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Detecting informative higher-order interactions in
statistically validated hypergraphs
Federico Musciotto 1✉, Federico Battiston 2 & Rosario N. Mantegna 1,3

Recent empirical evidence has shown that in many real-world systems, successfully repre-

sented as networks, interactions are not limited to dyads, but often involve three or more

agents at a time. These data are better described by hypergraphs, where hyperlinks encode

higher-order interactions among a group of nodes. In spite of the extensive literature on

networks, detecting informative hyperlinks in real world hypergraphs is still an open problem.

Here we propose an analytic approach to filter hypergraphs by identifying those hyperlinks

that are over-expressed with respect to a random null hypothesis, and represent the most

relevant higher-order connections. We apply our method to a class of synthetic benchmarks

and to several datasets, showing that the method highlights hyperlinks that are more

informative than those extracted with pairwise approaches. Our method provides a first way,

to the best of our knowledge, to obtain statistically validated hypergraphs, separating

informative connections from noisy ones.
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Over the last years, advances in technology have made
available a deluge of new data on biological and socio-
technical systems, which have helped scientists build

more efficient and precise data-informed models of the world we
live in. Most of these data sources, from online social networks to
the world trade web and the human brain, have been fruitfully
represented as graphs, where nodes describe the units of the
systems, and links encode their pairwise interactions1. Yet,
prompted by new empirical evidence, it is now clear that in most
real-world systems interactions are not limited to pairs, but often
involve three or more agents at the same time2. In our brain,
neurons communicate through complex signals involving multi-
ple partners at the same time3,4. In nature, species co-exist and
compete following an intricate web of relationships that can not
be understood by considering pairwise interactions only5. In
science, most advances are achieved by combining the expertise
of multiple individuals in the same team6.

To fully keep into account the higher-order organization of real
networks, new mathematical frameworks have been proposed,
rapidly becoming widespread in the last few years. Computational
techniques from algebraic topology have made possible to extract
the “shape” of the data, investigating the topological features
associated with the existence of higher-order interactions from
social networks to the brain7,8. In parallel, traditional network
measures have been generalized to account for the existence of
non-pairwise interactions. This includes new proposals for cen-
trality measures9,10, community structure11, and simplicial clo-
sure, which is a generalization of clustering coefficient to higher-
order interactions12. The temporal evolution of higher-order
social networks has been investigated, showing the presence of
nontrivial correlations and burstiness at all orders of
interactions13. Besides, explicitly considering the higher-order
structure of real-world systems has led to the discovery of new
collective phenomena and dynamical behavior, from social
contagion14–16 and human cooperation17 to models of
diffusion18,19 and synchronization20–23.

Among the several frameworks, hypergraphs, collections of
nodes, and hyperlinks encoding interactions among any number
of units represent the most natural generalization of traditional
networked structures to explicitly consider systems beyond
pairwise interactions2,24. However, mapping data and mathe-
matical frameworks present us with some new challenges. For
instance, for some systems, higher-order interactions might be
difficult to observe, or only be recorded as a collection of pairwise
data. To overcome this limitation, recent work has developed a
Bayesian framework to reconstruct higher-order connections
from simple pairwise interactions following a principle of
parsimony25.

In spite of the explosion of new methods to analyze systems
interacting at higher orders, a filtering technique working for
hypergraphs is not yet available. Filtering techniques are a rela-
tively recent addition to network analysis. Extracting the filtered
elements of a network allows to focus on relevant connections
that are highly representative of the system, discarding all the
redundant and/or noisy information carried by those nodes and
connections that can be described by an appropriate statistical
null hypothesis (e.g., the configuration model of the system).
Different names have been proposed so far to address this
approach. The first name used was backbone of a network26. In
this case, the stress was on the links of nodes that were not
compatible with a null hypothesis of equally distributed strength.
Another proposal was a statistically validated network27. A sta-
tistically validated network is a subgraph of an original graph
where the selected links are those associated with a pair node
activity that is not compatible with the one estimated under a
random null hypothesis taking into account the heterogeneity of

activity of nodes. Statistically based filtering of real networks has
been investigated in studies focusing on classic examples of net-
works, such as airports26 and actor/movies27 networks, trading
decisions of investors28–31, mobile phone calls of a large set of
users32,33, financial credit transactions occurring in an Interbank
market34, intraday lead-lag relationships of returns of financial
assets traded in major financial markets35, the Japanese credit
market36, international trade networks37, social networks of news
consumption38, and rating networks of e-commerce platforms39.
The procedure of filtering nodes and links in a real network is not
unique both in terms of methodology and in terms of the null
hypothesis. Examples of different approaches have been recently
proposed in the literature40–44. Several of these techniques have
been reviewed and discussed in45–48. To the best of our knowl-
edge, all works available so far have performed network filtering
at the level of pair of nodes.

In this work, we introduce a filtering methodology for complex
systems where interactions can be of various possible orders. Our
approach explicitly takes into account the heterogeneity of the
system and therefore it is able to highlight overexpression of
hyperlinks of different sizes and weights. In particular, by map-
ping each layer of hyperlinks of a specific size in a bipartite
system, our method identifies those hyperlinks that are over-
expressed with respect to a random null hypothesis. To show the
informativeness of our filtering method, through a synthetic
benchmark we show that our approach detects real hyperlinks
with higher sensitivity and accuracy than other traditional fil-
tering techniques. We then apply our method to three different
empirical social datasets. We show that the results obtained with
our analysis are able to highlight information that is not
obtainable neither from the unfiltered hypergraphs nor with a
pairwise statistically validated analysis of the same system.

Results and discussion
Traditional network filtering approaches, such as the disparity
filter26 or the SVN approach27, are not suited for higher-order
data, since by design they mistreat all the information on con-
nections beyond pairwise interactions. This implies that cliques of
size n highlighted with a pairwise approach might not correspond
to genuinely statistically validated hyperlinks, possibly producing
both false positive and false negative. Consider, for example, the
collaboration network between three authors that have strongly
interacted in pairs in their research but have never published a
paper altogether. The pairwise analysis might detect a clique of
three nodes whereas the hyperlink with three nodes would not
exist, thus generating a false positive. Similarly, false negatives
might emerge in the case of an overexpressed hyperlink of size n
that is not matched by a clique of validated pairwise links. Fig-
ure 1a illustrates the different possibilities of pairwise validation
and hyperlink validation for n= 3.

Here, we propose an analytical filtering technique designed to
detect overexpressed hyperlinks of various sizes. Our method
works with weighted hypergraphs, where groups of nodes are
connected through interactions (hyperlinks) of any size that are
not limited to pairwise links. In particular, we model the weight of
a hyperlink composed of n nodes as the intersection of n sets,
where each set represents all the hyperlinks in which each node is
active (see Fig. 1b for a schematic illustration of the method for
n= 3). We are interested in evaluating if the weight of a hyperlink
is compatible with a null model in which all nodes are selecting
randomly their partners. This problem can be solved analytically
(see “Methods”), associating a p value to each hyperlink. Our null
model preserves the heterogeneity of the degree of all n nodes.
This is particularly relevant in the case of hypergraphs whose
higher-order degree distribution is strongly heterogeneous. This
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is a ubiquitous characteristic of real systems. Finally, the Statis-
tically Validated Hypergraph (SVH) is obtained by putting
together all hyperlinks at different sizes that are validated against
our null hypothesis.

Benchmark. We generate hypergraphs that we use then as
benchmark in the following way. We select N nodes and a set of
sizes for hyperlinks, {n}= {2, 3, . . . , n}. For each size n, we select a
fraction f of the N nodes, split them in non-overlapping groups of
size n and connect each group with m hyperlinks. Our noiseless
benchmark can be perturbed by adding some noise, that simu-
lates random fluctuations or errors in the collection of the data.
Specifically, we include an additional parameter pn that represents
the probability that the m interactions that define a hyperlink are
assigned to a different, randomly selected group of the same size.
Thus, our benchmark is defined by the parameters (N,m, {n}, f,
pn). Here, we set N= 500,m= 5, {n}= {2, 3, 4, 5, 6, 7, 8}, but the

following results are not affected by the specific values of N and m
and hold also for larger values of n. On the benchmark, we look at
the groups of different sizes that are identified by the SVH (i.e., by
our methodology) and SVN (i.e., inferred by pairwise statistically
validated links) approaches. We choose the SVN as a pairwise
approach because it is specifically tailored to work with bipartite
networks, that represent the lowest order representation of
hypergraphs. In this representation, a hyperlink of size n is
mapped as n links between n nodes of set A and a node of set B.
In our comparison, for SVH we select the groups of size n defined
by validated hyperlinks, whereas for SVN we extract the maximal
cliques of size n from the validated projected network. We first set
f= 0.5 and study the performance of the two methods when pn
changes.

To show the performances of the two methods we compute the
true-positive rate, TPR = TP

TPþFN of validated hyperlinks at
different sizes n as a function of the parameter pn (Fig. 2a). The
TPR quantifies the fraction of true groups that the two methods
are able to identify. For each value of pn and each size n, we
generate 1000 realizations of the benchmark and take the median
of TPR on all realizations. While the SVH approach is very robust
in the presence of noise, with a moderate decrease of its TPR
when pn grows, the SVN significantly fails to detect the right
hyperlinks already at moderate values of pn. In fact, the detection
of validated cliques on a pairwise network is strongly sensitive to
noise, as missing only one of the n

2

� �
links that compose a clique

of size n is enough to fail its detection.
To complement this result, we also look at the false discovery

rate (FDR), defined as FDR ¼ FP
FPþTP, that quantifies the fraction

of false positives on the total number of detected groups (see
Supplementary Fig. 1 and Supplementary Note 1). By investigat-
ing the benchmark, we find that SVH never detects a false
positive, while the SVN has different performances depending on
the size of the hyperlink and the value of pn. Indeed, already at
low values of pn, the FDR is significantly high for hyperlinks of
small sizes, as it is more likely that cliques at such sizes are
detected by the SVN due to spurious combinations of pairwise
links. The higher the size, the less likely it is to obtain spurious
cliques, which is reflected in lower values of FDR. For large values
of pn, the FDR associated with SVN worsens at almost all sizes.

We then looked at the performance of the two methods when
both pn and f vary, and we report the results in Supplementary
Figs. 2 and 3. Color spots in the matrices of the Figures represent
the median of the difference in TPR (Supplementary Fig. 2) and
FDR (Supplementary Fig. 3) between SVH and SVN as a function
of the two parameters. The first row of each matrix represents the
difference of the curves plotted in Fig. 2a and Supplementary
Fig. 1 respectively. Although the TPR difference pattern is similar
for all rows, for high values of f the difference in performance
between SVH and SVN becomes larger already for intermediate
values of pn. In fact, the parameter f affects the probability that a
node participates in interactions at different sizes (Fig. 2b), thus
the higher f the more challenging it is to correctly identify all
overexpressed hyperlinks. Indeed, for large f each node is active in
groups of different sizes and a filtering method that works only at
the pairwise level is likely to produce overexpressed cliques in the
SVNs that overestimate the real size of an overexpressed
hyperlink because the pairwise analysis can merge groups of
nodes of different size.

In order to further check the consistency of the SVH approach,
we generated ensembles of random hypergraphs, where hyper-
links are assigned to nodes compatibly with our null model. In
Supplementary Tables 1 and 2, we report the result of this
analysis. The SVH is never detecting spurious hyperlinks at any
value of density of the random hypergraphs when adopting the

Fig. 1 A higher-order filter for hypergraphs. a Schematic illustration of
false positives and false negatives in the investigation of statistically
validated hyperlinks of size n= 3 detected in the Statistically Validated
Hypergraph (SVH) compared with an approach based on statistically
validated pairwise interactions. Green shaded triangles represent
statistically validated hyperlinks with SVH, whereas red lines depict
statistically validated pairwise interactions. Considering the various
possibilities: (i) both the hyperlink and the 3-clique of pairwise interactions
are validated; (ii) the SVH does not statistically validate the hyperlink
whereas a 3-clique among the three nodes emerges from the validation of
pairwise interactions. Taking the statistically validated pairwise
overexpression as an indication of full interaction between nodes provides a
conclusion on the overexpression of the hyperlink that is a false positive;
(iii) and (iv) the hyperlink is statistically validated but the statistically
validated pairwise links do not form a clique (i.e., detecting hyperlinks by
evaluating the statistical validation of pairwise interactions would produce a
false negative). b Schematic description of the SVH method for hyperlinks
of size n= 3. In this example, node i is blue, node j is green, and node k is
orange. The shaded areas represent the sets of hyperlinks of each node.
The hyperlink {i, j, k} is occurring four times. By knowing the number of all
N3 hyperlinks of size 3 in the system, and N3

i , N
3
j , and N3

k number of
hyperlinks including node i, j, and k respectively, our methodology allows us
to compute the probability of observing N3

i;j;k occurrences (see Eq. (1) in
“Methods”).
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control for the false discovery rate as a correction for multiple
hypothesis testing. Furthermore, we checked if the performance
of the SVN increases when we select all the cliques of validated
links instead of only the maximal ones. We find that this different
approach does not improve the TPR of SVN (Supplementary
Fig. 4), while it is strongly worsening its FDR (Supplementary
Fig. 5). The reason for this behavior is that by selecting all cliques,
for each clique of size n we are validating all nested cliques of
smaller size, no matter if spurious or not. On one side this
approach may help in improving the TPR (but only in the case of
nested hyperlinks, which are not strongly present in our
benchmark), but it dramatically worsens the FDR.

US supreme court. In this section, we apply the SVH metho-
dology to a dataset that records all votes expressed by the justices
of the Supreme Court in the US from 1946 to 2019 case by case49.
This dataset has been extensively investigated in political science
to understand and try to predict the patterns of justices’ decision
by looking at their political alignment during the period in which
they were active50,51. Similar research ideas have started to per-
colate also the complex systems’ community, as shown by a
recent work that proposes a link prediction model to forecast the
evolution of the citation network spanned by cases ruled by the
twin European institution, the Court of Justice52.

We start noting that such a system naturally fits the framework
of hypergraphs, with hyperlinks of size n representing groups of n
justices that voted in a case in the same way. As the Supreme
Court is made of 9 justices, n can vary from 1 to 9 (in the case of
unanimous decisions). In the investigated period, we observe 38
different justices judging 8915 cases. We find that the most
frequent decisions are the unanimous ones (~2600), while all the
other possible grouping of justices are present with at least 1000
entries (see Supplementary Table 3 and Supplementary Fig. 6a of
Supplementary Note 2). Moreover, we find that the median of the
number of decisions that justice has taken in a group of size n
increases with the size of the group (Supplementary Fig. 6b),
signaling that justices are more likely to vote as part of a large

majority than in a small minority. This evidence suggests that an
approach that does not take into account interactions beyond the
pairwise level is suboptimal to identify groups of justices that
show overexpression of voting together since each justice typically
voted in groups of different sizes. In fact, this observed behavior is
analog to the behavior seen in the benchmark when we set a large
value of f. Indeed, in this system when we use both SVH and SVN
to detect overexpressed groups of different sizes (Supplementary
Fig. 6c), we find that SVN is unable to find groups at smaller sizes
because it is impossible to discriminate groups different from the
majority and minority when a pairwise analysis is performed.
Moreover, justices vote in the same way in a large number of
cases (all the unanimous or almost unanimous ones). Even if we
remove the unanimous votes, the situation does not change (see
Supplementary Fig. 6d). Conversely, the SVH detects a much
larger number of overexpressed groups at all possible sizes of
interaction. A summary of the numbers of validated groups at
different values of n is given in Supplementary Table 3.

An analysis of groups detected by the SVH provides
informative insights on the activity of justices. Indeed, we can
characterize each justice with the Segal–Cover (SC) score50, which
represents the level of judicial liberalism of each justice
throughout her activity in the Supreme Court. There is a general
SC score and several other scores focusing on specialized
categories of legal decisions. When we compute the standard
deviation of the SC score for the groups highlighted by the SVH
and we compare it with that computed (i) on all the groups of
justices observed to vote together at least once and (ii) on all
possible groups of justices (to extract the latter we only consider
justices that were contemporarily active in the Supreme Court),
we find that the groups of justices detected by the SVH have the
lowest diversity in liberalism SC score (Fig. 3a). This means that,
with respect to their level of liberalism, the groups of justices of
size n that present an overexpressed number of joint votes were
more similar among them than the set of possible groups of
justices. It is worth to note that the SC score is computed
exclusively looking at the individual activity of justices case by

Fig. 2 Hypergraph benchmark and performance analysis. a Numerical simulations of the benchmark characterized by the presence of hyperlinks of size n
ranging from 3 to 8. Median of the true positive rate of the detected hyperlinks obtained by using the Statistically Validated Hypergraph (SVH)
methodology (blue line) and the detection of the pairwise overexpression in the Statistically Validated Network (SVN) (orange line) as a function of the
noise parameter. The shaded area around the lines represents the interval between 10th and 90th percentile observed in 1000 realizations. Each panel is
related to hyperlinks of different sizes n. b Benchmark realization with 22 nodes and fraction f= 0.4. The sizes of hyperlinks are 3 (green lines), 4 (red
lines), and 5 (purple lines). c Benchmark realization with 22 nodes and f= 0.9.
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case, while with the SVH method we are validating groups
exclusively looking at their common decisions.

However, the SC liberalism score reduces to a mono-dimensional
quantity a piece of information that can be more nuanced. Indeed,
the Supreme Court has jurisdiction on cases of different legal areas,
ranging from civil rights and criminal procedures to economic
decisions. For this reason, the SC score is specialized in a number of
distinct scores that capture the attitude of a justice in the different
areas49. Supplementary Table 4 reports the justices’ scores for the
three main areas of criminal procedures, civil rights, and economic.
As the area of each case is reported in our data, we are able to
separately validate groups of justices for the different legal areas. This
gives additional insights into the activity of justices. On one side, we
find cases as that of Justice Antonin Scalia, that was consistently
voting with a conservative attitude in all areas, and all the validated
groups of size < 5 in which he is validated are always composed by
other conservative justices. On the other side, we find more nuanced
cases as that of justice Byron White, that was appointed by US
President John F. Kennedy. White was progressive on economic
issues, and indeed he is present in validated groups of size 3 with two
other progressive justices, Thurgood Marshall and William Brennan.
Conversely, he had a much more conservative attitude on issues
related to civil rights and criminal procedures, and this is detected by
our approach: in cases related to these areas he is validated in groups
of size 3 with the conservative justices Warren Burger, William
Rehnquist, and John Marshall Harlan. A summary of the hyperlinks
validated in the SVHs of the different areas is reported in
Supplementary Tables 5–7.

High school data. In this section, we detect the overexpressed
hyperlinks of social interactions observed between students

during their stay at a French high school53. These data are part of
the SocioPatterns project that aimed at integrating social network
analysis traditionally performed on surveys with actual contact
data tracked through radio-frequency identification sensors. The
contacts are detected and stored when pairs of students are
physically located nearby at a given time t. The recording was
occurring with a temporal resolution of the 20s. The data contain
also information about self-reported contacts and friendships and
Facebook networks that were present among students. These data
have already been analyzed to understand the overlap between
network and contact data53. Here, we focus on the detection of
higher-order interactions from the tracked contacts. In fact, it is
important to track the presence of higher-order interactions in a
social system as it has an impact on the dynamical processes that
can occur on top of it14,17,22. In order to build a hypergraph, we
extract the higher-order interactions from the raw data. To do so,
for each time step t we build the graph of interactions occurring
at time t and we extract the maximal cliques of any size. Indeed, if
n students are tracked in a fully connected clique at time t, it
means that they had a collective interaction at that time. We find
that on top of pairwise interactions the network contains
hyperlinks that involve up to 5 students interacting at the same
time (Supplementary Fig. 7a and Supplementary Note 3). After
extracting the overexpressed hyperlinks with both SVH and SVN,
we find that, as in the case of US justices, the two methods have a
different distribution of validated groups (Supplementary
Fig. 7b). Specifically, SVH detects much more groups than SVN at
lower size but significantly less at the higher size. We verify that
most of the groups detected by SVN at higher size are spurious
(Supplementary Fig. 7c), which means that with SVN we validate
groups of size n even if the corresponding students were never
simultaneously interacting altogether in a group of that size. In

Fig. 3 Filtering real-world hypergraphs. a Average standard deviation of the Segal–Cover score as a function of a group size of justices of the US Supreme
Court for the hyperlinks detected in the Statistically Validated Hypergraph (blue line), for the hyperlinks of the unfiltered hypergraph (orange line), and all
possible groups formed by justices that were jointly acting at the Supreme Court during the same time period (green line). Lines represent mean values and
shaded areas represent the standard error of the mean. b Violin plots of the average strength (as reported in the survey diaries) of (i) the hyperlinks
statistically validated by the SVH (blue box) and (ii) the hyperlinks of the unfiltered hypergraph (orange box). c Fractions of papers written by groups of
authors of different sizes for General Physics (blue bars), Nuclear Physics (orange bars), and Physics of Gases and Plasma PACS categories. d, e Fractions
of overexpressed groups of authors as a function of size n in the overexpressed hyperlinks validated by SVH (d) and of groups of authors that are cliques of
size n in the SVN (e) for 0-General Physics (blue bars), 2-Nuclear Physics (orange bars), and 5-Physics of Gases and Plasma (green bars) PACS categories.
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this system, the cliques detected by the SVN do not represent a
reliable proxy of the overexpressed hyperlinks.

In order to understand the nature of the hyperlinks validated
by the SVH, we analyze the validated groups using the available
metadata. We use the contact diaries that were filled by the
students at the end of a specific day of data collection. This
additional information stores contacts that were self-reported by
students themselves and can be seen as robust information about
the system, since it contains interactions that were strong enough
to be remembered by the students. We use the diaries to extract
cliques at different sizes of interacting students, and we compare
this information with the hyperlinks present in the unfiltered
dataset and with those validated with the SVH approach. To
maintain consistency across the two datasets, we drop contact
data that do not contain students that filled the diaries surveys
and drop from the diaries contacts that were not tracked by the
sensors. Furthermore, we limit contact data to that recorded in
the same day of the diaries survey. We find that the SVH is very
precise in retrieving the self-reported cliques (it contains less
“spurious” hyperlinks that do not correspond to diaries cliques)
but it is not highly accurate (i.e., it contains only a smaller
fraction of diaries cliques) (Supplementary Table 8).

The reported contacts come with a discrete weight provided by
the students themselves that represent the duration of each reported
interaction ((i) at most 5min if w= 1, (ii) between 5 and 15min if
w= 2, (iii) between 15min and 1 h if w= 3, (iv) more than 1 h if
w= 4). For each clique in the contact diaries that is also detected in
the unfiltered hypergraph or in the SVH, we compute the overall
strength by averaging the strengths of the links that constitute it. We
find that the distribution of the average strength of SVH hyperlinks
is higher than the one of unfiltered groups (Fig. 3b), showing that
the SVH hyperlinks detect the most persistent groups. The difference
in the distribution of average strength is statistically significant
according to a non-parametric Kruskal-Wallis test with score ~18
and P < 0.0001. It is worth to stress that the hyperlinks present in the
SVH do not necessarily correspond exclusively to the interactions
with the highest weight. Indeed, we find that hyperlinks of the same
weight can be present or absent in the SVH, depending on the
heterogenous activity of the involved nodes (Supplementary Fig. 8).
In fact, for less active nodes hyperlinks with a small weight are more
likely to be validated, while hyperlinks that involve more active
nodes need a higher weight in order to be validated.

Physics authors. In this section, we analyze the hypergraph of
scientific collaborations among Physics authors. To do so, we
investigate the APS dataset, which contains authorship data on
papers published in journals of the APS group from 1893 to 2015.
This dataset has already been extensively investigated to char-
acterize structural and dynamical properties of scientific colla-
borations, with respect to both authors’ careers and topics’
evolution54–56. Here, we match the papers present in the APS
dataset with the Web of Science database using the doi and
identify the authors with the ID curated by WoS to maximize
disambiguation, which is a well-known issue that affects the
accuracy of the dataset. Since we are interested in interactions
among authors, we limit our investigation to papers with a
maximum number of ten authors to avoid larger collaborations
for which direct interaction between all authors is less likely.
From the APS dataset, we retrieve the PACS of each paper. This
allows us to split the set of papers in ten subfields of physics by
using the highest hierarchical level of PACS classification. We
focus on the papers published from 1985 onwards as from this
year reporting one of more PACS per paper became compulsory.
This leaves us with 269,887 papers and 114,856 authors.

First, we look at the distribution of papers of different sizes for
each subfield (Fig. 3c). Here, we focus on the categories of
General Physics (PACS hierarchical integer number 0), Nuclear
Physics (PACS number 2) and Physics of Gases and Plasma
(PACS number 5) but the CDFs for all PACS categories are
shown in Supplementary Fig. 9 (Supplementary Note 4). As
expected, we find that PACS have different distributions of team
size that highlight different publication habits of the researchers
publishing in different PACS categories. In our selection, we find
that the subfield with higher percentages of smaller groups is
General Physics. On the other side, in Nuclear Physics and
Physics of Gases and Plasma there are higher percentages of
larger research groups (in Fig. 3c, all percentages sum to 1
because we are cutting from the distributions all papers that are
written by groups larger than ten).

We then apply to the dataset both SVH and SVN methodol-
ogies and extract the distribution of the validated groups with the
two methods (Fig. 3d, e, respectively). At first sight, we find that
the distributions of the groups validated with the SVH show
relevant differences with the original ones, while with the SVN we
obtain similar trends. Specifically, we find that for Nuclear
Physics the fraction of overexpressed groups in the SVH goes
rapidly to 0 when the size increases, showing an opposite trend if
compared to the distribution of the number of authors per paper.
This means that the size of most of the SVH validated groups for
this PACS is relatively small, in spite of the fact that there are
many papers written by larger numbers of authors. In the case of
overexpressed groups of the SVN, the distribution for this
category of PACS is similar to that of Fig. 3c. Conversely, PACS 5
(Physics of Gases and Plasma) maintains a similar profile across
the different distributions.

In order to understand this finding we looked, for each size, at
the relationship across PACS between the fraction of validated
groups and the average number of papers written by a group of
that size (Supplementary Fig. 10 for SVH and 11 for SVN). We
find that in the case of SVH these two quantities are strongly
correlated, with Pearson coefficient ranging from 0.84 to 0.99 and
being always statistically significant. This means that with the
SVH, we validate more groups of authors when these groups are
writing on average more papers together. This is a result showing
the reliability of SVH results. It is interesting to note that PACS 5
has among the highest average numbers of papers per group at
higher sizes, making it clear why the SVH validates more groups
at these sizes. On the other hand, in Nuclear Physics most (for
some sizes even all) of the detected groups at higher sizes wrote
only one paper altogether, so the number of validated groups is
much lower. Conversely, with the SVN approach, the fraction of
detected groups is not related to the average activity of groups of
that size (in the scatter plots of Supplementary Fig. 11, all
correlations between the fraction of detected groups and the
average number of papers per group are not statistically different
from zero). Due to the fact that with the pairwise SVN approach
all groups are obtained through the aggregation of pairwise
overexpressed links, the details of higher-order interactions are
missed.

Summing up, the SVH approach gives us an insight that is not
evident in the raw data or with methods that are limited to the
characterization of pairwise interactions: we find that research
areas like Nuclear Physics and Physics of Gases and Plasma are
similar with respect to the distribution of papers that are written
by research groups of different sizes, but the research groups in
the two PACS have different publication habits. In Physics of
Gases and Plasma, it is more likely that exactly the same group
publishes more papers together (and with SVH we identify the
groups that do so in a significant way), while in Nuclear Physics
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most of the medium size collaborations produce a paper just in a
single occurrence.

Conclusion. In the last decade, a deluge of new data on biological
and sociotechnical systems has become available, showing the
importance of filtering techniques able to highlight potentially
informative network structures. Recently, hypergraphs have
emerged as a fundamental tool to map real-world interacting
systems. Yet, extracting the relevant interactions from higher-
order data is still an open problem. In this work we proposed
Statistically Validated Hypergraphs (SVH) as a method to identify
the most meaningful relations between entities of a higher-order
system, reducing the complexity carried by noisy and/or spurious
interactions.

Our method is able to quantify the probability that an
observed hyperlink is compatible with a process in which all
involved nodes were randomly selecting their counterparts,
reducing the detection of false negatives and false positives
occurring with basic pairwise filters. Besides, the null model
that we developed naturally reproduces the heterogeneous
activity of each node, a crucial feature that overcomes the
limitations of a threshold-based filtering approach. We have
showcased the application of our method to three different
systems: the US Supreme Court, the social connections of
students interacting in a French high school and the scientific
collaborations of Physics authors publishing in the Journal of
the American Physical Society. In all cases, statistically
validated groups carry more coherent information than that
observed in the unfiltered hypergraphs. For the US Supreme
Court, groups of justices with more similar SC profiles are
highlighted. For the students of a French high school, groups of
students characterized by an intense social interaction are
detected, and for the authors of physics papers, the analysis of
the SVH unveils a difference in publication habits across
subfields that is not evident when looking at the complete
system.

A foreseeable development of our methodology is a general-
ization capable to take into account the temporal dynamics
leading to the emergence of a hypergraph, similarly to what was
proposed in ref. 43 for pairwise interactions only. Taken together,
we believe that our method, separating meaningful connections
from less informative node interactions, is a powerful tool capable
to capture the different nuances of higher-order interacting
systems.

Methods
In a SVH, each hyperlink of size n represents a group of n nodes that is over-
expressed by comparing its occurrence with that of a null hypothesis that
reproduces random group interactions. To extract the p value of a hyperlink of
size n, we select a subset of the hypergraph considering only hyperlinks of size n,
and we compute the weighted degree of each node with respect to this subgraph,
Nn

x1
;Nn

x2
; :::;Nn

xn
. We then extract the weight of the hyperlink connecting all n

nodes, Nn
x1 :::xn

and the total number of hyperlinks of size n, Nn. We can then
assess the probability of Nn

x1 :::xn
being compatible with a null model where each of

the nodes in the group randomly selects its hyperlinks from the whole set of
hyperlinks of size n. In fact, evaluating the probability of observing a hyperlink of
weight Nn

x1 :::xn
is equivalent to evaluating the probability of having an intersection

of size Nn
x1 :::xn

among n sets57. To illustrate the method, we start with the simplest
case, n= 3, with three nodes i, j, and k being active respectively in N3

i , N
3
j , and N3

k
interactions of size 3 (Fig. 1b, c). The probability of having the three nodes
interacting together N3

ijk times under a random null model is written as

pðN3
ijkÞ ¼ ∑

X
HðXjN3;N3

i ;N
3
j Þ ´HðN3

ijkjN3;X;N3
kÞ

¼ 1
N3

N3
j

� �
N3

N3
k

� �∑
X

N3
i

X

� �
N3 � N3

i

N3
j � X

 !
X
N3

ijk

 !
N3 � X
N3

k � N3
ijk

 !
;

ð1Þ

where H(NAB∣N, NA,NB) is the hypergeometric distribution that computes the
probability of having an intersection of size NAB between two sets A and B of size
NA and NB given N total elements.

The probability pðN3
ijkÞ in Eq. (1) is obtained through the convolution of two

instances of the hypergeometric distribution. Indeed, to compute pðN3
ijkÞ we start

from the probability of having an intersection of size X between nodes i and j and
multiply it with the probability of having an intersection of size N3

ijk between node
k and the intersection set of size X between i and j. This product is then summed
over all possible values of X, i.e., all possible intersections between i and j which are
compatible with the observed number of interactions between all the three nodes.
Starting from Eq. (1), we then compute a p value for the hyperlink connecting i, j,
and k through the survival function,

pðx ≥N3
ijkÞ ¼ 1� ∑

N3
ijk�1

x¼0
pðxÞ: ð2Þ

The p value provides the probability of observing N3
ijk or more occurrences of

the hyperlink composed by i, j, k. Once all the p values for all observed
hyperlinks are computed, they are tested against a threshold of statistical sig-
nificance α. In all, the results presented in this paper we use α= 0.01. The
statistical test is performed by using the control for the false discovery rate58 as
a multiple hypothesis test correction. The total number of test considered is
Nt ¼ N3

nodes
3

� �
, which is the number of all possible triplets of the N3

nodes elements
that are active in hyperlinks of size 3. Thus, when applying the control for the
False Discovery Rate method, we start from a Bonferroni threshold computed as
αB= α/Nt.

For an hyperlink of generic size n, Eq. (1) becomes

pðNn
x1 :::xn

Þ ¼ ∑
Xx1x2

HðXx1x2
jNn;Nn

x1
;Nn

x2
Þ ´ ∑

Xx1 x2x3

HðXx1x2x3
jNn;Xx1x2

;Nn
x3
Þ ´ :::

::: ´ ∑
Xx1x2 :::xn�1

HðXx1x2 :::xn�1
jNn;Xx1x2 :::xn�2

;Nn
xn�1

Þ ´HðNn
x1x2 :::xn

jNn;Xx1x2 :::xn�1
;Nn

xn
Þ:

ð3Þ
As in the case with three nodes, the main idea of Eq. (3) is to write the overall
probability of having an intersection of size Nn

x1x2 :::xn
between the activity of n

nodes as the product of multiple probabilities of hierarchical pairwise inter-
sections, summed over all the possible configurations compatible with Nn

x1x2 :::xn
.

The specific order of the nodes in the hierarchical intersections does not affect
the value of pðNn

x1 :::xn
Þ. From Eq. (3), we extract a p value as in Eq. (2). The

number of tests to consider when correcting for multiple testing is Nt ¼ Nn
nodes
n

� �
.

In our numerical computation, we use the approach developed in ref. 57. The
approach is analytic but requires heavy combinatorial computation, and it
might be of the difficult application when the hyperlinks are of size larger than
about fifteen nodes (Supplementary Note 5). Supplementary Fig. 12 shows the
computational time as a function of the hyperlink size, and Supplementary
Fig. 13 plots the dependence of computational time on the weight of a
hyperlink.

Data availability
The data analyzed in this paper are available at https://github.com/musci8/SVH.

Code availability
The code to extract Statistically Validated Hypergraphs is available at https://github.com/
musci8/SVH.
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