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Meso-scale structures (communities) are used to understand the macro-scale properties of complex
networks, such as their functionality and formation mechanisms. Micro-scale structures are known to
exist in most complex networks (e.g., large number of triangles or motifs), but they are absent in the
simple random-graph models considered (e.g., as null models) in community-detection algorithms.
In this paper we investigate the effect of micro-structures on the appearance of communities in
networks. We find that alone the presence of triangles leads to the appearance of communities even
in methods designed to avoid the detection of communities in random networks. This shows that
communities can emerge spontaneously from simple processes of motiff generation happening at a
micro-level. Our results are based on four widely used community-detection approaches (stochastic
block model, spectral method, modularity maximization, and the Infomap algorithm) and three
different generative network models (triadic closure, generalized configuration model, and random
graphs with triangles).

I. INTRODUCTION

A popular approach to understanding the macro-scale
organization of complex networks is to consider their divi-
sion into meso-scale communities of nodes. Communities
are often defined as groups of nodes that are densely con-
nected within each group but with fewer links between
groups, although more general definitions exist [1]. The
problem of detecting communities in networks has re-
ceived great attention in the last few decades, with many
methods and applications across sociology, biology, and
computer science [2, 3].

The proposed approaches to identify communities in
networks have different partitioning strategies as well as
different topological requirements for the definition of a
community, resulting in different methods often detecting
different communities in the same network. A fundamen-
tal challenge faced by all methods is how to account for
(random) fluctuations in the connectivity pattern across
nodes. For instance, a strong limitation of the popular
modularity maximization approach [4] is that it detects
communities even in Erdös-Renyi random graphs [5] (de-
spite accounting for links due to random chance in the
definition of modularity [4, 6]). This limitation can be
overcome when communities are inferred from an un-
derlying generative model, such as the stochastic block
model (SBM)[7]. However, the random-graph models
used for comparisons in these developments are extremely
simple and lack micro-scale structures known to exist in
real networks, such as a positive clustering coefficient or
disproportional number of small sub-graphs (motifs).

Another crucial question is how the community detec-
tion results are related to the generative process of those
networks [3]. The observation of communities in a net-
work are often implicitly associated to the existence of
an underlying relationship between the nodes, that influ-
enced the formation of the network and was responsible
for the appearance of the community (e.g., communities
in social networks are assumed to reflect some underlying

identity between the individuals of a community). This
association is far from necessary because complex macro-
scale structures often emerge spontaneously from simple
micro-scale interactions, as observed in multiple exam-
ples studied in Complex Systems and Statistical Physics
(e.g., collective motion and self-organized criticality).

In this paper, we investigate the effect of triangles on
the appearance of communities in networks. This is a
further step in the more general exploration [8, 9] be-
tween the effect of micro-scale structures – whose origin
require only local information and are usually more easily
explained – on meso-scale structures such as the commu-
nities found using different algorithms. Our conjecture
is that observed communities in many real networks are
an emergent property of micro-scale processes. Our pa-
per demonstrates through the analysis of simple models
how this indeed happens. Differently from Refs. [8, 9], we
use a variety of community-detection methods, including
methods that are robust against the detection of commu-
nities in random networks. This is essential to isolate the
effect of triangles from the effect of random fluctuations
on the formation of communities.

In the next section we describe the different models
we consider to generate networks with a tunable cluster-
ing coefficient (number of triangles). We then describe
the outcome of four different community detection meth-
ods on these models, showing the effect of triangles on
the communities. We then discuss in further detail our
main numerical finding, a phase transition for the num-
ber of communities found using an SBM inference-based
method. Finally, we summarize our results and discuss
their implications. Codes used in our analysis are avail-
able in Ref. [32].

II. GENERATING NETWORKS WITH
CLUSTERING

In this section we discuss how we generate networks
with a tunable amount of triangles. We are interested in
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simple graphs of N nodes defined by the adjacency ma-
trix A = {ai,j}, where ai,j = 1 if there is a link between
nodes i and j and ai,j = 0 otherwise. A triangle exists
between nodes i, j, and k if ai,j = aj,k = ak,i = 1. The
density of triangles in a network can be quantified by the
(global) clustering coefficient

C =
3×N4
N3

, (1)

where N4 is the total number of triangles in the network,

and N3 =
∑N
i=1

(
ki
2

)
is the number of connected triples

(where ki =
∑N
j=1 ai,j is the degree of node i). The

clustering coefficient (1) is thus a proxy for the number
of triangles, the quantity we wish to vary. We focus on
triangles because of their simplicity, their simple inter-
pretation within the context of real networks, and the
fact that many real networks with community structure,
particularly social networks, also have high clustering co-
efficients [8, 10]. In fact, the allegoric representation of
triangles in social networks – “friends of my friends are
also my friends” – is also a likely explanation for the
process of generating communities (friendship groups).

To support our claims and assess the effect of triangles
on the appearance of communities, we generate networks
with tunable clustering coefficient (1), then apply four
widely used community detection methods to these gen-
erated networks. We are interested in models for which
we can increase the number of nodes N for a fixed average

degree 〈k〉 = 1
N

∑N
i=1 ki (sparse network) and tune the

clustering coefficient from 0 to a Cmax > 0. Considering
these constraints we generate networks from three differ-
ent generative models: (i) the triadic closure model [9]
in which nodes are added to the network in such a way
that new links form triangles with probability p; (ii) an
extension of the traditional configuration model that
includes triangles [11, 12]; and (iii) k-regular graphs with
a fixed number of triangles (random network with
triangles) [13]. The triadic closure model is a growth
model (nodes are added one by one), whereas the other
two generate networks of pre-defined size N with certain
constraints. More specifically, the configuration model
constrains the (joint) degree distribution {ti, si} for the
number of triangles and independent edges of each node
i, while the random network with triangles model im-
poses the total number of triangles in the network as a
hard constraint. Further details on these models can be
found in Appendix A.

The networks generated by our three models are sparse
networks (i.e. the actual number of links is much smaller
than the maximum possible number N(N −1)/2), which
is a characteristic of most real networks and those gen-
erally used in community detection problems. As noted
in Ref. [9], for networks generated by the triadic closure
model, groups of nodes become densely connected with
triangles as the network grows. In fact for all three of our
generative models we expect regions highly concentrated
with triangles to create inhomogeneities in the network
structure that are detected as communities.

Label Journal (code) reference

Modularity maximization Clauset et al. [16] ([17])

Infomap Rosvall et al. [18] ([19])

Spectral (Bethe Hessian) Saade et al. [20] ([21])

SBM (uninformative priors) Peixoto et al. [22] ([23])

TABLE I. Community-detection algorithms used in our anal-
ysis (see App. B for details).

III. COMMUNITIES IN NETWORKS WITH
CLUSTERING

In order to mimic the usual application of commu-
nity detection methods in observed networks, we focus
on standard community-detection methods and do not
use any information about which of the three genera-
tive processes described above were used to generate the
networks. Differently from previous works [1], our goal
is not to evaluate the performance of the different al-
gorithms, but instead we treat the communities found
in each algorithm as given, we analyze them and com-
pare the outcomes of different methods. This approach
of using different methods is further motivated by the No
Free Lunch Theorem [14], which stipulates that there is
a trade-off on algorithm performance, such that no one
method is best for all types of networks.

Our choice of community detection algorithms is
guided by the reviews of Fortunato [3] and Ghasemian
et al. [15], as well as the practical concern of code avail-
ability. This led us to consider four methods, listed in
Table I and summarized in Appendix B. These methods
cover the most popular classes of methods discussed in
Ref. [15].

As a first assessment of how the presence of triangles
leads to the detection of communities in a network, we
investigate the two most contrasting scenarios: networks
with low clustering C ≈ 0 and high clustering C = Cmax.
Considering only the triadic closure model as a genera-
tive process for now, we generate networks with C ≈ 0
(zero probability of closing triangles, p = 0) and with
C = Cmax ≈ 0.25 (obtained for p = 1), then apply the
four detection algorithms described above on the result-
ing networks. We are interested in investigating the re-
lationship between the number of communities Nc and
the network size N . Our results in Fig. 1 show that for
networks with low clustering, only the SBM and spec-
tral methods result in a single detected community (the
whole network). The low-clustering case is similar to
simple random networks and our result thus reflect the
robustness of these two methods to random fluctuations
(consistent with previous findings for the SBM [7]). In
contrast, the two other methods (Infomap and Modular-
ity) detect a number of communities Nc that grows with
N . As far as high clustering is present in the network, all
compared methods behave similarly and Nc grows with
N , but with different growth scales. Interestingly, both
the SBM and Modularity methods show similar Nc that
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FIG. 1. Triangles affect the number of communities. The number of detected communities Nc as a function of the size of the
networks N (number of nodes) for the triadic closure model with (a) p = 0 (low clustering) and (b) p = 1 (high clustering),
for the four community detection algorithms. The insets show a sample network obtained in each of the cases for N = 500.
Error bars were computed over an ensemble of 5 different networks. The scaling lines show that, in the high clustering case, Nc

scales roughly linearly with N for the Spectral and Infomap methods, and Nc scales as approximately
√
N for the Modularity

and SBM methods.

grows as
√
N . This scaling reflects the resolution limit of

these methods [27, 28] and thus corresponds to the max-
imum number of detectable communities these methods
are able to detect in the (sparse) networks generated by
the triadic closure model. Such a growth indicates that
for N → ∞ both the number of communities and the
(average) number of nodes in each community diverge,
suggesting that these communities are indeed meso-scale
structures: more than a fixed number of nodes (the micro
scale) but less than the network as a whole (the macro
scale). In contrast, when the number of communities
grows as N (as our numerical results suggest for the spec-
tral and Infomap cases), the number of nodes in each
community remains a constant for N →∞.

The similarity of the scaling of the SBM and modu-
larity methods in the case of high clustering, raises the
question whether not only the number but also the com-
munities themselves are the same. This is investigated in
Fig. 2, which shows that the communities themselves are
very similar to each other. In particular, the adjusted
mutual information [24] – for which 0 indicates no sig-
nificant similarity and 1 indicates identical communities
– between the modularity and SBM is ≈ 0.8 for large
networks (N > 500). While the comparison between the
other methods leads to less similar results, as expected by
the different scalings in the number of communities, all of
them are statistically significant different from 0 (p-value
< 10−3). This happens because the triangles tend to con-
centrate at the cores of the emerging clusters, with the
nodes connected by a triangle belonging predominantly
to the same communities and different communities be-
ing less connected to each other. This picture is seen in

the networks shown in Fig. 2. This matches the intu-
ition discussed in the previous section, where we assume
that inhomogeneities in the network structure caused by
dense clusters of triangles give rise to communities.

To deepen our investigation on the dependence of com-
munities on the clustering coefficient C, we explore the
relationship between the number of communities Nc on
smooth variations of C, from C = 0 to C = Cmax for all
three generative network models described in section II.
The results in Fig. 3 show that all three cases lead to
qualitatively equivalent results, corroborating our claim
that the effects we describe here are driven by the exis-
tence of triangles, and not by idiosyncratic properties of
specific network ensembles. In terms of community de-
tection methods, we find that the two methods that re-
port the existence of communities for C = 0 (modularity
and Infomap) naturally show a smaller dependence on
C: the modularity method reports an increasing num-
ber of communities as a function of C, while Infomap is
roughly stable. In contrast, the two methods that do not
report the existence of communities for C = 0 (spectral
and SBM) show a starker (and different) dependence on
C: while for the spectral method the number of commu-
nities grows smoothly from C = 0 on, the SBM method
shows a single community for low values of C until a
critical (model dependent) value C = C∗ for which mul-
tiple communities are found. This transition is further
investigated in the next section.
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FIG. 2. Different methods identify similar communities for the clustered model. (Left) Plots of networks generated by the
triadic closure model with p = 1, with communities obtained using the SBM and modularity maximization methods. The inset
emphasizes that triangles are inside communities. (Right) Adjusted Mutual Information between the results of the different
methods for various network sizes N . The Adjusted Mutual Information [24] quantifies the similarity between the communities
and varies between 0 (completely different communities) and 1 (identical communities), with 0 indicating the overlap between
communities expected by chance.

FIG. 3. Dependence of the number of communities Nc in a network with the clustering coefficient C. Each curve corresponds
to a different community detection method (see legend and Appendix B). Each panel shows the results for a different network
model: (a) triadic closure model with N = 10, 000 and p ∈ [0, 1]; (b) the configuration model with N = 10, 000; and (c)
the random graph with triangles with N = 80. The points (error bars) correspond to averages (standard deviation) across 5
different networks (realizations of the network model).

IV. CLUSTERING TRANSITION IN THE SBM

We now explore the abrupt transition observed in
Fig. 3 for the SBM method: from a single community for
C < C∗ to a large number of communities (Nc ∼

√
N)

for C > C∗. For simplicity, we discuss only the triadic
closure model in this section, since similar results are ob-
served for the other two models. We vary the probability
of closing triangles p in the range p ∈ [0, 1], which gener-
ates networks with C ∈ [0, 0.25] (see Appendix A for the
definition of the triadic closure model). In Fig. 4 we show



5

FIG. 4. Phase transition in SBM. (a) The scaled number of
communities Nc√

N
for networks generated by the triadic clo-

sure model with varying probability p of closing triangles and
different number of nodes N (see legend). As the network
size N increases we observe a sharper transition, accumulat-
ing around the critical probability p∗ ≈ 0.5 (C∗ ≈ 0.15). The
dashed (black) line corresponds to the results of the hierar-
chical SBM method [7, 23]. (b) The detectability condition
d(p) – Eq. (4) – plotted as a function of p, averaged across 5
trials of N = 10, 000 triadic closure networks. Since there is
some noise in the data around the critical value d(p) = 0 (due
to the algorithm detecting one large community and a few
small communities near the threshold), we fit a line of best fit
to the portion of the curve with d(p) > 0 and extrapolate to
d(p) = 0. This obtains an estimate (red point) for the critical
value p∗, which agrees with the the critical value observed in
panel (a).

results for increasing network sizes N – after re-scaling
the number of communities by

√
N (the scaling observed

in Fig. 1) – which confirm an increasingly sharp (first
order) transition accumulating around the critical point
p∗ ≈ 0.5 (C∗ ≈ 0.15). Phase transitions in SBMs, and
in community detection methods more generally, have
recently been found to describe the transition between
detectable and non-detectable regimes [25–27, 29–31]. In
this section we further explore the clustering transition
we found in the SBM, establishing its relationship to the
detectability transition investigated previously.

The detectability transition reflects the fact that com-
munity detection methods are able to retrieve partitions
planted in the data only if the planted partitions are suf-
ficiently strong (e.g., many more links within communi-
ties than across communities). The previous works on
detectability transitions considered a simplified model
(symmetric SBM [31]) for which the r = 1, . . . , Nc
blocks (communities) have the same number of nodes
m = N/Nc and the probability of edges between nodes

in group r and s is given by pI if r = s and pE if r 6= s.
An assortative community structure is detectable only
when pI � pE (links internal to the communities are
much more probable thanks external links). More pre-
cisely, the Nc symmetric communities used as a planted
partition (of a network with average degree 〈k〉) can be
detected only if (see Ref. [26] and Appendix C)

ε ≡ pE
pI

<

√
〈k〉 − 1√

〈k〉 − 1 +Nc
≡ ε∗, (2)

where ε∗ is a critical value.
While the existence of a regime in which (planted) com-

munities are undetectable has been shown to exist regard-
less of the community detection method [25, 26], the char-
acteristics of the transition to the detectable regime de-
pend on the specific method. For the main SBM method
we use here, which considers a Bayesian setting with un-
informative priors for the number of communities Nc, the
detectability transition has been studied in Ref. [27]. The
quantity we are interested here is the number of commu-
nities Nc, which in this SBM method is determined by
minimizing the description length Σ = S +L, where S is
the entropy of the fitted model and L is the amount of
information necessary to describe the model itself. Differ-
ently from the fundamental detectability limit discussed
in Refs. [25, 26], the transition we observe here corre-
sponds to a transition from Σ > Σ |Nc=1 (single commu-
nity Nc = 1) to Σ < Σ |Nc=1 (Nc > 1). In Ref. [27] it has
been analytically derived (for E � N2

c ) that this happens
when the generated (planted) SBM network satisfies

〈k〉 > 2 lnNc
I

, (3)

where I = 1
2E

∑
rs ers ln

(
2E · erseres

)
, ers is number of

edges between nodes in blocks r and s, er =
∑
s ers, and

E is the total number of edges in the network.
We now argue that condition (3) describes also the

clustering transition we observed. Since our networks
were not generated from an SBM planted partition
model, we can only compute I above using the inferred
SBM model and check if the inequality is satisfied for
these cases. We define

d(p) ≡ 〈k〉 − 2 lnNc
I

, (4)

where I and Nc are computed for the SBM model ob-
tained fitting a network with clustering C. Condition (3)
corresponds to d(p) > 0. In the bottom panel of Fig. 4
we show the results obtained for networks generated from
the triadic closure model. We find that d(p) > 0 for all
p > p∗ and that d(p) → 0+ for p → p∗+. This quan-
titatively connects the phase transition we found to the
detectability transition reported previously. In this con-
nection, the clustering coefficient (in our network mod-
els) plays the role of the strength of the communities
(pI � pE in the planted SBM models). This is in agree-
ment with the intuition that clustering is related to the



6

probability of intra-community versus inter-community
links and further supports our view that clustering is a
driving factor for the appearance of communities in net-
works.

The results above are specific to the SBM method we
use here. We now investigate whether the clustering tran-
sition appears also for other community-detection meth-
ods based on the stochastic block model. In particular, a
hierarchical generalization of the SBM method (hSBM)
has been proposed and shown to overcome the detectabil-
ity limit of the method we use (which was responsible for

the Nc ∼
√
N scaling we observe) [7]. Applying this

hSBM method to networks generated from the triadic
closure model, we observe (dashed line in Fig. 4) a phase
transition at the same critical value C∗ (for C > C∗ a
larger number of communities Nc ∼ N is found). This
confirms the robustness of the clustering transition we
found, which appears at the same critical value p∗ also in
an improved SBM (which overcomes previous detectabil-
ity limits and is thus more robust against over and under-
fitting [7]).

Further analytical insights on the clustering transition,
including an estimation of C∗, can be obtained consid-
ering the symmetric SBM discussed above. This SBM
is a good approximation of the SBM we obtain fitting
our networks, e.g., for the C ≈ 0.25 (p = 1) case we ob-
tain on average (standard deviation) for networks of size
N = 10, 000: n ≡ N/Nc = 190(59), pI = 0.037(0.002),
and pE = 0.00002(0.000001). In order to connect the
symmetric SBM to the triadic-closure model, we consider
that the triangles in the network (responsible for C > 0)
always involve nodes of the same community. This is
justified by our results that show that communities are
precisely created by these triangles. Using this simplify-
ing assumption, we can compute (see Appendix D) that
Nc symmetric SBM communities will be detected in the
triadic closure model only if

p > p∗ =
1− ε∗

ε∗(Nc − 1) + 1
=

1√
〈k〉

, (5)

where p is the probability of a link closing a triangle and
ε∗ is defined in Eq. (2). This means that, regardless of the
number of (symmetric) communities Nc, detectability is
expected only if the probability of a link closing a triangle
is larger than 1/

√
〈k〉. In the cases studied numerically

above, 〈k〉 = 4 and thus p∗ = 0.5 (which corresponds to
networks with C ≈ 0.151), in good agreement with the
critical values observed numerically in Figs. 3 and 4.

Finally, we discuss what distinguishes the clustering
transition we found from the detectability transition re-
ported previously. The main difference is that the net-
works we analyze are not generated from an SBM model,
as in the usual analysis of detectability transitions. The
consequences of this can be best seen by considering what
are the properties of the original network that are re-
produced by the fitted SBM model. SBM preserves the
number of nodes and edges (and thus 〈k〉), but it fails
to reproduce the clustering coefficient C of the original

network. For instance, for the maximum clustered net-
work obtained for the triadic closure model (C ≈ 0.25 ob-
tained for p = 1), the fitted SBM model shows C = 0.06
for N = 2000 (with Nc = 22 communities found) or
C = 0.03 for N = 10, 000 (with Nc = 54). The vanish-
ingly small clustering coefficient of the fitted SBM model
reflects the fact that within each community the SBM
can be viewed as a usual random graph and the number
of nodes in each community grows as n = N/Nc ∼

√
N

(because Nc ∼
√
N). In fact, C → 0 for N →∞ for the

symmetric SBM model in the sparse regime considered
here (as shown in Appendix C). It is thus essential to take
into account that within each community the SBM does
not provide a good description of the networks we are
analyzing. More generally, the clustering transition we
observe is induced by a different process (the clustering
coefficient or number of triangles) than the detectability
transition observed previously for planted (symmetric)
SBMs, providing a novel result in the context of commu-
nity detectability.

V. DISCUSSION AND CONCLUSION

In summary, we have investigated the relationship be-
tween the clustering coefficient and the number of com-
munities in complex networks. We found that clus-
tering is a mechanisms for the creation of communi-
ties and that networks that grow following rules at a
micro-level (e.g., to close triangles) display an emergent
appearance of meso-scale structures. The communities
we found using four different community detection algo-
rithms show many similarities (are assortative with sim-
ilar partitions), further supporting the idea of the exis-
tence of communities in networks with clustering. We
found communities even in methods that do not detect
communities in (unclustered) random networks, such as
the spectral and SBM methods we use. From the point
of view of these methods, our results show that more so-
phisticated assumptions are needed in case one wants to
robustly detect communities that are intrinsically inde-
pendent from the clustering coefficient.

Our main numerical finding is that the number of com-
munities found by inferring an SBM shows a transition
from a single community to multiple communities at a
critical clustering coefficient C∗. Relating this to pre-
vious work on the detectability of communities we find
that this phase transition shows similar scalings but also
differences, as the fitted SBM models do not reproduce
the high clustering found in the original networks.

Our results demonstrate that communities in networks
appear even when the generative process of the network
is based on only local information, such as the process
of closing triangles. This result is in agreement with the
findings of Refs. [8, 9]. Our results go beyond these pre-
vious findings because we considered a wider class of net-
work models and community detection methods. In fact,
the previous works focused on modularity [8, 9] and the
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Infomap method [9] which are now known to be prob-
lematic in the detection of the number of communities
because of their tendency to find communities even in
random networks. Our finding that triangles induce com-
munities also in methods robust to such random fluctu-
ations (SBM and spectral), is thus essential to connect
these micro-structures to communities. Interesting fu-
ture lines of research include the generalization of these
findings to other types of motifs and attempts to quan-
tify the role of motifs in the communities found in real
networks (e.g., considering community detection meth-
ods based on generative models that include clustering).
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Appendix A: Network models

a. The triadic closure model, adapted from the ba-
sic model of Bianconi et al. [9], takes on three parame-
ters; the number of nodes in the network, N , the proba-
bility of triadic closure p, and the number of links created
with each new node, m. It is a growth model, initialized
with a small connected Erdös-Rényi random network. At
each time step, a new node is added to the network with
m links. The first link is attached to a random node of
the network. Any subsequent links follow the triadic clo-
sure rule: with probability p, a link is made to a node
neighboring a node already connected to the new node,
thus closing a triangle. With probability 1 − p, a link is
chosen at random from any node not already connected
to the new node. This process continues until the net-
work is grown to the desired size N . As p increases, the
density of triangles in the network increases, implying
that the parameter p can be viewed as a tuning mecha-
nism for the clustering coefficient of the network. We use
m = 2 and p ∈ [0, 1].

b. The configuration model is extended from the
version developed by Newman [11] and Miller [12]. It
generates networks with a given joint degree sequence
{ti, si}, with ti representing the number of triangles in
which node i features, and si representing the number
of additional edges of node i not belonging to these tri-
angles. In our version of the algorithm, the joint degree
sequence follows a doubly Poisson distribution

pst = e−µ
µs

s!
e−ν

νt

t!
, (A1)

where ν is the average number of triangles per node and
µ is the average number of independent edges per node.
Following the method outlined by [11], this distribution
leads to an analytical derivation of the global clustering

coefficient

C =
2ν

2ν + (µ+ 2ν)2
, (A2)

with an upper bound given by Cmax = 1
1+〈k〉 , where

〈k〉 = µ+2ν is the average degree of the network. We can
therefore generate networks with a given C by setting µ
and ν for a fixed value of 〈k〉 and sampling from (A1).

c. Random network with triangles considers the en-
semble of networks with a fixed degree sequence (in our
case all nodes have degree k = 4) and a fixed number of
triangles N4. We sample networks from this ensemble
using the multicanonical sampling method of Fischer et
al. [13], which is essential to ensure that the sampled
networks are a random choice (over all possibilities in
the ensemble) and are also independent from the sam-
pled networks with different N4.

Appendix B: Community-detection methods

a. The modularity method identifies the partition of
the network that maximizes the Newman-Girvan modu-
larity function [16]. Our chosen algorithm implements
the Newman method for identifying the optimal parti-
tion with respect to the modularity (quality) function,
which is initialized by assigning each node to its own
community. At each step, the algorithm inspects each
community pair (connected by at least one link) and joins
the pair that achieves the greatest increase in modular-
ity. This process is repeated until no further increase in
the modularity function is achievable, with the resulting
partition determining both the number of communities
and assignment of nodes into communities.

b. The Infomap method follows a similar process
(specifically, using the Louvain method), but instead the
goal is to minimize the map equation [18]. The map equa-
tion offers an information-theoretic approach to commu-
nity detection.

c. The spectral method we have chosen utilizes the
spectral properties of the Bethe Hessian matrix [20]. The
number of communities corresponds to the total number
of negative eigenvalues, while the community partition is
embedded in the corresponding eigenvectors.

d. The SBM method we considered performs com-
munity detection by inferring the parameters of a
non-hierarchical degree-corrected stochastic block model
(SBM) [22]. The algorithm we choose uses a Markov
chain Monte Carlo technique to infer the SBM parame-
ters that maximize the posterior distribution P (b|G) that
an observed networkG was generated by a given partition
b. Importantly, the model selection part of the method
can distinguish between statistically significant commu-
nity structure and randomness, to avoid overfitting the
number of communities.
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Appendix C: Symmetric SBM model

The simplified SBM model we consider hasNc identical
blocks with fixed block size n = N/Nc. The within block
probability of links is pI and the across block probability
is pE , identical to all blocks. We are interested in the
case of fixed average degree

〈k〉 = npI + (N − n)pE =
N

Nc
(pI + pE(Nc − 1)). (C1)

a. Detectability transition. Following Ref. [26], the
planted transition is detectable if

|NpI −NpE | > Nc
√
〈k〉

Combining this result with Eq. (C1) we retrieve Eq. (2).

b. Clustering. The (average) clustering coefficient is
defined as

C̃ =
1

N

N∑
i=1

Ci, where Ci =
24i

ki(ki − 1)
, (C2)

where ki is the degree of node i and 4i is the number

of triangles containing node i. We now estimate C̃ for
the symmetric SBM model. First, we approximate ki by
〈k〉. Next, consider a triangle containing i, as well as two
other nodes j and k. To determine 4i, we consider four
cases: either i, j and k are in the same block (contribut-
ing p3I(n − 1)(n − 2) ≡ 4a triangles), i and j (i and k)
are in the same block but k (j) in a different block (con-
tributing pIp

2
E(n−1)(N−n) ≡ 4b triangles), j and k are

in the same block but i in a different block (contributing
p2EpI(N −n)(n− 1) ≡ 4c triangles), or i, j and k are all
in distinct blocks (contributing p3E(N−n)(N−n−1) tri-
angles). Combining this with the simplifying assumption

that Ci is the same for all nodes i we obtain

C̃ ≈ 2(4a +4b +4c)
〈k〉(〈k〉 − 1)

. (C3)

From Fig. 1 we know that n = N/Nc ∼
√
N . Since 〈k〉 is

fixed for all N – sparse network, see Eq. (C1) – it follows

that pI ∼ 1/n ∼ 1/
√
N and pE ∼ 1/N . Considering

these scalings, we see that 4a,b,c → 0 when N → 0 and

thus C̃ → 0 for N → 0 in Eq. (C3).

Appendix D: Transition in the triadic closure model

We assume that a symmetric SBM model with Nc com-
munities is used to describe the network obtained by the
triadic closure model defined in Appendix A. In the tri-
adic closure model, nodes have typically ki = 〈k〉 = 2m
links and links close triangles with a fixed probability p.
Each link will be internal to the community of the given
node either if it closes a triangle (with probability p) or
(with probability 1− p) if it is connected by chance to a
node of the same community (probability 1/Nc, assum-
ing the existence of Nc symmetric groups). The total
probability of being internal is thus p+ (1− p)/Nc. The
expected number of links internal to the same group of
the node is eI = 2m(p + (1− p)/Nc) and the number of
links external to the group is eE = 2m(1−p)Nc/(Nc−1)
(such that eI + eE = 2m = 〈k〉). The symmetric SBM
probabilities are computed dividing the expected number
of links of the node by the number of nodes in each group
as pI = eI/n and pE = eE/(n(Nc − 1)), thus leading to

ε ≡ pE
pI

=
1− p

pNc + 1− p
, (D1)

which is independent of m. Introducing Eq. (D1) in
Eq. (2) we obtain Eq. (5).
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