
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In general we might want to consider minimizing functions on the
form

f (x) + λ‖x‖1
for smooth differentiable convex functions f . In the case when f is

a quadratic, this problem is known as the least absolute shrinkage
and selection operator (LASSO) problem.
When f is not a quadratic we iteratively solve the LASSO
problems

x̂k+1 = argminxf (xk) + (f ′(xk))>(x− xk)

+
1

2
(x− xk)>f ′′(xk)(x− xk) + λ‖x‖1

We call this the Newton-lasso method.
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The line search

Not so fast. The method on the previous page won’t work in
general. If f (xk+1) < f (xk) then we are OK. This will be the case
when we are close to the optimum. Otherwise we need a more
conservative approach. For the covariance selection problem the

solution to the quadratic may yield a matrix that is not positive
definite. We consider x = xk + t(x̂k+1 − xk) and find a value t

that sufficiently decreases the function according to the Armijo rule

f (xk+1)− f (xk) ≥ σ(xk+1 − xk)>f ′(xk)

and σ ∈ (0, 1).
This condition is not enough to ensure quadratic convergence, but
since eventually all steps will be t = 1 it’s not an issue.
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Convergence Properties

When the solution of the lasso problem is exact the convergence
is well understood and given in
P. Tseng and S. Yun. “A coordinate gradient descent method for
nonsmooth separable minimization,” Mathematical Programming,
117(1), pp. 387-423, (2009).

Recently a proof of convergence for approximate solutions of the
lasso problem has been published:
Richard H. Byrd, Jorge Nocedal and Figen Oztoprak. “An inexact
successive quadratic approximation method for convex l-1
regularized optimization,” arXiv preprint arXiv:1309.3529, (2013).
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Convergence Proofs

And here’s another:
Katya Scheinberg and Xiaocheng Tang. ”Complexity of Inexact
Proximal Newton methods,” arXiv preprint arXiv:1311.6547
(2013).

The difficulty with the convergence proofs is that one can not
gauge the convergence rate by the magnitude of the
gradient/sub-gradient as the function is not continuously
differentiable. One way to prove convergence/convergence rate is
to compare to an ISTA step.

Peder Olsen Covariance Selection 101



The optimization problem
Newton LASSO Methods

Orthant Wise Optimization

The Quadratic Approximation
The Kronecker Product
QUIC
FISTA

The first step in developing a Newton-lasso method is to
compute the gradient gk = vec(L′(Pk)) and the Hessian
Hk = L′′(Pk) for our problem. Recall that
L(P) = −log det(P) + trace(PS), we compute the Taylor
expansion for the non-linear term log det(P) around Pk .
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The Taylor Expansion

Let P = Pk + ∆, ∆ = P− Pk and X = P
−1/2
k ∆P

−1/2
k . Let

{ei}di=1 denote the eigenvalues of X, then

log detP = log det(Pk + ∆)

= log detPk + log det(I + P
−1/2
k ∆P

−1/2
k )

= log detPk + log det(I + X)

= log detPk +
d∑

i=1

log(1 + ei )

= log detPk +
∞∑
k=1

(−1)k+1

k

d∑
i=1

eki

= log detPk +
∞∑
k=1

(−1)k+1

k
trace(Xk)
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The quadratic part

Extracting the linear and quadratic parts in terms of ∆ we get

log detP = log detPk + trace(X)− 1

2
trace(X2) +O(X3)

= log detPk + trace(P
−1/2
k ∆P

−1/2
k )

−1

2
trace(P

−1/2
k ∆P−1k ∆P

−1/2
k ) +O(X3)

= log detPk + trace(∆P−1k )− 1

2
trace(∆P−1k ∆P−1k ) +O(X3)

= log detPk + vec>(∆)vec(P−1k )

−1

2
vec>(∆)vec(P−1k ∆P−1k ) +O(X3)

= log detPk + vec>(∆)vec(P−1k )

−1

2
vec>(∆)(P−1k ⊗ P−>k )vec(∆) +O(X3)
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It follows that

gk = vec(S− P−1k ) Hk = P−1k ⊗ P−1k .

The fact that the Hessian is a Kronecker product can be used to
make the computation of the Newton direction and the solution to
the Newton-lasso problem more efficient. Also, we never need to
explicitly instantiate the Hessian.
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Definition (Kronecker Products)

For matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 we define the Kronecker
product A⊗ B ∈ R(m1m2)×(n1n2) to be

A⊗ B =

a11B · · · a1nB
...

...
...

am1B · · · amnB

 .

It can be verified that this definition is equivalent to
(A⊗ B)(i−1)m2+j ,(k−1)n2+l = aikbjl , which we simply write
(A⊗ B)(ij)(kl) = aikbjl .
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Theorem

The following equations gives identities for multiplying,
transposing, inverting and computing the trace of Kronecker
products.

(A⊗ B)(C⊗D) = (AC)⊗ (BD)

(A⊗ B)> = A> ⊗ B>

(A⊗ B)−1 = A−1 ⊗ B−1

Im ⊗ In = Imn

(B> ⊗ A)vec(X) = vec(AXB)

trace(A⊗ B) = trace(A) trace(B)

Peder Olsen Covariance Selection 101



The optimization problem
Newton LASSO Methods

Orthant Wise Optimization

The Quadratic Approximation
The Kronecker Product
QUIC
FISTA

More on the linesearch

Two issues on the linesearch we have not dealt with. Both are
borrowed from the creators of QUIC.

1 What line-search method do we use?

2 How do we ensure positive definiteness?

We used the backtracking linesearch with t = 1, 1/2, 1/4, . . .. The
reasoning is two-fold. Firstly, since t = 1 will be the predominant
choice, the line-search is not dominating the compute time.
Secondly, it is simple to implement and the accuracy of the line
search is not very important as long as convergence is guaranteed.
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Positive definiteness

First of all how do we check for positive definiteness?

Find the smallest eigenvalue and check that it is positive.

Do a Cholesky decomposition P = LL>. If the decomposition
succeeds and Lii 6= 0 then P � 0, otherwise P 6� 0.

The first method is perhaps more reliable and gives more
information. But the second method is by far the fastest.
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The line-search interval

In the linesearch we must ensure that t is chosen so that
Pk+1 = Pk + tV is positive definite. We can do that in two ways

Find the smallest t > 0 such that det(Pk + tV) = 0 by
solving the generalized eigenvalue problem Pkx = λVx.

If the Cholesky decomposition succeeds for a particular t then
Pk+1 � 0.
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Along with the line-search strategy outlined QUIC had two more
important innovations

The lasso problem was solved using coordinate descent.
Each variable can be solved very efficiently, by using the
structure of the Hessian. In total it uses only O(n|F|)
operations, where F are the free variables, per sweep over the
variables.

By starting the process from a sparse (diagonal) matrix, really
sparse solutions can be found extremely efficiently.
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ISTA

The Iterative Shrinkage Thresholding Algorithm (ISTA) minimizes

f (x) + λ‖x‖1

when f is a convex quadratic.
Ingrid Daubechies, Michel Defrise, and Christine De Mol. ”An
iterative thresholding algorithm for linear inverse problems with a
sparsity constraint,” Communications on pure and applied
mathematics 57(11), pp. 1413-1457 (2004).
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ISTA

The ISTA method iterates

xi+1 = Sλ/c

(
xi −

1

c
∇f (xi )

)
,

where cI− f ′′(x) � 0 and Sλ is the Donoho-Johnstone shrinkage
operator applied to each coordinate

Sλ(x) =


x − λ if x > λ

0 if |x | ≤ λ
x + λ if x < −λ.
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FISTA

The Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
method is a method that converges significantly faster than ISTA
at very little computational overhead.
Amir Beck and Marc Teboulle. ”A fast iterative
shrinkage-thresholding algorithm for linear inverse problems.”
SIAM Journal on Imaging Sciences 2(1), pp. 183-202, (2009).
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FISTA

FISTA first takes an ISTA step

x̂i = Sλ/c

(
xi −

1

c
∇f (xi )

)
,

then a Nesterov acceleration is applied to give

xi+1 = x̂i +
ti − 1

ti+1
(x̂i − x̂i−1)

where

x̂1 = x̂0, t1 = 1, ti+1 =
1 +

√
1 + 4t2i

2
.
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ISTA for Covariance Selection

If we apply the ISTA iteration to the lasso subproblem of the
covariance selection problem we get the elegant iteration:

xi = Sλ/c

(
vec(X̂i )−

1

c

(
gk + Hkvec(X̂i − Pk)

))
= Sλ/c

(
1

c
vec(−S + 2P−1k − P−1k X̂iP

−1
k ) + vec(X̂i )

)
,

The inverse matrix P−1k can be precomputed and stored for the
iterations x0 → x1 . . .→ xi . . ..
After the ISTA/FISTA iteration is performed we perform a
back-tracking line-search. as described earlier, to determine Pk+1.
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Algorithm

1 Compute starting point P0 = diag−1(λ+ diag(S)), k = 0.

2 Stop if the minimum sub-gradient norm is smaller than ε

3 Solve the lasso sub problem using FISTA. Call the
approximate solution Xk+1

4 Find Pk+1 by a backtracking line search from Pk to Xk+1.

5 k ← k + 1 and go to step 2.
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Active and Free Variables

We divide the variables in the following two groups

Active Variables The active constraints/variables are the variables
whose values we fix at 0. We denote the set of active
variables as A.

Free Variables The free variables are the variables whose values are
not fixed at 0. We denote the set of free variables as
F .

An orthant face naturally divides the variables into active and free
variables, where the sign of each free variable is fixed according to
the orthant face.

We claimed earlier that optimizing
over an orthant face was “simple”.
How to do this?
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Choosing the Orthant Face

If we are at a given point Pk and consider the optimization in an
orthant face containing Pk there may be several choices of orthant
faces. For each value [Pk ]ij = 0 we can choose the corresponding
orthant-sign to be negative, zero or positive.
Consider an infinitesimal change of [Pk ]ij to decide the sign.

If a small positive change reduces the function value, make
the sign positive. This happens if ∂L

∂Pij
> λ.

If a small negative change reduces the function then the sign
is negative. This happens if ∂L

∂Pij
< −λ.

Finally if neither a positive nor a negative change reduces the
function value then we make the sign zero. This happens if∣∣∣ ∂L∂Pij

∣∣∣ ≤ λ.
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As an example consider the function f (x) = 1
2(x − a)2 + |x | at

x = 0 for various values of a:
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As an example consider the function f (x) = 1
2(x − a)2 + |x | at

x = 0 for various values of a:

For a < −1 the minimum occurs for x < 0:
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As an example consider the function f (x) = 1
2(x − a)2 + |x | at

x = 0 for various values of a:

For |a| <= 1 the minimum occurs when x = 0:
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As an example consider the function f (x) = 1
2(x − a)2 + |x | at

x = 0 for various values of a:

For |a| <= 1 the minimum occurs when x = 0:
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As an example consider the function f (x) = 1
2(x − a)2 + |x | at

x = 0 for various values of a:

For |a| <= 1 the minimum occurs when x = 0:
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As an example consider the function f (x) = 1
2(x − a)2 + |x | at

x = 0 for various values of a:

For a > 1 the minimum occurs for x > 0:
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Orthant Indicator

We defined the orthant indicator Zk to be

[Zk ]ij =


1 if [Pk ]ij > 0
−1 if [Pk ]ij < 0
−1 if [Pk ]ij = 0 and [Gk ]ij > λ
1 if [Pk ]ij = 0 and [Gk ]ij < −λ
0 if [Pk ]ij = 0 and | [Gk ]ij | ≤ λ.

The 0 ensure the active variables do not move away from 0. The
dual variable took a different value 1

λ [Gk ]ij here.
The value Gk + λZk is the steepest descent direction at the point
Pk , and we refer to it as the pseudo-gradient. We consider
minimizing L(P) + λ trace(PZ) on the orthant face in place of
F (P).
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When the Newton step corresponding to the quadratic
approximation on the orthant face is outside the orthant face, we
must make the decision as to whether or not to allow the search to
leave the orthant.

Leaving the orthant face leads to complications. The Newton
direction is not guaranteed to be a descent direction anymore, but
this can be fixed with something known as pseudo gradient
alignment. Also, we need to ensure that we enforce sparsity
whenever possible.
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Not leaving the orthant face is simpler. However, only considering
the line segment insde the orthant face leads to many small steps.
Typically only one coordinate will be made sparse per line-step and
this may mean millions of line-searches for problems where
n > 1000. We need a strategy to allow many variables to become
sparse at once – a sparsity acceleration if you will. We project the

line-segment using the orthant-projection

Π(Pij) =

{
Pij if sign(Pij) = sign(Zk)ij

0 otherwise.
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Figen tried line search strategies both confined to and not confined
to the orthant. She also tried different strategies for sparsity
acceleration. The orthant projection scheme was best most of the
time, and also happened to be the simplest to implement!
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The OWL package that optimizes functions with an `1 penalty
uses a procedure called gradient alignment.
Galen Andrew and Jianfeng Gao. ”Scalable training of
L1-regularized log-linear models,” ICML, (2007).

Gradient alignment is not needed with the orthant projection
method.
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Pseudo Gradient Alignment

x

y

-3 -2 -1 0 1 2 3

-1

0

1

2

3

4

Pseudo gradient

Newton Direction

Directional Derivative

Alignment
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The reduced quadratic

We use the notation pk = vec(Pk) = ( pkF
pkA ) = ( pkF

0 ) . Recall that
the piecewise quadratic approximation to F is

qk(P) = L(Pk) + g>k (p− pk) +
1

2
(p− pk)>Hk(p− pk) + λ‖p‖1

If we constrain the model to the Zk orthant face we get

qk(P) = L(Pk) + g>k (p− pk) +
1

2
(p− pk)>Hk(p− pk) + λp>zk

subject to sign(p) = zk . Finally, if we substitute in pkA = 0 and
drop the constraints and the constant we get the reduced quadratic

QF (pF ) = g>kF (pF−pkF )+
1

2
(pF−pkF )>HkF (pF−pkF )+λp>FzkF .

Here HkF equals Hk = P−1k ⊗ Pk with the rows and columns
corresponding to A removed.
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The solution to the reduced quadratic can be seen to be

p∗F = pkF + H−1kF (λzkF − gkF ).

We need a quick way to compute p∗F without storing H−1kF .

For A = ∅ the computation becomes trivial:
P∗ = Pk − Pk(λZk − Gk)Pk .

Observation: We can do fast multiplication (O(n|F|)) by HkF by
lifting, multiplying by Hk and then projecting:

HkFxF = [Hk ( xF
0 )]F =

[
P−1k mat ( xF

0 ) P−1k

]
F .
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The conjugate gradient algorithm is an iterative procedure to find
the solution to Ax = b, when A � 0.

At iteration k the conjugate gradient algorithm finds the projection
of the solution onto the Krylov subspace span{b,Ab, . . . ,Ak−1b}.

In each iteration of the conjugate gradient algorithm we compute a
matrix–vector product Ayk . This is the most expensive step.
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The conjugate Gradient Algorithm

Initialize: r0 = b− Ax0, y0 = x0, k = 0
while rk > ε do

αk =
r>k rk

y>k Ayk
xk+1 = xk + αkyk

rk+1 = rk − αkAyk

βk =
r>k+1rk+1

r>k rk
yk+1 = rk+1 + βkyk

k ← k + 1
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LBFGS (Limited memory Broyden–Fletcher–Goldfarb–Shannon) is
considered the all-around best method to minimize non-linear
functions. We used it to solve the reduced quadratic. The Hessian
HF is replaced by a limited memory BFGS matrix BF . Instead of
using the properties of HF to efficiently compute the Newton step,
we use the properties of the approximation BF .

The OWL package does something similar, but used the full
quadratic instead of the reduced quadratic. Which approach is
best depends on the sparsity of the solution.
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So Long And Thanks For All The Fish
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