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A BAYESIAN APPROACH TO MODELING

STOCHASTIC BLOCKSTRUCTURES

WITH COVARIATES

Christian Tallberg

Department of Statistics, Stockholm University

We consider social networks in which the relations between actors are gov-

erned by latent classes of actors with similar relational structure, i.e., blockmo-

deling. In Snijders and Nowicki (1997) and Nowicki and Snijders (2001), a

Bayesian approach to blockmodels is presented, where the probability of a

relation between two actors depends only on the classes to which the actors

belong but is independent of the actors. When actors are a priori partitioned

into subsets based on actor attributes such as race, sex and income, the model

proposed by Nowicki and Snijders completely ignores this extra piece of infor-

mation. In this paper, a blockmodel that is a simple extension of their model is

proposed specifically for such data. The class affiliation probabilities are mod-

eled conditional on the actor attributes via a multinomial probit model.

Posterior distributions of the model parameters, and predictive posterior

distributions of the class affiliation probabilities are computed by using a

straightforward Gibbs sampling algorithm. Applications are illustrated with

analysis on real and simulated data sets.

Keywords: Bayesian analysis, Blockmodels, Gibbs sampling, Multinomial

probit, Random graphs

1 INTRODUCTION

Most methods in social network analysis are concerned with the descrip-
tion of network structural properties, cf. Wasserman and Faust (1994).
One such formal property is structural equivalence. A definition is given
in Lorrain and White (1971) which, briefly stated, says that two actors are
structural equivalent if they have identical relational features. We can
then define deterministic approach to blockmodels, first given by White,
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Boorman and Breiger (1976), as a partition of actors into discrete subsets
called classes, where actors in the same class are structurally equivalent.

Fienberg and Wasserman (1981) and Holland, Laskey and Leinhardt
(1983) generalized the deterministic blockmodel by using the concept
stochastic equivalence, in a random directed graph model two actors
are defined as stochastically equivalent if their probabilistic relation struc-
tures to the other actors in the graph are the same. Under an additional
assumption of independent dyads and permutation invariance of actors,
Fienberg and Wasserman (1981) and Holland, Laskey and Leinhardt
(1983) called models with such probabilistic relational structures
stochastic blockmodels. In the case where the class labels are known, this
approach is called a priori block-modeling. When the class labels are
unknown, Wasserman and Anderson (1987) proposed a blockmodeling
procedure where class labels are identified a posteriori based on the
observed relational data within the framework of log-linear models. This
specific log-linear model, the p1 model, introduced by Holland and
Leinhardt (1981), includes two parameters for each vertex related to the
number of outgoing relations and the number of ingoing relations, as well
as the reciprocity parameter. Due to the nature of their model, the range
of the parameter space of the two former parameters is limited. Wong
(1987) used a Bayesian approach, and computed posterior distributions
for the exponential parameters in the p1 model.

Recent advances in stochastic blockmodels include works by Snijders and
Nowicki (1997), Nowicki and Snijders (2001), and Hoff et al. (2002). Hoff
et al. (2002) developed a class of models where the probability of a relation
between actors depends on the distance in some latent space. Snijders and
Nowicki (1997) presented a stochastic a posteriori blockmodel where the
number of blocks is restricted to two, and the probability of an edge between
two actors depends not only on the classes to which the actors belong but
is also independent of the actors. They considered an a posteriori model that
is more general than the p1 model in the sense that the restrictions on
the parameter space are not required. In a sequel paper by Nowicki and
Snijders (2001), the model is extended to include valued directed graphs
where the number of blocks is allowed to be arbitrary.

In many social networks, actors are a priori partitioned into subsets
based on actor attributes such as race, sex and income. The model by
Nowicki and Snijders (2001) completely ignores such actor information,
and the class affiliation probabilities are therefore the same for all actors.
Wang and Wong (1987) used a priori information on actor level by
proposing a stochastic blockmodel based on p1, but with actor parameters
indicating between-class and within-class tendencies for edges to form.

In this paper, a blockmodel that is an extension of the model by Nowicki
and Snijders (2001) is proposed specifically for data where class affiliation
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depends on actor attributes. The class affiliation probabilities are modeled
conditional on the actor attributes via a multinomial probit (MNP) model.
Using the simulation-based approach for the MNP model with observable
response variables, developed by Albert and Chib (1993), McCulloch and
Rossi (1994) and McCulloch et al. (2000), we compute the posterior distri-
butions of the model parameters and predictive posterior distributions of
the class affiliation of each actor.

The present paper is structured as follows. In Section 2 the notation is
outlined, and the stochastic blockmodel considered is defined. In
Section 3, we review the MNP model. Prior distributions and posterior
distributions are discussed in Section 4. Section 5 provides empirical
examples, and some concluding remarks are given in the final section.

2 NOTATION AND DEFINITION OF THE CONSIDERED
STOCHASTIC BLOCKMODEL

Consider a graph of known order v on the vertex set V ¼ f1; . . . ; vg, and let
V
2 denote the set of all distinct ordered pairs of vertices (i, j) from V. We

assume a general relational structure on this set of vertices which is repre-
sented by its edge value matrix x ¼ ðxijÞ; ði; jÞ 2 V2, where the element xij
is an observed value of a relation from vertex i to vertex j. By convention,
the diagonal entries of x are equal to 0. Let xij 2 R, where
R ¼ f0; 1; . . . ; r � 1g is the range space of the edge values, i.e., the set of
possible values of a relation from vertex i to vertex j. In the special cases
of graphs and digraphs we have that R ¼ {0,1}. Furthermore, we assume
that V is partitioned into c mutually exclusive non-empty vertex subsets
V0;V1; . . . ;Vc�1 called classes, where jVkj ¼ vk; k ¼ 0; . . . ; c� 1 and
v ¼ v0 þ . . .þ vc�1:

The dyad involving i and j is characterized by ðxij;xji; yi; yj; zi; zjÞ, where
yi and yj are class labels of vertices i and j, zi ¼ ðzi1; . . . ; zipÞ0 and
zj ¼ ðzj1; . . . ; zjpÞ0 are vectors of known covariate values of vertices i and
j in V. Conditional on all y1; . . . ; yv, the dyads ðxij;xjiÞ for i < j are
independent with probability

Prðxij ¼ x;xji ¼ x0jy1; . . . ; yvÞ ¼ Prðxij ¼ x;xji ¼ x0jyi; yjÞ:

If vertex i belongs to class k and vertex j belongs to class l, the dyad
probability can be written as

Prðxij ¼ x;xji ¼ x0jyi ¼ k; yj ¼ lÞ ¼ gklðx;x0Þ:

Define further an array of class dependent dyad probabilities

g ¼ ðgkl : 0 � k � l � c� 1Þ;

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 3
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where g consists of subarrays

gkl ¼ ðgklðx;x0Þ : 0 � x � r � 1; 0 � x0 � r � 1Þ; 0 � k � l � c� 1

gkk ¼ ðgkkðx;x0Þ : 0 � x � x0 � r � 1Þ; 0 � k � c� 1

(
;

satisfying the restrictionXr�1

x¼0

Xr�1

x0¼0
gklðx;x0Þ ¼ 1; 0 � k < l � c� 1Xr�1

x¼0

Xr�1

x0¼x
gkkðx;x0Þ ¼ 1; 0 � k � c� 1:

8<
:

By symmetry

gklðx;x0Þ ¼ glkðx0;xÞ for all x;x0; k; l;

so the model would be over-parametrized by keeping all r2c2 dyad probabil-
ities. This is remedied by restricting the parameters to g. Note that
there are r

2 elements in gkl for k < l and rþ1
2

� �
elements in gkk for all k

and l. Thus there are r2 c

2

� �
þ rþ1

2

� �
c ¼ rcþ1

2

� �
elements in g and r2c2�

rcþ1
2

� �
¼ rc

2

� �
dyad probabilities are redundant.

To define our stochastic blockmodel, we assume that the class labels
yi are unknown parameters and the prior distribution of the class labels
y ¼ ðy1; . . . ; yvÞ0 is assumed to depend on the covariate vectors
z1; . . . ; zv according to

Prðy1; . . . ; yvjz1; . . . ; zvÞ ¼
Yv
i¼1

PrðyijziÞ ¼
Yv
i¼1

hðyijziÞ;

where the conditional probability Prðyi ¼ kjzi ¼ zÞ is denoted by hðkjziÞ or
by hkðziÞ. Since the conditional distribution of x given y and g is given by

Prðxjy; gÞ ¼
Yr�1

x¼0

Yr�1

x0¼0

fgklðx;x0Þgfklðx; x
0ÞYr�1

x¼0

Yr�1

x0¼0

fgkkðx; x0Þgfkkðx;x
0Þ;

where fklðx;x0Þ are the counts of dyads (i, j) with i < j and ðxij;xji;
yi; yjÞ ¼ ðx;x0; k; lÞ; the stochastic blockmodel given by the joint distri-
bution of (x, y), can now be written as

Prðx; yjg; h ðy1jz1Þ; . . . ; hðyvjzvÞ; z1; . . . ; zvÞ

¼
Yv
i¼1

hðyijziÞ
 !Yr�1

x¼0

Yr�1

x0¼0

fgklðx;x0Þgfklðx;x
0ÞYr�1

x¼x

Yr�1

x0¼0

fgkkðx;x0Þgfkkðx;x
0Þ ð1Þ

Various properties of the stochastic blockmodel have been studied by, for
example, Frank and Harary (1982), Frank (1988a, 1988b) and Janson
and Nowicki (1991).
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The model given by (1) is a version of the model presented by Nowicki
and Snijders (2001), extended to include vertex attributes affecting the
class affiliation probabilities. Thus, unlike the simpler model of Nowicki
and Snijders (2001), where the probability to belong to class k, hk, is
the same for all vertices, our proposed model is richer since it allows
the class affiliation probabilities, hkðziÞ, to vary between the vertices.
When data are generated by (1), we shall show by a simulated example
that the prediction of y is improved considerably. In the sequel, the model
by Nowicki and Snijders (2001) is denoted M1, and the model given by
(1) is denoted M2.

The class affiliation probabilities are modeled conditional on the covari-
ates via the MNP model introduced by Aitchison and Bennet (1970).
A brief review of the MNP model is given in the next section.

3 THE MULTINOMIAL PROBIT MODEL

Consider a random utility model in the following way. For the ith individual
faced with c choices, suppose that the utility of choice k is

w�
ik ¼ z0ib

�
k þ e�ik; k ¼ 0; . . . ; c� 1;

where b�k ¼ ðbk0; . . . ; bkpÞ
0
is a (pþ 1) dimensional parameter vector, and

e�ik is an unobserved random variable. If the individual makes choice k,
we assume that w�

ik is the maximum among the c utilities. By letting
w�
i ¼ w�

i0; . . . ; w�
iðc�1Þ

� �0
be a vector of c utility indexes, each class label

is then a function of w�
i as follows

yiðw�
i Þ ¼ arg max

k¼0;...;c�1
w�

ik:

It is conventional to measure utility relative to the alterantive w�
i0

to identify the model parameters (McCulloch and Rossi, 1994). Thus, we
will normalize by reducing w�

i to the (c� 1) dimensional vector

wi ¼ ½w�
ik �w�

i0; k ¼ 1; . . . ; c� 1�:

The utility of choice k relative to choice 0 is then given by

wik ¼ z0ibk þ eik; k ¼ 1; . . . ; c� 1;

where bk ¼ b�k � b�0; and eik ¼ e�ik � e�i0; and each class label is then a func-
tion of wi given by

yiðwiÞ ¼
0 if max

k
wik � 0

argmax
k

wik if max
k

wik > 0:

(

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 5
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Thus, yi ¼ 0 if all the wik are non-positive, otherwise yi equals the
index of the biggest positive wik. If wi is a continuous random vector, the
probability that at least two elements are equal is zero so we need not
consider ties.

Furthermore, let R� ¼ ½rkl; k; l ¼ 0; . . . ; c� 1� be a c by c positively
semi-definite matrix of covariances for the utility of choices. Without loss
of generality, we set the first row and column of R� to zeros and refer
to the remaining submatrix as

R ¼ ½rkl; k; l ¼ 1; . . . ; c� 1�:

Normally, the choice provided by the greatest utility is observable,
whereas in our setting the choices, signifying class labels, are unobservable.
We also note that R or b must be normalized in some way because the
scale of the distribution of wi is not idenitfiable. A discussion of how to
handle this problem is briefly given in Section 4.5.

Assume that wi � Nðz0iðb1; . . . ; bc�1Þ;RÞ: If the parameter vectors
b1; . . . ; bc�1 are replaced by a single parameter vector b ¼ ðb01; . . . ; b

0
c�1Þ

0
,

the model can be given as wi � NðZib;RÞ, where

Zi ¼

z0i 0
z0i

�
�

0 z0i

2
66664

3
77775

is a matrix of dimension ðc� 1Þ by ðc� 1Þ p.
In the special case where the covariates have no effect, the MNP model

is reduced to comprise c� 1þ c

2

� �
parameters, c� 1 intercepts and

c

2

� �
covariances for the utility of choices. Thus, we have c� 1þ c

2

� �
effective

parameters but pðc� 1Þ þ c

2

� �
formal parameters. This could lead to dif-

ficulties in the estimation procedure. However, extensive simulation results
not presented here show that for graphs of large sizes the Gibbs sampler
succeed to converge although the formal parameters outnumber the effec-
tive parameters in the MNP model irrespective of how informative the
specified prior distributions are. For graphs of small sizes though it is
necessary to use weakly informative priors on the MNP model parameters
to prevent the Gibbs sampler from failing to converge. See Section 5 for
further discussion on this subject where our approach is performed on

two simulated data sets of which one is generated by a model where all

the MNP model parameters except the
c

2

� �
covariances equal zero.

6 C. Tallberg
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An alternative to the MNP model would be the multinomial logit model
with uncorrelated choices (Koop and Poirier, 1993).

4 PRIOR ASSIGNMENTS AND COMPUTATION OF
POSTERIOR DISTRIBUTIONS

The M2 model includes the set of unknown parameters y; g; b and R, which
require specification of a prior distribution, pðy; g; b;RÞ according to a
Bayesian analysis. The computation of the posterior distribution is given by

pðy; g; b;Rjx; zÞ ap ðx; zjy; g; b;RÞp ðy; g; b;RÞ ð3Þ

where z ¼ ðz1; . . . ; zvÞ is a p by v matrix of the v covariate vectors. An g is
independent of b and R conditional on y, and for simplicity independence is
assumed between b and R, the prior distribution can be decomposed into

pðg; y; b;RÞ ¼ pðgjy; b;RÞpðyjb;RÞpðbjRÞpðRÞ
¼ pðgjyÞpðyjb;RÞpðbÞpðRÞ

The posterior joint distribution given by Equation (3) is highly intrac-
table, but since the full conditional posterior distribution of each involved
parameter is easy to compute, a feasible approach is to implement the
Gibbs sampler algorithm. The Gibbs sampler works by iteratively drawing
values from each of the full conditional distributions, each conditionally
on the last updated values of all the other unknown parameters. As the
number of draws approaches infinity, the Gibbs sampler generates accurate
samples from the joint posterior distribution. A more extensive review of
the Gibbs sampler algorithm can be found in for example Gelman et al.
(1995), and Gilks, Richardson and Spiegelhalter (1996).

4.1 Full Conditional Posterior of y

By following the notation of Nowicki and Snijders (2001), we first define
dilðx;x0Þ to be the number of vertices in class l that have relation ðx;x0Þ
with vertex i 2 V ; yi ¼ k, which can be expressed more formally as

dilðx;x0Þ ¼ Rj:ði;jÞ2V2Ifxij ¼ x; xji ¼ x0gIfyj ¼ lg:

The full conditional posterior distribution of eacy yi is then given by

Pr ðyi ¼ kjfyigj 6¼i; g; b;R; x; ziÞa hkðziÞ
Yc�1

l¼0

fgklðx;x0Þgdilðx;x0Þ:

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 7
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4.2 Full Conditional Posterior of the Dyad Probabilities

To determine the full conditional posterior distribution of each set of dyad
probabilities, we first define an array of counts of dyad values

f ¼ ðfkl : 0 � k � l � c� 1Þ;

where f consists of

fkl ¼ ðfklðx;x0Þ : 0 � x � r � 1; 0 � x0 � r � 1Þ; 0 � k � l � c� 1
fkk ¼ ðf kkðx;x0Þ : 0 � x � x0 � r � 1Þ; 0 � k � c� 1

�
;

and an array of hyperparameters

a ¼ ðakl : 0 � k � l � c� 1Þ;

where a consists of

akl ¼ ðaklðx;x0Þ : 0 � x � r � 1; 0 � x0 � r � 1Þ; 0 � k � l � c� 1
akk ¼ ðakkðx;x0Þ : 0 � x � x0 � r � 1Þ; 0 � k � c� 1

�
:

By assuming that each set of counts of dyad values is multinomially distri-
buted, and each set of dyad probabilities is conjugate Dirichlet a priori, the
full conditional posterior distribution of each set of dyad probabilities is

ðgkljy; b;R; x;ZÞ ¼ ðgkljfklÞ � Dirichlet ðfkl þ aklÞ; k � l:

Note that under vague priors, our model is invariant to permutation of
the block labels and is therefore unidentified, see, e.g., Richardson and
Green (1997). In the literature, this phenomenon is called label switching,
and it causes difficulties to assess accurate posterior distributions. This
problem is discussed in Nowicki and Snijders (1997), who suggest that
identifiability restrictions are imposed on the elements in g.

4.3. Full Conditional Posterior of wi

The main obstacle in implementation of the MNP model has been comput-
ing the multivariate normal probabilities for any dimension higher than 2.
However, vast improvements of computer-based methods in recent years,
such as Gibbs sampling, have made estimation of the MNP model feasible.
In this paper, we use the simulation based approach for the MNP, developed
by Albert and Chib (1993), McCulloch and Rossi (1994) and McCulloch
et al. (2000) in order to compute the posterior distributions of the MNP
parameters b and R.

8 C. Tallberg
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First we introduce v independent latent vectors wi as discussed in
Section 3. The full conditional posterior of each wi is equal to the
NðZib;RÞ distribution, i ¼ 1; . . . ; v, truncated to the region

wi 2 Rc�1 : max
k

wik � 0;

if yi ¼ 0, and

wi 2 Rc�1 : argmax
k

wik ¼ yi;

otherwise. Here R denotes the set of real numbers. For a detailed descrip-
tion of simulation from a truncated multivariate normal distribution, see
Geweke (1991). The draws of wi are of no interest per se and need not
be saved after the termination of the iteration. They are only introduced
to facilitate the computation of the posterior of b and R.

4.4. Full Conditional Posterior of b

By selecting a proper conjugate Nðb�;B�Þ prior for b, the full conditional
posterior of b is Nð~bb; ~BBÞ, where

~bb ¼ ðB��1 þ Z0ðIv � R�1ÞZÞ�1ðB��1b� þ Z0ðIv � R�1ÞwÞ;
~BB ¼ ðB��1 þ Z0ðIv � R�1ÞZÞ�1;

w ¼ ðw0
1; . . . ;w

0
vÞ is a vðc� 1Þ dimensional vector, Z ¼ ðZ1; . . . ;ZvÞ is a

ðpþ 1Þ by v matrix, Iv is a v by v identity matrix, and Iv � R�1 is a
vðc� 1Þ by vðc� 1Þ matrix called the Kronecker product of Iv and R�1

defined by

Ic�1R
�1 0 � 0

0 �
� �
0 IcR

�1

2
664

3
775

where Ic�1 is a ðc� 1Þ by ðc� 1Þ identity matrix

4.5 Full Conditional Posterior of R

Due to various solutions of the identification problem that arises in the
multinomial probit model, there are various possibilities how to set priors
on R and derive full conditional posteriors. One solution is to condition on
r11 ¼ 1 and construct a Gibbs sampler from the conditional posterior of
Rjr11 ¼ 1 (McCulloch et al. 2000). With this approach it is possible to
specify a truly diffuse or improper prior. However, as pointed out by

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 9
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(McCulloch et al. 2000), this simple method of achieving identification
comes at a cost. Due to a Gibbs sampler that produces a Markov chain
which tends to be relatively high autocorrelated, the Markov chain will fail
to coverage in some extreme cases. These cases occur in high dimensions
and in situations in which the likelihood is not very informative. Our
preliminary findings for the case of unknown block labels, specifically
in graphs of small sizes, are that it is in general difficult for the Gibbs
sampler to converge with the identification approach. Instead we
conveniently consider a proper conjugate Wishart prior distribution
(McCulloch and Rossi, 1994) on R�1; R�1 � Wishart (m, D), which
combined with the likelihood yield the following full conditional posterior
distribution

R�1jb;w � Wishart mþ v; Dþ Rv
i¼1eie

0
i

� �
;

where the Wishart prior distribution is parametrized so that
EðR�1Þ ¼ mD.

Note that as in Nowicki and Snijders (2001), our goal is to compute the
predictive posterior distributions of the class labels. In both cases, this is
achieved by performing a Gibbs sampling. However, in Nowicki and
Snijders (2001), the class affiliation probabilities are equal for all actors,
whereas here they depend on actor attributes via the MNP model and
are therefore not necessary equal. Hence, we need to estimate an extra
set of parameters, b and R. One way is to adopt the procedure developed
by for example McCulloch and Rossi (1994), and McCulloch et al. (2000),
who performed a Gibbs sampling for a fixed vector of class labels in order
to estimate b and R. In our applications, the vector of class labels is
unknown. Thus, in each iteration of the Gibbs sampler, where predictive
posterior distributions of the class labels are computed, we have to perform
an embedded Gibbs sampling, such as the one suggested by McCulloch
and Rossi (1994), and McCulloch et al. (2000), in order to obtain accurate
estimated posterior distributions of b and R from which we sample the
last updated values. However, simulation results show that we obtain
the same posterior distributions by performing just one iteration in the
embedded Gibbs sampler. A probable explanation is that the Gibbs sampler
typically moves rather slowly in y-space.

5 INFERENCE AND MODEL ASSESSMENT ILLUSTRATED
WITH NUMERICAL EXAMPLES

We now illustrate the methodology presented in the previous sections using
one data set generated by computer simulation and one real data set from

10 C. Tallberg
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the social network modeling literature. The number of classes is predeter-
mined to three, c ¼ 3. For simplicity, we will in the given examples consider
posterior blockmodeling for undirected graphs. Then the range space of
dyad values is reduced to fð0; 0Þ; ð1; 1Þg; and gklð1; 1Þ; fklð1; 1Þ and
aklð1; 1Þ are denoted gkl; fkl and akl; 0 � k � l � 2; respectively. The full
conditional posterior distribution of each set of dyad probabilities is then

ðgkljfklÞ;� betaðfkl þ aklÞ; 0 � k � l � 2:

Each run of the Gibbs sampler concerning the MNP parameters was
started at the initial values b ¼ 0 and R ¼ I2, whereas the initial values
of each element in y were drawn from a discrete uniform distribution.
Since we draw w first in the part of the Gibbs sampler concerning the
MNP parameters, there is no need to specify initial values. For the same
reason, there is no need to specify initial values for g.

The information extracted from the Gibbs sampler is only valid for infer-
ence as long as the chain has converged. Thus, an important issue is how to
detect convergence. Several ad hoc methods have been suggested for
determining the chain long enough so that the Gibbs sampler has con-
verged. A general strategy is to monitor the convergence of some aspect
of the Gibbs sequence. Gelfand and Smith (1990) and Gelfand, Hills,
Racine-Poon and Smith (1990) suggest monitoring density estimates from
independent sequences. Tanner (1991) suggests monitoring a sequence of
weights that measures the discrepancy between the sampled and the
desired distribution. Here, a simple and perhaps naive strategy for asses-
sing convergence is adopted. In each iteration, the mean of the sampled
observations is monitored, allowing the sampler to run until we feel that
the marginal posterior distributions of the parameters of interest have
converged. In all analysis, convergence were considered to have taken
place after 5,000 iterations, and computations of posterior distributions
are based on samples of additional 10,000 observations.

5.1 Simulated Example

We will use a model including one predictor and intercept. Data are simu-
lated as follows. For v ¼ 40, c ¼ 3 and p ¼ 1, a vector-valued observation
of 40 attribute values is generated, where each element is drawn iid from
a uniform distribution on the interval (�2, 2). Since we only use one attri-
bute and an intercept, each zi is a vector of dimension two. Given the design
matrix Zi, 40 random vectors of utility indexes wi is drawn iid from a N

(Zib,R)- distribution for two sets of MNP model parameters. In each set,
the variances are r11 ¼ 1 and r22 ¼ 2, and the corrrelation is q12 ¼ 0.5.

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 11
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The two sets of b, the corresponding outcome of the randomly generated
utility indexes and their associated class labels yi (wi) are as follows:

1. b0=(b10, b11, b20, b21) ¼ (�1, �1.4, �0.5, 1.0), where b10 and b20 are
the intercept coefficients and b11 and b21 are the attribute coefficients.

For 12 wi, max
k

wik � 0 yielding yi (wi) ¼ 0, for 14 wi; wi1 > 0 is
the maximum element yielding yiðwiÞ ¼ 1, and for the remaining 14
wi, wi2> 0 is the maximum element yielding yi(wi) ¼ 2. The vector of
class labels y are than rearranged so that the first 12 vertices belong
to class 0, the following 14 belong to class 1 and the last 14 belong to
class two.

2. b0 ¼ (0.0, 0.0, 0.0, 0.0) ¼ 0. Analogously, the following outcome is
obtained: yi(wi) ¼ 0 for 13 vertices, yi(wi) ¼ 1 for 11 vertices, and
yi(wi) ¼ 2 for 16 vertices.

Given y, an adjacency matrix of order 40 is then generated where the
off-diagonal elements are drawn independently from Bernoulli distri-
butions with edge probabilities

g ¼ fg00; g01; g02; g11; g12; g22g
¼ f0:6; 0:1; 0:1; 0:4; 0:1; 0:2g:

Since we only consider proper prior distributions for the MNP model
parameters, the situation in which the investigator has no strong prior
beliefs about the location of the parameters may be approximated by speci-
fying extremely diffuse priors. This is achieved by taking the precision
matrix of b to be very small and by setting m to a small number relative
to sample size used in the analysis, which ensures that the prior on R�1

remains diffuse relative to the likelihood. Extensive simulation results show
that our implemented simulation based estimation method yield computed
posterior distributions of high accuracy by using extremely diffuse priors
for graphs of sizes v > 100. However, since realistic sizes of graphs that
arise in studies of networks are usually smaller, our reported analysis is
performed on a graph of size v ¼ 40. To keep the Gibbs sampler from
wandering too far a field in the parameter space, we are forced to use
slightly informative prior distributions on b and R� 1. Hence, we assume
a priori that b is N (b�0 ¼ 0, B� ¼ 100I4), and R� 1 is Wishart (m ¼ 10,
D ¼ I2) which is centered on the identity matrix. An extensive discussion
of the choice of priors on MNP model parameters, and their impact on the
inference procedure are given in McCulloch and Rossi (2000). In some
situations, briefly mentioned in Section 4.5, McCulloch and Rossi also
advocate weakly informative priors on R�1, centered on the identity
matrix, in the absence of strong prior information, since the Gibbs
sampler may experience convergence problem.

12 C. Tallberg
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Marginal posterior distributions of the MNP model parameters are dis-
played in Figure 1. Not surprisingly, the marginal posterior distribution of
R�1 obtained from the Gibbs sampler is centered on I2 since our rather
informative prior on R�1 is centered on I2. Hence, the true value of q12 just
falls outside the 95% credibility interval. It is further striking in Figure 1
how robust our approach to blockmodels with covariates seems to be
to the problem of performing inference in an overparametrized model.
The credibility intervals are conclusive except for the intercepts.

To interpret the impact of the MNP model parameters on the probabil-
ities Prðyi ¼ kÞ; k ¼ 0; 1; 2 as zi changes, recall that the latent random util-
ity vector wi is NðZ0

ib;RÞ, and that the class labels are functions of wi

according to Equation (2) . The preference to the kth class of the ith actor
is determined by zi and the parameters b11; b21 and R that depend on the
class. For example, the actor age may be regarded as a covariate affecting
class affiliation. The corresponding parameters b11 ¼ �1:4; b21 ¼ 1:0 and

FIGURE 1 Marginal posterior distributions of the MNP model parameters for

b0 ¼ (�1.0,�1.4,�0.5, 1.0)(the upper two rows), and for b0 ¼ 0 (the bottom

row). A dashed line is drawn at the true parameter value, and solid vertical lines

depict the lower and upper boundaries of 95% credibility intervals.

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 13
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q12 ¼ 0:5 depend on the class, e.g. given that q12 is positive (although we a
priori force it to take values near 0) and due to the negativity of b11 and the
positivity of b21, for increasing age, an increasing probability to belong to
class 2 in relation to class 0 but a decreasing probability to belong to class
1 in relation to class 0 may be expected. If instead q12 should be negative,
large values of wi1 yield small values of wi2, and vice versa. Then, due to
the negativity of b11 and the positivity of b21, for increasing age, an increas-
ing probability to belong to class 1 in relation to class 0 should be expected.

In our analysis we avoid making choices about g by setting the
hyperparameters in the beta distributions to one. That is, all the
elements in g are uniformly distributed. To avoid the problem of noniden-
tified class labels, the domain of g is restricted to 0 < g22 < g11 < g00 < 1.
Hence, g00; g11 and g22 are dependent, and defined in the region
0 < g22 < g11 < g00 < 1 independently of g01; g02 and g12. However, if prior
information on the elements in g is available, besides yielding improved
estimators, a non-uniform prior distribution can identify the class labels
and thereby avoid the problem of label switching. Figure 2
displays marginal posterior distributions of the edge probabilities for M1

and M2 when data are generated by the M2 model with
b0 ¼ ð�1:0;�1:4;�0:5; 1:0Þ: The precision of the posterior distributions
increase in various degree when M2 is assumed. Figure 2 also displays
marginal posterior distributions of the edge probabilities by assuming M2

(when M1 is assumed, the marginal posterior distributions of the edge
probabilities are more or less the same for both datasets) when data are
generated by M2 with b0 ¼ 0 which corresponds to hkðziÞ ¼ 1=3;
k ¼ 0; 1; 2; i ¼ 1; . . . ; v: The marginal posterior distributions under M1

and M2 are then more or less equal.
In Figure 3 the marginal posterior probability to belong to the correct

class for M2 is plotted against the marginal posterior probability to belong
to the correct class for M1 when b0 ¼ ð�1:0;�1:4;�0:5; 1:0Þ: With one
exception, the probabilities are located above the diagonal, suggesting
that our proposed model substantially improves prediction of class
affiliation when data are such that the posterior probabilities depend on
known actor attributes.

5.2 A Data Example

We now apply the suggested approach to the countries trade network data
described in Wasserman and Faust (1994), pp. 64–65. The data set includes
five dichotomous and directional relations measured on a selection of 24
countries, and 4 attribute variables rejecting the economic and social
characteristics of the countries. In our example we chose on of the
relations, imports of food and live animals, and one of the attribute

14 C. Tallberg
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variables, p ¼ 1, energy consumption per capita in 1980. The countries are,
with vertex labels between the first parenthesis and attribute values
between the second parenthesis, Algeria (1)(814), Argentina (2)(2161),
Brazil (3)(1101), China (4)(618), Czechoslovakia (5)(6847), Ecuador
(6)(692), Egypt (7)(595), Ethiopia (8)(24), Finland (9)(6351), Honduras
(10)(292), Indonesia (11)(266), Israel (12)(2813), Japan (13)(4649),
Liberia (14)(502), Madagascar (15)(74), New Zealand (16)(4816),
Pakistan (17)(224), Spain (18)(2944), Switzerland (19)(5223), Syria
(20)(964), Thailnad (21)(370), United Kingdom (22)(5363), United States
(23)(11626) and Yugoslavia (24)(2402). To reduce the number of prob-
abilities, the relational variable is symmetrized as follows: if imports go both
ways, then xij ¼ xji ¼ 1, else xij ¼ xji ¼ 0 even if import goes one way.

Since the number of classes are predetermined to three, c ¼ 3, the vec-
tor of unknown regression coefficients is given by b0 ¼(b10, b11, b20, b21).
To ease the subjectivity in our analysis, we only entertain the relatively

FIGURE 2 Marginal posterior distributions of g for M2 for b0 ¼
(�1,�1.4,�0.5,1.0) (solid curves), b0 ¼ 0 (dotted curves), and M1 (dashed curves).

A solid line is drawn at the true parameter values.

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 15

D
ow

nl
oa

de
d 

by
 [

St
aa

ts
 &

 U
ni

ve
rs

ita
ts

bi
bl

io
th

ek
] 

at
 1

5:
22

 1
4 

O
ct

ob
er

 2
01

4 



weak informative prior on b and reference prior on g specified in the simu-
lated data example. As in the previous example, we are forced to impose
the same rather informative prior on R� 1 due to the small size of the net-
work in order to facilitate for the Gibbs sampler to converge. The marginal
posterior distributions of the MNP model parameters are given in Figure
4. The corresponding posterior means and root mean square errors are
given in Table 1. As in the simulated example, the marginal posterior dis-
tribution of R is centered on the identity matrix since the informative
prior of R�1 is centered on the identity matrix. Furthermore, it is instruc-
tive to notice that the impact of the covariates on the class affiliation are
limited due to small weights b11 and b21. This result entails that the
location and shape of the edge probabilities given in Figure 5 are rather
similar for M1 and M2.

In Figure 6 the posterior class affiliation probabilities under M2 are
plotted against the posterior class affiliation probabilities under M1. The

FIGURE 3 Marginal posterior probabilities to belong to the correct class for M1

(x-axis) and for M2 (y-axis). The vertices belonging to class 0, class 1 and class 2

are labeled with circles, stars and x, respectively.
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probability to belong to class 0, class 1 and class 2 is marked with a circle, a
star and an x, respectively. Our prime concern is addressed to the
actors whose class affiliation probabilities differ between the models,

TABLE 1 MCMC Results for the MNP Model Parameters

Parameter Mean RME

b10 2.67 1.99

b11 �0.0008 0.0005

b20 4.52 2.34

b21 �0.004 0.002

r11 2.23 2.07

r22 2.13 1.76

q12 �0.12 0.31

FIGURE 4 Posterior distributions of MNP model parameters for the entertained

set of prior distributions. Solid vertical lines depict the lower and upper boundaries

of 95% credibility intervals.

A Bayesian Approach to Modeling Stochastic Blockstructures with Covariates 17
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i.e., are markedly located off the diagonal. Those five actors, China (4),
Czechoslovakia (5), Indonesia (11), Thailand (21), and Yugoslavia (24),
are labeled in Figure 6. By interpreting the MNP model parameters, we
see that due to the negativity of b11 and b21 (although rather weak), and
uncorrelated utilities (due to an informative prior), the probability to
belong to class 0 increases for actor 5 due to relatively high covariate values
and decreases for actors 4, 11, 21 and 24 due to relatively low covariate
values. It is further interesting to note that the probability to belong to class
2 is more or less equal for both models.

The entropy provides a natural measure of uncertainty when a desirable
property is that a dominating probability of a discrete random variable
yields a low value, whereas equal values yields the maximum value. The
entropy of a discrete random variable Y is defined by

H ¼ �Rpylogpy

FIGURE 5 Posterior distributions of the edge probabilities for the entertained set

of prior distributions for M1 (solid curve) and M2 (dashed curve).
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where py ¼ Pr(Y ¼ y), and the base of the logarithm is optional. A small
value in H implies less uncertainty in the distribution of y. Since the class
affiliation probabilities take three values, the normalized values H=log(3)
ranges from zero to unity. The entropies of all actors under both
models are listed in Table 2. The domination of one probability to belong
to a specific class seems to increase when covariates are considered.

Our analysis shows roughly that Czechoslovakia, Finland, Japan, Spain,
Switzerland, United Kingdom and United States are likely to belong to class
0; Argentina, Brazil, China, Egypt, Indonesia, Israel, New Zealand, Pakistan,
Thailand and Yugoslavia are likely to belong to class 1, and Algeria, Ecua-
dor, Ethiopia, Honduras, Liberia, Madagascar and Syria are likely to belong
to class 2. A blockmodel analysis is performed by Wasserman and Faust
(1994), pp. 403-406 on this data set, where they measured structural
equivalence by using the Pearson product moment correlation coefficient
on three relations: manufactured goods, raw materials, and diplomatic ties.
All of these relations are directional and dichotomous. They identified

FIGURE 6 Posterior class affiliation probabilities for M1 (x-axis), and M2 (y-axis).

Class 0, class 1 and class 2 is marked with a circle, a star and an x,

respectively.
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the following six positions (classes) by using complete link hierarchical
clustering:

. V 0
0: Japan, United Kingdom, United States.

. V 0
1: China, Czechoslovakia, Indonesia, Spain, Yugoslavia.

. V 0
2: Argentina, Brazil, Finland, New Zealand, Pakistan, Switzerland,

Thailand.
. V 0

3: Algeria, Egypt, Syria.
. V 0

4: Ecuador, Honduras, Israel.
. V 0

5: Ethiopia, Liberia, Madagascar.

The constellation of V0 equals V 0
0 together with Czechoslovakia and Spain

from V 0
1, and Finland and Switzerland from V 0

2. The constellation of V1

equals China, Indonesia and Yugoslavia from V 0
1, together with Argentina,

Brazil, New Zealand, Pakistan and Thailand from V 0
2, Egypt from V 0

3 and
Israel from V 0

4. Finally, apart from Egypt and Israel, the constellation of
V2 equals V 0

3, V
0
4 and V 0

5.

TABLE 2 Entropies of the Class Affiliation Probabilities under both Models.

Country HM1 HM2 HM1=HM2

1 0.373 0.232 1.61

2 0.029 0.004 6.80

3 0.189 0.029 6.56

4 0.233 0.607 0.38

5 0.693 0.662 1.05

6 0.004 0.002 2.26

7 0.018 0.005 4.00

8 0.000 0.000 1.00

9 0.126 0.078 1.62

10 0.000 0.000 1.00

11 0.624 0.081 7.68

12 0.020 0.011 1.93

13 0.012 0.011 1.18

14 0.000 0.000 1.00

15 0.000 0.000 1.00

16 0.033 0.190 0.17

17 0.301 0.014 21.82

18 0.026 0.148 0.18

19 0.115 0.119 0.96

20 0.000 0.000 1.00

21 0.660 0.274 2.41

22 0.032 0.031 1.03

23 0.009 0.001 9.00

24 0.561 0.669 0.84
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However, perphaps a 4-, 5- or 6-block solution would be more
appropriate. This raises the relevant question: What is a reasonable
number of classes? Our analysis is performed for a predetermined number
of classes chosen quite arbitrarily. A proper analysis should devote some
attention to assess the number of classes. The problem of comparing a
collection of models that reflect hypothesis about the data is considered
in Koskinen and Tallberg (2004). This is based on a method of computing
model marginal likelihoods for Bayesian model comparisons from the
output of Metropolis Hastings MCMC-chains, developed by Chib (1995)
and Chib and Jeliazkov (2001).

6 DISCUSSION

In many applications, data are such that class affiliation to a large extent is
governed by a priori actor attributes. Many approaches to blockmodels pro-
posed ignore such information. In this paper, an extension to Nowicki and
Snijders (2001) a posteriori blockmodels is presented for such data. The
class affiliation probabilities are modeled conditional on the actor attributes
via a MNP model. Computation of the posterior distributions of the model
parameters and predictive posterior distributions of the class affilia-
tion involves a Gibbs sampler which only requires draws from standard
distributions.

Assumptions of independence and conditional independence between
the units of analysis are common in social networks. In the introduced
model, we assume that the probability distribution of the relation
between two vertices depends on the class affiliation, and they in their
turn depend on attribute values of the two vertices. By conditioning on
the class affiliation of the vertices, the relations are independent. A chal-
lenge would be development of more elaborate probabilistic models that
consider more complex conditional dependence assumptions. Computa-
tional obstacles have prevented such considerations in the past, but
developments of computer intensive analysis methods in the last decade
facilitate for such modeling. Frank and Strauss (1986) generalized the
dyad independence models by introducing the notion of Markov depen-
dency between dyads.
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