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ABSTRACT

Functional connectivity of the human brain and the hierarchi-
cal modular architecture of functional networks can be inves-
tigated using functional magnetic resonance imaging (fMRI).
Various network models, such as power-law networks and
modular networks have been explored before to study brain
networks. In order to investigate the plausibility of mod-
eling functional brain networks with network models based
on distribution of node degree and connection weights, we
will compute the goodness-of-fit of several network models
on resting-state fMRI scans gathered in the Human Connec-
tome Project. Our experiments suggest that the power-law
networks and stochastic block models aptly fit functional con-
nectivity of the subjects and the stochastic block models have
the potential to detect functional modules of the brain.

Index Terms— functional brain networks, functional
MRI, model fitting, power-law networks, stochastic block
models

1. INTRODUCTION

The human brain is a massive neural network whose emerg-
ing computations result in adaptive cognition and behavior.
Neighboring neurons in the cortex have similar functions and
form functionally distinct regions leading to cortical func-
tional parcels. Finding functional parcellations of the brain
is currently a topic of intense research [1]. There are increas-
ing evidences to suggest that the functional architecture of the
brain is organized in a hierarchical modular manner [2, 3].
The hierarchical modular architecture has evolved due to the
need of efficient, low cost information transfer among differ-
ent brain regions.

Functional magnetic resonance imaging (fMRI) provides
an opportunity for in vivo investigation of the functional ar-
chitecture of the brain. Functional connectivity of the human
brain is measured by the correlations of time-series of neu-
ronal responses between brain regions and is derived from
fMRI images taken at rest or while performing a task. Re-
cent advances in network science provide models and tools
to derive brain’s functional architecture from functional con-
nectivity obtained from fMRI [4]. Network models such as
scale-free networks [6, 7] and modular networks [8, 9, 10]

have been used to explore the functional architecture of the
brain. Highly connected nodes or hubs that are associated
with brain disorders and network modules that correspond to
known functional modules of the brain have been identified
[4].

In this paper, as models of functional brain networks,
we investigate two types of networks: (i) networks that are
defined by their degree distributions such as power-law net-
works, exponential networks, and stretched exponential net-
works; and (ii) networks that are defined by the distribution of
connectivity weights such as standard stochastic block mod-
els (SBM) and degree-corrected SBM (dc-SBM). Nervous
system has evolved to conserve two themes of wiring [5]: (a)
the tendency to organize network topology into modules that
serve specialized functionality; and (b) the general drive to
high topological integration by means of short communica-
tion paths, hubs and rich hubs. We hypothesize that theme
(a) of wiring is represented in network models (ii), namely
stochastic block models, and theme (b) of wiring is repre-
sented in network models (i) defined with node distributions.

By using resting-state fMRI (rs-fMRI) brain scans col-
lected in the Human Connectome Project 1 [12], we will eval-
uate the goodness-of-fit of several network models touted for
modeling functional brain connectivity. We will first inves-
tigate the power-law and exponential network models which
are characterized by nodal connectivity and then use stochas-
tic block models to unfold the functional modules of the brain.
We will show that the power-law and exponential models fit
well on functional brain networks and demonstrate the poten-
tial of stochastic block models in detecting functional mod-
ules of the brain [11, 13, 14]. In order to reduce the com-
plexity, we used functional connectivity among 264 regions
of interests (ROI) identified by Power et al. as functionally
relevant cortical regions [15].

2. METHODS

2.1. Models of Brain Connectivity

We consider the functional network of the brain as a graph G
of n brain nodes or regions of interests (ROI). LetW = {wij}
denote the functional connectivity matrix or the adjacency
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matrix of the brain where wij ∈ {0, 1}, and ki =
∑
j wij

denote the degree of ith node.
The functional architecture of the brain is studied by fit-

ting network models to functional connectivity of the brain.
We consider five network models to fit into the functional
connectivity of brain: power-law network model, exponential
model, stretched exponential model, standard random block
model and degree-corrected random block model.

2.1.1. Power-law and Exponential Networks

A power-law network is defined by the nodal degree (k) dis-
tribution [16, 17]:

ppower(k) = C1k
−α

where α is the scaling parameter, C1 = (α− 1) kα−1
min , and

kmin is the minimum degree that obeys the power-law.
The networks with exponential degree distribution are de-

fined by [17]

pexponential(k) = C2 exp (−λk)

where λ is the decay parameter and C2 = λ exp (λkmin).
The stretched exponential networks combine power-law

and exponential degree distributions and are defined by [18,
17]:

pstretched(k) = C3k
β−1 exp

(
−λkβ

)
where C3 = βλ exp

(
λkβmin

)
and λ is the decay parameter.

2.1.2. Stochastic Block Models

Stochastic block models (SBM) partition the set of nodes into
modules (or clusters) with many intra-modular edges and few
inter-modular edges. Suppose that the block model partitions
the brain network G into a set of modules, M = {Mi} where
Mi denotes the index of the module of node i. LetE = {ers}
where ers denotes the expected number of edges between
nodes i and j belonging to modules r and s.

The stochastic block model is defined by a Poisson distri-
bution of edges.The likelihood ofG of the standard stochastic
block model (SBM) is given by [11]:

pSBM(G|E,M) =
1∏

i<j wij !

∏
r,s

e
mrs

2
rs exp (−nrnsers)

where mrs =
∑
i,j,Mi=r,Mj=s

wij and nr is the number of
nodes in module r.

A degree-corrected stochastic block models (dc-SBM)
was introduced to account for the degree distribution of
edges, which is given by [11]:

pdc−SBM(G|E,M) =
1∏

i<j wij !

∏
i

θkii
∏
r,s

e
mrs

2
rs exp

(
−ers

2

)
where θi is normalizing parameter such that

∑
i,Mi=r

θi = 1
and ki denote the degree of node i.

2.2. Model Fitting

In order to find the plausibility of different network models,
we first fit different models on functional connectivity ma-
trices evaluated on subjects. For each subject, average time-
series of brain voxels within a sphere of 5mm radius at the
264 functionally relevant ROI defined in [15] were obtained.
Functional connectivity of the brain is obtained by calculating
partial correlations between resting-state fMRI time-series of
the ROIs. We discarded negative edges and thresholded the
functional connectivity for a range of thresholds in order to
investigate the functional architecture of the brain. We con-
sider unweighted networks with connectivity matrix W for
model fitting.

For power-law and exponential networks, the parame-
ters {xmin, α, β, λ} were estimated by using KS statistics
and maximum likelihood estimates as described in [17]. For
stochastic block models, the parameters were estimated by
minimizing the description length of the model as described
in [14].

3. RESULTS

3.1. Data

The dataset included 627 healthy adults from ages 22-36 from
the S900 release of the HCP. All HCP rs-fMRI data were ac-
quired on a Siemens Skyra 3T scanner at the Washington Uni-
versity. The details of MR imaging protocols are described in
the S900 release manual available at HCP website. We used
preprocessed data that had undergone standard preprocessing
steps [20] and subsequent ICA-denoising [21] in order to re-
move artifacts and noises. In addition, 24 head motion pa-
rameters were regressed out of the time series.

3.2. Goodness-of-Fit

Connectivity matrices of individual subjects were the data
points for network analysis. Each subject’s data was fit-
ted with power-law, exponential, and stretched exponential
(stretched) distributions and standard and degree-corrected
SBM. The power-law and exponential models were im-
plemented using the power-law python package [19]. The
standard and degree-corrected random block models were
implemented by using the graph-tool package [24].

The goodness-of-fit values of each subject scan to differ-
ent models were evaluated by computing the log likelihood
values given the models. The averages of log likelihoods on
all subjects for each model at different thresholds of connec-
tivity are given in figure 1. As seen, the stretched exponential
had the highest likelihood, so the best fitting. The power-
law and exponential networks attempt to fit the corresponding
degree distribution to the data while stochastic block models
attempt to fit distributions of connections to brain networks.
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Table 1: Standard Deviation in log likelihood of different
models computed on all scans at different threshold values
w0 of functional connectivity.

Standard Devia-
tion (σ)

w0 = 1.2 w0 = 1.6 w0 = 2.0 w0 = 2.4

Exponential 41.3 62.4 123.9 101.9
Power-law 33.3 52.5 130.7 105.2
Stretched 31.1 53.4 122.9 100.9
dc-SBM 467.6 387.7 317.2 258.1
SBM 460.8 381.4 312.2 256.3

Fig. 1: Average log-likelihoods of all the subjects by different
models at different threshold values of connectivity.

Figure 2 shows connectivity network for a representative sub-
ject at different thresholds. The number of connections reduce
as the connectivity threshold is increased. 1 gives us the stan-
dard deviation in the log likelihood values across all subjects
for different models and threshold values.

3.3. Comparison of Models

In order to compare different models, we compute log likeli-
hood ratios between two models and corresponding p-values,
which are shown in Table 2. We assumed each subject to be
a data sample and calculated the p-values by computing the
average and standard deviation of the log likelihood ratios as
described in [23]. As seen, the model fits were significantly
different from one another ( p < 0.05 ) and capture different
aspects of the functional architecture.

3.4. Functional Modules

We calculated the modules by using both standard and degree-
corrected stochastic block models. Since the quality of fit for
random block models depends on initial parameters, we chose
the best fit over 25 random initializations . The modules de-
tected for a representative subject by stochastic block models
are shown in figure 3. The variation of the number of mod-
ules of all subjects recovered at a threshold of 1.3 is shown in

w0= 1.1, w0 = 1.3

w0 = 1.4 w0 = 1.6

Fig. 2: Functional brain networks of a representative subject
at different thresholds w0 of functional connectivity.

the histogram for standard and degree-corrected block models
figure 4.

As seen, standard and degree-corrected block models give
different numbers of modules for different subjects. At con-
nectivity threshold of 1.3, the SBM favored 3 modules while
dc-SBM favored 6 modules. By visual inspection, the func-
tional modules detected were similar to those obtained by
modularity maximization algorithm [22].

4. DISCUSSION AND CONCLUSION

We fit network models based on degree distributions and
weight distributions to rs-fMRI scans gathered in the HCP.
The functional connectivity of the brain was calculated as
partial correlations of fMRI time-series on 264 cortical ROI
earlier identified as functionally relevant. The functional con-
nectivity matrices had to be thresholded in order to evaluate
goodness-of-fit of network models on brain scans. We in-
vestigated two types of network models: networks that are
defined by distribution of (i) node degree and (ii) connection
weights.

By applying rs-fMRI scans on a database of 627 sub-
jects, we showed the validity of several network models on
functional brain networks. Our results confirm that the two
types of network models, those defined on degree distribution
and those defined on connectivity distribution, capture differ-
ent aspects of network topology. This supports our hypoth-
esis that brain networks have the tendency to organize net-
work topology into functional modules by preserving distri-
bution of connection strength and the drive of brain networks
to high topological integration by means of short communi-
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Table 2: Log likelihood ratio, log(l2/l1), (x103) and p-values between different models computed on all scans at the connec-
tivity threshold of 1.3

log (l2/ l1), p-
value

Exponential Power-law Stretched dc-SBM SBM

Exponential - 36.75, < 0.05 - 2.22, < 0.05 2193.23, < 0.05

Power Law - - - 2181.90, < 0.05 2156.47, < 0.05

Stretched 2.45, < 0.05 39.20, < 0.05 - 2221.10, < 0.05 2195.68, < 0.05

dc-SBM - - - - -
SBM - - - 25422, < 0.05 -

Fig. 3: Modules in the functional brain network for a
representative subject for degree-corrected (on left) and
non-degree corrected (on right) stochastic block model at
connectivity-theshold of 1.3: top row are sagittal left views;
middle are sagittal right views; and bottom row are axial top
view.

cation paths, hubs and rich hubs by networks preserving the
networks of nodal distribution.

Our study should help to understand how the brain orga-
nization compromise to have an architecture between small
world networks and modular networks. As a future of this
work, individual variability of different models across sub-

Fig. 4: Number of modules detected at threshold 1.3

jects can be studied. Further, thresholding step of connectiv-
ity need to be avoided by using analysis based on weighted
networks.
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