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RECONSTRUCTION OF MARKOV RANDOM FIELDS FROM
SAMPLES: SOME OBSERVATIONS AND ALGORITHMS*
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Abstract. Markov random fields are used to model high dimensional distributions in a number
of applied areas. Much recent interest has been devoted to the reconstruction of the dependency
structure from independent samples from the Markov random fields. We analyze a simple algorithm
for reconstructing the underlying graph defining a Markov random field on n nodes and maximum
degree d given observations. We show that under mild nondegeneracy conditions it reconstructs
the generating graph with high probability using ©(de~26~*logn) samples, where €,§ depend on
the local interactions. For most local interactions e€,d are of order exp(—O(d)). Our results are
optimal as a function of n up to a multiplicative constant depending on d and the strength of the
local interactions. Our results seem to be the first results for general models that guarantee that the
generating model is reconstructed. Furthermore, we provide explicit O(nd+26_26_4 log n) running-
time bound. In cases where the measure on the graph has correlation decay, the running time is
O(n?logn) for all fixed d. We also discuss the effect of observing noisy samples and show that as
long as the noise level is low, our algorithm is effective. On the other hand, we construct an example
where large noise implies nonidentifiability even for generic noise and interactions. Finally, we briefly
show that in some simple cases, models with hidden nodes can also be recovered.
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1. Introduction. In this paper we consider the problem of reconstructing the
graph structure of a Markov random field (MRF) from independent and identically
distributed samples. MRFs provide a very general framework for defining high di-
mensional distributions, and the reconstruction of the MRFs from observations has
attracted much recent interest, in particular in biology; see, e.g., [8] and a list of
related references [9].

1.1. Our results. We give sharp, up to a multiplicative constant, estimates for
the number of independent samples needed to infer the underlying graph of an MRF
of bounded degree. In Theorem 1 we use a simple information-theoretic argument to
show that Q(dlogn) samples are required to reconstruct a randomly selected graph
on n vertices with maximum degree at most d. Then in Theorems 2 and 3 we propose
two algorithms for reconstruction that use only O(de=25~%logn), where ¢ and § are
lower bounds on marginal distributions in the neighborhood of a vertex. Under mild
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nondegeneracy conditions, €,6 = exp(—O(d)) and for some models €, = poly 'd.
Examples of the latter model include the hardcore model with fugacity A = ©(4).
Our main focus is on the reconstruction of sparse MRFs where d is fixed, in which
case € and § are constant. The two theorems differ in their running time and the
required nondegeneracy conditions. It is clear that nondegeneracy conditions are
needed to ensure that there is a unique graph associated with the observed probability
distribution.

In addition to the fully observed setting in which samples of all variables are
available, we extend our algorithm in several directions. In section 5 we consider the
problem of noisy observations. In subsection 5.1 we show by way of an example that if
some of the random variables are perturbed by noise, then it is in general impossible
to reconstruct the graph structure with probability approaching 1. Conversely, when
the noise is relatively weak as compared to the coupling strengths between random
variables, we show that the algorithms used in Theorems 2 and 3 reconstruct the
graph with high probability. Furthermore, we study the problem of reconstruction
with partial observations, i.e., samples from only a subset of the nodes are available. In
Theorem 5 we provide sufficient conditions on the probability distribution for correct
reconstruction.

Chickering [3] showed that maximum-likelihood estimation of the underlying
graph of an MRF is NP-complete. This does not contradict our results which assume
that the data is generated from a model (or a model with a small amount of noise).
Although the algorithm we propose runs in time polynomial in the size of the graph,
the dependence on degree (the running time is O(n4+2¢=26=*logn)) may impose too
high a computational cost for some applications. Indeed, for some MRFs exhibiting
a decay of correlation, a vast improvement can be realized: A modified version of the
algorithm runs in time O(dn?e=25~*logn). This is proved in Theorem 4.

1.2. Related work. Chow and Liu [4] considered the problem of estimating
MRFs whose underlying graphs are trees, and provided an efficient (polynomial-time)
algorithm based on the fact that in the tree case maximum-likelihood estimation
amounts to the computation of a maximum-weight spanning tree with edge weights
equal to pairwise empirical mutual information. Unfortunately, their approach does
not generalize to the estimation of MRFs whose graphs have cycles. Much work in
mathematical biology is devoted to reconstructing tree Markov fields when there are
hidden models. For trees, given data that is generated from the model, the tree
can be reconstructed efficiently from samples at a subset of the nodes given mild
nondegeneracy conditions. See [7, 10, 5] for some of the most recent and tightest
results in this setup.

The most closely related works are [1] and [12]. These can be compared in terms
of sampling complexity and running time as well as the generality of the models to
which they apply. These are summarized in the table below. The first line refers to
the types of models that the method covers: Does the model allow clique interactions
of just edge interactions? The next two lines refer to requirements on the strength
of interactions: Are they not required to be too weak/are only edges with strong
interactions returned? Are they not required to be too strong? The next line refers
to the hardness of verifying whether a given model satisfies the conditions of the
algorithm (where X denotes that the verification is exponential in the size of the
model). The following line refers to the following question: Is there a guarantee that
the generating model is returned with high probability? The final two lines refer to
computational and sampling complexity, where c; denotes constants that depend on d.
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Abbeel, Koller, and Ng [1] considered the problem of reconstructing graphical
models based on factor graphs and proposed a polynomial-time and sample complexity
algorithm. However, the goal of their algorithm was not to reconstruct the true
structure, but rather to produce a model whose distribution is close in Kullback—
Leibler (KL) divergence to the true distribution. In applications it is often of interest
to reconstruct the true structure which give some insights into the underlying structure
of the inferred model.

Note furthermore that two networks that differ only in the neighborhood of one
node will have O(1) KL distance. Therefore, even in cases where it is promised that the
KL distance between the generating distribution and any other distribution defined
by another graph is as large as possible, the lower bound on the KL distance is Q(1).
Plugging this into the bounds in [1] yields a polynomial sampling complexity in the size
of the network in order to find the generating network compared to our logarithmic
sampling complexity. For other work based on minimizing the KL divergence, see the
references in [1].

The same problem as in the present work (but restricted to the Ising model) was
studied by Wainwright, Ravikumar, and Lafferty [12], where an algorithm based on
{1-regularization was introduced. The algorithm presented is efficient also for dense
graphs with running time O(n®), but is applicable only in very restricted settings.
The work applies only to the Ising model and, more importantly, only models with
edge interactions (no larger cliques are allowed). The most important restrictions are
the two conditions in [12] (Al and A2). Condition Al requires (among other things)
that the “covariates [spins] do not become overly dependent.” Verifying when the
conditions hold seems hard. However, it is easy to see that this condition fails for
standard models such as the Ising model on the lattice or on random d-regular graphs
when the model is at low temperatures, i.e., for 8 > %1og(1 +4/2) in the case of the
two-dimensional Ising model and 3 > tanh™*(1/(d — 1)) for random d-regular graphs.

Subsequent to our work being posted on the arXiv e-print service, Santhanam and
Wainwright [11] again considered essentially the problem for the Ising model, produc-
ing nearly matching lower and upper bounds on the asymptotic sampling complexity.
Again their conditions do not apply to the low temperature regime. Another key
difference from our work is that they restrict attention to the Ising model, i.e., MRFs
with pairwise potentials and where each variable takes two values. Our results are
not limited to pairwise interactions and apply to the more general setting of MRF's
with potentials on larger cliques.

Since our work was first posted on arXiv, a number of groups continued working
on this and related problems. We refer the reader to [2] for a number of theoretical
results as well as a survey of many others.
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2. Preliminaries. We begin with the definition of Markov random field.
DEFINITION 1. On a graph G = (V, E), a Markov random field is a distribution
X taking values in A for some finite set A with |A| = A, which satisfies the Markov
property
(1) PX (W), X(U)|X(5)) = P(X(W)|X(5))P(X(U)|X(5))

when W, U, and S are disjoint subsets of V' such that every path in G from W to U
passes through S and where X (U) denotes the restriction of X from AV to AV for
ucV.

Famously, by the Hammersley—Clifford theorem, such distributions can be written
in a factorized form as

3

(2) P(o) = % exp

> Wa(oa)

where Z is a normalizing constant, a ranges over the cliques in G, and ¥,: AlYl —
R U {—o0} are functions called potentials.

The problem we consider is that of reconstructing the graph G, given k indepen-
dent samples X = {X! ..., X*} from the model. Denote by G, the set of labeled
graphs with maximum degree at most d. We assume that the graph G € G; is from
this class. A structure estimator (or reconstruction algorithm) G : A = G4 is a map
from the space of possible sample sequences to the set of graphs under consideration.
We are interested in the asymptotic relationship between the number of nodes n in
the graph, the maximum degree d, and the number of samples k that are required.
An algorithm using number of samples k(n) is deemed successful if in the limit of
large n the probability of reconstruction error approaches zero.

A special case which is studied extensively is the Ising model on graphs, where
A = {£1} and where a in (2) are taken only over edges of a graph so that

P(U) = l S9Y Z Bu,vaugv + Z hyoy

Z
(u,v)EG u
for real numbers [y, 4, hy.

3. Lower bound on sample complexity. Suppose G is selected uniformly at
random from G,. The following theorem gives a lower bound of Q(dlogn) on the num-
ber of samples necessary to reconstruct the graph G. The argument is information-
theoretic and follows by comparing the number of possible graphs with the amount
of information available from the samples.

THEOREM 1. Let the graph G be drawn according to the uniform distribution on
Ga. Then there exists a constant ¢ = c(A) > 0 such that if k < cdlogn, then for
any estimator G: Ak Ga, the probability of correct reconstruction is P(CATY =G)=
o(1).

Remark 1. Note that the theorem above doesn’t need to assume anything about
the potentials. The theorem applies for any potentials that are consistent with the
generating graph. In particular, it is valid both in cases where the graph is “identifi-
able” given many samples and in cases where it isn’t. R

Proof. To begin, we note that the probability of error is minimized by letting G
be the maximum a posteriori (MAP) decision rule,

@MAP(X) = argmaxgegdP[G = g|X].
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By the optimality of the MAP rule, this bounds the probability of error using any
estimator. Now, the MAP estimator Gyap(X) is a deterministic function of X.
Clearly, if a graph ¢ is not in the range of @, then the algorithm always makes
an error when G = ¢g. Let S be the set of graphs in the range of Gypap so that
P(error|G € §¢) = 1. We have

P(error) = Z P(error|G = g)P(G = g)

geg

= Z P(error|G = g)P(G =g) + Z P(error|G = g)P(G = g)
(3) geSs geSse

>3 PG=g)=1-3 g

geSe geSs

Ank

>1- 2
- 4

where the last step follows from the fact that [S| < |X| < A™. It remains only to
express the number of graphs with maximum degree at most d, |G4|, in terms of the
parameters n, d. The following lemma gives an adequate bound.

LEMMA 1. Suppose that d < n® for a < 1. Then the number of graphs with maz
degree at most d, |Gq|, satisfies

(4) log |Ga| = Q(ndlogn).

Proof. Suppose first that d < n'/3. To make the dependence on n explicit, let
U,,q4 be the number of graphs with n vertices with maximum degree at most d. We
first bound U,,12,4 in terms of U, 4,. Given a graph G with n vertices and degree at
most d, add two vertices a and b. Select d distinct neighbors vy, ..., vq for vertex a,
with d labeled edges; there are (Z) d! ways to do this. If v; already has degree d in
G, then v; has at least one neighbor w that is not a neighbor of a, since there are
only d — 1 other neighbors of a. Remove the edge (v;,u) and place an edge labeled ¢
from vertex b to w. This is done for each vertex vy, ..., vq, so b has degree at most d.
The graph G can be reconstructed from the resulting labeled graph on n + 2 vertices
as follows: Remove vertex a, and return the neighbors of b to their correct original
neighbors (this is possible because the edges are labeled).

Removing the labels on the edges from a and b sends at most d!? edge-labeled
graphs of this type on n 4+ 2 vertices to the same unlabeled graph. Hence, the number
of graphs with maximum degree d on n + 2 vertices is lower bounded as

n 1 n\ 1
> !— = n —.
Unt2,d > Una (d)d I Un,a <d> p

It follows that for n even (and greater than 2d + 4),

) U ﬁ <n;2@>$ N (<n(/12) %>n/4.

If n is odd, it suffices to note that Up41,g > Uy 4. Taking the logarithm of (5) yields

(6) log Up.,q = Q(nd(logn — logd)) = Q(ndlogn),
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assuming that d < n'/3. When d > n'/?, note that with high probability a graph
with dn/4 edges chosen uniformly at random has maximum degree less than d. The
number of such graphs is ("(Z;/li/ %), and so
n(n —1)

logUy,,q > Q2 (log ( dn/4

>/2) = Q(nd(logn — logd)) = Q(ndlogn),
since d < n® with o < 1. 0
Together with (3), Lemma 1 implies that for small enough ¢, if the number of

samples k < cdlogn, then

Ank

P(error) > 1 — —— =1-—o0(1).

9

This completes the proof of Theorem 1. O

4. Reconstruction. We now turn to the problem of reconstructing the graph
structure of an MRF from samples. For a vertex v we let N(v) = {u € V — {v} :
(u,v) € E} denote the set of neighbors of v. Determining the neighbors of v for every
vertex in the graph is sufficient to determine all the edges of the graph and hence
reconstruct the graph. We test each candidate neighborhood of size at most d by
using the Markov property, which states that for each w € V — (N (v) U {v}),

(7) P(X(0)|X(N(v)), X(w)) = P(X(0)| X (N (v))).

We give two theorems for reconstructing networks; they differ in their nondegen-
eracy conditions and their running time. The first one, Theorem 2, has more stringent
nondegeneracy conditions and faster running time.

In the first and more stringent condition (8), we require that an edge (u,v) in
the graph will correspond to statistical correlation between the node z, and z,. In
fact, we require that if v is a neighbor of v, then this correlation holds even when we
condition on some additional variables.

In the second and less stringent condition (16), we require that if v is a neighbor
of v, then conditioning on all the neighbors of v but w is statistically different from
conditioning on all the neighbors of v (including «). Indeed, it is not hard to see that
if the conditioning on u has no additional (or small additional) effect, then the MRF
is equivalent to (or statistically close to) a model where the edge (u,v) is not present.

The additional conditions (9) and (17) are imposed so that samples exhibiting
the required statistical differences will actually be generated with nonnegligible prob-
ability.

4.1. Conditional two-point correlation reconstruction.

THEOREM 2. Suppose the graphical model satisfies the following: There exist
€,8 > 0 such that for allv € V, if U C V — {v} with |[U| < d and N(v) € U, then
there exist values Ty, To, Thyy Ty, - - -, Ty, such that for some w € V — (U U {v}),
‘P(X(’U) =12,|X(U) = 2y, X (w) = )

— P(X(v) = 2| X(U) = 2y, X (w) = a,)| > €
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Then with the constant C = %, when k > Cdlogn, there exists an estimator
G(X) such that the probability of correct reconstruction is P(G = G(X)) = 1 —
O(n=C"). The estimator G is efficiently computable in O(n®t2logn) operations.

Remark 2. Condition (8) captures the notion that each edge should have sufficient
strength. Condition (9) is required so that we can accurately calculate the empirical
conditional probabilities.

Proof. Let P denote the empirical probability measure from the k samples.
Azuma’s inequality gives that if Y ~ Bin(k, p), then

P(lY — kp| > vk) < 2exp(—27%k),

and so for any collection U = {uy,...,w} CV and z1,...,2; € A, we have
(10) P (|P(X(U) = 20) = P(X(U) = 20)| 2 7) < 2exp(=24%k).
There are A'("}) < Aln! such choices of us,...,u; and x1,...,2;. An application of

the union bound implies that with probability at least 1 — A'n'2 exp(—2v2k), it holds
that

(1) P
for all {u;}}_, and {z;}\_,. If we additionally have [ < d + 2 and k > C(v)dlogn,
then (11) holds with probability at least 1 — (d + 2) A4T2pd+22 /27" ¢4 Choosing
Cy) = d4;2242r§1 , (11) holds with probability at least 1 — 2(d 4 2) A%+2 /nC1.

For the remainder of the proof assume (11) holds. For all v,w € V, U C V, and
Xly.eny Ty Loy, Thyy Ty € A such that

(X(U) =2y, X(w) =xy) >§/2,

(12) (X(U) = 20, X (w) = al,) > /2,

and |U] < d, we have
(13) v(e,8) = €6%/48.
Taking this, we can bound the error in conditional probabilities as

|P(X (v) = 2,|X (U) = 2v) = P(X(0) = 2,|X(U) = 2v))|
(X(v) =20, X(U) =2v) P(X(v) =2y, X(U) = 2y0)

P(X(U) = ap) PX(U) =av)

P(X(v) =2y, X(U) =ay) P(X({) =z, X(U) = ay)
PXU) =av) PX(U) = zv)

)

B BT B cd* e
=6/2 " (6/2—7)8/2 ~ 246 ' 24(5/2 —€62/48)6 12 ' (12 —€6/2)

(14) < i .
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For each vertex v € V we consider all candidate neighborhoods for v, subsets
U CV — {v} with |U| < d. The estimate (14) and the triangle inequality imply that
if N(v) C U, then by the Markov property,

|P(X(v) = 2,|X(U) = 2y, X (w) = z4)
(15) — P(X(v) = 2,|]X(U) = 2y, X (w) = z},)| < ¢/2

for all v,w € V, U C V, and z1,..., %, To, ., T, € A such that (12) holds.
Conversely, by conditions (8) and (9) and the estimate (14), we have that for any
U with N(v) € U there exists some w € V and Zy,, . .., Ty, Tw, Thy, Ty € A such that
(12) holds but (15) does not hold. Thus, choosing the smallest set U such that (15)
holds gives the correct neighborhood.
To summarize, with number of samples

48%(d+2+ Ch)
k= (T) dlogn,

the algorithm correctly determines the graph G with probability

~

P(G(X)=G)>1-2(d+2)A%*2/n.

The analysis of the running time is straightforward. There are n nodes, and
for each node we consider O(n?) neighborhoods. For each candidate neighborhood,
we check approximately O(n) nodes and perform a correlation test of complexity
O(logn). 0

4.2. General reconstruction. While Theorem 2 applies to a wide range of
models, condition (8) may occasionally be too restrictive. One setting in which con-
dition (8) does not apply is if the marginal spin at some vertex v is independent of
the marginal spins at all its neighbors (i.e., for all u € N(v) and all z,y € A we have
P(X(w) =2,X(u) =y) = P(X(v) = 2)P(X(u) = y)). In this case the algorithm
would incorrectly return the empty set for the neighborhood of v.

As an illustrative example consider the case where the distribution P over {0, 1}@*%,
where d > 3 and k > 2 is such that the parity of the first set of d variables (z1,...,zq)
is even, the parity of the second set of d variables (z4t1,...,%24) is even, etc. It is
easy to encode this distribution using an MRF with & cliques of size d. Note that
conditioning on the second group of d variables, there is no correlation between x;
and z5. Therefore condition (8) doesn’t hold. However, the weaker condition (16)
does hold in this case.

In fact, the weaker conditions for Theorem 3 hold on essentially all MRFs. In
particular, condition (16) says that the potentials are nondegenerate, which is clearly
a necessary condition in order to recover the graph. Condition (17) holds for many
models, for example, all models with soft constraints. This additional generality comes
at a computational cost, with the algorithm for Theorem 2 having a faster running
time, O(n?*2logn) versus O(n2?*+1logn).

THEOREM 3. For an assignment xy = (Tyy, ..., %qy,) and y € A, define

xZU(y): (xum"'aya"'axul)

to be the assignment obtained from xy by replacing the ith element by y. Suppose
there exist €,0 > 0 such that the following condition holds: for all v € V, if N(v) =
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{u1,...,w}, then for each i,1 < i <1, and for any set W C V — ({v} U N(v)) with

|W| < d, there exist values To, Ty, .- Tuss - Tuy, Yy € A, and xw € AW such that
(16) |P(X(v) = 2| X(N(v)) = Tn ()
— P(X(v) = 2| X (N(v)) = @,y (1))] > €
and
17) P(X(N(v)) = zn(), X (W) = 2w) > 4,

P(X(N () = @iy, (9), X(W) = 2) > 6

Then for some constant C = C(e,8) > 0, if k > Cdlogn, then there exists an
estimator G(X) such that the probability of correct reconstruction is P(G = G(X)) =
1—0(1). The estimator G is computable in time O(n**+!logn).

Proof. As in Theorem 2, we can assume that with high probability we have

~

(18) P(X(U) = 2v) — P(X(U) = zv)| <~

for al U = {u;}}_, ¢ V and {z;}}_, when | < 2d + 1 and k > C(y)dlogn, so we
assume that (18) holds. For each vertex v € V' we consider all candidate neighbor-
hoods for v, subsets U = {u1,...,u} CV — {v} with 0 <[ < d. For each candidate
neighborhood U, the algorithm computes a score

f(o;U) =min  max [P(X(v) = | X(W) = 2w, X(U) = zv)
Wi v, cw,TU,Y

~

= P(X(v) = 2| X(W) = 2w, X (U) = 2, ()]

where for each W, i, the maximum is taken over all z,,, zw, zy, y, such that

~

(19) P(X(W) = zw, X(U) = zy) > §/2,
P(X(W) = 2w, X(U) = 2, (y)) > §/2,

and W C V — ({v}UU) is an arbitrary set of nodes of size d, zy € A% is an arbitrary
assignment of values to the nodes in W, and 1 < i <.

The algorithm selects as the neighborhood of v the largest set U C V — {v} with
f(v;U) > €/2. Tt is necessary to check that if U is the true neighborhood of v, then
the algorithm accepts U, and otherwise the algorithm rejects U.

Taking (e, d) = €52/48, it follows exactly as in Theorem 2 that the error in each
of the relevant empirical conditional probabilities satisfies

|P(X(v) = 2,| X (W) = 2w, X(U) = 2y)
(20) — P(X(0) = 2,|X(W) = ow, X(U) = 2v)| < 7.

If U ¢ N(v), choosing u; € U — N(v), we have when N(v) C WU U

P(X (W) = x| X(W) = 2w, X(U) =2y) — P(X(v) = 2,| X (W) = 2w,
= |P(X(v) = 2,| X(N(v)) = Zn () — P(X(v) = 2| X (N (v)) = Zn(0))]
—0
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by the Markov property (7). Assuming that (18) holds with ~ chosen as in (13), the
estimation error in f(v;U) is at most €/2 by (20), and it holds that f(v;U) < €/2 for
each U ¢ N(v). Thus all U ¢ N(v) are rejected. If U = N(v), then by the Markov
property (7) and the conditions (16) and (17), for any ¢ and W C V,

|P(X(v) =2,| X(W) = 2w, X(U) =2p) — P(X(v) = 2, | X(W) = 2w, X(U) = x@(y))‘
= |P(X(v) = 2| X (N (v)) = &) — P(X(v) = 2| X (N (v)) = 2,y (1))

> €

for some x,,, xw, zy,y. The error in f(v;U) is less than /2 as before; hence f(v;U) >
€/2 for U = N(v). Since U = N (v) is the largest set that is not rejected, the algorithm

correctly determines the neighborhood of v for every v € V' when (18) holds.
To summarize, with number of samples

o (482d+1+C)
B €2642d

)dlogn,

the algorithm correctly determines the graph G with probability

~

P(G(X)=G)>1-2(d+2)A%H1 /nc1,
The analysis of the running time is similar to the previous algorithm. d

4.3. Nondegeneracy of models. We can expect conditions (16) and (17) to
hold in essentially all models of interest. The following proposition shows that they
hold for any model with soft constraints.

PROPOSITION 1 (models with soft constraints). In a graphical model with mazi-
mum degree d given by (2), suppose that all the potentials W, satisfy || Vyslleo < K
and
(21) max |V (21, 22) — Yoo (23, 22) — Vo (21, 4) + Voo (z3, 4)| > v

T1,T2,73,T4€
for some v > 0. Then there exist €,6 > 0 depending only on d, K, and v such that
the hypothesis of Theorem 3 holds.

In order to understand the meaning of condition (21), consider a model where
U (x1,22) = @1(x1)p2(z2). In this case, the edge u, v may be represented by assign-
ing node potentials. In particular, there is no way of reconstructing it. In this case,
the expression in (21) is identically 0. The condition (21) guarantees that the edge of
the graph cannot be represented in terms of node potentials.

Proof. Tt is clear that for some sufficiently small 6 = §(d, K) > 0 we have that for

all ug, ..., uzq41 €V and &y, , ..., Tugy,, € A that
(22) P(X(u1) =y, ..., X(u2q41) = Ty, ) > 6.
Now suppose that ui, ..., u; is the neighborhood of v. Then for any 1 < ¢ <[ it follows
from (21) that there exist ., 2/, 7., ¥, € Asuchthat forany z,, ..., Tu,_,, Tu;\ys-- -,
Ty, € A,
P(X(v) = 2| X (u1) = Tuys o, X(ug) = 2,0, X(wg) = 24)
P(X(v) = 2| X (u1) = Tuys -, X(ug) = 2,0, X(wg) = 24)
> eyP(X(U) = $U|X(u1) = Tuy, 7X(ul) = Ly - - 7X(ul) = xuz).
B P(X(U) :$€)|X(U1) = Tuy» aX(uZ) = Ty, ,X(Ul) :xul)
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Combining this with (22), condition (16) follows. O
Although the results to follow hold more generally, for ease of exposition we will
keep in mind the example of the Ising model with no external magnetic field,

(23) P(¥) = l exp Z BuvTuly |,

Z
(u,v)EE

where (3, € R are coupling constants and Z is a normalizing constant.

The following lemma gives explicit bounds on €, in terms of bounds on the
coupling constants in the Ising model, showing that the conditions of Theorem 3 can
be expected to hold quite generally.

PROPOSITION 2. Consider the Ising model with all parameters satisfying

0<e< |ﬁ”| <C
on a graph G with maximum degree at most d. Then conditions (16) and (17) of
Theorem 3 are satisfied with
tanh(2c)
€> ——— 2
~ 4tanh(2C)

and
e—4d’C
Y Z 22d

Proof. Fix a vertex v € V, and let w € N(v) be any vertex in the neighborhood
of v. Let R = N(v) \ {w} be the other neighbors of v. Then
(24)
P(X(v) =1|X(R) = zgr, X (w) = zy)

P(X(v)=1,X(R) =g, X(w) =xy)
P(X(v)=1,X(R)=2zr, X(w) =24)+ P(X(v) = -1, X(R) = zg, X(w) = x4)

€xp (EjeR xjﬁjv + xwﬁwv)
exp (ZjeR z;Bjv + xwﬂwv) + exp (— ZjeR ZjBju — ffwﬂwv)
Defining

A :=exp Za:jﬁjv ,
JER
we have from (24) that
P(X () = X (R) = 2, X (w) = 1) — P(X(0) = L|X(R) = wp, X () = ~1)|
B AePwe B AePuwe
B Aeﬁwv _|_ A_le_ﬁwv Ae_ﬁwu _|_ A_leﬁwu
A2 (e2ﬂuw J— 672ﬂu7ﬂ)
At + A2(e2Puwo + e=2Buwo) 41 ‘
A2(e2|ﬂw| — 672\Bw\)
— A4 + A2(62\ﬁwv\ + e—2|ﬁwu|) +1
_ (eZ\Bwu\ - e*Z\Bwul) tanh(2[By|)
T A2 4 e2Buv] 4 e—20Buu] 1 A2 T 242 1 2472
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It is possible to choose the spins zp in such a way that e=¢ < A < e“. Thus the
expression above is at least

tanh(2c)
4tanh(2C)

Moreover, the probability of any assignment of 2d spins can be very crudely bounded
as
e—4d’C
P(X(il):xila"'7X(i2d):$i2d)2W' d

4.4. O(n?logn) algorithm for models with correlation decay. The re-
construction algorithm runs in polynomial time O(dn?¢*!Inn). It would be desirable
for the degree of the polynomial to be independent of d, and this can be achieved for
MRFs with exponential decay of correlations. For two vertices u,v € V let d(u,v)
denote the graph distance and let d¢(u,v) denote the correlation between the spins
at v and v defined as

do(u,v) = Y [P(X(u) = 24, X (v) = 7)) — P(X (1) = 2) P(X (v) = 7).

Loy, Ty EA

If the interactions are sufficiently weak, the graph will satisfy the Dobrushin—Shlosman
condition (see, e.g., [6]) and there will be exponential decay of correlations between
vertices.

THEOREM 4. Suppose that G and X satisfy the hypothesis of Theorem 3 and
that for all u,v € V, do(u,v) < exp(—ad(u,v)) and there exists some £ > 0 such
that for all (u,v) € E, do(u,v) > k. Then for some constant C = C(«, K,€,6) > 0,
if K > Cdlogn, then there exists an estimator @(X) such that the probability of
correct reconstruction is P(G = G(X)) = 1 — o(1) and the algorithm running time is
O(ndw + dn?Inn) with high probability.

Proof. Denote the correlation neighborhood of a vertex v as No(v) = {u € V :
cfg(u,v) > r/2}, where cfg(u,v) is the empirical correlation of v and v. For large
enough C' with high probability for all v € V| we have that N(v) C N¢(v) C {u €

V d(u,v) < %} Now the size of [{u € V : d(u,v) < %H is at most dw,
which is independent of n.

When reconstructing the neighborhood of a vertex v we modify the algorithm in
Theorem 3 to test only candidate neighborhoods U and sets W which are subsets
of N¢(v). The algorithm restricted to the smaller range of possible neighborhoods
correctly reconstructs the graph with high probability since the true neighborhood of a
vertex is in its correlation neighborhood. For each vertex v the total number of choices
of candidate neighborhoods U and sets W the algorithm has to check is O(dw),

. . . n(4/r) .
so running the reconstruction algorithm takes O(ndzdl o ) operations. It takes

O(dn*Inn) operations to calculate all the correlations, which for large n dominates
the running time. O

5. Noisy and incomplete observations. More generally there is the problem
of reconstructing an MRF from noisy observations. In this setting we observe Y =
{Y', ..., Y*} instead of X = {X',..., X*}, where each Y; is a noisy version of X;.
The algorithm in Theorem 3 is robust to small amounts of noise, even when the errors
in different vertices are not necessarily independent. One sufficient condition is that
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there exist 0 < € < € and 0 < ¢’ < ¢ such that for any 2d + 1 vertices vy, ..., vag11
and states x1,...,%2q+1 Wwe have that

|P(X(U1) =T1,-.- ,X(Ugd) = ﬂjzd) — P(Y(’Ul) = T1,--- ,Y(Ugd) = ZIJQd)| S 5//2
and

‘P(X(U2d+1) = $2d+1|X(1}1) = T1y--- ,X(’Uzd) = $2d>
— P(Y(’Ungrl) = $2d+1|Y(’U1) =21,..., Y(Ugd) = xgd)‘ < 6//2.

For some C' = C'(e,€,4,8’) > 0 with k = C’'dlogn samples, the reconstruction
algorithm of Theorem 3 correctly reconstructs the graph G with high probability (the
same proof holds).

5.1. An example of nonidentifiability. Without assumptions on the under-
lying model or noise, the MRF is not in general identifiable. In other words, a single
probability distribution might correspond to two different graph structures. Thus, the
problem of reconstruction is not well defined in such a case. The next example shows
that even in the Ising model, under unknown noise it is impossible to distinguish
between a graph with three vertices and two edges and a graph with three vertices
and three edges. B

Ezample 1. Let V = {uy, us,uz} be a set of three vertices, and let G and G be
two graphs with vertex set V' and edge sets {(u1,u2), (u1,us)} and {(u1, uz2), (u1, us),
(us2,u3)}, respectively. Let P and P be Ising models on G and G with edge interactions

ﬁlZaﬁlB and 612, 613, 623, respectively; i.e.,
1
PX] = — exp (B12X (u1) X (u2) + Fr3 X (u1) X (us))

~ 1 ~ ~ ~
PIX] = - eXP (512X(U1)X(u2) + 13X (u1) X (u3) + 523X(U2)X(U3)) :
Suppose that X’(u1), a noisy version of the spin X (u;), is observed which is equal
to X (up) with probability p and —X (u;) with probability 1 — p for some random
unknown p while the spins X (u2) and X (u3) are observed perfectly. This is equivalent

to adding a new vertex uj to G and G with an extra edge (u1,u}) and potential
Wy up) = Br17 X (u1) X (u}). The spin at u) then represents the noisy observation of
the spin at w;. Suppose that all the § and 5 are chosen independently with N(0,1)
distribution, and let P and P be the random noisy distributions on Aluruzus}  Thep
the total variation distance between P and P is less than 1, and so the graph structure
is not identifiable, as we shall show below.

By the symmetry of the Ising model with no external field the random element
P can be parameterized by (p12,p1/3, p23) € [0,1]3, where p1/o = P(Xy =1, Xy, =
1), prrs = P(Xu, =1, Xy; = 1), paz = P(Xy, = 1, Xy; = 1). These parameters are
given by

pij = h(B1i)h(B1j) + h(—PBri)h(—B1j),

where h(8) = eﬁfr%. Let ¢ be the function ¢ : R? — [0, 1]3 which maps (8117, 812, 813)
— (p12, p1/3, p23), and let J, be its Jacobian. Then det(J,(1,1,1)) > 0, and by con-
tinuity the Jacobian is positive in a neighborhood of (1,1,1). It follows that the
random vector (pi1/2,p1/3, pes) has a density with respect to Lebesgue measure in a
neighborhood of (2h(1)2,2h(1)2,2h(1)3).
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Now let ¢ be the function ¢ : R® — [0,1]® which maps (ﬁ?;,ﬂ/vlg,ﬂ/vm,ﬁ/;;) —
(p172, P13, pas). If we fix B;; =0, then ¢ = ¢ induces a positive density in the random
vector (p12,p1/3,p23) in a neighborhood of (2h(1)%,2h(1)?,2h(1)?). By continuity
this also holds when | B/v23| is small enough and so (p1/2, p1/3, P23) has a positive density
around (2h(1)2,2h(1)2,2h(1)2?). Hence we have that both P and P have positive
densities in an overlapping region so their total variation distance is less than 1 and

so the graph structure is not identifiable.

5.2. Models with hidden variables. A related question is can we identify if
a vertex is missing, and if so, where it fits into the graph. Under the assumption that
the vertices all have degree at least 3 and the graph is triangle-free, we can recover
missing vertices under mild assumptions.

THEOREM 5. Suppose that the hypothesis of Theorem 3 holds for some MRF X
based on a triangle-free graph with minimum degree at least 3 and mazximum degree
d. Let V* CV such that for any two points v,v' € V. — V* we have d(v,v') > 3
and suppose we are given samples from X*, the restriction of X to V* with which to
reconstruct G.

Suppose the following condition also holds: for all v € V if vi,ve € N(v) and
U= N@w)UN(v)—{v,v1,v2} and W CV — (N(v) UN(v1)) with |W| < 2d’ then

. /
there exists some Ty, , Tyy, Ty, Tu, Tw such that

|P(X (01) = @0, [ X(W) = 2w, X (U) = 207, X (v2) = )

(25) — P(X('Ul) = xv1|X(W) = ﬂiw,X(U) = QJU,X(UQ) = $;2)| > €

and

(26) PX(W)=zw,X(U) =2y, X(v2) = xy,) > 0,
P(X(W) =aw,X(U) =2y, X(v2) = x3,) > 0.

Then for some constant C = C(¢e,6) > 0, if k > Cdlogn then there exists an estimator
é(i*) such that the probability of correct reconstruction is P(G = @(K*)) =1-o0(1).

Proof. We apply the algorithm from Theorem 3 to X™* setting the maximum degree
as d = 2d'. The algorithm will output the graph G* = (V*,E*). If v, N(v) C V*
then the algorithm correctly reconstructs the neighborhood N(v). Any vertex in V*
is adjacent to at most one missing vertex so suppose that v; is a vertex adjacent
to a missing vertex v. Then by condition (25) and (26) we have that the algorithm
reconstructs the neighborhood of vy as N(v) U N(v1) — {v,v1}. So the edge set E* is
exactly all the edges in the induced subgraph of V* plus a clique connecting all the
neighbors of missing vertices. Since G is triangle-free every maximal clique (a clique
that cannot be enlarged) of size at least 3 corresponds to a missing vertex.

So to reconstruct G from G* we simply replace every maximal clique in G* with a
vertex connected to all the vertices in the clique. This exactly reconstructs the graph
with high probability. o

Remark 3. The condition that missing vertices are at distance at least 3 is not
necessary, but this assumption simplifies the algorithm because the cliques corre-
sponding to missing vertices are disjoint. A slightly more involved algorithm is able
to reconstruct graphs where the missing vertices have d(v,v’) = 2.

The following lemma shows that the conditions for recovery of missing vertices in
Theorem 5 are satisfied for a ferromagnetic Ising model satisfying the assumptions of
Lemma 2.
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LEMMA 2. Consider the ferromagnetic Ising model where all coupling parameters
satisfy

0<c<piy<C

on a triangle-free graph G with minimum degree 3. Then the conditions of Theorem
5 are satisfied with

N tanh(2c)
€
~ 64e2(d+1)C tanh(2C)

and

Proof. To check the first condition we write
|P(X(v1) = X (NUW) = znuw, X (v2) = 1)
= P(X(u1) = IX(NUW) = zyuw, X (v2) = —1)
= !P(X(Ul) =1X(N)=2an,X(v2) =1,X(v) =1)P(v=1X(N) =zn,X(v2) =1)
+ P(X(v1) = 1|X(N) =2y, X(v2) =1, X(v) = ~DP(v = —1|X(N) =2y, X(v2) = 1)
—P(X(v1) =1|X(N)=2zn,X(v2) = -1, X(v) =1)P(v =1|X(N) =zn, X (v2) = —1)
= P(X(v1) = 1|X(N) = 2n, X (v2) = —1, X(v) = ~1)P(v = —1|X(N) = zn, X (v2) = —1)]
!P(X(Ul) =1X(N)=2an,X(v) =1)P(v=1X(N) =zn,X(v2) =1)
+ P(X(v1) = 1[X(N) = zn, X(v) = =1)P(v = —1[X(N) = 2N, X(v2) = 1)
— P(X(v1) = IX(N) = zn, X(v) = )P(v = 1[X(N) = 2y, X (v2) = —1)
— P(X(v1) = 1|IX(N) = 2n, X (v) = ~1)P(v = —1|X(N) = zn, X (v2) = ~1)],
where N = N(v) U N(vl) - {v, v1,v2} and where the last step follows by the Markov

property (since all paths from v to ve pass through vertices in N or through v).
Continuing, we have that the above is equal to

| (P(X(v1) = 1[X(N), X (v) = 1) = P(X(v1) = 1|X(N), X (v) = ~1))
H(P(X(v) = 1|X(N), X (v2) = 1) = P(X(v) = 1|X(N), X (v2) = —1)) |-

But by Lemma 2,

tanh(2¢

| (P(X(v1) = 1|X(N), X (v) = 1) = P(X(v1) = 1| X(N), X (v) = -1)) | > mh@g) -

By the ferromagnetic assumption, the second factor can be lower bounded as

1

| (P(X(v) = 1| X(N), X (v2) = 1) = P(X (v) = 1|X(N), X (v2) = 1)) | > T6o2@e
Hence the first condition is satisfied with

tanh(2c)
64e2(d+1)C tanh(2C) -

€ >

The second condition, by the same argument as in Lemma 2, is satisfied with
e—4d’C

6> . O
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