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PREFACE 

The scientific study of networks, such as computer networks, biological net
works, and social networks, is an interdisciplinary field that combines ideas 
from mathematics, physics, biology, computer science, the social sciences, and 
many other areas. The field has benefited enormously from the wide range 
of viewpoints brought to it by practitioners from so many different disciplines, 
but it has also suffered because human knowledge about networks is dispersed 
across the scientific community and researchers in one area often do not have 
ready access to discoveries made in another. The goal of this book is to bring 
our knowledge of networks together and present it in consistent language and 
notation, so that it becomes a coherent whole whose elements complement one 
another and in combination teach us more than any single element can alone. 

The book is divided into five parts. Following a short introductory chap
ter, Part I describes the basic types of networks studied by present-day science 
and the empirical techniques used to determine their structure. Part II intro
duces the fundamental mathematical tools used in the study of networks as 
well as measures and statistics for quantifying network structure. Part III de
scribes computer algorithms for the efficient analysis of network data, while 
Part IV describes mathematical models of network structure that can help us 
predict the behavior of networked systems and understand their formation 
and growth. Finally, Part V describes theories of processes taking place on net
works, such as epidemics on social networks or search processes on computer 

networks. 
The technical level of the presentation varies among the parts, Part I requir

ing virtually no mathematical knowledge for its comprehension, while Parts II 
and III require a grasp of linear algebra and calculus at the undergraduate 
level. Parts IV and V are mathematically more advanced and suitable for ad
vanced undergraduates, postgraduates, and researchers working in the field. 
The book could thus be used as the basis of a taught course at more than one 
level. A less technical course suitable for those with moderate mathematical 
knowledge might cover the material of Chapters 1 to 8, while a more technical 
course for advanced students might cover the material of Chapters 6 to 14 and 

x 

selected material thereafter. Each chapter from Part II onward is accompanied 
by a selection of exercises that can be used to test the reader's understanding 
of the material. 

This book has been some years in the making and many people have helped 
me with it during that time. I must thank my ever-patient editor Sonke Adlung, 
with whom I have worked on various book projects for more than 15 years 
now, and whose constant encouragement and kind words have made working 
with him and Oxford University Press a real pleasure. Thanks are also due 
to Melanie Johnstone, Alison Lees, Emma Lonie, and April Warman for their 
help with the final stages of bringing the book to print. 

I have benefited greatly during the writing of this book from the conver
sation, comments, suggestions, and encouragement of many colleagues and 
friends. They are, sadly, too numerous to mention exhaustively, but special 
thanks must go to Steve Borgatti, Duncan Callaway, Aaron Clauset, Betsy Fox
man, Linton Freeman, Michelle Girvan, Martin Gould, Mark Handcock, Pet
ter Holme, Jon Kleinberg, Alden Klovdahl, Liza Levina, Lauren Meyers, Cris 
Moore, Lou Pecora, Mason Porter, Sidney Redner, Puck Rombach, Cosma Shal
izi, Steve Strogatz, Duncan Watts, Doug White, Lenka Zdeborova, and Bob 
Zifl, as well as to the many students, particularly Michelle Adan, Alejandro 
Balbin, Chris Fink, Ruthi Hortsch, and Jane Wang, whose feedback helped iron 
out a lot of rough spots. I would also especially like to thank Brian Karrer, who 
read the entire book in draft form and gave me many pages of thoughtful and 
thought-provoking comments, as well as spotting a number of mistakes and 
typos. Responsibility for any remaining mistakes in the book of course rests 
entirely with myself, and I welcome corrections from readers. 

Finally, my profound thanks go to my wife Carrie for her continual encour
agement and support during the writing of this book. Without her the book 
would still have been written but I would have smiled a lot less. 

Mark Newman 
Ann Arbor, Michigan 
February 24, 2010 
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CHAPTER 1 

INTRODUCTION 

A short introduction to networks 

and wIly we study them 

A NETWORK is, in its simplest form, a collection of points joined together 
in pairs by lines. In the jargon of the field the points are referred to as 

vertices' or nodes and the lines are referred to as edges. Many objects of interest 
in the physical, biological, and social sciences can be thought of as networks 
and, as this book aims to show, thinking of them in this way can often lead to 
new and useful insights. 

We begin, in this introductory chapter, with a discussion of why we are 
interested in networks and a brief description of some specific networks of 
note. All the topics in this chapter are covered in greater depth elsewhere in 
the book. 

WHY ARE WE INTERESTED IN NETWORKS? 

There are many systems of interest to scientists that are composed of individual 
parts or components linked together in some way Examples include the Inter
net, a collection of computers linked by data connections, and human societies, 
which are collections of people linked by acquaintance or social interaction. 

Many aspects of these systems are worthy of study Some people study the 
nature of the individual components-how a computer works, for instance, or 
how a human being feels or acts-while others study the nature of the connec
tions or interactions-the communication protocols used on the Internet or the 
dynamics of human friendships. But there is a third aspect to these interacting 

I Singular: vertex. 
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~Edge 
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A small network composed 
of eight vertices and ten 
edges. 
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The most common network 
variants are discussed in 
detail in Chapter 6. 

2 

systems, sometimes neglected but almost always crucial to the behavior of the 
system, which is the pattern of connections between components. 

The pattern of connections in a given system can be represented as a net
work, the components of the system being the network vertices and the con
nections the edges. Upon reflection it should come as no surprise (although 
in some fields it is a relatively recent realization) that the structure of such 
networks, the particular pattern of interactions, can have a big effect on the 
behavior of the system. The pattern of connections between computers on the 
Internet, for instance, affects the routes that data take over the network and the 
efficiency with which the network transports those data. The connections in a 
social network affect how people learn, form opinions, and gather news, as 
well as affecting other less obvious phenomena, such as the spread of disease. 
Unless we know something about the structure of these networks, we cannot 
hope to understand fully how the corresponding systems work. 

A network is a simplified representation that reduces a system to an ab
stract structure capturing only the basics of connection patterns and little else. 
Vertices and edges in a network can be labeled with additional information, 
such as names or strengths, to capture more details of the system, but even 
so a lot of information is usually lost in the process of reducing a full system 
to a network representation. This certainly has its disadvantages but it has 

advantages as well. 
Scientists in a wide variety of fields have, over the years, developed an 

extensive set of tools-mathematical, computational, and statistical-for an
alyzing, modeling, and understanding networks. Many of these tools start 
from a simple network representation, a set of vertices and edges, and after 
suitable calculations tell you something about the network that might well be 
useful to you: which is the best connected vertex, say, or the length of a path 
from one vertex to another. Other tools take the form of network models that 
can make mathematical predictions about processes taking place on networks, 
such as the way traffic will flow over the Internet or the way a disease will 
spread through a community. Because they work with networks in their ab
stract form, these tools can in theory be applied to almost any system repre
sented as a network. Thus if there is a system you are interested in, and it can 
usefully be represented as a network, then there are hundreds of different tools 
out there, already developed and well understood, that you can immediately 
apply to the analysis of your system. Certainly not all of them will give useful 
results-which measurements or calculations are useful for a particular system 
depends on what the system is and does and on what specific questions you 
are trying to answer about it. Still, if you have a well-posed question about 
a networked system there will, in many cases, already be a tool available that 

will help you address it. 
Networks are thus a general yet powerful means of representing patterns 

of connections or interactions between the parts of a system. In this book, we 
discuss many examples of specific networks in different fields, along with tech
niques for their analysis drawn from mathematics, physics, the computer and 
information sciences, the social sciences, biology, and elsewhere. In doing so, 
we bring together a wide range of ideas and expertise from many disciplines 
to give a comprehensive introduction to the science of networks. 

SOME EXAMPLES OF NETWORKS 

One of the best known and most widely studied examples of a network is the 
Internet, the computer data network in which the vertices are computers and 
the edges are physical data connections between them, such as optical fiber 
cables or telephone lines. Figure 1.1 shows a picture of the structure of the In
ternet, a snapshot of the network as it was in 2003, reconstructed by observing 
the paths taken across the network by a large number of Internet data pack
ets traveling between different sources and destinations. It is a curious fact 
that although the Internet is a man-made and carefully engineered network 
we don't know exactly what its structure is, since it was built by many dif
ferent groups of people with only limited knowledge of each other's actions 
and little centralized control. Our best current data on its structure are derived 
from experimental studies, such as the one that produced this figure, rather 
than from any central repository of knowledge or coordinating authority. 

There are a number of excellent practical reasons why we might want to 
study the network structure of the Internet. The function of the Internet is to 
transport data between computers (and other devices) in different parts of the 
world, which it does by dividing the data into pieces or packets and shipping 
them from vertex to vertex across the network until they reach their intended 
destination. Certainly the structure of the network will affect how efficiently 
it accomplishes this function and if we know the network structure we can 
address many questions of practical relevance. How should we choose the 
route by which data are transported? Is the shortest route always necessarily 
the fastest? If not, then what is, and how can we find it? How can we avoid 
bottlenecks in the traffic flow that might slow things down? What happens 
when a vertex or an edge fails (which they do with some regularity)? How can 
we devise schemes to route around such failures? If we have the opportunity 
to add new capacity to the network, where should it be added? 

Knowledge of Internet structure also plays a central role in the develop
ment of new communications standards. New standards and protocols are 

INTRODUCTION 

We look at the Internet in 
more detail in Section 2.1. 
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INTRODUCTION 

Figure 1.1: The network structure of the Internet. (See Plate I for color version.) The vertices in this representation 
of the Internet are "class C subnets"-groups of computers with similar Internet addresses that are usually under the 
management of a single organization-and the connections between them represent the routes taken by Internet data 
packets as they hop between subnets. The geometric positions of the vertices in the picture have no special meaning; 
they are chosen simply to give a pleasing layout and are not related, for instance, to geographic position of the vertices. 
The structure of the Internet is discussed in detail in Section 2.1. Figure created by the Opte Project (www.opte.org). 

Reproduced with permission. 
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Plate I: The network structure of the Internet. The vertices in this representation of the Internet are "class C subnets"
groups of computers with similar Internet addresses that are usually under the management of a single organization
J,nd the com~ectiOl:~ between then: represent the routes taken by Internet data packets as they hop between subnets. 
11w geometrIc positIOns of the .vertices in the picture have no special meaning; they are chosen simply to give a pleasing 
~ayout and are not related, for 111stance, to geographic position of the vertices. ThE' structure of the Internet is discussed 
111 detail in Section 2.1. Figure created by the Opte Project (www.opte.org). Reproduced with permission. 



Plate II: The food web of Little Rock Lake, Wisconsin. This elegant picture sum~ 
marizes the known predatory interactions between species in a freshwater lake in the 
northern United States. The vertices represent the species and the edges run between 
predator-prey species pairs. The vertical position of the vertices represents, roughly 
speaking, the trophic level of the corresponding species. The figure was created by 

Richard Williams and Neo Martinez [2101· 

Plate III: The structure of the Internet at the level of autonomous systems. The vertices in this network representation 
(If the Internet arc autonomous systems and the edges show the routes taken by data traveling between them. This 
figure is different from Plate t which shows the network at the level of class C subnets. The picture was created by Hal 
Burch and Bill Cheswick. Patent(s) pending and Copyright Lumeta Corporation 2009. Reproduced with permission. 



Plate IV: A metabolic network. A wallchart showing the network formed by the major metabolic pathways. Created 
by Donald Nicholson. Copyright of the International Union of Biochemistry and Molecular Biology. Reproduced with 
permission. 

continually being devised for communication over the Internet, and old ones 
are revised, The parameters of these protocols are tuned for optimal perfor
mance with the structure of the Internet in mind, In the early days of the net
work, rather primitive models of network structure were employed in the tun
ing process, but as better structural data become available it becomes possible 
to better understand and improve performance, 

A more abstract example of a network is the World Wide Web, In common 
parlance the words "Web" and "Internet" are often used interchangeably, but 
technically the two are quite distinct The Internet is a physical network of 
computers linked by actual cables (or sometimes radio links) running between 
them, The Web, on the other hand, is a network of information stored on web 
pages, The vertices of the World Wide Web are web pages and the edges are 
"hyperlinks," the highlighted snippets of text or push-buttons on web pages 
that we click on to navigate from one page to another, A hyper link is purely 
a software construct; you can link from your web page to a page that lives on 
a computer on the other side of the world just as easily as you can link to a 
friend down the halL There is no physical structure, like an optical fiber, that 
needs to be built when you make a new link The link is merely an address 
that tells the computer where to look next when you click on it 

Abstract though it may be, the World Wide Web, with its billions of pages 
and links, has proved enormously useful, not to mention profitable, to many 
people, and the structure of the network of links is of substantial interest. Since 
people tend to add hyperlinks between pages with related content, the link 
structure of the Web reveals something about the content structure, What's 
more, people tend to link more often to pages that they find useful than to 
those they do not, so that the number of links pointing to a page can be used 
as a measure of its usefulness. A more sophisticated version of this idea lies 
behind the operation of the popular Web search engine Google, as well as some 
others, 

The Web also illustrates another concept of network theory, the directed net
work, Hyperlinks on the Web run in one specific direction, from one web page 
to another. Given an appropriate link on page A, you can click and arrive at 
page B, But there is no requirement that B contains a link back to A again, (It 
may contain such a link, but there is no law that says that it must and much 
of the time it will not) One says that the edges in the World Wide Web are 
directed, running from the linking page to the linked, 

Moving away from the technological realm, another type of network of sci
entific interest is the social network A social network is, usually, a network 
of people, although it may sometimes be a network of groups of people, such 
as companies, The people or groups form the vertices of the network and the 

INTRODUCTION 

The World Wide Web is dis
cussed in more detail in 
Section 4.1. 

The mechanics of Web 
search are discussed in 
Section 19.1. 

Social networks are dis
cussed in more depth in 
Chapter 3, 

5 



INTRODUCTION 

edges represent connections of some kind between them, such as friendship 
between individuals or business relationships between companies. The field 
of sociology has perhaps the longest and best developed tradition of the em
pirical study of networks as they occur in the real world, and many of the 
mathematical and statistical tools that are used in the study of networks are 
borrowed, directly or indirectly, from sociologists. 

Figure 1.2 shows a famous example of a social network 
from the sociology literature, Wayne Zachary's "karate club" 
network. This network represents the pattern of friendships 
among members of a karate club at a north American uni
versity. The network was constructed by direct observation 
of interactions between the club's members. As is typical of 
such studies the network is small, having, in this case, only 34 
vertices. Network representations of the Internet or the World 
Wide Web, by contrast, can have thousands or millions of ver
tices. In principle there is no reason why social networks can
not be similarly large. The entire population of the world, for 
example, can be regarded as a very large social network. But 
in practice social network data are limited to relatively small 

Figure 1.2: Friendship network between 
members of a club. This social network 
from a study conducted in the 1970s shows 
the pattern of friendships between the mem
bers of a karate club at an American univer
sity. The data were collected and published by 
Zachary [334]. 

groups because of the effort involved in compiling them. The 
network of Fig. 1.2, for instance, was the product of two years 
of observations by one experimenter. In recent years a few 
larger social networks have been constructed by dint of enor
mous effort on the part of large groups of researchers. And 
online social networking services, such as Facebook or instant 
message "buddy lists," can provide network data on a previ-

Neural networks arc dis
cussed in Section 5.2 and 
food webs in Section 5.3. 

6 

ously unreachable scale. Studies are just beginning to emerge 
of the structure and properties of these larger networks. 

A third realm in which networks have become important in recent years 
is biology. Networks occur in a number of situations in biology. Some are 
concrete physical networks like neural networks-the networks of connections 
between neurons in the brain-while others are more abstract. In Fig. 1.3 we 
show a picture of a "food web," an ecological network in which the vertices 
are species in an ecosystem and the edges represent predator-prey relation
ships between them. That is, pairs of species are connected by edges in this 
network if one species eats the other. The study of food webs forms a substan
tial branch of ecology and helps us to understand and quantify many ecolog
ical phenomena, particularly concerning energy and carbon flows in ecosys
tems. Food webs also provide us with another example of a directed network, 
like the World Wide Web discussed previously. The edges in a food web are 

Figure 1.3: The food web of Little Rock Lake, Wisconsin. (See Plate II for color 
version.) This elegant picture summarizes the known predatory interactions between 
species in a freshwater lake in the northern United States. The vertices represent the 
species and the edges run between predator-prey species pairs. The vertical position of 
the vertices represents, roughly speaking, the trophic level of the corresponding species. 
The figure was created by Richard Williams and Neo Martinez [209]. 

asymmetric and are conventionally thought of as pointing from the prey to the 
predator, indicating the direction of the flow of energy when the prey is eaten. 
(This choice of direction is only a convention and one could certainly make 
the reverse choice. The important point is the asymmetry of the predator-prey 
interaction.) 

Another class of biological networks is that of biochemical networks, such 
as metabolic networks, protein-protein interaction networks, and genetic reg
ulatory networks. A metabolic network, for instance, is a representation of the 
chemical reactions that fuel cells and organisms. The reader may have seen the 
wallcharts of metabolic reactions that adorn the offices of some biochemists, in
credibly detailed maps with hundreds of tiny inscriptions linked by a maze of 
arrows.2 The inscriptions-the vertices in this network-are metabolites, the 
substrates and products of metabolism, and the arrows-directed edges-are 
reactions that turn one metabolite into another. The depiction of reactions as a 

2 An example appears as Fig. 5.2 on page 83. 

INTRODUCTION 

Biochemical networks are 
discussed in detail in Sec
tion 5.1. 
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network is one of the first steps towards making sense of the bewildering array 
of biochemical data generated by recent and ongoing experiments in molecular 
genetics. 

These are just a few examples of the types of network whose study is the 
focus of this book. There are many others that we will come across in later 
pages. Among them some of the best known are telephone networks, road, 
fait and air networks f the power grid, citation networks, recommender net
works, peer-ta-peer networks, email networks, collaboration networks, dis
ease transmission networks, river networks, and word networks. 

PROPERTIES OF NETWORKS 

We have seen that a variety of systems can be represented as networks. If we 
can gather data on the structure of one of these networks, what then can we 
do with those data? What can they tell us about the form and function of the 
system the network represents? What properties of networked systems can we 
measure or mode] and how are those properties related to the practical issues 
we care about? This, essentially, is the topic of this entire book, and we are not 
going to answer it in this chapter alone. Let us, however, look briefly here at 
a few representative concepts, to get a feel for the kinds of ideas we will be 
dealing with. 

A first step in analyzing the structure of a network is often to make a picture 
of it. Figures 1.1, 1.2, and 1.3 are typical examples. Each of these was gener
ated by a specialized computer program designed for network visualization 
and there are many such programs available, both commercially and for free, 
if you want to produce pictures like these for yourself. Visualization can be an 
extraordinarily useful tool in the analysis of network data, allowing one to see 
instantly important structural features of a network that would otherwise be 
difficult to pick out of the raw data. The human eye is enormously gifted at 
picking out patterns, and visualizations allow us to put this gift to work on our 
network problems. On the other hand, direct visualization of networks is only 
really useful for networks up to a few hundreds or thousands of vertices, and 
for networks that are relatively sparse, meaning that the number of edges is 
quite small. If there are too many vertices or edges in a network then pictures 
of the network will be too complicated for the eye to comprehend and their 
usefulness becomes limited. Many of the networks that scientists are inter
ested in today have hundreds of thousands or even millions of vertices, which 
means that visualization is not of much help in their analysis and we need to 
employ other techniques to determine their structural features. In response 
to this need, network theory has developed a large toolchest of measures and 

Inetrics that can help us understand what aUf network data are telling us, even 
in cases where useful visualization is impossible. 

An example of an important and useful class of network measures is that of 
measures of centrality. Centrality quantifies how important vertices (or edges) 
are in a networked system, and social network analysts in particular have ex
pended considerable effort studying it. There are a wide variety of mathemat
ical measures of vertex centrality that focus on different concepts and defini
tions of what it means to be central in a network. A simple but very useful 
example is the measure called degree. The degree of a vertex in a network is 
the number of edges attached to it. In a social network of friendships between 
individuals, for instance, such as the network of Fig. 1.2, the degree of an in
dividual is the number of friends he or she has within the network. In the 
Internet degree would be the number of data connections a computer, router, 
Of other device has. In many cases the vertices with the highest degrees in 
a network, those with the most connections, also play important roles in the 
functioning of the system, and hence degree can be a useful guide for focusing 
our attention on the system's most crucial elements. 

In undirected networks degree is just a single number, but in directed net
works vertices have two different degrees, in-degree and out-degree, correspond
ing to the number of edges pointing inward to and outward from those ver
tices. For example, the in-degree of a web page is the number of other pages 
that link to it and the out-degree is the number of pages to which it links. We 
have already Inentioned one example of how centrality can be put to use on 
the Web to answer an important practical question: by counting the number 
of links a web page gets-the in-degree of the page-we (or a search engine 
operating on our behalf) can make a guess about which pages are most likely 
to contain information that might be of use to us. 

It is an interesting observation that many networks are found to contain 
a small but significant number of "hubs" -vertices with unusually high de
gree. Social networks often contain a few central individuals with very many 
acquaintances; there are a few websites with an extraordinarily large number 
of links; there are a few metabolites that take part in almost all metabolic pro
cesses. A major topic of research in recent years has been the investigation of 
the effects of hubs on the performance and behavior of networked systems. 
Both empirical and theoretical results indicate that hubs can have a quite dis
proportionate effect, playing a central role particularly in network transport 
phenomena and resilience, despite being few in number. 

Another example of a network concept that arises repeatedly and has real 
practical implications is the so-called small-world effect. One can define a dis
tance, called the geodesic distance, between two vertices in a network to be the 
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minimum number of edges one would have to traverse in order to get from 
one vertex to the other. For instance, two friends would have geodesic dis
tance 1 in a friendship network because there is a single edge connecting them 
directly, while the friend of your friend would have distance 2 from you. As 
discussed in Sections 3.6 and 8.2, it is found empirically (and can be proven 
mathematically in some cases) that the mean geodesic distance, appropriately 
defined,' between vertex pairs is very short, typically increasing only as the 
logarithm of the number of vertices in the network. Although first studied in 
the context of friendship networks, this small-world effect appears to be very 
widespread, occurring in essentially all types of networks. In popular culture 
it is referred to as the "six degrees of separation," after a successful stage play 
and film of the same name. The semi-mythological claim is that you can get 
from anyone in the world to anyone else via a sequence of no more than five 
intermediate acquaintances-six steps in all. 

The small-world effect can have interesting repercussions. For example, 
news and gossip spread over social networks. If you hear an interesting rumor 
from a friend, you may pass it on to your other friends, and they in turn pass it 
on to theirs, and so forth. Clearly the rumor will spread further and faster if it 
only takes six steps to reach anyone in the world than if it takes a hundred, or a 
million. It is a matter of common experience that indeed a suitably scandalous 
rumor can reach the ears of an entire community in what seems like the blink 
of an eye, and the structure of social networks has a lot to do with it. 

And consider the Internet. One of the reasons the Internet functions at all 
is because any computer on the network is only a few "hops" over optical and 
other data lines from any other. In practice the paths taken by packets over the 
Internet are typically in the range of about ten to twenty hops long. Certainly 
the performance of the network would be much worse if packets had to make 
a thousand hops instead. 

A third example of a network concept of practical importance is provided 
by clusters or communities in networks. We are most of us familiar with the 
idea that social networks break up into subcommunities-tightly knit groups 
of friends or acquaintances within the larger, looser network. Friendship net
works, for instance, tend to contain cliques, circles, and gangs of friends within 
which connections are strong and frequent but between which they are weaker 
or rarer. The same is true of other kinds of social network also. For instance, in 
a network of business relationships between companies one often finds clus
ters formed of sets of companies that operate in particular sections of the econ-

30ne must be careful when there are vertex pairs in the network that are connected by no path 
at all. Such issues are dealt with in Section 8.2. 

COlmections might be stronger, for instance, between a pair of computer 
comF,arlies or a pair of biotech companies than between a computer company 

a biotech company. And if it is the case that communities correspond to 
O"pnllme divisions of interest or purpose in this way, then we may well learn 
something by taking a network and examining it to determine what communi
ties it contains. The way a netvvork breaks down into communities can reveal 
levels and concepts of organization that are not easy to see without network 
data, and can help us to understand how a system is structured. There is a sub
stantial research literature in social netvvork analysis as well as in other fields 
concerned with precisely these kinds of questions, and a large number of tech
niques have been developed to help us extract and analyze subcommunities 
within larger networks. These are highly active topics of research at present, 
and hold promise for exciting applications in the future. 

OUTLINE OF THIS BOOK 

This book is divided into five parts. In the first part, consisting of Chapters 2 
to 5, we introduce the various types of network encountered in the real world, 
including technological, social, and biological networks, and the empirical 
techniques used to discover their structure. Although it is not the purpose 
of this book to describe anyone particular network in great detail, the study 
of networks is nonetheless firmly founded on empirical observations and a 
good understanding of what data are available and how they are obtained is 
immensely helpful in understanding the science of networks as it is practiced 
today. 

The second part of the book, Chapters 6 to 8, introduces the fundamental 
theoretical ideas on which our current understanding of networks is based. 
Chapter 6 describes the basic mathematics used to capture network ideas, 
Chapter 7 describes the measures and metrics we use to quantify network 
structure, and Chapter 8 describes some of the intriguing patterns and prin
ciples that emerge when we apply our mathematics and our metrics to real
world network data. 

In the third part of the book, Chapters 9 to 11, we discuss computer algo
rithms for analyzing and understanding network data. Measurements of net
work properties, such as those described in Chapter 7, are typically only possi
ble with the help of fast computers and much effort has been devoted over the 
years to the development of efficient algorithms for analyzing network data. 
This part of the book describes in detail some of the most important of these 
algorithms. A knowledge of this material will be of use to anyone who wants 
to work with network data. 
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In the fourth part of the book, Chapters 12 to 15, we look at mathematical 
models of networks. The material in these chapters forms a central part of 
the canon of the field and has been the subject of a vast amount of published 
scientific research. We study both traditional models, such as random graphs 
and their extensions, and newer models, such as models of growing networks 
and the" small-world model." 

Finally, in the fifth and last part of the book, Chapters 16 to 19, we look at 
processes taking place on networks, including failure processes and resilience, 
network epidemiology, dynamical systems, and network search processes. The 
theory of these processes is less well developed than other aspects of the theory 
of networks and there is much work still to be done. The last chapters of the 
book probably raise at least as many questions as they answer, but this, surely, 
is a good thing. With luck readers will feel inspired to answer some of those 
questions themselves and the author looks forward to the new and exciting 
results they generate when they do. 



PART I 

THE EMPIRICAL STUDY OF 
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CHAPTER 2 

TECHNOLOGICAL NETWORKS 

A discussion of engineered networks like the Il1ternet and 
the power grid and how rue determil1e their structure 

I N THE next four chapters we define and describe some of the most com
monly studied networks, dividing them into four general classes-techno

logical netvvorks, social networks, information networks, and biological net
works. We will list the most important examples in each class and then de
scribe the techniques used to measure their structure. (The classes are not rig
orously defined and there is, as we will see, some overlap between them, with 
some networks belonging to more than one class. Nonetheless, the division 
into classes is a useful one, since networks in the same class are often treated 
using similar teclmiques or ideas.) 

It is not our intention in this book to study anyone network in great de
tail. Plenty of other books exist that do that. Nonetheless, network science is 
concerned with understanding and modeling the behavior of real-world net
worked systems and observational data are the starting point for essentially 
all the developments of the field, so the reader will find it useful to have a 
grasp of the types of data that are available, their strengths and limitations, 
and the means used to acquire them. In this chapter we look at technological 
networks, the physical infrastructure networks that have grown up over the 
last century or so and form the backbone of modern technological societies. 
Perhaps the most celebrated such network-and a relatively recent entry in 
the field-is the Internet, the global network of data connections, electrical, 
optical, and wireless, that links computers and other information systems to
gether. Section 2.1 is devoted to a discussion of the Internet. A number of 
other important examples of technological networks, including power grids, 
transportation networks, delivery and distribution networks, and telephone 
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networks, are discussed in subsequent sections. 

2.1 THE INTERNET 

The Internet is the worldwide network of physical data connections between 
computers and related devices. The Internet is a packet switched data network, 
meaning that messages sent over it are broken up into packets, small chunks of 
data, that are sent separately over the network and reassembled into a com
plete message again at the other end. The format of the packets follows a 
standard known as the Internet Protocol (IP) and includes an IP address in each 
packet that specifies the packet's destination, so that it can be routed correctly 
across the network. 

The alternative to a packet switched network is a circuit switched network, 
the classic example of which is the telephone system. In a circuit switched net
work, vertices request connections when needed, such as when a telephone 
call is placed, and the network allocates a separate circuit for each connection, 
reserved for the sale use of that connection until the connection is ended. This 
works well for voice traffic, which consists of discrete phone calls each with a 
definite beginning and end, but it would be a poor model for a data network, 
in which data transmission typically occurs in brief, intermittent bursts. Us
ing a packet switched model for the Internet allows computers to transmit and 
receive data intermittently or at varying rates without tying up capacity on 
the network. By making packets reasonably small, we also allow for a certain 
amount of unreliability in the network. It is not uncommon for packets to dis
appear on the Internet and never reach their destination, sometimes because 
of hardware or software failure, but more often because packets are deliber
ately deleted to reduce congestion in the busiest parts of the network. If a 
message is divided into several packets before transmission and a few packets 
are lost, then only those that are lost need be resent to complete the message. 
A software protocol called Transport Control Protocol or TCP, which runs on top 
of IP, performs the necessary error checking and retransmission automatically, 
without the need for intervention from computer users or other software.1 

1 Most of the well-known communications protocols of the Internet are themselves built on 
top of TCP, including HTTP (the World Wide Web), SMTP (email), and FTP (file transfer). TI1US 

communication is a three-layer process with a user-level protocol running on top of TCP, which 
in rum runs on top of IP, and the user protocols automatically benefit from the error-checking 
feahtres and guaranteed transmission offered by TCE (There are lower-level transport protocols 
as well, such as Ethernet, PPP, and ATM, but these will not concern us.) There are however also 
some applications of Internet technology that do not require guaranteed transmission. Most of 
the common examples are streaming media, such as audio and video transmissions, voice and 

The simplest network representation of the Internet (there are others, as we 
will shortly see) is one in which the vertices of the network represent comput
ers and other devices, and the edges represent physical connections between 
them, such as optical fiber lines. In fact, ordinary computers mostly occupy 
only the vertices on the "outside" of the network, those that data flows to and 
from, but they do not act as intermediate points for the flow of data between 
others. (Indeed, most computers only have a single connection to the net, so 
it would not be possible for them to lie on the path between any others.) The 
"interior" nodes of the Internet are primarily routers, powerful special-purpose 
computers at the junctions between data lines that receive data packets and 
forward them in one direction or another towards their intended destination. 

The general overall shape of the Internet is shown, in schematic form, in 
Fig. 2.1. The network is composed of three levels or circles of vertices. The 
innermost circle, the core of the network, is the backbone of the network, the 
trunk lines that provide long-distance high-bandwidth data transport across 
the globe, along with the high-performance routers and switching centers that 
link them together. These trunk lines are the highways of the Internet, built 
with the fastest fiber optic connections available (and improving all the time). 
The backbone is operated by network backbone providers (NBPs), who are pri
marily national governments and communications companies such as AT&T, 
Global CroSSing, British Telecom, and others. 

The second circle of the Internet is composed of Internet service providers 
or ISPs-commercial companies, governments, universities, and others who 
contract with NBPs for connection to the backbone and then resell or other
wise provide that connection to end users, the ultimate consumers of Internet 
bandwidth, who form the third circle-businesses, government offices, aca
demics, people in their homes, and so forth. In fact, as Fig. 2.1 shows, the ISPs 
are further subdivided into regional ISPs and local or consumer ISPs, the former 
being larger organizations whose primary customers are the local ISPs, who 
in turn sell network connections to the end users. This distinction is some
what blurred however, because large consumer ISPs, such as America Online 
or British Telecom, often act as their own regional ISPs (and some may be back
bone providers as well). 

The network structure of the Internet is not dictated by any central author
ity. Protocols and guidelines are developed by an informal volunteer organi
zation called the Internet Engineering Task Force, but one does not have to 
apply to any central Internet authority for permission to build a new spur on 

teleconferencing, and online games. An alternative protocol to TCP called User Datagram Protocol 
(UDP), which provides no transmission guarantees, is used in such cases. 
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Figure 2.1: A schematic depiction of the structure of the Internet. The vertices and 
edges of the Internet fall into a number of different classes: the "backbone" of high
bandwidth long-distance cOlmections; the ISPs, who connect to the backbone and who 
are divided roughly into regional (larger) and local (smaller) ISPs; and the end llsers
horne users, companies, and 50 forth-who connect to the ISPs. 

the Internet, or to take one out of service. 

One of the remarkable features of the Internet is that the scheme used for 
the routing of packets from one destination to another is arrived at by auto
mated negotiation among Internet routers using a system called the Border 
Gateway Protocol (BGP). BGP is designed in such a way that if new vertices 
or edges are added to the network, old ones disappear, or existing ones fail 
either permanently or temporarily, routers will take note and adjust their rout
ing policy appropriately. Some human oversight is required to keep the system 
funning smoothly, but no "Internet government" is needed to steer things from 
on high; the system organizes itself by the combined actions of many local and 
essentially autonomous computer systems. 

While this is an excellent feature of the system from the point of view of ro
bustness and flexibility, it is a problem for those who want to study the struc
ture of the Internet, because there is no central registry from which one can 

determine that structure. There is no one whose job it is to maintain an official 
map of the network. Instead the network's structure must be determined by 
experimental measurements. There are two primary methods for doing this. 
The first uses something called "traceroute"; the second uses BGP. 

2.1.1 MEASURING INTERNET STRUCTURE USING TRACEROUTE 

It is not, at least for most of us, possible to probe the network structure of the 
Internet directly. We can, however, quite easily discover the particular path 
taken by data packets traveling between our own computer (or any computer 
to which we have access) and most others on the Internet. The standard tool 
for doing this is called t}'aceroute. 

In addition to a destination address, which says where it is going, each In
ternet packet also contains a source address, which says where it started from, 
and a time-ta-live (TTL). The TTL is a number that specifies the maximum num
ber of "hops" that the packet can make to get to its destination, a hop being the 
traversal of one edge in the network. At every hop, the TTL is decreased by 
one, and if ever it reaches zero the packet is discarded, meaning it is deleted 
and not forwarded any further over the network. If we are using Tep, a mes
sage is also then sent back to the sender informing them that the packet was 
discarded and where it got to. (This is a part of Tep's mechanism for guaran
teeing the reliable transmission of data-see above.) The TTL exists mainly as 
a safeguard to prevent packets from getting lost on the Internet and wandering 
around forever, but we can make use of it to track packet progress as well. The 
idea is as follows. 

First, we send out a Tep packet with the destination address of the network 
vertex we are interested in and a TTL of 1. The packet makes a single hop to the 
first router along the way, its TTL is decreased to zero, the packet is discarded 
by the router and a message is returned to us telling us, among other things, 
the IP address of the router. We record this address and then repeat the process 
with a TTL of 2. This time the packet makes two hops before dying and the 
returned message tells us the IF address of the second router. The process is 
repeated with larger and larger TTL until the destination is reached, and the 
set of IP addresses received as a result specifies the entire route taken to get 
there2 There are standard software tools that will perform the entire procedure 

2We are assuming that each packet takes the same route to the destination. It is possible, but 
relatively rare, for different packets to take different routes, in which case the set of IP addresses 
returned by the traceroutc procedure will not give a correct path through the network. This can 
happen, for instance, if congestion patterns along the route vary significantly while the procedure 
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automatically and print out the list of IP addresses for us. On most computers 
the tool that does this is called "traceroute." 

We can use traceroute (or a similar tool) to probe the network structure of 
the Internet. The idea is to assemble a large data set of traceroute paths be
tween many different pairs of points on the Internet. With luck, most of the 
edges in the network (though usually not all of them) will appear at least once 
in this set, and the union of all of them should give a reasonably eomplete 
picture of the network. Early studies, for the sake of expediency, limited them
selves to just a few source computers, but more recent ones, such as the DIMES 
Project,3 make use of distributed collections of thousands of sources to develop 
a very complete picture of the network. 

The paths from any single source to a set of destinations form a tree-like 
structure as shown schematically in Fig. 2.2af b, and c.4 The source computers 
should, ideally, be well distributed over the network. If they are close together, 
then there may be a substantial overlap between the traceroute paths to distant 
vertices, which means that they will duplicate needlessly each other's efforts, 
rather than returning independent measurements. 

Once one has a suitable set of traceroute data, a simple union of all the paths 
appearing in the data set gives us our snapshot of the network structure-see 
Fig. 2.2d. That is, we go through each path and record a vertex for every IP 
address that appears in the path and an edge between every pair of addresses 
that appear in adjacent positions. As hinted above, it is unlikely that such a 
procedure will find all the edges in the network (see Fig. 2.2d again), and for 
studies based on small numbers of sources there can be quite severe biases in 
the sampling of edges [3,192]. However, better and better data sets are becom
ing available as time passes, and it is believed that we now have a reasonably 
complete picture of the shape of the Internet. 

In fact, it is rarely, if ever, done to record every IP address on the Internet as 
a separate vertex. There are believed to be about 2 billion unique IP addresses 
in use on the Internet at anyone time, with many of those corresponding to 
end-user computers that appear and disappear as the computers are turned 

is being performed, causing the network to reroute packets along less congested connections. Se
rious Internet mapping experiments perform repeated traceroute measurements to minimize the 
errors introduced by effects such as these. 

3See www.netdimes.org. 

4If there were a unique best path to every vertex, then the set of paths would be precisely a 
tree, Le., it would contain no loops. Because of the way routing algorithms work, however, this is 
not in practice always the case~two routes that originate at the same point and pass through the 
same vertex on the way to their final destination can still take different routes to get to that vertex, 
so that the set of paths can contain loops. 
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Figure 2.2: Reconstruction of the topology of the Internet from traceroute data. In 
panels (aL (b), and (c) we show in bold the edges in three sets of traceroute paths start
ing from each of the three highlighted source vertices. In panel (d) we form the union of 
these edges to make a picture of the overall network topology. Note that a few edges are 
missing from this picture (the remaining gray edges in panel (d)) because, by chance, 
they happen not to appear in any of the three individual traceroute data sets. 

on or off or connections to the Internet are made or broken. Most studies of the 

Internet ignore end-user computers and restrict themselves to just the routers, 
in effect concentrating on the inner zones in Fig. 2.1 and ignoring the outermost 
one. We will refer to such maps of the Internet as representations at the router 
level. The vertices in the network are routers, and the edges between them are 
network connections. 

It may appear strange to ignore end-user computers, since the end users 
are, after all, the entire reason for the Internet's existence in the first place. 
However, it is the structure of the network at the router level that is responsible 
for most aspects of the performance, robustness, and efficiency of the network, 
that dictates the patterns of traffic flow on the network, and that forms the 
focus of most work on Internet structure and design. To the extent that these 
are the issues of scientific interest, therefore, it makes sense to concentrate our 
efforts on the router-level structure. 

An example of a study of the topology of the Internet at the router level 
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is that of Faloutsos et al. [111], who looked at the "degree distribution" of the 
network and discovered it to follow, approximately, a power law. We discuss 
degree distributions and power laws in networks in more detail in Section 8.4. 

Even after removing all or most end-user computers from the network, the 
network structure at the router level may still be too detailed for our purposes. 
Often we would like a more coarse-grained representation of the network that 
gives us a broader overall picture of network structure. Such representations 
are created by grouping sets of IP addresses together into single vertices. Three 
different ways of grouping addresses are in COillman use giving rise to three 
different coarse-grained representations, at the level of 5ubnets, domains, and 
autononl0U5 systems. 

A slIbl1et is a group of IP addresses defined as follows. IP addresses consist 
of four numbers, each one in the range from 0 to 255 (eight bits in binary) and 
typically written in a string separated by periods or dots. For example, the IP 
address of the main web server at the author's home institution, the University 
of Michigan, is 141.211.144.190. IP addresses are allocated to organizations 
in blocks. The University of Michigan, for instance, owns (among others) all 
the addresses of the form 141.211.144.xxx, where "xxx" can be any number 
between 0 and 255. Such a block, where the first three numbers in the address 
are fixed and the last can be anything, is called a class C subnet. There are also 
class B subnets, which have the form 141.211.xxx.yyy, and class A subnets, 
which have the form 141.xxx.yyy.zzz. 

Since all the addresses in a class C subnet are usually allocated to the same 
organization, a reasonable way of coarse-graining Internet network data is to 
group vertices into c1ass C subnets. In most cases this will group together 
vertices in the same organization, although larger organizations, like the Uni
versity of Michigan, own more than one class C subnet, so there will still be 
more than one vertex in the coarse-grained network corresponding to such or
ganizations. Given the topology of the network at the router level, the level 
of individual IP addresses, it is easy to lump together into a single vertex all 
addresses in each class C subnet and place an edge between any two subnets 
if any router in one has a network connection to any router in the other. Fig
ure 1.1 on page 4 shows an example of the network structure of the Internet 
represented at the level of class C subnets. 

The second common type of coarse-graining is coarse-graining at the do
main level. A domain is a group of computers and routers under, usually, the 
control of a single organization and identified by a single domain name, nor
mally the last two or three parts of a computer's address when the address 
is written in human-readable text form (as opposed to the raw IP addresses 
considered above). For example, "umich.edu" is the domain name for the 

University of Michigan and !foup. co. uk" is the domain name for Oxford Uni
versity Press. The name of the dOlnain to which a computer belongs can be 
determined in a straightforward manner from the computer's IF address by a 
"reverse DNS lookup:' a network service set up to provide precisely this type 
of information. Thus, given the router-level network topology, it is a simple 
task to determine the domain to which each router belongs and group vertices 
in the network according to their domain. An edge is then placed between two 
vertices if any router in one has a direct network connection to any router in 
the other. The study by Faloutsos et al. [111] mentioned earlier looked at the 
domain-level structure of the Internet as well as the router-level struchlfe. 

The third common coarse-graining of the network is coarse-graining at the 
level of autonomous systems. An autonomous system is similar to a domain: 
it is a group of computers, usually under single administrative control, and 
it often (though not always) coincides with a domain. Coarse-graining at the 
autonomous system level is not usually used with data derived from trace
route sampling but with data derived using an alternative method based on 
BGP routing tables, for which it forms the most natural unit of representation. 
The BGP method and autonomous systems are discussed in detail in the next 
section. 

2.1.2 MEASURING INTERNET STRUCTURE USING ROUTING TABLES 

Internet routers maintain routing tables that allow them to decide in which di
rection incoming packets should be sent to best reach their destination. Rout
ing tables are constructed from information shared between routers using the 
Border Gateway Protocol (BGP). They consist of lists of complete paths from 
the router in question to destinations on the Internet. When a packet arrives at 
a router, the router examines it to determine its destination and looks up that 
destination in the routing table. The first step of the path in the appropriate 
table entry tells the router how the packet should be sent on its way. Indeed, 
in theory routers need store only the first step on each path in order to route 
packets correctly. However, for efficient calculation of routes using BGP (the 
teclmiques of which we will not go into here) it is highly desirable that routers 
be aware of the entire path to each destination, and since the earliest days of 
the Internet all routers have operated in this way. We can make use of this fact 
to measure the structure of the Internet. 

Routing tables in routers are represented at the level of autonomous systems 
(ASes). An autonomous system is a collection of computers and routers, usu
ally under single administrative control, within which data routing is handled 
independently of the wider Internet, hence the name "autonomous system." 
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That is, when a data packet arrives at a router within an autonomous system, 
destined for a specific computer within that same autonomous system, it is the 
responsibility of the autonomous system to get the packet the last few steps 
to its final destination. Data passing between autonomous systems, however, 
is handled by the Internet-wide mechanisms of BGP. Thus it's necessary for 
BGP to know about routing only down to the level of autonomous systems 
and hence BGP tables are most conveniently represented in autonomous sys
tem terms. In practice, autonomous systems, of which there are (at the time of 
writing) about twenty thousand on the Internet, often coincide with domains, 
or nearly so. 

Autonomous systems are assigned unique identification numbers. A rout
ing path consists of a sequence of these AS numbers and since router tables 
consist of paths to a large number of destinations, we can construct a picture of 
the Internet at the autonomous system level by examining them. The process 
is very similar to that used for the traceroute method described in the previous 
section and depicted in Fig. 2.2. We first obtain a number of router tables. This 
is normally done simply by the gracious cooperation of router operators at a 
variety of organizations. Each router table contains a large number of paths 
starting from a single source (the router), and the union of these paths gives a 
good but not complete network snapshot in which the vertices are autonomous 
systems and the edges are the connections between autonomous systems. As 
with traceroute, it is important that the routers used be well scattered over the 
network to avoid too much duplication of results, and the number of routers 
used should be as large as possible to make the sampling of network edges as 
complete as possible. For example, the Routeviews Project,S a large BGP-based 
Internet mapping effort based at the University of Oregon, uses (again at the 
time of writing) a total of 223 source computers around the world to measure 
the structure of the entire network every two hours. 

Figure 2.3 shows a picture of the Internet at the AS level derived from 
routing tables. Qualitatively, the picture is similar to Fig. 1.1 for the class C 
subnet structure, but there are differences arising because class C subnets are 
smaller units than many autonomous systems and so Fig. l.1 is effectively a 
finer-grained representation than Fig. 2.3. 

Using router-, subnet-, domain-, or AS-level structural data for the Internet, 
many intriguing features of the net's topology have been discovered in recent 
years [57,66,111,211,262,265], many of which are discussed in later chapters 
of this book. 

5See www.routeviews.arg. 

2.1 THE INTERNET 

Figure 2.3: The structure of the Internet at the level of autonomous systems. (See Plate III for color version.) The 
vertices in this netvvork representation of the Internet are autonomous systems and the edges show the routes taken by 
data traveling between them. This figure is different from Fig. 1.1, which shows the netvvork at the level of class C sub
nets. The picture was created by Hal Burch and Bill Cheswick. Patent(s) pending and Copyright Lumeta Corporation 
2009. Reproduced with permission. 

One further aspect of the Internet worth mentioning here is the geographic 
location of its vertices on the surface of the Earth. In many of the networks 
that we will study in this book, vertices do not exist at any particular position 
in real space-the vertices of a citation network for instance are not located on 
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any particular continent or in any particular town. Not so the Internet; its ver
tices, by and large, are quite well localized in space. Your computer sits on your 
desk, a router sits in the basement of an office building, and so forth. Things be
come more blurry once the network is coarse-grained. The domain umich. edu 
covers large parts of the state of Michigan. The domain aol. com covers most 
of North America. These are somewhat special cases, however, being unusu
ally large domains. The majority of domains have a well-defined location at 
least to within a few miles. Furthermore, tools now exist for determining, at 
least approximately, the geographic location of a given IF address, domain, 
or autonomous system. Examples include NetGeo, NetAcuity, GeoNetMap, and 
many others. Geographic locations are determined primarily by looking them 
up in one of several registries that record the official addresses of the regis
tered owners of domains or autonomous systems. These addresses need not 
in all cases correspond to the actual location of the corresponding computer 
hardware. For instance, the domain ibm. com is registered in New York City, 
but IBM's principal operations are in California. Nonetheless, an approximate 
picture of the geographic distribution of the Internet can be derived by these 
methods, and there has been some interest in the results [332]. 

Geographic localization is a feature the Internet shares with several other 
technological networks, as we will see in the following sections, but rarely with 
networks of other kinds6 

2.2 THE TELEPHONE NETWORK 

The Internet is the best studied example of a technological network, at least 
as measured by volume of recent academic work. This is partly because data 
on Internet structure are relatively easy to come by and partly because of in
tense interest among engineers and computer scientists and among the public 
at large. Several other technological networks however are worthy of mention 
here. In this and the following sections of the chapter we look briefly at the 
telephone network and various distribution and transportation networks. A 
few other networks, such as software call graphs and electronic circuits, could 
also be considered technological networks and have been studied occasionally, 
but are beyond the scope of this book. 

6Social networks are perhaps the main exception-in many cases people or groups of people 
can be considered to have reasonably well-defined geographic locations. Relatively little work has 
been done however on the effects of geographic distribution, perhaps because most social network 
studies have concentrated on populations in local neighborhoods, rather than ones spread out over 
significant geographic areas. 

2.2 THE TELEPHONE NETWORK 

The telephone network-meaning the network of landlines and wireless 
links7 that transmits telephone calls-is one of the oldest communication net
works still in use (although the postal network is certainly older), but it has 
been little studied by network theorists, primarily because of a lack of good 
data about its structure. Of course, the structure of the phone network is 
known, but the data are largely proprietary to the telephone companies that 
own the network and, while not precisely secret, they are not openly shared 
with the research community in the same way that Internet data are. We hope 
that this situation will change, although the issue may become moot in the not 
too distant future f as telephone companies are sending an increasing amount 
of voice traffic over the Internet rather than over dedicated telephone lines, 
and it may not be long before the two networks merge into one. 

Some general principles of operation of the telephone network are clear 
however. By contrast with the Internet, the traditional telephone network is, 
as mentioned in Section 2.1, not packet switched. Signals sent over the phone 
network are not disassembled and sent as sets of discrete packets. Instead the 
telephone network is circuit switched, which means that the telephone company 
has a number of lines or circuits available to carry telephone calls between dif
ferent points and it assigns them to individual callers when those callers place 
phone calls. In the earliest days of the telephone systems in the United States 
and Europe the "lines" actually were individual wires, one each for each call 
the company could carry. Increasing the capacity of the network to carry more 
calls meant putting in more wires. Since the early part of the twentieth century, 
however, phone companies have employed techniques for multiplexing phone 
signals, i.e., sending many calls down the same wire simultaneously. The ex
ception is the "last mile" of connection to the individual subscriber. The phone 
cable entering a house usually only carries one phone call at a time, although 
even that has changed in recent years as new technology has made it possible 
for households to have more than one telephone number and place more than 
one call at a time. 

The basic form of the telephone network is relatively simple. Most coun
tries with a mature landline (as opposed to wireless) telephone network use 

7For most of its existence, the telephone network has connected together stationary telephones 
in fixed locations such as houses and offices using landlines. In the last twenty years or so fixed 
telephones have started to be replaced by wireless phones ("mobile phones" or "cell phones"), but 
it is important to realize that even calls made on wireless phones are still primarily carried over the 
traditionallandline telephone network. The signal from a wireless phone makes the first step of its 
journey wirelessly to a nearby transmission tower, but from there it travels over ordinary phone 
lines. Thus, while the advent of wireless phones has had an extraordinary impact on society, it has 
had rather less impact on the nature of the telephone network. 
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Figure 2.4: A sketch of the three-tiered structure of a traditional telephone network. 
In a telephone network individual subscriber telephones are connected to local ex
changes, which are connected in turn to long-distance offices. The long-distance offices 
are connected amongst themselves by further lines, and there may be some connections 

between local exchanges as welL 

a three-tiered design. Individual telephone subscribers are connected over 10-
cal lines to local telephone exchanges, which are then connected over shared 
"trunk" lines to long-distance offices, sometimes also called toll-switching of
fices. The long-distance offices are then connected among themselves by fur
ther trunk lines. See Fig. 2.4 for a sketch of the network structure. The structure 
is, in many ways, rather similar to that of the Internet (Fig. 2.1), even though 
the underlying principles on which the two networks operate are quite differ-

ent. 
The three-level topology of the phone network is designed to exploit the 

fact that most telephone calls in most countries are local, meaning they con
nect subscribers in the same town or region. Phone calls between subscribers 
connected to the same local exchange can be handled by that exchange alone 
and do not need to make use of any trunk lines at all. Such calls are usually 

referred to as local calls, while calls that pass over trunk lines are referred to 
as trunk or long-distance calls. In many cases there may also be direct con
nections between nearby local exchanges that allow calls to be handled locally 
even when two subscribers are not technically attached to the same exchange. 

The telephone network has had roughly this same topology for most of the 
last hundred years and still has it today, but many of the details about how the 
network works have changed. In particular, at the trunk level some telephone 
networks are no longer circuit switched. Instead they are now digital packet 
switched networks that work in a manner not dissimilar from the Internet, 
with voice calls digitized, broken into packets, and transmitted over optical 
fiber links. Only the "last mile" to the subscriber's telephone is still carried on 
an old-fashioned dedicated circuit, and even that is changing with the advent 
of digital and Internet telephone services. Nonetheless, in terms of geometry 
and topology the structure of the phone network is much the same as it has al
ways been, being dictated in large part by the constraints of geography and the 
propensity for people to talk more often to others in their geographic vicinity 
than to those further away. 

2.3 POWER GRIDS 

The topology of power grids has received occasional study in the networks lit
erature [16,323]. A power grid, in this context, is the network of high-voltage 
transmission lines that provide long-distance transport of electric power within 
and between countries. Low-voltage local power delivery lines are normally 
excluded. The vertices in a power grid correspond to generating stations and 
switching substations, and the edges correspond to the high-voltage lines. The 
topology of power grids is not difficult to determine. The networks are usu
ally overseen by a single authority and complete maps of grids are readily 
available. Indeed, very comprehensive data on power grids (as well as other 
energy-related networks such as oil and gas pipelines) are available from spe
cialist publishers, either on paper or in electronic form, if one is willing to pay 

for them. 
There is much of interest to be learned by looking at the structure of power 

grids. Like the Internet, power grids have a spatial aspect; the individual ver
tices each have a location somewhere on the globe, and their distribution in 
space is interesting from geographic, social, and economic points of view. Net
work statistics, both geographic and topological, may provide insight into the 
global constraints governing the shape and growth of grids. Power grids also 
display some unusual behaviors, such as cascading failures, which can give 
rise to surprising results such as the observed power-law distribution in the 

2.3 POWER GRIDS 
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sizes of power outages [92]. 
However, while there is a temptation to apply simple models of the kind 

described in this book to try to explain these and other results, it is wise to 
be cautious. Power grids are very complicated systems. The flow of power is 
governed not only by simple physical laws, but also by precise and detailed 
control of the phases and voltages across transmission lines, monitored and 
adjusted on rapid timescales by sophisticated computer systems and on slower 
timescales by human operators. It turns out that power failures and other 
power-grid phenomena are influenced relatively little by the raw topology of 
the network and much more by operator actions and software design, and as 
a result network theory has not, so far, been very successful at shedding light 
on the behavior of power grids. 

2.4 TRANSPORTATION NETWORKS 

A moderate amount of work has been done on the structure and function of 
transportation networks such as airline routes and road and rail networks. The 
structure of these networks is not usually hard to determine, although compil
ing the data may be laborious. Airline networks can be reconstructed from 
published airline timetables, road and rail networks from maps. Geographic 
information systems (GIS) software can be useful for speeding the compilation 
of transportation data, and there are also a variety of online resources provid
ing useful information such as latitude and longitude of airports. 

One of the earliest examples of a study of a transportation network is the 
study by Pitts [268] of waterborne transport on Russian rivers in the Middle 
Ages. There was also a movement among geographers in the 1960s and 70s to 
study road and rail networks, particularly focusing on the interplay between 
their economics and their physical structure. The most prominent name in the 
movement was that of Karel Kansky, and his book on transportation networks 
is a good point of entry into that body of literature [168]. 

More recently a number of authors have produced studies applying new 
network analysis ideas to road, rail, and air networks [16,136,294]. In most 
of the networks studied the vertices represent geographic locations and the 
edges routes between them. For instance, in studies of road networks the ver
tices usually represent road intersections and the edges roads. The study by 
Sen et ai. [294] of the rail network of India provides an interesting counterex
ample. Sen et al. argue, plausibly, that in the context of rail travel what matters 
to most people is whether there is a direct train to their destination or, if there 
is not, how many trains they will have to take to get there. People do not care 
so much about how many stops there are along the way, so long as they don't 

2.5 DELIVERY AND DISTRIBUTION NETWORKS 

have to change trains. Thus, Sen et al. argue, a useful network representation 
in the case of rail travel is one in which the vertices represent locations and two 
vertices are connected by an edge if a single train runs between them. Then the 
distance between two vertices in the network-the number of edges you need 
to traverse to get from A to B-is equal to the number of trains you would 
have to take. A better representation still (although Sen et al. did not consider 
it) would be a "bipartite network," a network containing two types of vertex, 
one representing the locations and the other representing train routes. Edges 
in the network would then join locations to the routes that run through them. 
The first, simpler representation of Sen et al. can be derived from the bipartite 
one by making a "one-mode projection" onto the locations only. Bipartite net
works and their projections are discussed in greater detail in Section 6.6. 

2.5 DELIVERY AND DISTRIBUTION NETWORKS 

Falling somewhere between transportation networks and power grids are the 
distribution networks, about which relatively little has been written within the 
field of networks research. Distribution networks include things like oil and 
gas pipelines, water and sewerage lines, and the routes used by the post office 
and package delivery and cargo companies. Figure 2.5 shows one example, the 
European gas distribution network, taken from a study by Carvalho et al. [64], 
who constructed the figure from data purchased from industry sources. In this 
network the edges are gas pipelines and the vertices are their intersections, 
including pumping, switching, and storage facilities and refineries. 

If one is willing to interpret "distribution" in a loose sense, then one class of 
distribution networks that has been relatively well studied is river networks, 
though if one wants to be precise river networks are really collection networks, 
rather than distribution networks. In a river network the edges are rivers or 
streams and the vertices are their intersections. Like road networks no special 
techniques are necessary to gather data on the structure of river networks-the 
hard work of surveying the land has already been done for us by surveyors 
and cartographers, and all we need do is copy the results off their maps. See 
Fig. 2.6 for an example of a river network. 

The topological and geographic properties of river networks have been 
studied in some detail [94,208,284]. Of particular note is the fact that river 
networks, to an excellent approximation, take the form of trees. That is, they 
contain no loops (if one disregards the occasional island midstream), a point 
that we discuss in more detail in Section 6.7. 

Similar in some respects to river networks are networks of blood vessels 
in animals, and their equivalents in plants, such as root networks. These too 
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Figure 2.5: The network of natural gas pipelines in Europe. Thickness of lines indicates the sizes of the pipes. Figure 
created by R. Carvalho et aZ. [64]. Copyright 2009 American Physical Society. Reproduced with permission. 
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have been studied at some length. An early example of a mathematical result 
in this area is the formula for estimating the total geometric length of all edges 
in such a network by observing the number of times they intersect a regular 
array of straight lines [231]. This formula, whose derivation is related to the 
well-known "Buffon's needle" experiment for determining the value of 7[, is 
most often applied to root systems, but there is no reason it could not also be 
useful in the study of river networks or, with suitable modification, any other 

type of geographic network. 

2.5 DELIVERY AND DISTRIBUTION NETWORKS 

Figure 2.6: Drainage basin of the Loess Plateau. The net
work of rivers and streams on the Loess Plateau in the Shanxi 
province of China. The tree-like structure of the network is 
clearly visible-there are no loops in the netw-ark, so water at 
any point in the network drains off the plateau via a single 
path. Reproduced from Pelletier [266] by permission of the 
American Geophysical Union. 

Also of note in this area is work on the scaling relationships between the 
structure of branching vascular networks in organisms and metabolic pro
cesses [26,325,326], an impressive example of the way in which an under
standing of network structure can be parlayed into an understanding of the 
functioning of the systems the networks represent. We will see many more 
examples during the course of this book. 
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CHAPTER 3 

SOCIAL NETWORKS 

A discussioll of social networks and the empirical 
techniques used to probe their structure 

SOCIAL networks are networks in which the vertices are people, or ~on:e
times groups of people, and the edges represent some form of socIal m

teraction between them, such as friendship. Sociologists have developed their 
own language for discussing networks: they refer to the vertices, the people, 
as actors and the edges as ties. We will sometimes use these words when dis
cussing social networks. 

We begin this chapter with a short summary of the origins and research fo
cus of the field of social networks, before describing in detail some of the tech
niques used to discover social network structure. The material in this chapter 
forms the basis for understanding many of the social network examples that 
appear in the rest of the book. 

3.1 THE EMPIRICAL STUDY OF SOCIAL NETWORKS 

To most people the words "social network," if they mean anything, refer to 
online social networking services such as Facebook and MySpace. The study of 
social networks, however, goes back far farther than the networks' modern
day computer incarnations. Indeed, among researchers who study networks, 
sociologists have perhaps the longest and best established tradition of quanti
tative, empirical work. There are clear antecedents of social network analysis 
to be found in the literature as far back as the end of the nineteenth century. 
The true foundation of the field, however, is usually attributed to psychiatrist 
Jacob Moreno, a Romanian immigrant to America who in the 1930s became 
interested in the dynamics of social interactions within groups of people. At a 
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Figure 3.1: Friendships between schoolchildren. This 
early hand-drawn image of a social netvvork, taken from 
the work of psychiatrist Jacob Moreno, depicts friendship 
patterns between the boys (triangles) and girls (circles) in a 
class of schoolchildren in the 19305. Reproduced from [228] 
by kind permission of the American Society of Group Psy
chotherapy and Psychodrama. 

medical conference in New York City in March 1933 he presented the results 
of a set of studies he had performed that may have been the first true social 
network studies, and the work attracted enough attention to merit a column 
in the New York Times a few days later. A year after that Moreno published a 
book entitled Who Shall Survive? [228] which, though not a rigorous work by 
modern standards, contained the seeds of the field of sociometry, which later 
became social network analysis. 

Moreno called his diagrams of human interaction sociograms, rather than 
social networks (a term not coined until about twenty years later), but in every
thing but name they are clearly what we now know as networks. Figure 3.1, for 
instance, shows a hand-drawn figure from Moreno's book, depicting friend
ships within a group of schoolchildren. The triangles and circles represent 
boys and girls respectively and the figure reveals, among other things, that 
there are many friendships between two boys or two girls, but few between a 
boy and a girl. It is simple conclusions like this, that are both sociologically in
teresting and easy to see once one draws a picture of the network, that rapidly 
persuaded social scientists that there was merit in Moreno's methods. 

One of the most important things to appreciate about social networks is 
that there are many different possible definitions of an edge in such a network 
and the particular definition one uses will depend on what questions one is 
interested in answering. Edges might represent friendship between individu
als, but they could also represent professional relationships, exchange of goods 
or money, communication patterns, romantic or sexual relationships, or many 
other types of connection. If one is interested, say, in professional interactions 
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between the boards of directors of Fortune 500 companies, then a network of 
who is dating whom or who looks at who else's Facebook page is probably 
not of much use. Moreover, the techniques one uses to probe different types 
of social interaction can also be quite different, so that different kinds of social 
network studies are typically needed to address different kinds of questions. 

Direct questioning of experimental subjects is probably the most common 
method of determining the structure of social networks. We discuss it in detail 
in Section 3.2. Another important teclmique, the use of archival records (Sec
tions 3.4 and 3.5), is illustrated by a different early example of a social network 
study. !twas, apparently, a common practice in the US in the 1930s for newspa
pers to report on the public appearances of society women, and Davis, Gard
ner, and Gardner made use of this in a study of a social network of 18 women 
in a city in the American south. This study, often referred to in the literature 
as the "Southern Women Study," was described in a book by the researchers 
published in 1941 [86], although it was based on data from 1939. They took a 
sample of 14 social events attended by the women in question and recorded 
which women attended which events. Women in this network may be con
sidered connected if they attended a common event. An alternative and more 
complete representation of the data is as an "affiliation network" or "bipartite 
graph," a network with two types of vertex, representing the women and the 
events, with edges connecting each woman to the events she attended. A vi
sualization of the affiliation network for the Southern Women Study is shown 
in Fig. 3.2. One reason why this study has become so well known, in addition 
to its antiquity, is that the women were found by the researchers to split into 
two subgroups, tightly knit clusters of acquaintances with only rather loose 
between-cluster interaction. A classic problem in social network analysis is 
to devise a method or algorithm that can discover and extract such clustering 
from raw network data, and quite a number of researchers have made use of 
the Southern Women data as a test case for the development of such methods. 
Affiliation networks receive further attention in Section 3.5. 

Such is the power of social network analysiS that its techniques have, since 
Moreno and Davis et al., been applied to an extraordinary variety of differ
ent communities, issues, and problems, including friendship and acquaintance 
patterns in local communities and in the population at large [36,37,175,219, 
311], and among students [334] and schoolchildren [112,225,277], contacts be
tween business people and other professionals [78,134], boards of directors 
of companies [87,88,207], collaborations of scientists [145,146,236], movie ac
tors [16,323], and musicians [139], sexual contact networks [183,198,272,285] 
and dating patterns [34], covert and criminal networks such as networks of 
drug users [289] or terrorists [191], historical networks [259], online commu-

3.2 INTERVIEWS AND QUESTIONNAIRES 

Figure 3.2: The affiliation network of the "Southern Women Study." This network 
(like all affiliation networks) has two types of vertex, the open circles at the bottom rep
resenting the 18 women who were the subjects of the study and the shaded circles at the 
top representing the social events they attended. The edges connect each woman to the 
events she attended, as deduced from newspaper reports. Data courtesy of L. Freeman 
and originally from Davis et al. [86]. 

nities such as Usenet [204,300,312] or Facebook [196], and social networks of 
animals [205,286,287]. 

We will see some examples of these and other networks throughout this 
book and we will give details as needed as we go along. The rest of the present 
chapter is devoted to a discussion of the different empirical methods used to 
measure social networks. The two techniques described above, namely direct 
questioning of subjects and the use of archival records, are two of the most 
important, but there are several others that find regular use. This chapter does 
not give a complete review of the subject-for that we refer the reader to spe
cialized texts such as those of Wasserman and Faust [320] and Scott [293]-but 
we introduce as much material as will be needed for the later chapters of the 
book, while at the same time, we hope, giving some flavor for the challenges 
of empirical study in the field of social networks. 

3.2 INTERVIEWS AND QUESTIONNAIRES 

The most common general method for accumulating data on social networks 
is simply to ask people questions. If you are interested in friendship networks, 
then you ask people who their friends are. If you are interested in business 
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relationships you ask people who they do business with, and so forth. The 
asking may take the form of direct interviews with participants or the com
pletion by participants of questionnaires, either on paper or electronically. In
deed many modern studies, particularly surveys conducted by telephone, em
playa combination of both interviews and questionnaires, wherein a profes
sional interviewer reads questions from a questionnaire to a participant. By 
using a questionnaire, the designers of the study can guarantee that questions 
are asked, to a good approximation, in a consistent order and with consis
tent wording. By employing an interviewer to do the asking the study gains 
flexibility and reliability: interviewees often take studies more seriously when 
answering questions put to them by a human being, and interviewers may be 
given some latitude to probe interviewees when they are unclear, unrespon
sive, or confused. These are important considerations, since misunderstand
ing and inconsistent interpretation of survey questions are substantial sources 
of error. By making questions as uniform as possible and giving respondents 
personal help in understanding them, these errors can be reduced. A good in
troduction to social survey design and implementation has been given by Rea 

and Parker [279]. 
To find out about social networks, surveys typically employ a name gen

erator, an item or series of items that invite respondents to name others with 
whom they have contact of a specified kind. For example, in their classic study 
of friendship networks among schoolchildren, Rapoport and Horvath [277] 
asked children to complete a questionnaire that included items worded as fol-

10ws:1 

My best friend at __ junior High School is: 
My second-best friend at __ junior High School is: 
My third-best friend at __ junior High School is: 

My eighth-best friend at __ junior High School is: 

The blanks " __ " in the questionnaire were filled in with the appropriate 
school name. The list stopped at the eighth-best friend and many children 

did not complete all eight. 
Ideally all students within the school would be surveyed, though Rapoport 

and Horvath reported that in their case a few were absent on the day the sur
vey was conducted. Note that the survey specifically asks children to name 

I A junior high school in the United States is a school for children aged approximately 12 to 14 

years. 
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only friends within the school. The resulting network will therefore record 
friendship ties within the school but none to individuals outside. Since all 
social network studies are limited to some community or portion of the pop
ulation, and since it is highly unlikely that such a community will have ties 
solely within the community and none outside, all surveys must make some 
decision about how to deal with ties to outside individuals. Sometimes they 
are recorded. Sometilnes, as here, they are not. Such details can be impor
tant since statistics derived from the survey results will often depend on the 
decisions made. 

There are some points to notice about the data produced by name genera
tors. First, the network ties, friendships in the case above, are determined by 
one respondent nominating another by name. This is a fundamentally asym
metric process. Individual A identifies individual B as their friend. In many 
cases B will also identify A as their friend, but there is no guarantee that this 
will happen and it is not uncommon for nomination to go only one way. We 
normally think of friendship as a two-way type of relationship, but surveys 
suggest that this not always the case. As a result, data derived from name 
generators are often best represented as directed networks, networks in which 
edges run in a particular direction from one vertex to another. If two indi
viduals nominate each other then we have two directed edges, one pointing 
in either direction. Each vertex in the network also has two degrees, an out
degree-the number of friends identified by the corresponding individual
and an in-degree-the number of others who identified the individual as a 
friend. 

This brings us to a second point about name generators. It is common, 
as in the example above, for the experimenter to place a limit on the number 
of names a respondent can give. In the study of Rapoport and Horvath, this 
limit was eight. Studies that impose such a limit are called fixed choice studies. 
The alternative is to impose no limit. Studies that do this are called free choice 
studies. 

Limits are often imposed purely for practical purposes, to reduce the work 
the experimenter must do. However, they may also help respondents under
stand what is required of them. In surveys of schoolchildren, for instance, there 
are some children who, when asked to name all their friends, will patiently 
name all the other children in the entire school, even if there are hundreds of 
them. Such responses are not particularly helpful in surveys-almost certainly 
the children in question are employing a definition of friendship different from 
that employed by most of their peers and by the investigators. 

However, limiting the number of responses is for most purposes undesir
able. In particular, it clearly limits the out-degree of the vertices in the net-

We encountered directed 
networks previously in 
Chapter 1, in our discus
sion of the World Wide 
Web, and they are dis
cussed in more detail in 
Section 6.4. 
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work, imposing an artificial and possibly unrealistic cut-off. As discussed in 
Chapter 1, an interesting property of many networks is the existence of a small 
number of vertices with unusually high degree, and it is known that in some 
cases these vertices, though few in number, can have a dominant effect on the 
behavior of the network as a whole. By employing a name generator that arti
ficially cuts off the degree, any information about the existence of such vertices 
is lost. 

It is worth noticing, however, that even in a fixed-choice study there is nor
mally no limit on the in-degree of vertices in the nehvork; there is no limit to 
the number of times an individual can be nominated by others. And indeed in 
many networks it is found that a small number of individuals are nominated 
an unusually large number of times. Rapoport and Horvath [277] observed 
this in their friendship networks: while most children in a school are nomi
nated as a friend of only a few others, a small number of popular children are 
nominated very many times. Rapoport and Horvath were some of the first sci
entists in any field to study quantitatively the degree distribution of a network, 
reporting and commenting extensively on the in-degrees in their friendship 
nehvorks. 

Not all surveys employing name generators produce directed networks. 
Sometimes we are interested in ties that are intrinsically symmetric between 
the two parties involved, in which case the edges in the network are properly 
represented as undirected. An example is networks of sexual contact, which 
are widely studied to help us understand the spread of sexually transmitted 
diseases [183,198,272,285]. In such networks a tie between individuals A and B 
means that A and B had sex. While participants in studies sometimes do not 
remember who they had sex with or may be unwilling to talk about it, it is 
at least in principal a straightforward yes-or-no question whether two people 
had sex, and the answer should not depend on which of the two you ask2 In 
such networks therefore, ties are normally represented as undirected. 

Surveys can and often do ask respondents not just to name those with 
whom they have ties but to describe the nature of those ties as well. For in
stance, questions may ask respondents to name people they both like and dis
like, or to name those with whom they have certain types of contact, such as 
socializing together, working together, or asking for advice. For example, in a 
study of the social network of a group of medical doctors, Coleman et al. [78] 

asked respondents the following questions: 

20ne can, by asking both, make some estimate of the accuracy of the survey. If individuals' 
responses disagree too often, it is a clear sign that the reliability of the responses is poor. 

3.2 INTERVIEWS AND QUESTIONNAIRES 

Who among your colleagues do you turn to most often for advice? 
With whom do you most often discuss your cases in the course of an 

ordinary week? 
Who are the friends among your colleagues who you see most often 

socially? 

The names of a maximum of three doctors could be given in response to each 
question. A survey such as this, which asks about several types of interactions, 
effectively generates data on several different networks at once-the network 
of advice, the discussion network, and so forth. 

Surveys may also pose questions aimed at measuring the strength of ties, 
asking for instance how often people interact or for how long, and they may 
ask individuals to give a basic description of themselves: their age, income, 
education, and so forth. Some of the most interesting results of social network 
studies concern the extent to which people's choice of whom they associate 
with reflects their own background and that of their associates. For instance, 
you might choose to socialize primarily with others of a similar age to yourself, 
but turn for advice to those who are older than you. 

The main disadvantages of network studies based on direct questioning 
of participants are that they are first laborious and second inaccurate. The 
administering of interviews or questionnaires and the collation of responses is 
a demanding job that has been only somewhat helped in recent years by the 
increasing availability of computers and the use of online survey tools. Most 
studies have been limited to a few tens or at most hundreds of respondents
the 34-vertex social network of Fig. 1.2 is a typical example. It is a rare study 
that contains more than a thousand actors, and studies such as the National 
Longitudinal Study of Adolescent Health,' which compiled responses from 
over 90 000 participants, are very unusual and extraordinarily costly. Only 
a substantial public interest such as, in that case, the control of disease, can 
justify their funding. 

Data based on direct questioning are also plagued by uncontrolled biases. 
Answers given by respondents are always, to some extent, subjective. If you 
ask people who their friends are, different people will interpret "friend" in dif
ferent ways and thus give different kinds of answers. Investigators do their 
best to pose questions and record answers in a uniform fashion, but it is in
evitable that inconsistencies will be present in the final data and anyone who 
has ever conducted a survey knows this well. This problem is not unique to 
social network studies. Virtually all social surveys suffer from such problems 

3See www.epe.une.edu/projeets/addhealth. 
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and a large body of expertise has been developed concerning techniques for 
dealing with them. Nonetheless, one should bear in mind when dealing with 
any social network data derived from interviews or questionnaires the possi
bility of uncontrolled experimental bias in the results. 

3.2.1 EGO-CENTERED NETWORKS 

Studies of the type described in the previous section, in which all or nearly all 
of the individuals in a community are surveyed, are called sociometric studies, 
a term coined by Jacob Moreno himself (see the discussion at the beginning of 
this chapter). For the purposes of determining network structure, sociometric 
studies are desirable; unless we survey all or nearly all of the population of 
interest, there is no way we can reconstruct the complete network of ties within 
that population. However, as discussed at the end of the preceding section, 
sociometric studies also require a lot of work and for large populations may 
simply be infeasible. 

At the other end of the spectrum lie studies of personal networks or ego
centered networlcs.4 An ego-centered network is the network surrounding one 
particular individual, meaning, usually, the individual surveyed and his or her 
immediate contacts. The individual surveyed is referred to as the ego and the 
contacts as alters . 

The typical survey of this kind is conducted using direct questioning tech
niques similar to those discussed in Section 3.2, with interviews, question
naires, or a combination of both being the instruments of choice. One might, 
for instance, select a sample of the target population at random,s and ask them 
to identify all those with whom they have a certain type of contact. Partici
pants might also be asked to describe some characteristics both of themselves 
and of their alters, and perhaps to answer some other simple questions, such 
as which alters also have contact with one another. 

Obviously surveys of this type, and studies of ego-centered networks in 
general, cannot reveal the structure of an entire network. One receives snap
shots of small local regions of the network, but in general those regions will 
not join together to form a complete social network. There are cases, how
ever, where we are primarily interested in local network properties, and ego-

4Such networks are also called egocentric networks, although this term, which has its origins 
in social science and psychology, has taken on a different lay meaning which prompts us to avoid 
its use here. 

5This can be done, for example, by random-digit dialing, the practice of calling random tele
phone numbers in the target area and surveying those who answer. 

3.2 INTERVIEWS AND QUESTIONNAIRES 

centered network studies can give us good data about these. For example, if 
we wish to know about the degrees of vertices in a network then a study in 
which a random sample of people are each asked to list their contacts can give 
us reasonable degree statistics. (Studies probing vertex degrees are discussed 
more below.) If we also gather data on the contacts between alters, we can esti
mate clustering coefficients (see Section 7.9). If we have data on characteristics 
of egos and alters we can measure assortative mixing (Sections 7.13 and 8.7). 

An example of a study gathering ego-centered network data is the Gen
eral Social Survey (GSS) [59], a large-scale survey conducted every year in the 
United States since 1972 (every two years since 1994). The GSS is not primar
ily a social network study. The purpose of the study is to gather data about 
life in the United States, how it is changing, and how it differs from or relates 
to life in other societies. The study contains a large number of items ranging 
from general questions probing the demographics and attitudes of the partic
ipants, to specific questions about recent events, political topics, or quality of 
life. However, among these many items there are in each iteration of the sur
vey a few questions about social networks. The precise number and wording 
of these questions changes from one year to another, but here some exalnples 
from the survey of 1998, which was fairly typical: 

From time to time, most people discuss important matters with other 
people. Looking back over the last six months, who are the people 
with whom you discussed matters important to you? Do you feel 
equally close to all these people? 

Thinking now of close friends-not your husband or wife or partner 
or family members, but people you feel fairly close to-how many 
close friends would you say you have? How many of these close 
friends are people you work with now? How many of these close 
friends are your neighbors now? 

And so on. By their nature these questions are of a "free choice" type, the 
number of friends or acquaintances the respondent can name being unlimited, 
although (and this is a criticism that has been leveled at the survey) they are 
also quite vague in their definitions of friends and acquaintances, so people 
may give answers of widely varying kinds. 

Another example of an ego-centered network study is the study by Bernard 
et al. [36,37,175,213] of the degree of individuals in acquaintance networks 
(i.e., the number of people that people know). It is quite difficult to estimate 
how many people a person knows because most people cannot recall at will all 
those with whom they are acquainted and there is besides a large amount of 
variation in people's subjective definition of "knowing." Bernard et al. came up 
with an elegant experimental technique to circumvent these difficulties. They 
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asked people to read through a list containing a sample of several hundred 
family names drawn from a telephone directory6 Participants counted up how 
many people they knew with names appearing on the list. Each person with a 
listed name was counted separately, so that two acquaintances called "Smith" 
would count as two people. They were instructed to use the following precise 
definition of acquaintance: 

You know the person and they know you by sight or by name; you 
can contact them in person by telephone or by mail; and you have 
had contact with the person in the past two years. 

(Of course, many other definitions are possible. By varying the definition, 
one could probe different social networks.) Bernard et al. then fed the counts 
reported by participants into a statistical formula to estimate the total number 
of acquaintances of each participant. 

Bernard et al. repeated their study with populations drawn from several dif
ferent cities and the results varied somewhat from city to city, but overall they 
found that the typical number of acquaintances, in the sense defined above, of 
the average person in the United States is on the order of about 2000. In the city 
of Jacksonville, Florida, for instance, they found a figure of 1700, while in Or
ange County, California they found a figure of 2025. Many people find these 
numbers surprisingly high upon first encountering them, perhaps precisely 
because we are poor at recalling all of the many people we know. But repeated 
studies have confirmed figures of the same order of magnitude, at least in the 
United States. In some other countries the figures are lower. In Mexico City, 
for instance, Bernard et al. estimated that the average person knows about 570 
others. 

3.3 DIRECT OBSERVATION 

An obvious method for constructing social networks is direct observation. Sim
ply by watching interactions between individuals one can, over a period of 
time, form a picture of the networks of unseen ties that exist between those in
dividuals. Most of us, for instance, will be at least somewhat aware of friend
ships or enmities that exist between our friends or coworkers. In direct ob
servation studies, researchers attempt to develop similar insights about the 
members of the population of interest. 

6Somc care must be taken in the selection of the names, since the frequency of occurrence of 
names varies considerably, both from name to name, and geographically and culturally. 

3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS 

Direct observation tends to be a rather labor-intensive method of study, 
so its use is usually restricted to rather small groups, primarily ones with 
extensive face-ta-face interactions in public settings. In Chapter 1 we saw 
one such example, the "karate club" network of Zachary [334]. Another ex
ample is the study by Freeman et al. [131,132] of the social interactions of 
windsurfers on a beach. The experimenters simply watched the individuals 
in question and recorded the length in minutes of every pairwise interaction 
among them. A large number of direct-observation network data sets were 
compiled by Bernard and co-workers during the 1970s and 80s as part of a 
lengthy study of the accuracy of individuals' perception of their own social 
situation [38,40,41,173]. These include data sets on interactions between stu
dents, faculty, and staff in a university department, on members of a university 
fraternity? on users of a teletype service for the deaf, and several other exam
ples. 

One arena in which direct observation is essentially the only viable exper
imental technique is in studies of the social networks of animals-clearly an
imals cannot be surveyed using interviews or questionnaires. One method is 
to record instances of animal pairs engaging in recognizable social behaviors 
such as mutual grooming, courting, or close association and then to declare ties 
to exist between the pairs that engage in these behaviors most often [205]. Not 
all animal species form interesting or useful social networks, but informative 
studies have been performed of, amongst others, monkeys [121,286,287], kan
garoos [143], and dolphins [80,205]. Networks in which the ties represent ag
gressive behaviors have also been reported, such as networks of baboons [214], 
wolves [163,316], and ants [77]. In cases where aggressive behaviors normally 
result in one animal's establishing dominance over another the resulting net
works can be regarded as directed and are sometimes called dominance hierar
chies [90,91,101]. 

3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS 

An increasingly important, voluminous, and often highly reliable source of 
social network data is archival records. Such records are, sometimes at least, 
relatively free from the vagaries of human memory and are often impressive 
in their scale, allowing us to construct networks of a size that would require 
far more effort were other techniques used. 

7In American universities a "fraternity" is a semi-independent boarding house for male stu
dents. 
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A well-known small example of a study based on archival records is the 
study by Padgett and Ansell of the ruling families of Florence in the fifteenth 
century [259]. In this work, the investigators looked at contemporaneous his
torical records to determine which among the families had trade relations, mar
riage ties, or other forms of social contact with one another. Figure 3.3 shows 
one of the resulting networks, a network of intermarriages between 15 of the 
families. It is notable that the Medici family occupies a central position in this 
nehtvork, having marriage ties with members of no fewer than six other fam
ilies. Padgett and Ansell conjectured that it was by shrewd manipulation of 
social ties such as these that the Medici rose to a position of dominance in Flo
rentine society. 

In recent years, with the widespread availability of computers and online 
databases, many more networks have been constructed from records of var
ious types. A number of authors, for example, have looked at email net
works [103,313]. Drawing on email logs-automatic records kept by email 
servers of messages sent-it is possible to construct networks in which the 
vertices are people (or more correctly email addresses) and the directed edges 
between them are email messages. Exchange of email in such a network can 
be taken as a proxy for acquaintance between individuals, or we may be in
terested in the patterns of email exchange for some other reason. For instance, 
email messages can carry computer viruses and a knowledge of the structure 
of the network of messages may help us to predict and control the spread of 
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those viruses. 
Another form of email network is the network formed by email address 

books. An email address book is a computer file in which a computer user 
stores, for convenience, the email addresses of his or her regular correspon
dents. The set of all such address books can be regarded as defining a net
work in which the vertices represent the owners of the address books, and 
there is a directed edge from vertex A to vertex B if person B's address appears 
in person A: s address book. This network is again of interest in the study of 
computer viruses, since some viruses search address books for the addresses of 
new victims to infect and hence spread over the address book network. Similar 
networks can also be constructed for other forms of electronic communication 
that use address books, such as instant messaging [301]. 

A form of network similar to but older than the email network is the tele
phone call graph. In such a network the vertices represent telephone numbers 
and directed edges between them represent telephone calls from one number 
to another. Call graphs can be reconstructed from call1ogs kept by telephone 
companies, although such logs are generally proprietary and not easily avail
able outside of those companies, and call graphs have as a result only occa
sionally been examined in the scientific literature [1,9,258]. 

Recent years have seen the rapid emergence of online social networking 
services, such as Faceboolc and Linkedln, which exist primarily to promote, doc
ument, and exploit the networks of contacts between individuals. As a nat
ural part of their operation, these services build records of connections be
tween their participants and hence provide, at least in principle, a rich source 
of archival network data. These data, however, like those for telephone calls, 
are largely proprietary to the companies operating the services and hence quite 
difficult to get hold of. So far only a few studies have been published of online 
social networks [53], but internal studies have no doubt been performed by the 
companies themselves and it is only a matter of time before more data become 
publicly available. 

A few other online communities, not explicitly oriented towards networks, 
have been studied using network techniques. For instance, Holme et al. [158] 
took records of interactions between members of a Swedish dating website 
and reconstructed from them the network of interactions between the site's 
members. This study was tmusual in that the network was time-resolved
the date and time of each interaction were recorded, allowing investigators to 
reconstruct after the fact the timing and duration of contacts between individ
uals. Most of the sources of network data considered in this book are not time
resolved, but many of the networks they correspond to do nonetheless change 
over time. Time-resolved network studies, or longitudinal studies, as they are 

Telephone call graphs 
are quite distinct from 
the physical network of 
telephone cables discussed 
in Section 2.2. Indeed, a 
can graph is to the physical 
telephone network roughly 
as an email network is to 
the Internet. 
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called in sociology, are certainly a growth area to watch for in the future. 
Another SQurce of network data representing online communities is the In

ternet newsgroup system Usenet, a worldwide online message-board system 
that allows users to post messages on a large variety of topics. Messages are 
date and time stamped and identified with the name or email address of the 
poster along with a unique reference number that allows a poster to indicate 
when a posting is a reply or follow-on to a previous posting. Thus one can 
reconstruct the thread of the conversation taking place in a newsgroup, and 
in particular assemble a network in which the vertices are posters and the 
edges represent a response by one poster to a posting by another. Studies of 
newsgroup networks of this kind have been performed by a number of au
thors [204,300,312]. 

Weblogs and online journals are another source of online social network 
data. Online journals of various kinds have become popular on the World 
Wide Web since around the turn of the century. On these websites the propri
etor posts whatever thoughts he or she cares to make public, along with links 
to sites maintained by others. These links form a directed network that lies, 
in terms of semantic content, somewhere betvveen a social network and the 
World Wide Web; the links are often informational-the linker wishes to bring 
to his or her readers' attention the contents of the linked site-but there is a 
strong social element as well, since people often link to sites operated by their 
friends or acquaintances. This trend is particularly noticeable within journal 
communities such as LiveJaurnal and among weblogs devoted to specific top
ics, such as science or politics. The structure of the networks of links can be 
extracted using" crawlers" similar to those used to search the Web-see Sec
tion 4.1. Studies of journals and weblogs have been performed for example by 
Adamic and Glance [4] and MacKinnon and Warren [206]. 

An interesting network that has features of both a social and a technological 
network is the network of trust formed by a set of cryptographic keys. Crypto
systems or cyphers (i.e., secret codes), long associated in the public mind with 
spies and skulduggery, have become a crucial part of the twenty-first-century 
economy, used to protect important data, particularly financial data such as 
credit card numbers, from theft and misuse. An important advance, central 
to the widespread and convenient use of cryptography, was the development 
in the 1970s of public-key cryptography. In traditional cryptosystems, two par
ties wishing to exchange messages must share a key that they use to encode 
and decode the messages. The key is typically a large number, which is used 
in combination with the chosen cryptosystem to dictate exactly how messages 
are converted from their original "plain text" form into code and back again. 
This key, which allows anyone possessing it to decode the messages, must be 
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kept secret from any malicious snoopers, and this raises the difficult problem 
of how the parties in question agree on the key in the first place. Usually the 
key is generated by a computer program run by one party, but then it must be 
transmitted securely to the other party without anyone else seeing it. Send
ing the key over the Internet unencrypted would pose a significant risk of de
tection. Physical transmission, for example by conventional mail, would be 
reasonably secure, but would take a long time. Most customers buying goods 
over the Internet would not want to wait a week for a secret key to arrive by 
mail from their vendor. 

These problems were solved with the invention of public-key cryptography 
in the 1970s. Public-key cryptosystems make use of any of several different 
asymmetric cyphers in which two different keys are used. One key, called the 
public key, is employed in the computer algorithm that converts the message 
from plain text into its encrypted form, but a different key, the private key, is 
needed to decrypt the message. The public key cannot be used for decryption.8 

The two keys are generated as a pair by one of the two parties wishing to 
exchange information and the public key is sent openly over the Internet or 
other channel to the second party. The private key remains the secret property 
of the first party and is not shared. The second party can then send messages 
to the first by encoding them with the public key and only the first party can 
decode them9 Although the public key can be intercepted by a third party in 
transmission, it will do the third party no good, since the public key cannot 
be used to decode messages, only to encode them. Indeed, in many cases, 
users of public-key systems deliberately broadcast their public keys to anyone 
who might want them, inviting the world to send them encoded messages, 
messages which only they can decode. It is from such practices that the name 
"public-key cryptography" arises. 

Some asymmetric cyphers can also be used in the reverse direction. That is, 

8Teclmically, the public key can be used to decrypt the message, but the calculation involved 
is extraordinarily complex and would take years or even centuries of effort on the fastest modern 
computers. For practical purposes, therefore, one can only decrypt the message if one has the 
private key. 

9In practice it is a little more complicated than this. Asymmetric cyphers are computationally 
demanding to implement, far more so than the traditional (but less secure) symmetric cyphers in 
which the same key is used by both parties. To reduce demands on computer time, therefore, one 
usually uses the asymmetric cypher only to transmit from one party to the other a key for use 
in a symmetric cypher, and then the symmetric cypher, with that key, is used for all subsequent 
communications. In this way one benefits from the security of public-key cryptography without 
the computational overhead. For our purposes in this section, however, this is just a technical 
detail. 
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one can encode a message with the private key and it can only be decoded with 
the public key. Why would one want to do this, when everyone has the public 
key? The answer is that you can use it to prove your identity. Someone talk
ing to you over the Internet, say, may want to be certain that you are who you 
claim to be (rather than some nefarious interloper) before they trust you with, 
for instance, their credit card number. So they send you a specific message that 
they choose, usually just a random string of digits, and ask you to encrypt it us
ing your private key. Having done so, you send the encrypted message back to 
them and they decode it with the public key. If the decoded message matches 
the original one then they know that you are who you say you are, since no 
one else has your private key and hence no one else could have encrypted a 
message that decodes correctly with the public key.lO This "digital signature" 
process is a crucial part of electronic commerce, allowing buyers and sellers to 
confirm each other's identities before doing business, and is used millions of 
times every day in transactions of every sort. 

But there is still a fundamental problem with public-key encryption, namely 
the problem of knowing that the public key you are given really was created 
by the person you think it was created by. Some malicious person could create 
a public/private key pair and broadcast the public key to the world, labeled 
with, say, the name of a bank or retail trader, then use that key in a digital sig
nature scheme to persuade some unsuspecting victim that they are the trader 
and that the victim should send them a credit card number. 

One way around this problem is to have people sign each other's public 
keys [267]. That is, party A takes a public key that claims to belong to party B, 
and that A knows in fact to be genuine, and encrypts it with their own private 
key. Now if you have A's public key and you believe it to be genuine, then 
you can take the encrypted key and decode it with A's public key, thereby 
recovering B's public key, which A says is genuine. If you trust A to make this 
statement, then you can now also trust that the key you have is B's true public 
key. 

But now one can repeat the process. Now that you have a genuine public 
key for party B, and if you trust B, then B can now sign the keys that they know 
to be genuine and you will be able to verify that they are genuine also. In this 
way, parties who trust each other can securely represent to one another that 
keys are genuine. 

10 Again, this is not completely true. One can encode a message using the public key that 
will decode with the same key, but again the calculations necessary to do this are extraordinarily 
lengthy, much lengthier than those using the private key, and hence for practical purposes only 
the person with the private key could have created the encrypted message. 
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The act of digitally signing someone else's public key is equivalent to say
ing that you know, or at least believe, the public key to be genuine, belonging 
to the person it claims to belong to. That act can be represented by a directed 
edge in a network. The vertices in the network represent the parties involved 
and a directed edge from party A to party B indicates that A has signed B's 
public key. The resulting directed network certainly has technological aspects 
but is in many ways more of a social network than anything else. People tend 
to vouch for the keys of other people they know, people they have communi
cated with or worked with frequently, so that they have both a good idea that 
the key in question is indeed genuine and a personal reason for making the 
effort to sign it. 

Since public keys and the digital signatures of the people who sign them 
are, by necessity, public, it is relatively easy to construct a key-signing network 
from widely available data. There are a number of widely used key-signing 
networks associated, usually, with particular commercial cryptography prod
ucts. One of the largest, for instance, is the network associated with the cryp
tography program PCP [267]. There have been only a small number of studies 
so far of the properties of key signing networks [47,148] but there are certainly 
interesting questions awaiting answers in this area. 

3.5 AFFILIATION NETWORKS 

An important special case of the reconstruction of networks from archival 
records is the affiliation network. An affiliation network is a network in which 
actors are connected via comembership of groups of some kind. We saw one 
example in the introduction to this chapter, the Southern Women Study of 
Davis et al. [86], in which the authors drew their data from newspaper reports 
of social events and the "groups" were the sets of individuals who attended 
particular events. As we saw, the most complete representation of an affiliation 
network is as a network with two types of vertex representing the actors and 
the groups, with edges connecting actors to the groups to which they belong
see Fig. 3.2 on page 39. In such a representation, called a "bipartite network" 
or "two-mode network," there are no edges connecting actors directly to other 
actors (or groups to other groups), only actors to groups. 

Many examples of affiliation networks can be found in the literature. An
other famous case is the study by Calaskiewicz [134] of the CEOs of companies 
in Chicago in the 1970s and their social interaction via clubs that they attended. 
In this network the CEOs are the actors and the clubs are the groups. Also in 
the business domain, quite a number of studies have been conducted of the 
boards of directors of companies [87,88,207]. In these networks the actors are 
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tion 6.6. 
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company directors and the groups are the boards on which they sit. In addi
tion to looking at the connections between directors in such networks, which 
arise as a result of their sitting on boards together, a considerable amount of 
attention has also been focused on the connections between boards (and hence 
between companies) that arise as a result of their sharing a common director, a 
so-called board "interlock." 

More recently, some extremely large affiliation networks have been studied 
in the mathematics and physics literature. Perhaps the best known example is 
the network of collaborations of film actors, in which the" actors" in the net
work sense are actors in the dramatic sense also, and the groups to which they 
belong are the casts of films. This network is the basis, among other things, 
for a well-known parlor game, sometimes called the "Six Degrees of Kevin Ba
con," in which one attempts to connect pairs of actors via chains of intermedi
ate CDS tars in a manner reminiscent of the small-world experiments of Stanley 
Milgram, which we discuss in Section 3.6. The film actor network has, with the 
advent of the Internet, become very thoroughly documented and has attracted 
the attention of many network analysts in recent years [16,27,323], although 
it is not clear whether there are any conclusions of real scientific interest to be 
drawn from its study. 

Another example of a large affiliation network, one that holds more promise 
of providing useful results, is the coauthorship network of academics. In this 
newark an actor is an academic author and a group is the set of authors of 
a learned paper. Like the film actor network, this network has become well 
documented in the last few years with the appearance of extensive online bib
liographic resources covering many areas of human endeavor. Whether one is 
interested in papers published in journals or in more informal forums such as 
online preprint servers, excellent records now exist in most academic fields of 
authors and the papers they write, and a number of studies of the correspond
ing affiliation networks have been published [29,89,145, 146,234-236J. 

3.6 THE SMALL-WORLD EXPERIMENT 

An unusual contribution to the social networks literature was made by the ex
perimental psychologist Stanley Milgram in the 1960s with his now-famous 
"small-world" experiments [219,311J. Milgram was interested in quantifying 
the typical distance between actors in social networks. As discussed in Chap
ter 1, the" geodesic distance" between two vertices in a network is the mini
mum number of edges that must be traversed to travel from one vertex to the 
other through the network. Mathematical arguments suggest (as we will see 
later in this book) that this distance should be quite small for most pairs of 
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vertices in most networks, a fact that was already well known in Milgram's 
timel1 Milgram wanted to test this conjecture in real networks and to do this 
he concocted the following experiment.12 

Milgram sent a set of packages, 96 in all, to recipients randomly chosen 
from the telephone directory in the US town of Omaha, Nebraska. The pack
ages contained an official-looking booklet, or "passport," emblazoned with the 
crest of Milgram's horne institution, Harvard University. Written instructions 
were included asking the recipients to attempt to get the passport to a specified 
target individual, a friend of Milgram's who lived in Boston, Massachusetts, 
over a thousand miles away. The only information supplied about the target 
was his name (and hence indirectly the fact that he was male), his address, and 
his occupation as a stockbroker. But the passport holders were not allowed 
simply to send their passport to the given address. Instead they were asked to 
pass it to someone they knew on a first-name basis and more specifically the 
person in this category who they felt would stand the best chance of getting 
the passport to the intended target. Thus they might decide to send it to some
one they knew who lived in Massachusetts, or maybe someone who worked in 
the financial industry. The choice was up to them. Whoever they did send the 
passport to was then asked to repeat the process, sending it on to one of their 
acquaintances, so that after a succession of such steps the passport would, with 
luck, find its way into the hands of its intended recipient. Since every step of 
the process corresponded to the passport's changing hands between a pair of 
first-name acquaintances, the entire path taken corresponded to a path along 
the edges of the social network formed by the set of all such acquaintanceships. 
Thus the length of the path taken provided an upper bound on the geodesic 
distance in this network between the starting and ending individuals in the 
chain. 

Of the 96 passports sent out, 18 found their way to the stockbroker target 
in Boston. While this may at first sound like a low figure, it is actually remark
ably high-recent attempts to repeat Milgram's work have resulted in response 
rates orders of magnitude lower [93J. Milgram asked participants to record in 
the passport each step of the path taken, so he knew, among other things, how 
long each path was, and he found that the mean length of completed paths 

11 Milgram was particularly influenced in his work by a mathematical paper by Pool and 
Kochen [270] that dealt with the small-world phenomenon and had circulated in preprint form 
in the social science corrununity for some years when Milgram started thinking about the prob
lem, although the paper was not officially published until many years later. 

12rn fact Milgram conducted several sets of small-world experiments. Ute one described here 
is the first and most famous, but there were others [186,311]. 
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from Omaha to the target was just 5.9 steps. This result is the origin of the idea 
of the "six degrees of separation," the popular belief that there are only about 
six steps between any two people in the world. 13 

There are of course many reasons why this result is only approximate. Mil
gram used only a single target in Boston, and there is no guarantee the target 
was in any way typical of the population as a whole. And all the initial recip
ients in the study were in a single town in the same country14 (None of the 
completed chains that reached the target went outside the country.) Also there 
is no guarantee that chains took the shortest possible route to the target. Prob
ably they did not, at least in some cases, so that the lengths of the paths found 
provide, as we have said, only an upper bound on the actual geodesic distance 
between vertices. And most of the chains of course were never completed. The 
passports were discarded or lost and never made their way to the target. It is 
reasonable to suppose that the chances of getting lost were greater for pass
ports that took longer paths, and hence that the paths that were completed 
were a biased sample, having typical lengths shorter than the average. 

For a11 these reasons and several others, Milgram's experiments should be 
taken with a large pinch of salt. Even so, the fundamental result that vertex 
pairs in social networks tend on average to be connected by short paths is now 
widely accepted, and has moreover been shown to extend to many other kinds 
of networks as well. Enough experiments have confirmed the effect in enough 
networks that, whatever misgivings we may have about Milgram's particular 
technique, the general result is not seriously called into question. 

Milgram's experiments also, as a bonus, revealed some other interesting 
features of acquaintance networks. For instance, Milgram found that most of 
the passports that did find their way to the stockbroker target did so via just 
three of the target's friends. That is, a large fraction of the target's connections 
to the outside world seemed to be through only a few of his acquaintances, a 
phenomenon sometimes referred to as the "funneling" effect. Milgram called 
such well-connected acquaintances Ifsociometric superstars/' and their exis
tence has occasionally been noted in other networks also, such as collaboration 
networks [234], although not in some others [93]. 

A further interesting corollary of Milgram's experiment has been high-

13The phrase "six degrees of separation" did not appear in Milgram's writing. It is more recent 
and comes from the title of a popular Broadway play by John Guare [149], later made into a film, 
in which the lead character discusses Milgram's work. 

14Furthermore, it appears that some of the initial recipients may have been selected not at 
random but by advertising for volunteers in the local newspaper [181], a procedure unlikely to 
produce a truly random sample of the population. 
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lighted by Kleinberg [177,178]. (Milgram himself seems not to have appre
ciated the point.) The fact that a moderate number of the passports did find 
their way to the intended target person shows not only that short paths exist in 
the acquaintance network, but also that people are good at finding those paths. 
Upon reflection this is quite a surprising result. As Kleinberg has shown, it is 
possible and indeed common for a network to possess short paths between 
vertices but for them to be hard to find unless one has complete information 
about the structure of the entire network, which the participants in Milgram's 
studies did not. Kleinberg has suggested a possible explanation for how par
ticipants found the paths they did, based on conjectures about the structure of 
the network. We discuss his ideas in detail in Section 19.3. 

Recently the small-world experiment has been repeated by Dodds et al. [93] 
using the modern medium of email. In this version of the experiment partici
pants forwarded email messages to acquaintances in an effort to get them ul
timately to a specified target person about whom they were told a few basic 
facts. The experiment improved on that of Milgram in terms of sheer volume, 
and also by having much more numerous and diverse target individuals and 
starting points for messages: 24000 chains were started, most (though not all) 
with unique starting individuals, and with 18 different participating targets in 
13 different countries. On the other hand, the experiment experienced enor
mously lower rates of participation than Milgram'S, perhaps because the pub
lic is by now quite jaded in its attitude towards unsolicited mail. Of the 24000 
chains, only 384, or 1.5%, reached their intended targets, compared with 19% 
in Milgram's case. Still, the basic results were similar to those of Milgram. 
Completed chains had an average length of just over four steps. Because of 
their better data and considerably more careful statistical analysis, Dodds et al. 

were also able to compensate for biases due to unfinished chains and estimated 
that the true average path length for the experiment was somewhere between 
five and seven steps-very similar to Milgram's result. However, Dodds et al. 
observed no equivalent of the "sociometric superstars" of Milgram's experi
ment, raising the question of whether their appearance in Milgram's case was 
merely a fluke of the particular target individual he chose rather than a generic 
property of social networks. 

An interesting variant on the small-world experiment has been proposed 
by Killworth and Bernard [39,174], who were interested in how people "navi
gate" through social networks, and specifically how participants in the small
world experiments decide whom to forward messages to in the effort to reach 
a specified target. They conducted what they called "reverse small-world" ex-
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periments 15 in which they asked participants to imagine that they were taking 
part in a small-world experiment. A (fictitious) message was to be communi
cated to a target individual and participants were asked what they wanted to 
know about the target in order to make a decision about whom to forward the 
message to. The actual passing of the message never took place; the experi
menters merely recorded what questions participants asked about the target. 
They found that three characteristics were sought overwhelmingly more often 
than any others, namely the name of the target, their geographic location, and 
their occupation-the same three pieces of information that Milgram provided 
in his original experiment. Some other characteristics came up with moderate 
frequency, particularly when the experiment was conducted in non-Western 
cultures or among minorities: in some cultures, for instance, parentage or reli
gion were considered important identifying characteristics of the target. 

While the reverse small-world experiments do not directly tell us about the 
structure of social networks, they do give us information about how people 
perceive and deal with social networks. 

3.7 SNOWBALL SAMPLING, CONTACT TRACING, AND RANDOM 

WALKS 

Finally in this chapter on social networks we take a look at a class of network
based techniques for sampling hidden populations. 

Studies of some populations, such as drug users or illegal immigrants, 
present special problems to the investigator because the members of these 
populations do not usually want to be found and are often wary of giving 
interviews. Techniques have been developed, however, to sample these pop
ulations by making use of the social network that connects their members to
gether. The most widely used such technique is snowball sampling [108,127, 
310]. 

Note that, unlike the other experimental techniques discussed in this chap
ter, snowball sampling is not intended as a technique for probing the structure 
of social networks. Rather, it is a technique for studying hidden populations 
that relies on social networks for its operation. It is important to keep this 
distinction clear. To judge by the literature, some professional social network 
analysts do not, and the results are often erroneous conclusions and bad sci
ence. 

15 Also sometimes called "INDEX" experiments, which is an abbreviation for "informant
defined experiment," 
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Standard techniques such as telephone surveys often do not work well 
when sampling hidden populations. An investigator calling a random tele
phone number and asking if anyone on the other end of the line uses drugs 
is unlikely to receive a useful answer. The target population in such cases is 
small, so the chances of finding one of its members by random search are also 
small, and when you do find one they will very likely be unwilling to discuss 
the highly personal and possibly illicit topic of the survey with an investigator 
they have never met before and have no reason to trust. 

So investigators probe the population instead by getting some of its mem
bers to provide contact details for others. The typical survey starts off rather 
like a standard ego-centered network study (Section 3.2.1). You find one initial 
member of the population of interest and interview them about themselves. 
Then, upon gaining their confidence, you invite them also to name other mem
bers of the target population with whom they are acquainted. Then you go and 
find those acquaintances and interview them asking them also to name further 
contacts, and so forth through a succession of "waves" of sampling. Pretty 
soon the process" snowballs" and you have a large sample of your target pop
ulation to work with. 

Clearly this is a better way of finding a hidden population than random 
surveys, since each named individual is likely to be a member of the popu
lation, and you also have the advantage of an introduction to them from one 
of their acquaintances, which may make it more likely that they will talk to 
you. However, there are some serious problems with the method as well. In 
particular, snowball sampling gives highly biased samples. In the limit of a 
large number of waves, snowball sampling samples actors with probability 
proportional to their "eigenvector centrality" (see Section 7.2). Unfortunately, 
this limit is rarely reached in practice, and in any case the eigenvector central
ity carmot be calculated without knowledge of the complete contact network, 
which by definition we don't have, making correction for the sampling bias 
difficult. In short, snowball sampling gives biased samples of populations and 
there is little we can do about it. Nonetheless, the technique is sufficiently use
ful for finding populations that are otherwise hard to pin down that it has been 
widely used, biases and all, in studies over the last few decades. 

Sometimes, in the case of small target populations, a few waves of snow
ball sampling may find essentially all members of a local population, in which 
case the method can be regarded as returning data about the structure of the 
social network. If the contacts of each interviewed partiCipant are recorded in 
the study, it should be possible to reconstruct the contact network when the 
study is complete. This has occasionally been done in such studies, although 
as noted above the object is more often to exploit the social network to find the 
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population than to study the network itselL 
A technique closely related to snowball sampling is contact tracing, which 

is essentially a form of snowball sampling applied to disease incidence, Some 
diseases, such as tuberculosis and HIV, are considered sufficiently serious that, 
when someone is discovered to be carrying them, an effort must be made to 
track down all those who might also have been infected, Thus, in most Western 
countries, when a patient tests positive for HN, for instance, he or she will be 
questioned about recent sexual contacts, and possibly about other types of po
tentially disease-carrying contacts, such as needle sharing if the patient is an 
injection drug user, Then health authorities will make an effort to track down 
those contacts and test them also for HIV The process is repeated with any 
who test positive, tracing their contacts as well, and so forth, until all leads 
have been exhausted, While the primary purpose of contract tracing is to cur
tail disease outbreaks and safeguard the health of the population, the process 
also produces data about the community through which a disease is spreading 
and such data have sometimes been used in scientific studies, particularly of 
sexually transmitted diseases, for which data may otherwise be hard to come 
by Population samples derived from contact tracing studies display biases 
similar in type and magnitude to those seen in snowball sampling and should 
be treated with the same caution, Indeed, they contain extra biases as well, 
since contacts are rarely pursued when an individual tests negative for the 
disease in question, so the sample is necessarily dominated by carriers of the 
disease, who are themselves usually a biased sample of the population at large, 
Also, as with snowball sampling, contact tracing data can provide us with an 
experimental window on the structure of the contact network itself, but again 
we expect the data to be strongly biased, except in cases of small target popu
lations for which the sampling process saturates, 

There is another variant of snowball sampling that deals to some extent 
with the problems of bias in the sample, This is random-walk sampling [182,310], 
In this method one again starts with a single member of the target community 
and interviews them and determines their contacts. Then, however, instead 
of interviewing all of those contacts, one chooses one of them at random and 
interviews only that one at the next step, If the person in question cannot be 
found or declines to be interviewed, one simply chooses another contact, and 
the process is repeated, Initially it appears that this will be a more laborious 
process than standard snowball sampling, since one spends a lot of time de
termining the names of individuals one never interviews, but this is not the 
case. In either method one has to determine the contacts of each person inter
viewed, so the total amount of work for a sample of a given size is the same, 
II is however very important that one really does determine all the contacts of 
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each individual, even though most of the time only one of them is pursued, 
This is because for the method to work correctly one must make a random 
choice among those contacts, for example by rolling a die (or some modern 
electronic version thereof), To do this one must know the full set of contacts 
one is choosing between. 

The advantage of the random-walk sampling method is that, as shown 
in Section 6,14, the asymptotic sampling probability of vertices in a random 
walk is simply proportional to vertex degree (see Eq, (6,60», What's more, the 
asymptotic regime in such studies is, unlike snowball sampling, reached quite 
quickly for relatively small sample sizes,16 

Knowing this, and given that we determine degree (Le" the number of con
tacts an individual has) as a part of the interview process, we can easily com
pensate for sampling bias and make population estimates of quantities in a 
way that is, in theory at least, unbiased. In practice, many sources of bias re
main, particularly those associated with participant subjectivity, inability to 
recall contacts, and non-participation of named contacts. Still, random-walk 
sampling is a great improvement on standard snowball sampling, and should 
be used more than it is, Its principal disadvantage is that it is relatively slow, 
Since the participants are interviewed serially, in a chain, rather than in parallel 
waves, a strict implementation of the method can take a long time to develop 
a large sample, One can get around this obstacle to some extent by running 
several short random walks in parallel instead of one long one, but the walks 
cannot be too short or they will not reach the asymptotic regime in which sam
pling is proportional to degree, 

Another variant of the random-walk sampling idea is used to deal with a 
different problem, that of enrolling study participants, In some cases it is con
sidered unethical to get participants to name their contacts, particularly when 
the topic of the study is one of dubious legality, and permission to perform 
such studies may be withheld by the authorities, To circumvent this problem 
one can make use of respondent-driven sampling [289], In this technique, partici
pants are usually paid to take part, and enrollment is achieved by handing out 
tickets to interviewees, Rather than asking people to name their contacts, the 
interviewees are simply told that they should give the tickets to their friends, 
and that both they and the friends will receive payment if the friend brings 
the ticket to the investigator and agrees to participate in the survey In this 

161n snowball sampling the sample size grows exponentially with the number of sampling 
waves and hence one typically only performs a logarithmic number of waves, which is not enough 
for the sampling process to reach equilibrium. In random walk sampling the sample size grows 
only linearly. 
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way, no one is ever asked to name names and all participants have actively 
volunteered their participation. In the case where a single ticket is given to 
each participant, the method is roughly equivalent to random-walk sampling 
and should in theory give a less biased sample than snowball sampling for the 
same reasons. In practice, a new bias is introduced because the recipient of the 
ticket is not necessarily chosen at random from an individuars acquaintances. 
Also, tickets frequently get lost or their recipients decline to participate, re
muneration notwithstanding, so one would normally give out more than one 
ticket to each participant, which complicates the sampling process. Even so, 
it is believed that respondent-driven sampling provides superior population 
samples to snowball sampling, and it is the method of choice for studies in 
which one cannot ask people to name their contacts. 

CHAPTER 4 

NETWORKS OF INFORMATION 

A description of networks of information or data, with a 
particular focus on the World Wide Web and citation 
networks 

THIS CHAPTER focuses on networks of information, networks consisting of 
items of data linked together in some way. Information networks are all, 

so far as we know, man-made, with perhaps the best known example being 
the World Wide Web, though many others exist and are worthy of study. par
ticularly citation networks of various kinds. These and several other types of 
information networks are discussed in this chapter. 

In addition, there are some networks which could be considered informa
tion networks but which also have social aspects to them. Examples include 
nernrorks of email communications, networks on social-networking websites 
such as Facebook or Linkedln, and networks of weblogs and online journals. 
These and similar examples were discussed in the previous chapter on social 
networks, in Section 3.4, but they would have fitted perfectly well in the present 
chapter also. The classification of networks as social networks, information 
networks, and so forth is a fuzzy one, and there are plenty of examples that, 
like these, straddle the boundaries. 

4.1 THE WORLD WIDE WEB 

Although by no means the first information network created, the World Wide 
Web is probably the example best known to most people and a good place to 
start our discussion in this chapter. 

As described in Chapter 1, the Web is a network in which the vertices are 
web pages consisting of text, pictures, or other information and the edges are 
the hyperlinks that allow us to navigate from page to page. Since hyperlinks 
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Figure 4.1: A network of pages on a corporate 
website. The vertices in this network represent 
pages on a website and the directed edges between 

them represent hyperlinks. 
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run in one direction only, the Web is a directed network. We can picture the 
network with an arrow on each edge indicating which way it runs. Some pairs 
of web pages are connected by hyperlinks running in both directions, which 
can be represented by two directed edges, one in each direction between the 
corresponding vertices. Figure 4.1 shows a picture of a small portion of the 
Web network, representing the carmections between a set of web pages on a 

single website. 
The World Wide Web was invented in the 1980s by scientists at the CERN 

high-energy physics laboratory in Geneva as a means of exchanging informa
tion among themselves and their coworkers, but it rapidly became clear that its 
potential was much greater [159]. At that time there were several similar ideas 
competing for dominance of the rapidly growing Internet, but the Web won 
the battle, largely because its inventors decided to give away for free the soft
ware technologies on which it was based-the Hypertext Markup Language 
(HTML) used to specify the appearance of pages and the Hypertext Transport 
Protocol (HTTP) used to transmit pages over the Internet. The Web's extraor
dinary rise is now a familiar story and most of us use its facilities at least oc
casionally, and in some cases daily. A crude estimate of the number of pages 
on the Web puts that number at over 25 billion at the time of the writing of 
this book.! The network structure of the Web has only been studied in detail 

IThis is only the number of reachable static pages. The number of unreachable pages is dif-

4.1 THE WORLD WIDE WEB 

Page: ! <a hJ::~,~:'''ht_~_p:-;;7~ __ .bla~~aJ:~_~_c:~~!~~~~~:_~~_~_n? ___ ~ 
! 

I ~a href ..... http://www.blahblah.com/this.html .. ~ ~ Store 
!c:a href= .. http://www.blahblah.com/this.html .. > 

Text: <a href=''http://www.blahblah.com/that.html''> ---+!-I.~ r <a href=;;http://www.blahblah.com/that.html ll > ! , -- -- ----
! c:a href="http://www.something.com/theother . html":>! 

. ! ". 

~a href= .. http://www.something.com/theother . html " > .( 

c:a href= .. http://www.blahblah.com/index.html .. > 

Text: c:a href= .. http://www.blahblah.com/whatever . html " > 

c:a href= .. http://www.another.com!home.html .. > 

Figure 4.2: The operation of a web crawler. A web crawler iteratively downloads pages from the Web, starting from a 
given initial page. URLs are copied from the link tags in that initial page into a store. Once all links have been copied 
from the initial page, the crawler takes a URL from the store and downloads the corresponding page, then copies links 
from that, and so on. 

relatively recently however. 
The structure of the Web can be measured using a craIvler, a computer pro

gram that automatically surfs the Web looking for pages. In its simplest form, 
the crawler performs a so-called breadth-first search on the Web network, as 
shown schematically in Fig. 4.2. One starts from any initial web page, down
loads the text of that page over the Internet, and finds all the links in the text. 
Functionally, a link consists of an identifying "tag" -a short piece of text mark
ing the link as a link-and a Uniform Resource Locator or URL, a standardized 
computer address that says how and where the linked web page can be found. 
By scanning for the tags and then copying the adjacent URLs a web crawler can 

ficult to estimate, and dynamiC pages (see later) are essentially infinite in number, although this 
may not be a very meaningful statement since these pages don't exist until someone asks for them. 

Breadth-first search is dis
cussed at length in Sec
tion 10.3. 
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rapidly extract URLs for all the links on a web page, storing them in memory 
or on a disk drive. When it is done with the current page, it removes one of the 
URLs from its store, uses it to locate a new page on the Web, and downloads 
the text of that page, and so the process repeats. If at any point the crawler 
encounters a URL that is the same as one already in its store, then that URL 
is ignored and not added to the store again, to avoid duplicate entries. Only 
URLs that are different from all those seen before are added to the store. 

By repeating the process of downloading and URL extraction for a suitably 
long period of time one can find a significant portion of the pages on the en
tire Web. In practice, however, no web crawler actually finds all the pages on 
the Web. There are a number of reasons for this. First, some websites forbid 
crawlers to crawl their pages. Websites can place a file called robots. txt in 
their root directory that specifies which files, if any, crawlers can look at and 
may optionally specify that some crawlers are allowed to look at files while 
others are not. Compliance with the restrictions specified in a robots. txt file 
is voluntary, but in practice many crawlers do comply. 

Second, many pages on the Web are dynamically generated: they are cre
ated on the fly by special software using, for instance, data from a database. 
Many corporate websites, as well as the web pages generated by search en
gines or directory services, fall into this category. The number of possible web 
pages that can be displayed as a result of a search using the Google search en
gine, for example, is so large as to be effectively infinite; it would not be possi
ble (or sensible) for a crawler to crawl all of these pages. The crawler therefore 
has to make some choice about what counts as a web page and what does not. 
One choice would be to restrict oneself to static web pages-ones that are not 
generated on the fly. But it's not always simple to tell which pages are static, 
and besides, much useful information resides in the dynamic pages. In prac
tice, the decisions made by crawlers about which pages to include tend to be 
fairly arbitrary, and it is not easy to guess which pages will be included in a 
crawl and which will not. But one can say with certainty that many will not 
and in this sense the crawl is always incomplete. 

However, perhaps the most important reason why web crawls do not reach 
all the pages on the Web is that the network structure of the Web does not 
allow it. Since the Web is a directed network, not all pages are reachable from 
a given starting point. In particular, it is clear that pages that have no incoming 
hyperlinks-pages that no one links to-can never be found by a crawler that 
blindly follows links. Taking that idea one step further, it is also the case that 
a page will never be found if it is only linked to by pages that themselves 
have no incoming links. And so forth. In fact, the Web, and directed networks 
in general, have a special "component" structure, which we will examine in 

4.2 

detail in Section 6.11.1, and most crawlers only find one part of that structure, 
the "giant out-component." In the case of the World Wide Web the giant out
component constitutes only about a half of all web pages and the other half of 
the Web is unreachable.' 

Although we are interested in web crawlers as a tool for probing the struc
ture of the Web so that we can study its network properties, this is not their 
main purpose. The primary lise of web crawlers is to construct directories of 
web pages for search purposes. Web search engines such as Google indulge 
in web crawling on a massive scale to find web pages, parse their content, 
and construct indexes of the words and pictures they contain that can later be 
searched offline by fast database engines to find pages of interest to searchers. 
Because their primary interest is in indexing, rather than in reconstructing the 
network structure of the Web, search engine companies don't have any partic
ular reason to take a good statistical sample of the Web and in network terms 
their crawls are probably quite biased. Still, many of them have graciously 
made their data available to academic researchers interested in web structure , 
and the data are good enough to give us a rough picture of what is going on. 
We will study a variety of features of the Web network in subsequent chapters. 

It isn't entirely necessary that we rely on search engine companies or other 
web enterprises for data on the structure of the Web. One can also perform 
one's own web crawls. There are a number of excellent web crawlers available 
for free, including wget, Nutch, GRUB, Larbin, WebSPHINX, and ht://Dig. While 
most of us don't have the time and network bandwidth to crawl billions of 
web pages, these programs can be useful for crawling single websites, and 
much useful insight and information can be acquired by doing so. 

4.2 CITATION NETWORKS 

A less well-known but much older information network is the network of ci
tations between academic papers. Most papers refer to one or more other pre
vious papers, usually in a bibliography at the end of the paper, and one can 
construct a network in which the vertices are papers and there is a directed 
edge from paper A to paper B if A cites B in its bibliography. There are many 
reasons why one paper might cite another-to point out information that may 

2Which web pages a crawler finds does depend on where the crawl starts. A crawler can find 
a web page with no incoming links, for instance, if (and only if) it starts at that page. In practice, 
however, the starting point has remarkably little effect on what a crawler finds, since most of what 
is found consists of the giant out-component mentioned above, whose content does not depend 
on the starting point. 
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Web searching, which it
self raises some interesting 
network questions, is dis
cussed in Section 19.1. 
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be useful to the reader, to give credit for prior work, to indicate influences on 
current work, or to disagree with the content of a paper. In general, however, 
if one paper cites another it is usually an indication that the contents of the ear
lier paper are relevant in some way to those of the later one, and hence citation 
networks are networks of relatedness of subject matter. 

Quantitative studies of citation networks go back to the 1960s. The earliest 
seems to be the 1965 study by Price [274] (which is also the earliest study we 
know of to find a "power-law degree clistribution," of which we talk in de
tail in Section 8.4). Studies such as this usually fall within the field formerly 
known as "library science" but now more often called "information science." 
The branch of information science dealing specifically with the statistical study 
of publications and citations is called bibliometrics. 

The most commOn way to assemble citation data is to do it by hand, sim
ply typing in all the entries in the bibliographies of papers to create a database 
that can then be used to assemble the network. In the 1960s when Price car
ried out his study, such databases were just starting to be created and he made 
use of an early version of what would later become the Scienee Citation In
dex. The Scienee Citation Index (along with its sister publications, the Social 
Science Citation Index and the Arts and Humanities Citation Index) is now 
one of the primary and most widely used sources of citation data. Another 
database, Scopus, provides a competing but largely similar service. Both are 
hand-maintained by professional staff and their coverage of the literature is 
reasonably complete and accurate, although the data are also quite expensive 
to purchase. Still, if one has the money, creating a citation network is only 
a matter of deciding which papers one wishes to include, using one of the 
databases to find the citations between those papers, and adding the appropri
ate directed edges to the network until it is complete. 

More recently, automated citation indexing by computer has started to be
come more common. For instance, the website Citeseer, maintained by Penn
sylvania State University, performs citation indexing of papers in computer 
science and information science by crawling the Web to find freely available 
manuscripts of papers in electronic form, and then searching through those 
manuscripts to identify citations to other papers. This is a somewhat hit-or
miss operation because many papers are not on the Web or are not freely avail
able, citations in papers have a wide variety of different formats and may in
clude errors, and the same paper may exist in more than one place on the Web 
as well as in journals or books, and possibly in more than one different version. 
Nonetheless, enough progress has been made for Citeseer to become a useful 
tool in the computer science community. Other automatic citation indexing 
projects include Citebase, which indexes physics papers, and Google Scholar. 

4.2 

As with web crawls, the primary purpose of citation indexes is not to allow 
us to study the network structure of citation. Citation indexes are primarily 
research tools that allow researchers to discover by whom a paper has been 
cited, and hence to find research related to a topic of interest. Nonetheless, 
data from citation indices have been widely used to reconstruct the underlying 
networks and study their properties. 

Citation networks are in many ways similar to the World Wide Web. The 
vertices of the network hold information in the form of text and pictures, just 
as web pages do, and the links from one paper to another playa role similar 
to hyperlinks on web pages, alerting the reader when information relevant to 
the topic of one paper can be found in another3 Papers with many citations 
are often more influential and widely read than those with few, just as is the 
case with web pages, and one can "surf" the citation network by following 
a succession of citations from paper to paper just as computer users surf the 
Web. 

There is, however, at least one important difference between a citation net
work and the Web: a citation network is acyclic, while the Web is not. An 
acyclic network is one in which there are no closed loops of directed edges. On 
the World Wide Web, it is entirely possible to follow a succession of hyperlinks 
and end up back at the page you started at. Indeed this happens often. On a 
citation network, by contrast, it is essentially impossible. The reason is that in 
order to cite a paper, that paper must already have been written. One cannot 
cite a paper that doesn't exist yet. Thus all the directed edges in a citation net
work point backward in time, from newer papers to older ones. If we follow a 
path of such edges from paper to paper, we will therefore find ourselves going 
backward in time, but there is no way to go forward again, so we cannot close 
the loop and return to where we started4 

Citation networks have some surprising statistics. About 47% of all papers 
in the Science Citation Index have never been cited at all. Of the remainder, 9% 
have one citation, 6% have two, and it goes down quickly after that. Only 21 % 
of all papers have 10 or more citations, and just 1 % have 100 or more. These 
figures are a consequence of the power-law degree distribution of the network 
mentioned above and discussed more in Section 8.4. 

3Indeed, academic studies of the Web within the information sciences sometimes refer to hy
perlinks as "citations/' a nomenclature that emphasizes the close similarities. 

40n rare occasions it occurs that an author or authors will publish two papers simultaneously 
in the same volume of a journal and, with the help of the printers, arrange for each paper to cite 
the other, creating a cycle of length two in the network. Thus, the citation network is not strictly 
acyclic, having a small number of short cycles scattered about it. 
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Acyclic < netvvorks are 
discussed further in 
Section 6.4.2. 

See Fig. 6.3 for an illustra
tion of a small acyclic net
work. 
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The most highly cited paper in the Science Citation Index is a paper by 
Lowry el al. [202], which has been cited more than a quarter of a million times.s 

Like most very highly cited papers, it is a methodological paper in molecular 
biology. 

Citation networks of the type described so far are the simplest but not the 
only possible network representation of citation patterns. An alternative and 
widely studied representation is the cocilation nelwork. Two papers are said to 
be cocited if they are both cited by the same third paper. Cocitation is often 
taken as an indicator that papers deal with related topics and there is good 
evidence that this is a reasonable assumption in many cases. 

A cacitation network is a network in which the vertices represent papers 
and the edges represent cocitation of pairs of papers. By contrast with ordinary 
citation networks, the edges in a cacitation network are normally considered 
undirected, since cacitation is a symmetric relationship. One can also define a 
strength for the cocitation between two papers as the number of other papers 
that cite both and one can create weighted cocitation networks in which the 
strengths of the edges are equal to this cocitation strength. 

Another related concept, although one that is less often used, is bibliographic 
coupling. Two papers are said to be bibliographically coupled if they cile the 
same other papers (rather than being cited by the same papers). Bibliographic 
coupling, like cocitation, can be taken as an indicator that papers deal with re
lated material and one can define a strength or weight of coupling by the num
ber of common citations between two papers. From the bibliographic coupling 
figures one can then assemble a bibliographic coupling network, either weighted 
or not, in which the vertices are papers and the undirected edges indicate bib
liographic coupling. 

Cocitation and bibliographic coupling are discussed in more detail in Sec
tion 6.4.1. 

4.2.1 PATENT AND LEGAL CITATIONS 

Our discussions of citation networks have so far focused on citations between 
academic papers, but there are other types of citation also. Two of particular 
importance are citations between patents and between legal opinions. 

Patents are temporary grants of ownership for inventions, which give their 
holders the right to take legal action against others who attempt to profit with
out permission from the protected inventions. They are typically issued to 
inventors-either individuals or corporations-by national governments after 

5 And it's been cited one more time now. 
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a review process to determine whether the invention in question is original and 
has not previously been invented by someone else. In applying for a patent, 
an inventor must describe his or her invention in sufficient detail to make ad
equate review possible and present the case that the invention is worthy of 
patent protection. A part of this case typically involves detailing the relation
ship between the invention and previously patented inventions, and in doing 
so the inventor will usually cite one or more previous patents. Citations may 
highlight dependencies between technologies, such as one invention depend
ing for its operation on anotherf but more often patent citations are II defen
sive," meaning that the inventor cites the patent for a previous technology and 
then presents an argument for why the new technology is sufficiently differ
ent from the old one to merit its own patent. Governments, in the process of 
examining patent applications, will routinely consider their similarity to pre
vious inventions, and defensive citations are one way in which an inventor 
can fend off in advance possible objections that might be raised. Typically 
there are a number of rounds of communication, back and forth between the 
government patent examiner and the inventor, before a patent application is 
finally accepted or rejected. During this process extra citations are often added 
to the application, either by the inventor or by the examiner, to document the 
further points discussed in their communications. 

If and when a patent is finally granted, it is published, citations and all, 
so that the public may know which technologies have patent protection. These 
published patents provide a source of citation data that we can use to construct 
networks similar to the networks for citations between papers. In these net
works the vertices are patents, each identified by a unique patent number, and 
the directed edges between them are citations of one patent by another. Like 
academic citation networks, patent networks are mostly acyclic, with edges 
running from more recent patents to older ones, although short loops can arise 
in the network in the not uncommon case that an inventor simultaneously 
patents a number of mutually dependent technologies. The structure of patent 
networks reflects the organization of human technology in much the same way 
that academic citations reflect the structure of research knowledge. Patent net
works have been studied far less than academic citation networks, but studies 
have been growing in the last few years with the appearance of high-quality 
data sets, particularly for US patents [161], and there are a number of impor
tant technological and legal questions, for instance concerning antitrust policy, 
that can be addressed by examining their structure [69]. 

Another class of citation network that has begun to attract attention in re
cent years is that of legal citation networks. In countries where law cases can 
be heard by judges rather than juries, such as civil cases or appeals in Europe 
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or the US, a judge will frequently issue an "opinion" after deciding a case, a 
narrative essay explaining his or her reasoning and conclusions. It is common 
practice in writing such an opinion to cite previous opinions issued in other 
cases in order to establish precedent, or occasionally to argue against it. Thus, 
like academic papers and patents, legal opinions form a citation network, with 
opinions being the vertices and citations being the directed edges. Again the 
network is approximately acyclic, as with the other networks in this section. 
The legal profession has long maintained indexes of citations between opin
ions for use by lawyers, judges, scholars, and others, and in recent years those 
indexes have made the jump to electronic form and are now available online. 
In the United States, for instance, two commercial services, LexisNexis and 
Westlaw,6 provide thorough and detailed data on legal opinions and their ci
tations via online services. In the last few years a number of studies have been 
published of the structure of legal citation networks using data derived from 
these services [125,126,194]. 

In principle it would be possible also to construct networks of cocitation or 
bibliographic coupling between either patents or legal opinions, but the author 
is not aware of any studies yet published of such networks. 

4.3 OTHER INFORMATION NETWORKS 

There are many other networks of information, although none have received 
the same level of study as the Web and citation networks. In the remainder of 
this chapter we briefly discuss a few examples of other networks. 

4.3.1 PEER-TO-PEER NETWORKS 

Peer-to-peer (P2P) file-sharing networks have become popular and widespread 
in the last decade or so. A peer-to-peer network is a network in which the nodes 
are computers containing information in the form, usually, of discrete files, and 
the edges between them are virtual links established for the purpose of sharing 
the contents of those files. The links exist only in software-they indicate only 
the intention of one computer to communicate with another should the need 
arise. 

Peer-to-peer networks are typically used as a vehicle for distributed data
bases, particularly for the storage and distribution, often illegally, of music and 
movies, although there are substantial legal uses as well, such as local sharing 

fiWestlaw is owned and operated by Thomson Reuters, the same company that owns the Sci
ence Citation Index. 
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of files on corporate networks or the distribution of open-source software. (The 
network of router-to-router communications using the Border Gateway Proto
col described in Section 2.1 is another less obvious example of a legitimate and 
useful peer-to-peer network) 

The point of a peer-to-peer network is that data is transferred directly be
tween. computers belonging to two end users of the network, two "peers." 
This contrasts with the more common server-client model, such as that used 
by the World Wide Web, in which central server computers supply requested 
data to a large number of client machines. The peer-to-peer model is favored 
particularly for illicit sharing of copyrighted material because the owners of a 
centralized server can easily be obliged to turn off the server by legal or law
enforcement action, but such actions are much more difficult when no central 
server exists. 

On most peer-to-peer networks each computer is horne to some informa
tion, but no computer has all the information in the network If the user of 
a computer requires information stored on another computer, that informa
tion can be transmitted simply and directly over the Internet or over a local 
area network. This is a peer-to-peer transfer, but no special infrastructure is 
necessary to accomplish it-standard Internet protocols are perfectly adequate 
to the task Things get interesting, however, when one wants to find which 
other computer has the desired information. One way to do that is to have a 
central server containing none of the information but just an index of which 
information is on which computers. Such a system was employed by the early 
file-sharing network Napster, but the central index server is, once again, sus
ceptible to legal and other challenges, and such challenges were in the end 
responsible for shutting Napster down? 

To avoid this problem, developers have turned to distributed schemes for 
searching and this is where network concepts come into play. An illustrative 
example of a peer-to-peer system with distributed search is the Gnutella net
work, which underlies a number of popular file-sharing programs including 
LimeWire and the now-defunct Marpheus. In the simplest incarnation of this 
system (more sophisticated ones are in use now) computers form links to some 
number of their peers in such a way that all the computers form a connected 
network. Again, a link here is purely a software construct-a computer's net
work neighbors in the peer-to-peer sense are merely those others with which 
it intends to communicate when the need arises. 

When a user instructs his or her computer to search the network for a spe-

7The Napster name was later bought up by the recording industry and is now the name of a 
legitimate online music service, although one that does not make use of peer-to-peer technology. 
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cific file the computer sends out a message to its network neighbors asking 
whether they have that file. If they do, they arrange to transmit it back to the 
first computer. If they do not, they pass the message on to their neighbors, and 
so forth until the file is found. As pointed out in Section 19.2, where we dis
cuss search strategies on peer-to-peer networks at some length, this algorithm 
works, but only on relatively small networks. Since it requires messages to 
be passed between many computers for each individual search, the algorithm 
does not scale well as the network becomes large, the volume of network traffic 
eventually swamping the available data bandwidth. To get around this prob
lem, modern peer-ta-peer networks, including recent versions of Gnutella, 
employ a two-tiered network topology of nodes and "supemodes," in which 
searches are performed only among the supemodes and ordinary nodes con
tact them directly to request searches be performed. More details are given in 
Section 19.2. 

So what is the structure of a peer-ta-peer network like? In many cases, un
fortunately, not a lot is known since the software is proprietary and its owners 
are reluctant to share operational details. The Gnutella system is more promis
ing, being so-called open-source software, meaning that the original computer 
code for the software and the specification of the protocols it uses are freely 
available. By exploiting certain details of these protocols, particularly the abil
ity for computers in the Gnutella network to "ping" one another (i.e., ask each 
other to identify themselves), a number of authors have been able to discover 
structures for Gnutella networks [282,308]. The networks appear to have ap
proximately power-law degree distributions and it has been suggested that 
this property could be exploited to improve search performance [6]. 

4.3.2 RECOMMENDER NETWORKS 

A type of information network important for technology and commerce is the 
recommender network. Recommender networks represent people's preferences 
for things, such as for certain products sold by a retailer. Online merchants, 
for instance, usually keep records of which customers bought which products 
and sometimes ask them whether they liked the products or not. Many large 
supermarket chains record the purchases made by each of their regular cus
tomers (usually identified by a small card with a barcode on it that is scanned 
when purchases are made) and so can work out which products each customer 
buys frequently. 

The fundamental representation of a recommender network is as a "bi
partite network," a newark with two types of vertex, one representing the 
products or other items and the other representing the people, with edges con-
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necting people to the items they buy or like. One can also add strengths or 
weights to the edges to indicate, for instance, how often a person has bought 
an item or how much he or she likes it, or the strengths could be made negative 
to indicate dislikes. 

Recommender networks have been studied for many types of goods and 
products, including books, music, films, and others. The primary commercial 
interest in recommender networks arises from their use in collaborative filtering 
systems, also sometimes called recommender systems, which are computer algo
rithms that attempt to guess items that people will like by comparing a per
son's known preferences with those of other people. If person A likes many 
of the same things as persons B, C, and 0, and if persons B, C, and 0 all like 
some further item that A has never expressed an opinion about, then maybe 
(the theory goes) A would like that item too. A wide variety of computer algo
rithms have been developed for extracting conclusions of this type from rec
ommender networks and are used extensively by retailers to suggest possible 
purchases to their customers, in the hope of drumming up business. The web
site of the online bookseller Amazon.co1n, for instance, has a feature that lists 
recommended book titles to customers based on their previously expressed 
preferences and purchases. And many supermarkets now print out discount 
coupons after customers have completed their purchases, coupons for prod
ucts that the customer has not bought in the past but might be interested to 
try. 

Research on recommender networks has in the past focused mainly on the 
development of new collaborative filtering algorithms, but it is reasonable to 
suppose that the success of these algorithms should depend to some extent on 
the structure of the recommender network itself, and there is therefore good 
reason to also study that structure. A few such studies have been published in 
the scientific literature [63,147], but there is clearly room for further work. 

4.3.3 KEYWORD INDEXES 

Another type of information network, also bipartite in form, is the keyword 
index. Consider, for instance, a set of documents containing information on 
various topics. One can construct an index to that set so that one can look 
up words in that index and the index will list important occurrences of those 
words in the documents. Such indexes have historically appeared, of course, 
in books, as guides to their content, but more recently indexes have regularly 
been constructed as guides to other information collections, including sets of 
academic papers and the World Wide Web. The index constructed by a web 
search engine, as discussed in Section 4.1, is a good example; it consists, at a 

We encountered bipartite 
networks previously in 
Section 3.5 and will study 
them further in Section 6.6. 
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minimum, of a list of words or phrases, with each word or phrase accompanied 
by a list of the web pages on which it occurs. 

Such indexes can be represented as a bipartite network in which one of 
the two types of vertex represents words in the index and the other represents 
documents or pages. Then one places an edge between each word and the 
documents in which it occurs. Although such networks can be constructed for, 
amongst other things, the Web or collections of academic papers, they should 
not be confused with the networks of web links or citations discussed earlier 
in this chapter. Those are also networks of web pages and documents, but 
they are different from a keyword index. Those networks were networks of 
direct links between documents. An index is a network of links between index 
entries and the documents they point to. 

Indexes are of practical importance as a method for searching large bod
ies of information. Web search engines, for example, rely heavily on them 
to quickly find web pages that correspond to a particular query. However, 
indexes also have other, more sophisticated applications. They are used, for 
example, as a basis for techniques that attempt to find documents or pages 
that are similar to one another. If one has a keyword index to a set of docu
ments and finds that two documents share a lot of the same keywords, it may 
be an indication that the two cover similar topics. A variety of computer algo
rithms for spotting such connections have been developed, typically making 
use of ideas very similar to those used in the recommender systems discussed 
above-the problem of finding documents with similar keywords is in many 
ways similar to the problem of finding buyers who like similar products. 

The identification of similar documents can be useful, for example, when 
searching through a body of knowledge. In a standard index search, one typ
ically types in a set of keywords and gets back a list of documents containing 
those words. Search engines that can tell when documents are similar to each 
other may be able to respond more usefully to such queries because they can 
return documents that do not in fact contain the keywords entered, but which 
are similar to documents that do. In cases where a single concept is called by 
more than one name, this may be a very effective strategy for finding all of the 
relevant documents. 

In the context of document retrieval, the classic method for determining 
document similarity and performing generalized searches of this type is latent 
semantic indexing, which is based on the application of the matrix technique 
known as singular value decomposition to the bipartite network of keywords 
and documents. The interested reader can find a discussion of latent semantic 
indexing in Ref. [193]. 

As with recommender systems, it is reasonable to suppose that the success 
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of methods for finding similar documents or improving searches using similar
ity information depends on the structure of the bipartite keyword/ document 
network, and hence that studies of that structure could generate useful in
sights. There has been relatively little interest in the problem within the net
work community so far and again there is plenty of room for future work. 
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CHAPTER 5 

BIOLOGICAL NETWORKS 

A discussion of various networks of interest in biology, 
including biochemical networks, neural networks, and 
ecological networks 

N ETWORKS are widely used in many branches of biology as a convenient 
representation of patterns of interaction between appropriate biological 

elements. Molecular biologists, for example, use networks to represent the pat
terns of chemical reactions among chemicals in the cell, while neuroscientists 
use them to represent patterns of connections between brain cells, and ecolo
gists study the networks of interactions between species in ecosystems, such 
as predation or cooperation. In this chapter we describe the commonest kinds 
of biological networks and discuss methods for determining their structure. 

5.1 BIOCHEMICAL NETWORKS 

Among the biological networks those attracting the most attention in recent 
years have been biochemical networks, networks that represent the molecular
level patterns of interaction and mechanisms of control in the biological cell. 
The principal types of networks studied in this area are metabolic networks , 
protein-protein interaction networks, and genetic regulatory networks. 

5.l.1 METABOLIC NETWORKS 

Metabolism is the chemical process by which cells break down food or nutrients 
into usable building blocks (so-called catabolic metabolism) and then reassem
ble those building blocks to form the biological molecules the cell needs to 
complete its other tasks (anabolic metabolism). Typically this breakdown and 
reassembly involves chains or pathways, sets of successive chemical reactions 
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that convert initial inputs into useful end products by a series of steps. The 
complete set of all reactions in all pathways forms a metabolic network. 

The vertices in a metabolic network are the chemicals produced and con
sumed by the reactions. These chemicals are known generically as metabo
lites. By convention the definition of a metabolite is limited to small mole
cules, meaning things like carbohydrates (such as sugars) and lipids (such as 
fats), as well as amino acids and nucleotides. Amino acids and nucleotides are 
themselves the building blocks for larger polymerized macromolecules such 
as DNA, RNA, and proteins, but the macromolecules are not themselves con
sidered metabolites-they are not produced by simple chemical reactions but 
by more complex molecular machinery within the cell, and hence are treated 
separately. (We discuss some of the mechanisms by which macromolecules are 
produced in Section 5.l.3.) 

Although the fundamental purpose of metabolism is to turn food into use
ful biomolecules, one should be wary of thinking of it simply as an assembly 
line, even a very complicated one. Metabolism is not just a network of con
veyor belts in which one reaction feeds another until the final products fall out 
the end; it is a dynamic process in which the concentrations of metabolites can 
change widely and rapidly, and the cell has mechanisms for turning on and 
off the production of particular metabolites or even entire portions of the net
work. Metabolism is a complex machine that reacts to conditions both within 
and outside the cell and generates a broad variety of chemical responses. A 
primary reason for the high level of scientific interest in metabolic networks is 
their importance as a stepping stone on the path towards an understanding of 
the chemical dynamics of the cell. 

Generically, an individual chemical reaction in the cell involves the con
sumption of one or more metabolites that are broken down or combined to 
produce one or more others. The metabolites consumed are called the sub
strates of the reaction, while those produced are called the products. 

The situation is complicated by the fact that most metabolic reactions do not 
occur spontaneously, or do so only at a very low rate. To make reactions oc
cur at a usable rate, the cell employs an array of chemical catalysts, referred to 
as enzymes. Unlike metabolites, enzymes are mostly macromolecules, usually 
proteins but occasionally RNAs. Like all catalysts, enzymes are not consumed 
in the reactions they catalyze but they play an important role in metabolism 
nonetheless. Not only do they enable reactions that would otherwise be ther
modynamically disfavored or too slow to be useful, but they also provide one 
of the mechanisms by which the cell controls its metabolism. By increasing or 
decreasing the concentration of the enzyme that catalyzes a particular reaction, 
the cell can turn that reaction on or off, or moderate its speed. Enzymes tend 
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to be highly specific to the reactions they catalyze, each one enabling only one 
or a small number of reactions. Thousands of enzymes are known and many 
more are no doubt waiting to be discovered, and this large array of highly 
specific catalysts allows for a fine degree of control over the processes of the 
cell. 

The details of metabolic networks vary between different species of or
ganisms but, amongst animals at least, large parts are common to all or most 
species. Many important pathways, cycles, or other subportions of metabolic 
networks are essentially unchanged across the entire animal kingdom. For this 
reason one often refers simply to "metabolism" without specifying a particu
lar species of interest; with minor variations, observations made in one species 
often apply to others. 

The most correct representation of a metabolic network is as a bipartite net
work. We encountered bipartite networks previously in Section 3.5 on social 
affiliation networks and in Section 4.3.2 on recommender networks. A bipartite 
network has two distinct types of vertex, with edges running only between 
vertices of unlike kinds. In the case of affiliation networks, for example, the 
two types of vertex represented people and the groups they belonged to. In 
the case of a metabolic network they represent metabolites and metabolic re
actions, with edges joining each metabolite to the reactions in which it partic
ipates. In fact, a metabolic network is really a directed bipartite network, since 
some metabolites go into the reaction (the substrates) and some come out of 
it (the products). By placing arrows on the edges we can distinguish between 
the ingoing and outgoing metabolites. An example is sketched in Fig. 5.1a.1 

This bipartite representation of a metabolic network does not include any 
way of representing enzymes, which, though not metabolites themselves, are 
still an important part of the metabolism. Although it's not often done, one 
can in principle incorporate the enzymes by introducing a third class of vertex 
to represent them, with edges connecting them to the reactions they catalyze. 
Since enzymes are not consumed in reactions, these edges are undirected
running neither into nor out of the reactions they participate in. An example 
of such a network is sketched in Fig. 5.1b. Technically this is now a tripartite 
network, partly directed and partly undirected2 

Correct and potentially useful though they may be, however, neither of 
these representations is very often used for metabolic networks. The most 

lThe metabolic network is the only example of a directed bipartite network appearing in this 
book, and indeed the only naturally occurring example of such a nemark the author has come 
across, although no doubt there are others to be discovered if one looks hard enough. 

2 Also the only such network in the book. 
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(a) (b) 

Figure 5.1: Bipartite and tripartite representations of a portion of a metabolic net
work. (a) A metabolic network can be represented as a directed bipartite network with 
vertices for the metabolites (circles) and reactions (squares) and directed edges indicat
ing which metabolites are substrates (inputs) and products (outputs) of which reactions. 
(b) A third type of vertex (triangles) can be introduced to represent enzymes, with un
directed edges linking them to the reactions they catalyze. The resulting network is a 
mixed directed/undirected tripartite network. 

common representations of metabolic networks project the network onto just 
one set of vertices, either the metabolites or the reactions, with the former being 
the more popular choice. In one approach the vertices in the network represent 
metabolites and there is an undirected edge between any two metabolites that 
participate in the same reaction, either as substrates or as products. Clearly 
this projection loses much of the information contained in the full bipartite net
work, but, as we have said, it is nonetheless widely used. Another approach, 
probably the most common, is to represent the network as a directed network 
with a single type of vertex representing metabolites and a directed edge from 
one metabolite to another if there is a reaction in which the first metabolite ap
pears as a substrate and the second as a product. This representation contains 
more of the information from the full network, but is still somewhat unsat
isfactory since a reaction with many substrates or many products appears as 
many edges, with no easy way to tell that these edges represent aspects of the 
same reaction. The popularity of this representation arises from the fact that 
for many metabolic reactions only one product and one substrate are known 

Projections of bipartite 
networks and the associ
ated loss of information 
are discussed further in 
Section 6.6. 
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or are considered important, and therefore the reaction can be represented by 
only a single directed edge with no confusion arising. A number of compa
nies produce large charts showing the most important parts of the metabolic 
network in this representation. An example is shown in Fig. 5.2. Such charts 
have become quite popular as wall decorations in the offices of molecular bi
ologists and biochemists, although whether they are actually useful in practice 
is unclear. 

The experimental measurement of metabolic networks is a complex and 
laborious process, although it has been made somewhat easier in recent years 
with the introduction of new techniques from molecular genetics. Experiments 
tend to focus neither on whole networks nor on individual reactions but on 
metabolic pathways. A number of tools are available to probe the details of 
individual pathways. Perhaps the most common is the use of radioactive iso
topes to trace the intermediate products along a pathway. In this technique, the 
organism or cell under study is injected with a substrate for the pathway of in
terest in which one or more of the atoms has been replaced by a radiOisotope. 
Typically this has little or no effect on the metabolic chemistry, but as the reac
tions of the pathway proceed, the radioactive atoms move from metabolite to 
metabolite. Metabolites can then be refined, for example by mass spectroscopy 
or chromatography, and tested for radioactivity. Those that show it can be as
sumed to be "downstream" products in the pathway fed by the initial radioac
tive substrate. 

This method tells us the products along a metabolic pathway, but of itself 
does not tell us the order of the reactions making up the pathway. Knowl
edge of the relevant biochemistry-which metabolites can be transformed into 
which others by some chemical reaction-can often identify the ordering or at 
least narrow down the possibilities. Careful measurement of the strength of ra
dioactivity of different metabolites, coupled with a knowledge of the half-life 
of the isotope used, can also give some information about pathway structure 
as well as rates of reactions. 

Notice, however, that there is no way to tell if any of the reactions discov
ered have substrates other than those tagged with the radioisotope. If new 
substrates enter the pathway at intermediate steps (that is, they are not pro
duced by earlier reactions in the pathway) they will not be radioactive and so 
will not be measured. Similarly, if there are reaction products that by chance 
do not contain the radioactive marker they too will not be measured. 

An alternative approach to probing metabolic pathways is simply to in
crease the level of a substrate or enzyme for a particular reaction in the cell, 
thereby increasing the levels of the products of that reaction and those down
stream of it in the relevant pathway or pathways, increases that can be mea-

5.1 

Figure 5.2: A metabolic network. (See Plate IV for color version.) A wallchart showing 
the network formed by the major metabolic pathways. Created by Donald Nicholson, 
Copyright of the International Union of Biochemistry and Molecular Biology. Repro~ 
duced with permission. 
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sured to determine the constituents of the pathway. This technique has the 
advantage of being able to detect products other than those that carry a par
ticular radioactive marker inherited from a substrate, but it is still incapable of 
identifying substrates other than those produced as products along the path
way. 

A complementary experimental technique that can probe the substrates of 
reactions is reaction inhibition, in which a reaction in a pathway is prevented 
from taking place or its rate is reduced. Over time, this results in a build-up in 
the cell of the substrates for that reaction, since they are no longer being used 
up. By watching for this build-up one can determine the reaction substrates. 
In principle the same method could also be used to determine the products 
of the reaction, since their concentration would decrease because they are not 
being produced any longer, but in practice this turns out to be a difficult meas
urement and is rarely done. 

The inhibition of a reaction is usually achieved by disabling or removing 
an enzyme necessary for the reaction. This can be done in a couple of different 
ways. One can use enzyme inhibitors, which are chemicals that bind to an en
zyme and prevent it from performing its normal function as a catalyst, or one 
can genetically alter the organism under study to remove or impair its ability 
to produce the enzyme (a so-called knockout experiment). The same techniques 
can also be used to determine which reactions are catalyzed by which enzymes 
in the first place, and hence to discover the structure of the third, enzymatic 
part of the tripartite metabolic network pictured in Fig. 5.1b. 

The construction of a complete or partial picture of a metabolic network 
involves the combination of data from many different pathways, almost cer
tainly derived from experiments performed by many different experimenters 
using many different techniques. There are now a number of public databases 
of metabolic pathway data from which one can draw to assemble networks, 
the best known being KEGG and MetaCyc. Assembling the network itself is 
a non-trivial task Because the data are drawn from many sources, careful 
checking against the experimental literature (or "curation," as the lingo goes) 
is necessary to insure consistent and reliable inputs to the process, and miss
ing steps in metabolic pathways must often be filled in by guesswork based 
on biochemistry and a knowledge of the genetics. A number of computer 
software packages have been developed that can reconstruct networks from 
raw metabolic data in an automated fashion, but the quality of the networks 
they create is generally thought to be poorer than that of networks created by 
knowledgeable human scientists (although the computers are much faster). 

5.1 BIOCHEMICAL NETWORKS 

5.1.2 PROTEIN-PROTEIN INTERACTION NETWORKS 

The metabolic networks of the previous section describe the patterns of chemi
cal reactions that turn one chemical into another in the celL As we have noted, 
the traditional definition of metabolism is restricted to small molecules and 
does not include proteins or other large molecules, except in the role of en
zymes, in which they catalyze metabolic reactions but do not take part as reac
tants themselves. 

Proteins do however interact with one another and with other 
biomolecules, both large and small, but the interactions are not 
purely chemical. Proteins sometimes interact chemically with other 
molecules--€xchanging small subgroups, for example, such as the 
exchange of a phosphate group in the process known as phosphor
ylation. But the primary mode of protein-protein interaction
interactions of proteins with other proteins-is physicat then com
plicated folded shapes interlocking to create so-called protein com
plexes (see Fig. 5.3) but without the exchange of parllcles or subumts 
that defines chemical reactions. 

The set of all protein-protein interactions forms a protein-protein 
interaction networkf in which the vertices are proteins and two ver
tices are connected by an undirected edge if the corresponding pro
teins interact. Although this representation of the network is the one 
commonly used, it omits much useful information about the interac
tions, Interactions that involve three or more proteins, for instance, 
are represented by multiple edges, and there is no way to tell from 
the network itself that such edges represent aspects of the same ill
teraction. This problem could be addressed by adopting a bipartite 

Figure 5.3: Two proteins joined to 
fonn a protein complex. Protein mole
cules can have complicated shapes that 
interlock with one another to form pro-
tein complexes. 

representation of the network similar to the one we sketched for . 
metabolic networks in Fig. 5.1, with two kinds of vertex representmg protems 
and interactions, and undirected edges connecting proteins to the interactions 
in which they participate. Such representations, however, are rarely used. 

There are a number of experimental techniques available to probe for mter
actions between proteins. One of the most reliable and trusted is co-immuno
precipitation. Immunoprecipitation (without the "co_") is a technique for ex
tracting a single protein species from a sample containing more th~n o~e. The 
technique borrows from the immune system, which produces anl1bodzes, spe
cialized proteins that attach or bind to a specific other target protem when the 
two encounter each other. The immune system uses antIbodIes to neutrahze 
proteins, complexes, or larger structures that are harmful to the body, but ex
perimentalists have appropriated them for use in the laboratory. Immunopre-
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In imrnunoprecipitation, 
antibodies attached to a 
solid surface bind to a spe
cific protein, represented 
here by the circles, pulling 
it out of the solution. 

Transcription factors are 
discussed in more detail in 
Section 5.1.3. 
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cipitation involves attaching an antibody to a solid surface, such as the surface 
of a glass bead, then passing a solution containing the target protein (as well 
as others, in most cases) over the surface. The antibody and the target protein 
bind together, effectively attaching the protein to the surface via the antibody. 
The rest of the solution is then washed away, leaving the target protein to be 
recovered from the surface. 

There are known naturally occurring antibodies for many proteins of sci
entific interest, but researchers also routinely create antibodies for specific pro
teins by injecting those proteins (or more often a portion of a protein) into an 
animal to provoke its immune system to generate the appropriate antibody. 

Co-immlilloprecipitation is an extension of the same method to the iden
tification of protein interactions. An antibody is again attached to a suitable 
solid surface and binds to a known protein in a sample. If that protein is at
tached to others, forming a protein complex, then the entire complex will end 
up attached to the surface and will remain after the solution is washed away. 
Then the complex can be recovered from the surface and the different proteins 
that make it up individually identified, typically by testing to see if they bind 
to other known antibodies (a technique known as a Western blot). 

Although well-established and reliable, co-immunoprecipitation is an im
practical approach for reconstructing entire interaction networks, since indi
vidual experiments, each taking days, have to be performed for every inter
action identified. If appropriate antibodies also have to be created the pro
cess would take even longer; the creation of a single antibody involves weeks 
or months of work, and costs a considerable amount of money too. As a re
sult, the large-scale study of protein-protein interaction networks did not re
ally take off until the adoption in the 1990s and early 2000s of so-called high
throughput methods for discovering interactions, methods that can identify in
teractions quickly and in a semi-automated fashion. 

The oldest and best established of the high-throughput methods for protein 
interactions is the two-hybrid screen, invented by Fields and Song in 1989 [119].' 
This method relies on the actions of a specialized protein known as a transcrip
tion factor, which, if present in a cell, turns on the production of another pro
tein, referred to as a reporter. The presence of the reporter can be detected by 
the experimenter by any of a number of relatively simple means. The idea of 
the two-hybrid screen is to arrange things so that the transcription factor is 
created when two proteins of interest interact, thereby turning on the reporter, 
which tells us that the interaction has taken place. 

3 Also called a yeast two-hybrid screen or Y2HS for short, in recognition of the fact that the 
teclmique is usually implemented inside yeast cells, as discussed later. 

5.1 BIOCHEMICAL NETWORKS 

The two-hybrid screen relies on the fact that transcription factors are typ
ically composed of two distinct parts, a so-called binding domain and an acti
vation domain. It turns out that most transcription factors do not require the 
binding and activation domains to be actually attached to one another for the 
transcription factor to work. If they are merely in close enough proximity pro
duction of the reporter will be activated. 

In a two-hybrid screen, a cell, usually a yeast cell, is persuaded to produce 
two proteins of interest, each with one of the domains of the transcription fac
tor attached to it. This is done by introducing plasmids into the cell, fragments 
of DNA that code for the proteins and domains. Then, if the two proteins in 
question interact and form a complex, the two domains of the transcription 
factor will be brought together and, with luck, will activate production of the 

reporter. 
In a typical two-hybrid experiment, the protein attached to the binding do

main of the transcription factor is a known protein (called the bait protein) 
whose interactions the experimenter wants to probe. Plasmids coding for a 
large number of other proteins (called prey) attached to copies of the activa
tion domain are created, resulting in a so-called library of possible interaction 
targets for the bait. The plasmids for the bait and the Jibrary of prey are then 
introduced into a culture of yeast cells, with the concentration of prey carefully 
calibrated so that at most one prey plasmid enters each cell in most cases. Cells 
observed to produce the reporter are then assumed to contain plasmids cod
ing for prey proteins that interact with the bait and the plasmids are recovered 
from those cens and analyzed to determine the proteins they correspond to. 

The two-hybrid screen has two important advantages over older methods 
like co-immunoprecipitation. First, one can employ a large Jibrary of prey 
and hence test for interactions with many proteins in a single experiment, 
and second, the method is substantially cheaper and faster than co-immuno
precipitation per interaction detected. Where co-immunoprecipitation requires 
one to obtain or create antibodies for every protein tested, the two-hybrid 
screen requires only the creation of DNA plasmids and their later sequence 
analysis, both relatively simple operations for an experimenter armed with the 
machinery of modern genetic engineering. 

One disadvantage of the two-hybrid screen is that the presence of the two 
domains of the transcription factor attached to the bait and prey proteins can 
get in the way of their interacting with one another and prevent the formation 
of a protein complex, meaning that some legitimate protein-protein interac
tions will not take place under the conditions of the experiment. 

The principal disadvantage of the method, however, is that it is simply 
unreliable. It produces high rates of both false positive results-apparent in-

See Section 5.1.3 for a dis
cussion of DNA coding of 
proteins. 
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teractions between proteins that in fact do not interact-and false negative 
results-failure to detect true interactions. By some estimates the rate of false 
positives may be as high as 50%, meaning that fully half of all interactions 
detected by the method are not real. This has not stopped a number of re
searchers from performing analyses on the interaction networks reconstructed 
from two-hybrid screen data, but the results should be viewed with caution. It 
is certainly possible that many or even most of the conclusions of such studies 
are substantially inaccurate. 

An alternative and more accurate class of methods for high-throughput de
tection of protein interactions are the affinity purification methods (also some
times called affinity precipitation methods). These methods are in some ways 
similar to the co-irnmunoprecipitation method described previously, but avoid 
the need to develop antibodies for each protein probed. In an affinity purifica
tion method, a protein of interest is "tagged" by adding a portion of another 
protein to it, typically by introducing a plasmid that codes for the protein plus 
tag, in a manner similar to the introduction of plasmids in the two-hybrid 
screen. Then the protein is given the opportunity to interact with a suitable 
library of other proteins and a solution containing the resulting protein com
plexes (if any) passed over a surface to which are attached antibodies that bind 
to the tag. As a result, the tag, the attached protein, and its interaction part
ners are bound to the surface while the rest of the solution is washed away. 
Then, as in co-immunoprecipitation, the resulting complex or complexes can 
be analyzed to determine the identities of the interaction partners. 

The advantage of this method is that it requires only a single antibody that 
binds to a known tag, and the same tag-antibody pair can be used in different 
experiments to bind different proteins. Thus, as with the two-hybrid screen, 
one need only generate new plasmids for each experiment, which is relatively 
easy, as opposed to generating new antibodies, which is slow and difficult. 
Some implementations of the method have a reliability comparable to that of 
co-imrnunoprecipitation. Of particular note is the method known as tandem 

affinity purification, which combines two separate purification stages and gen
erates correspondingly higher-quality results. Tandem affinity purification is 
the source for some of the most reliable current data for protein-protein inter
action networks. 

As with metabolic reactions, there are now substantial databases of protein 
interactions available online, of which the most extensive are IntAct, MINT, 
and DIP, and from these databases interaction networks can be constructed for 
analysis. An example is shown in Fig. 5.4. 

5.1 BIOCHEMICAL NETWORKS 

Figure 5.4: A protein-protein interaction network for yeast. A network of interactions 
between proteins in the single-celled organism Saccharomyces cerevisiae (baker's yeast), 
as determined using, primarily, two-hybrid screen experiments. From Jeong et al. [164]. 
Copyright Macmillan Publishers Ltd. Reproduced by permission. 

5.l.3 GENETIC REGULATORY NETWORKS 

As discussed in Section 5.1.1, the small molecules needed by biological organ
isms, such as sugars and fats, are manufactured in the cell by the chemical 
reactions of metabolism. Proteins, however, which are much larger molecules, 
are manufactured in a different manner, following recipes recorded in the cell's 
genetic material, DNA. 

Proteins are biological polymers, long-chain molecules formed by the con
catenation of a series of basic units called amino acids. The individual amirto 
acids themselves are manufactured by metabolic processes, but their assembly 
into complete proteins is accomplished by the machinery of genetics. There are 
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Folded 

Figure 5.5: Protein folding. Proteins, which are long-chain polymers of amino acids, 
do not naturally remain in an open state (left), but collapse upon themselves to form a 
mOTe compact folded state (right). 

20 distinct amino acids that are used by all living organisms to build proteins, 
and different species of proteins are distinguished from one another by the 
particular sequence of amino acids that make them up. Once created, a pro
tein does not stay in a loose chain-like form, but folds up on itself under the 
influence of thermodynamic forces and mechanical constraints, reliably pro
ducing a specific folded form or conformation whose detailed shape depends on 
the amino acid sequence-see Fig. 5.5. A protein's conformation dictates the 
physical interactions it can have with other molecules and can expose particu
lar chemical groups or active sites on the surface of the protein that contribute 
to its biological function within the organism. 

A protein's amino acid sequence is determined by a corresponding se
quence stored in the DNA of the cell in which the protein is synthesized. This 
is the primary function of DNA in living matter, to act as an information stor
age medium containing the sequences of proteins needed by the cell. DNA is 
itself a long-chain polymer made up of units called nucleotides, of which there 
are four distinct species, adenine, cytosine, guanine, and thymine, commonly 
denoted A, C, G, and T, respectively4 The amino acids in proteins are en
coded in DNA as trios of consecutive nucleotides called codons, such as ACG 

"Technically, DNA is a double-stranded polymer, having &0 parallel chains of nucleotides 
forming the famous double helix shape. However, the two strands contain essentially the same 
sequence of nudeotides and so for our purposes the fact that there are two is not important (al
though it is very important in other circumstances, such as in the reproduction of a cell by cellular 
division and in the repair of damaged DNA). 

5.1 BIOCHEMICAL NETWORKS 

or TTT, and a succession of such codons spells out the complete sequence of 
amino acids in a protein. A single strand of DNA can code for many proteins
hundreds or thousands of them-and two special codons, called the start and 
stop codons, are used to signal the beginning and end within the larger DNA 
strand of the sequence coding for a protein. The DNA code for a single protein, 
from start codon to stop codon, is called a gene. 

Proteins are created in the cell by a mechanism that operates in two stages. 
In the first stage, known as transcription, an enzyme called RNA polymerase 
makes a copy of the coding sequence of a single gene. The copy is made 
of RNA, another information-bearing biopolymer, chemically similar but not 
identical to DNA. RNA copies of this type are called messenger RNAs. In the 
second stage, called translation, the protein is assembled, step by step, from 
the RNA sequence by an ingenious piece of molecular machinery known as a 
ribosome, a complex of interacting proteins and RNA. The translation process 
involves the use of transfer RNAs, short molecules of RNA that have a region 
at one end that recognizes and binds to a codon in the messenger RNA and 
a region at the other end that pulls the required amino acid into the correct 
place in the growing protein. The end result is a protein, assembled following 
the exact prescription spelled out in the corresponding gene. In the jargon of 
molecular biology, one says that the gene has been expressed. 

The cell does not, in general, need to produce at all times every possible 
protein for which it contains a gene. Individual proteins serve specific pur
poses, such as catalyzing metabolic reactions, and it is important for the cell 
to be able to respond to its environment and circumstances by turning on or 
off the production of individual proteins as required. It does this by the use of 
transcription factors, which are themselves proteins and whose job is to control 
the transcription process by which DNA sequences are copied to RNA. 

Transcription is performed by the enzyme RNA polymerase, which works 
by attaching to a DNA strand and moving along it, copying nucleotides one 
by one. The RNA polymerase doesn't just attach spontaneously, however, but 
is aided by a transcription factor. Transcription factors are specific to particu
lar genes or sets of genes and regulate transcription in a variety of ways, but 
most commonly by binding to a recognized sub-sequence in the DNA, called 
a promoter region, which is adjacent to the beginning of the gene. The binding 
of the transcription factor to the promoter region makes it thermodynamically 
favorable for the RNA polymerase to attach to the DNA at that point and start 
transcribing the gene. (The end of the gene is marked by a stop codon and 
upon encountering this codon the RNA polymerase automatically detaches 
from the DNA strand and transcription ends.) Thus the presence in the cell of 
the transcription factor for the gene turns on or enhances the expression of that 
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gene. We encountered an example of a transcription factor previously in our 
discussion of the two-hybrid screen in Section 5.1.2. 

There are also transcription factors that inhibit expression by binding to a 
DNA strand in such a way as to prevent RNA polymerase from attaching to 
the strand and hence prevent transcription and the production of the corre
sponding protein. 

But now here is the interesting point: being proteins, transcription factors 
are themselves produced by transcription from genes. Thus the protein en
coded in a given gene can act as a transcription factor promoting or inhibiting 
production of one or more other proteins, which themselves can act as tran
scription factors for further proteins and so forth. The complete set of such 
interactions forms a genetic regulatory network. The vertices in this network are 
proteins or equivalently the genes that code for them and a directed edge from 
gene A to gene B indicates that A regulates the expression of B. A slightly more 
sophisticated representation of the network distinguishes between promoting 
and inhibiting transcription factors, giving the network two distinct types of 
edge. 

The experimental determination of the structure of genetic regulatory net
works involves identifying transcription factors and the genes that they reg
ulate. The process has several steps. To begin with, one first confirms that a 
given candidate protein does bind to DNA roughly in the region of a gene of 
interest. The commonest technique for establishing the occurrence of such a 
binding is the electrophoretic mobility shift assayS In this technique one creates 
strands of DNA containing the sequence to be tested and mixes them in so
lution with the candidate protein. If the two indeed bind, then the combined 
DNA/protein complex can be detected by gel electrophoresis, a technique in 
which one measures the speed of migration of electrically charged molecules 
or complexes through an agarose or polyacrylamide gel in an imposed electric 
field. In the present case the binding of the DNA and protein hinders the mo
tion of the resulting complex through the gel, measurably reducing its speed 
when compared with unbound DNA strands. Typically one runs two experi
ments side by side, one with protein and one without, and compares the rate 
of migration to determine whether the protein binds to the DNA. One can also 
run parallel experiments using many different DNA sequences to test which 
(if any) bind to the protein. 

An alternative though less sensitive technique for detecting binding is the 
deoxyribonuclease jootprinting assay. Deoxyribonucleases (also called DNases 

5 "Assay" is biological jargon for an experimental test. 
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for short) are enzymes that, upon encountering DNA strands, cut them into 
shorter strands. There are many different DNases, some of which cut DNA 
only in particular places according to the sequence of nucleotides, but the foot
printing technique uses a relatively indiscriminate DNase that will cut DNA at 
any point. If, however, a protein binds to a DNA strand at a particular location 
it will often (though not always) prevent the DNase from cutting the DNA at 
or close to that location. Footprinting makes use of this by mixing strands of 
DNA containing the sequence to be tested with the DNase and observing the 
resulting mix of strand lengths after the DNase has cut the DNA samples into 
pieces in a variety of different ways. Repeating the experiment with the pro
tein present will result in a different mix of strand length if the protein binds 
to the DNA and prevents it from being cut in certain places. The mix is usually 
determined again by gel electrophoresis (strands of different lengths move at 
different speeds under the influence of the electric field) and one again runs 
side-by-side gel experiments with and without the protein to look for the ef
fects of binding. 

Both the mobility shift and footprinting assays can tell us if a protein binds 
somewhere on a given DNA sequence. To pin down exactly where it binds 
one typically must do some further work. For instance, one can create short 
strands of DNA, called oligonucleotides, containing possible sequences that the 
protein might bind to, and add them to the mix. If they bind to the protein then 
this will reduce the extent to which the longer DNAs bind and visibly affect the 
outcome of the experiment. By a combination of such experiments, along with 
computer-aided guesswork about which oligonucleotides are likely to work 
best, one can determine the precise sub-sequence to which a particular protein 
binds. 

While these techniques can tell us the DNA sequence to which a protein 
binds, they cannot tell us which gene's promoter region that sequence belongs 
to (if any), whether the protein actually affects transcription of that gene, or, if 
it does, whether the transcription is promoted or inhibited. Further investiga
tions are needed to address these issues. 

Identification of the gene is typically done not by experiment but by com
putational means and requires a knowledge of the sequence of the DNA in the 
region where the protein binds. If we know the DNA sequence then we can 
search it for occurrences of the sub-sequence to which our protein binds, and 
then examine the vicinity to determine what gene or genes are there, looking 
for example for start and stop codons in the region and then recording the se
quence of other codons that falls between them. Complete DNA sequences 
are now known for a number of organisms as a result of sequencing experi
ments starting in the late 1990s, and the identification of genes is as a result a 
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relatively straightforward task. 
Finally, we need to establish whether or not our protein actually acts as 

a transcription factor, which can be done either computationally or experi
mentally. The computational approach involves determining whether the sub
sequence to which the protein binds is indeed a promoter region for the iden
tified gene. (It is possible for a protein to bind near a gene but not act as a 
transcription factor because the point at which it binds has no effect on tran
scription.) This is a substantially harder task than simply identifying nearby 
genes. The structure of promoter regions is, unfortunately, quite complex and 
varies widely, but computer algorithms have been developed that can identify 
them with some reliability. 

Alternatively, one can perform an experiment to measure directly the con
centration of the messenger RNA produced when the gene is transcribed. This 
can be achieved for example by using a microarray (colloquially known as a 
"DNA chip"), tiny dots of DNA strands attached in a grid-like array to a solid 
surface. RNA will bind to a dot if a part of its sequence matches the sequence 
of the dot's DNA and this binding can be measured using a fluorescence tech
nique. By observing the simultaneous changes in binding on all the dots of 
the microarray, one can determine with some accuracy the change in concen
tration of any specific RNA and hence quantify the effect of the transcription 
factor. This technique can also be used to determine whether a transcription 
factor is a promoter or an inhibitor, something that is currently not easy using 
computational methods. 

As with metabolic pathways and protein-protein interactions, there now 
exist electronic databases of genes and transcription factors, such as EcoCyc, 
from which it is possible to assemble snapshots of genetic regulatory networks. 
Current data on gene regulation are substantially incomplete and hence so are 
our networks, but more data are being added to the databases all the time. 

5.2 NEURAL NETWORKS 

A completely different use of networks in biology arises in the study of the 
brain and central nervous system in animals. One of the main functions of the 
brain is to process information and the primary information processing ele
ment is the neuron, a specialized brain cell that combines (usually) several in
puts to generate a single output. Depending on the animal, an entire brain can 
contain anywhere from a handful of neurons to more than a hundred billion, 
wired together, the output of one cell feeding the input of another, to create a 
neural network capable of remarkable feats of calculation and decision making. 

Figure 5.6 shows a sketch of a typical neuron, which consists of a cell body 
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Figure 5.6: The structure of a neuron. A typical neuron is composed of a cell body or 
soma with many dendrites that act as inputs and a single axon that acts as an output. 
Towards its tip, the axon branches to allow it to connect to the inputs of several other 
neurons. 

or soma, along with a number of protruding tentacles, which are essentially 
wires for carrying signals in and out of the cell. Most of the wires are inputs, 
called dendrites, of which a neuron may have just one or two, or as many as a 
thousand or more. Most neurons have only one main output, called the axon, 
which is typically longer than the dendrites and may in some cases extend 
over large distances to connect the cell to others some way away. Although 
there is just one axon, it usually branches near its end to allow the output of 
the cell to feed the inputs of several others. The tip of each branch ends at an 
axon terminal that abuts the tip of the input dendrite of another neuron. There 
is a small gap, called a synapse, between terminal and dendrite across which 
the output signal of the first (presynaptic) neuron must be conveyed in order 
to reach the second (postsynaptic) neuron. The synapse plays an important 
role in the function of the brain, allowing transmission from cell to cell to be 
regulated by chemically modifying the properties of the gap6 

The actual signals that travel within neurons are electrochemical in nature. 
They consist of traveling waves of electrical voltage created by the motion of 
positively charged sodium and potassium ions in and out of the cell. These 

6Neurons do sometimes have direct connections between them without synapses. These direct 
connections are called gap junctions, a confusing name, since it sounds like it might be a description 
of a synapse but is in reality quite different. In our brief treatment of neural networks, however, 
we will ignore gap junctions. 
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waves are called action potentials and typically consist of voltages on the order 
of tens of millivolts traveling at tens of meters per second. When an action 
potential reaches a synapse, it cannot cross the gap between the axon terminal 
and the opposing dendrite and the signal is instead transmitted chemically; the 
arrival of the action potential stimulates the production of a chemical neuro
transmitter by the terminal, and the neurotransmitter diffuses across the gap 
and is detected by receptor molecules on the dendrite at the other side. This in 
turn causes ions to move in and out of the dendrite, changing its voltage. 

These voltage changes, however, do not yet give rise to another traveling 
wave. The soma of the postsynaptic neuron sums the inputs from its dendrites 
and as a result may (or may not) send an output signal down its own axon. 
The neuron is stable against perturbations caused by voltages at a small num
ber of its inputs, but if enough inputs are excited they can collectively drive 
the neuron into an unstable runaway state in which it "fires," generating a 
large electrochemical pulse that starts a new action potential traveling down 
the cell's axon and so a signal is passed on to the next neuron or neurons in the 
network. Thus the neuron acts as a switch or gate that aggregates the signals 
at its inputs and only fires when enough inputs are excited. 

As described, inputs to neurons are excitatory, increasing the chance of fir
ing of the neuron, but inputs can also be inhibiting-signals received at in
hibiting inputs make the receiving neuron less likely to fire. Excitatory and 
inhibiting inputs can be combined in a single neuron and the combination al
lows neurons to perform quite complex information processing tasks all on 
their own, while an entire brain or brain region consisting of many neurons 
can perform tasks of extraordinary complexity. Current science cannot yet tell 
us exactly how the brain performs the more sophisticated cognitive tasks that 
allow animals to survive and thrive, but it is known that the brain constantly 
changes the pattern of wiring between neurons in response to inputs and ex
periences, and it is presumed that this pattern-the neural network-holds 
much of the secret. An understanding of the structure of neural networks is 
thus crucial if we are ever to explain the higher-level functions of the brain. 

At the simplest level, a neuron can be thought of as a unit that accepts 
a number of inputs, either excitatory or inhibiting, combines them, and gen
erates an output result that is sent to one or more further neurons. In net
work terms, a neural network can thus be represented as a set of vertices-the 
neurons-cOlmected by two types of directed edges, one for excitatory inputs 
and one for inhibiting inputs. By convention, excitatory connections are de
noted by an edge ending with an arrow" --.. ", while inhibiting connections 
are denoted by an edge ending with a bar U I". 

In practice, neurons are not all the same. They come in a variety of differ-
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ent types and even relatively small regions or circuits in the brain may contain 
many types. This variation can be encoded in our network representation by 
different types of vertex. Visually the types are often denoted by using dif
ferent shapes for the vertices or by labeling. In functional terms, neurons can 
differ in a variety of ways, including the number and type of their inputs and 
outputs, the nature and speed of their response to their inputs, whether and to 
what extent they can fire spontaneously without receiving inputs, and many 
other things besides. 

Experhnental detennination of the structure of neural networks is difficult 
and the lack of straightforward experimental techniques for probing network 
structure is a major impediment to current progress in neuroscience. Some use
ful techniques do exist, however, although their application can be extremely 
laborious. 

The basic tool for structure determination is microscopy, either optical or 
electronic. One relatively simple approach works with cultured neurons on 
flat dishes. Neurons taken from animal brains at an early stage of embryonic 
development can be successfully cultured in a suitable nutrient medium and 
will, without prompting, grow synaptic connections to form a network. If cul
tured on a flat surface, the network is then roughly two-dimensional and its 
structure can be determined with reasonable reliability by simple optical mi
croscopy. The advantage of this approach is that it is quick and inexpensive, 
but it has the substantial disadvantage that the networks studied are not the 
networks of real living animals and their structure is probably not very similar 
to that of a ftmctional brain circuit. 

In this respect, studies of real brains are much more satisfactory and likely 
to lead to greater insight, but they are also far harder, because real brains 
are three-dimensional and we do not currently have any form of microscopy 
suitable for probing such three-dimensional structures. Instead, therefore, re
searchers have resorted to cutting suitably preserved brains or brain regions 
into thin slices, whose structure is then determined by electron microscopy. 
Given the structure of an entire set of consecutive slices, one can, at least 
in principle, reconstruct the three-dimensional structure, identifying different 
types of neurons by their appearance, where possible. In the early days of such 
studies, most reconstruction was done by hand but more recently researchers 
have developed computer programs that can significantly speed the recon
struction process. Nonetheless, studies of this kind are very laborious and 
can take months or years to complete, depending on the size and complexity 
of the network studied. 

Figure 5.7 shows an example of a "wiring diagram" of a neural network, 
reconstructed by hand from electron microscope studies of this type. The net-

, 
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Figure 5.7: A diagram of a part of the brain circuitry of a worm. A portion of the neural circuitry of the nematode 
Caenorhabditis elegans, reconstructed by hand from electron micrographs of slices through the worm's brain. Reproduced 
from White et al. [328]. Copyright of the Royal Society. Reproduced by permission. 
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work in question is the neural network of the worm Caenorhabditis elegans, one 
of the best studied organisms in biology. The brain of C. elegans is simple-it 
has less than 300 neurons and essentially every specimen of the worm has the 
same wiring pattern. Several types of neuron, denoted by shapes and labels, 
are shown in the figure, along with a number of different types of connection, 
both excitatory and inhibiting. Some of the connections run out of the figure or 
enter from somewhere off the page. These are connections that run to or from 
other parts of the network not shown. The original experimenters determined 
the structure of the entire network and presented it as set of interconnected 
wiring diagrams like this one [328]. 

5.3 

5.3 ECOLOGICAL NETWORKS 

The final class of biological network that we consider in this chapter is net
works of ecological interactions between species. Species in an ecosystem can 
interact in a number of different ways. They can eat one another, they can par
asitize one another, they can compete for resources, or they can have any of a 
variety of mutually advantageous interactions, such as pollination or seed dis
persal. Although in principle the patterns of interactions of all of these types 
could be represented in a combined "interaction network" with several differ
ent edge types, ecologists have traditionally separated interaction types into 
different networks. Food webs, for example-networks of predator-prey in
teractions (i.e., who eats whom)-have a long history of study. Networks of 
hosts and parasites or of mutualistic interactions are less well studied, but have 
nonetheless received significant attention in recent years. 

5.3.1 FOOD WEBS 

The biological organisms on our planet can be divided into ecosystems, groups 
of organisms that interact with one another and with elements of their environ
ment such as sources of material, nutrients, and energy. Mountains, valleys, 
lakes, islands, and larger regions of land or water can all be home to ecosys
tems composed of many organisms each. Within ecological theory, ecosys
tems are usually treated as self-contained units with no outside interactions, 
although in reality perfect isolation is rare and many ecosystems are only ap
proximately self-contained. Nonetheless, the ecosystem concept is one of sig
nificant practical utility for understanding ecological dynamics. 

A food web is a directed network that represents which species prey on 
which others in a given ecosystem? The vertices in the network correspond to 
species and the directed edges to predator-prey interactions. Figure 5.8 shows 
a small example, representing predation among species living in Antarctica. 
There are several points worth noticing about this figure. First, notice that not 
all of the vertices actually represent single species in this case. Some of them 
do-the vertices for sperm whales and humans, for instance. But some of them 
represent collections of species, such as birds or fish. This is common practice 

7In common parlance, one refers to a food chain, meaning a chain of predator-prey relations be
tween organisms starting with some lowly organism at the bottom of the chain, such as a microbe 
of some kind, and working all the way up to some ultimate predator at the top, such as a lion or a 
human being. Only a moment's reflection, however, is enough to convince us that real ecosystems 
cmmot be represented by single chains, and a complete network of interactions is needed in most 
cases. 
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Figure 5.8: A food web of species in Antarctica. Vertices in a food web represent 
species or sometimes, as with some of the vertices in this diagram, groups of related 
species, such as fish or birds. Directed edges represent predator-prey interactions and 
run in the direction of energy flow, i.e., from prey to predator. 

in the network representation of food webs. If a set of species such as birds 
all prey upon and are preyed on by the same other species, then the network 
can be simplified by representing them as a single vertex, without losing any 
information about who preys on whom. Indeed, even in cases where a set of 
species only have mostly, but not exactly, the same predators and prey we still 
sometimes group them, if we feel the benefits of the resulting simplification 
are worth a small loss of information. A set of species with the same or similar 
predators and prey is sometimes referred to as a trophic species. 

Second, notice the direction of the edges in the network. One might imag
ine that the edges would point from predators to prey, but ecologists conven-
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tionally draw them in the opposite direction, from prey to predator. Thus the 
edge representing the eating of fish by birds runs from the fish vertex to the bird 
vertex. The reason for this apparently odd choice is that ecologists view food 
webs as representations of the flow of energy (or sometimes carbon) within 
ecosystems. The arrow from fish to birds indicates that the population of birds 
gains energy from the population of fish when the birds eat the fish. 

Third, notice that almost all the arrows in the figure run up the page. Di
rected networks with this property-that they can be drawn so that the edges 
all run in one direction-are called acyclic networks. We encountered acyclic 
networks previously in our discussion of citation networks in Section 4.2. Food 
webs are usually only approximately acyclic. There are usually a few edges 
that do not run in the right direction,8 but it is often a useful approximation to 
assume that the network is acyclic. 

The acyclic nature of food webs indicates that there is an intrinsic pecking 
order among the species in ecosystems. Those higher up the order (which 
means higher up the page in Fig. 5.8) prey on those lower down, but not vice 
versa. A species' position in this pecking order is called by ecologists its trophic 
level. Species at the very bottom of the food web, of which there is just one in 
our example-the phytoplankton-have trophic level 1. Those that prey on 
them-krill, herbivorous plankton-have trophic level 2, and so forth all the 
way up to the species at the top of the web, which have no predators at all. 
In our antarctic example there are two species that have no predators, humans 
and small whales. (Note however that although such species are all, in a sense, 
at "the top of the food chain" they need not have the same trophic level.) 

Trophic level is a useful general guide to the roles that species play in 
ecosystems, those in lower trophic levels tending to be smaller, more abundant 
species that are prey to other species higher up the food web, while those in 
higher trophic levels are predators, usually larger-bodied and less numerous. 
Calculating a species' trophic level, however, is not always easy. In principle, 
the rule is simple: a species' trophic level is 1 greater than the trophic level of 
its prey. Thus the herbivorous plankton and krill in our example have trophiC 
level 2, because their prey has trophic levell, and the carnivorous plankton 
have trophic level 3. On the other hand, the squid in our example prey on 
species at two different levels, levels 2 and 3, so it is unclear what level they 
belong to. A variety of mathematical definitions have been proposed to re
solve this issue. One strategy is to define trophic level to be 1 greater than the 
mean of the trophic levels of the prey. There is, however, no accepted standard 

SIn Fig. 5.8, for example, there are edges in both directions between the fish and squid vertices, 
which makes it impossible to draw the network with all edges running in the same direction. 
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definition, and the only indisputable statement one can make is that in most 
food webs some species have ill-defined or mixed trophic level. 

The food webs appearing in the ecological literature come in two basic 
types. Community food webs are complete webs for an entire ecosystem, as in 
Fig. 5.S-they represent, at least in theory, every predator-prey interaction in 
the system. Source food webs and sink food webs are subsets of complete webs that 
focus on species connected, directly or indirectly, to a specific prey or preda
tor. In a source food web, for instance, one records all species that derive en
ergy from a particular source species, such as grass. Our food web of antarctic 
species is, in fact, both a community food web and a source food web, since all 
of the species in the network derive their energy ultimately from phytoplank
ton. Phytoplankton is the source in this example, and the species above it (all 
of the species in this case) form the corresponding source web. A sink food 
web is the equivalent construct for a particular top predator in the network. 
In the antarctic example, for instance, humans consume the sperm and baleen 
whales and elephant seals, which in turn derive their energy from fish, squid, 
plankton, krill, and ultimately phytoplankton. This subset of species, there
fare, constitutes the sink food web for humans-the web that specifies through 
which species or species groups the energy consumed by humans passes. 

The experimental determination of the structure of food webs is typically 
done in one of two different ways, or sometimes a mixture of both. The first 
and most straightforward method is direct measurement. Having settled on 
the ecosystem to be studied, one first assembles a list of the species in that 
ecosystem and then determines their predator-prey interactions. For large
bodied animals such as mammals, birds, or larger fish, some predation can 
be established simply by observation in the field-we see a bird eating a fish 
and the presence of the corresponding edge is thereby established. More often, 
however, and particularly with smaller-bodied animals, interactions are estab
lished by catching and dissecting the animals in question and examining the 
contents of their stomachs to determine what they have been eating. 

The second primary method of constructing food webs is by compilation 
from existing literature. Many predator-prey interactions are already known 
and have been recorded in the scientific literature, but not in the context of 
the larger food web, and one can often reconstruct a complete ar partial pic
ture of a food web by searching the literature for such records. Many of the 
currently available food web data sets were assembled in this way from pre
existing data, and some others were assembled by a combination of experi
mental measurement and literature searches. 

In some cases attempts have also been made to measure not merely the 
presence (or absence) of interactions between species but also the strength of 
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those interactions. One can quantify interaction strength by the fraction of its 
energy a species derives from each of its predators, or by the total rate of energy 
flow between a prey species and a predator. The result is a weighted directed 
network that sheds considerably more light on the flow of energy through an 
ecosystem than the more conventional unweighted food web. Measurements 
of interaction strength are, however, time-consuming, difficult, and yield un
certain results, so the current data on weighted food webs should be treated 
with caution. 

Food web data from a variety of sources have been assembled into publicly 
available databases, starting in the late 1980s. Examples include the Ecoweb 
database [73] and the web-based collection at www.foodwebs.org. 

5.3.2 OTHER ECOLOGICAL NETWORKS 

Two other types of ecological network have received significant attention in 
the scientific literature (although less than has been paid to food webs). Host
parasite networks are networks of parasitic relationships between organisms, 
such as the relationship between a large-bodied animal and the insects and 
microorganisms that live on and inside it. In a sense parasitic relations are 
a form of predation-one species eating another-but in practical terms they 
are quite distinct from traditional predator-prey interactions. Parasites, for 
example, tend to be smaller-bodied than their hosts where predators tend to 
be larger, and parasites can live off their hosts for long, sometimes indefinite, 
periods of time without killing them, where predation usually results in the 
death of the prey. 

Parasitic interactions, however, do form networks that are somewhat sim
ilar to traditional food webs. Parasites themselves frequently play host to still 
smaller parasites (called "hyperparasites"), which may have their own still 
smaller ones, and so forth through severallevels9 There is a modest but grow
ing literature on host-parasite networks, much of it based on research within 
the agriculture community, a primary reason for interest in parasites being 
their prevalence in and effects on livestock and crop species. 

The other main class of ecological networks is that of mutualistic networks, 
meaning networks of mutually beneficial interactions between species. Three 

90ne is reminded of the schoolhouse rhyme by Augustus de Morgan: 

Great fleas have little fleas upon their backs to bite 'em, 
And little fleas have lesser fleas, and so ad infinitum. 
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specific types of mutualistic network that have received attention in the eco
logical literature are networks of plants and the animals (primarily insects) 
that pollinate them, networks of plants and the animals (such as birds) that 
disperse their seeds, and networks of ant species and the plants that they pro
tect and eat. Since the benefit of a mutualistic interaction runs, by definition, in 
both directions between a pair of species, mutualistic networks are undirected 
networks (or bidirectional, if you prefer), in contrast with the directed inter
actions of food webs and host-parasite networks. Most mutualistic networks 
studied are also bipartite, consisting of two distinct, non-overlapping sets of 
species (such as plants and ants), with interactions only between members of 
different sets. In principle, however, non-bipartite mutualistic networks are 
also possible. 
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CHAPTER 6 

MATHEMATICS OF NETWORKS 

An introduction to the mathematical tools used in the 
study of networks, tools that will be important to many 
subsequent developments 

I N THE next three chapters we introduce the fundamental quantitative foun
dations of the study of networks, concepts that are crucial for essentially all 

later developments in this book. In this chapter we introduce the basic theo
retical tools used to describe and analyze networks, most of which come from 
graph theory, the branch of mathematics that deals with networks. Graph the
ory is a large field containing many results and we describe only a small frac
tion of those results here, focusing on the ones most relevant to the study of 
real-world networks. Readers interested in pursuing the study of graph theory 
further might like to look at the books by Harary [155] or West [324]. 

In the two chapters after this one we look first at measures and metrics for 
quantifying network structure (Chapter 7) and then at some of the remarkable 
patterns revealed in real-world networks when we apply the mathematics and 
metrics we have developed to their analysis (Chapter 8). 

6.1 NETWORKS AND THEIR REPRESENTATION 

To begin at the beginning, a network-also called a graph in the mathematical 
literature-is, as we have said, a collection of vertices joined by edges. Vertices 
and edges are also called nodes and links in computer science, sites and bonds 
in physics, and actors! and ties in sociology. Table 6.1 gives some examples of 
vertices and edges in particular networks. 

1Thi5 use of the word "actor" sometimes leads to confusion: an actor need not be a person 
who actually acts, and need not even be a person. In a social network of business relationships 
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Network 

Internet 
World Wide Web 
Citation network 
Power grid 
Friendship network 
Metabolic network 
Neural network 
Food web 

Vertex 

Computer or router 
Web page 
Article, patent, or legal case 
Generating station Of substation 
Person 
Metabolite 
Neuron 
Species 

Edge 
Cable or wireless data connection 
Hyperlink 
Citation 
Transmission line 
Friendship 
Metabolic reaction 
Synapse 
Predation 

Table 6.1: Vertices and edges in networks. Some examples of vertices and edges in particular networks. 

Throughout this book we will normally denote the number of vertices in a 
network by n and the number of edges by m, which is a common notation in 
the mathematical literature. 

Most of the networks we will study in this book have at most a single edge 
between any pair of vertices. In the rare cases where there can be more than 
one edge between the same pair of vertices we refer to those edges collectively 
as a multiedge. In most of the networks we will study there are also no edges 
that connect vertices to themselves, although such edges will occur in a few 
instances. Such edges are called self-edges or self-loops. 

A network that has neither self-edges nor multiedges is called a simple net
work or simple graph. A network with multiedges is called a multigraph2 Fig
ure 6.1 shows examples of (a) a simple graph and (b) a non-simple graph hav
ing both multiedges and self-edges. 

6.2 THE ADJACENCY MATRIX 

There are a number of different ways to represent a network mathematically. 
Consider an undirected network with n vertices and let us label the vertices 
with integer labels 1 ... n, as we have, for instance, for the network in Fig. 6.1a. 
It does not matter which vertex gets which label, only that each label is unique, 
so that we can use the labels to refer to any vertex unambiguously. 

If we denote an edge between vertices i and j by (i, j) then the complete 

between companies, for instance, the actors are the companies (and the ties are the business rela
tionships). 

2There does not seem to be a special name given to networks with self-edges. They are just 
called "networks with self-edges." 
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Figure 6.1: Two small networks. (a) A simple graph, i.e., one having no multiedges or 
self-edges. (b) A network with both multiedges and self-edges. 

network can be specified by giving the value of n and a list of all the edges. 
For example, the network in Fig. 6.1a has n = 6 vertices and edges (1,2), (1,5), 
(2,3), (2,4), (3,4), (3,5), and (3,6). Such a specification is called an edge list. 
Edge lIsts are sometimes used to store the structure of networ ks on computers, 
but for mathematical developments like those in this chapter they are rather 
cumbersome. 

A better representation of a network for present purposes is the adjacency 
matrix. The adjacency matrix A of a simple graph is the matrix with elements 
Aij such that 

A; = { 1 if there is an edge between vertices i and j, 
J 0 otherwise. (6.1) 

For example, the adjacency matrix of the network in Fig. 6.1a is 

0 1 0 0 1 0 
1 0 1 1 0 0 

A= 
0 1 () 1 1 1 
0 1 1 0 () 0 

(6.2) 

1 () 1 0 0 0 
0 0 1 0 0 0 

Two points to notice about the adjacency matrix are that, first, for a network 
with no self-edges such as this one the diagonal matrix elements are all zero, 
and second that it is symmetric, since if there is an edge between i and j then 
there is an edge between j and i. 
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It is also possible to represent multiedges and self-edges using an adja
cency matrix. A multiedge is represented by setting the corresponding matrix 
element Aj equal to the multiplicity of the edge. For example, a double edge 
between vertices i and j is represented by Aj = Aii = 2. 

Self-edges are a little more complicated. A single self-edge from vertex i to 
itself is represented by setting the corresponding diagonal element Aii of the 
matrix equal to 2. Why 2 and not I? Essentially it is because every self-edge 
from i to i has two ends, both of which are connected to vertex i. We will 
find that many of our mathematical results concerning the adjacency matrix 
work equally well for networks with and without self-edges, but only if we are 
careful to count both ends of every edge, including the self-edges, by making 
the diagonal matrix elements equal to 2 rather than 1.3 

Another way to look at this is that non-self-edges appear twice in the adja
cency matrix-an edge from i to j means that both Aij and Aii are 1. To count 
edges equally, self-edges should also appear twice, and since there is only one 
diagonal matrix element A ii , we need to record both appearances there. 

To give an example, the adjacency matrix for the multigraph in Fig. 6.1b is 

0 1 0 0 3 0 

1 2 2 1 0 lJ 

0 2 0 1 1 1 (6.3) A= 
0 1 1 () 0 0 

3 0 1 0 0 0 

0 0 1 0 0 2 

One can also have multiple self-edges (or "multi-self-edges" perhaps). Such 
edges are represented by setting the corresponding diagonal element of the ad
jacency matrix equal to twice the multiplicity of the edge. 

6.3 WEIGHTED NETWORKS 

Many of the networks we will study have edges that form simple on/ off con
nections between vertices. Either they are there or they are not. In some situa
tions, however, it is useful to represent edges as having a strength, weight, or 
value to them, usually a real number. Thus in the Internet edges might have 
weights representing the amount of data flowing along them or their band
width. In a food web predator-prey interactions might have weights measur-

3As discussed in the next section, this is not the case for directed netvvorks. In directed net
works, self-edges are represented by a 1 in the corresponding diagonal element of the adjacency 

matrix. 
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ing total energy flow between prey and predator. In a social network connec
tions might have weights representing frequency of contact between actors. 
Such weighted or valued networks can be represented by giving the elements of 
the adjacency matrix values equal to the weights of the corresponding connec
tions. Thus the adjacency matrix 

A= G 
2 
o 

0.5 

(6.4) 

represents a weighted network in which the connection between vertices 1 
and 2 is twice as strong as that between 1 and 3, which in turn is twice as 
strong as that between 2 and 3.4 

We have now seen two different types of network where the adjacency ma
trix can have off-diagonal elements with values other than 0 and 1, networks 
with weighted edges and networks with multiedges-' Indeed, if the weights 
in a weighted network are all integers it is possible to create a network with 
multiedges that has the exact same adjacency matrix, by simply choosing the 
multiplicities of the multiedges equal to the corresponding weights. This con
nection comes in handy sometimes. In some circumstances it is easier to reason 
about the behavior of a multigraph than a weighted network, or vice versa, and 
switching between the two can be a useful aid to analysis [242J. 

The weights in a weighted network are usually positive numbers, but there 
is no reason in theory why they should not be negative. For example, it is corn
man in social network theory to construct networks of social relations between 
people in which positive edge weights denote friendship or other cordial re
lationships and negative ones represent animosity. We discuss such networks 
further in Section 7.11 when we consider the concept of structural balance. 

Given that edges can have weights on them, it is not a huge leap to consider 
weights on vertices too, or to consider more exotic variables on either edges or 

4The values on edges also sometimes represent lengths of some kind. On a road or airline 
network, for instance, edge values could represent the number of kilometers or miles the edges 
cover, or they could represent travel time along the edges, which can be regarded as a kind of 
length-one denominated in units of time rather than distance. Edge lengths are, in a sense, the 
inverse of edge weights, since two vertices that are strongly connected can be regarded as "close" 
to one another and two that are weakly connected can be regarded as far apart. Thus one could 
convert between weights and lengths by taking reciprocals, although this should be regarded as 
only an approximate procedure; in most cases there is no formal sense in which edge weights and 
lengths are eqUivalent. 

5The diagonal elements are a special case, since they are equal to 0 or 2 in an undirected 
network even when there are no multiedges or weighted edges. 
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vertices, such as vectors or discrete enumerative variables like colors. Many 
such variations have been considered in the networks literature and we will 
discuss some of them later in the book. There is one case of variables on edges, 
however, that is so central to the study of networks that we discuss it straight 

away. 

6.4 DIRECTED NETWORKS 

A directed network or directed graph, also called a digraph for short, is a network 
in which each edge has a direction, pointing from one vertex to another. Such 
edges are themselves called directed edges, and can be represented by lines with 

arrows on them-see Fig. 6.2. 

4 

We encountered a number of examples of directed networks in 
previous chapters, including the World Wide Web, in which hy
perlinks run in one direction from one web page to another, food 
webs, in which energy flows from prey to predators, and citation 
networks, in which citations point from one paper to another. 

The adjacency matrix of a directed network has matrix elements 

A = { 1 if there is an edge from j to i, 
II 0 otherwise. 

(6.5) 

Figure 6.2: A directed network. A 
small directed netvvork with arrowS in
dicating the directions of the edges. 

Notice the direction of the edge here-it runs from the second index 
to the first. This is slightly counter-intuitive, but it turns out to be 
convenient mathematically and it is the convention we adopt in this 

book. 
As an example, the adjacency matrix of the small network in 
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Fig. 6.2 is 

0 0 0 1 0 0 

0 0 1 0 0 0 

1 0 0 0 1 0 
(6.6) A= 

0 0 0 0 0 1 

0 0 0 1 0 1 

0 1 0 0 0 0 

Note that this matrix is not symmetric. In general the adjacency matrix of a 

directed network is asymmetric. 
We can, if we wish, think of undirected networks as directed networks in 

which each undirected edge has been replaced with two directed ones running 
in opposite directions between the same pair of vertices. The adjacency matrix 

6.4 

for such a network is then symmetric and exactly the same as for the original 
undirected network. 

Like their undirected counterparts, directed networks can have multiedges 
and self-edges, which are represented in the adjacency matrix by elements with 
values greater than 1 and by non-zero diagonal elements, respectively. An im
portant point however is that self-edges in a directed network are represented 
by setting the corresponding diagonal element of the adjacency matrix to 1, 
not 2 as in the undirected case 6 With this choice the same formulas and re
sults, in terms of the adjacency matrix, apply for networks with and without 
self-edges. 

6.4.1 COCITATION AND BIBLIOGRAPHIC COUPLING 

It is sometimes convenient to turn a directed network into an undirected one 
for the purposes of analysis-there are many useful analytic techniques for 
undirected networks that do not have directed counterparts (or at least not 
yet). 

One simple way to make a directed network undirected is just to ignore 
the edge directions entirely, an approach that can work in some cases, but in
evitably throws out a lot of potentially useful information about the network's 
structure. A more sophisticated approach is to use "cocitation" or "biblio
graphic coupling," two different but related ideas that derive their names from 
their widespread use in the analysis of citation networks. 

The cocitation of two vertices i and j in a directed network is the number of 
vertices that have outgoing edges pointing to both i and j. In the language of 
citation networks, for instance, the cacitation of two papers is the number of 
other papers that cite both. Given the definition above of the adjacency matrix 
of a directed network (Eq. (6.5)), we can see that AikAjk = 1 if i and j are both 
cited by k and zero otherwise. Summing over all k, the cocitation C;j of i and j 
is 

11 n 

Cij = L AikAjk = L AikA0' (6.7) 
k=l k=l 

where A0 is an element of the transpose of A. We can define the cocitation 
matrix C to be the n x n matrix with elements CiJ , which is thus given by 

(6.8) 

6Indeed, one can understand the appearance of the 2 in the undirected case as a consequence of 
the equivalence between undirected and directed networks mentioned above: an undirected self
edge can be thought of as two directed self-edges at the same vertex, each of which contributes 1 
to the corresponding element of the adjacency matrix. 

DIRECTED NETWORKS 

We briefly discussed co
citation in the context of 
citation networks in Sec
tion 4.2. 

j 

Vertices i and j are cited by 
three common papers, so 
their cocitation is 3. 
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Vertices i and j cite three 
of the same papers and so 
have a bibliographic cou
pling of 3. 

116 

Note that C is a symmetric matrix, since CT = (AAT)T = AAT = C. 
Now we can define a cocitation network in which there is an edge between 

i and j if C ij > 0, for i oF j, i.e., an edge between any two vertices that are 
cocited in the original directed network. (We enforce the constraint that i oF j 
because the cocitation network is conventionally defined to have no self-edges, 
even though the diagonal elements of the cocitation matrix are in general non
zero-see below.) Better still, we can make the cocitation network a weighted 
network with positive integer weights on the edges equal to the correspond
ing elements CiJ • Then vertex pairs cited by more common neighbors have a 
stronger connection than those cited by fewer. Since the cocitation matrix is 
symmetric, the cocitation network is undirected, making it easier to deal with 
in many respects than the original directed network from which it was con
structed. 

The cocitation network tUrns out to make a lot of sense in many cases. In 
citation networks of academic papers, for instance, strong cocitation between 
papers is often a good indicator of papers that deal with related topics-if two 
papers are often cited together in the same bibliography they probably have 
something in common. And the more often they are cited together, the more 
likely it is that they are related. 

The cocitation matrix thus plays a role similar to an adjacency matrix for 
the cocitation netvvork. There is however one aspect in which the cocitation 
matrix differs from an adjacency matrix: its diagonal elements. The diagonal 
elements of the cocitation matrix are given by 

11 II 

e ji = L ATk = L Aib (6.9) 
k=l k=l 

where we have assumed that the directed network is a simple graph, with 
no multiedges, so that all elements Aik of the adjacency matrix are zero or 
one. Thus Cii is equal to the total number of edges pointing to i-the total 
number of papers citing i in the citation network language. In constructing 
the cocitation network we ignore these diagonal elements, meaning that the 
network's adjacency matrix is equal to the cocitation matrix but with all the 
diagonal elements set to zero. 

Bibliographic coupling is similar to cocitation. The bibliographic coupling of 
two vertices in a directed network is the number of other vertices to which 
both point. In a citation network, for instance, the bibliographic coupling of 
two papers i and j is the number of other papers that are cited by both i and j. 
Noting that AkiAkj = 1 if i and j both cite k and zero otherwise, the biblio-
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graphic coupling of i and j is 

/I II 

Bij = L AkiAkj = L AI~Akj, (6.10) 
k=l k=l 

and we define the bibliographic coupling matrix B to be the n x n matrix with 
elements Bij so that 

(6.11) 

The bibliographic coupling matrix is again a symmetric matrix and the off
diagonal elements can be used to define a weighted undirected network, the 
bibliographic coupling network, in which there is an edge with weight Bij between 
any vertex pair i, j for which Bij > O. The diagonal elements of Bare 

II 11 

Bii = L A~i = L A ki · (6.12) 
k"",1 k=l 

Thus Bii is equal to the number of other vertices that vertex i points to-the 
number of papers i citesf in the citation language. 

Bibliographic coupling, like cocitation, can be a useful measure of connec
tion between vertices. In a citation network, for example

f 
if two papers cite 

many of the same other papers it is often a good indication that they deal with 
similar subject matter, and the number of common papers cited can be an in
dicator of how strongly they overlap. 

Although cocitation and bibliographic coupling are mathematically simi
lar measures they can in practice give noticeably different results. In particu
lar, they are affected strongly by the number of ingoing and outgoing edges 
that vertices have. For two vertices to have strong cocitation-to be pointed 

to by many of the same other vertices-they must both have a lot of incom
ing edges in the first place. In a citation network, for instance

f 
two papers 

can only have strong cocitation if they are both well cited and hence strong 
cocitation is limited to influential papers, review articles

f 
books

f 
and similar 

highly cited items. Conversely, two papers can only have strong bibliographic 
coupling if they both cite many others, i.e., if they have large bibliographies. 
In practice, the sizes of bibliographies vary less than the number of citations 
papers receive, and hence bibliographic coupling is a more uniform indicator 
of similarity between papers than cocitation. The Science Citation Index, for 
example, makes use of bibliographic coupling in its "Related Records" feature, 
which allows users to find papers similar to a given paper. Cocitation would 
be less appropriate in this situation, since it tends not to work well for papers 
with few citations. 

DIRECTED NETWORKS 
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A cycle in a directed net
work. 
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Bibliographic coupling also has the advantage that it can be computed as 
soon as a paper is published and the contents of the paper's bibliography are 
known. Cocitation, on the other hand, cannot be computed until a paper has 
been cited by other papers, which usually doesn't happen until at least a few 
months after publication, and sometimes years. Furthermore, the cocitation of 
two papers can change over time as the papers receive new citations, whereas 
bibliographic coupling is fixed from the moment the papers are published. 
(This could be an advantage or a disadvantage-there are situations in which 
changes in cocitation could reveal interesting information about the papers 
that cannot be gleaned from an unchanging measure like bibliographic cou
pling.) 

In addition to their use as measures of vertex similarity, the cocitation and 
bibliographic coupling matrices are also used in search algorithms for directed 
networks, and in particular in the so-called HITS algorithm, which we describe 
in Section 7.5. 

6.4.2 ACYCLIC DIRECTED NETWORKS 

A cycle in a directed network is a closed loop of edges with the arrows on each 
of the edges pointing the same way around the loop. Networks like the World 
Wide Web have many such cycles in them. Some directed networks however 
have no cycles and these are called acyclic networks? Ones with cycles are 
called cyclic. A self-edge-an edge connecting a vertex to itself-counts as a 
cycle, and so an acyclic network also has no self-edges. 

The classic example of an acyclic directed network is a citation network of 
papers, as discussed in Section 4.2. When writing a paper you can only cite 
another paper if it has already been written, which means that all the directed 
edges in a citation network point backward in time. Graphically we can depict 
such a network as in Fig. 6.3, with the vertices time-ordered-running from 
bottom to top of the picture in this case-so that all the edges representing 
the citations point downward in the picture'" There can be no closed cycles in 
such a network because any cycle would have to go down the picture and then 
come back up again to get back to where it started and there are no upward 

7In the mathematical literature one often sees the abbreviation DAG, which is short for directed 
acyclic graph. 

8 As discussed in Section 4.2, there are in real citation networks rare instances in which two 
papers both cite each other, forming a cycle of length two in the citation network, for instance 
if an author publishes two related papers in the same issue of a journal. Citation networks are, 
nonetheless, acyclic to a good approximation. 

9 

7 

5 

2 

8 

6 
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Figure 6.3: An acyclic directed network. In this 
network the vertices are laid out in such a way 
that all edges point downward. Networks that 
can be laid out in this way are called acyclic, since 
they possess no closed cycles of edges. An ex
ample of an acyclic network is a citation network 
of citations between papers, in which the vertical 
axis would represent date of publication, rmming 
up the figure, and all citations would necessarily 
point from later papers to earlier ones. 

edges with which to achieve this. 
It is less obvious but still true that if a network is acyclic it can be drawn in 

the manner of Fig. 6.3 with all edges pointing downward. The proof that this 
can be done turns out to be useful, because it also provides us with a method 
for determining whether a given network is acyclic. 

Suppose we have an acyclic directed network of n vertices. There must 
be at least one vertex somewhere on the network that has ingoing edges only 
and no outgoing ones. To see this consider starting from any vertex in the 
network and making a path across the network by following edges, each in 
the correct direction denoted by its arrow. Either such a path will eventually 
encounter a vertex with no outgoing edges, in which case we are done, or each 
vertex it encounters has one or more outgoing edges, in which case we choose 
one such edge and continue our path. If the path never reaches a vertex with 
no outgoing edges, then it must eventually arrive back at a vertex that has 
been visited previously-at most we can visit all n vertices in the network once 
before the path either terminates or we are forced to revisit a vertex. However 
if we revisit a vertex then we have gone around a cycle in the network, which 
cannot be since the network is acyclic. Thus we must always in the end find 
a vertex with no outgoing edges and hence at least one such vertex always 
exists. 

In practice, it is not necessary to actually construct the paths through the 
network to find a vertex with no outgoing edges-since we know that such 
a vertex exists, we can simply look through each vertex in tum until we find 
one. 

We now take this vertex with no outgoing edges and draw it at the bottom 
of our picture. We remove this vertex from the network, along with any edges 
attached to it, and repeat the process, finding another vertex with no outgoing 
edges in the remaining network We draw this second vertex above the first 

DIRECTED NETWORKS 

119 



MATHEMATICS OF NETWORKS 

120 

one in the figure, remove it from the network and repeat again. And so forth. 
When we have drawn all vertices, we then add the directed edges between 

them to the picture. Since each edge, by definition, has incoming edges only 
from vertices drawn after it-and therefore above it-all edges in the final pic
ture must be pointing downward. Note that the particular order in which we 
draw the vertices, and hence the picture we produce, is not necessarily unique. 
If at any stage in the process of drawing the vertices there is more than one 
vertex with no outgoing edges then we have a choice about which one we pick 
and hence a choice between overall vertex orders. 

This process is a useful one for visualizing acyclic networks. Most com
puter algorithms for drawing such networks work by arranging the vertices in 
order along one axis in just this way, and then moving them around along the 
other axis to make the network structure as clear and visually pleasing as pos
sible (which usually means minimizing the number of times that edges cross). 

The process is useful for another reason too: it will break down if the net
work is cyclic, and therefore it gives us a way to test whether a given network 
is acyclic. If a network contains a cycle, then none of the vertices in that cycle 
will ever be removed during our process: none of them will be without out
going edges until one of the others in the cycle is removed, and hence none of 
them can ever be removed. Thus, if the network contains a cycle there must 
come a point in our process where there are still vertices left in the network 
but all of them have outgoing edges. So a simple algorithm for determining 

whether a network is acyclic is: 
1. Find a vertex with no outgoing edges. 
2. If no such vertex exists, the network is cyclic. Otherwise, if such a vertex 

does exist, remove it and all its ingoing edges from the network. 
3. If all vertices have been removed, the network is acyclic. Otherwise go 

back to step 1. 
The adjacency matrix of an acyclic directed network has interesting proper

ties. Suppose we construct an ordering of the vertices of an acyclic network as 
described above, so that all edges point in one direction, and suppose we then 
label the vertices in that order. Then there can be an edge from vertex j to ver
tex i only if j > i. Put another way, the adjacency matrix A (whose element Aij 

records the presence of an edge from j to i) has all its non-zero elements above 
the diagonal-it is upper triangular. For instance, the adjacency matrix of the 
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network shown in Fig. 6.3 is 

() () 1 () 1 (] 0 () 0 
0 IJ 1 0 () 1 () () 0 

0 0 0 0 (] 1 () () 0 
lJ 0 (] 0 1 0 0 1 0 

A= 0 0 1I (] (] II 1 0 1 (6.13) 
lJ (] 0 0 0 0 1 (l (] 

0 () [J () () 0 II 1 1 
II II () (] (] () () II II 
() 0 0 0 (] IJ 0 () II 

Note also that the diagonal elements of the adjacency matrix are necessarily 
zero, since an acyclic network has no self-edges. Triangular matrices with zeros 
on the diagonal are called strictly triangular. 

If the vertices of an acyclic network are not numbered in order as described 
above, then the adjacency matrix will not be triangular. (Imagine swapping 
rows and columns of the matrix above, for instance.) However, we can say 
that for every acyclic directed network there exists at least one labeling of the 
vertices such that the adjacency matrix will be strictly upper triangular. 

The adjacency matrix also has the property that all of its eigenvalues are 
zero if and only if the network is acyclic. To demonstrate this, we must demon
strate the correspondence in both directions, i.e., that the adjacency matrix of 
an acyclic network has all eigenvalues zero and also that a network is acyclic 
if its adjacency matrix has all eigenvalues zero. 

The former is the easier to prove. If a network is acyclic then we can order 
and label the vertices as described above and hence write the adjacency matrix 
in strictly upper triangular form. The diagonal elements of a triangular matrix, 
however, are its eigenvalues, and since these are all zero it follows immediately 
that all eigenvalues are zero for an acyclic network. 

To show the converse, that the network is acyclic if the eigenvalues are all 
zero, it suffices to demonstrate that any cyclic network must have at least one 
non-zero eigenvalue. To demonstrate this we make use of a result derived in 
Section 6.10. There we show that the total number L, of cycles of length r in a 
network is 

" 
Lr = LlC;, (6.14) 

i=l 

where 1Ci is the ith eigenvalue of the adjacency matrix. Suppose a network is 
cyclic. Let r be the length of one of the cycles it contains. Then by definition 
L, > 0 for this network. However, this can only be the case if at least one of 
the terms in the sum on the right-hand side of Eq. (6.14) is greater than zero, 
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• 

2 • 5 

• • 2 3 4 5 

(0) (b) 

Figure 6.4: A hypergraph and corresponding bipartite graph. These two nenvorks 
show the same information-the membership of five vertices in four different groups, 
(a) The hypergraph representation in which the groups are represented as hyperedges, 
denoted by the loops circling sets of vertices. (b) The bipartite representation in which 
we introduce four new vertices (open circles) representing the four groups, with edges 

connecting each vertex to the groups to which it belongs. 

and hence the adjacency matrix has at least one non-zero eigenvalue. If all 

eigenvalues are zero, therefore, the network cannot be cyclic. 
Matrices with all eigenvalues zero are called nilpotent matrices. Thus one 

could also say that a network is acyclic if and only if it has a nilpotent adjacency 

matrix. 

6.5 HYPERGRAPHS 

In some kinds of network the links join more than two vertices at a time. For 
example, we might want to create a social network representing families in 
a larger community of people. Families can have more than two people in 
them and the best way to represent family ties in such families is to use a 
generalized kind of edge that joins more than two vertices.' Such an edge 
is called a hyperedge and a network with hyperedges is called a hypergraph. 
Figure 6.4a shows a small example of a hypergraph in which the hyperedges 

are denoted by loops. 

9We could just use ordinary edges joining vertex pairs to represent our family ties, placing an 
edge behveen any two vertices that correspond to individuals in the same family. This, however, 
doesn't explicitly tell us when two edges correspond to ties within the same family, and there 
is no single object in the network that corresponds to a family the way a hyperedge does in the 
hypergraph. In a number of ways, therefore, the hypergraph is more convenient. 

6.6 BIPARTITE NETWORKS 

Network Vertex Group Section 

Film actors Actor Cast of a film 3.5 
Coauthorship Author Authors of an article 3.5 
Boards of directors Director Board of a company 3.5 
Social events People Participants at social event 3.1 
Recommender system People Those who like a book, film, etc. 4.3.2 
Keyword index Keywords Pages where words appear 4.3.3 
Rail connections Stations Train routes 2.4 

Metabolic reactions Metabolites Participants in a reaction 5.1.1 
"-------"-----~-"---

Table 6.2: Hypergraphs and bipartite graphs. Examples of networks that can be represented as hypergraphs or equiv
alently as bipartite graphs. The last column gives the section of this book in which each network is discussed. 

Many of the networks that we will encounter in this book can be pre
sented as hypergraphs. In particular, any network in which the vertices are 
connected together by common membership of groups of some kind can be 
represented in this way. In sociology such networks are called" affiliation net
works" and we saw several examples of them in Section 3.5. Directors sitting 
on the boards of companies, scientists coauthoring papers, and film actors ap
pearing together in films are all examples of such networks (see Table 6.2). 

We will however talk very little about hypergraphs in this book, because 
there is another way of representing the same information that is more conve
nient for our purposes-the bipartite network. 

6.6 BIPARTITE NETWORKS 

The membership of vertices in groups represented by hyperedges in a hyper
graph can equally and often more conveniently be represented as a bipartite 
network, also called a two-mode network in the sociology literature. In such a 
network there are two kinds of vertices, one representing the original vertices 
and the other representing the groups to which they belong. We discussed bi
partite networks previously in the context of affiliation networks in Section 3.5 
and of recommender networks in Section 4.3.2. For example, we can represent 
the network of film actors discussed in Section 3.5 as a bipartite network in 
which the two types of vertex are the actors themselves and the films in which 
they appear. The edges in a bipartite network run only between vertices of un
like types: in the film network they would run only between actors and films, 
and each actor would be connected by an edge to each film in which he or she 
appeared. A small example of a bipartite network is shown in Fig. 6.4b. This 
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example network in fact portrays exactly the same set of group memberships 
as the hypergraph of Fig. 6.4a; the two are entirely equivalent. 

Bipartite networks occur occasionally in contexts other than membership of 
groups. For example, if we were to construct a network of who is or has been 
married to whom within a population, that network would be bipartite, the 
two kinds of vertex corresponding to men and women and the edges between 
them marriages.10 

The equivalent of an adjacency matrix for a bipartite network is a rectan
gular matrix called an incidence matrix. If n is the number of people or other 
participants in the network and g is the number of groups, then the incidence 
matrix B is a g x n matrix having elements Bij such that 

Bi = { 1 if vertex j belongs to group i, 
! 0 otherwise. 

(6.15) 

For instance, the 4 x 5 incidence matrix of the network shown in Fig. 6.4b is 

o 
1 
1 
o 

o 
1 
1 
1 

1 
1 
o 
1 

~l 1 . 

1 

(6.16) 

Although a bipartite network may give the most complete representation of 
a particular network it is often convenient to work with direct connections be
tween vertices of just one type. We can use the bipartite network to infer such 
connections, creating a one-mode projection from the two-mode bipartite form. 
As an example, consider again the case of the films and actors. We can per
form a projection onto the actors alone by constructing the n-vertex network 
in which the vertices represent actors and two actors are connected by an edge 
if they have appeared together in a film. The corresponding one-mode projec
tion onto the films would be the g-vertex network where the vertices represent 
films and two films are connected if they share a common actor. Figure 6.5 
shows the two one-mode projections of a small bipartite network. 

When we form a one-mode projection each group in the bipartite network 
results in a cluster of vertices in the one-mode projection that are all connected 
to each other-a "clique" in network jargon (see Section 7.8.1). For instance, 
if a group contains four members in the bipartite network, then each of those 
four is connected to each of the others in the one-mode projection by virtue of 

lOIn countries such as Spain or Canada, where same-sex marriages are permitted, the network 
would not be truly bipartite because there would be some edges between like kinds of vertex. 
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Figure 6.5: The two one-mode projections of a bipartite net
work. The central portion of this figure shows a bipartite net
work with four vertices of one type (open circles labeled A 
to D) and seven of another (filled circles, 1 to 7). At the top 
and bottom we show the one-mode projections of the net
work onto the two sets of vertices. 

common membership in that group. (Such a clique of four vertices is visible in 
the center of the lower projection in Fig. 6.5.) Thus the projection is, generically, 
the union of a number of cliques, one for each group in the original bipartite 
network. The same goes for the other projection onto the groups. 

The one-mode projection, as we have described it, is often useful and is 
widely employed, but its construction discards a lot of the information present 
in the structure of the original bipartite network and hence it is, in a sense, a 
less powerful representation of our data. For example, the projection loses any 
information about how many groups tvvo vertices share in cornmon. In the 
case of the actors and films, for instance, there are some pairs of actors who 
have appeared in many films together-Fred Astaire and Ginger Rogers, say, 
or William Shatner and Leonard Nimoy-and it's reasonable to suppose this 
indicates a stronger connection than between actors who appeared together 
only once. 

We can capture information of this kind in our projection by making the 
projection weighted, giving each edge between two vertices in the projected 

125 



MATHEMATICS OF NETWORKS 

126 

network a weight equal to the number of common groups the vertices share, 
This weighted network still does not capture all the information in the bipartite 
original-it doesn't record the number of groups or the exact membership of 
each group for instance-but it is an improvement on the unweighted version 
and is quite widely used, 

Mathematically the projection can be written in terms of the incidence ma
trix B as follows, The product Bk;Bkj will be 1 if and only if i and j both belong 
to the same group Ie in the bipartite network. Thus, the total number F;j of 
groups to which both i and j belong is 

g g 

Pi) = L BkiBkj = L B~Bkj, (6,17) 
k=l k=l 

where Br is an element of the transpose BT of B, The n x n matrix P = BTB 
is similar to an adjacency matrix for the weighted one-mode projection onto 
the n vertices, Its off-diagonal elements are equal to the weights in that net
work, the number of common groups shared by each vertex pair, P is not quite 
an adjacency matrix, however, since its diagonal elements are non-zero, even 
though the network itself, by definition, has no self-edges, (In this respect P 
is somewhat similar to the cocitation matrix of Section 6.4.1.) The diagonal 
elements have values 

g g 

F;, = L B~; = L B>;, (6.18) 
k=l k=l 

where we have made use of the fact that B>; only takes the values 0 or 1, Thus 
F;; is equal to the number of groups to which vertex i belongs, 

Thus to derive the adjacency matrix of the weighted one-mode projection, 
we would calculate the matrix P = B TB and set the diagonal elements equal 
to zero, And to derive the adjacency matrix of the unweighted projection, we 
would take the adjacency matrix of the weighted version and replace every 
non-zero matrix element with a 1. 

The other one-mode projection, onto the groups, can be represented by a 
g x g matrix pi = BBT, whose off-diagonal element F:j gives the number of 
common members of groups i and j, and whose diagonal element F:; gives the 
number of members of group i, 

One occasionally also comes across bipartite networks that are directed, For 
example, the metabolic networks discussed in Section 5,1,1 can be represented 
as directed bipartite networks-see Fig, 5.1a, A variety of more complex types 
of projection are possible in this case, although their use is rare and we won't 
spend time on them here, Weighted bipartite networks are also possible in 
principle, although no examples will come up in this book. 

(a) (b) 

Figure 6.6: Two sketches of the same tree. The two panels here show two different 
depictions of a tree, a netvvork with no closed loops. In (a) the vertices are positioned 
on the page in any convenient position. In (b) the tree is a laid out in a "rooted" fashion, 
with a root node at the top and branches leading down to "leaves" at the bottom. 

6,7 TREES 

A tree is a connected, undirected network that contains no closed loops-see 
Fig. 6.6a.11 By "connected" we mean that every vertex in the network is reach
able from every other via some path through the network. A network can also 
consist of two or more partsf disconnected from one anotherf 12 and if an indi
vidual part has no loops it is also called a tree, If all the parts of the network 
are trees, the complete network is called a forest, 

Trees are often drawn in a rooted manner, as shown in Fig, 6,6b, with a 
root node at the top and a branching structure going down, The vertices at the 
bottom that are connected to only one other vertex are called leaves13 Topolog
ically, a tree has no particular root-the same tree can be drawn with any node, 

11 In principle, one could put directions on the edges of a tree and make it a directed network, 
but the definition of a tree as a loopless network ignores directions if there are any. This means 
that a tree is not the same thing as a directed acyclic graph (Section 6.4.2). A directed tree is always 
a directed acyclic graph, but the reverse is not also true, since the definition of a loop in a directed 
acyclic graph takes the directions of the edges into account. A directed acyclic graph may well 
have loops if we ignore directions (see for example Fig. 6.3). 

12Such parts are called "components" -see Section 6.1l. 

13This is a slightly odd way of drawing trees, with the root at the top and the leaves at the 
bottom. The more familiar trees of the wooden kind are, of course, the other way up. The upside
down orientation has, however, become conventional in mathematics and computer science, and 
we here bow to this convention. 
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including a leaf, as the root node, but in some applications there are other rea
sons for designating a root. A dendrogram is one example (see below). 

Not very many of the real-world networks that we will encounter in this 
book are trees, although a few are. A river network is an example of a natu
rally occurring tree (see Fig. 2.6, for instance). Trees do nonetheless play sev
eral important roles in the study of networks. In Chapter 12 for instance we 
will study the network model known as the "random graph." In this model 10-
cal groups of vertices-the so-called small components in the network-form 
trees, and we can exploit this property to derive a variety of mathematical re
sults about random graphs. In Section 11.11.1 we introduce the "dendrogram/' 
a useful tool that portrays a hierarchical decomposition of a network as a tree. 
Trees also occur commonly in computer science, where they are used as a basic 
building block for data structures such as AVL trees and heaps (see Sections 9.5 
and 9.7 and Refs. [8,81]) and in other theoretical contexts like minimum span
ning trees [81], Cayley trees or Bethe lattices [269], and hierarchical models of 
networks (see Section 19.3.2 and Refs. [70,179,322]). 

Perhaps the most important property of trees for our purposes is that, since 
they have no closed loops, there is exactly one path between any pair of ver
tices. (In a forest there is at most one path, but there may be none.) This is clear 
since if there were two paths between a pair of vertices A and B then we could 
go from A to B along one path and back along the other, making a loop, which 
is forbidden. 

This property of trees makes certain kinds of calculation particularly sim
ple, and trees are sometimes used as a basic model of a network for this rea
son. For instance, the calculation of a network's diameter (Section 6.10.1), the 
betweenness centrality of a vertex (Section 7.7), and certain other properties 
based on shortest paths are all relatively easy with a tree. 

Another useful property of trees is that a tree of n vertices always has ex
actly n - 1 edges. To see this, consider building up a tree by adding vertices 
one by one. Starting with a single vertex and no edges, we add a second vertex 
and one edge to connect it to the first. Similarly when we add a third vertex 
we need at least one edge to connect it one of the others, and so forth. For ev
ery vertex we must add at least one edge to keep the network connected. This 
means that the number of edges must always be at least one less than the num
ber of vertices. In mathematical terms, n - 1 is a lower bound on the number 
of edges. 

But it is also an upper bound, because if we add more than one edge when 
we add a new vertex then we create a loop: the first edge connects the added 
vertex to the rest of the network and the second then connects together two 
vertices that are already part of the network. But adding an edge between two 
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vertices that are already connected via the network necessarily creates a loop. 
Hence we are not allowed to add more than one edge per vertex if the network 
is to remain free of loops. 

Thus the number of edges in a tree cannot be either more or less than n - 1, 
and hence is exactly n - 1. 

The reverse is also true, that any connected network with n vertices and 
n - 1 edges is a tree. If such a network were not a tree then there must be a loop 
in the network somewhere, implying that we could remove an edge without 
disconnecting any part of the network. Doing this repeatedly until no loops are 
left, we would end up with a tree, but one with less than n - 1 edges, which 
cannot be. Hence we must have had a tree to begin with. As a corollary, this 
implies that the connected netvvork on n vertices with the minimum number 
of edges is always a tree, since no connected network has less than n - 1 edges 
and all networks with n - 1 edges are trees. 

6.S PLANAR NETWORKS 

A planar network is a network that can be drawn on a plane without having 
any edges crossI4 Figure 6.7a shows a small planar network. Note that it is in 
most cases possible to find a way to draw a planar network so that some edges 
do cross (Fig. 6.7b). The definition of planarity only specifies that at least one 
arrangement of the vertices exists that results in no crossing. 

Most of the networks we will encounter in this book are not planar, ei
ther because there is no relevant two-dimensional geometry to which the net
work is confined (e.g., citation networks, metabolic networks, collaboration 
networks), or else there is but there is nothing to stop edges from crossing on 
it (e.g., the Internet, airline route maps, email networks). However, there are 
a few important examples of networks that are planar. First of all, all trees are 
planar. For some trees, such as river networks, this is obvious. Rivers never 
cross one another; they only flow together. In other cases, such as the trees 
used in computer data structures, there is no ohvious two-dimensional surface 
onto which the network falls but it is planar nonetheless. 

Among non-tree-like networks, some are planar for physical reasons. A 
good example is a road network. Because roads are confined to the Earth's 
surface they form a roughly planar network. It does happen sometimes that 
roads meet without intersecting, one passing over the other on a bridge, so that 

14A plane is a flat surface with open boundaries. One can define a generalization of a planar 
network for other types of two-dimensional surface, such as the torus, which wraps around on 
itself. A standard planar network, however, does not wrap around. 

PLANAR NETWORKS 

Adding an extra edge 
(gray) between any two 
vertices of a tree creates a 
loop. 
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(a) (b) 

Figure 6.7: Two drawings of a planar graph. (a) A small planar graph with four vertices 
and six edges. It is self-evident that the graph is planar, since in this depiction it has 
no edges that cross. (b) The same graph redrawn with two of its edges crossing. Even 
though the edges cross, the graph is still planar-a graph is planar if it can be drawn 
without crossing edges. 

in fact, if one wishes to be precise, the road nehvork is not planar. However, 
such instances are rare (in the sense that there are far more places where roads 
intersect than there are bridges where they don't) and the network is planar to 
a good approximation. 

Another example is the network of shared borders between countries, states, 
or provinces-see Fig. 6.8. We can take a map depicting any set of contiguous 
regions, represent each by a vertex, and draw an edge between any two that 
share a border. It is easy to see that the resulting network can always be drawn 
without crossing edges provided the regions in question are formed of con
tiguous landmasses. 

Networks of this type, representing regions on a map, play an important 
role in the four-color theorem, a theorem that states that it is possible to color 
any set of regions on a two-dimensional map, real or imagined, with at most 
four colors such that no two adjacent regions have the same color, no matter 
how many regions there are or of what size or shape. IS By constructing the 
network corresponding to the map in question, this problem can be converted 
into a problem of coloring the vertices of a planar graph in such a way that 
no two vertices connected by an edge have the same color. The number of 
colors required to color a graph in this way is called the chromatic number of the 
graph and many mathematical results are known about chromatic numbers. 

15The theorem only applies for a map on a surface with topological genus zero, such as a flat 
plane or a sphere. A map on a toms (which has genus 1) can require as many as seven colors. 
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Figure 6.8: Graph of the adjacencies of the lower 48 United States. In this network 
each of the lower 48 states in the US is represented as a vertex and there is an edge 
between any two vertices if the corresponding states share a border. The resulting graph 
is planar, and indeed any set of states, countries, or other regions on a two-dimensional 
map can be turned into a planar graph in this way. 

The proof of the four-color theorem-the proof that the chromatic number of a 
planar graph is always four or less-is one of the triumphs of traditional graph 
theory and was first given by Appel and Haken [20-22] in 1976 after more than 
a hundred years of valiant effort within the mathematics community.16 

An important question that arises in graph theory is how to determine, 
given a particular network, whether that network is planar or not. For a small 
network it is a straightforward matter to draw a picture and play around with 
the positions of the vertices to see if one can find an arrangement in which 
no edges cross, but for a large network this is impractical and a more general 
method of determining planarity is needed. Luckily a straightforward one 
exists. We will only describe the method here, not prove why it works, since 
the proof is long and technical and not particularly relevant to the study of 
real-world networks. For those interested in seeing a proof, one is given by 
West [324]. 

Figure 6.9 shows two small networks, conventionally denoted Ks and UC, 

16 Appel and Haken's proof is an interesting one and was controversial at the time of its pub
lication because it made extensive use of a computer to check large numbers of special cases. On 
the one hand, the proof was revolutionary for being the first proof of a major mathematical result 
generated in this fashion. On the other hand a number of people questioned whether it could 
really be considered a proof at all, given that it was far too large for a human being to check its 
correctness by hand. 
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(0) Ks (b)UG 

Figure 6.9: The fundamental non-planar graphs Ks and UC employed in Kuratow
ski's theorem. These two small graphs are non-planar and Kuratowski's theorem states 
that any non-planar graph contains at least one subgraph that is an expansion of Ks or 
uc. 

that are definitely not planar17 Neither of these networks can be drawn with
out edges crossing. It immediately follows that any network that contains a 
subset of vertices, or subgraph, in the form of Ks or UC, is also not planar. 

An expansion is a network derived by adding extra vertices in the middle 
of edges in another network No such added vertices, however numerous, 
will ever make a non-planar network planar, so it is also the case that any 
expansion of Ks or UC is non-planar, and hence that any network containing 
an expansion of Ks or UC, is also non-planar. 

Kuratowsici's theorem (sometimes also called the Kuratowski reduction theorem) 
states that the converse is also true: 

Every non-planar network contains at least one subgraph that is an 
expansion of Ks or UC. 

"Expansion" should be taken here to include the null expansions, i.e., the 
graphs Ks and UC themselves. 

This theorem, first proved by Pontryagin in 1927 but named after Kuratow
ski who gave an independent proof a few years later,18 provides us with a way 
of determining whether a graph is planar. If it contains a subgraph that is an 

171n graph theory KII denotes the complete graph with n vertices, i.e., the graph of n vertices 
with all G) possible single edges present. UG stands for "utility graph." UG is the complete 
bipartite graph on hvo groups of three vertices. 

18See Kennedy et al. [170] for an interesting history of the theorem and references to the original 
papers. 

expansion of K5 or UC it is not, otherwise it is. 
Kuratowski's theorem is not, however, particularly useful for the analy

sis of real-world networks, because such networks are rarely precisely planar. 
(And if they are, then, as in the case of the shared border network of countries 
or states, it is usually clear for other reasons that they are planar and hence 
Kuratowski's theorem is unnecessary) More often, like the road network, they 
are very nearly planar, but have a few edge crossings somewhere in the net
work. For such a network, Kuratowski's theorem would tell us, correctly, that 
the network was not planar, but we would be missing the point. 

What we would really like is some measure of the degree of planarity of a 
network, a measure that could tell us, for example, that the road network of a 
country is 99% planar, even though there are a few bridges or tunnels here and 
there. One possible such measure is the minimum number of edge crossings 
with which the network can be drawn. This however would be a difficult 
measure to determine since, at least in the simplest approach, its evaluation 
would require us to try every possible way of drawing the network. Perhaps 
another approach would be to look at the number of subgraphs in a network 
that are expansions of K5 or UC. So far, however, no widely accepted metric 
for degree of planarity has emerged. If such a measure were to gain currency 
it might well find occasional use in the study of real-world networks. 

6.9 DEGREE 

The degree of a vertex in a graph is the number of edges connected to it. We 
will denote the degree of vertex i by k;. For an undirected graph of n vertices 
the degree can be written in terms of the adjacency matrix as 19 

" k; = LA]. (6.19) 
)=1 

Every edge in an undirected graph has two ends and if there are m edges in 
total then there are 2111 ends of edges. But the number of ends of edges is also 
equal to the sum of the degrees of all the vertices, so 

" 
2m = Lic;, (6.20) 

i=l 

19Notice that this expression still gives the correct result if there are self-edges in the graph, 
provided each such edge is represented by a diagonal element Aii = 2 as discussed earlier, and 
not 1. 
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or 

a result that we will use many times throughout this book. 
The mean degree c of a vertex in an undirected graph is 

1 " 
c = - Lki' 

n i=l 

and combining this with Eq. (6.20) we get 

2m 
c=-. 

n 

This relation too will come up repeatedly throughout the book. 

(6.21) 

(6.22) 

(6.23) 

The maximum possible number of edges in a simple graph (i.e., one with 
no multiedges or self-edges) is m = 1n(n -1). The connectance or density p of 
a graph is the fraction of these edges that are actually present: 

m 2m c 
p= (~) = n(n-l) = n-l' (6.24) 

where we have made use of Eq. (6.23).20 The density lies strictly in the range 
o <; p <; 1. Most of the networks we are interested in are sufficiently large that 
Eq. (6.24) can be safely approximated as p = cln. 

A network for which the density p tends to a constant as n -> 00 is said 
to be dense. In such a network the fraction of non-zero elements in the adja
cency matrix remains constant as the network becomes large. A network in 
which p -+ 0 as n -----+ 00 is said to be sparse, and the fraction of non-zero el
ements in the adjacency matrix also tends to zero. In particular, a network is 
sparse if c tends to a constant as n becomes large. These definitions of dense 
and sparse networks can, however, be applied only if one can actually take the 
limit n -> 00, which is fine for theoretical model networks but doesn't work 
in most practical situations. You cannot for example take the limit as an em
pirical metabolic network or food web becomes large-you are stuck with the 
network nature gives you and it can't easily be changed. 

In some cases real-world networks do change their sizes and by making 
measurements for different sizes we can make a guess as to whether they are 
best regarded as sparse or dense. The Internet and the World Wide Web are two 

200ccasionally connectance is defined as p = m/n2, which for large networks differs from 
Eq. (6.24) by about a factor of 2. With that definition 0 ~ p < !. 

examples of networks whose growth over time allows us to say with some con
viction that they are best regarded as sparse. In other cases there may be inde
pendent reasons for regarding a network to be sparse or dense. In a friendship 
network, for instance, it seems unlikely that the number of a person's friends 
will double solely because the population of the world doubles. How many 
friends a person has is more a function of how much time they have to devote 
to the maintenance of friendships than it is a function of how many people are 

being born. Friendship networks therefore are usually regarded as sparse. 
In fact, almost of all of the networks we consider in this book are considered 

to be sparse networks. This will be important when we look at the expected 
running time of network algorithms in Chapters 9 to 11 and when we construct 
mathematical models of networks in Chapters 12 to 15. One possible exception 
to the pattern is food webs. Studies comparing ecosystems of different sizes 
seem to show that the density of food webs is roughly constant, regardless of 
their size, indicating that food webs may be dense networks [102,210]. 

Occasionally we will come across networks in which all vertices have the 
same degree. In graph theory, such networks are called regular graphs. A regu
lar graph in which all vertices have degree k is sometimes called k-regular. An 
example of a regular graph is a periodic lattice such as a square or triangular 
lattice. On the square latticef for instancef every vertex has degree four. 

Vertex degrees are more complicated in directed networks. In a directed 
network each vertex has two degrees. The in-degree is the number of ingoing 
edges connected to a vertex and the out-degree is the number of outgoing edges. 
Bearing in mind that the adjacency matrix of a directed network has element 
Aij = 1 if there is an edge from j to i, in- and out-degrees can be written 

" 
kft=I:Aijf 

j=l 

" kjut = I: A ij . (6.25) 
i=l 

The number of edges m in a directed network is equal to the total number of 
ingoing ends of edges at all vertices, or equivalently to the total number of 
outgoing ends of edges, so 

n " 
m = I:k}n = I:kjut = I: A ij . (6.26) 

i=l j=l if 

Thus the mean in-degree Cin and the mean out-degree Cout of every directed 
network are equal: 

(6.27) 

6.9 DEGREE 

An infinite square lattice is 
an example of a 4-regular 
graph. 
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For simplicity we will just denote both by c, and combining Eqs. (6.26) and 
(6.27) we get 

m 
c = -. (6.28) 

n 
Note that this differs by a factor of two from the equivalent result for an un
directed network, Eq. (6.23). 

6.10 PATHS 

A path in a network is any sequence of vertices such that every consecutive 
pair of vertices in the sequence is connected by an edge in the network. In 
layman's terms a path is a route across the network that runs from vertex to 
vertex along the edges of the network. Paths can be defined for both directed 
and undirected networks. In a directed network, each edge traversed by a 
path must be traversed in the correct direction for that edge. In an undirected 
network edges can be traversed in either direction. 

In general a path can intersect itself, visiting again a vertex it has visited 
before, or even running along an edge or set of edges more than once. Paths 
that do not intersect themselves are called self-avoiding paths and are important 
in some areas of network theory. Geodesic paths and Hamiltonian paths are 
two special cases of self-avoiding paths that we will study in this book. 

The length of a path in a network is the number of edges traversed along 
the path (not the number of vertices). Edges can be traversed more than once, 
and if they are they are counted separately each time they are traversed. Again 
in layman's terms, the length of a path is the number of "hops" the path makes 
from vertex to adjacent vertex. 

It is straightforward to calculate the number of paths of a given length r 
on a network. For either a directed or an undirected simple graph the element 
Aij is 1 if there is an edge from vertex j to vertex i, and 0 otherwise. (We will 
consider only simple graphs for now, although the developments generalize 
easily to non-simple graphs.) Then the product AikAkj is 1 if there is a path of 

length 2 from j to i via Ie, and 0 otherwise. And the total number Ni12 ) of paths 
of length two frOlTI j to i, via any other vertex, is 

" Nil') = L AikAkj = [A2
]'j' 

k=l 

where [ .. . Iij denotes the ijth element of a matrix. 

(6.29) 

Similarly the product AikAklAIJ is 1 if there is a path of length three from j 
to i via 1 and k, in that order, and 0 othervvise, and hence the total number of 

paths of length three is 

" 
N i13) = L AikAklAlj= [A3l i · 

k,/=l } 
(6.30) 

Generalizing to paths of arbitrary length r, we see tha!'! 

N,j) = [A'];j. (6.31) 

A special case of this result is that the number of paths of length r that start 
and end at the same vertex i is [A'];;. These paths are just loops in the network, 
what we called "cycles" in our discussion of acyclic graphs in Section 6.1. The 
total number L,. of loops of length r anywhere in a network is the sum of this 
quantity over all possible starting points i: 

" 
L, = LIN];; = Tr A'. (6.32) 

j=l 

Note that this expression counts separately loops consisting of the same ver
tices in the same order but with different starting points." Thus the loop 
1 -. 2 -. 3 -. 1 is considered different from the loop 2 -. 3 --; 1 -. 2. The 
expression also counts separately loops that consist of the same vertices but 
traversed in opposite directions, so that 1 ---+ 2 -----t 3 -----+ 1 and 1 -----t 3 ---+ 2 -+ 1 
are distinct. 

Equation (6.32) can also be expressed in terms of the eigenvalues of the 
adjacency matrix. Let us consider the case of an undirected graph first. In 
this case, the adjacency matrix is symmetric, which means that it has 11 real 
non-negative eigenvalues, the eigenvectors have real elements, and the matrix 
can always be written in the form A = UKUT , where U is the orthogonal 
matrix of eigenvectors and K is the diagonal matrix of eigenvalues. Then A r 

(UKUT
)' = UK"UT and the number of loops is 

L,. = Tr(UK'UT) = Tr(UTUK') = Tr K' 

(6.33) 

21 For a rigorous proof we can use induction. If there are Ni~-l) paths of length r -1 from i 

to k, then by arguments similar to those above there are Ni)r) = Lk N,~-1) AkJ paths of length r from 

ito j, or in matrix notation N(r) = N(r--1JA, where N(r) is the matrix with elements NS·). This 

implies that if N(r-lj = A" 1 then N(r) = A r and with the initial case NO) = A we have N(r) = A' 
for all r. Taking the ijth element of both sides then gives Eq. (6.31). 

22If we wish to count each loop only once, we should roughly speaking divide by r, but this 
does not allow for paths that have symmetries under a change of starting points, such as paths 
that consist of the same subloop traversed repeatedly. Counting such symmetric paths properly is 
a complex problem that can be solved exactly in only a few cases. 
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where K; is the ith eigenvalue of the adjacency matrix and we have made use of 
the fact that the trace of a matrix product is invariant under cyclic permutations 
of the product. 

For directed networks the situation is more complicated. In some cases the 
same line of proof works and we can again demonstrate that Eq. (6.33) is true, 
but in other cases the proof breaks down. Recall that directed graphs have, in 
general, asymmetric adjacency matrices, and some asymmetric matrices can
not be diagonalized.23 An example is the matrix 

G ~), which describes the graph 0----{J . 

This matrix has only a single (right) eigenvector (1,0), and thus one cannot 
form an orthogonal matrix of eigenvectors with which to diagonalize it. None
theless Eq. (6.33) is still true even in such cases, but a different method of proof 
is needed, as follows. 

Every real matrix, whether diagonalizable or not, can be written in the form 
A = QTQT, where Q is an orthogonal matrix and T is an upper triangular 
matrix. This form is called the Schur decomposition of A [217]. 

Since T is triangular, its diagonal elements are its eigenvalues. Furthermore 
those eigenvalues are the same as the eigenvalues of A. To see this, let x be a 
right eigenvector of A with eigenvalue K. Then QTQTx = Ax = KX, and 
multiplying throughout by QT, bearing in mind that Q is orthogonal, gives 

(6.34) 

and hence Q T X is an eigenvector of T with the same eigenvalue 1C as the adja
cency matrix.24 Then 

L, = Tr A' = Tr(QT'QT) = Tr(QTQT') = TrT' 

= I:Kj, (6.35) 

the final equality following because the diagonal elements of any power of a 
triangular matrix Tare T's diagonal elements raised to the same power. 

This demonstration works for any graph, whatever the properties of its 
adjacency matrix, and hence Eq. (6.35) is always true. We used this result in 

23Such matrices have multiple or "degenerate" eigenvalues and technically have a non-zero 
nilpotent part in their Jordan decomposition. 

24Indeed, any mapping A ---i' Q-l AQ of a matrix preserves its eigenvalues. Such mappings are 
called similarity transformations. 

Eq. (6.14) to show that the graph described by a nilpotent adjacency matrix 
(i.e., a matrix whose eigenvalues are all zero) must be acyclic. (All such matri
ces are non-diagonalizable, so one must use Eq. (6.35) in that case.) 

Since the adjacency matrix of a directed graph is, in general, asymmetric it 
may have complex eigenvalues. But the number of loops L,. above is nonethe
less always real, as it must be. The eigenvalues of the adjacency matrix are 
the roots of the characteristic polynomial det( Kl - A), which has real coeffi
cients, and all roots of such a polynomial are either themselves real or come in 
complex-conjugate pairs. Thus, while there may be complex terms in the sum 
in Eq. (6.33), each such term is complemented by another that is its complex 
conjugate and the sum itself is always real. 

6.10.1 GEODESIC PATHS 

A geodesic path, also called simply a shortest path, is a path between two vertices 
such that no shorter path exists: 

A geodesic path of length two betvveen 
two vertices. 

The length of a geodesic path, often called the geodesic distance or shortest dis
tance, is thus the shortest network distance between the vertices in question. 
In mathematical terms, the geodesic distance between vertices i and j is the 
smallest value of r such that [A'·J;j > O. In practice however there are much 
better ways of calculating geodesic distances than by employing this formula. 
We will study some of them in Section 10.3. 

It is possible for there to be no geodesic path between two vertices if the 
vertices are not connected together by any route though the network (i.e., if 
they are in different "components"-see Section 6.11). In this case one some
times says that the geodesic distance between the vertices is infinite, although 
this is mostly just convention-it doesn't really mean very much beyond the 
fact that the vertices are not connected. 

Geodesic paths are necessarily self-avoiding. If a path intersects itself then 
it contains a loop and can be shortened by removing that loop while still con
necting the same start and end points, and hence self-intersecting paths are 
never geodesic paths. 
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Figure 6.10: Vertices i and j have three 
geodesic paths between them of length 
three. 

Geodesic paths are not necessarily unique, however. It is perfectly possible 
to have two or more paths of equal length between a given pair of vertices. 
The paths may even overlap along some portion of their length-see Fig. 6.10. 

The diameter of a graph is the length of the longest geodesic path between 
any pair of vertices in the network for which a path actually exists. (If the 
diameter were merely the length of the longest geodesic path then it would be 
formally infinite in a network with more than one component if we adopted 
the convention above that vertices connected by no path have infinite geodesic 
distance. One can also talk about the diameters of the individual components 
separately, this being a perfectly well-defined concept whatever convention we 
adopt for unconnected vertices.) 

6.10.2 EULERIAN AND HAMILTONIAN PATHS 

An Eulerian path is a path that traverses each edge in a network exactly once. 
A Hamiltonian path is a path that visits each vertex exactly once. A network 
can have one or many Eulerian or Hamiltonian paths, or none. A Hamiltonian 
path is by definition self-avoiding, but an Eulerian path need not be. Indeed if 
there are any vertices of degree greater than two in a network an Eulerian path 
will have to visit those vertices more than once in order to traverse all their 
edges. 

Eulerian paths form the basis of one of the oldest proofs in graph theory, 
which dates from 1736. Around that time the great mathematician Leonard 
Euler became interested the mathematical riddle now known as the Konigsberg 
Bridge Problem. The city of Konigsberg (now Kaliningrad) was built on the 
banks of the river Pregel, and on two islands that lie midstream. Seven bridges 
connected the land masses, as shown in Fig. 6.11a. The riddle asked, "Does 
there exist any walking route that crosses all seven bridges exactly once each?" 
Legend has it that the people of Konigsberg spent many fruitless hours try
ing to find such a route, before Euler proved the impossibility of its exis-
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Figure 6.11: The Konigsberg bridges. (a) In the eighteenth century the Prussian city of Konigsberg, built on four 
landmasses around the river Pregel, was connected by seven bridges as shown. (b) The topology of the landmasses and 
bridges can be represented as a multigraph with four vertices and seven edges. 

tence.25 The proof, which perhaps seems rather trivial now, but which ap
parently wasn't obvious in 1736, involved constructing a network (technically 
a multigraph) with four vertices representing the four land masses and seven 
edges joining them in the pattern of the Konigsberg bridges (Fig. 6.11b). Then 
the bridge problem becomes a problem of finding an Eulerian path on this net
work (and indeed the Eulerian path is named in honor of Euler for his work 
on this problem). Euler observed that, since any Eulerian path must both enter 
and leave every vertex it passes through except the first and last, there can at 
most be two vertices in the network with odd degree if such a path is to exist. 
Since all four vertices in the Konigsberg network have odd degree, the bridge 
problem necessarily has no solution. 

More precisely a network can have an Eulerian path only if there are exactly 
two or zero vertices of odd degree-zero in the case where the path starts and 
ends at the same vertex. This is not a sufficient condition for an Eulerian path, 
however. One can easily find networks that satisfy it and yet have no Eulerian 
path. The general problem of finding either an Eulerian or Hamiltonian path 
on a network, or proving that none exists, is a hard one and significant work is 
still being done on particular cases. 

Eulerian and Hamiltonian paths have a number of practical applications in 
computer science, in job sequencing, "garbage collection," and parallel pro-

25No cheating: you're not allowed to swim or use a boat. 
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gramming [SI]. A Hamiltonian path problem was also, famously, the first 
problem solved using a DNA-based computer [7]. 

6.11 COMPONENTS 

It is possible for there to be no path at all between a given pair of vertices in 
a network. The network shown in Fig. 6.12, for example, is divided into two 
subgroups of vertices, with no connections between the two, so that there is 
no path from any vertex in the left subgroup to any vertex in the right. For 
instance, there is no path from the vertex labeled A to the vertex labeled B. 
A network of this kind is said to be disconnected. Conversely, if there is a path 
from every vertex in a network to every other the network is connected. 

The subgroups in a network like that of Fig. 6.12 are called components. 
Technically a component is a subset of the vertices of a network such that there 
exists at least one path from each member of that subset to each other member, 
and such that no other vertex in the network can be added to the subset while 
preserving this property. (Subsets like this, to which no other vertex can be 
added while preserving a given property, are called maximal sUbsets.) The net
work in Fig. 6.12 has two components of three and four vertices respectively. 
A connected network necessarily has only one component. A singleton vertex 
that is connected to no others is considered to be a component of size one, and 
every vertex belongs to exact! y one component. 

The adjacency matrix of a network with more than one component can be 
written in block diagonal form, meaning that the non-zero elements of the ma
trix are confined to square blocks along the diagonal of the matrix, with all 
other elements being zero: 

A= (6.36) 

Note, however, that the vertex labels must be chosen correctly to produce this 
form. The visual appearance of blocks in the adjacency matrix depends on the 
vertices of each component being represented by adjacent rows and columns 
and choices of labels that don't achieve this will produce non-block-diagonal 
matrices, even though the choice of labels has no effect on the structure of the 
network itself. Thus, depending on the labeling, it may not always be imme-

Figure 6.12: A network with two compo
nents. This undirected network contains 
two components of three and four vertices 
respectively. There is no path betvveen 
pairs of vertices like A and B that lie in dif
ferent components. 

diately obvious from the adjacency matrix that a network has separate com
ponents. There do, however, exist computer algorithms, such as the "breadth
first search" algorithm described in Section 10.3, that can take a network with 
arbitrary vertex labels and quickly determine its components. 

6.11.1 COMPONENTS IN DIRECTED NETWORKS 

When we look at directed networks the definition of components becomes 
more complicated. The situation is worth looking at in some detail, because 
it assumes some practical importance in networks like the World Wide Web. 
Consider the directed network shown in Fig. 6.13. If we ignore the directed na
ture of the edges, considering them instead to be undirected, then the network 
has two components of four vertices each. In the jargon of graph theory these 
are called weakly connected components. Two vertices are in the same weakly 
connected component if they are connected by one or more paths through the 
network, where paths are allowed to go either way along any edge. 

In many practical situations, however, this is not what we care about. For 
example, the edges in the World Wide Web are directed hyperlinks that allow 
Web users to surf from one page to another, but only in one direction. This 
means it is possible to reach one web page from another by surfing only if there 
is a directed path between them, i.e., a path in which we follow edges only in 
the forward direction. It would be useful to define components for directed 
networks based on such directed paths, but this raises some problems. It is 
certainly possible for there to be a directed path from vertex A to vertex B but 
no path back from B to A. Should we then consider A and B to be connected? 

Figure 6.13: Components in a directed 
network. This network has two weakly 
connected components of four vertices 
each, and five strongly connected com
ponents (shaded). 
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Are they in the same component or not? 
Clearly there are various answers one could give to these questions. One 

possibility is that we define A and B to be connected if and only if there exists 
both a directed path from A to B and a directed path from B to A. A and B 
are then said to be strongly connected. We can define components for a directed 
network using this definition of connection and these are called strongly con
nected components. Technically, a strongly connected component is a maximal 
subset of vertices such that there is a directed path in both directions between 
every pair in the subset. The strongly connected components of the network in 
Fig. 6.13 are highlighted by the shaded regions. Note that there can be strongly 
connected components consisting of just a single vertex and, as with the un
directed case, each vertex belongs to exactly one strongly connected compo
nent. Note also that every strongly connected component with more than one 
vertex must contain at least one cycle. Indeed every vertex in such a com
ponent must belong to at least one cycle, since there is by definition a directed 
path from that vertex to every other in the component and a directed path back 
again, and the two paths together constitute a cycle. (A corollary of this obser
vation is that acyclic directed graphs have no strongly connected components 
with more than one vertex, since if they did they wouldn't be acyclic.) 

Strongly and weakly connected components are not the only useful defi
nitions of components in a directed network. On the Web it could be useful 
to know what pages you can reach by surfing from a given starting point, but 
you might not care so much whether it's possible to surf back the other way. 
Considerations of this kind lead us to define the out-component, which is the set 
of vertices that are reachable via directed paths starting at a specified vertex A, 
and including A itself. 

An out-component has the property that edges connecting it to other ver
tices (ones not in the out-component) only point inward towards the mem
bers of component, and never outward (since if they pointed outward then 
the vertices they com1ected to would by definition be members of the out
component). 

Note that the members of an out-component depend on the choice of the 
starting vertex. Choose a different starting vertex and the set of reachable ver
tices may change. Thus an out-component is a property of the network struc
ture and the starting vertex, and not (as with strongly and weakly connected 
components) of the network structure alone. This means, among other things, 
that a vertex can belong to more than one different out-component. In Fig. 6.14, 
for instance, we show the out-components of two different starting vertices, 
A and B. Vertices X and Y belong to both. 

A few other points are worth noticing. First, it is self-evident that all the 

6.12 INDEPENDENT PATHS, CONNECTIVITY, AND CUT SETS 

x X 

IS! 
B 

·l~]" 
A 

(a) (b) 

Figure 6.14: Out-components in a directed network. (a) The out-component of ver
tex A, which is the subset of vertices reachable by directed paths from A. (b) The out
component of vertex B. Vertices X and Y belong to both out-components. 

members of the strongly connected component to which a vertex A belongs are 
also members of A's out-component. Furthermore, all vertices that are reach
able from A are necessarily also reachable from all the other vertices in the 
strongly connected component. Thus it follows that the out-components of all 
members of a strongly connected component are identical. It would be reason
able to say that out-components really "belong" not to individual vertices, but 
to strongly connected components. 

Very similar arguments apply to vertices from which a particular vertex can 
be reached. The in-component of a specified vertex A is the set of all vertices 
from which there is a directed path to A, including A itself. In-components 
depend on the choice of the specified vertex, and a vertex can belong to more 
than one in-component, but all vertices in the same strongly connected compo
nent have the same in-component. Furthermore, the strongly connected com
ponent to which a vertex belongs is a subset of its in-component, and indeed 
a vertex that is in both the in- and out-components of A is necessarily in the 
same strongly connected component as A (since paths exist in both directions) 
and hence A: s strongly connected component is equal to the intersection of its 
in- and out-components. 

6.12 INDEPENDENT PATHS, CONNECTIVITY, AND CUT SETS 

A pair of vertices in a network will typically be connected by many paths of 
many different lengths. These paths will usually not be independent how
ever. That is, they will share some vertices or edges, as in Fig. 6.10 for instance 
(page 140). If we restrict ourselves to independent paths, then the number of 

Out 

In 

The in- and out
components of a ver
tex A in a small directed 
network. 
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Figure 6.15: Edge independent paths. (a) There are two edge-independent paths from A to B in this figure, as denoted 
by the arrows, but there is only one vertex-independent path, because all paths must pass through the center vertex C. 
(b) The edge-independent paths are not unique; there are two different ways of choosing two independent paths from 

A to B in this case. 
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paths between a given pair of vertices is much smaller, The number of inde
pendent paths between vertices gives a simple measure of how strongly the 
vertices are connected to one another, and has been the topic of much study in 
the graph theory literature. 

There are two species of independent path: edge-independent and vertex
independent Two paths connecting a given pair of vertices are edge-independent 
if they share no edges, Two paths are vertex-independent (or node-independent) if 
they share no vertices other than the starting and ending vertices. If two paths 
are vertex-independent then they are also edge-independent, but the reverse 
is not true: it is possible to be edge-independent but not vertex-independent 
For instance, the network shown in Fig, 6,15a has two edge-independent paths 
from A to B, as denoted by the arrows, but only one vertex-independent path
the two edge-independent paths are not vertex-independent because they share 
the intermediate vertex C. 

Independent paths are also sometimes called disjoint paths, primarily in 
the mathematical literature, One also sees the terms edge-disjoint and vertex
disjoint, describing edge and vertex independence. 

The edge- or vertex-independent paths between two vertices are not neces
sarily unique, There may be more than one way of choosing a set of indepen
dent paths, For instance Fig, 6.15b shows the same network as Fig, 6,15a, but 
with the two paths chosen a different way, so that they cross over as they pass 
through the central vertex C. 

It takes only a moment's reflection to convince oneself that there can be 
only a finite number of independent paths between any two vertices in a finite 
network Each path must contain at least one edge and no two paths can share 
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an edge, so the number of independent paths cannot exceed the number of 
edges in the network 

The number of independent paths between a pair of vertices is called the 
connectivity of the vertices26 If we wish to be explicit about whether we are 
considering edge- or vertex-independence, we refer to edge or vertex connec
tivity. The vertices A and B in Fig. 6.15 have edge connectivity 2 but vertex 
connectivity 1 (since there is only one vertex-independent path between them). 

The connectivity of a pair of vertices can be thought of as a measure of 
how strongly connected those vertices are. A pair that have only a single in
dependent path between them are perhaps more tenuously connected than a 
pair that have many paths. This idea is sometimes exploited in the analysis 
of netvvorks, for instance in algorithmic methods for discovering clusters or 
communities of strongly linked vertices within networks [122]. 

Connectivity can also be visualized in terms of "bottlenecks" between ver
tices, Vertices A and B in Fig. 6,15, for instance, are connected by only one 
vertex-independent path because vertex C forms a bottleneck through which 
only one path can go. This idea of bottlenecks is formalized by the notion of 
cut sets as follows. 

Consider an undirected network (In fact the developments here apply 
equally to directed ones, but for simplicity let us stick with the undirected case 
for now.) A cut set, or more properly a vertex cut set, is a set of vertices whose 
removal will disconnect a specified pair of vertices. For example, the central 
vertex C in Fig. 6.15 forms a cut set of size 1 for the vertices A and B. If it is 
removed, there will be no path from A to B. There are also other cut sets for A 
and B in this network, although all the others are larger than size 1. 

An edge cut set is the equivalent construct for edges-it is a set of edges 
whose removal will disconnect a specified pair of vertices, 

A minimum cut set is the smallest cut set that will disconnect a specified 
pair of vertices. In Fig. 6.15 the single vertex C is a minimum vertex cut set for 
vertices A and B. A minimum cut set need not be unique. For instance, there 
is a variety of minimum vertex cut sets of size tw-o between the vertices A and 
B in this network: 

26The word "connectivity" is occasionally also used in the networks literature as a synonym 
for "degree." Given that the word also has the older meaning discussed here, however, this seems 
an imprudent thing to do, and we avoid it in this book. 
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{W,Y}, {W,Z}, {X,Y}, and {X,Z} are all minimum cut sets for this network. 
(There are also many different minimum edge cut sets.) Of course all the min

imum cut sets must have the same size. 
An important early theorem in graph theory addresses the size of cut sets. 

Menger's theorem states: 

If there is no cut set of size less than 11 between a given pair of vertices, 
then there are at least n independent paths between the same vertices. 

The theorem applies both to edges and to vertices and was first proved by Karl 
Menger [216] for the vertex case, although many other proofs have been given 

since. A simple one can be found in Ref. [324]. 
To understand why Menger's theorem is important, consider the following 

argument. If the minimum vertex cut set between two vertices has size 11, 

Menger's theorem tells us that there must be at least n vertex-independent 
paths between those vertices. That is, the number of vertex-independent paths 
is greater than or equal to the size of the minimum cut set. Conversely, if we 
know there to be exactly 11 vertex-independent paths between two vertices, 
then, at the very least, we have to remove one vertex from each path in order 
to disconnect the two vertices, so the size of the minimum cut set must be 
at least n. We thus conclude that the number of vertex-independent paths 
must be both greater than or equal to and less than or equal to the size of the 
minimum cut set, which can only be true if the two are in fact equal. Thus 

Menger's theorem implies that: 

The size of the minimum vertex cut set that disconnects a given pair 
of vertices in a network is equal to the vertex connectivity of the same 

vertices. 

Given that Menger's theorem also applies for edges, a similar argument can 
be used to show that the same result also applies for edge cut sets and edge 

connectivity. 
The edge version of Menger's theorem has a further corollary that will be 

of some importance to us when we come to study computer algorithms for 
analyzing networks. It concerns the idea of maximum flow. Imagine a network 
of water pipes in the shape of some network of interest. The edges of the 
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network correspond to the pipes and the vertices to junctions between pipes. 
Suppose that there is a maximum rate r, in terms of volume per unit time, 
at which water can flow through any pipe. What then is the maximum rate at 
which water than can flow through the network from one vertex, A, to another, 
B? The answer is that this maximum flow is equal to the number of edge
mdependent paths times the pipe capacity r. 

We can construct a proof of this result starting from Menger's theorem. 
First, we observe that if there are n independent paths between A and B, each 
of which can carry water at rate r, then the network as a whole can carry a flow 
of at least nr between A and B, i.e., nr is a lower bound on the maximum flow. 

At the same time, by Menger's theorem, we know that there exists a cut set 
of 11 edges between A and B. If we push the maximum flow (whatever it is) 
through the network from A to B and then remove one of the edges in this cut 
set, the maximum flow will be reduced by at most r, since that is the maximum 
flow an edge can carry. Thus if we remove all n edges in the cut set one by one, 
we remove at most nr of flow, But, since the cut set disconnects the vertices 
A and B, this removal must stop all of the flow. Hence the total capacity is at 
most nr, i.e., I1r is an upper bound on the maximum flow. 

Thus nr is both an upper and a lower bound on the maximum flow, and 
hence the maximum flow must in fact be exactly equal to nr. 

This in outline is a proof of the max-flow/min-cut theorem, in the special case 
in which each pipe can carry the same fixed flow. The theorem says that the 
maximum flow betvveen two vertices is always equal to the size of the min
imum cut set times the capacity of a single pipe. The full max-flow /min-cut 
theorem applies also to weighted networks in which individual pipes can have 
different capacities. We look at this more general case in the following section. 

In combination, Menger's theorem for edges and the max-flow /min-cut 
theorem show thatfor a pair of vertices in an undirected network three quan
tItles are all numencally equal to each other: the edge connectivity of the pair 
(I.e., the number of edge-independent paths connecting them), the size of the 
minimum edge cut set (i.e., the number of edges that must be removed to dis
connect them), and the maximum flow between the vertices if each edge in the 
network can carry at most one unit of flow. Although we have stated these 
results for the undirected case, nothing in any of the proofs demands an un
directed network, and these three quantities are equal for directed networks as 
well. 

The equality of the maximum flow, the connectivity. and the cut set size has 
an important practical consequence. There are simple computer algorithrnsf 

such as the augmenting path algorithm of Section 10.5.1, that can calculate 
maximum flows quite quickly (in polynomial time) for any given network, and 
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the equality means that we can use these same algorithms to quickly calculate 
a connectivity or the size of a cut set as well. Maximum flow algorithms are 
now the standard numerical method for cOlmectivities and cut sets. 

6.12.1 MAXIMUM FLOWS AND CUT SETS ON WEIGHTED NETWORKS 

As discussed in Section 6.3, networks can have weights on their edges that 
indicate that some edges are stronger or more prominent than others. In some 
cases these weights can represent capacities of the edges to conduct a flow of 
some kind. For example, they might represent maximum traffic throughput 
on the roads of a road network or maximum data capacity of Internet lines. 
We can ask questions about network flows on such networks similar to those 
we asked in the last section, but with the added twist that different edges can 
now have different capacities. For example, we can ask what the maximum 
possible flow is between a specified pair of vertices. We can also ask about cut 
sets. An edge cut set is defined as before to be a set of edges whose removal 
from the network would disconnect the specified pair of vertices. A minimum 
edge cut set is defined as being a cut set such that the sum of the weights on 
the edges of the set has the minimum possible value. Note that it is not now 
the number of edges that is minimized, but their weight. Nonetheless, this 
definition is a proper generalization of the one we had before-we can think 
of the unweighted case as being a special case of the weighted one in which 
the weights on all edges are equal, and the sum of the weights in the cut set is 
then simply proportional to the number of edges in the set. 

Maximum flows and minimum cut sets on weighted networks are related 
by the max-flow /min-cut theorem in its most general form: 

The maximum flow between a given pair of vertices in a network is 
equal to the sum of the weights on the edges of the minimum edge 
cut set that separates the same two vertices. 

We can prove this theorem using the results of the previous section27 

Consider first the special case in which the capacities of all the edges in our 
network are integer multiples of some fixed capacity r. We then transform our 
network by replacing each edge of capacity !cr (with k integer) by k parallel 
edges of capacity r each. For instance, if r = 1 we would have something like 
this: 

27por a first principles proof that is not based on Menger's theorem see, for instance, 
Ahuja et al. [8]. 
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It is clear that the maximum flow between any two vertices in the trans
formed network is the same as that between the corresponding vertices in the 
original. At the same time the transformed network now has the form of a 
simple unweighted network of the type considered in Section 6.12, and hence, 
from the results of that section, we can immediately say that the maximum 
flow in the network is equal to the size in unit edges of the minimum edge cut 
set. 

We note also that the minimum cut set on the transformed network must 
include either all or none of the parallel edges between any adjacent pair of 
vertices; there is no point cutting one such edge unless you cut all of the others 
as well-you have to cut all of them to disconnect the vertices. Thus the min
imum cut set on the transformed network is also a cut set on the original net
work. And it is a minimum cut set on the original network, because every cut 
set on the original network is also a cut set with the same weight on the trans
formed network, and if there were any smaller cut set on the original network 
then there would be a corresponding one on the transformed network, which, 
by hypothesis, there is not. 

Thus the maximum flows on the two networks are the same, the minimum 
cuts are also the same, and the maximum flow and minimum cut are equal 
on the transformed network. It therefore follows that the maximum flow and 
minimum cut are equal on the original network. 

This demonstrates the theorem for the case where all edges are constrained 
to have weights that are integer multiples of r. This constraint can now be 
removed, however, by simply allowing r to tend to zero. This makes the units 
in which we measure edge weights smaller and smaller, and in the limit r -. 
o the edges can have any weight-any weight can be represented as a (very 
large) integer multiple of r-and hence the max-flow Imin-cut theorem in the 
form presented above must be generally true. 

Again there exist efficient computer algorithms for calculating maximum 
flows on weighted networks, so the max-flow Imin-cut theorem allows us to 
calculate minimum cut weights efficiently also, and this is now the standard 
way of performing such calculations28 

28 Another interesting and slightly surprising computational use of the max-flow /min-cut the-
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6.13 THE GRAPH LAPLACIAN 

Section 6.2 introduced an important quantity, the adjacency matrix, which cap
hues the entire structure of a network and whose matrix properties can tell us 
a variety of useful things about networks. There is another matrix, closely re
lated to the adjacency matrix but differing in some important respects, that can 
also tell us much about network structure. T11is is the graph Laplacian. 

6.13.1 DIFFUSION 

Diffusion is, among other things, the process by which gas moves from regions 
of high density to regions of low, driven by the relative pressure (or partial 
pressure) of the different regions. One can also consider diffusion processes on 
networks, and such processes are sometimes used as a simple model of spread 
across a network, such as the spread of an idea or the spread of a disease. 
Suppose we have some commodity or substance of some kind on the vertices 
of a network and there is an amount 0/; of it at vertex i. And suppose that the 
commodity moves along the edges, flowing from one vertex j to an adjacent 
one i at a rate C(o/j -0/;) where C is a constant called the diffusion consiani. 

That is, in a small interval of time the amount of fluid flowing from j to i is 
C( 0/] - 0/;) dt. Then the rate at which 0/; is changing is given by 

(6.37) 

The adjacency matrix in this expression insures that the only terms appear
ing in the sum are those that correspond to vertex pairs that are actually con
nected by an edge. Equation (6.37) works equally well for both undirected and 
directed networks, but let us focus here on undirected ones.29 We will also 
consider our networks to be simple (i.e., to have at most a single edge between 
any pair of vertices and no self-edges). 

orem is in the polynomial-time algorithm for finding ground states of the thermal random-field 
Ising model [257], an interesting cross-fertilization between network theory and physics: it is rel
atively common for physics ideas to find application in network theory, but the reverse has been 
considerably rarer. 

2<}In fact, the graph Laplacian matrix for undirected networks defined in this section does not 
have a clean generalization for directed networks, although several possible candidates have been 
suggested. Most of the results in the remaining sections of this chapter do not generalize easily to 
the directed case. 

6.13 

Splitting the two terms in Eq. (6.37), we can write 

do/; 
dt = C L.: Ajo/] - Co/; L.: A;j = C L.: A;jo/] - Co/;k; 

] ] } 

= C L.:(Aj - 6;]k;)o/j' (6.38) 

where ki is the degree of vertex i as usual and we have made use of the result 
Ie; = Lj A;j-see Eq. (6.19). (And 6;j is the Kronecker delta, which is 1 if i = j 
and 0 otherwise.) 

Equation (6.38) can be written in matrix form as 

d,p 
cit = C(A - D),p, (6.39) 

where ,p is the vector whose components are numbers 0/;, A is the adjacency 
matrix, and D is the diagonal matrix with the vertex degrees along its diagonal: 

D= (~ ~ ~:l o 0 1t3 · . 

· . · . · . 

(6.40) 

It is common to define the new matrix 

L = D-A, (6.41) 

so that Eq. (6.38) takes the form 

d,p 
cit +CL,p = 0, (6.42) 

which has the same form as the ordinary diffusion equation for a gas, except 
that the Laplacian operator \7 2 that appears in that equation has been replaced 
by the matrix L. The matrix L is for this reason called the graph Laplacian, 

although its importance stretches much further than just diffusion processes. 
The graph Laplacian, as we will see, turns up in a variety of different places, 
including random walks on networks, resistor networks, graph partitioning, 
and network connectivity. 3D 

30In fact the graph LaplaCian doesn't occupy quite the same position as \72 does in the normal 
diffusion equation-there is a plus sign in Eq. (6.42) where a minus sign appears in the normal 
equation. We could easily get rid of this discrepancy by reversing the sign of the definition in 
Eq. (6.41), but the definition as given has become the standard one and so for consistency we will 
stick with it. 
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Written out in full, the elements of the Laplacian matrix are 

if i = i, 
if i of i and there is an edge (i, i), 
otherwise, 

(6.43) 

so it has the degrees of the vertices down its diagonal and a -1 element for 
every edge. Alternatively we can write 

(6.44) 

We can solve the diffusion equation (6.42) by writing the vector 'IjJ as a linear 
combination of the eigenvectors Vi of the Laplacian thus: 

'IjJ(t) = Lai(t) Vi, (6.45) 

with the coefficients ai (t) varying over time. Substituting this form into (6.42) 

and making use of LVi = Aivi, where Ai is the eigenvalue corresponding to the 
eigenvector Vi! we get 

y( ~~i + CAiai) Vi = O. (6.46) 

But the eigenvectors of a symmetric matrix such as the Laplacian are orthog
onal, and so, taking the dot product of this equation with any eigenvector Vi' 

we get 

for all i, which has the solution 

da 
-' +CAa = 0 dt 1 I , 

ai(t) = ai(O) e-CA,'. 

(6.47) 

(6.48) 

Given an initial condition for the system, as specified by the quantities ai(O), 
therefore, we can solve for the state at any later time, provided we know the 
eigenvalues and eigenvectors of the graph Laplacian. 

6.13.2 EIGENVALUES OF THE GRAPH LAPLACIAN 

This is the first of many instances in which the eigenvalues of the Laplacian 
will arise, so it is worth spending a little time understanding their properties. 
The Laplacian is a symmetric matrix, and so has real eigenvalues. However, we 
can say more than this about them. In fact, as we now show, all the eigenvalues 
of the Laplacian are also non-negative. 

6.13 

Consider an undirected network with n vertices and 111 edges and let us 
arbitrarily designate one end of each edge to be end 1 and the other to be end 2. 
It doesn't matter which end is which, only that they have different labels. 

Now let us define an 111 x n matrix B with elements as follows: 

if end 1 of edge i is attached to vertex i, 
if end 2 of edge i is attached to vertex i, 
otherwise. 

Thus each row of the matrix has exactly one + 1 and one -1 element. 

(6.49) 

The matrix B is called the edge incidence matrix. It bears some relation to, 
but is distinct from, the incidence matrix for a bipartite graph defined in Sec
tion 6.6. 

Now consider the sum I.:k BkiBkj . If i of i, then the only non-zero terms 
in the sum will occur if both Bik and Bjk are non-zero, i.e., if edge k connects 
vertices i and i, in which case the product will have value -1. For a simple 
network, there is at most one edge between any pair of vertices and hence at 
most one such non-zero term, so the value of the entire sum will be -1 if there 
is an edge between i and j and zero otherwise. 

If i = i then the sum is I.:k B~i' which has a term +1 for every edge connected 
to vertex i, so the whole sum is just equal to the degree ki of vertex i. 

Thus the sum I.:k BkiBki is precisely equal to an element of the Laplacian 
I.:k BkiBkj = Lij-the diagonal terms Lii are equal to the degrees ki and the off
diagonal terms Lij are -1 if there is an edge (i, j) and zero otherwise. (See 
Eq. (6.43).) In matrix form we can write 

L = BTB, (6.50) 

where B T is the transpose of B. 
Now let Vi be an eigenvector of L with eigenvalue Ai. Then 

(6.51) 

where we assume that the eigenvector Vi is normalized so that its inner product 
with itself is 1. 

Thus any eigenvalue Ai of the Laplacian is equal to (vTBT)(Bvi). But this 
quantity is itself just the inner product of a real vector (Bvi) with itself. In 
other words, it is the sum of the squares of the (real) elements of that vector 
and hence it cannot be negative. The smallest value it can have is zero: 

(6.52) 

for all i. 
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This is an important physical property of the Laplacian. It means, for in
stance, that the solution, Eq. (6.48), of the diffusion equation on any network 
contains only decaying exponentials or constants and not growing exponen
tials, so that the solution tends to an equilibrium value as t -> 00, rather than 
diverging31 

While the eigenvalues of the Laplacian cannot be negative, they can be zero, 
and in fact the Laplacian always has at least one zero eigenvalue. Consider the 
vector 1 = (1,1,1, ... ). If we multiply this vector by the Laplacian, the ith 
element of the result is given by 

[, Lij X 1 = [,(5ijki - Aij) = ki - [, Aij = ki - ki 
] 

=0, (6.53) 

where we have made use of Eqs. (6.19) and (6.44). In vector notation, L . 1 = 

O. Thus the vector 1 is always an eigenvector of the graph Laplacian with 
eigenvalue zero.32 Since there are no negative eigenvalues, this is the lowest 
of the eigenvalues of the Laplacian. Following convention, we number the 11 
eigenvalues of the Laplacian in ascending order: ill .:::; ,12 .:::; ... ::; An. So we 
always have,11 = 0. 

Note that the presence of a zero eigenvalue implies that the Laplacian has 
no inverse: the determinant of the matrix is the product of its eigenvalues, and 
hence is always zero for the Laplacian, so that the matrix is singular. 

6.13.3 COMPONENTS AND THE ALGEBRAIC CONNECTIVITY 

Suppose we have a network that is divided up into c different components of 
sizes nl! 112, ... , 11c. To make the notation simple let us number the vertices of 
the network so that the first 111 vertices are those of the first component, the 
next n2 are those of the second component, and so forth. With this choice the 
Laplacian of the network will be block diagonal, looking something like this: 

31This is clearly the right answer from a physical point of view, since the fluid in our diffusion 
process is conserved-there is a fixed, finite amount of it-so it is impossible for the amount on 
any vertex to become infinite. 

32It is not a properly normalized eigenvector. The properly normalized vector would be 
(l,l,l, ... )ljii. 

6.14 

L= (6.54) 

What is more, each block in the Laplacian is, by definition, the Laplacian of the 
corresponding component: it has the degrees of the vertices in that component 
along its diagonal and -1 in each position corresponding to an edge within 
that component. Thus we can immediately write down c different vectors that 
are eigenvectors of L with eigenvalue zero: the vectors that have ones in all 
positions corresponding to vertices in a single component and zero elsewhere. 
For instance, the vector 

V= (1,1,1, ... , 0,0,0, ... ), 
'-v---' '-v---' 
nlon es zeros 

is an eigenvector with eigenvalue zero. 

(6.55) 

Thus in a network with c components there are always at least c eigen
vectors with eigenvalue zero. In fact, it can be shown that the number of zero 
eigenvalues is always exactly equal to the number of components [324]. (Note 
that the vector 1 of all ones is just equal to the sum of the c other eigenvectors, 
so it is not an independent eigenvector.) An important corollary of this result 
is that the second eigenvalue of the graph Laplacian '"2 is non-zero if and only 
if the network is connected, i.e., consists of a single component. The second 
eigenvalue of the Laplacian is called the algebraic connectivity of the network.33 

It will come up again in Section 11.5 when we look at the technique known as 
spectral partitioning. 

6.14 RANDOM WALKS 

Another context in which the graph Laplacian arises is in the study of random 
walks on networks. A random walle is a path across a network created by taking 
repeated random steps. Starting at some specified initial vertex, at each step 
of the walk we choose uniformly at random between the edges attached to 
the current vertex, move along the chosen edge to the vertex at its other end, 
and repeat. Random walks are normally allowed to go along edges more than 

33Qccasionally A2 is also called the spectral gap. 
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once, visit vertices more than once, or retrace their steps along an edge just 
traversed. Self-avoiding walks, which do none of these things, are also studied 
sometimes, but we will not discuss them here. 

Random walks arise, for instance, in the random walk sampling method for 
social networks discussed in Section 3.7 and in the random walk betweenness 
measure of Section 7.7. 

Consider a random walk that starts at a specified vertex and takes t random 

steps. Let Pitt) be the probability that the walk is at vertex i at time t. If the 
walk is at vertex j at time t - 1, the probability of taking a step along any 
particular one of the kl edges attached to j is llkj' so on an undirected network 
Pi(t) is given by 

Ai} 
Pi(t) = L -k. Pj(t -1), 

j } 
(6.56) 

or p(t) = AD-Ip(t - 1) in matrix form where p is the vector with elements Pi 
and, as before, D is the diagonal matrix with the degrees of the vertices down 
its diagonal. 

There are a couple of other useful ways to write this relation. One is to 
define DI/2 to be the matrix with the square roots .jk, of the degrees down the 
diagonal, so that 

(6.57) 

This form is convenient in some situations because the matrix 0-1/ 2 AD"" .. l/2 

is a symmetric one. This matrix is called the reduced adjacency matrix and has 
elements equal to 1 I Vkilc j if there is an edge between i and j and zero other
wise. Equation (6.57) tells us that the vector D-I /2p gets multiplied by one 
factor of the reduced adjacency matrix at each step of the random walk, and 
so the problem of understanding the random walk can be reduced to one of 
understanding the effects of repeated multiplication by a simple symmetric 
matrix. 

For our purposes, however, we take a different approach. In the limit as 
t -; 00 the probability distribution over vertices is given by setting t = 00: 

Pi( 00) = L} Aijpj( 00) Ik}, or in matrix form: 

(6.58) 

Rearranging, this can also be written as 

(6.59) 

Thus D-Ip is an eigenvector of the Laplacian with eigenvalue O. 

6.14 

On a connected network, for instance-one with only a single component
we know (Section 6.13.3) that there is only a single eigenvector with eigenvalue 
zero, the vector whose components are all equal. Thus, D-Ip = aI, where a 
is a constant and 1 is the vector whose components are all ones. Equivalently 

p = aD 1, so that Pi = aki· Then on a connected network the probability that a 
random walk will be found at vertex i in the limit of long time is simply pro
portional to the degree of that vertex. If we choose the value of a to normalize 
Pi properly, this gives 

ki ki 
Pi = Ljkj = 2m' (6.60) 

where we have used Eq. (6.20). 
The simple way to understand this result is that vertices with high de

gree are more likely to be visited by the random walk because there are more 
ways of reaching them. We used Eq. (6.60) in Section 3.7 in our analysis of the 
random-walk sampling method for social networks. 

An important question about random walks concerns the first passage time. 
The first passage time for a random walk from a vertex u to another vertex v 
is the number of steps before a walk starting at u first reaches v. Since the 
walk is random, the first passage time between two vertices is not fixed; if we 
repeat the random walk process more than once it can take different values on 
different occasions. But we can ask for example what the mean first passage 
time is. 

To answer this question, we modify our random walk slightly to make it 
into an absorbing random walk. An absorbing walk is one that has one or more 
absorbing states, meaning vertices that the walk can move to, but not leave 
again. We will consider just the simplest case of a single absorbing vertex v. 
Any walk that arrives at vertex v must stay there ever afterwards, but on the 
rest of the network the walk is just a normal random walk. We can answer 
questions about the first passage time by considering the probability pv(t) that 
a walk is at vertex v after a given amount of time, since this is also the probabil
ity that the walk has a first passage time to v that is less than or equal to t. And 
the probability that a walk has first passage time exactly t is pv (t) - pv (t - 1), 
which means that the mean first passage time T is34 

T = Lt[Pv(t) - pv(t -1)]. (6.61) 
t=O 

34011e might think that this equation could be simplified by reordering the terms so that most 
of them cancel out, but this is not allowed. The sum viewed as individual terms is not absolutely 
convergent and hence does not have a unique limit. Only the complete sum over t as written is 
meaningful and a reordering of the terms will give the wrong answer. 
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To calculate the probability p,,(t) we could apply Eq. (6.56) (or (6.58)) re
peatedly to find p(t) and substitute the result into Eq. (6.61). Note, however, 
that since the random walk can move to vertex v but not away from it, the adja
cency matrix A has elements A;v = 0 for all i but A,.; can still be non-zero. Thus 
in general A is asymmetric. Although we can work with such an asymmetric 
matrix, the computations are harder than for symmetric matrices and in this 
case there is no need. Instead we can use the following trick. 

Consider Eq. (6.56) for any i of v: 

(6.62) 

where the second equality applies since A;" = 0 and hence the terms with j = v 
don't contribute to the sum. But if i of v then there are no terms in A"I in the 
sum either. This allows us to write the equation in the matrix form 

p'(t) = A'DHp'(t -1), (6.63) 

where p' is p with the vth element removed and A' and D' are A and D with 
their vth row and column removed. Note that A' and Of are symmetric ma
trices, since the rows and columns containing the asymmetric elements have 
been removed. Iterating Eq. (6.63), we now get 

p'(t) = [A'D'-I]'p'(O). (6.64) 

Since we have removed the element pv from the vector P, we cannot calcu
late its value directly using this equation, but we can calculate it indirectly by 
noting that L; p;(t) = 1 at all times. Thus 

Pv(t) = 1- Lp;(t) = 1-1· p'(t), (6.65) 
ilv 

where again 1 = (1,1,1, ... ). Using Eqs. (6.61), (6.64), and (6.65) we then have 
a mean first passage time of 

T= [;tl. [p'(t-l)-p'(t)] =1· [I-A'DHr1p'(0), (6.66) 
t=O 

where I is the identity matrix and we have made use of the result that 

00 

L I (MI- l - MI) = [I - Mrl, (6.67) 
t=O 

for any matrix M (assuming the sum actually converges). 

6.14 

We can simplify Eq. (6.66) by writing 

[I - A'D,-lr J = D'[D' - A']-J = D'L'-l, (6.68) 

so that 
T = 1· D'L'-l . p'(O), (6.69) 

where the symmetric matrix L' is the graph Laplacian with the vth row and 
column removed. L' is called the vlll reduced Laplacian. Note that, even though, 
as we noted in Section 6.13.2, the Laplacian has no finite inverse, the reduced 
Laplacian can have an inverse. The eigenvector (1,1,1, ... ) whose zero eigen
value causes the determinant of the Laplacian to be zero is, in general, not an 
eigenvector of the reduced matrix. 

For convenience, we now introduce the symmetric matrix A (,,) I which is 
equal to L'-l with a vth row and colunrn reintroduced having elements all 
zero: 

o 
[L' I L, 
[L'-l] ... 

I--I,} 

[L'-l] .. 
1,1- 1 

[L'I] 
. i-l,j-l 

ifi = vorl = V, 

if i < v and j < v, 

if i > v and j < v, 

if i < v and j > v, 

if i > v and j > v. 

(6.70) 

Then we observe that for a walk starting at vertex u, the initial probability 
distribution p'(O) has all elements 0 except the one corresponding to vertex u, 
which is 1. Thus, combining Eqs. (6.69) and (6.70), the mean first passage time 
for a random walk from It to v is given by 

= "kA1,,) T L..,; I III (6.71) 

where we have made use of the fact that the non-zero elements of the diagonal 
matrix Of are the degrees k i of the vertices. Thus if we can calculate the inverse 
of the vth reduced Laplacian then a sum over the elements in the 11th colunrn 
immediately gives us the mean first passage time for a random walk from It 
to v. And sums over the other colunrns give us the first passage times from 
other starting vertices to the same target vertex v-we get n first passage times 
from a single matrix inversion. 

6.14.1 RESISTOR NETWORKS 

There are interesting mathematical connections betvveen random walks on net
works and the calculation of current flows in networks of resistors. Suppose 
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s t 

I 

Figure 6.16: A resistor network with applied voltage. A network in which the edges 
are resistors and the vertices are electrical jWlctions between them, with a voltage ap
plied between vertices sand t so as to generate a total current I. 

we have a network in which the edges are identical resistors of resistance Rand 
the vertices are junctions between resistors, as shown in Fig. 6.16, and suppose 
we apply a voltage between two vertices sand t such that a current I flows 
from s to t through the network. What then is the current flow through any 
given resistor in the network? 

The currents in the network obey Kirchhoff's current law, which is essen
tially a statement that electricity is conserved, so that the net current flowing in 
or out of any vertex is zero. Let Vi be the voltage at vertex i, measured relative 
to any convenient reference potential. Then Kirchhoff's law says that 

Vj-V; LAij -
R

- + Ii = 0, (6.72) 
J 

where ( represents any current injected into vertex i by an external current 
source. In our case this external current is non-zero only for the two vertices s 
and t connected to the external voltage: 

for i = s, 
for i = t, 

otherwise. 
(6.73) 

(In theory there's no reason why one could not impose more complex cur
rent source arrangements by applying additional voltages to the network and 
making more elements Ii non-zero, but let us stick to our simple case in this 
discussion.) 

6.14 

Noting that Lj Aij = ki' Eq. (6.72) can also be written as ki V; - L
J 

A;j Vj = 

RTj or 
(6.74) 

which in matrix form is 
LV = RI, (6.75) 

where L = 0 - A is once again the graph Laplacian. 
As discussed in Section 6.13.2, the Laplacian has no inverse because it al

ways has at least one eigenvalue that is zero, so we cannot simply invert 
Eq. (6.75) to get the voltage vector V. We can, however, solve for V by once 
again making use of the reduced Laplacian of Section 6.14. 

The reason why we cannot invert Eq. (6.75) is that the equation does not in 
fact fix the absolute value of the voltages Vi. We can add any multiple of the 
vector 1 = (1,1,1, ... ) to the solution of this equation and get another solution, 
since 1 is an eigenvector of L with eigenvalue zero: 

L(V + el) = LV + Ll = LV = RI. (6.76) 

In physical terms these different solutions correspond to different choices of 
the reference potential against which we measure our voltages. The actual 
currents flowing around the system are identical no matter what reference po
tential we choose. If we fix our reference potential at a particular value, then 
we will fix the solution for the voltages as well, and our equation for V will 
become solvable. 

Let us choose, arbitrarily, to set our reference potential equal to the poten
tial at the target vertex t where the current exits the network. (We could choose 
any other vertex just as well, but this choice is the simplest.) That is, the volt
age at this vertex is chosen to be zero and all others are measured in terms of 
their potential difference from vertex t. But now we can remove the element 
Vi = ° from V in Eq. (6.75), along with the corresponding column t in the 
Laplacian, without affecting the result, since they contribute zero to the matrix 
multiplication anyway. And we can also remove row t from both sides of the 
equation, since we already know the value of V;, so there's no need to calculate 
it. That leaves us with a modified equation L'V' = RI', with L' being the tth 
reduced Laplacian, which in general has a well-defined inverse. Then 

(6.77) 

and once we have the voltages we can calculate in a straightforward manner 
any other quantity of interest, such as the current along a given edge in the 
network. 
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Note that, for the simple case discussed here in which current is injected 
into the network at just one vertex and removed at another, If has only one 
non-zero element. (The other one, I" has been removed.) Thus the vector V' 
on the left-hand side of Eq. (6.77) is simply proportional to the column of the 
inverse reduced Laplacian corresponding to vertex s. To use the notation of 
Section 6.14, if A (,) is the inverse of the tth reduced Laplacian with the tth row 
and column reintroduced having elements all zero (see Eq. (6.70)), then 

\1:,' = RIA (I) . 
" 

(6.78) 

PROBLEMS 

6.1 Consider the following two networks: 

2 J 4 5 

2 3 

2 3 4 

(a) (b) 

Network (a) is a directed network Network (b) is undirected but bipartite. Write down: 

a) the adjacency matrix of network (a); 

b) the cocitation matrix of network (a); 

c) the incidence matrix of network (b); 

d) the projection matrix (Eq. (6.17)) for the projection of network (b) onto its black 
vertices. 

6.2 Let A be the adjacency matrix of an undirected network and 1 be the column vector 
whose elements are alll. In terms of these quantities write expressions for: 

a) the vector k whose elements are the degrees lei of the vertices; 

b) the number 111 of edges in the network; 

c) the matrix N whose element Nij is equal to the number of common neighbors of 
vertices i and j; 

d) the total number of triangles in the network, where a triangle means three vertices, 
each connected by edges to both of the others. 

6.3 Consider an acyclic directed netw-ork of n vertices, labeled i = 1 ... 11, and suppose 
that the labels are assigned in the manner of Fig. 6.3 on page 119, such that all edges 
run from vertices with higher labels to vertices with lower. 

a) Find an expression for the total number of edges ingoing to vertices 1 ... rand 
another for the total number of edges outgoing from vertices 1 ... r, in terms of 
the in- and out-degrees leyl and kiU

[ of the vertices. 

b) Hence find an expression for the total number of edges running to vertices 1 ... r 
from vertices r + 1 ... n. 

c) Show that in any acyclic netw-ork the in- and out-degrees must satisfy 

for all r. 

r -1 
le0U! < '\' (kin _ k?ut) 

r - W I I' 

i=l 

6.4 Consider a bipartite network, with its two types of vertex, and suppose that there 
are HI vertices of type 1 and 112 vertices of type 2. Show that the mean degrees Cl and C2 

of the two types are related by 

6.5 Using Kuratowski's theorem, prove that this netw-ork is not planar: 

6.6 Consider a connected planar network with 11 vertices and 111 edges. Let f be the 
number of "faces" of the netw-ork, i.e., areas bounded by edges when the netw-ork is 
drawn in planar form. The "outside" of the network, the area extending to infinity on 
all sides, is also considered a face. The netw-ork can have multiedges and self-edges: 
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Face Face 

Face 

Face 

a) Write down the values of n, 111, and f for a network with a single vertex and no 
edges. 

b) How do 11, nI, and f change when we add a single vertex to the nemark along 
with a single edge attaching it to another vertex? 

c) How do (1, 111, and f change when we add a single edge betvvecn two extant ver
tices (or a self-edge attached to just onc vertex), in such a way as to maintain the 
planarity of the network? 

d) Hence by induction prove a general relation between n, rtl, and f for all connected 
planar networks. 

e) Now suppose that our network is simple (i.e., it contains no multiedges or self
edges). Show that the mean degree c of such a network is strictly less than six. 

6.7 Consider the set of all paths from vertex 5 to vertex t on an undirected graph with 
adjacency matrix A. Let us give each path a weight equal to tt r, where r is the length of 
the path. 

a) Show that the sum of the weights of all the paths from s to t is given by Zst which 
is the st element of the matrix Z = (I - aA)-l, where 1 is the identity matrix. 

b) What condition must a satisfy for the sum to converge? 

c) Hence, or otherwise, show that the length fst of a geodesic path from 5 to t, if there 
is one, is 

C,I = lim d log Zsl . 
• il;-.>O dloga 

6.8 What is the difference between a 2-component and a 2-core? Draw a sman network 
that has one 2-core but two 2-components. 

6.9 In Section 5.3.1, we gave one possible definition of the trophic level Xi of a species 
in a (directed) food web as the mean of the trophic levels of the species' prey, plus one. 

a) Show that Xi, when defined in this way, is the ith element of the vector 

where D is the diagonal matrix of in-degrees, A is the (asymmetric) adjacency 
matrix, and 1 ~ (1,1,1, ... ). 

b) This expression does not work for autotrophs-species with no prey-because the 
corresponding vector element diverges. Such species are usually given a trophic 
level of one. Suggest a modification of the calculation that will correctly assign 
trophic levels to these species, and hence to all species. 

6.10 What is the size k of the minimum vertex cut set between sand t in this network? 

s 

Prove your result by finding one possible cut set of size k and one possible set of k 
independent paths between sand t. Why do these two actions constitute a proof that 
the minimum cut set has size k? 

PROBLEMS 

167 



CHAPTER 7 

MEASURES AND METRICS 

An introduction to some standard measures and metrics 
for quantifiJing network structure, many oj which were 
introduced first in the study of social networks, although 
they are now in wide use in many other areas 

I F WE KNOW the struchlfe of a network we can calculate from it a variety of 
useful quantities or measures that capture particular features of the net

work topology. In this chapter we look at some of these measures. Many of the 
most important ideas in this area come from the social sciencesf from the dis
cipline of social network analysis, which was developed to aid our understand
ing of social network data such as those described in Chapter 3, and much 
of the language used to describe these ideas reflects their sociological origin. 
Nonetheless, the methods described are now widely used in areas outside the 
social sciences, including computer science, physics, and biology, and form an 
important part of the basic network toolbox.! 

In the chapter following this one we will apply some of the measures de
veloped here to the analysis of network data from a variety of fields and in the 
process reveal some intriguing features and patterns that will play an impor
tant role in later developments. 

7.1 DEGREE CENTRALITY 

A large volume of research on networks has been devoted to the concept of 
centrality. This research addresses the question, "Which are the most important 
or central vertices in a network?" There are of course many possible definitions 

1 For those interested in traditional social network analysis, introductions can be found in the 
books by Scott [293] and by Wasserman and Faust [320]. 
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of importance, and correspondingly many centrality measures for networks. 
In this and the following several sections we describe some of the most widely 
used such measures. 

Perhaps the simplest centrality measure in a network is just the degree of a 
vertex, the number of edges connected to it (see Section 6.9). Degree is some
times called degree centrality in the social networks literature, to emphasize its 
use as a centrality measure. In directed networksf vertices have both an in
degree and an out-degree, and both may be useful as measures of centrality in 
the appropriate circumstances. 

Although degree centrality is a simple centrality measure, it can be very 
illuminating. In a social network, for instance, it seems reasonable to suppose 
that individuals who have connections to many others might have more influ
ence, more access to informationf or more prestige than those who have fewer 
connections. A non-social network example is the use of citation counts in 
the evaluation of scientific papers. The number of citations a paper receives 
from other papers, which is simply its in-degree in the citation network, gives 
a crude measure of whether the paper has been influential or not and is widely 
used as a metric for judging the impact of scientific research. 

7.2 EIGENVECTOR CENTRALITY 

A natural extension of the simple degree centrality is eigenvector centrality. We 
can think of degree centrality as awarding one "centrality point" for every net
work neighbor a vertex has. But not all neighbors are equivalent. In many 
circumstances a vertex's importance in a network is increased by having con
nections to other vertices that are themselves important. This is the concept be
hind eigenvector centrality. Instead of awarding vertices just one point for each 
neighbor, eigenvector centrality gives each vertex a score proportional to the 
sum of the scores of its neighbors. Here's how it works. 

Let us make some initial guess about the centrality Xi of each vertex i. For 
instance, we could start off by setting Xi = 1 for all i. Obviously this is not 
a useful measure of centrality, but we can use it to calculate a better one x;, 
which we define to be the sum of the centralities of i's neighbors thus: 

x; = LAijxj, 
; 

(7.1) 

where Ai; is an element of the adjacency matrix. We can also write this ex
pression in matrix notation as x' = Ax, where x is the vector with elements Xi. 

Repeating this process to make better estimates, we have after t steps a vector 
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of centralities x(t) given by 

x(t) = Atx(O). (7.2) 

Now let us write x(O) as a linear combination of the eigenvectors Vi of the 
adjacency matrix thus: 

x(O) = LCiVi, (7.3) 

for some appropriate choice of constants Ci. Then 

(7.4) 

where the Ki are the eigenvalues of A, and Kj is the largest of them. Since 
Kti Kj < 1 for all i cF 1, all terms in the sum other than the first decay exponen
tially as t becomes large, and hence in the limit t ~ 00 we get x(t) -+ CjKiVj. 

In other words, the limiting vector of centralities is simply proportional to the 
leading eigenvector of the adjacency matrix. Equivalently we could say that 
the centrality x satisfies 

(7.5) 

This then is the eigenvector centrality, first proposed by Bonacich [49] in 1987. 
As promised the centrality Xi of vertex i is proportional to the sum of the cen
tralities of i's neighbors: 

Xi = KII L:Aijxjl (7.6) 
j 

which gives the eigenvector centrality the nice property that it can be large 
either because a vertex has many neighbors or because it has important neigh
bors (or both). An individual in a social network, for instance, can be impor
tant, by this measure, because he or she knows lots of people (even though 
those people may not be important themselves) or knows a few people in high 
places. 

Note also that the eigenvector centralities of all vertices are non-negative. 
To see this, consider what happens if the initial vector x(O) happens to have 
only non-negative elements. Since all elements of the adjacency matrix are also 
non-negative, multiplication by A can never introduce any negative elements 
to the vector and x(t) in Eq. (7.2) must have all elements non-negative2 

2Technically, there could be more than one eigenvector with eigenvalue Kl t only one of which 
need have all elements non-negative. It turns out, however, that this cannot happen: the adjacency 
matrix has only one eigenvector of eigenvalue Kl. See footnote 2 on page 346 for a proof. 

7.2 EIGENVECTOR CENTRALITY 

Equation (7.5) does not fix the normalization of the eigenvector centrality, 
although typically this doesn't matter because we care only about which ver
tices have high or low centrality and not about absolute values. If we wish, 
however, we can normalize the centralities by, for instance, requiring that they 
sum to n (which insures that average centrality stays constant as the network 
gets larger). 

In theory eigenvector centrality can be calculated for either un-
directed or directed networks. It works best however for the un- B 
directed case. In the directed case other complications arise. First 
of all, a directed network has an adjacency matrix that is, in gen
eral, asymmetric (see Section 6.4). This means that it has two sets of 
eigenvectors, the left eigenvectors and the right eigenvectors, and 
hence two leading eigenvectors. So which of the two should we use 
to define the centrality? In most cases the correct answer is to use 
the right eigenvector. The reason is that centrality in directed net
works is usually bestowed by other vertices pointing towards you, 

A 

rather than by you pointing to others. On the World Wide Web, for 
instance, the number and stature of web pages that point to your 
page can give a reasonable indication of how important or useful 
your page is. On the other hand, the fact that your page might point 
to other important pages is neither here nor there. Anyone can set 
up a page that points to a thousand others, but that does not make 
the page important.' Similar considerations apply also to citation 
networks and other directed networks. Thus the correct definition 

Figure 7.1: A portion of a directed net
work. Vertex A in this network has 
only outgoing edges and hence will 
have eigenvector centrality zero. Ver
tex B has outgoing edges and one in
going edge, but the ingoing one origi
nates at A, and hence vertex B will also 

of eigenvector centrality for a vertex i in a directed network makes 
it proportional to the centralities of the vertices that point to i thus: 

Xi = K11 LAijxj, 
j 

have centrality zero. 

(7.7) 

which gives Ax = KIX in matrix notation, where x is the right leading eigen
vector. 

However, there are still problems with eigenvector centrality on directed 
networks. Consider Fig. 7.l. Vertex A in this figure is connected to the rest 
of the network, but has only outgoing edges and no incoming ones. Such a 
vertex will always have centrality zero because there are no terms in the sum 

3This is not entirely true, as we will see in Section 7.5. Web pages that point to many others are 
often directories of one sort or another and can be useful as starting points for web surfing. This is 
a different kind of importance, however, from that highlighted by the eigenvector centrality and a 
different, complementary centrality measure is needed to quantify it. 
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in Eq. (7.7). This might not seem to be a problem: perhaps a vertex that no 
one points to should have centrality zero. But then consider vertex B, which 
has one ingoing edge, but that edge originates at vertex A, and hence B also 
has centrality zero, because the one term in its sum in Eq. (7.7) is zero. Taking 
this argument further, we see that a vertex may be pOinted to by others that 
themselves are pointed to by many more, and so on through many generations, 
but if the progression ends up at a vertex or vertices that have in-degree zero, 
it is all for nothing-the final value of the centrality will still be zero. 

In mathematical terms, only vertices that are in a strongly connected com
ponent of two or m.ore vertices, or the out-component of such a component, 
can have non-zero eigenvector centrality.4 In many cases, however, it is ap
propriate for vertices with high in-degree to have high centrality even if they 
are not in a strongly-connected component or its out-component. Web pages 
with many links, for instance, can reasonably be considered important even if 
they are not in a strongly connected component. Recall also that acyclic net
works, such as citation networks, have no strongly connected components of 
more than one vertex (see Section 6.11.1), so all vertices will have centrality 
zero. Clearly this make the standard eigenvector centrality completely useless 
for acyclic networks. 

A variation on eigenvector centrality that addresses these problems is the 
Katz centrality, which is the subject of the next section. 

7.3 KATZ CENTRALITY 

One solution to the issues of the previous section is the following: we sim
ply give each vertex a small amount of centrality "for free," regardless of its 
position in the network or the centrality of its neighbors. In other words, we 
define 

(7.8) 

where It and f3 are positive constants. The first term is the normal eigenvector 
centrality term in which the centralities of the vertices linking to i are summed, 
and the second term is the" free" part, the constant extra term that all vertices 
receive. By adding this second term, even vertices with zero in-degree still get 
centrality f3, and once they have a non-zero centrality, then the vertices they 
point to derive some advantage from being pointed to. This means that any 
vertex that is pointed to by many others will have a high centrality, although 

4For the left eigenvector it would be the in-component. 

those that are pointed to by others with high centrality themselves will still do 

better. 
In matrix terms, Eq. (7.8) can be written 

x = aAx + f31, (7.9) 

where 1 is the vector (1, 1, 1 ... ). Rearranging for x, we find that x f3(I
aA)-l·l. As we have said, we normally don't care about the absolute mag
nitude of the centrality, only about which vertices have high or low centrality 
values, so the overall multiplier f3 is unimportant. For convenience we usually 
set f3 = 1, giving 

x= (I-itA) 1·1. (7.10) 

This centrality measure was first proposed by Katz in 1953 [169] and we will 
refer to it as the Katz centrality. 

The Katz centrality differs from ordinary eigenvector centrality in the im
portant respect of having a free parameter It, which governs the balance be
tween the eigenvector term and the constant term in Eq. (7.8). If we wish to 
make use of the Katz centrality we must first choose a value for this constant. 
In doing so it is important to understand that It cannot be arbitrarily large. If 
we let It --> 0, then only the constant term survives in Eq. (7.8) and all vertices 
have the same centrality f3 (which we have set to 1). As we increase It from 
zero the centralities increase and eventually there comes a point at which they 
diverge. This happens at the point where (I - aA)-l diverges in Eq. (7.10), 
i.e., when det(I - itA) passes through zero. Rewriting this condition as 

(7.11) 

we see that it is simply the characteristic equation whose roots It-I are equal to 
the eigenvalues of the adjacency matrix.' As It increases, the determinant first 
crosses zero when It-1 = KI, the largest eigenvalue of A, or alternatively when 
IX = lIK,. Thus, we should choose a value of It less than this if we wish the 
expression for the centrality to converge.6 

Beyond this, however, there is little guidance to be had as to the value that 
a should take. Most researchers have employed values close to the maximum 
of l1K1, which places the maximum amount of weight on the eigenvector term 

5The eigenvalues being defined by Av = KV, we see that (A ~ KI)v = 0, which has non-zero 
solutions for v only if (A - KI) cannot be inverted, Le., if det(A - KI) = 0, and hence this equation 
gives the eigenvalues K. 

6Pormally one recovers finite values again when one moves past 1/ Kl to higher rt, but in prac
tice these values are meaningless. The method returns good results only for {t < 1/ Kl. 
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and the smallest amount on the constant term. This returns a centrality that is 
numerically quite close to the ordinary eigenvector centrality, but gives small 
non-zero values to vertices that are not in the strongly connected components 
or their out-components. 

The Katz centrality can be calculated directly from Eq. (7.10) by inverting 
the matrix on the right-hand side, but often this isn't the best way to do it. 
Inverting a matrix on a computer takes an amount of time proportional to n3, 

where n is the number of vertices. This makes direct calculation of the Katz 
centrality prohibitively slow for large networks. Networks of more than a 
thousand vertices or so present serious problems, 

A better approach in many cases is to evaluate the centrality directly from 
Eq. (7.S) (or equivalently, Eq. (7.9». One makes an initial estimate of x
probably a bad one, such as x = O-and uses that to calculate a better estimate 

x' = "Ax + f31. (7.12) 

Repeating the process many times, x converges to a value close to the correct 
centrality. Since A has m non-zero elements, each iteration requires m multi
plication operations and the total time for the calculation is proportional to rm, 
where r is the number of iterations necessary for the calculation to converge. 
Unfortunately, r depends on the details of the network and on the choice of ", 
so we cannot give a general guide to how many iterations will be necessary. 
Instead one must watch the values of Xi to observe when they converge to con
stant values. Nonetheless, for large networks it is almost always worthwhile 
to evaluate the centrality this way rather than by inverting the matrix. 

We have presented the Katz centrality as a solution to the problems en
countered with ordinary eigenvector centrality in directed networks. How
ever, there is no reason in principle why one cannot use Katz centrality in un
directed networks as well, and there are times when this might be useful. The 
idea of adding a constant term to the centrality so that each vertex gets some 
weight just by virtue of existing is a natural one. It allows a vertex that has 
many neighbors to have high centrality regardless of whether those neighbors 
themselves have high centrality, and this could be desirable in some applica
tions. 

A possible extension of the Katz centrality is to consider cases in which the 
additive constant term in Eq. (7.S) is not the same for all vertices. One could 
define a generalized centrality measure by 

Xi = IX L AijXj + f3if (7.13) 
j 

where f3i is some intrinsicf non-network contribution to the centrality for each 

vertex. For example, in a social network the importance of an individual might 
depend on non-network factors such as their age or income and if we had in
formation about these factors we could incorporate it into the values of the f3i. 
Then the vector x of centralities is given by 

(7.14) 

where (3 is the vector whose elements are the f3i. One nice feature of this ap
proach is that the difficult part of the calculation-the inversion of the matrix
only has to be done once for a given network and choice of ". For difference 
choices of the f3i we need not recalculate the inverse, but simply multiply the 
inverse into different vectors (3. 

7.4 PAGERANK 

The Katz centrality of the previous section has one feature that can be undesir
able. If a vertex with high Katz centrality points to many others then those 
others also get high centrality. A high-centrality vertex pointing to one mil
lion others gives all one million of them high centrality. One could argue-and 
many have-that this is not always appropriate. In many cases it means less 
if a vertex is only one among many that are pointed to. The centralIty gamed 
by virtue of receiving an edge from a prestigious vertex is diluted by being 
shared with so many others. For instance, the famous Yahoo! web dlTectory 
might contain a link to my web page, but it also has links to millions of other 
pages. Yahoo! is an important website, and would have high centrality by any 
sensible measure, but should I therefore be considered very important by as
sociation? Most people would say not: the high centrality of Yahoo! will get 
diluted and its contribution to the centrality of my page should be small be
cause my page is only one of millions. 

We can allow for this by defining a variation on the Katz centrality in which 
the centrality I derive from my network neighbors is proportional to their cen
trality divided by their out-degree. Then vertices that point to many others pass 
only a small amount of centrality on to each of those others, even if their own 
centrality is high. 

In mathematical terms this centrality is defined by 

(7.15) 

This gives problems however if there are vertices in the network with out
degree ki"! = O. If there are any such vertices then the first term in Eq. (7.15) 

7.4 PAGERANK 
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is indeterminate-it is equal to zero divided by zero (because Aij = 0 for all i). 
This problem is easily fixed however. It is clear that vertices with no out-going 
edges should contribute zero to the centrality of any other vertex, which we 
can contrive by artificially setting Ie?U' = 1 for all such vertices. (In fact, we 
could set kjut to any non-zero value and the calculation would give the same 
answer.) 

In matrix terms, Eq. (7.15), is then 

(7.16) 

with 1 being again the vector (1,1,1, ... ) and D being the diagonal matrix with 
elements 0ii = max(leiu" 1). Rearranging, we find that x = f3(I - "AD-I) -I ·1, 
and thus, as before, f3 plays the role only of an unimportant overall multiplier 
for the centrality. Conventionally we set f3 = 1, giving 

(7.17) 

This centrality measure is commonly known as PageRank, which is the trade 
name given it by the Google web search corporation, which uses it as a cen
tral part of their web ranking technology [55]. The aim of the Google web 
search engine is to generate lists of useful web pages from a preassembled 
index of pages in response to text queries. It does this by first searching the 
index for pages matching a given query using relatively simple criteria such 
as text matching, and then ranking the answers according to scores based on 
a combination of ingredients of which PageRank is one. Google returns useful 
answers to queries not because it is better at finding relevant pages, but be
cause it is better at deciding what order to present its findings in: its perceived 
accuracy arises because the results at the top of the list of answers it returns 
are often highly relevant to the query, but it is possible and indeed likely that 
many irrelevant answers also appear on the list, lower down. 

PageRank works on the Web precisely because having links to your page 
from important pages elsewhere is a good indication that your page may be 
important too. But the added ingredient of dividing by the out-degrees of 
pages insures that pages that simply point to an enormous number of others 
do not pass much centrality on to any of them, so that, for instance, network 
hubs like Yahoo! do not have a disproportionate influence on the rankings. 

As with the Katz centrality, the formula for PageRank, Eq. (7.17), contains 
one free parameter it, whose value must be chosen somehow before the algo
rithm can be used. By analogy with Eq. (7.11) and the argument that follows 
it, we can see that the value of " should be less than the inverse of the largest 
eigenvalue of AD- 1 For an undirected network this largest eigenvalue turns 

out to be 1 and the corresponding eigenvector is (k
"

k2,k3 , .. . ), where ki is the 
degree of the ith vertex? Thus t1: should be chosen less than 1. For a directed 
network, this result does not follow and in general the leading eigenvalue will 
be different from 1, although in practical cases it is usually still roughly of or

der 1. 
The Google search engine uses a value of " = 0.85 in its calculations, al

though it's not clear that there is any rigorous theory behind this choice. More 
likely it is just a shrewd guess based on experimentation to find out what 

works well. 
As with the Katz centrality we can generalize PageRank to the case where 

the additive constant term in Eq. (7.15) is different for different vertices: 

(7.18) 

In matrix form this gives a solution for the centrality vector of 

x = D(D - ItA)-Ij3. (7.19) 

One could, for instance, use this for ranking web pages, giving f3i a value based 
perhaps on textual relevance to a search query. Pages that contained the word 
or words being searched for more often or in more prominent places could 
be given a higher intrinsic centrality than others, thereby pushing them up 
the rankings. The author is not aware, however, of any cases in which this 
technique has been implemented in practice. 

Finally, one can also imagine a version of PageRank that did not have the 
additive constant term in it at all: 

(7.20) 

which is similar to the original eigenvector centrality introduced back in Sec
tion 7.2, but now with the extra division by lej- For an undirected network, 
however, this measure is trivial: it is easy to see that it gives simply Xi = ki 

7It is easy to confirm that this vector is indeed an eigenvector with eigenvalue 1. That there 
is no eigenvalue larger than 1 is less obvious. It follows from a standard result in linear algebra, 
the Perron-Frobenius theorem, which states that the largest eigenvalue of a matrix such as AD-I 
that has all elements non-negative is unique-there is only one eigenvector with this eigenvalue
that the eigenvector also has all elements non-negative, and that it is the only eigenvector with all 
elements non-negative. Combining these results, it is clear that the eigenvalue 1 above must be 
the largest eigenvalue of the matrix AD-i. For a discussion of the Perron-Frobenius theorem see 
Ref. [217] and the two fooh10tes on page 346 of this book. 
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divide by 
out-degree 

no division 

with constant term 
x _ D(D - itA) 1·1 

PageRank 
x = (I - itA) 1·1 

Katz centrality 

without constant term 
x - AD' IX 

degree centrality 
- lA x - 1(1 X 

eigenvector centrality 

Table 7.1: Four centrality measures. The four matrix-based centrality measures dis
cussed in the text are distinguished by whether or not they include an additive constant 
term in their definition and whether they are normalized by dividing by the degrees of 
neighboring vertices. Note that the diagonal matrix D, which normally has elements 
Du = ki , must be defined slightly differently for PageRank, as Dij = max(tki)-see 
Eq. (7.15) and the following discussion. Each of the measures can be applied to directed 
networks as well as undirected ones, although only three of the four are commonly used 
in this way. (The measure that appears in the top right corner of the table is equivalent 
to degree centrality in the undirected case but takes more complicated values in the 
directed case and is not widely used.) 

and therefore is just the same as ordinary degree centrality. For a directed net
work, on the other hand, it does not reduce to any equivalent simple value 
and it might potentially be of use, although it does not seem to have found 
use in any prominent application. (It does suffer from the same problem as 
the original eigenvector centrality, that it gives non-zero scores only to vertices 
that fall in a strongly connected component of two or more vertices or in the 
out-component of such a component. All other vertices get a zero score.) 

In Table 7.1 we give a summary of the different matrix centrality measures 
we have discussed, organized according to their definitions and properties. If 
you want to use one of these measures in your own calculations and find the 
many alternatives bewildering, eigenvector centrality and PageRank are prob
ably the two measures to focus on initially. They are the two most commonly 
used measures of this type. The Katz centrality has found widespread use in 
the past but has been favored less in recent work, while the PageRank mea
sure without the constant term, Eq. (7.20), is the same as degree centrality for 
undirected networks and not in common use for directed ones. 

7.5 HUBS AND AUTHORITIES 

In the case of directed networks, there is another twist to the centrality mea
sures introduced in this section. So far we have considered measures that 
accord a vertex high centrality if those that point to it have high centrality. 

7.5 

However, in some netvvorks it is appropriate also to accord a vertex high cen
trality if it points to others with high centrality. For instance, in a citation net
work a paper such as a review article may cite other articles that are author
itative sources for information on a particular subject. The review itself may 
contain relatively little information on the subject, but it tells us where to find 
the information, and this on its own makes the review useful. Similarly, there 
are many examples of web pages that consist primarily of links to other pages 
on a given topic or topics and such a page of links could be very useful even if 
it does not itself contain explicit information on the topic in question. 

Thus there are really two types of important node in these networks: au
thorities are nodes that contain useful information on a topic of interest; hubs 
are nodes that tell us where the best authorities are to be found. An authority 
lnay also be a hub, and vice versa: review articles often contain useful discus
sions of the topic at hand as well as citations to other discussions. Clearly hubs 
and authorities only exist in directed netvvorks, since in the undirected case 
there is no distinction between pointing to a vertex and being pointed to. 

One can imagine defining two different types of centrality for directed net
works, the authority centrality and the hub centrality, which quantify vertices' 
prominence in the two roles. This idea was first put forward by Kleinberg [176] 
and developed by him into a centrality algorithm called hyperlink-induced topic 
search or HITS. 

The HITS algorithm gives each vertex i in a network an authority central
ity X; and a hub centrality y;. The defining characteristic of a vertex with high 
authority centrality is that it is pointed to by many hubs, i.e., by many other 
vertices with high hub centrality. And the defining characteristic of a vertex 
with high hub centrality is that it points to many vertices with high authority 
centrality. 

Thus an important scientific paper (in the authority sense) would be one 
cited in many important reviews (in the hub sense). An important review is 
one that cites many important papers. Reviews, however, are not the only 
publications that can have high hub centrality. Ordinary papers can have high 
hub centrality too if they cite many other important papers, and papers can 
have both high authority and high hub centrality. Reviews too may be cited 
by other hubs and hence have high authority centrality as well as high hub 
centrality. 

In Kleinberg's approach, the authority centrality of a vertex is defined to be 
proportional to the sum of the hub centralities of the vertices that point to it: 

Xi = a LAiiYi, 
j 

(7.21) 

HUBS AND AUTHORITIES 
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where" is a constant. Similarly the hub centrality of a vertex is proportional 
to the sum of the authority centralities of the vertices it points to: 

Yi = fl L, Ajixj, (7.22) 
j 

with fl another constant. Notice that the indices on the matrix element Aji are 
swapped around in this second equation: it is the vertices that i points to that 
define its hub centrality. 

In matrix terms these equations can be written as 

x = "Ay, y=flATX, (7.23) 

Of, combining the two, 

AATX = Ax, ATAy=Ay, (7.24) 

where A = ("fl)-1 Thus the authority and hub centralities are respectively 
given by eigenvectors of AA T and AT A with the same eigenvalue. By an ar
gument similar to the one we used for the standard eigenvector centrality in 
Section 7.1 we can show that we should in each case take the eigenvector cor
responding to the leading eigenvalue. 

A crucial condition for this approach to work, is that AAT and AT A have 
the same leading eigenvalue A, otherwise we cannot satisfy both conditions in 
Eq. (7.24). It is easily proved, however, that this is the case, and in fact that all 
eigenvalues are the same for the two matrices. If AAT x = Ax then multiplying 
both sides by AT gives 

AT A(AT x) = A(AT x), (7.25) 

and hence AT x is an eigenvector of AT A with the same eigenvalue A. Compar

ing with Eq. (7.24) this means that 

y = AT x, (7.26) 

which gives us a fast way of calculating the hub centralities once we have 
the authority ones-there is no need to solve both the eigenvalue equations 

in Eq. (7.24) separately. 
Note that AAT is precisely the cocitation matrix defined in Section 6.4.1 

(Eq. (6.8)) and the authority centrality is thus, roughly speaking, the eigen
vector centrality for the cocitation network.' Similarly AT A is the bibliographic 

8This statement is only approximately correct since, as discussed in Section 6.4.1, the cocitation 
matrix is not precisely equal to the adjacency matrix of the cocitation network, having non-zero 
elements along its diagonal where the adjacency matrix has none. 

7.6 

coupling matrix, Eq. (6.11), and hub centrality is the eigenvector centrality for 
the bibliographic coupling network. 

A nice feature of the hub and authority centralities is that they circum
vent the problems that ordinary eigenvector centrality has with directed net
works, that vertices outside of strongly connected components or their out
components always have centrality zero. In the hubs and authorities approach 
vertices not cited by any others have authority centrality zero (which is reason
able), but they can still have non-zero hub centrality. And the vertices that they 

cite can then have non-zero authority centrality by virtue of being cited. This 
is perhaps a more elegant solution to the problems of eigenvector centrality 
in directed networks than the more ad hoc method of introducing an additive 
constant term as we did in Eq. (7.8). We can still introduce such a constant 
term into the HITS algorithm if we wish, or employ any of the other variations 
considered in previous sections, such as normalizing vertex centralities by the 
degrees of the vertices that point to them. Some variations along these lines 
are explored in Refs. [52,256], but we leave the pursuit of such details to the 
enthusiastic reader. 

The HITS algorithm is an elegant construction that should in theory pro
vide more information about vertex centrality than the simpler measures of 
previous sections, but in practice it has not yet found much application. It is 
used as the basis for the web search engines Teamo and Ask.cam, and will per
haps in future find further use, particularly in citation networks, where it holds 
clear advantages over other eigenvector measures. 

7.6 CLOSENESS CENTRALITY 

An entirely different measure of centrality is provided by the closeness central
ity, which measures the mean distance from a vertex to other vertices. In Sec
tion 6.10.1 we encountered the concept of the geodesic path, the shortest path 
through a network between two vertices. Suppose d ij is the length of a geodesic 
path from i to j, meaning the number of edges along the path9 Then the mean 
geodesic distance from i to j, averaged over all vertices j in the network, is 

(7.27) 

9Recall that geodesic paths need not be unique-vertices can be joined by several shortest 
paths of the same length. The length dij however is always well defined, being the length of any 
one of these paths. 

CLOSENESS CENTRALITY 
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This quantity takes low values for vertices that are separated from others by 
only a short geodesic distance on average. Such vertices might have better ac
cess to information at other vertices or more direct influence on other vertices. 
In a social network, for instance, a person with lower mean distance to others 
might find that their opinions reach others in the community more quickly 
than the opinions of someone with higher mean distance. 

In calculating the average distance some authors exclude from the sum 
in (7.27) the term for j = i, so that 

1 
Ei = --1 L: dii, 

n - ili'i) 
(7.28) 

which is a reasonable strategy, since a vertex's influence on itself is usually not 
relevant to the working of the network. On the other hand, the distance dii 

from i to itself is zero by definition, so this term in fact contributes nothing to 
the sum. The only difference the change makes to £i is in the leading divisor, 
which becomes I/(n -1) instead of lin, meaning that £i changes by a factor 
of n I (n - 1). Since this factor is independent of i and since, as we have said, 
we usually care only about the relative centralities of different vertices and not 
about their absolute values, we can in most cases ignore the difference between 
Eqs. (7.27) and (7.28). In this book we use (7.27) because it tends to give slightly 

more elegant analytic results. 
The mean distance £i is not a centrality measure in the same sense as the 

others in this chapter, since it gives low values for more central vertices and 
high values for less central ones, which is the opposite of our other measures. 
In the social networks literature, therefore, researchers commonly calculate the 
inverse of £i rather than Ei itself. This inverse is called the closeness centrality C;: 

(7.29) 

Closeness centrality is a very natural measure of centrality and is often used 
in social and other network studies. But it has some problems. One issue 
is that its values tend to span a rather small dynamic range from largest to 
smallest. As discussed in Sections 3.6, 8.2, and 12.7, geodesic distances di] be
tween vertices in most networks tend to be small, the typical distance increas
ing only logarithmically with the size of the entire network. This means that 
the ratio between the smallest distance, which is 1, and the largest, which is of 
order log n, is itself only of order log n, which is small. But the smallest and 
largest distances provide lower and upper bounds on the average distance Ei, 
and hence the range of values of Ei and similarly of Ci is also small. In a typical 
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network the values of Ci might span a factor of five or less. What this means 
in practice is that it is difficult to distinguish between central and less central 
vertices using this measure: the values tend to be cramped together with the 
differences between adjacent values showing up only when you examine the 
trailing digits. This means that even small fluctuations in the structure of the 
network can change the order of the values substantially. 

For example, it has become popular in recent years to rank film actors ac
cording to their closeness centrality in the network of who has appeared in 
films with who else [323]. Using data from the Internet Movie Database,10 we 
find that in the largest component of the network, which includes more than 
98% of all actors, the smallest closeness centrality of any actor is 2.4138 for 
the actor Christopher Lee,ll while the largest is 8.6681 for an Iranian actress 
named Leia Zanganeh. The ratio of the two is just 3.6 and about half a million 
other actors lie in between. As we can immediately see, the values must be 
very closely spaced. The second best centrality score belongs to actor Donald 
Pleasence, who scores 2.4164, just a tenth of a percent less than winner Lee. 
Because of the close spacing of values, the leaders under this dubious measure 
of superiority change frequently as the small details of the film network shift 
when new films are made or old ones added to the database. In an analysis 
using an earlier version of the database, Watts and Strogatz [323] proclaimed 
Rod Steiger to be the actor with the lowest closeness centrality. Steiger falls in 
sixth place in our analysis and it is entirely possible that the rankings will have 
changed again by the time you read this. Other centrality measures, including 
degree centrality and eigenvector centrality. typically don't suffer from this 
problem because they have a wider dynamic range and the centrality values, 
particular those of the leaders, tend to be widely separated. 

The closeness centrality has another problem too. If, as discussed in Sec
tion 6.10.1, we define the geodesic distance between two vertices to be infinite 
if the vertices fall in different components of the network, then Ei is infinite 
for all i in any network with more than one component and Ci is zero. There 
are two strategies for getting around this. The most common one is simply 
to average over only those vertices in the same component as i. Then n in 
Eq. (7.29) becomes the number of vertices in the component and the sum is 
over only that component. This gives us a finite measure, but one that has its 
own problems. In particular, distances tend to be smaller between vertices in 
small components, so that vertices in such components get lower values of fi 

lOwww.imdb.com 

11 Perhaps most famous for his role as the evil wizard Saruman in the film version of The Lord 
of the Rings. 
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and higher closeness centrality than their counterparts in larger components. 
This is usually undesirable: in most cases vertices in small components are 
considered less well connected than those in larger ones and should therefore 
be given lower centrality. 

Perhaps a better solution, therefore, is to redefine closeness in terms of the 
harmonic mean distance between vertices, i.e., the average of the inverse dis-
tances: 

c;= _1_ L ~ 
n - 1 j("i) d'i 

(7.30) 

(Notice that we are obliged in this case to exclude from the sum the term for 
j = i, since dii = 0 which would make this term infinite. This means that the 
sum has only n - 1 terms in it, hence the leading factor of 1/ (n - 1 ).) 

This definition has a couple of nice properties. First, if dij = 00 because i and 
j are in different components, then the corresponding term in the sum is sim
ply zero and drops out. Second, the measure naturally gives more weight to 
vertices that are close to i than to those far away. Intuitively we might imagine 
that the distance to close vertices is what matters in most practical situations
once a vertex is far away in a network it matters less exactly how far away it 
is, and Eq. (7.30) reflects this, having contributions close to zero from all such 
vertices. 

Despite its desirable qualities, however, Eq. (7.30) is rarely used in practice. 
We have seen it employed only occasionally. 

An interesting property of entire networks, which is related to the closeness 
centrality, is the mean geodesic distance between vertices. In Section 8.2 we 
will use measurements of mean distance in networks to study the so-called 
"small-world effect." 

For a network with only one component, the mean distance between pairs 
of vertices, conventionally denoted just £ (now without the subscript), is 

1 1 e = --, Ldi) = - Lei. 
n ij n i 

(7.31) 

In other words f is just the mean of fi over all vertices. 
For a network with more than one component we run into the same prob

lems as before, that dil is infinite when i and j are in different components 
and hence £ is also infinite. The most common way around this problem is to 
average only over paths that run between vertices in the same component. Let 
{'Ii,,,} be the set of components of a network, with m = 1,2 ... Then we define 

e _ L", LijE'6;" d ij 

- Lmntrl ' (7.32) 
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where nm is the number of vertices in component ~II' This measure is now 
finite for all networks, although it is not now equal to a simple average over 
the values of ei for each vertex. 

An alternative and perhaps better approach would be to use the trick from 
Eq. (7.30) and define a harmonic mean distance £' according to 

or equivalently 

1 

e' 

, n 
e = ,".C" 

w, , 

(7.33) 

(7.34) 

where C; is the harmonic mean closeness of Eq. (7.30). (Note that, as in (7.30), 
we exclude from the first sum in (7.33) the terms for i = j, which would be 
infinite since dii = 0.) 

Equation (7.34) automatically removes any contributions from vertex pairs 
for which dij = 00. Despite its elegance, however, Eq. (7.34), like Eq. (7.30), is 
hardly ever used. 

7.7 BETWEENNESS CENTRALITY 

A very different concept of centrality is betweenness centrality, which measures 
the extent to which a vertex lies on paths between other vertices. The idea of 
betweenness is usually attributed to Freeman [128] in 1977, although as Free
man himself has pointed out [129], it was independently proposed some years 
earlier by Anthonisse [19] in an unpublished technical report. 

Suppose we have a network with something flowing around it from vertex 
to vertex along the edges. For instance, in a social network we might have mes
sages, news, information, or rumors being passed from one person to another. 
In the Internet we have data packets moving around. Let us initially make 
the simple assumption that every pair of vertices in the network exchanges a 
message with equal probability per unit time (more precisely every pair that 
is actually connected by a path) and that messages always take the shortest 
(geodesic) path though the network, or one such path, chosen at random, if 
there are several. Then let us ask the following question: if we wait a suitably 
long time until many messages have passed between each pair of vertices, how 
many messages, on average, will have passed through each vertex en route to 
their destination? The answer is that, since messages are passing down each 
geodesic path at the same rate, the number passing through each vertex is 
simply proportional to the number of geodesic paths the vertex lies on. This 
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number of geodesic paths is what we call the betweenness centrality, or just 
betweenness for short. 

Vertices with high betweenness centrality may have considerable influence 
within a network by virtue of their control over information passing between 
others. The vertices with highest betweenness in our message-passing scenario 
are the ones through which the largest number of messages pass, and if those 
vertices get to see the messages in question as they pass, or if they get paid 
for passing the messages along, they could derive a lot of power from their 
position within the network. The vertices with highest betweenness are also 
the ones whose removal from the network will most disrupt communications 
between other vertices because they lie on the largest number of paths taken 
by messages. In real-world situations, of course, not all vertices exchange com
munications with the same frequency, and in most cases communications do 
not always take the shortest path. Nonetheless, betweenness centrality may 
still be an approximate guide to the influence vertices have over the flow of 
information between others. 

Having seen the basic idea of betweenness centrality, let us make things 
more precise. For the sake of simplicity, suppose for the moment that we have 
an undirected network in which there is at most one geodesic path between 
any pair of vertices. (There may be zero paths if the vertices in question are 
in different components.) Consider the set of all geodesic paths in such a net
work. Then the betweenness centrality of a vertex i is defined to be the number 
of those paths that pass through i. 

Mathematically, let n;, be 1 if vertex i lies on the geodesic path from s to t 
and 0 if it does not or if there is no such path (because s and t lie in different 
components of the network). Then the betweenness centrality Xi is given by 

(7.35) 

Note that this definition counts separately the geodesic paths in either direc
tion between each vertex pair. Since these paths are the same on an undirected 
network this effectively counts each path twice. One could compensate for this 
by dividing Xi by 2, and often this is done, but we prefer the definition given 
here for a couple of reasons. First, it makes little difference in practice whether 
one divides the centrality by 2, since one is usually concerned only with the rel
ative magnitudes of the centralities and not with their absolute values. Second, 
as discussed below, Eq. (7.35) has the advantage that it can be applied unmod
ified to directed networks, in which the paths in either direction between a 
vertex pair can differ. 

Note also that Eq. (7.35) includes paths from each vertex to itself. Some 
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people prefer to exclude such paths from the definition, so that Xi = L", n;" 
but again the difference is typically not important. Each vertex lies on one 
path from itself to itself, so the inclusion of these terms simply increases the 
betweenness by 1, but does not change the rankings of the vertices-which 
ones have higher or lower betweenness-relative to one another. 

There is also a choice to be made about whether the path from s to t should 
be considered to pass through the vertices sand t themselves. In the social net
works literature it is usually assumed that it does not. We prefer the definition 
where it does: it seems reasonable to define a vertex to be on a path between 
itself and someone else, since normally a vertex has control over information 
flowing from itself to other vertices or vice versa. If, however, we exclude the 
endpoints of the path as sociologists commonly do, the only effect is to reduce 
the number of paths through each vertex by twice the size of the component 
to which the vertex belongs. Thus the betweennesses of all vertices within a 
single component are just reduced by an additive constant and the ranking of 
vertices within the component is again unchanged. (The rankings of vertices 
in different components can change relative to one another, but this is rarely an 
issue because betweenness centrality is not typically used to compare vertices 
in different components, since such vertices are not competing for influence in 
the same arena.) 

These developments are all for the case in which there is at most one geo
desic path between each vertex pair. More generally, however, there may be 
more than one. The standard extension of betweenness to this case gives each 
path a weight equal to the inverse of the number of paths. For instance, if 
there are two geodesic paths between a given pair of vertices, each of them 
gets weight!. Then the betweenness of a vertex is defined to be the sum of the 
weights of all geodesic paths passing through that vertex. 

Note that the geodesic paths between a pair of vertices need not be vertex
independent, meaning they may pass through some of the same vertices (see 
figure). If two or more paths pass through the same vertex then the between
ness sum includes contributions from each of them. Thus if there are, say, three 
geodesic paths between a given pair of vertices and two of them pass through 
a particular vertex, then they contribute ~ to that vertex's betweenness. 

Formally, we can express the betweenness for a general network by redefin
ing n;, to be the number of geodesic paths from s to t that pass through i. And 
we define g;, to be the total number of geodesic paths from s to t. Then the 
betweenness centrality of vertex i is 

(7.36) 

\~\ .. } .........•••.. c~) /~ 
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Vertices A and B are con
nected by two geodesic 
paths. Vertex C lies on both 
paths. 
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where we adopt the convention that n~t/ gst = 0 if both n~t andgst are zero. This 
definition is equivalent to our message-passing thought experiment above, in 
which messages pass between all pairs of vertices in a network at the same 
average rate, traveling along shortest paths, and in the case of several shortest 
paths between a given pair of vertices they choose at random between those 
several paths. Then X; is proportional to the average rate at which traffic passes 
though vertex i. 

Betweenness centrality can be applied to directed networks as well. In a 
directed network the shortest path between two vertices depends, in general, 
on the direction you travel in. The shortest path from A to B is different from 
the shortest path from B to A. Indeed there may be a path in one direction and 
no path at all in the other. Thus it is important in a directed network explicitly 
to include the path counts in either direction between each vertex pair. The 
definition in Eq. (7.36) already does this and so, as mentioned above, we can 
use the same definition without modification for the directed case. This is one 
reason why we prefer this definition to other slight variants that are sometimes 
used. 

Although the generalization of betweenness to directed networks is straight
forward, however, it is rarely if ever used, so we won't discuss it further here, 
concentrating instead on the much more common undirected case. 

Betweenness centrality differs from the other centrality 
measures we have considered in being not principally a mea
sure of how well-connected a vertex is. Instead it measures 
how much a vertex falls "between" others. Indeed a vertex 
can have quite low degree, be connected to others that have 
low degree, even be a long way from others on average, and 
still have high betweenness. Consider the situation depicted 

Figure 7.2: A low-degree vertex with high be
tweenness. In this sketch of a network, ver-

in Fig. 7.2. Vertex A lies on a bridge between two groups 
within a network. Since any shortest path (or indeed any 
path whatsoever) between a vertex in one group and a ver
tex in the other must pass along this bridge, A acquires very 
high betweenness, even though it is itself on the periphery of 
both groups and in other respects may be not well connected: 
probably A would not have particularly impressive values for 

tex A lies on a bridge joining two groups of 
other vertices. An paths between the groups 
must pass through A, so it has a high between
ness even though its degree is low. 
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eigenvector or closeness centrality, and its degree centrality is 
only 2, but nonetheless it might have a lot of influence in the network as a re
sult of its control over the flow of information between others. Vertices in roles 
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like this are sometimes referred to in the sociological literature as brokers. 12 

Betweenness centrality also has another interesting property: its values are 
typically distributed over a wide range. The maximum possible value for the 
betweenness of a vertex occurs when the vertex lies on the shortest path be
tween every other pair of vertices. This occurs for the central vertex in a star 
graph, a network composed of a vertex attached to n - lathers by single edges. 
In this situation the central vertex lies on all n2 shortest paths between vertex 
pairs except for the 11 - 1 paths from the peripheral vertices to themselves. 
Thus the betweenness centrality of the central vertex is n2 - n + 1. At the 
other end of the scale, the smallest possible value of betweenness in a network 
with a single component is 2n - 1, since at a minimum each vertex lies on ev
ery path that starts or ends with itself. (There are n - 1 paths from a vertex to 
others, n - 1 paths from others to the vertex, and one path from the vertex to 
itself, for a total of 2(n -1) + 1 = 2n -1.) This situation occurs, for instance, 
when a network has a "leaf" attached to it, a vertex connected to the rest of the 
network by just a single edge. 

Thus the ratio of largest and smallest possible betweenness values is 

n2 
- n + 1 1 

-- r.., -n 
2n -1 - 2 ' 

(7.37) 

where the equality becomes exact in the limit of large n. Thus in theory there 
could be a factor of almost ~ 11 between the largest and smallest betweenness 
centralities, which could become very large for large networks. In real net
works the range is usually considerably smaller than this, but is nonetheless 
large and typically increasing with increasing n. 

Taking again the example of the network of film actors from the previous 
section, the individual with the highest betweenness centrality in the largest 
component of the actor network is the great Spanish actor Fernando Rey, most 
famous in the English-speaking world for his 1971 starring role next to Gene 
Hackman in The French Connection13 Rey has a betweenness score of 7.47 x 108, 

12Much of sociological literature concerns power or "social capital." It may seem ruthless to 
think of individuals exploiting their control over other people's information to gain the upper 
hand on them, but it may also be realistic. At least in situations where there is a significant pay-off 
to having such an upper hand (like business relationships, for example), it is reasonable to suppose 
that notions of power derived from network structure really do play into people's manipulations 
of the world around them. 

uIt is perhaps no coincidence that the highest betweenness belongs to an actor who appeared 
in both European and American films, played roles in several different languages, and worked 
extensively in both film and television, as well as on stage. Rey was the archetypal "broker," with 
a career that made him a central figure in several different arms of the entertainment business that 
otherwise overlap relatively little. 

A star graph. 
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while the lowest score of any actor!4 in the large component is just 8.91 x lOS. 

Thus there is a ratio of almost a thousand between the two limits-a much 
larger dynamic range than the ratio of 3.6 we saw in the case of closeness cen
trality. One consequence of this is that there are very clear winners and losers 
in the betweenness centrality competition. The second highest betweenness 
in the actor network is that of Christopher Lee (again), with 6.46 x 108, a 14% 
percent difference from winner Fernando Rey. Although betweenness values 
may shift a little as new movies are made and new actors added to the net
work, the changes are typically small compared with these large gaps between 
the leaders, so that the ordering at the top of the list changes relatively infre
quently, giving betweenness centrality results a robustness not shared by those 
for closeness centrality. 

The values of betweenness calculated here are raw path counts, but it is 
sometimes convenient to normalize betweenness in some way. Several of the 
standard computer programs for network analysis, such as Pajek and UCINET, 
perform such normalizations. One natural choice is to normalize the path 
count by dividing by the total number of (ordered) vertex pairs, which is n2 , so 
that betweenness becomes the fraction (rather than the number) of paths that 
run through a given vertex: 15 

X . = ~"n~t 
1 2W . 

n sl gst 
(7.38) 

With this definition, the values of the betweenness lie strictly between zero and 
one. 

Some other variations on the betweenness centrality idea are worth men
tioning. Betweenness gets at an important idea in network analysis, that of 
the flow of information or other traffic and of the influence vertices might 
have over that flow. However, betweenness as defined by Freeman is based 
on counting only the shortest paths between vertex pairs, effectively assuming 
that all or at least most traffic passes along those shortest paths. In reality traf-

14This score is shared by many actors. It is the minimum possible score of 2n - 1 as described 
above. 

15 Another possibility, proposed by Freeman [128] in his original paper on betweenness, is to 
divide by the maximum possible value that betweenness can take on any network of size n, which, 
as mentioned above, occurs for the central vertex in a star graph. The resulting expression for 
between is then 

._ 1 ,\,n~1 
~ - 2 ~. 

n ~ n + 1 ,/ gsl 

We, however, prefer Eq. (7.38), which we find easier to interpret, although the difference between 
the two becomes small anyway in the limit of large n. 
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fie flows along paths other than the shortest in many networks. Most of us, for 
instance, will have had the experience of hearing news about one of our friends 
not from that friend directly but from another mutual acquaintance-the mes
sage has passed along a path of length two via the mutual acquaintance, rather 
than along the direct (geodesic) path of length one. 

A version of betweenness centrality that makes some allowance for effects 
like this is the flow betweenness, which was proposed by Freeman et al. [130] 
and is based on the idea of maximum flow. Imagine each edge in a network 
as a pipe that can carry a unit flow of some fluid. We can ask what the maxi
Inurn possible flow then is between a given source vertex s and target vertex t 
through these pipes. In general the answer is that more than a single unit of 
flow can be carried between source and target by making simultaneous use of 
several different paths through the network. The flow betweenness of a ver
tex i is defined according to Eq. (7.35), but with n~, being now the amount of 
flow through vertex i when the maximum flow is transmitted from s to t. 

As we saw in Section 6.12, the maximum flow between vertices sand t 
is also equal to the number of edge-independent paths between them. Thus 
another way equivalent to look at the flow betweenness would be to consider 
";, to be the number of independent paths between sand t that run through 
vertex i. 

A slight problem arises because the independent paths between 
a given pair of vertices are not necessarily unique. For instance, 
the network shown in Fig. 7.3 has two edge-independent paths be
tween sand t but we have two choices about what those paths are, 
either the paths denoted by the solid arrows, or those denoted by 
the dashed ones. Furthermore, our result for the flow betweenness 
will depend on which choice we make; the vertices labeled A and B 
fall on one set of paths but not the other. To get around this problem, 
Freeman et al. define the flow through a vertex for their purposes to 

See Section 6.12 for a dis
cussion of maximum flow 
in networks. 

be the maximum possible flow over all possible choices of paths, or 
equivalently the maximum number of independent paths. Thus in 
the network of Fig. 7.3, the contribution of the flow between sand t 
to the betweenness of vertex A would be 1, since this is the maxi
mum value it takes over all possible choices of flow paths. 

In terms of our information analogy, one can think of flow be
tweenness as measuring the betweenness of vertices in a network in 
which a maximal amount of information is continuously pumped 

Figure 7.3: Edge-independent paths in 
a small network. The vertices 5 and t 
in this network have two independent 
paths between them, but there are two 
distinct ways of choosing those paths, 
represented by the solid and dashed 
curves. 

between all sources and targets. Flow betweenness takes account of more than 
just the geodesic paths between vertices, since flow can go along non-geodesic 
paths as well as geodesic ones. (For example, the paths through vertices A 
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cussion of random walks. 
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and B in the example above are not geodesic.) Indeed, in some cases none of the 
paths that appear in the solution of the maximum flow problem are geodesic 
paths, so geodesic paths may not be counted at all by this measure. 

But this point highlights a problem with flow betweenness: although it 
typically counts more paths than the standard shortest-path betweenness, flow 
betweenness still only counts a subset of possible paths, and some important 
ones (such as geodesic paths) may be missed out altogether. One way to look at 
the issue is that both shortest-path betweenness and flow betweenness assume 
flows that are optimal in some sense-passing only along shortest paths in the 
first case and maximizing total flow in the second. Just as there is no reason to 
suppose that information or other traffic always takes the shortest path, there 
is no reason in general to suppose it should act to maximize flow (although of 
course there may be special cases in which it does). 

A betweenness variant that does count all paths is the random-walk between
ness [243]. In this variant traffic between vertices sand t is thought of as per
forming an (absorbing) random walk that starts at vertex s and continues un
til it reaches vertex t. The betweenness is defined according to Xi = Lsi n~1 
but with ";, now being the number of times that the random walk from s to t 
passes through i on its journey, averaged over many repetitions of the walk. 

Note that in this case n~t i- n~s in general, even on an undirected network. 
For instance, consider this portion of a network: 

A 

s t 

A random walk from s to t may pass through vertex A before returning to sand 
stepping thence to t, but a walk from t to s will never pass through A because 
its first step away from t will always take it to s and then the walk will finish. 

Since every possible path from 5 to t occurs in a random walk with some 
probability (albeit a very small one) the random-walk betweenness includes 
contributions from all paths16 Note, however, that different paths appear in 
general with different probabilities, so paths do not contribute equally to the 

16 All paths, that is, that terminate at the target vertex t the first time they reach it. Since we use 
an absorbing random walk, paths that visit the target, move away again, and then return are not 
included in the random-walk betweenness. 
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betweenness scores, longer paths typically making smaller contributions than 
shorter ones, a bias that is plausible in some but by no means all cases. 

Random walk betweenness would be an appropriate betweenness measure 
for traffic that traverses a network with no idea of where it is going-it sim
ply wanders around at random until it reaches its destination. Shortest-path 
betweenness is the exact opposite. It is the appropriate measure for informa
tion that knows exactly where it is going and takes the most direct path to get 
there. It seems likely that most real-world situations fall somewhere in be
tween these two extremes. However, it is found in practice [243] that the two 
n1easures often give quite similar results, in which case one can with reason
able justification assume that the "correct" answer, the one lying between the 
limits set by the shortest-path and random-walk measures, is similar to both. 
In cases where the two differ by a considerable margin, however, we should 
be wary of attributing too much authority to either measure-there is no guar
antee that either is telling us a great deal about true information flow in the 
network. 

Other generalizations of betweenness are also possible, based on other mod
els of diffusion, transmission, or flow along network edges. We refer the inter
ested reader to the article by Borgatti [51], which draws together many of the 
possibilities into a broad general framework for betweenness measures. 

7.8 GROUPS OF VERTICES 

Many networks, including social and other networks, divide naturally into 
groups or communities. Networks of people divide into groups of friends, 
coworkers, or business partners; the World Wide Web divides into groups of 
related web pages; biochemical networks divide into functional modules, and 
so forth. The definition and analysis of groups within networks is a large and 
fruitful area of network theory. In Chapter 11 we discuss some of the sophisti
cated computer methods that have been developed for detecting groups, such 
as hierarchical clustering and spectral partitioning. In this section we discuss 
some simpler concepts of network groups which can be useful for probing and 
describing the local structure of networks. The primary constructs we look at 
are cliques, plexes, cores, and cOlnponents. 

7.S.1 CLIQUES, PLEXES, AND CORES 

A clique is a maximal subset of the vertices in an undirected netvvork such that 
every member of the set is connected by an edge to every other. The word 
"maximal" here means that there is no other vertex in the network that can 
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A clique of four vertices 
within a netvvork. 

B 

Two overlapping cliques. 
Vertices A and B in this net
work both belong to two 
cliques of four vertices. 
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be added to the subset while preserving the property that every vertex is con
nected to every other. Thus a set of four vertices in a netvvork would be a clique 
if (and only if) each of the four is directly connected by edges to the other three 
and if there is no other vertex anywhere in the network that could be added to 
make a group of five vertices all connected to each other. Note that cliques can 
overlap, meaning that they can share one or more of the same vertices. 

The occurrence of a clique in an otherwise sparse network is normally an 
indication of a highly cohesive subgroup. In a social network, for instance, one 
might encounter a set of individuals each of whom was acquainted with each 
of the others, and such a clique would probably indicate that the individuals 
in question are closely connected-a set of coworkers in an office for example 
or a group of classmates in a school. 

However, it's also the case that many circles of friends form only near
cliques, rather than perfect cliques. There may be some members of the group 
who are unacquainted, even if most members know one another. The require
ment that every possible edge be present within a clique is a very stringent 
one, and it seems natural to consider how we might relax this requirement. 
One construct that does this is the Ie-plex. A Ie-plex of size n is a maximal subset 
of n vertices within a network such that each vertex is connected to at least 
n - k of the others. If k = 1, we recover the definition of an ordinary clique-a 
1-plex is the same as a clique. If k = 2, then each vertex must be connected 
to all or all-but-one of the others. And so forth17 Like cliques, k-plexes can 
overlap one another; a single vertex can belong to more than one Ie-plex. 

The k-plex is a useful concept for discovering groups within networks: in 
real life many groups in social and other networks form k-plexes. There is 
no solid rule about what value k should take. Experimentation starting from 
small values is the usual way to proceed. Smaller values of k tend to be mean
ingful for smaller groups, whereas in large groups the smaller values impose 
too stringent a constraint but larger values often give useful results. This sug
gests another possible generalization of the clique idea: one could specify that 
each member be connected to a certain fraction of the others, say 75% or 50%. 
(As far as we know, this variant doesn't have a name and it is not in wide use, 
but perhaps it should be.) 

Many other variations on the clique idea have been proposed in the litera
ture. For instance Flake et al. [122] proposed a definition of a group as a subset 

17This definition is slightly awkward to remember, since the members of a k-plex are allowed 
to be unconnected to k ~ 1 other members and not k. It would perhaps have been more sensible to 
define k such that a O-plex was equivalent to a normal clique, but for better or worse we are stuck 
with the definition we have. 
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of vertices such that each has at least as many connections to vertices inside the 
group as to vertices outside. Radicchi et al. [276] proposed a weaker definition 
of a group as a subset of vertices such that the total number of connections of 
all vertices in the group to others in the group is greater than the total number 
of connections to vertices outside.18 

Another concept closely related to the Ie-plex is the lc-core. A Ie-core is a 
Inaximal subset of vertices such that each is connected to at least k others in 
the subset19 It should be obvious (or you can easily prove it for yourself) that 
a Ie-core of n vertices is also an (n - k)-plex. However, the set of all k-cores 
for a given value of k is not the same as the set of all Ie-plexes for any value 
of k, since n, the size of the group, can vary from one k-core to another. Also, 
unlike Ie-plexes (and cliques), lc-cores cannot overlap, since by their definition 
two k-cores that shared one or more vertices would just form a single larger 
k-core. 

The k-core is of particular interest in network analysis for the practical rea
son that it is very easy to find the set of all Ie-cores in a network. A simple 
algorithm is to start with your whole network and remove from it any vertices 
that have degree less than Ie, since clearly such vertices cannot under any cir
cumstances be members of a k-core. In so doing, one will normally also reduce 
the degrees of some other vertices in the network-those that were connected 
to the vertices just removed. So we then go through the network again to see 
if there are any more vertices that now have degree less than k and if there are 
we remove those too. And so we proceed, repeatedly pruning the network to 
remove vertices with degree less than k until no such vertices remain.20 What 
is left over will, by definition, be a Ie-core or a set of k-cores, since each vertex is 
connected to at least Ie others. Note that we are not necessarily left with a single 
k-core-there's no guarantee that the network will be connected once we are 
done pruning it, even if it was connected to start with. 

Two other generalizations of cliques merit a brief mention. A Ie-clique is a 
maximal subset of vertices such that each is no more than a distance k away 
from any of the others via the edges of the network. For k = 1 this just recovers 

18Note that for the purposes of this latter definition, an edge between two vertices A and B 
within the group counts as two connections, one from A to B and one from B to A. 

19We have to be careful about the meaning of the word "maximal" here. It is possible to have a 
group of vertices such that each is connected to at least k others and no single vertex can be added 
while retaining this property, but it may be possible to add more than one vertex. Such groups, 
however, are not considered to be k-cores. A group is only a k-core if it is not a subset of any larger 
group that is a k-core. 

20 A closely related process, bootstrap percolation, has also been studied in statistical physics, 
prinCipally on regular lattices. 
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the definition of an ordinary clique. For larger lc it constitutes a relaxation 
of the stringent requirements of the usual clique definition. Unfortunately it 
is not a very well-behaved one, since a k-clique by this definition need not 
be connected via paths that run within the subset (see figure). If we restrict 
ourselves to paths that run only within the subset then the resulting object is 
known as either a Ie-clan or a Ie-club. (The difference between the two lies in 
whether we impose the restriction that paths stay within the group from the 
outset, or whether we first find Ie-cliques and then discard those with outside 
paths. The end results can be different in the two cases. For more details see 
Wasserman and Faust [320].). 

7.8.2 COMPONENTS AND k-COMPONENTS 

In Section 6.11 we introduced the concept of a component. A component in an 
undirected network is a maximal subset of vertices such that each is reachable 
by some path from each of the others. A useful generalization of this concept 
is the Ie-component. A k-component (sometimes also called a k-connected compo
nent) is a maximal subset of vertices such that each is reachable from each of 
the others by at least k vertex-independent paths-see Fig. 7.4. (Recall that two 
paths are said to be vertex-independent if they share none of the same vertices, 
except the starting and ending vertices-see Section 6.12.) For the common 
special cases k = 2 and Ie = 3, Ie-components are also called bicomponents and 
tricomponents respectively. 

A I-component by this definition is just an ordinary component-there is 
at least one path between every pair of vertices-and k-components for Ie :> 2 
are nested within each other. A 2-component or bicomponent, for example, is 
necessarily a subset of a 1-component, since any pair of vertices that are con
nected by at least two paths are also connected by at least one path. Similarly 
a tricomponent is necessarily a subset of a bicomponent, and so forth. (See 
Fig. 7.4 again.) 

As discussed in Section 6.12, the number of vertex-independent paths be
tween two vertices is equal to the size of the vertex cut set between the same 
two vertices, Le., the number of vertices that would have to be removed in or
der to disconnect the two. So another way of defining a k-component would 
be to say that it is a maximal subset of vertices such that no pair of vertices can 
be disconnected from each other by removing less than k vertices. 

A variant of the k-component can also be defined using edge-independent 
paths, so that vertices are in the same k-component if they are connected by k or 
more edge-independent paths, or equivalently if they cannot be disconnected 
by the removal of less than k edges. In principal this variant could be useful in 
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I-component 

2-component 

3-component 

Figure 7.4: The k-components in a small network. The shaded regions denote the k~ 
components in this small network, which has a single 1-component, tvvo 2-components, 
one 3-component, and no k-components for any higher value of k. Note that the 
Ie-components are nested within one another, the 2-components falling inside the 1-
component and the 3-component falling inside one of the 2-components. 

certain circumstances but in practice it is rarely used. 
The idea of a k-component is a natural one in network analysis, being con

nected with the idea of network robustness. For instance, in a data network 
such as the Internet, the number of vertex-independent paths between two 
vertices is also the number of independent routes that data might take be
tween the same two vertices, and the size of the cut set between them is the 
number of vertices in the network-typically routers-that would have to fail 
or otherwise be knocked out to sever the data connection between the two end
points. Thus a pair of vertices connected by two independent paths cannot be 
disconnected from one another by the failure of any single router. A pair of 
vertices connected by three paths cannot be disconnected by the failure of any 
two routers. And so forth. A k-component with k :> 2 in a network like the 
Internet is a subset of the network that has robust connectivity in this sense. 
One would hope, for instance, that most of the network backbone-the system 
of high volume world-spanning links that carry long-distance data (see Sec
tion 2.1)-is a k-component with high Ie, so that it would be difficult for points 
on the backbone to lose connection with one another. 

Note that for k :> 3, the k-components in a network can be non-contiguous 
(see figure). Ordinary components (I-components) and bicomponents, by con
trast, are always contiguous. Within the social networks literature, where non
contiguous components are often considered undesirable, k-components are 

The two highlighted ver
tices in this network form a 
tricomponent, even though 
they are not directly con
nected to each other. The 
other three vertices are not 
in the tricomponent. 
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sometimes defined slightly differently: a Ie-component is defined to be a max
imal subset of vertices such that every pair in the set is connected by at least Ie 
vertex-independent paths that themselves are contained entirely within the subset. 
This definition rules out non-contiguous k-components, but it is also mathe
matically and computationally more difficult to work with than the standard 
definition. For this reason, and because there are also plenty of cases in which 
it is appropriate to count non-contiguous k-cornponents t the standard defini
tion remains the most widely used one in fields other than sociology. 

7.9 TRANSlTlVITY 

A property very important in social networks, and useful to a lesser degree in 
other networks too, is transitivity. In mathematics a relation "a" is said to be 
transitive if a 0 band b 0 c together imply a 0 c. An example would be equality. 
If a = band b = c, then it follows that a = c also, so "=" is a transitive relation. 
Other examples are "greater than," "less than," and "implies." 

In a network there are various relations between pairs of vertices, the sim
plest of which is "connected by an edge." If the "connected by an edge" re
lation were transitive it would mean that if vertex u is connected to vertex V, 

and v is connected to 70, then u is also connected to w. In common parlance, 
"the friend of my friend is also my friend." Although this is only one possi
ble kind of network transitivity-other network relations could be transitive 
too-it is the only one that is commonly considered, and networks showing 
this property are themselves said to be transitive. This definition of network 
transitivity could apply to either directed or undirected networks, but let us 
take the undirected case first, since it's simpler. 

Perfect transitivity only occurs in networks where each component is a 
fully connected subgraph or clique, i.e., a subgraph in which all vertices are 
connected to all others.21 Perfect transitivity is therefore pretty much a useless 
concept in networks. However, partial transitivity can be very useful. In many 
networks, particularly social networks, the fact that u knows v and v knows IV 

21To see this suppose we have a component that is perfectly transitive but not a clique, i.e., there 
is at least one pair of vertices u, w in the component that are not directly connected by an edge. 
Since II and ware in the same component they must therefore be cOlllected by some path of length 
greater than one, II, V1, V2, V3,"" w. Consider the first two links in this path. Since II is connected 
by an edge to Vj and VI to '02 it follows that u must be connected to V2 if the network is perfectly 
transitive. Then consider the next two links. Since u is connected to '02 and V2 to V3 it follows that 
u must be connected to V3. Repeating the argument all the way along the path, we can then see 
that u must be connected by an edge to w. But this violates the hypothesis that u and ware not 
directly connected. Hence no perfectly transitive components exist that are not cliques. 

doesn't guarantee that u knows w, but makes it much more likely. The friend 
of my friend is not necessarily my friend, but is far more likely to be my friend 
than some randomly chosen member of the population. 

We can quantify the level of transitivity in a network as follows. If u knows 
v and v knows w, then we have a path uvw of two edges in the network. If u 
also knows w, we say that the path is closed-it forms a loop of length three, 
or a triangle, in the network. In the social network jargon, u, v, and ware said 
to form a closed triad. We define the clustering coefficient'2 to be the fraction of 
paths of length two in the network that are closed. That is, we count all paths 
of length two, and we count how many of them are closed, and we divide the 
second number by the first to get a clustering coefficient C that lies in the range 

from zero to one: 

c = (number of closed paths of length two) . 
(number of paths of length two) 

(7.39) 

c = 1 implies perfect transitivity, i.e., a network whose components are all 
cliques. C = 0 implies no closed triads, which happens for various topologies, 
such as a tree (which has no closed loops of any kind-see Section 6.7) or a 
square lattice (which has closed loops with even numbers of vertices only and 
no closed triads). 

Note that paths in networks, as defined in Section 6.10 have a direction and 
two paths that traverse the same edges but in opposite directions are counted 
separately in Eq. (7.39). Thus uvw and IVVU are distinct paths and are counted 
separately. Similarly, closed paths are counted separately in each direction.'3 

An alternative way to write the clustering coefficient is 

c = (number of triangles) x 6 
(number of paths of length two) 

(7.40) 

Why the factor of six? It arises because each triangle in the network gets 
counted six times over when we count up the number of closed paths of length 
two. Suppose we have a triangle uvw. Then there are six paths of length two 

22It's not entirely clear why the clustering coefficient has the name it has. The name doesn't 
appear to be connected with the earlier use of the word clustering in sodal network analysis to 
describe groups or clusters of vertices (see Section 11.11.2). The reader should be careful to avoid 
confusing these two uses of the word. 

231n fact, we could count each path just in one direction, provided we did it for both the nu
merator and denominator of Eq. (7.39). Doing so would decrease both counts by a factor of two, 
but the factors would cancel and the end result would be the same. In most cases, and particularly 
when writing computer programs, it is easier to count paths in both directions-it avoids having 
to remember which paths you have counted before. 
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in it: uvw, V'WU, WUV, 'WVU, VU'W, and uwv. Each of these six is closed, so the 
number of closed paths is six times the number of triangles. 

Yet another way to write the clustering coefficient would be to note that 
if we have a path of length two, LlVW, then it is also true to say that vertices 
u and w have a common neighbor in v-they share a mutual acquaintance 
in social network terms. If the triad uvw is closed then u and 10 are them
selves acquainted, so the clustering coefficient can be thought of also as the 
fraction of pairs of people with a common friend who are themselves friends 
or equivalently as the mean probability that two people with a common friend 
are themselves friends. This is perhaps the most common way of defining the 
clustering coefficient. In mathematical notation: 

c = (number of triangles) x 3 __ 
(number of connected triples) 

(7.41 ) 

Here a "connected triple" means three vertices uv10 with edges (LI, v) and (v, w). 
(The edge (LI, 10) can be present or not.) The factor of three in the numerator 
arises because each triangle gets counted three times when we count the con
nected triples in the network. The triangle uvw for instance contains the triples 
UVW, VWU, and wuv. In the older social networks literature the clustering coef
ficient is sometimes referred to as the "fraction of transitive triples," which is a 
reference to this definition of the coefficient. 

Social networks tend to have quite high values of the clustering coefficient. 
For example, the network of film actor collaborations discussed earlier has 
been found to have C = 0.20 [241]; a network of collaborations between bi
ologists has been found to have C = 0.09 [236]; a network of who sends email 
to whom in a large university has C = 0.16 [103]. These are typical values for 
social networks. Some denser networks have even higher values, as high as 0.5 
or 0.6. (Technological and biological networks by contrast tend to have some
what lower values. The Internet at the autonomous system level, for instance, 
has a clustering coefficient of only about 0.01. This point is discussed in more 
detail in Section 8.6.) 

In what sense are these clustering coefficients for social networks high? 
Well, let us assume, to make things simple, that everyone in a network has 
about the same number c of friends. Consider one of my friends in this net
work and suppose they pick their friends completely at random from the whole 
population. Then the chance that one of their c friends happens to be a partic
ular one of my other friends would be c/n, where n is the size of the network. 
Thus in this network the probability of two of my friends being acquainted, 
which is by definition the clustering coefficient, would be just c/n. Of course 
it is not the case that everyone in a network has the same number of friends, 

and we will see how to perform better calculations of the clustering coefficient 
later (Section 13.4), but this crude calculation will serve our purposes for the 

Inoment. 
For the networks cited above, the value of c/ n is 0.0003 (film actors), 0.00001 

(biology collaborations), and 0.00002 (email messages). Thus the measured 
clustering coefficients are much larger than this estimate based on the assump
tion of random network connections. Even though the estimate ignores, as 
we have said, any variation in the number of friends people have, the dispar
ity between the calculated and observed values of the clustering coefficient 
is so large that it seems unlikely it could be eliminated just by allowing the 
number of friends to vary. A much more likely explanation is that our other 
assumption, that people pick their friends at random, is seriously flawed. The 
numbers suggest that there is a much greater chance that two people will be 
acquainted if they have another common acquaintance than if they don't. 

Although this argument is admittedly crude, we will see in Section 8.6 how 
to make it more accurate and so show that our basic conclusion is indeed cor
rect. 

Some social networks, such as the email network above, are directed net
works. In calculating clustering coefficients for direct networks, scientists have 
typically just ignored their directed nature and applied Eq. (7.41) as if the edges 
were undirected. It is however possible to generalize transitivity to take ac
count of directed links. If we have a directed relation between vertices such 
as "u likes v" then we can say that a triple of vertices is closed or transitive if 
u likes v, v likes w, and also LI likes w. (Note that there are many distinct ways 
for such a triple to be transitive, depending on the directions of the edges. The 
example given here is only one of six different possibilities.) One can calculate 
a clustering coefficient or fraction of transitive triples in the obvious fashion for 
the directed case, counting all directed paths of length two that are closed and 
dividing by the total number of directed paths of length two. For some reason, 
however, such measurements have not often appeared in the literature. 

7.9.1 LOCAL CLUSTERING AND REDUNDANCY 

We can also define a clustering coefficient for a single vertex. For a vertex i, we 
define24 

C;= 
(number of pairs of neighbors of i that are cOf\l1!,cted) 

(number of pairs of neighbors of i) 
(7.42) 

24The notation Ci is used for both the local clustering coefficient and the closeness centrality 
and we should be careful not to confuse the two. 
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That is, to calculate C, we go through all distinct pairs of vertices that are neigh
bors of i in the network, count the number of such pairs that are connected to 
each other, and divide by the total number of pairs, which is ~ ki (k i - 1) where 
ki is the degree of i,. Ci is sometimes called the local clustering coefficient and it 
represents the average probability that a pair of i's friends are friends of one 
another. 

Local clustering is interesting for several reasons. First, in many networks 
it is found empirically to have a rough dependence on degree, vertices with 
higher degree having a lower local clustering coefficient on average. This point 
is discussed in detail in Section 8.6.1. 

Second, local clustering can be used as a probe for the existence of so-called 
"structural holes" in a network. While it is common in many networks, es
pecially social networks, for the neighbors of a vertex to be connected among 
themselves, it happens sometimes that these expected connections between 
neighbors are missing. The missing links are called structural holes and were 
first studied in this context by Burt [60]. If we are interested in efficient spread 
of information or other traffic around a network, as we were in Section 7.7, 
then structural holes are a bad thing-they reduce the number of alternative 
routes information can take through the network. On the other hand structural 
holes can be a good thing for the central vertex i whose friends lack connec
tions, because they give i power over information flow between those friends. 
If two friends of i are not connected directly and their information about one 
another comes instead via their mutual connection with i then i can control the 
flow of that information. The local clustering coefficient measures how influ
ential i is in this sense, taking lower values the more structural holes there are 
in the network around i. Thus local clustering can be regarded as a type of 
centrality measure, albeit one that takes small values for powerful individuals 
rather than large ones. 

In this sense, local clustering can also be thought of as akin to the between
ness centrality of Section 7.7. Where betweenness measures a vertex's control 
over information flowing between all pairs of vertices in its component lo
cal clustering is like a local version of betweenness that measures control over 
flows between just the immediate neighbors of a vertex. One measure is not 
necessarily better than another. There may be cases in which we want to take 
all vertices into account and others where we want to consider only immedi
ate neighbors-the choice will depend on the particular questions we want to 
answer. It is worth pointing out however that betweenness is much more com
putationally intensive to calculate than local clustering (see Section 10.3.6), and 
that in practice betweenness and local clustering are strongly correlated [60]. 
There may in many cases be little to be gained by performing the more costly 

full calculation of betweenness and much to be saved by sticking with cluster
ing, given that the two contain much the same information.25 

In his original studies of structural holes, Burt [60] did not in fact 
make use of the local clustering coefficient as a measure of the pres
ence of holes."6 Instead, he used another measure, which he called 
redundancy. The original definition of redundancy was rather com
plicated, but Borgatti [50] has shown that it can be simplified to the 
following: the redundancy Ri of a vertex i is the mean number of 
connections from a neighbor of i to other neighbors of i. Consider 

7.9 TRANSITIVITY 

the example shown in Fig. 7.5 in which vertex i has four neighbors. 
Each of those four could be acquainted with any of the three others, 
but in this case none of them is connected to all three. One is con
nected to none of the others, two are connected to one other, and 
the last is comlected to two others. The redundancy is the average 
of these numbers R, = HO + 1 + 1 + 2) = 1. The minimum possi
ble value of the redundancy of a vertex is zero and the maximum is 

Figure 7.5: Redundancy. The neigh
bors of the centra1 vertex in this fig
ure have 0, I, I, and 2 connections to 
other neighbors respectively. The re
dundancy is the mean of these values: 
Ri = i(O+1+1+2) =1. 

ki - 1, where ki is the degree of vertex i. 
It's probably obvious that Ri is related to the local clustering Ci. To see 

precisely what the relation is, we note that if the average number of connec
tions from a friend of i to other friends is Rif then the total number of connec
tions between friends is ~kiRi' And the total number of pairs of friends of i is 
!k,(ki -1). The local clustering coefficient, Eq. (7.42), is the ratio of these two 
quantities: 

Ri 
ki -1' 

(7.43) 

Given that ki - 1 is the maximum value of Ri, the local clustering coefficient 
can be thought of as simply a version of the redundancy rescaled to have a 
maximum value of 1. Applying Eq. (7.43) to the example of Fig. 7.5 implies 
that the local clustering coefficient for the central vertex should be Ci = ~, and 
the reader can easily verify that this is indeed the case. 

A third context in which the local clustering coefficient arises is in the cal
culation of the global clustering coefficient itself. Watts and Strogatz [323] pro
posed calculating a clustering coefficient for an entire network as the mean of 

25 As an example, in Section 11.11.1 we study methods for partitioning networks into clusters 
or communities and we will see that effective computer algorithms for this task can be created 
based on betweenness measures, but that almost equally effective and much faster algorithms can 
be created based on local clustering. 

26 Actually, the local clustering coefficient hadn't yet been invented. It was first proposed to this 
author's knowledge by Watts [321] a few years later. 
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the local clustering coefficients for each vertex: 

1 n 

Cws = LCi, 
n i=l 

(7.44) 

where n is the number of vertices in the network. This is a different defini
tion for the clustering coefficient from the one given earlier, Eq. (7.41), and 
the two definitions are not equivalent. Furthermore, they can give substan
tially different numbers for a given network and because both definitions are 
in reasonably common use this can give rise to confusion, We favor our first 
definition for C, Eq. (7.41), because it has a simple interpretation and because 
it is normally easier to calculate. Also the second definition, Eq. (7.44), tends 
to be dominated by vertices with low degree, since they have small denom
inators in Eq. (7.42), and the measure thus gives a rather poor picture of the 
overall properties of any newark with a significant number of such vertices.27 

It's worth noting, however, that the definition of Eq. (7.44) was actually pro
posed before Eq. (7.41) and, perhaps because of this, it finds moderately wide 
use in network studies. So you need at least to be aware of both definitions 
and clear which is being used in any particular situation. 

7.10 RECIPROCITY 

The clustering coefficient of Section 7.9 measures the frequency with which 
loops of length three-triangles-appear in a network. Of course, there is 
no reason why one should concentrate only on loops of length three, and 
people have occasionally looked at the frequency of loops of length four or 
more [44,61,133,140,238]. Triangles occupy a special place however because in 
an undirected simple graph the triangle is the shortest loop we can have (and 
usually the most commonly occurring). However, in a directed network this is 
not the case. In a directed network, we can have loops of length two-a pair of 
vertices between which there are directed edges running in both directions
and it is interesting to ask about the frequency of occurrence of these loops 
also. 

The frequency of loops of length two is measured by the reciprocity, and tells 
you how likely it is that a vertex that you point to also points back at you. For 
instance, on the World Wide Web if my web page links to your web page, how 
likely is it, on average, that yours link back again to mine? In general, it's found 

27 As discussed in Section 8.6.1, vertices with low degree tend to have high values of C; in most 
networks and this means that Cws is usually larger than the value given by Eq. (7.41), sometimes 
much larger. 

that you are much more likely to link to me if I link to you than if I don't. (That 
probably isn't an Earth-shattering surprise, but it's good to know when the 
data bear out one's intuitions.) Similarly in friendship networks, such as the 
networks of schoolchildren described in Section 3.2 where respondents were 
asked to name their friends, it is much more likely that you will name me if I 
name you than if I do not. 

If there is a directed edge from vertex i to vertex j in a directed network and 
there is also an edge from j to i then we say the edge from i to j is reciprocated. 
(Obviously the edge from ito i is also reciprocated.) Pairs of edges like this are 
also sometimes called co-links, particularly in the context of the World Wide 
Web [104], 

The reciprocity r is defined as the fraction of edges that are reciprocated. 
Noting that the product of adjacency matrix elements AijAJi is 1 if and only if 
there is an edge from i to j and an edge from j to i and is zero otherwise, we 
can sum over all vertex pairs i, j to get an expression for the reciprocity: 

(7.45) 

where m is, as usual, the total number of (directed) edges in the network. 
Consider for example this small network of four vertices: 

There are seven directed edges in this network and four of them are recipro
cated, so the reciprocity is r = ~ :::e 0.57. In fact, this is about the same value as 
seen on the World Wide Web. There is about a 57% percent chance that if web 
page A links to web page B then B also links back to A. 28 As another example, 
in a study of a network of who has whom in their email address book it was 
found that the reciprocity was about r = 0.23 [248]. 

28Yhis figure is an unusually high one among directed networks, but there are reasons for it. 
One is that many of the links between web pages are between pages on the same website, and it is 
common for such pages to link to each other. If you exclude links between pages on the same site 
the value of the reciprocity is lower. 
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7.11 SIGNED EDGES AND STRUCTURAL BALANCE 

In some social networks, and occasionally in other networks, edges are al
lowed to be either "positive" or "negative." For instance, in an acquaintance 
network we could denote friendship by a positive edge and animosity by a 
negative edge: 

:!~Les 
Friends 

One could also consider varying degrees of friendship or animosity-networks 
with more strongly positive or negative edges in them-but for the moment 
let's stick to the simple case where each edge is in just one of two states, pos
itive or negative, like or dislike. Such networks are called signed networks and 
their edges are called signed edges. 

It is important to be clear here that a negative edge is not the same as the 
absence of an edge. A negative edge indicates, for example, two people who 
interact regularly but dislike each other. The absence of an edge represents two 
people who do not interact. Whether they would like one another if they did 
interact is not recorded. 

Now consider the possible configurations of three edges in a triangle in a 
signed network, as depicted in Fig. 7.6. If "+" and "-" represent like and 
dislike, then we can imagine some of these configurations creating social prob
lems if they were to arise between three people in the real world. Configura
tion (a) is fine: everyone likes everyone else. Configuration (b) is probably also 
fine, although the situation is more subtle than (a). Individuals u and v like one 
another and both dislike w, but the configuration can still be regarded as sta
ble in the sense that u and v can agree over their dislike of wand get along just 
fine, while w hates both of them. No one is conflicted about their allegiances. 

Put another way, w is u's enemy and v is w's enemy, but there isno problem 
with u and v being friends if one considers that the "enemy of my enemy is my 
friend." 

Configuration (c) however could be problematic. Individual u likes indi
vidual v and v likes w, but u thinks w is an idiot. This is going to place a strain 
on the friendship between u and v because u thinks v's friend is an idiot. Alter
natively, from the point of view of v, v has two friends, u and wand they don't 
get along, which puts v in an awkward position. In many real-life situations 
of this kind the tension would be resolved by one of the acquaintances being 
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w n 
u + v u + v u v 

(a) (b) (c) (d) 

Figure 7.6: Possible triad configurations in a signed network. Configurations (a) and 
(b) are balanced and hence relatively stable, but configurations (c) and (d) are unbal
anced and liable to break apart. 

broken, i.e., the edge would be removed altogether. Perhaps v would simply 
stop talking to one of his friends, for instance. 

Configuration (d) is somewhat ambiguous. On the one hand, it consists 
of three people who all dislike each other, so no one is in doubt about where 
things stand: everyone just hates everyone else. On the other hand, the" en
emy of my enemy" rule does not apply here. Individuals u and v might like to 
form an alliance in recognition of their joint dislike of w, but find it difficult to 
do so because they also dislike each other. In some circumstances this might 
cause tension. (Think of the uneasy alliance of the US and Russia against Ger
many during World War II, for instance.) But what one can say definitely is 
that configuration (d) is often unstable. There may be little reason for the three 
to stay together when none of them likes the others. Quite probably three ene
mies such as these would simply sever their connections and go their separate 
ways. 

The feature that distinguishes the two stable configurations in Fig. 7.6 from 
the unstable ones is that they have an even number of minus signs around the 
100p.29 One can enumerate similar configurations for longer loops, of length 
four or greater, and again find that loops with even numbers of minus signs 
appear stable and those with odd numbers unstable. 

This alone would be an observation of only slight interest, where it not 
for the intriguing fact that this type of stability really does appear have an 
effect on the structure of networks. In surveys it is found that the unstable 
configurations in Fig. 7.6, the ones with odd numbers of minus signs, occur 

29This is similar in spirit to the concept of "frustration" that arises in the physics of magnetic 

spin systems. 

Two stable configurations 
in loops of length fOUf. 
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far less often in real social networks than the stable configurations with even 
numbers of minus signs. 

Networks containing only loops with even numbers of minus signs are 
said to show structural balance, or sometimes just balance. An important conse
quence of balance in networks was proved by Harary [154]: 

A balanced network can be divided into connected groups of vertices 
such that all connections between members of the same group are 
positive and all connections between members of different groups are 
negative. 

Note that the groups in question can consist of a single vertex or many vertices, 
and there may be only one group or there may be very many. Figure 7.7 shows 
a balanced network and its division into groups. Networks that can be divided 
into groups like this are said to be elusterable. Harary's theorem tells us that all 
balanced networks are clusterable. 

Harary's theorem is straightforward to prove, and the proof is 
"constructive," meaning that it shows not only when a network is 
clusterable but also tells us what the groups are.3I) We consider ini
tially only networks that are connected-they have just one compo
nent. In a moment we will relax this condition. We will color in the 
vertices of the network each in one of two colors, denoted by the 
open and filled circles in Fig. 7.7, for instance. We start with any 

Figure 7.7: A balanced, clusterable 
vertex we please and color it with whichever color we please. Then 
we color in the others according to the following algorithm: network. Every loop in this network 

1. A vertex v connected by a positive edge to another u that has 
already been colored gets colored the same as u. 

contains an even number of minus 
signs. The dotted lines indicate the di
vision of the network into clusters such 2. A vertex v COIDlected by a negative edge to another u that has 
that all acquaintances within clusters 
have positive connections and all ac-

already been colored gets colored the opposite color from u. 
For most networks it will happen in the course of this coloring pro
cess that we sometimes come upon a vertex whose color has already 
been assigned. When this happens there is the possibility of a con-

quaintances in different clusters have 
negative connections. 
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flict arising between the previously assigned color and the one that 
we would like to assign to it now according to the rules above. However, as 
we now show, this conflict only arises if the network as a whole is unbalanced. 

If in coloring in a network we come upon a vertex that has already been 
colored in, it immediately implies that there must be another path by which 
that vertex can be reached from our starting point and hence that there is at 
least one, and possibly more than one, loop in the network to which this ver-

3IJThe proof we give is not Harary's proof, which was quite different and not constructive. 
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Figure 7.8: Proof that a balanced network is c1usterable. If we fail to color a network in 
two colors as described in the text, then there must exist a loop in the network that has 
one or other of the two configurations shown here, both of which have an odd number 
of minus signs around them (counting the one between the vertices u and v), and hence 

the network is not balanced. 

tex belongs-the loop consisting of the two paths between the starting point 
and the vertex. Since the network is balanced, every loop to which our ver
tex belongs must have an even number of negative edges around it. Now let 
us suppose that the color already assigned to the vertex is in conflict with the 
one we would like to assign it now. There are two ways in which this could 
happen, as illustrated in Fig. 7.8. In case (a), we color in a vertex u and then 
move onto its neighbor v, only to find that v has already been colored the op
posite color to u, even though the edge between them is positive. This presents 
a problem. But if u and v are opposite colors, then around any loop contain
ing them both there must be an odd number of minus signs, so that the color 
changes an odd number of times and ends up the opposite of what it started 
out as. And if there is an odd number of minus signs around the loop, then the 
network is not balanced. 

In case (b) vertices u and v have the same color but the edge between them 
is negative. Again we have a problem. But if u and v are the same color then 
there must be an even number of negative edges around the rest of the loop 
connecting them which, along with the negative edge between u and v, gives 
us again an odd total number of negative edges around the entire loop, and 
hence the network is again not balanced. 

Either way, if we ever encounter a conflict about what color a vertex should 
have then the network must be unbalanced. If the network is balanced, there
fore, we will never encounter such a conflict and we will be able to color the 
entire network with just two colors while obeying the rules. 

Once we have colored the network in this way, we can immediately deduce 
the identity of the groups that satisfy Harary's theorem: we simply divide 
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the network into contiguous clusters of vertices that have the same color-see 
Fig. 7.7 again. In every such cluster, since all vertices have the same color, 
they must be jOined by positive edges. Conversely, all edges that connected 
different clusters must be negative, since the clusters have different colors. (If 
they did not have different colors they would be considered the same cluster.) 

Thus Harary's theorem is proved and at the same time we have deduced a 
method for constructing the clusters3 ! It only remains to extend the proof to 
networks that have more than one component, but this is trivial, since we can 
simply repeat the proof above for each component separately. 

The practical importance of Harary's result rests on the fact that, as men
tioned earlier, many real social networks are found naturally to be in a bal
anced or mostly balanced state. In such cases it would be possible, therefore, 
for the network to form into groups such that everyone likes others within 
their group with whom they have contact and dislikes those in other groups. 
It is widely assumed in social network theory that this does indeed often hap
pen. Structural balance and cluster ability in networks are thus a model for 
cliquishness or insularity, with people tending to stick together in like-minded 
groups and disdaining everyone outside their immediate community. 

It is worth asking whether the inverse of Harary's cluster ability theorem 
is also true. Is it also the case that a network that is clusterable is necessarily 
balanced? The answer is no, as this simple counter-example shows: 

31 As an interesting historical note, we observe that while Harary' 5 proof of his theorem is per
fectly correct, his interpretation of it was, in this author's opinion, erroneous. In his 1953 pa
per [154], he describes the meaning of the theorem in the following words: "A psychological in
terpretation of Theorem 1 is that a 'balanced group' consists of two highly cohesive cliques which 
dislike each other." (Harary is using the word "clique" in a non-technical sense here to mean a 
closed group of people, rather than in the graph theoretical sense of Section 7.8.1.) However, just 
because it is possible to color the network in two colors as described above does not mean the net
work forms two groups. Since the vertices of a single color are not necessarily contiguous, there 
are in general many groups of each color, and it seems unreasonable to describe these groups as 
forming a single "highly cohesive clique" when in fact they have no contact at all. Moreover, it is 
neither possible nor correct to conclude that the members of two groups of opposite colors dislike 
each other unless there is at least one edge connecting the two. If two groups of opposite colors 
never actually have any contact then it might be that they would get along just fine if they met. 
It's straightforward to prove that such an occurrence would lead to an unbalanced network, but 
Harary's statement says that the present balanced network implies dislike, and this is untrue. Only 
if the network were to remain balanced upon addition of one or more edges between groups of 
unlike colors would his conclusion be accurate. 

-D
'-' 
, ' 

- -
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In this network all three vertices dislike each other, so there is an odd number 
of minus signs around the loop, but there is no problem dividing the network 
into three clusters of one vertex each such that everyone dislikes the members 
of the other clusters. This network is clusterable but not balanced. 

7.12 SIMILARITY 

Another central concept in social network analysis is that of similarity between 
vertices. In what ways can vertices in a network be similar, and how can we 
quantify that similarity? Which vertices in a given network are most similar 
to one another? Which vertex v is most similar to a given vertex u? Answers 
to questions like these can help us tease apart the types and relationships of 
vertices in social networks, information networks, and others. For instance, 
one could imagine that it might be useful to have a list of web pages that are 
similar-in some appropriate sense-to another page that we specify. In fact, 
several web search engines already provide a feature like this: "Click here for 
pages similar to this one." 

Similarity can be determined in many different ways and most of them 
have nothing to do with networks. For example, commercial dating and match
making services try to match people with others to whom they are similar by 
using descriptions of people's interests, background, likes, and dislikes. In ef
fect, these services are computing similarity measures between people based 
on personal characteristics. Our focus in this book, however, is on networks, 
so we will concentrate on the more limited problem of determining similar
ity between the vertices of a network using the information contained in the 
network structure. 

There are two fundamental approaches to constructing measures of net
work similarity, called structural equivalence and regular equivalence. The names 
are rather opaque, but the ideas they represent are simple enough. Two ver
tices in a network are structurally equivalent if they share many of the same 
network neighbors. In Fig. 7.9a we show a sketch depicting structural equiv
alence between two vertices i and j-the two share, in this case, three of the 
same neighbors, although both also have other neighbors that are not shared. 

Regular equivalence is more subtle. Two regularly equivalent vertices do 
not necessarily share the same neighbors, but they have neighbors who are 
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(a) Struchual equivalence (b) Regular equivalence 

Figure 7.9: Structural equivalence and regular equivalence. (a) Vertices i and j are 
structurally equivalent if they share many of the same neighbors. (b) Vertices i and j 
are regularly equivalent if their neighbors are themselves equivalent (indicated here by 
the different shades of vertices). 

themselves similar. Two history students at different universities, for example, 
may not have any friends in common, but they can still be similar in the sense 
that they both know a lot of other history students, history instructors, and so 
forth. Similarly, two CEOs at two different companies may have no colleagues 
in common, but they are similar in the sense that they have professional ties to 
their respective CFO, CIO, members of the board, company president, and so 
forth. Regular equivalence is illustrated in Fig. 7.9b. 

In the next few sections we describe some mathematical measures that 
quantify these ideas of similarity. As we will see, measures for structural 
equivalence are considerably better developed than those for regular equiv
alence. 

7.12.1 COSINE SIMILARITY 

We start by looking at measures of structural equivalence and we will concen
trate on undirected networks. Perhaps the simplest and most obvious mea
sure of structural equivalence would be just a count of the number of common 
neighbors two vertices have. In an undirected network the number nij of com
mon neighbors of vertices i and j is given by 

nij = LAikAkj, 
k 

(7.46) 

which is the ijth element of A2. This quantity is closely related to the "co
citation" measure introduced in Section 6.4.1. Cocitation is defined for directed 

nc.hN'nrb whereas we are here considering undirected ones, but otherwise it is 

esserltiillly the same thing. 
However, a simple count of cornman neighbors for two vertices is not on 
own a very good measure of similarity. If two vertices have three cornman 

nE:ighboTE is that a lot or a little? It's hard to tell unless we know, for instance, 
the degrees of the vertices are, or how many common neighbors other 
of vertices share. What we need is some sort of normalization that places 

similarity value on some easily understood scale. One strategy might be 
c;""~l" to divide by the total number of vertices in the network 11, since this is 

maximum number of cornman neighbors two vertices can have in a simple 
(Technically the maximum is actually 11 - 2, but the difference is small 

n is large.) However, this unduly penalizes vertices with low degree: if 
vertex has degree three, then it can have at most three neighbors in common 

another vertex, but the two vertices would still receive a small similarity 
if the divisor 11 were very large. A better measure would allow for the 

,,"nnn<' degrees of vertices. Such a measure is the cosine similarity, sometimes 
called Salton's cosine. 

In geometry, the inner or dot product of two vectors x and y is given by 
. Y = Ixllyl cos e, where Ixl is the magnitude of x and e is the angle between 

two vectors. Rearranging, we can write the cosine of the angle as 

x·y 
case = NTYi" (7.47) 

[290] proposed that we regard the ith and jth rows (or columns) of the 
adjac:en,cy matrix as two vectors and use the cosine of the angle between them 

our similarity measure. Noting that the dot product of two rows is simply 
AikAkj for an undirected network, this gives us a similarity 

(7.48) 

As.suming our network is an unweighted simple graph, the elements of the 
adiaoenc:y matrix take only the values 0 and 1, so that AD = A;] for all i, j. Then 

Aik = Lk A;k = Ie;, where Ie; is the degree of vertex i (see Eq. (6.19». Thus 

_ Lk A;kAkj "U 
(Tij - = --. 

vk;kj vlc;kj 
(7.49) 

cosine similarity of i and j is therefore the number of common neighbors 
the two vertices divided by the geometric mean of their degrees. For the 
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vertices i and j depicted in Fig. 7.9a, for instance, the cosine similarity would 
be 

3 
(J";j = V 4 x 5 = 0.671 ... (7.50) 

Notice that the cosine similarity is technically undefined if one or both of the 
vertices has degree zero, but by convention we normally say in that case that 
(Jij = O. 

The cosine similarity provides a natural scale for our similarity measure. 
Its value always lies in the range from 0 to 1. A cosine similarity of 1 indicates 
that two vertices have exactly the same neighbors. A cosine similarity of zero 
indicates that they have none of the same neighbors. Notice that the cosine 
similarity can never be negative, being a sum of positive terms, even though 
cosines in general can of course be negative. 

7.12.2 PEARSON COEFFICIENTS 

An alternative way to normalize the count of common neighbors is to compare 
it with the expected value that count would take on a network in which ver
tices choose their neighbors at random. This line of argument leads us to the 
Pearson correlation coefficient. 

Suppose vertices i and j have degrees Ie; and lej respectively. How many 
common neighbors should we expect them to have? This is straightforward to 
calculate if they choose their neighbors purely at random. Imagine that vertex i 
chooses k; neighbors uniformly at random from the n possibilities open to it (or 
n - 1 on a network without self-loops, but the distinction is slight for a large 
network), and vertex j similarly chooses Ie] neighbors at random. For the first 
neighbor that j chooses there is a probability of k;/n that it will choose one of 
the ones Ie; chose, and similarly for each succeeding choice. (We neglect the 
possibility of choosing the same neighbor twice, since it is small for a large 
network.) Then in total the expected number of common neighbors between 
the two vertices will be kj times this, or k;k] / n. 

A reasonable measure of similarity between two vertices is the actual num
ber of common neighbors they have minus the expected number that they 

have if they chose their neighbors at random: 

" k;k] " 1 " " L.., A;kAjk - - = L.., AkAjk - - L.., Ak L.., Ajl 
k n k n k I 

= LA;kAjk - n(A;)(Aj) 
k 

= L[A;kAjk - (A;)(A])] 
k 

= DA;k - (A) )(Ajk - (Aj ), 
k 

(7.51) 

(A;) denotes the mean n-1 Lk A;k of the elements of the ith row of the 
adJac:ency matrix. Equation (7.51) will be zero if the number of common neigh

of i and j is exactly what we would expect on the basis of random chance. 
it is positive, then i and j have more neighbors than we would expect by 

ch,ance, which we take as an indication of similarity between the two. Equa
(7.51) can also be negative, indicating that i and j have fewer neighbors 
we would expect, a possible sign of dissimilarity. 

Equation (7.51) is simply n times the covariance cov(A;, Ai) of the two rows 
the adjacency matrix. It is common to normalize the covariance, as we did 

the cosine similarity, so that its maximum value is 1. The maximum value 
the covariance of any two sets of quantities occurs when the sets are exactly 

same, in which case their covariance is just equal to the variance of either 
which we could write as o-f or err or in symmetric form as erjerj' Normaliz
by this quantity then gives us the standard Pearson correlation coefficient: 

(7.52) 

quantity lies strictly in the range -1 :S Y;j :S 1. 
The Pearson coefficient is a widely used measure of similarity. It allows 
to say when vertices are both similar or dissimilar compared with what we 

expect if connections in the network were formed at random. 

OTHER MEASURES OF STRUCTURAL EQUIVALENCE 

are many other possible measures of structural equivalence. For in
Malice, one could also normalize the number n;j of common neighbors by di

by (rather than subtracting) the expected value of k;k/ n. That would 
us a similarity of 

(7.53) 
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This quantity will be 1 if the number of common neighbors is exactly as ex
pected on the basis of chancef greater than one if there are more common 
neighbors than that, and less than one for dissimilar vertices with fewer com
mon neighbors than we would expect by chance. It is never negative and has 
the nice property that it is zero when the vertices in question have no common 
neighbors. This measure could be looked upon as an alternative to the cosine 
similarity: the two differ in that one has the product of the degrees leile j in the 
denominator while the other has the square root of the product Jleilej. It has 
been suggested that Eq. (7.53) may in some cases be a superior measure to the 
cosine similarity because, by normalizing with respect to the expected number 
of common neighbors rather than the maximum numberf it allows us to eas
ily identify statistically surprising coincidences between the neighborhoods of 
vertices, which cosine similarity does not [195]. 

Another measure of structural equivalence is the so-called Euclidean dis
tance,32 which is equal to the number of neighbors that differ between two 
vertices. That is, it is the number of vertices that are neighbors of i but not of j, 
or vice versa. Euclidean distance is really a dissimilarity measure, since it is 
larger for vertices that differ more. 

In terms of the adjacency matrix the Euclidean distance dij between two 
vertices can be written 

diJ = I::<Atk - Ajk)2 (7.54) 
k 

As with our other measures it is sometimes convenient to normalize the Eu
clidean distance by dividing by its possible maximum value. The maximum 
value of dij occurs when two vertices have no neighbors in common, in which 
case the distance is equal to the sum of the degrees of the vertices: dij = lei + lej. 
Dividing by this maximum value the normalized distance is 

L,,(Aik - Ajk)2 Lk(Atk + Alk - 2AikAjk) 
lei + lej - lei + le j 

(7.55) 

where we have made use of the fact that AD = Ai) because Ai) is always zero or 
one, and nij is again the number of neighbors that i and j have in common. To 
within additive and multiplicative constants, this normalized Euclidean dis
tance can thus be regarded as just another alternative normalization of the 
number of common neighbors. 

32This is actually a bad name for it-it should be called Hamming distance, since it is essentially 
the same as the Hamming distance of computer science and has nothing to do with Euclid. 

7.12.4 REGULAR EQUIVALENCE 

The similarity measures discussed in the preceding sections are all measures of 
structural equivalence, i.e., they are measures of the extent to which two ver
tices share the same neighbors. The other main type of similarity considered 
in social network analysis is regular equivalence. As described above, regu
larly equivalent vertices are vertices that, while they do not necessarily share 
neighbors, have neighbors who are themselves similar~see Fig. 7.9b again. 

Quantitative measures of regular equivalence are less well developed than 
measures of structural equivalence. In the 1970s social network analysts came 
up with some rather complicated computer algorithms, such as the "REGE" 
algorithm of White and Reitz [320,327], that were intended to discover regular 
equivalence in networks, but the operation of these algorithms is involved and 
not easy to interpret. More recently, however, some simpler algebraic measures 
have been developed that appear to work reasonably well. The basic idea [45, 
162, 195J is to define a similarity score (Tij such that i and j have high similarity 
if they have neighbors k and I that themselves have high similarity. For an 
undirected network we can write this as 

(Tij = IX [.AikAj/(Tkl' 
kl 

(7.56) 

or in matrix terms (j = aA(j A. Although it may not be immediately clear, 
this expression is a type of eigenvector equation, where the entire matrix (j of 
similarities is the eigenvector. The parameter IX is the eigenvalue (or more cor
rectly, its inverse) and, as with the eigenvector centrality of Section 7.2, we are 
normally interested in the leading eigenvalue, which can be found by standard 
methods. 

This formula however has some problems. First, it doesn't necessarily give 
a high value for the "self-similarity" (Tii of a vertex to itself, which is counter
intuitive. Presumably, all vertices are highly similar to themselves! As a conse
quence of this, Eq. (7.56) also doesn't necessarily give a high similarity score to 
vertex pairs that have a lot of common neighbors, which in the light of our ex
amination of structural equivalence in the preceding few sections we perhaps 
feel it should. If we had high self-similarity scores for all vertices, on the other 
hand, then Eq. (7.56) would automatically give high similarity also to vertices 
with many common neighbors. 

We can fix these problems by introducing an extra diagonal term in the 
Similarity thus: 

(Tij = IX [. AikAj1(Tkl + 6i), 
kl 

(7.57) 
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Vertices i and j are consid
ered similar (dashed line) if 
they have respective neigh
bors k and 1 that are them
selves similar. 

See Section 11.1 for a dis
cussion of computer algo
rithms for finding eigen
vectors. 
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it has a neighbor Ie that is it
self similar to j. 
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or in matrix notation 
a = ",AaA+I. (7.58) 

However, while expressions like this have been proposed as similarity mea
sures, they still suffer from some problems. Suppose we evaluate Eq. (7.58) by 
repeated iteration, taking a starting value, for example, of aiD) = ° and using 
it to compute a(1) = ",AaA + I, and then repeating the process many times 
until 0' converges. On the first few iterations we will get the following results: 

a(1) = I, 

a (2) = ",A2 + I, 
a(3) = ",2A4 +",A2 +I. 

(7.59a) 

(7.59b) 

(7.59c) 

The pattern is clear: in the limit of many iterations, we will get a sum over 
even powers of the adjacency matrix. However, as discussed in Section 6.10, 
the elements of the rth power of the adjacency matrix count paths of length r 
between vertices, and hence this measure of similarity is a weighted sum over 
the numbers of paths of even length between pairs of vertices. 

But why should we consider only paths of even length? Why not consider 
paths of all lengths? These questions lead us to a better definition of regular 
equivalence as follows: vertices i and j are similar if i has a neighbor k that is 
itself similar to j.33 Again we assume that vertices are similar to themselves, 
which we can represent with a diagonal Oij term in the similarity, and our sim
ilarity measure then looks like 

or 

(Tij = tX L Aik(Jkj + Oi)! 
k 

a = ",Aa+I, 

(7.60) 

(7.61) 

in matrix notation. Evaluating this expression by iterating again starting from 
aiD) = 0, we get 

all) = I, 

a (2) = ",A + I, 
a(3) = ",2A2 +",A+I. 

(7.62a) 

(7.62b) 

(7.62c) 

33This definition is not obviously symmetric with respect to i and j but, as we see, does in fact 
give rise to an expression for the similarity that is symmetric. 

In the limit of a large number of iterations this gives 

00 

a = I..: (aA)'" = (I - aA)-l, (7.63) 
111=0 

which we could also have deduced directly by rearranging Eq. (7.61). Now 
our similarity measure includes counts of paths at all lengths, not just even 
paths. In fact, we can see now that this similarity measure could be defined 
a completely different way, as a weighted count of all the paths between the 
vertices i and j with paths of length r getting weight ",'-. So long as a < 1, 
longer paths will get less weight than shorter ones, which seems sensible: in 
effect we are saying that vertices are similar if they are connected either by a 
few short paths or by very many long ones. 

Equation (7.63) is reminiscent of the formula for the Katz centrality, Eq. 
(7.10). We could call Eq. (7.63) the "Katz similarity" perhaps, although Katz 
himself never discussed it. The Katz centrality of a vertex would then be sim
ply the sum of the Katz similarities of that vertex to all others. Vertices that 
are similar to many others would get high centrality, a concept that certainly 
makes intuitive sense. As with the Katz centrality, the value of the parameter 
IX is undetermined-we are free to choose it as we see fit-but it must satisfy 
a < 1/](1 if the sum in Eq. (7.63) is to converge, where ](1 is the largest eigen
value of the adjacency matrix. 

In a sense, this regular equivalence measure can be seen as a generalization 
of our structural equivalence measures in earlier sections. With those measures 
we were counting the common neighbors of a pair of vertices, but the number 
of cornman neighbors is also of course the number of paths of length two be
tween the vertices. Our "Katz similarity" measure merely extends this concept 

to counting paths of all lengths. 
Some variations of this similarity measure are possible. As defined it tends 

to give high similarity to vertices that have high degree, because if a vertex 
has many neighbors it tends to increase the number of those neighbors that 
are similar to any other given vertex and hence increases the total similarity 
to that vertex. In some cases this might be desirable: maybe the person with 
many friends should be considered more similar to others than the person with 
few. However, in other cases it gives an unwanted bias in favor of high-degree 
nodes. Who is to say that two hermits are not "similar" in an interesting sense? 
If we wish, we can remove the bias in favor of high degree by dividing by 
vertex degree thus: 

(7.64) 

7.12 SIMILARITY 
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or in matrix notation a = etD- J Au + I, where, as previously, 0 is the diagonal 
matrix with elements Dii = ki . This expression can be rearranged to read:34 

(7.65) 

Another useful variant is to consider cases where the last term in Eqs. (7.60) 
or (7.64) is not simply diagonal, but includes off-diagonal terms too. Such 
a generalization would allow us to specify explicitly that particular pairs of 
vertices are similar, based on some other (probably non-network) information 
that we have at our disposal. Going back to the example of CEOs at compa
nies that we gave at the beginning of Section 7.12, we might, for example, want 
to state explicitly that the CFOs and CIOs and so forth at different companies 
are similar, and then our similarity measure would, we hope, correctly deduce 
from the network structure that the CEOs are similar also. This kind of ap
proach is particularly useful in the case of networks that consist of more than 
one component, so that some pairs of vertices are not connected at alL If, for 
instance, we have two separate components representing people in two differ
ent companies, then there will be no paths of any length between individuals 
in different companies, and hence a measure like (7.60) or (7.64) will never as
sign a non-zero similarity to such individuals. If however, we explicitly insert 
some similarities between members of the different companies, our measure 
will then be able to generalize and extend those inputs to deduce similarities 
between other members. 

This idea of generalizing from a few given similarities arises in other con
texts too. For example, in the fields of machine learning and information re
trieval there is a considerable literature on how to generalize known similar
ities between a subset of the objects in a collection of, say, text documents to 
the rest of the collection, based on network data or other information. 

7.13 HOMOPHILY AND ASSORTATIVE MIXING 

Consider Fig. 7.10, which shows a friendship network of children at an Amer
ican school, determined from a questionnaire of the type discussed in Sec
tion 3.2.35 One very clear feature that emerges from the figure is the division of 

34It is interesting to note that when we expand this measure in powers of the adjacency matrix, 
as we did in Eq. (7.63), the second-order (i.e., path-length two) term is the same as the structural 
equivalence measure of Eq. (7.53), which perhaps lends further credence to both expressions as 
natural measures of Similarity. 

35The study used a "name generator"-students were asked to list the names of others they 
considered to be their friends. This results in a directed network, but we have neglected the edge 

,. 
I 
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• Black 
o White 
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Figure 7.10: Friendship network at a US high school. The vertices in this network represent 470 students at a US 
high school (ages 14 to 18 years). The vertices are color coded by race as indicated in the key. Data from the National 
Longitudinal Study of Adolescent Health [34,314]. 

the network into two groups. It turns out that this division is principally along 
lines of race. The different shades of the vertices in the picture correspond to 
students of different race as denoted in the legend, and reveal that the school is 
sharply divided between a group composed principally of black children and 
a group composed principally of white. 

This is not news to sociologists, who have long observed and discussed 
such divisions [225]. Nor is the effect specific to race. People are found to 
form friendships, acquaintances, business relations, and many other types of 
tie based on all sorts of characteristics, including age, nationality, language, in
come, educational level, and many others. Almost any social parameter you 

directions in the figure. In our representation there is an undirected edge between vertices i and j 
if either of the pair considers the other to be their friend (or both). 
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can imagine plays into people's selection of their friends. People have, it ap
pears, a strong tendency to associate with others whom they perceive as being 
similar to themselves in some way. This tendency is called homophily or assor
tative mixing. 

More rarely, one also encounters disassortative mixing, the tendency for peo
ple to associate with others who are unlike them. Probably the most widespread 
and familiar example of disassortative mixing is mixing by gender in sexual 
contact networks. The majority of sexual partnerships are between individu
als of opposite sex, so they represent connections between people who differ 
in their gender. Of course, same-sex partnerships do also occur, but they are a 
much smaller fraction of the ties in the network. 

Assortative (or disassortative) mixing is also seen in some nonsocial net
works. Papers in a citation network, for instance, tend to cite other papers in 
the same field more than they do papers in different fields. Web pages written 
in a particular language tend to link to others in the same language. 

In this section we look at how assortative mixing can be quantified. As
sortative mixing by discrete characteristics such as race, gender, or nationality 
is fundamentally different from mixing by a scalar characteristic like age or 
income, so we treat the two cases separately. 

7.13.1 ASSORTATIVE MIXING BY ENUMERATIVE CHARACTERISTICS 

Suppose we have a network in which the vertices are classified according to 
some characteristic that has a finite set of possible values. The values are 
merely enumerative-they don't fall in any particular order. For instance, the 
vertices could represent people and be classified according to nationality, race, 
or gender. Or they could be web pages classified by what language they are 
written in, or biological species classified by habitat, or any of many other pos
sibilities. 

The network is assortative if a significant fraction of the edges in the net
work run between vertices of the same type, and a simple way to quantify 
assortativity would be to measure that fraction. However, this is not a very 
good measure because, for instance, it is 1 if all vertices belong to the same 
Single type. This is a trivial sort of assortativity: all friends of a human be
ing, for example, are also human beings,36 but this is not really an interesting 
statement. What we would like instead is a measure that is large in non-trivial 
cases but small in trivial ones. 

A good measure turns out to be the following. We find the fraction of edges 

36Ignoring, for the purposes of argument, dogs, cats, imaginary friends, and so forth. 
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that run between vertices of the same type, and then we subtract from that fig
ure the fraction of such edges we would expect to find if edges were positioned 
at random without regard for vertex type. For the trivial case in which all ver
tices are of a single type, for instance, 100% of edges run between vertices of 
the same type, but this is also the expected figure, since there is nowhere else 
for the edges to fall. The difference of the two numbers is then zero, telling us 
that there is no non-trivial assortativity in this case. Only when the fraction of 
edges between vertices of the same type is significantly greater than we would 
expect on the basis of chance will our measure give a positive score. 

In mathematical terms, let us denote by Ci the class or type of vertex i, which 
is an integer 1 ... n" with n, being the total number of classes. Then the total 
number of edges that run between vertices of the same type is 

L J(Ci,Cj) = ~ LAjJ(Ci,Cj), (7.66) 
edges (i,j) ij 

where J (m, n) is the Kronecker delta and the factor of ~ accounts for the fact 
that every vertex pair i, j is counted twice in the second sum. 

Calculating the expected number of edges between vertices if edges are 
placed at random takes a little more work. Consider a particular edge attached 
to vertex i, which has degree lei. There are by definition 2m ends of edges in 
the entire network, where m is as usual the total number of edges, and the 
chances that the other end of our particular edge is one of the k j ends attached 
to vertex j is thus lej 12m if connections are made purely at random.37 Counting 
all lei edges attached to i, the total expected number of edges between vertices i 
and j is then kik;l2m, and the expected number of edges between all pairs of 
vertices of the same type is 

(7.67) 

where the factor of !, as before, prevents us from double-counting vertex pairs. 
Taking the difference of (7.66) and (7.67) then gives us an expression for the 
difference between the actual and expected number of edges in the network 

37Teclmically, we are making connections at random while preserving the vertex degrees. We 
could in principle ignore vertex degrees and make connections truly at random, but in practice 
this is found to give much poorer results. 
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that join vertices of like types: 

(7.68) 

Conventionally, one calculates not the number of such edges but the fraction, 
which is given by this same expression divided by the number m of edges: 

(7.69) 

This quantity Q is called the modularity [239,250] and is a measure of the extent 
to which like is connected to like in a network. It is strictly less than 1, takes 
positive values if there are more edges between vertices of the same type than 
we would expect by chance, and negative ones if there are less. 

For Fig. 7.10, for instance, where the types are the three ethnic classifica
tions "black," "white," and "other," we find a modularity value of Q = 0.305, 
indicating (positive) assortative mixing by race in this particular network.3S 

Negative values of the modularity indicate disassortative mixing. We might 
see a negative modularity, for example, in a network of sexual partnerships 
where most partnerships were between individuals of opposite sex. 

The quantity 
kikJ B0 =A0--
2 

V~ 
m 

in Eq. (7.69) appears in a number of situations in the study of networks. We will 
encounter it, for instance, in Section 11.8 when we study community detection 
in netvvorks. In some contexts it is useful to consider Bij to be an element of a 
matrix B, which itself is called the modularity matrix. 

The modularity, Eq. (7.69), is always less than 1 but in general it does not 
achieve the value Q = 1 even for a perfectly mixed network, one in which 
every vertex is connected only to others of the same type. Depending on the 
sizes of the groups and the degrees of vertices, the maximum value of Q can 
be considerably less than 1. This is in some ways unsatisfactory: how is one to 

38 An alternative measure of assortativity has been proposed by Gupta et aI. [152]. That measure 
however gives equal weight to each group of vertices, rather than to each edge as the modularity 
does. With this measure if one had a million vertices of each of two types, which mixed with 
one another entirely randomly, and ten more vertices of a third type that connected only among 
themselves, one would end up with a score of about 0.5 [239], which appears to imply strong 
assortativity when in fact almost all of the network mixes randomly. For most purposes therefore, 
the measure of Eq. (7.69) gives results more in line with our intuitions. 

7.13 HOMOPHILY AND ASSORTATIVE MIXING 

know when one has strong assortative mixing and when one doesn't? To rec
tify the problem, we can normalize Q by dividing by its value for the perfectly 
mixed network. With perfect mixing all edges fall between vertices of the same 
type and hence 6(cj,cj) = 1 whenever Aij = 1. This means that the first term 
in the sum in Eq. (7.69) sums to 2m and the modularity for the perfectly mixed 
network is 

1 ( " kikj ) Qm,,=- 2m-L.,-·""-6(cj,cJ) • 
2m ij 2m 

(7.71) 

Then the normalized value of the modularity is given by 

Q I:jj(Aj - kikj/2m)6(ci,Cj) 

Qm" = 2m - I:ij(lcikj/2;;,)6(cj,cj)· 
(7.72) 

This quantity, sometimes called an assortativity coefficient, now takes a maxi
mum value of 1 on a perfectly mixed network. 

Although it can be a useful measure in some circumstances, however, Eq. 
(7.72) is only rarely used. Most often, the modularity is used in its unnormal
ized form, Eq. (7.69). 

An alternative form for the modularity, which is sometimes useful in prac
tical situations, can be derived in terms of the quantities 

(7.73) 

which is the fraction of edges that join vertices of type,. to vertices of type s, 

and 
1 

a,= [;ki 6(ci,r), 
2m i 

(7.74) 

which is the fraction of ends of edges attached to vertices of type r. Then, 

noting that 
(7.75) 

we have, from Eq. (7.69) 
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This form can be useful, for instance, when we have network data in the form 
of a list of edges and the types of the vertices at their ends, but no explicit data 
on vertex degrees. In such a case Crs and ar are relatively easy to calculate, 
while Eq. (7.69) is quite awkward. 

7.13.2 ASSORTATIVE MIXING BY SCALAR CHARACTERISTICS 

We can also have homophily in a network according to scalar characteristics 
like age or income. These are characteristics whose values come in a particular 
order, so that it is possible say not only when two vertices are exactly the same 
according to the characteristic but also when they are approximately the same. 
For instance, while two people can certainly be of exactly the same age-born 
on the same day even-they can also be approximately the same age-born 
within a couple of years of one another, say-and people could (and in fact of
ten do) choose who they associate with on the basis of such approximate ages. 
There is no equivalent approximate similarity for the enumerative characteris
tics of the previous section: there is no sense in which people from France and 
Germany, say, are more nearly of the same nationality than people from France 
and Spain.39 

If network vertices with similar values of a scalar characteristic tend to be 
connected together more often that those with different values then the net
work is considered assortatively mixed according to that characteristic. If, for 
example, people are friends with others around the same age as them, then the 
network is assortatively mixed by age. Sometimes you may also hear it said 
that the network is stratified by age, which means the same thing-one can 
think of age as a one-dimensional scale or axis, with individuals of different 
ages forming connected "strata" within the network. 

Consider Fig. 7.11, which shows friendship data for the same set of US 
schoolchildren as Fig. 7.10 but now as a function of age. Each dot in the figure 
corresponds to one pair of friends and the position of the dot along the two 
axes gives the ages of the friends, with ages measured by school grades.40 As 
the figure shows, there is substantial assortative mixing by age among the stu
dents: many dots lie within the boxes close to the diagonal line that represent 

390f course, one could make up some measure of national differences, based sayan geographic 
distance, but if the question we are asked is, "Are these two people of the same nationality?" then 
under normal circumstances the only answers are "yes" and "no." There is nothing in between. 

4[lIn the US school system there are 12 grades of one year each and to begin grade g students 
normally must be at least of age g + 5. Thus the 9th grade corresponds to children of age 14 and 
15. 
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9 10 11 12 
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Figure 7.11: Ages of pairs of friends in high school. In this scatter plot each dot cor
responds to one of the edges in Fig. 7.10, and its position along the horizontal and 
vertical axes gives the ages of the two individuals at either end of that edge. The ages 
are measured in terms of the grades of the students, which run from 9 to 12. In fact, 
grades in the US school system don't correspond precisely to age since students can 
start or end their high-school careers early or late, and can repeat grades. (Each student 
is positioned at random within the interval representing their grade, so as to spread the 
points out on the plot. Note also that each friendship appears twice, above and below 

the diagonal.) 

friendships between students in the same grade. There is also, in this case, a 
notable tendency for students to have more friends of a wider range of ages 
as their age increases so there is a lower density of points in the top right box 
than in the lower left one. 

One could make a crude measure of assortative mixing by scalar charac
teristics by adapting the ideas of the previous section. One could group the 
vertices into bins according to the characteristic of interest (say age) and then 
treat the bins as separate "types" of vertex in the sense of Section 7.13.1. For in
stance, we might group people by age in ranges of one year or ten years. This 
however misses much of the point about scalar characteristics, since it con
siders vertices falling in the same bin to be of identical types when they may 
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be only approximately so, and vertices falling in different bins to be entirely 
different when in fact they may be quite similar. 

A better approach is to use a covariance measure as follows. Let Xi be the 
value for vertex i of the scalar quantity (age, income, etc.) that we are interested 
in. Consider the pairs of values (x;,x j ) for the vertices at the ends of each 
edge (i, j) in the network and let us calculate their covariance over all edges as 
follows. We define the mean I' of the value of X; at the end of an edge thus: 

(7.77) 

Note that this is not simply the mean value of X; averaged over all vertices. It 
is an average over edges, and since a vertex with degree ki lies at the ends of ki 

edges it appears k; times in the average (hence the factor of Ie; in the sum). 
Then the covariance of Xi and x) over edges is 

(7.78) 

where we have made use of Eqs. (6.21) and (7.77). Note the strong similar
ity between this expression and Eq. (7.69) for the modularity-only the delta 
function J( c;, cj ) in (7.69) has changed, being replaced by x;xj-

The covariance will be positive if, on balance, values Xi, Xj at either end of 
an edge tend to be both large or both small and negative if they tend to vary in 
opposite directions. In other words, the covariance will be positive when we 
have assortative mixing and negative for disassortative mixing. 

Just as with the modularity measure of Section 7.13.1, it is sometimes con
venient to normalize the covariance so that it takes the value 1 in a perfectly 
mixed network-one in which all edges fall between vertices with precisely 
equal values of Xi (although in most cases such an occurrence would be ex
tremely unlikely in practice). Putting Xj = X; in Eq. (7.78) gives a perfect mix-
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ing value of 

(7.79) 

and the normalized measure, sometimes called an assortativity coefficient, is the 
ratio of the two: 

Lij(A;j - k;kjl2m)x;xj 
r - ='--c:-;:--c;-:---;=--;-~ 

- L;j(k;J;j - k;kjl2m)x;xj· 
(7.80) 

Although it may not be immediately obvious, this is in fact an example of a 
(Pearson) correlation coefficient, having a covariance in its numerator and a 
variance in the denominator. We encountered another example in a different 
context in Section 7.12.2. The correlation coefficient varies in value between a 
maximum of 1 for a perfectly assortative network and a minimum of -1 for a 
perfectly disassortative one. A value of zero implies that the values of X; at the 
ends of edges are uncorrelated.41 

For the data of Fig. 7.11 the correlation coefficient is found to take a value 
of r = 0.616, indicating that the student friendship network has significant 
assortative mixing by age-students tend to be friends with others who have 
ages close to theirs. 

It would be possible in principle also to have assortative (or disassortative) 
mixing according to vector characteristics, with vertices whose vectors have 
similar values, as measured by some appropriate metric, being more (or less) 
likely to be connected by an edge. One example of such mixing is the for
mation of friendships between individuals according to their geographic lo
cations, location being specified by a two-dimensional vector of, for example, 
latitude/longitude coordinates. It is certainly the case that in general people 
tend to be friends with others who live geographically close to them, so one 
would expect mixing of this type to be assortative. Formal treatments of vec
tor assortative mixing, however, have not been much pursued in the network 
literature so far. 

41There could be non-linear correlations in such a network and we could still have r = 0; the 
correlation coefficient detects only linear correlations. For instance, we could have vertices with 
high and low values of Xi connected predominantly to vertices with intermediate values. This is 
neither assortative nor disassortative by the conventional definition and would give a small value 
of r, but might nonetheless be of interest. Such non-linear correlations could be discovered by 
examining a plot such as Fig. 7.11 or by using alternative measures of correlation such as informa
tion theoretic measures. ll111S it is perhaps wise not to rely solely on the value of r in investigating 
assortative mixing. 
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7.13.3 ASSORTATIVE MIXING BY DEGREE 

A special case of assortative mixing according to a scalar quantity, and one of 
particular interest, is that of mixing by degree. In a network that shows assorta
tive mixing by degree the high-degree vertices will be preferentially connected 
to other high-degree vertices, and the low to low. In a social network, for exam
ple, we have assortative mixing by degree if the gregarious people are friends 
with other gregarious people and the hermits with other hermits. Conversely, 
we could have disassortative mixing by degree, which would mean that the 
gregarious people were hanging out with hermits and vice versa. 

The reason this particular case is interesting is because, unlike age or in
come, degree is itself a property of the network structure. Having one struc
tural property (the degrees) dictate another (the positions of the edges) gives 
rise to some interesting features in networks. In particular, in an assortative 
network, where the high-degree nodes tend to stick together, one expects to 
get a clump or core of such high-degree nodes in the network surrounded by 
a less dense periphery of nodes with lower-degree. This core/periphery structure 
is a common feature of social networks, many of which are found to be as
sortatively mixed by degree. Figure 7.12a shows a small assortatively mixed 
network in which the core/periphery structure is clearly visible. 

On the other hand, if a network is disassortatively mixed by degree then 
high-degree vertices tend to connected to low-degree ones, creating star-like 
features in the network that are often readily visible. Figure 7.12b shows an 
example of a small disassortative network. Disassortatively networks do not 
usually have a core/periphery split but are instead more uniform. 

Assortative mixing by degree can be measured in the same way as mixing 
according to any other scalar quantity. We define a covariance of the type 
described by Eq. (7.78), but with X; now equal to the degree k;: 

(7.81) 

or if we wish we can normalize by the maximum value of the covariance to get 
a correlation coefficient or assortativity coefficient: 

I.;,](A,] - k,k]/2m)k,k] 
r= 

'L,](k,5'1 - k,k]/2m)lc,k] 
(7.82) 

We give examples of the application of this formula to a number of networks 
in Section 8.7. 

One point to notice is that the evaluation of Eq. (7.81) or Eq. (7.82) requires 
only the structure of the network and no other information (unlike the calcu-

PROBLEMS 

(a) (b) 

Figure 7.12: Assortative and disassortative networks. These two small networks are not real networks-they were 
computer generated to display the phenomenon of assortativity by degree. (a) A network that is assortative by degree, 
displaying the characteristic dense core of high-degree vertices surrounded by a periphery of lower-degree ones. (b) A 
disassortative network, displaying the star-like structures characteristic of this case. Figure from Newman and Gir
van I249]. Copyright 2003 Springer-Verlag Berlin Heidelberg. Reproduced with kind permission of Springer Science 
and Business Media. 

lations for other forms of assortative mixing). Once we know the adjacency 
matrix (and hence the degrees) of all vertices we can calculate r. Perhaps for 
this reason mixing by degree is one of the most frequently studied types of 
assortative mixing. 

PROBLEMS 

7.1 Consider a k-regular undirected network (i.e., a network in which every vertex has 
degree k). 
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a) Show that the vector 1 = (1,1,1, ... ) is an eigenvector of the adjacency matrix 

with eigenvalue k. 

b) By making use of the fact that eigenvectors are orthogonal (or otherwise), show 
that there is no other eigenvector that has all elements positive. The Perron
Frobenius theorem says that the eigenvector with the largest eigenvalue always 
has all elements non-negative (see footnote 2 on page 346), and hence the eigen
vector 1 gives, by definition, the eigenvector centrality of our k-regular network 
and the centralities are the same for every vertex. 

c) Find the Katz centralities of all vertices in a lc-regular network. 

d) You should have found that, as with the eigenvector centrality, the Katz central
ities of all vertices in the network are the same. Name a centrality measure that 
could give different centrality values for different vertices in a regular network. 

7.2 Suppose a directed network takes the form of a tree with all edges pointing inward 

towards a central vertex: 

What is the PageRank centrality of the central vertex in terms of the single parameter a 
appearing in the definition of PageRank and the geodesic distances di from each vertex i 
to the central vertex? 

7.3 Consider an undirected tree of 11 vertices. A particular edge in the tree joins ver
tices 1 and 2 and divides the tree into two disjoint regions of 111 and 112 vertices as 

sketched here: 

1 2 

Show that the closeness centralities C1 and C2 of the two vertices, defined according to 
Eq. (7.29), are related by 

1 111 1 112 
~+-~-+~. 
C1 11 C2 11 

7.4 Consider an undirected (connected) tree of 11 vertices. Suppose that a particular 
vertex in the tree has degree k, so that its removal would divide the tree into k disjoint 
regions, and suppose that the sizes of those regions are 111 •.. 11k· 

a) Show that the unnormalized betweenness centrality x of the vertex, as defined in 
Eq. (7.36), is 

k 

x = /1
2 

- L: 11~1· 
m.,..,l 

b) Hence, or otherwise, calculate the betweenness of the ith vertex from the end of a 
"line graph" of 11 vertices, i.e., 11 vertices in a row like this: 

• • • • • • • 
7.5 Consider these three networks: 

A~---"'B 

a) Find a 3-core in the first network. 

b) What is the reciprocity of the second network? 

c) What is the cosine similarity of vertices A and B in the third network? 

7.6 Among all pairs of vertices in a directed network that are connected by an edge or 
edges, suppose that half are connected in only one direction and the rest are connected 
in both directions. What is the reciprocity of the network? 

7.7 In this network + and - indicate pairs of people who like each other or don't, 
respectively: 

PROBLEMS 
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a) Is the network structurally balanced and why? 

b) Is it clusterable and, if so, what are the clusters? 

7.8 In a survey of couples in the US city of San Francisco, Catania et al. [65] recorded, 
among other things, the ethnicity of their mterviewees and calculated the fraction of 
couples whose members were from each possible pairing of ethnic groups. The frac
tions were as follows: 

Women 
Black Hispanic White Other Total 

I Black 0.258 0.016 0.035 0.013 0.323 

iJ Hispanic 0.012 0.157 0.058 0.019 0.247 
::;: White 0.013 0.023 0.306 0.035 0.377 

Other 0.005 0.007 0.024 0.016 0.053 

Total 0.289 0.204 0.423 0.084 

Assuming the couples interviewed to be a representative sample of the edges in the 
undirected network of relationships for the community studied, and treating the ver
tices as being of four types-black, Hispanic, white, and other-calculate the numbers 
err and a r that appear in Eq. (7.76) for each type. Hence calculate the modularity of the 
network with respect to ethnicity. 

CHAPTERS 

THE LARGE-SCALE STRUCTURE OF 

NETWORKS 

A discussion of some of the recurring patterns and 
structures revealed when we apply the concepts 
developed in previous chapters to the study of real-world 
networks 

I N PREVIOUS chapters of this book we have looked at different types of nat
ural and man-made networks and techniques for determining their struc

ture (Chapters 2 to 5), the mathematics used to represent networks formally 
(Chapter 6), and the measures and metrics used to quantify network structure 
(Chapter 7). In this chapter we combine what we have learned so far, applying 
our theoretical ideas and measures to empirical network data to get a picture 
of what networks look like in the real world. 

As we will see, there are a number of common recurring patterns seen in 
network structures, patterns that can have a profound effect on the way net
worked systems work. Among other things, we discuss in this chapter com
ponent sizes, path lengths and the small-world effect, degree distributions and 
power laws, and clustering coefficients. 

8.1 COMPONENTS 

We begin our discussion of the structure of real-world networks with a look 
at component sizes. In an undirected network, we typically find that there 
is a large component that fills most of the network-usually more than half 
and not infrequently over 90%-while the rest of the network is divided into a 
large number of small components disconnected from the rest. This situation 
is sketched in Fig. 8.1. (The large component is often referred to as the "giant 
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Network Type n m c 5 f It C Cws Ref(s). 

~ 
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j 
" u 

f 
I'i 

Film actors Undirected 449913 25516482 113.43 0.980 3.48 2.3 0.20 0.78 0.208 16,323 
Company directors Undirected 7673 55392 14.44 0.876 4.60 0.59 0.88 0.276 88,253 
Math coauthorship Undirected 253339 496 489 3.92 0.822 7.57 0.15 0.34 0.120 89,146 
Physics coauthorship Undirected 52909 245300 9.27 0.838 6.19 0.45 0.56 0.363 234,236 
Biology coauthorship Undirected 1520251 11803064 15.53 0.918 4.92 0.088 0.60 0.127 234,236 
Telephone call graph Undirected 47000000 80 000 000 3.16 2.1 9,10 
Email messages Directed 59812 86300 1.44 0.952 4.95 1.5/2.0 0.16 103 
Email address books Directed 16881 57029 3.38 0.590 5.22 0.17 0.13 0.092 248 
Student dating Undirected 573 477 1.66 0.503 16.01 0.005 0.001 -0.029 34 
Sexual contacts Undirected 2810 3.2 197,198 
WWWnd.edu Directed 269504 1497135 5.55 1.000 11.27 2.1/2.4 0.11 0.29 -0.067 13,28 
WWW AltaVista Di>ected 203549046 1466000000 7.20 0.914 16.18 2.1/2.7 56 
Citation network Directed 783339 67161988.57 3.0/- 280 
Roget's Thesaurus Directed 1022 5103 4.99 0.977 4.87 0.13 0.15 0.157 184 
Word co-occurrence Undirected 460902 16100000 66.96 1.000 2.7 0.44 97,116 
Internet Undirected 10697 31992 5.98 1.000 3.31 2.5 0.035 0.39 -0.189 66,111 
Power grid Undirected 4941 6594 2.67 1.000 18.99 0.10 0.080 -0.003 323 
Train routes Undirected 587 19603 66.79 1.000 2.16 0.69 -0.033 294 
Software packages Directed 1439 1723 1.20 0.998 2.42 1.6/1.4 0.070 0.082 -0.016 239 
Software classes Directed 1376 2213 1.61 1.000 5.40 0.033 0.012 -0.119 315 
Electronic circuits Undirected 24097 53248 4.34 1.000 11.05 3.0 0.010 0.030 -0.154 115 
Peer-to-peer network Undirected 880 1296 1.47 0.805 4.28 2.1 0.012 0.011 -0.366 6,282 
Metabolic network Undirected 765 3686 9.64 0.996 2.56 2.2 0.090 0.67 -0.240 166 

G Protein interactions Undirected 2115 2240 2.12 0.689 6.80 2.4 0.072 0.071 -0.156 164 
.~ Marine food web Directed 134 598 4.46 1.000 2.05 0.16 0.23 -0.263 160 
~ Freshwater food web Directed 92 997 10.84 1.000 1.90 0.20 0.087 -0.326 209 

Neural network Directed 307 2359 7.68 0.967 3.97 0.18 0.28 -0.226 323,328 

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total 
number of vertices n; total number of edges m; mean degree c; fraction of vertices in the largest component S (or the largest weakly 
connected component in the case of a directed network); mean geodesic distance between connected vertex pairs C; exponent 0: 

of the degree distribution if the distribution follows a power law (or "_If if not; in/out-degree exponents are given for directed 
graphs); clustering coefficient C from Eq. (7.41); clustering coefficient Cws from the alternative definition of Eq. (7.44); and the degree 
correlation coefficient r from Eq. (7.82). The last column gives the citation(s} for each network in the bibliography. Blank entries 
indicate unavailable data. 
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there is usually a good reason. For instance, the Internet is a communication 
network-its reason for existence is to provide cOlmections between its nodes, 
There must be at least one path from your vertex to your friend's vertex if the 
network is to serve its purpose of allowing your and your friend to commu
nicate. To put it another way, there would be no point in being a part of the 
Internet if you are not part of its largest component, since that would mean that 
you are disconnected from and unable to communicate with almost everyone 
else. Thus there is a strong pressure on every vertex of the Internet to be part 
of the largest component and thus for the largest component to fill the entire 
network. In other cases the largest component fills the network because of the 
way the network is measured. The first Web network listed in the table, for 
instance, is derived from a single web crawl, as described in Section 4.1. Since 
a crawler can only find a web page if that page is linked to by another page, it 
follows automatically that all pages found by a single crawl will be connected 
into a single component. A Web network may, however, have more than one 
component if, like the" Alta Vista" network in the table, it is assembled using 
several web crawls starting from different locations. 

Can a network have two or more large components that fill a sizable frac
tion of the entire graph? Usually the answer to this question is no. We will 
study this point in more detail in Section 12.6, but the basic argument is this. If 
we had a network of n vertices that was divided into two large components of 
about !n vertices each, then there would be !n2 possible pairs of vertices such 
that one vertex was in one large component and the other vertex in the other 
large component. If there is an edge between any of these pairs of vertices, 
then the two components are joined together and are in fact just one compo
nent. For example, in our network of movie actors, with half a million vertices, 
there would about 50 billion pairs, only one of which would have to be joined 
by an edge to join the two large components into one. Except in very special 
cases, it is highly unlikely that not one such pair would be connected, and 
hence also highly unlikely that we will have two large components. 

And what about networks with no large component? It is certainly possi
ble for networks to consist only of small components, small groups of vertices 
connected among themselves but not connected to the rest of the world. An 
example would be the network of immediate family ties, in which two people 
are considered connected if they are family members living under the same 
roof. Such a network is clearly broken into many small components consisting 
of individual families, with no large component at all. In practice, however, 
situations like this arise rather infrequently in the study of networks for the 
anthropocentric reason that people don't usually bother to represent such sit
uations by networks at all. Network representations of systems are normally 

only useful if most of the network is connected together. If a network is so 
sparse as to be made only of small components, then there is normally little 
to be gained by applying techniques like those described in this book. Thus, 
essentially all of the networks we will be looking at do contain a large compo
nent (and certainly all those in Table 8.1, although for some of them the size of 
that component has not been measured and the relevant entry in the table is 
blank). 

So the basic picture we have of the structure of most networks is that of 
Fig. 8.1, of a large component filling most of the network, sometimes all of it, 
and perhaps some other small components that are not connected to the bulk 
of the network. 

8.1.1 COMPONENTS IN DIRECTED NETWORKS 

As discussed in Section 6.ll, the component structure of directed networks 
is more complicated than for undirected ones. Directed graphs have weakly 
and strongly connected components. The weakly connected components cor
respond closely to the concept of a component in an undirected graph, and 
the typical situation for weakly connected components is similar to that for 
undirected graphs: there is usually one large weakly connected component 
plus, optionally, other small ones. Figures for the sizes of the largest weakly 
connected components in several directed network are given in Table 8.1. 

A strongly connected component, as described in Section 6.11, is a maximal 
subset of vertices in a network such that each can reach and is reachable from 
all of the others along a directed path. As with weakly connected components, 
there is typically one large strongly connected component in a directed net
work and a selection of small ones. The largest strongly connected component 
of the World Wide Web, for instance, fills about a quarter of network [56]. 

Associated with each strongly connected component is an out-component 
(the set of all vertices that can be reached from any starting point in the strongly 
connected component along a directed path) and an in-component (the set of 
vertices from which the strongly connected component can be reached). By 
their definition, in- and out-components are supersets of the strongly con
nected component to which they belong and if there is a large strongly con
nected component then the corresponding in- and out-components will often 
contain many vertices that lie outside the strongly connected component. In 
the Web, for example, the portion of the in- and out-components that lie out
side the largest strongly connected component each also occupy about a quar
ter of the network [56]. 

Each of the small strongly connected components will have its own in- and 
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C~ 

(21%) 

• 

Other components 
(30%) 

(21%) 

• 

_---In-component----- ___ .. 

_---Out-component ___ • 

Figure 8.2: The "bow tie" diagram of components in a directed network. The typical 
directed network consists of one large strongly connected component and many small 
ones, each with an in-component and an out-component. Note that by definition each 
in-component includes the corresponding strongly connected component as a subset, 
as does each out-component. The largest strongly cOlmected component and its in
and out-components typically occupy a significant fraction of the whole network. The 
percentages shown here indicate how much of the network is taken up by each part of 
the bow tie in the case of the World Wide Web. After Broder el al. [56]. 

out-components also. Often these will themselves be small, but they need not 
be. It can happen that a small strongly connected component '6' is connected 
by a directed path to the large strongly connected component, in which case 
the out-component of the large strongly connected component belongs to (and 
probably forms the bulk of) '6"s out-component. Notice that the large out
component can be reachable from many small components in this way-the 
out-components of different strongly connected components can overlap in 
directed networks and any vertex can and usually does belong to many out
components. Similar arguments apply, of course, for in-components as well. 

The overall picture for a directed network can be represented using the 
"bow tie" diagram introduced by Broder and co-workers [56]. In Fig. 8.2 we 
show the bow tie for the case of the World Wide Web, including percentages 
(from Ref. [56]) for the fraction of the network occupied by its different parts. 

Not all directed networks have a large strongly connected component. In 
particular, any acyclic directed network has no strongly connected components 
of size greater than one since if two vertices belong to the same strongly con-

8.2 SHORTEST PATHS AND THE SMALL-WORLD EFFECT 

nected component then by definition there exists a directed path through the 
network in both directions between them, and hence there is a cycle from one 
vertex to the other and back. Thus if there are no cycles in a network there 
can be no strongly connected components with two or more vertices. Real-life 
networks are not usually perfectly acyclic, but some, such as citation networks 
(Section 4.2) are approximately so. Such networks typically have a few small 
strongly connected components of two or perhaps three vertices each, but no 
large ones. 

8.2 SHORTEST PATHS AND THE SMALL-WORLD EFFECT 

One of the most remarkable and Widely discussed of network phenomena 
is the small-world effect, the finding that in many-perhaps most-networks 
the typical network distances between vertices are surprisingly small. In Sec
tion 3.6 we discussed Stanley Milgram's letter-passing experiment in the 1960s, 
in which people were asked to get a letter from an initial holder to a distant tar
get person by passing it from acquaintance to acquaintance through the social 
network. The letters that made it to the target did so in a remarkably small 
number of steps, around six on average. Milgram's experiment is a beau
tiful and powerful demonstration of the small-world effect, although also a 
rather poorly controlled one. But with the very complete network data we 
have for many networks these days it is now possible to measure directly the 
path lengths between vertices and verify the small-world effect explicitly. 

In Section 7.6 we defined the mean distance £ between vertices in a net
work (see Eqs. (7.31) and (7.32». In mathematical terms, the small-world effect 
is the hypothesis that this mean distance is small, in a sense that will be de
fined shortly. In Table 8.1 we list the value of £ for each of the networks in the 
table, and we see that indeed it takes quite small values, always less than 20 
and usually less than 10, even though some of the networks have millions of 
vertices. 

One can well imagine that the small-world effect could have substantial 
implications for networked systems. Suppose a rumor is spread over a social 
network for instance (or a disease for that matter). Clearly it will reach people 
much faster if it is only about six steps from any person to any other than if it is 
a hundred, or a million. Similarly, the speed with which one can get a response 
from another computer on the Internet depends on how many steps or "hops" 
data packets have to make as they traverse the network. Clearly a network 
in which the typical number of hops is only ten or twenty will perform much 
better than one in which it is ten times as much. (While this point was not 
articulated by the original designers of the Internet in the 1960s, they must 
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The shortest path from i 
to j in this network has 
length 1, but the short
est path from j to i has 
length 2. 
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have had some idea of its truth, even if only vaguely, to believe that a network 
like the Internet could be built and made to work.) 

In fact, once one looks more deeply into the mathematics of networks, 
which we will do in later chapters, one discovers that the small-world effect 
is not so surprising after all. As we will see in Section 12.7, mathematical mod
els of networks suggest that path lengths in networks should typically scale as 
log n with the number n of network vertices, and should therefore tend to re
main small even for large networks because the logarithm is a slowly growing 
function of its argument. 

One can ask about path lengths on directed networks as well, although the 
situation is more complicated there. Since in general the path from vertex i 
to vertex j is different in a directed network from the path from j to i, the 
two paths can have different lengths. Our average distance f should therefore 
include terms for both distances separately. It's also possible for there to be no 
path in one direction between two vertices, which we would conventionally 
denote by setting dij = 00. As before we could get around the problems caused 
by the infinite values by defining f as an average over only the finite ones, as in 
Eq. (7.32). Values calculated in this way are given for the directed networks in 
Table 8.1. One could also (and perhaps more elegantly) use a harmonic mean 
as in Eq. (7.34), although this is rarely done. 

One can also examine the diameter of a network, which, as described in 
Section 6.10.1, is the length of the longest finite geodesic path anywhere in the 
network. The diameter is usually found to be relatively small as well and cal
culations using network models suggest that it should scale logarithmically 
with n just as the average distance does. The diameter is in general a less use
ful measure of real-world network behavior than mean distance, since it really 
only measures the distance between one specific pair of vertices at the extreme 
end of the distribution of distances. Moreover, the diameter of a network could 
be affected substantially by a small change to only a single vertex or a few 
vertices, which makes it a poor indicator of the behavior of the network as 
a whole. Nonetheless, there are cases where it is of interest. In Section 8.4 
we discuss so-called "scale-free" networks, i.e., networks with power-law de
gree distributions. Such networks are believed to have an unusual structure 
consisting of a central "core" to the network that contains most of the ver
tices and has a mean geodesic distance between vertex pairs that scales only 
as log log n with network size, and not as log n, making the mean distance for 
the whole network scale as log log n also. Outside of this core there are longer 
"streamers" or "tendrils" of vertices attached to the core like hair, which have 
length typically of order log n, making the diameter of the network of order 
logn [67,75J. This sort of behavior could be detected by measuring separately 

8.3 

the mean geodesic distance and diameter of networks of various sizes to con
firm that they vary differently with n. (It's worth noting, however, that behav
ior of the form log log n is very difficult to confirm in real-world data because 
log log n is a very slowly varying function of n.) 

Another interesting twist on the small-world effect was discussed by Mil
gram in his original paper on the problem. He noticed, in the course of his 
letter-passing experiments, that most of the letters destined for a given target 
person passed through just one or two acquaintances of the target. Thus, it ap
peared, most people who knew the target person knew him through these one 
or two people. This idea, that one or two of your acquaintances are especially 
well connected and responsible for most of the connection between you and 
the rest of the world has been dubbed funneling, and it too is something we 
can test against complete networks with the copious data available to us to
day. If, for instance, we focus on geodesic paths between vertices, as we have 
been doing in this section, then we could measure what fraction of the shortest 
paths between a vertex i and every other reachable vertex go through each of 
i's neighbors in the network. For many networks, this measurement does re
veal a funneling effect. For instance, in the coauthorship network of physicists 
from Table 8.1 it is found that, for physicists having five or more collabora
tors, 48% of geodesic paths go through one neighbor of the average vertex, the 
remaining 52% being distributed over the other four or more neighbors. A sim
ilar result is seen in the Internet. Among nodes having degree five or greater 
in a May 2005 snapshot of Internet structure at the autonomous system level, 
an average of 49% of geodesic paths go through one neighbor of the average 
vertex. It is tempting to draw conclusions about the routing of Internet packets 
from this latter result-perhaps that the network will tend to overload a small 
number of well-connected nodes rather than distributing load more evenly
but it is worth noticing that, although Internet packets tended to be routed 
along shortest paths during the early days of the Internet, much more sophis
ticated routing strategies are in place today, so statistics for shortest paths may 
not reflect actual packet flows very closely. 

8.3 DEGREE DISTRIBUTIONS 

In this section, we look at one of the most fundamental of network properties, 
the frequency distribution of vertex degrees. This distribution will come up 
time and again throughout this book as a defining characteristic of network 
structure. 

As described in Section 6.9, the degree of a vertex is the number of edges 
attached to it. Let us first consider undirected networks. We define Pk to be the 

DEGREE DISTRIBUTIONS 

Milgram referred to these 
people as "sociometric su
perstars." We discussed 
them previously in Sec
tion 3.6. 
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fraction of vertices in such a network that have degree Ie. For example, consider 
this network: 

• 

It has n = 10 vertices, of which 1 has degree 0, 2 have degree 1, 4 have degree 2, 
2 have degree 3, and 1 has degree 4. Thus the values of Pk for k = 0, ... ,4 are 

1 
po = 10' 

2 
Pl = 10' 

4 
P2 = 10' 

2 
P3 = 10' 

1 
P4 = 10' (8.1) 

and Pk = ° for all k > 4. The quantities Pk represent the degree distribution of 
the network. 

The value Pk can also be thought of as a probability: it is the probability that 
a randomly chosen vertex in the network has degree k. This will be a useful 
viewpoint when we study theoretical models of networks in Chapters 12 to 15. 

Sometimes, rather than the fraction of vertices with a given degree, we will 
want the total number of such vertices. This is easily calculated from the de
gree distribution, being given simply by np" where n is as usual the total num
ber of vertices. 

Another construct containing essentially the same information as the de
gree distribution is the degree sequence, which is the set {k" k2, k3 , . .. } of de
grees for all the vertices. For instance, the degree sequence of the small graph 
above is {O, 1, 1, 2, 2, 2, 2, 3, 3, 4}. (The degree sequence need not necessarily be 
given in ascending order of degrees as here. For instance, in many cases the 
vertices are given numeric labels and their degrees are then listed in the order 
of the labels.) 

It is probably obvious, but bears saying anyway, that a knowledge of the 
degree distribution (or degree sequence) does not, in most cases, tell us the 
complete structure of a network. For most choices of vertex degrees there is 
more than one network with those degrees. These two networks, for instance, 
are different but have the same degrees: 

• • 
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Figure 8.3: The degree distribution of the Internet. A histogram of the degree distri
bution of the vertices of the Internet graph at the level of autonomous systems. 

Thus we cannot tell the complete structure of a network from its degrees alone. 
The degree sequence certainly gives us very important information about a 
network, but it doesn't give liS complete information. 

It is often illuminating to make a plot of the degree distribution of a large 
network as a function of k. Figure 8.3 shows an example of such a plot for 
the Internet at the level of autonomous systems. The figure reveals something 
interesting: most of the vertices in the network have low degree-one or two 
or three-but there is a significant "tail" to the distribution, corresponding to 
vertices with substantially higher degree.! The plot cuts off at degree 20, but 
in fact the tail goes much further than this. The highest degree vertex in the 
network has degree 2407. Since there are, for this particular data set, a total 
of 19956 vertices in the network, that means that the most highly connected 
vertex is connected to about 12% of all other vertices in the network. We call 
such a well-connected vertex a hub.' Hubs will play an important role in the 

1 For the Internet there are no vertices of degree zero, since a vertex is not considered part of 
the Internet unless it is connected to at least one other. 

2We used the word hub in a different and more technical sense in Section 7.5 to describe ver
tices in directed networks that point to many "authorities," Both senses are common in the net-
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Figure 8.4: The degree distributions of the World Wide Web. Histograms of the distributions of in- and out-degrees 
of pages on the World Wide Web. Data are from the study by Broder et al. [56]. 
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developments of the following chapters. 
In fact, it turns out that almost all real-world networks have degree distri

butions with a tail of high-degree hubs like this. In the language of statistics 
we say that the degree distribution is right-skewed. Right-skewed degree dis
tributions are discussed further in Section 8.4, and will reappear repeatedly 
throughout this book. 

One can also calculate degree distributions for directed networks. As dis
cussed in Section 6.9, directed networks have two different degrees for each 
vertex, the in-degree and the out-degree, which are, respectively, the number 
of edges ingoing and outgoing at the vertex of interest. There are, correspond
ingly, two different degree distributions in a directed network, the in-degree 
and out-degree distributions, and one can make a plot of either, or both. Fig
ure 8.4, for example, shows the degree distributions for the World Wide Web. 

If we wish to be more sophisticated, we might observe that the true degree 
distribution of a directed network is really a joint distribution of in- and out-

works literature, and in many cases the reader must deduce from the context which is being used. 
In this book we will mostly use the word in the less technical sense introduced here, of a ver
tex with unusually high degree. When we use it in the other sense of Section 7.5 we will say so 
explicitly. 

8.4 POWER LAWS AND SCALE-FREE NETWORKS 

degrees. We can define Pjk to be the fraction of vertices having simultaneously 
an in-degree j and an out-degree k. This is a two-dimensional distribution that 
cannot be plotted as a simple histogram, although it could be plotted as a two
dimensional density plot or as a surface plot. By using a joint distribution in 
this way we can allow for the possibility that the in- and out-degrees of vertices 
might be correlated. For instance, if vertices with high in-degree also tended 
to have high out-degree, then we would see this reflected in large values of Pjk 

when both j and Ie were large. If we only have the separate distributions of in
and out-degree individually, but not the joint distribution, then there is no way 
of telling whether the network contains such correlations. 

In practice, the joint in/out degree distribution of directed networks has 
rarely been measured or studied, so there is relatively little data on it. This 
is, in some ways, a pity, since many of our theories of directed networks de
pend on a knowledge of the joint distribution to give accurate answers (see 
Section 13.11), while others make predictions about the joint distribution that 
we would like to test against empirical data. For the moment, however. this is 
an area awaiting more thorough exploration. 

8.4 POWER LAWS AND SCALE-FREE NETWORKS 

Returning to the Internet. another interesting feature of its degree distribution 
is shown in Fig. 8.5, where we have replotted the histogram of Fig. 8.3 using 
logarithmic scales. (That is, both axes are logarithmic. We have also made 
the range of the bins bigger in the histogram to make the effect dearer-they 
are of width five in Fig. 8.5 where they were only of width one before.) As 
the figure shows, when viewed in this way, the degree distribution follows, 
roughly speaking, a straight line. In mathematical terms, the logarithm of the 
degree distribution Pk is a linear function of degree k thus: 

Inpk = -alnk+c, (8.2) 

where IX and c are constants. The minus sign here is optional-we could have 
omitted it-but it is convenient, since the slope of the line in Fig. 8.5 is dearly 
negative, making IX a positive constant equal to minus the slope in the figure. 
In this case, the slope gives us a value for IX of about 2.1. 

Taking the exponential of both sizes of Eq. (8.2), we can also write this log
arithmic relation as 

(8.3) 

where C = eC is another constant. Distributions of this form, varying as a 
power of k, are called power laws. Based on the evidence of Fig. 8.5 we can say 
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Figure 8.5: The power-law degree distribution of the Internet. Another histogram of 
the degree distribution of the Internet graph, plotted this time on logarithmic scales. 
The approximate straight-line form of the histogram indicates that the degree distribu
tion roughly follows a power law of the form (8.3). 

that, roughly speaking, the degree distribution of the Internet follows a power 
law. 

This is, in fact, a common pattern seen in quite a few different networks. 
For instance, as shown in Fig. 8.8 on page 253, both the in- and out-degrees 
of the World Wide Web roughly follow power-law distributions, as do the in
degrees in many citation networks (but not the out-degrees). 

The constant" is known as the exponent of the power law. Values in the 
range 2 <:= IX <:= 3 are typical, although values slightly outside this range are 
possible and are observed occasionally. Table 8.1 gives the measured values 
of the exponents for a number of networks that have power-law or approxi
mately power-law degree distributions, and we see that most of them fall in 
this range. The constant C in Eq. (8.3) is mostly uninteresting, being fixed by 
the requirement of normalization, as described in Section 8.4.2. 

Degree distributions do not usually follow Eq. (8.3) over their entire range. 
Looking at Fig. 8.3, for example, we can see that the degree distribution is not 
monotonic for small k, even allowing for statistical fluctuations in the histo-

f X, 
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gram. A true power-law distribution is monotonically decreasing over its en
tire range and hence the degree distribution must in this case deviate from the 
true power law in the small-k regime. This is typical. A common situation 
is that the power law is obeyed in the tail of the distribution, for large values 
of k, but not in the small-k regime. When one says that a particular network 
has a power-law degree distribution one normally means only that the tail of 
the distribution has this form. In some cases, the distribution may also devi
ate from the power-law form for high k as well. For instance, there is often a 
cut-off of some type that limits the maximum degree of vertices in the tail. 

Networks with power-law degree distributions are sometimes called scale
free networks, and we will use this terminology occasionally. Of course, there 
are also many networks that are not scale-free, that have degree distributions 
with non-power-law forms, but the scale-free ones will be of particular interest 
to us because they have a number of intriguing properties. Telling the scale
free ones from the non-seale-free is not always easy however. The simplest 
strategy is to look at a histogram of the degree distribution on a log-log plot, 
as we did in Fig. 8.5, to see if we have a straight line. There are, however, a 
number of problems with this approach and where possible we recommend 
you use other methods, as we now explain. 

8.4.1 DETECTING AND VISUALIZING POWER LAWS 

As a tool for visualizing or detecting power-law behavior, a simple histogram 
like Fig. 8.5 presents some problems. One problem obvious from the figure is 
that the statistics of the histogram are poor in the tail of the distribution, the 
large-k region, which is precisely the region in which the power law is nor
mally followed most closely. Each bin of the histogram in this region contains 
only a few samples, which means that statistical fluctuations in the number of 
samples from bin to bin are large. This is visible as a "noisy signal" at the right
hand end of Fig. 8.5 that makes it difficult to determine whether the histogram 
really follows a straight line or not, and what the slope of that line is. 

There are a number of solutions to this problem. The simplest is to use a 
histogram with larger bins, so that more samples fall into each bin. In fact, we 
already did this in going from Fig. 8.3 to Fig. 8.5-we increased the bin width 
from one to five between the two figures. Larger bins contain more samples 
and hence give less noise in the tail of the histogram, but at the expense of 
less detail overall, since the number of bins is correspondingly reduced. Bin 
width in this situation is always something of a compromise: we would like 
to use very wide bins in the tail of the distribution where noise is a problem, 
but narrower ones at the left-hand end of the histogram where there are many 
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samples and we would prefer to have more bins if possible. 
Alternatively, we could try to get the best of both worlds by using bins of 

different sizes in different parts of the histogram. For example, we could use 
bins of width one for low degrees and switch to width five for higher degrees. 
In doing this we must be careful to normalize the bins correctly: a bin of width 
five will on average accrue five times as many samples as a similarly placed bin 
of width one, so if we wish to compare counts in the two we should divide the 
number of samples in the larger bin by five. More generally, we should divide 
sample counts by the width of their bins to make counts in bins of different 
widths comparable. 

We need not restrict ourselves to only two different sizes of bin. We could 
use larger and larger bins as we go further out in the tail. We can even make 
every bin a different size, each one a little larger than the one before it. One 
commonly used version of this idea is called logarithmic binning. In this scheme, 
each bin is made wider than its predecessor by a constant factor a. For instance, 
if the first bin in a histogram covers the interval 1 ::; k < 2 (meaning that all 
vertices of degree 1 fall in this bin) and a = 2, then the second would cover the 
interval 2 ::; k < 4 (vertices of degrees 2 and 3), the third the interval 4 ::; k < S, 
and so forth. In general the nth bin would cover the interval a"-l ::; k < an and 
have width all - an- 1 = (a - 1.) all

-
1 . The most cornmon choice for a is a = 2, 

since larger values tend to give bins that are too coarse while smaller ones give 
bins with non-integer limits. 

Figure S.6 shows the degree distribution of the Internet binned logarithmi
cally in this way. We have been careful to normalize each bin by dividing by 
its width, as described above. As we can see, the histogram is now much less 
noisy in the tail and it is considerably easier to see the straight-line behavior 
of the degree distribution. The figure also reveals a nice property of logarith
mically binned histograms, namely that when plotted on logarithmic scales as 
here, the bins in such a histogram appear to have equal width. This is, in fact, 
the principal reason for this particular choice of bins and also the origin of the 
name "logarithmic binning." 

Note that on a logarithmically binned histogram there is never any bin that 
contains vertices of degree zero. Since there is no zero on logarithmic scales 
like those of Fig. S.6, this doesn't usually make much difference, but if we do 
want to know how many vertices there are of degree zero we will have to 
measure this number separately. 

A different solution to the problem of visualizing a power-law distribution 

8.4 POWER LAWS AND SCALE-FREE NETWORKS 

Figure 8.6: Histogram of the degree distribution if the Internet, created using loga
rithmic binning. In this histogram the widths of the bins are constant on a logarithmic 
scale, meaning that on a linear scale each bin is wider by a constant factor than the one 
to its left The counts in the bins are normalized by dividing by bin width to make 
counts in different bins comparable. 

is to construct the cumulative distribution function, which is defined by 

00 

Pk = L Pk" (S.4) 
k'=k 

In other words, Pk is the fraction of vertices that have degree k or greater. (Al
ternatively, it is the probability at a randomly chosen vertex has degree k or 
greater.) 

Suppose the degree distribution Pk follows a power law in its tail. To be 
precise, let us say that Pk = Ck- a for k 2: kmin for some kmin . Then for k 2: kmin 

we have 

P
k 

= C f:; k'-a ~ C (00 k,-a dk' 
k'=k Jk 

= ~/C(a-l) 
a: -1 ' (S.5) 

where we have approximated the sum by an integral, which is reasonable since 
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Figure 8.7: Cumulative distribution function for the degrees of vertices on the Inter~ 
net. For a distribution with a power-law tail, as is approximately the case for the degree 
distribution of the Internet, the cumulative distribution function, Eq. (8.4), also follows 
a power law, but with a slope 1 less than that of the original distribution. 

the power law is a slowly varying function for large k. (We are also assuming 
that" > I so that the integral converges.) Thus we see that if the distribution 
Pk follows a power law, then so does the cumulative distribution function P" 
but with an exponent 0: - I that is I less than the original exponent. 

This gives us another way of visualizing a power-law distribution: we plot 
the cumulative distribution function on log-log scales, as we did for the origi
nal histogram, and again look for straight-line behavior. We have done this in 
Fig. 8.7 for the case of the Internet, and the (approximate) straight-line form is 
clearly visible. Three more examples are shown in Fig. 8.8, for the in- and out
degree distributions of the World Wide Web and for the in-degree distribution 
of a citation network. 

This approach has some advantages. In particular, the calculation of Pk 

does not require us to bin the values of Ie as we do with a normal histogram. 
Pk is perfectly well defined for any value of k and can be plotted just as a nor
mal function. When bins in a histogram contain more than one value of k
i.e., when their width is greater than I-the binning of data necessarily throws 
away quite a lot of the information contained in the data, eliminating, as it 
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Figure 8.8: Cumulative distribution functions for in- and out-degrees in three directed networks. (a) The in-degree 
distribution of the World Wide Web, from the data of Broder et al. [56]. (b) The out-degree distribution for the same Web 
data set (c) The in-degree distribution of a citation network, from the data of Redner [280]. The distributions foHow 

approximate power-law forms in each case. 

does, the distinction between any two values that fall into the same bin. The 
cumulative distribution function on the other hand preserves all of the infor
mation contained in the data, because no bins are involved. The most ob
vious manifestation of this difference is that the number of points in a plot like 
Fig. 8.5 or Fig. 8.6 is relatively small, whereas in a cumulative distribution plot 
like Fig. 8.7 there are as many points along the k (horizontal) axis as there are 
distinct values of k. 

The cumulative distribution function is also easy to calculate. The number 
of vertices with degree greater than or equal to that of the rth-highest-degree 
vertex in a network is, by definition, r. Thus the fraction with degree greater 
than or equal to that of the rth-highest-degree vertex in a network is Pk = r / n. 
So a simple way of finding Pk is to sort the degrees of the vertices in descending 
order and then number them from I to n in that order. These numbers are the 
so-called ranks 'i of the vertices. A plot of ri / n as a function of degree ki' with 
the vertices in rank order, then gives us our cumulative distribution plot.' 

3Such plots are also sometimes called ral1kffrequency plots because one of their earliest uses 
was to detect power-law behavior in the frequency of occurrence of words in natural languages. 
If the data you are measuring are frequencies, then the cumulative distribution graph is a plot of 
rank against frequency. Since then such plots have been used to detect power-law behavior in 
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For instance, consider again the small example network we looked at at the 
beginning of Section 8.3, on page 244. The degrees of the vertices in that case 
were {O, 1, 1, 2, 2, 2, 2, 3, 3, 4}. Listing these in decreasing order and numbering 
them, we can easily calculate Pk as follows: 

Degree k Rank r Pk = rln 
4 1 0.1 
3 2 0.2 
3 3 0.3 
2 4 0.4 
2 5 0.5 
2 6 0.6 
2 7 0.7 
1 8 0.8 
1 9 0.9 
0 10 1.0 

Then a plot of the last column as a function of the first gives us our cumulative 
distribution function. 

Cumulative distributions do have some disadvantages. One is that they are 
less easy to interpret than ordinary histograms, since they are only indirectly 
related to the actual distribution of vertex degrees. A more serious disadvan
tage is that the successive points on a cumulative plot are correlated-the cu
mulative distribution function in general only changes a little from one point 
to the next, so adjacent values are not at all independent. This means that it 
is not valid for instance to extract the exponent of a power-law distribution by 
fitting the slope of the straight-line portion of a plot like Fig. 8.7 and equating 
the result with" - 1, at least if the fitting is done using standard methods such 
as least squares that assume independence between the data points. 

1n fact, it is in general not good practice to evaluate exponents by perform
ing straight-line fits to either cumulative distribution functions or ordinary his
tograms. Both are known to give biased answers, although for different rea
sons [72,141]. Instead, it is usually better to calculate" directly from the data, 

many quantities other than frequencies, but the name "rank/frequency plot" is still often used. 
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using the formula4 

IX = 1 + N [Lin k,_ 1] -1 

1 kmm 2 
(8.6) 

Here, kmill is the minimum degree for which the power law holds, as before, 
and N is the number of vertices with degree greater than or equal to kmill . The 
sum is performed over only those vertices with k 2: kmin , and not over all 
vertices. 

We can also calculate the statistical error on IX from the formula: 

(8.7) 

For example, applying Eqs. (8.6) and (8.7) to the degree sequence of the Internet 
from Fig. 8.3 gives an exponent value of it = 2.11 ± 0.01. 

The derivation of these formulas, which makes use of maximum likelihood 
techniques, would take us some way from our primary topic of networks, 
so we will not go into it here. The interested reader can find a discussion in 
Ref. [72], along with many other details such as methods for determining the 
value of kmm and methods for telling whether a particular distribution follows 
a power law at all. 

8.4.2 PROPERTIES OF POWER-LAW DISTRIBUTIONS 

Quantities with power-law distributions behave in some surprising ways. We 
take a few pages here to look at some of the properties of power-law distribu
tions, since the results will be of use to us later on. 

Power laws turn up in a wide variety of places, not just in networks. They 
are found in the sizes of city populations [24,336], earthquakes [153], moon 
craters [230], solar flares [203], computer files [84], and wars [283]; in the fre
quency of use of words in human languages [109,336], the frequency of occur
rence of personal names in most cultures [335], the numbers of papers scien
tists write [201], and the number of hits on web pages [5]; in the sales of books, 
music recordings, and almost every other branded commodity [83,185]; and 
in the numbers of species in biological taxa [58,330]. A review of the data and 
some mathematical properties of power laws can be found in Ref. [244]. Here 
we highlight just a few issues that will be relevant for our study of networks. 

4In fact, this formula is only an approximation to the full formula for the exponent. The full 
formula, unfortunately, does not give a closed-form solution for a and is therefore hard to use. 
Equation (8.6) works well provided kmin is greater than about 6, which is true for many networks. 
In cases where it is not, however, the full formula must be used-see Ref. [72]. 

255 



THE LARGE-SCALE STRUCTURE OF NETWORKS 

256 

Normalization: The constant C appearing in Eq. (8.3) is fixed by the require
ment that the degree distribution be normalized. That is, when we add up the 
total fraction of vertices having all possible degrees k = o ... 00, we must get 1: 

00 

LPk = 1. (8.8) 
k=O 

If our degree distribution truly follows a pure power law, obeying Eq. (8.3) for 
all k, then no vertices of degree zero are allowed, because po would then be in
finite, which is impossible since it is a probability and must lie between 0 and 1. 
Let us suppose therefore that the distribution starts at k = 1. Substituting from 
Eq. (8.3) we then find that C Lk k-a = 1, or 

(8.9) 

where i:" (iX) is the Riemann zeta function. Thus the correctly normalized power
law distribution is 

(8.10) 

for k > 0 with Po = o. 
This is a reasonable starting point for mathematical models of scale-free 

networks-we will use it in Chapter 13-but it's not a very good represen
tation of most real-world networks, which deviate from pure power-law be
havior for small k as described above and seen in Fig. 8.3. In that case, the 
normalization constant will take some other value dependent on the particu
lar shape of the distribution, but nonetheless it is still fixed by the requirement 
of normalization and we must make sure we get it right in our calculations. 

For some of our calculations we will be interested only in the tail of the 
distribution where the power-law behavior holds and can discard the rest of 
the data. In such cases, we normalize over only the tail, starting from the 
minimum value kmm for which the power law holds, as above. This gives 

k-' k-a 

Pk = ,,00 I -, = T( k ) , 
L..k"""kmil1 C '" Lt, min 

(S.ll) 

where niX, km'n) is the so-called generalized or incomplete zeta function. 
Alternatively, we could observe, as we did for Eq. (S.5), that in the tail of 

the distribution the sum over k is well approximated by an integral, so that the 
normalization constant can written 

(8.12) 

8.4 POWER LAWS AND SCALE-FREE NETWORKS 

or 
IX -1 ( k )-a 

Pk~ - --
- kmm km111 

(8.13) 

In the same approximation the cumulative distribution function, Eq. (S.5), is 
given by 

Pk = (_''- ) -(a-I) 

kmm 
(8.14) 

Moments: Of great interest to us will be the moments of the degree distribu
tion. The first moment of a distribution is its mean: 

00 

(k) = L kpk. (S.15) 
k=O 

The second moment is the mean square: 

00 

(k') = L k'Pk. (8.16) 
k=O 

And the mth moment is 
00 

(k"') = L k"'Pk. (8.17) 
k=O 

Suppose we have a degree distribution Pk that has a power-law tail for 
k 2: /emm, in the manner of the Internet or the World Wide Web. Then 

knlln-l 00 

(km) = L klJ/ Pk + C L Jem-a., (8.18) 
k=O k=kmin 

Since the power law is a slowly varying function of k for large k, we can again 
approximate the second sum by an integral thus: 

(k"') 

(8.19) 

The first term here is some finite number whose value depends on the partic
ular (non-power-Iaw) form of the degree distribution for small k. The second 
term however depends on the values of m and IX. If m - it + 1 < 0, then the 
bracket has a finite value, and (k"') is well-defined. But if In - it + 1 2: 0 then 
the bracket diverges and with it the value of (k"'). Thus, the mth moment of 
the degree distribution is finite if and only if iX > m + 1. Put another way, for a 
given value of it all moments will diverge for which m 2: iX - 1. 
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Of particular interest to us will be the second moment (Ie'), which arises 
in many calculations to do with networks (such as mean degree of neighbors, 
Section 13.3, robustness calculations, Section 16.2.1, epidemiological processes, 
Section 17.8.1, and many others). The second moment is finite if and only if 
ex > 3. As discussed above, however, most real-world networks with power
law degree distributions have values of a in the range 2 <::: " <::: 3, which means 
that the second moment should diverge, an observation that has a number 
of remarkable implications for the properties of scale-free networks, some of 
which we will explore in coming chapters. Notice that this applies even for 
networks where the power law only holds in the tail of the distribution-the 
distribution does not have to follow a power law everywhere for the second 
moment to diverge. 

These conclusions, however, are slightly misleading. In any real network 
all the moments of the degree distribution will actually be finite. We can al
ways calculate the mth moment directly from the degree sequence thus: 

1 " (kill) = - L:kt, 
n i=l 

(8.20) 

and since all the k; are finite, so must the sum be. When we say that the mth 
moment is infinite, what we mean is that if we were to calculate it for an arbi
trarily large network with the same power-law degree distribution the value 
would be infinite. But for any finite network Eq. (8.20) applies and all moments 
are finite. 

There is however another factor that limits the values of the higher mo
ments of the degree distribution, namely that most real-world networks are 
simple graphs. That is, they have no multiedges and no self-loops, which 
means that a vertex can have, at most, one edge to every other vertex in the 
network, giving it a maximum degree of n - I, where n is the total number of 
vertices. In practice, the power-law behavior of the degree distribution may 
be cut off for other reasons before we reach this limit, but in the worst case, an 
integral such as that of Eq. (8.19) will be cut off in a simple graph at k = n so 
that 

(kin) rv [k llJ
-

lX +1] II rv nm - a+1, (8.21) 
km;n 

as n --+ 00 for m > iX - 1. This again gives moments that are finite on finite 
networks but become infinite as the size of the network becomes infinite. For 
instance, the second moment goes as 

(8.22) 

In a network with ex = ~,this diverges as n1/ 2 as the network becomes large. 

8.4 POWER LAWS AND SCALE-FREE NETWORKS 

We will throughout this book derive results that depend on moments of the 
degree distributions of networks. Some of those results will show unusual be
havior in power-law networks because of the divergence of the moments. On 
practical, finite networks that divergence is replaced by large finite values of 
the moments. In many cases, however, this produces similar results to a true 
divergence. On the Internet, for instance, with its power-law degree distribu
tion and a total of about n '" 20000 autonomous systems as vertices, we can 
expect the second (and all higher moments) to take not infinite but very large 
values. For the Internet data we used in Figs. 8.3 and 8.5 the second moment 
has the value (k2 ) = 1159, which can in practice be treated as infinite for many 
purposes. 

Top-heavy distributions: Another interesting quantity is the fraction of edges 
in a network that connect to the vertices with the highest degrees. For a pure 
power-law degree distribution, it can be shown [244] that a fraction W of ends 
of edges attach to a fraction P of the highest-degree vertices in the network, 
where 

(8.23) 

A set of curves of W against P is shown in Fig. 8.9 for various values of IX. 

Curves of this kind are called Lorenz curves, after Max Lorenz, who first studied 
them around the turn of the twentieth century [200]. As the figure shows, the 
curves are concave downward for all values of iX, and for values only a little 
above 2 they have a very fast initial increase, meaning that a large fraction of 
the edges are connected to a small fraction of the highest degree nodes. 

Thus, for example, the in-degree distribution of the World Wide Web fol
lows a power law above about km;n = 20 with exponent around" = 2.2. Equa
tion (8.23) with P = 1 then tells us that we would expect that about W = 0.89 
or 89% of all hyperlinks link to pages in the top half of the degree distribu
tion, while the bottom half gets a mere 11 %. Conversely, if we set W = ~ in 
Eq. (8.23) we get P = 0.015, implying that 50% of all the links go to less than 
2% of the "richest" vertices. Thus the degree distribution is in a sense "top
heavy," a large fraction of the "wealth" -meaning incoming hyperlinks in this 
case-falling to a small fraction of the vertices. 

This calculation assumes a degree distribution that follows a perfect power 
law, whereas in reality, as we have seen, degree distributions usually only fol
Iowa power law in their high-degree tail. The basic principle still holds, how
ever, and even if we cannot write an exact formula like Eq. (8.23) for a partic
ular network we can easily evaluate W as a function of P directly from degree 
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Figure 8.9: Lorenz curves for scale-free networks. The curves show the fraction W 
of the total number of ends of edges in a scale-free network that are attached to the 
fraction P of vertices with the highest degrees, for various values of the power-law 
exponent lX. 

data. For the real degree distribution of the Webs we find that 50% of the in
coming hyperlinks point to just 1.1 % of the richest vertices (so Eq. (8.23) was 
not too bad in this case). 

Similarly, for paper citations 8.3% of the highest cited papers get 50% of all 
the citations6 and on the Internet just 3.3% of the most highly connected nodes 
have 50% of the connections? 

In the remaining chapters of this book we will see many examples of net
works with power-law degree distributions, and we will make use of the re
sults of this section to develop an understanding of their behavior. 

5Using the data of Broder et aI. [56]. 

6Using the data of Redner [280]. 

7For the AS-level data of Fig. 8.3. 

8.5 DISTRIBUTIONS OF OTHER CENTRALITY MEASURES 

8.5 DISTRIBUTIONS OF OTHER CENTRALJTY MEASURES 

Vertex degree is just one of a variety of centrality measures for vertices in net
works, as discussed in Chapter 7. Other centrality measures include eigen
vector centrality and its variations (Sections 7.2 to 7.5), closeness centrality 
(Section 7.6), and betweenness centrality (Section 7.7). The distributions of 
these other measures, while of lesser importance in the study of networks than 
the degree distribution, are nonetheless of some interest. 

Eigenvector centrality can be thought of as an extended form of degree cen
trality, in which we take into account not only how many neighbors a vertex 
has but also how central those neighbors themselves are (Section 7.2). Given its 
similarity to degree centrality, it is perhaps not surprising to learn that eigen
vector centrality often has a highly right-skewed distribution. The left panel 
of Fig. 8.10 shows the cumulative distribution of eigenvector centralities for 
the vertices of the Internet, using again the autonomous-system-level data that 
we used in Section 8.3. As the figure shows, the tail of the distribution ap
proximately follows a power law but the distribution rolls off for vertices with 
low centrality. Similar roughly power-law behavior is also seen in eigenvector 
centralities for other scale-free networks, such as the World Wide Web and ci
tation networks, while other networks show right-skewed but non-power-law 
distributions. 

Betweenness centrality (Section 7.7) also tends to have right-skewed distri
butions on most networks. The right panel of Fig. 8.10 shows the cumulative 
distribution of betweenness for the vertices of the Internet and, as we can see, 
this distribution is again roughly power-law in form. Again there are some 
other networks that also have power-law betweenness distributions and others 
still that have skewed but non-power-law distributions. 

An exception to this pattern is the closeness centrality (Section 7.6), which 
is the mean geodesic distance from a vertex to all other reachable vertices. As 
discussed in Section 7.6 the values of the closeness centrality are typically lim
ited to a rather small range from a lower bound of 1 to an upper bound of 
order log n, and this means that their distribution cannot have a long taiL In 
Fig. 8.11, for instance, we show the distributions of closeness centralities for 
our snapshot of the Internet, and the distribution spans well under an order of 
magnitude from a minimum of 2.30 to a maximum of 7.32. There is no long 
tail to the distribution, and the distribution is not even roughly monotonically 
decreasing (as our others have been) but shows clear peaks and dips. 
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Figure 8.10: Cumulative distribution functions for centralities of vertices on the In
ternet. Left panel: eigenvector centrality. Right panel: betweenness centrality. 

8.6 CLUSTERING COEFFICIENTS 

The clustering coefficient measures the average probability that two neighbors 
of a vertex are themselves neighbors. In effect it measures the density of tri
angles in the networks and it is of interest because in many cases it is found 
to have values sharply different from what one would expect on the basis of 
chance. To see what we mean by this, look again at Table 8.1 on page 237, 
which gives measured values of the clustering coefficient for a variety of net
works. (Look at the column denoted C, which gives values for the coefficient 
defined by Eq. (7.41).) Most of the values are of the order of tens of percent
there is typically a probability between about 10% and maybe 60% that two 
neighbors of a vertex will be neighbors themselves. However, as we will see 
in Section 13.4, if we consider a network with a given degree distribution in 
which connections between vertices are made at random, the clustering coeffi-
dent takes the value 

1 [(k') - (k) J 2 c= n (k)3 
(8.24) 

In networks where (k2 ) and (k) have fixed finite values, this quantity becomes 
small as n --> 00 and hence we expect the clustering coefficient to be very small 
on large networks. This makes the values in Table 8.1, which are of order 1, 
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Figure 8.11: Histogram of closeness centralities of vertices on the Internet. Unlike 
Fig. 8.10 this is a normal non-cumulative histogram showing the actual distribution of 
closeness centralities. This distribution does not follow a power law. 

quite surprising, and indeed many of them turn out to be much larger than the 
estimate given by Eq. (8.24). For instance, the collaboration network of physi
cists is measured to have a clustering coefficient of 0.45. Plugging the appropri
ate values for n, (k), and (k') into Eq. (8.24) on the other hand gives C = 0.0023. 
Thus the measured value is more than a hundred times greater than the value 
we would expect if physicists chose their collaborators at random. 

Presumably this large difference is indicative of real social effects at work. 
There are a number of reasons why a real collaboration network might contain 
more triangles than one would expect by chance, but for example it might be 
that people introduce pairs of their collaborators to one another and those pairs 
then go on to collaborate themselves. This is an example of the process that 
social network analysts call triadic closure: an" open" triad of vertices (i.e., a 
triad in which one vertex is linked to the other two, but the third possible edge 
is absent) is "closed" by the addition of the last edge, forming a triangle. 

One can study triadic closure processes directly if one has time-resolved 
data on the formation of a network. The network of physics collaborators dis
cussed here was studied in this way in Ref. [233], where it was shown that 
pairs of individuals who have not previously collaborated, but who have an-
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other mutual collaborator, are enormously more likely to collaborate in future 
than pairs who do not-a factor of 45 times as likely in that particular study. 
Furthermore, the probability of future collaboration also goes up sharply as 
the number of mutual collaborators increases, with pairs having two mutual 
collaborators being more than twice as likely to collaborate in future as those 
having just one. 

However, it is not always the case that the measured clustering coefficient 
greatly exceeds the expected value given by Eq. (8.24). Take the example of 
the Internet again. For the data set we examined earlier the measured cluster
ing coefficient is just 0.012. The expected value, if connections were made at 
random, is 0.84. (The large value arises because, as discussed in Section 8.4, 
the Internet has a highly right-skewed degree distribution, which makes (k') 
large.) Clearly in this case the clustering is far less than one would expect on 
the basis of chance, suggesting that in the Internet there are forces at work that 
shy away from the creation of triangles'" 

In some other networks, such as food webs or the World Wide Web, cluster
ing is neither higher nor lower than expected, taking values roughly compara
ble with those given by Eq. (8.24). It is not yet well understood why clustering 
coefficients take such different values in different types of network, although 
one theory is that it may be connected with the formation of groups or com
munities in networks [252]. 

The clustering coefficient measures the density of triangles in a network. 
There is no reason, however, for us to limit ourselves to studying only tri
angles. We can also look at the densities of other small groups of vertices, or 
motifs, as they are often called. One can define coefficients similar to the cluster
ing coefficient to measure the densities of different motifs, although more often 
one simply counts the numbers of the motifs of interest in a netvvork. And, as 
with triangles, one can compare the results with the values one would expect 
to find if connections in the network are made at random. In general, one can 

81t is sometimes claimed that essentially all networks show clustering higher than ex
pected [12,323], which is at odds with the results given here. There seem to be two reasons for 
the disagreement. First, the claims are based primarily on comparisons of measured clustering 
coefficients against values calculated on the Poisson random graph, a simple model network with 
a Poisson degree distribution, which we study in Chapter 12.1. Many networks, however, have 
right-skewed degree distributions which are very far from Poissonian, and hence the random 
graph is a poor model against which to compare measurements and probably gives misleading re
sults. Second, the clustering coefficients in these comparisons are mostly calculated as an average 
of the local clustering, following Eq. (7.44). On networks with highly skewed degree distributions 
this definition can give very different results from the definition, Eq. (7.41), used in our calcu
lations. Usually Eq. (7.44) gives much larger numbers than Eq. (7.41), which could explain the 
discrepancies in the findings. 

8.6 CLUSTERING COEFFICIENTS 

find counts that are higher, lower, or about the same as the expected values, all 
of which can have implications for the understanding of the networks in ques
tion. For example, Milo et al. [221] looked at motif counts in genetic regulatory 
networks and neural networks and found certain small motifs that occurred 
far more often than was expected on the basis of chance. They conjectured that 
these motifs were playing the role of functional "circuit elements," such as fil
ters or pulse generators, and that their frequent occurrence in these networks 
might be an evolutionary result of their usefulness to the organisms involved. 

8.6.1 LOCAL CLUSTERING COEFFICIENT 

In Section 7.9.1 we introduced the local clustering coefficient for a vertex: 

C. _ (number of pairs of neighbors of i that are connected) 
, - (number of pairs of neighbors of i) , 

(8.25) 

which is the fraction of pairs of neighbors of vertex i that are themselves neigh
bors. If we calculate the local clustering coefficient for all vertices in a network, 
an interesting pattern emerges in many cases: we find that on average vertices 
of higher degree tend to have lower local clustering [278,318]. Figure 8.12, for 
example, shows the average value of the local clustering coefficient for vertices 
of degree k on the Internet as a function of k. The decrease of the average C; 
with k is clear. It has been conjectured that plots of this type take either the 
form C; ~ k-O.75 [318] or the form C; ~ k-1 [278]. In this particular case neither 
of these conjectures matches the data very well, but for some other networks 
they appear reasonable. 

On possible explanation for the decrease in C; with increasing degree is that 
vertices group together into tightly knit groups or communities, with vertices 
being connected mostly to others within their own group. In a network show
ing this kind of behavior vertices that belong to small groups are constrained 
to have low degree, because they have relatively few fellow group members to 
connect to, while those in larger groups can have higher degree. (They don't 
have to have higher degree, but they can.) At the same time, the local clus
tering coefficient of vertices in small groups will tend to be larger. This occurs 
because each group, being mostly detached from the rest of the network, func
tions roughly as its own small network and, as discussed in Section 8.6, smaller 
networks are expected to have higher clustering. When averaged over many 
groups of different sizes, therefore, we would expect vertices of lower degree 
to have higher clustering on average, as in Fig. 8.129 

9 An alternative and more complex proposal is that the behavior of the local clustering co-

Community structure in 
networks is discussed at 
some length in Chapter 11. 
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Figure 8.12: Local clustering as a function of degree on the Internet. A plot of the 
measured mean local clustering coefficient of vertices on the Internet (at the level of 
autonomous systems) averaged over all vertices with the given degree. 

8.7 ASSORTATIVE MIXING 

Assortative mixing or homophily is the tendency of vertices to connect to 
others that are like them in some way. We discussed assortative mixing in 
Section 7.13, where we gave some examples from social networks, such as the 
high schoolfriendships depicted in Figs. 7.10 and 7.11 in which school students 
tend to associate more with others of the same ethnicity or age as themselves. 

Of particular interest is assortative mixing by degree, the tendency of ver
tices to connect others with degrees that are similar to their own. We can 
also have disassortative mixing by degree, in which vertices connect to others 
with very different degrees. As we saw in Section 7.13.3, assortative mixing 
can have substantial effects on the structure of a network (see particularly 
Fig. 7.12). 

Assortative mixing by degree can be quantified in a number of different 

efficient arises through hierarchical structure in a network-that not only are there groups, but 
that the groups are divided into smaller groups, and those into still smaller ones, and so 00. See 
Refs. [95,278,3091. 

8.7 

ways. One of them is to use the correlation coefficient defined in Eq. (7.82): 

r= 
L;j(Aij - kikj/2m)kJcj 

Lij(kioij - kikj/2m)kikj' 
(8.26) 

If we were going to calculate the value of this coefficient, however, we should 
not do it directly from this equation, because the double sum over vertices i 
and j has a lot of terms (n' of them) and is slow to evaluate on a computer. 
Instead we write 

5, 5, - 5~ 
r = 5, 5

3 
_ 5r (8.27) 

with 

5, = L. AijkJcj = 2 L. kikj, (8.28) 
if edges (i,j) 

where the second sum is over all distinct (unordered) pairs of vertices (i,}) 
connected by an edge, and 

(8,29) 

The sum in (8.28) has m terms, where m is the number of edges in the network 
and the sums in (8.29) have n terms each, so Eq. (8.27) is usually a lot faster to 
evaluate than Eq, (8.26). 

In Table 8.1 we show the values of r for a range of networks and the re
sults reveal an interesting pattern. While none of the values are of very large 
magnitude-the correlations between degrees are not especially strong-there 
is a clear tendency for the social networks to have positive Y, indicating assor
tative mixing by degree, while the rest of the networks-technological, infor
mation, biological-have negative Y, indicating disassortative mixing. 

The reasons for this pattern are not known for certain, but it appears that 
many networks have a tendency to negative values of r because they are sim
ple graphs. As shown by Maslov et al. [211], graphs that have only single edges 
between vertices tend in the absence of other biases to show disassortative mix
ing by degree because the number of edges that can fall between high-degree 
vertex pairs is limited. Since most networks are represented as simple graphs 
this implies that most should be disassortative, as indeed Table 8.1 indicates 
they are. 

And what about the social networks? One suggestion is that social net
works are assortatively mixed because they tend to be divided into groups, as 
discussed in Section 8.6.l. If a network is divided up into tightly knit groups 
of vertices that are mostly disconnected from the rest of the network, then, as 

ASSORTATIVE MIXING 

The computer time needed 
to calculate network quan
tities is an important topic 
in its own right. We discuss 
the main issues in Chap
ter 9. 
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we have said, vertices in small groups tend to have lower degree than vertices 
in larger groups. But since the members of small groups are in groups with 
other members of the same small groups, it follows that the low-degree ver
tices will tend to be connected to other low-degree vertices, and similarly for 
high-degree ones. This simple idea can be turned into a quantitative calcula
tion [252] and indeed it appears that, at least under some circumstances, this 
mechanism does produce positive values of r. 

Thus a possible explanation of the pattern of r-values seen in Table 8.1 is 
that most networks are naturally disassortative by degree because they are 
simple graphs while social networks (and perhaps a few others) override this 
natural bias and become assortative by virtue of their group structure. 

PROBLEMS 

8.1 One can calculate the diameter of certain types of network exactly. 

a) What is the diameter of a clique? 

b) What is the diameter of a square portion of square lattice, with L edges (or equiv
alently L + 1 vertices) along each side, like this: 

"'I---~- L ~~-<.~ 

r 
L 

1 
What is the diameter of the corresponding hypercubic lattice in d dimensions with 
L edges along each side? Hence what is the diameter of such a lattice as a function 
of the number n of vertices? 

c) A Cayley tree is a symmetric regular tree in which each vertex is connected to the 
same number k of others, until we get out to the leaves, like this: 

---. 
__ ,_-e 

(We have k = 3 in this picture.) 
Show that the number of vertices reachable in d steps from the central vertex 

is k( k - 1 )d-l for d ;:::: 1. Hence find an expression for the diameter of the network 
in terms of k and the number of vertices 11. 

d) Which of the networks in parts (i), (ii), and (iii) displays the small-world effect, 
defined as having a diameter that increases as log n or slower? 

8.2 Suppose that a network has a degree distribution that follows the exponential 
form Pk = Ce- /lk

, where C and A are constants. 

a) Find C as a function of A. 

b) Calculate the fraction P of vertices that have degree k or greater. 

c) Calculate the fraction W of ends of edges that are attached to vertices of degree k 

or greater. 

d) Hence show that for the exponential degree distribution with exponential param
eter 1\, the Lorenz curve-the equivalent of Eq. (8.23)-is given by 

1 A 
w=p- -e PlnP. 

e) Show that the value of W is greater than one for some values of P in the range 
o :s p :s 1. What is the meaning of these "unphysical" values? 

8.3 A particular network is believed to have a degree distribution that follows a power 
law. Among a random sample of vertices in the network, the degrees of the first 20 
vertices with degree 10 or greater are: 

16 17 10 26 13 
14 28 45 10 12 
12 10 136 16 25 
36 12 14 22 10 

Estimate the exponent a: of the power law and the error on that estimate using Eqs. (8.6) 
and (8.7). 

PROBLEMS 
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8.4 Consider the following simple and rather unrealistic mathematical model of a net
work. Each of n vertices belongs to onc of several groups. The !nth group has nil! ver
tices and each vertex in that group is connected to others in the group with independent 
probability pm = A(nm - 1) -I}, where A and ~ are constants, but not to any vertices in 
other groups. Thus this network takes the form of a set of disjoint clusters or commu

nities. 

a) Calculate the expected degree (k) of a vertex in group 1n. 

b) Calculate the expected value em of the local clustering coefficient for vertices in 

group m. 

c) Hence show that em 0< (k) -Ml-~). 

d) What value would p have to have for the expected value of the local clustering to 
fan off with increasing degree as (k)-3/4? 
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CHAPTER 9 

BASIC CONCEPTS OF ALGORITHMS 

An introduction to some of the basic concepts of 
computer algorithms jor network calculations, 
particularly data structures for storing networks and 
methods for estimating the time computations will take 

I N THE preceding chapters of this book we have introduced various types of 
networks encountered in scientific study, methods for collecting data about 

those networks, and some of the basic theoretical tools used to describe and 
quantify networks. Then in the last chapter we combined these ideas in an 
analysis of the structural features of a variety of real-world networks, revealing 
in the process a number of interesting patterns that will be important to our 
further studies in the remainder of the book. 

Analysis of this kind, and most analYSis involved in the contemporary 
study of networks, is primarily performed using computers. In the early days 
of network analysis in the first part of the twentieth century, calculations were 
mostly performed by hand, partly out of necessity, since computers were slow, 
expensive, and rare, but also because the networks studied were typically quite 
small, consisting of perhaps just a few dozen vertices or even less. These days 
we are concerned with networks that have thousands or even millions of ver
tices. Gathering and analyzing the data for networks like these is only possible 
because of the advent of fast cheap computing. 

Some networks calculations are simple enough that it is obvious how one 
would get a computer to carry them out, but many are not and performing 
them efficiently requires careful consideration and thoughtful programming. 
Even merely storing a network in a computer requires some thought, since 
there are many methods for doing it and the choice of method can make a 
substantial difference to the performance of subsequent calculations. 

In this chapter and the following two we discuss some of the techniques 
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and algorithms used for network calculations on computers. A good under
standing of the material discussed here will form a solid foundation for writing 
software to perform a wide variety of calculations with network data. 

In this chapter we describe some simple but important ideas about the run
ning time of algorithms and data structures for the storage of networks. We 
will not describe any actual algorithms in this chapter, but the ideas introduced 
form a foundation for understanding the algorithms that appear in the follow
ing chapters. 

In Chapter 10 we describe a selection of basic network algorithms, includ
ing many of the classics of the field, such as algorithms for calculating central
ity indices, finding components, and calculating shortest paths and maximum 
flows. We continue our study of algorithms in Chapter 11, where we look at 
matrix-based algorithms and particularly at methods for network "partition
ing," 

Understanding the content of these chapters does not require that you know 
how to program a computer. We will not, for instance, discuss particular pro
gramming languages. However, some experience with programming will cer
tainly help enormously in understanding the material, and the reader who has 
none will in any case probably not have very much use for the methods we 
describe. 

Conversely, readers who already have a thorough knowledge of computer 
algorithms may well find some of the material here too basic for them, par
ticularly the material on run times and data structures in the present chapter. 
Such readers should feel free to skip material as appropriate and move quickly 
on to the pOSSibly less familiar subject matter of Chapters 10 and 11. For very 
advanced readers for whom all the material covered here is already familiar, 
or readers who simply wish to go into the subject in greater detail, we rec
ommend the books by Carmen et al. [81], which is a general computer science 
text on algorithms, and by Ahuja et al. [8], which is specifically on network 
algorithms. 

Before we leap into the study of algorithms, one further word of advice is 
worthwhile. Many of the standard algorithms for the study of networks are 
already available, ready-made, in the form of professional network analysis 
software packages. Many of these packages are of very high quality, produced 
by excellent and knowledgeable programmers, and if they are adequate for 
your needs then there is no reason not to use them. Writing and debugging 
your own software for the analysis of network data can take hours or days, 
and there is little reason to expend that time when someone else has already 
done it for you. Table 9.1 lists some of the most widely used current software 
packages for the analysis of network data along with a brief description of 
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Name Availability Platform Description 
Pajek 
Net Workbench 
Netminer 
InFlow 
UCINET 

Free 

Free 
Commercial 
Commercial 
Commercial 

W 
WML 
W 
W 
W 
WML 

Interactive social network analysis and visualization 
Interactive network analysis and visualization 
Interactive social network analysis and visualization 
Interactive social network analysis and visualization 
Interactive social network analysis 

yEd Free Interactive visualization 
Visone Free WL Interactive visualization 
Graphviz Free L Visualization 
NetworkX Free WML Interactive network analysis and Python library 

JUNG Free WML JAVA library for network analysis and visualization 
igraph Free WML C/R/Python libraries for network analysis 
GTL Free WML C++ library for network analysis 
LEDA/AGD Commercial __ ~ _____ ,-,--_--,--~ __ W~L . ____ C +": lib.r"ry for .:.::n::.etw'--0.:..r:.::k.:..a:.:n:.:a"'l:,cy::.s1::c· s _______ _ 

Table 9.1: A selection of software implementing common network algorithms. Platforms are Microsoft Windows (W), 
Apple Macintosh (M), and Linux (L). Most Linux programs also run under Unix and Unix-like systems such as BSD, 
and many Windows programs can run on Macs and Linux systems using emulation software. 

what they do. The present author, for instance, has made considerable use of 
Graphviz, Pajek, and yEd, all of which provide useful features that could save 
you a lot of time in your work. Some other network calculations, especially 
the matrix-based methods of Chapter 11 and calculations using the models of 
Chapters 12 to 15, can be performed using standard mathematical software 
such as Matlab, Mathematica, or Maple, and again there is no reason not to 
make use of these resources if they are adequate for the particular task before 
you. 

That said there are still some excellent reasons for studying network algo
rithms and computer methods. First of all, even when you are making use of 
pre-packaged software to do your calculations, it helps greatly if you under
stand how the algorithms work and what the software is doing. Much time 
can be wasted when people fail to understand how a program works or mis
understand the kinds of answers the program can give them. Furthermore, if 
you are going to undertake a substantial amount of work using network data, 
you will sooner or later find that you need to do something that cannot be done 
with standard software and you'll have to write some programs of your own. 

Second, there is a marked tendency in the current networks literature for 
some researchers to restrict their calculations to those that can be carried out 
using the standard software. By relying on pre-packaged programs to do their 
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calculations for them, researchers have become limited in what types of analy
sis they can perform. In this way, the standard packages have, in effect, shaped 
the research agenda of the empirical side of the field, which is completely the 
reverse of what it should be. Good research decides the interesting questions 
first and then goes in search of answers. Research that restricts itself only to 
the questions it already knows how to answer will be narrowly focused indeed. 
By following the developments in this and the following chapters, and, if you 
wish, reading further in the algorithms literature, you give yourself the oppor
tunity to pursue whatever nenvork questions are of interest to you, without 
having to rely on others to produce software to tackle those questions. 

9.1 RUNNING TIME AND COMPUTATIONAL COMPLEXITY 

Before we can look at exactly how network algorithms work, there is an im
portant issue we need to tackle, that of computational complexity. If you have 
programmed computers before, you may well have had the experience of writ
ing a program to perform a particular calculation and setting it running, only 
to find that it is still running an hour or even a day later. Performing a quick 
back-of-the-envelope calculation, you discover to your dismay that the calcu
lation you have started will take a thousand years to finish, and hence that the 
program you wrote is basically useless. 

The concept of computational complexity (or just "complexity" for short) is 
essentially a more formal version of back-of-the-envelope calculations like this 
ODe, and is useful precisely because it helps us to avoid wasting our energies 
on programs that will not finish running in any reasonable amount time. By 
considering the complexity of an algorithm before we even start to write a 
computer program, we can be sure we are writing one that will actually finish. 

Computational complexity is a measure of the running time of a computer 
algorithm. Consider a simple example: how long does it take to find the largest 
number in a list of n numbers? Assuming the numbers are not given to us in 
some special order (such as largest first), then there is no quicker way to find 
the largest than simply to go through the whole list, item by item, keeping a 
running record of the largest number we have seen, until we get to the end. 

This is a very simple example of a computer algorithm. We could use it, 
for instance, to find the vertex in a network that has the highest degree. The 
algorithm consists of a number of steps, one for each number in the list. On 
each step, we examine the next number in the list and ask whether it is larger 
than the largest we have seen so far. If it is, it becomes the new largest-number
seen-so-far, otherwise nothing happens and we move on to the next step. 

Now here is the crucial point: in the worst possible case the most work we 
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will have to do for this algorithm is on each step to (1) examine the next num
ber, (2) compare it with our previous record holder, and (3) replace the previous 
record holder with the new number. That is, the largest amount of work we 
have to do happens when every number is bigger than all the ones before it. 

In this case the amount of work we do is the same on every step and hence 
the total time taken to complete the algorithm, its running time, is just nT, 
where T is the time taken on each individual step. If we are lucky, the actual 
time taken may be less than this, but it will never be more. Thus we say that 
the running time or time complexity of this algorithm is order n, or just O( n) 
for short. Technically the notation O( n) means that the running time varies as 
a constant times n or less, to leading order in n.1 We say "to leading-order" 
because it is possible that there may be contributions to the running time that 
increase with system size more slowly than this leading-order term. For in
stance, there might be some initial start-up time for the algorithm, such as time 
taken initializing variables, that is a constant independent of n. We would de
note this time as being 0(1), i.e., a constant times 1. By convention, however, 
one drops such sub-leading terms when citing the complexity of an algorithm, 
because if n is large enough that the running time of the program becomes a 
serious issue then the sub-leading terms will usually be small enough by com
parison with the leading ones that they can be safely neglected.' Thus the time 
complexity of our simple largest-number algorithm is just O( n). 

Technically, the computational complexity of an algorithm is an indication 
of how the algorithm's running time scales with the size of its input. In our 
example, the input to the algorithm is the list of numbers and the size of that 
input is the length n of the list. If this algorithm were used to find the highest 
degree node in a network, then the size of the input would be the number of 
vertices in the network. In many of the network algorithms we will look at 
this will be the case-the number of vertices n will be the important parameter 
we consider. In other cases, the important parameter will be the number of 
edges m in the network, while in others still we will need both m and n to fully 
specify the size of the input-there could be different parts to an algorithm, for 
instance, that operate separately on the vertices and the edges, so that the total 
running time depends on both. Thus, for example, we will see in Section 10.3 
that the algorithm known as "breadth-first search," which is used for finding 
geodesic paths in networks, has a computational complexity O(m) + O( n) for 

I If we wish to say that the rurming time is exactly proportional to n, we can use the nota
tion8(n). 

2There are occasional instances where this is not true, so it is worth just bearing in mind the 
pOSSibility of sub-leading terms. 
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a network with 111 edges and n vertices, meaning that it runs in time am + bn 
where a and b are constants, Of quicker. Very often one writes this, in shorthand 
and slightly sloppy form, as O(m + 11). This latter notation is not meant to 
imply that the constants in front of m and n are the same. 

In a lot of networks research we are concerned with sparse graphs (see 
Section 6.9) and particularly with graphs for which m increases in proportion to 
11 as n becomes large. To put that another way, the mean degree of the network 
c = 2m/11 remains constant (see Eq. (6.23)). In such networks, O(m + n) '" 
O(n) and we can drop the m from our notation. 

The importance of the computational complexity lies in its use for estimat
ing the actual running time of real algorithms. If a particular algorithm is going 
to take a month to solve a problem of interest, or a year or a century, we'd like 
to know that in advance. We want to estimate how long the calculation is go
ing to take before we start it, so we can make a decision about whether the wait 
is justified. A knowledge of the computational complexity allows us to do that 
by measuring run-time on a small problem and then scaling up appropriately 
to the size of the real problem. 

For example, suppose we wish to run the breadth-first search algorithm 
mentioned above on a network with a million vertices and ten million edges. 
Knowing that the algorithm has time complexity O(m + n), we could start out 
with a small test-run of the program on a network with n = 1000 vertices, say, 
and 111 = 10 000 edges. Often we artificially create small networks just for the 
purposes of such tests. Perhaps we find that the program finishes in a second 
on the test network. We then scale up this result knowing that the running time 
varies as am + bn. On the full network with n = 1000 000 and 111 = 10 000 000 
both n and In are a thousand times larger than on the test network, so the 
program should take about a thousand times longer to finish, i.e., a thousand 
seconds or about a quarter of an hour. Armed with this information we can 
safely start our program working on the larger problem and step out for a cup 
of tea or a phone call while we wait for it finish. 

Conversely, suppose we had an algorithm with computational complex
ity 0(n4 ). That means that if we increase the number of vertices n in our net
work by a factor of a thousand the running time will increase by a trillion. 
In such a case it almost does not matter what the run time of the algorithm 
is on our small test network; the run time on the full network is going to be 
prohibitively long. For instance, if the test network takes a second again, then 
the full network would take a trillion seconds, which is around 30 000 years. 
In this case, we would certainly abandon the calculation, or at least look for a 
faster algorithm that can complete it in reasonable time. 

Finding the computational complexity of an algorithm, generating test net-
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works, performing small runs, and doing scaling calculations of this type all 
require some work-additional work on top of the work of developing and 
programming the computer algorithm in the first place. Nonetheless, this ex
tra work is well worth the effort involved and one should always perform this 
type of analysis, at least in some rough manner, before embarking on any ma
jor numerical calculations. Computational complexity will be one of our major 
concerns throughout of the discussions of algorithms in this chapter and the 
following two. An algorithm is next to useless if its running time scales poorly 
with the size of a network. In practice, any algorithm that scales with system 
size as 0(n3 ) or greater is useless for large networks, although such algorithms 
still find some use for the smaller cases. In the world of computer science, 
where many researchers have devoted their entire careers to the invention of 
new algorithms for solving particular problems, the calculation of the com
putational complexity of an algorithm is a primary goal-often the primary 
goal-of research. Plenty of papers are published whose sale contribution is to 
provide a calculation of the complexity of some algorithm. 

It is worth mentioning that calculations of the run time of algorithms based 
on their complexity, as above, do not always give very accurate answers. We 
have mentioned already that standard measures of time complexity neglect 
sub-leading contributions to the run time, which may introduce inaccuracies 
in practical situations. But in addition there are, for technical reasons, many 
cases where the behavior of the run time is considerably poorer than a simple 
scaling argument would suggest. For instance, in calculations on networks 
it is important that the entire network fit in the main memory (RAM) of our 
computer if the algorithm is to [lID quickly. If the network is so large that at 
least part of it must be stored on a disk or some other slow form of storage, 
then the performance of the algorithm may be substantially hindered.3 Even 
if the entire network fits in the main memory, there may be additional space 
required for the operation of the algorithm, and that must fit in the memory 
too. Also, not all kinds of memory are equally fast. Modern computers have 
a small amount of extra-fast "cache" memory that the computer can use for 
storing small quantities of frequently used data. If all or most of the data for a 
calculation fit in the cache, then the program will run far faster than if it does 
not. 

There are also cases in which a program will perform better than the es-

3There are whole subfields in computer science devoted to the development of algorithms that 
run quickly even when part of the data is stored on a slow disk. Usually such algorithms work by 
reordering operations so that many operations can be performed on the same data, stored in the 
main memory, before swapping those data for others on the disk. 
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timate based on its complexity would indicate. In particular, the complexity 
is usually calculated by considering the behavior of the program in the worst 
case. But for some programs the worst-case behavior is relatively rare, occur
ring only for certain special values of the program inputs or particularly un
lucky parameter choices, and the typical behavior is significantly better than 
the worst case. For such programs the complexity can give an unreasonably 
pessimistic estimate of rUill1ing time. 

For all of these reasons, and some others as well, programs can show unex
pected behaviors as the size of their input increases, sometimes slowing down 
substantially more than we would expect given their theoretical time complex
ity and sometimes rUIll1ing faster. Nonetheless, computational complexity is 
still a useful general guide to program performance and an indispensable tool 
in the computer analysis of large networks. 

9.2 STORING NETWORK DATA 

The first task of most programs that work with network data is to read the 
data, usually from a computer file, and store it in some form in the memory of 
the computer. Network data stored in files can be in any of a large number of 
different formats, some standard, some not, but typically the file contains an 
entry containing information for each vertex or for each edge, or sometimes 
both. The way the data are stored in the computer memory after they are read 
from the file can, as we will see, make a substantial difference to both the speed 
of a program and the amount of memory it uses. Here we discuss some of the 
commonest ways to store network data. 

The first step in representing a network in a computer is to label the vertices 
so that each can be uniquely identified. The most common way of doing this is 
to give each a numeric label, usually an integer, just as we have been doing in 
our mathematical treatment of networks in Chapters 6 and 7. In the simplest 
case, we can number the n vertices of a network by the consecutive integers 
i = 1 ... 11, although in some cases we might wish to use non-consecutive in
tegers for some reason or to start the numbering from a different point. (For 
instance, in the C programming language it is conventional for numbering to 
start at zero and run through i = 0 ... n - 1.) Most, though not all, file for
mats for storing networks already specify integer labels for vertices, which 
may simplify things. For those that don't, one typically just labels vertices 
consecutively in the order they are read from the file. In what follows, we will 
assume that vertices are numbered 1 ... n. 

Often the vertices in a network have other notations or values attached 
to them in addition to their integer labels. The vertices in a social network, 
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for instance, might have names; vertices in the World Wide Web might have 
URLs; vertices on the Internet might have IP addresses or AS numbers. Ver
tices could also have properties like age, capacity, or weight represented by 
other numbers, integer or not. All of these other notations and values can be 
stored straightforwardly in the memory of the computer by defining an array 
of a suitable type with n elements, one for each vertex, and filling it with the 
appropriate values in order. For example, we might have an array of n text 
strings to store the names of the individuals in a social nenvork, and another 
array of integers to store their ages in years. 

Having devised a suitable scheme for storing the properties of vertices, we 
then need a way to represent the edges in the network. This is where things 
get more complicated. 

9.3 THE ADJACENCY MATRIX 

Tn most of the mathematical developments of previous chapters we have rep
resented networks by their adjacency matrix Aij-see Section 6.2. The adja
cency matrix also provides one of the simplest ways to represent a nenvork on 
a computer. Most computer languages provide two-dimensional arrays that 
can be used to store an adjacency matrix directly in memory. An array of inte
gers can be used if the adjacency matrix consists only of integers, as it does for 
unweighted simple graphs or multigraphs. An array of floating-point num
bers is needed for an adjacency matrix that may have reals (non-integers) as 
its elements, as does the adjacency matrix of some weighted networks~see 
Section 6.3. 

Storing a nenvork in the form of an adjacency matrix is convenient in many 
ways. Most of the formulas and calculations described in this book are written 
out in terms of adjacency matrices. So if we have that matrix stored in our 
computer it is usually a trivial matter to turn those formulas into computer 
code to calculate the corresponding quantities. 

The adjacency matrix can be highly advantageous for other reasons too. 
For instance, if one wishes to add or remove an edge benveen a given pair 
of vertices, this can be achieved very quickly with an adjacency matrix. To 
add an edge between vertices i and j one simply increases the ijth element of 
the adjacency matrix by one. To remove an edge between the same vertices 
one decreases the element by one. These operations take a constant amount of 
time regardless of the size of the network, so their computational complexity 
is 0(1). Similarly if we want to test whether there is an edge between a given 
pair of vertices i and j we need only inspect the value of the appropriate matrix 
element, which can also be done in 0(1) time. 
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Undirected networks give a slight twist to the issue since they are repre
sented by symmetric matrices. If we want to add an undirected edge between 
vertices i and j, then in principle we should increase both the ijth and jith el
ements of the adjacency matrix by one, but in practice this is a waste of time. 
A better approach is to update only elements in the upper triangle of the ma
trix and leave the lower one empty, knowing that its correct value is just the 
mirror image of the upper triangle.4 To put this another way, we only update 
elements (i, j) of the matrix for which i < j. (For networks in which self-edges 
are allowed, we would use the diagonal elements as well, so we would update 
elements with i :S j-see Section 6.2.) For instance, if we wish to create an edge 
between vertex 2 and vertex 1, this means in principle that we want to increase 
both the (2,1) element and the (1,2) element of the adjacency matrix by one. 
But, since we are only updating elements with i < j, we would increase only 

the (1,2) element and leave the other alone.' 
Taking this idea one step further, we could not bother to store the lower tri

angle of the adjacency matrix in memory at all. If we are not going to update 
it, why waste memory storing it? Unfortunately, dropping the lower triangle 
of the matrix makes our remaining matrix triangular itself, and most computer 
languages don't contain arrays designed to hold triangular sets of quantities. 
One can, by dint of a certain amount of work, arrange to store triangular matri
ces using, for example, the dynamic memory allocation facilities provided by 
languages like C and JAVA, but this is only worth the effort if memory space is 
the limiting factor in performing your calculation. 

The adjacency matrix is not always a convenient representation, however. 
It is cumbersome if, for instance, we want to run quickly through the neighbors 
of a particular vertex, at least on a sparse graph. The neighbors of vertex i are 
denoted by non-zero elements in the ith row of the adjacency matrix and to 
find them all we would have to go through all the elements of the row one by 
one looking for those that are non-zero. This takes time 0(11) (since that is the 
length of the row), which could be a lot of time in a large network, and yet on 
a sparse graph most of that time is wasted because each vertex is connected to 
only a small fraction of the others and most of the elements in the adjacency 
matrix are zero. As we will see in this chapter, many network algorithms do 
indeed require us to find all neighbors of a vertex, often repeatedly, and for 

4For directed networks, which are represented by asymmetric adjacency matrices, this issue 
does not arise-the full matrix, both the upper and lower triangles, is used to store the structure 

of the network. 

50f course we could equally well store the edges in the lower triangle of the matrix and neglect 
the upper triangle. Either choice works fine. 
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Operation Adjacency matrix Adjacency list Adjacency tree 

Insert 0(1) 0(1) O(log(m 111)) 
Delete 0(1) O(mln) O(log(mln)) 
Find 0(1) O(mll1) O(log(mll1)) 
Enumerate 0(11) O(mll1) O(mln) 

Table 9.2: The leading-order time complexity of four operations for various repre
sentations of a network of 11 vertices and 111 edges. The operations are adding an edge 
to the network (insert), removing an edge from the network (delete), testing whether 
a given pair of vertices are connected by an edge (find), and listing the neighbors of a 
given vertex (enumerate). 

such algorithms the adjacency matrix is not an ideal tool. 
The computational complexity of the network operations discussed here 

for an adjacency matrix is summarized in Table 9.2. 
Another disadvantage of the adjacency matrix representation is that for 

sparse graphs it makes inefficient use of computer memory. In a network in 
which most elements of the adjacency matrix are zero, most of the memory 
occupied by the matrix is used for storing those zeros. As we will see, other 
representations exist, such as the "adjacency list," that avoid storing the zeros 
and thereby take up much less space.' 

It is a simple matter to work out how much memory is consumed in storing 
the adjacency matrix of a network. The matrix has 112 elements. If each of them 
is an integer (which requires 4 bytes for its storage on most modern computers) 
then the entire matrix will take 4112 bytes. At the time of writing, a typical 
computer has about 1010 bytes of RAM (10 GB), and hence the largest network 
that can be stored in adjacency matrix format satisfies 4112 = 1010, or n = 
50 000. This is not nearly large enough to store the largest networks of interest 
today, such as large subsets of the Web graph or large social networks, and is 
not even big enough for some of the medium-sized ones. 

The disadvantages of the adjacency matrix representation described here 

60ne advantage of the adjacency matrix is that the amount of space it consumes is indepen
dent of the number of edges in the network. (It still depends on the number of vertices, of course.) 
As we will see in Section 9.4, other data formats such as the adjacency list use varying amounts 
of memory, even for networks with the same number of vertices, depending on how many edges 
there are. In calculations where edges are frequently added or removed it may be convenient
and increase the speed of our algorithms-to have the size of our data structures remain constant, 
although this advantage must be weighed against the substantial space savings of using the adja
cency list or other memory-efficient formats. 
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apply primarily to sparse networks. If one is interested in dense networks
those in which a significant fraction of all possible edges are present-then the 
adjacency matrix format may be appropriate. It will still use a lot of memory 
in such cases, but so will any data format, since there is simply a lot of in
formation that needs to be stored, so the advantages of other formats are less 
significant. The adjacency matrix may also be a good choice if you are only 
interested in relatively small networks. For instance, the social network analy
sis package UCINET, which is targeted primarily at sociological practitioners 
working with smaller networks, uses the adjacency matrix format exclusively. 
Most current research on netvvorks however is focused on larger data sets, and 
for these another representation is needed. 

9.4 THE ADJACENCY LIST 

The simplest alternative to storing the complete adjacency matrix of a network 
is to use an adjacency list. The adjacency list is, in fact, probably the most widely 
used network representation for computer algorithms. 

An adjacency list is actually not just a single list but a set of lists, one for 
each vertex i. Each list contains the labels of the other vertices to which i is 
connected by an edge. Thus, for example, this small network: 

2 
• 

5 

3 4 

would be represented by this adjacency list: 

Vertex Neighbors 
1 3,4 
2 
3 4,1 
4 5,1,3 
5 4 

An adjacency list can be stored in a series of integer arrays, one for each vertex, 
or as a two-dimensional array with one row for each vertex? It is common to 
also store somewhere the degree of each vertex, so that we know how many 

7Note that the number of entries in the list of neighbors for a vertex varies from one vertex 
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entries there are in the list of neighbors for each vertex; this can be done using 
a separate array of n integers. Note also that there is usually no requirement 
that the neighbors of a vertex in the adjacency list appear in numerical order. 
Normally they are allowed to appear in any order. 

In the example adjacency list above, each edge appears twice. For instance, 
the existence of an edge between vertices 1 and 3 means that vertex 3 is listed 
as a neighbor of vertex 1 and vertex 1 is also listed as a neighbor of vertex 3. To 
represent m edges, therefore, we need to store 2m integers. This is much better 
than the n' integers used to store the full adjacency matrix8 For instance, on 
a computer where each integer occupies 4 bytes of memory, a network with 
11 = 10 000 vertices and In = 100 000 edges would occupy 800 kB in adjacency 
list form, as opposed to 400 MB in matrix format. The double storage of the 
edges is slightly wasteful-we could save an additional factor of two if we only 
stored each edge once. However, the double storage turns out to have other 
advantages, making our algorithms substantially faster and easier to program 
in many cases, and these benefits are normally worth the extra cost in terms of 
space. In these days of cheap memory, not many networks are large enough 
that space to store an adjacency list is a serious consideration. 

An adjacency list can store networks with multiedges or self-edges. A 
multiedge is represented by multiple identical entries in the list of neighbors 
of a vertex, all pointing to the same adjacent vertex. A self-edge is represented 
by an entry identifying a vertex as its own neighbor. In fact, a self-edge is most 
correctly represented by two such entries in the list, so that the total number of 
entries in the list is still equal to the degree of the vertex. (Recall that a self-edge 
adds 2 to the degree of the vertex it is connected to.) 

The example adjacency list above is for an undirected network, but ad
jacency lists can be used with directed networks as well. For instance, this 
network: 

to another, and may even be zero, being equal to the degree of the corresponding vertex. Most 
modern computer languages, including C and its derivatives and JAVA, allow the creation of two
dimensional matrices with rows having varying numbers of elements in this fashion. Some older 
languages, like FORTRAN 77, do not allow this, making it more difficult to store adjacency lists in 
a memory-efficient way. 

8Note that the amount of memory used is now a function of ITI rather than than n. For algo
rithms in which edges are added or removed from a network during the course of a calculation 
this means that the size of the adjacency list can change, which can complicate the programming 
and potentially slow down the calculation. Normally, however, this added complication is not 
enough to outweigh the considerable benefits of the adjacency list format. 
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2 

~o 
3 4 

could be represented by this adjacency list:9 

Vertex 
1 
2 

3 
4 
5 

Outgoin~~dg=-
3,4 

4 
5,1 
4 

Here we have listed the outgoing edges for each vertex. Since each edge is 
outgoing from some vertex, this approach is guaranteed to capture every edge 
in the network, but each edge now appears only once in the adjacency list, not 
twice as in the undirected case. 

Alternatively, we could represent the same network by listing the ingoing 
edges for each vertex thus: 

Vertex Incoming edges 
1 4 

2 
3 1 
4 3,1,5 
5 4 

In principle these two representations are equivalent. Both include all the 
edges and either of them can be constructed from a knowledge of the other. 
When creating computer programs, however, the crucial point is to have the 
information you need for your calculations easily available, so that the pro
gram runs fast. Different calculations require different information and some 
might need ingoing edges while others need outgoing ones. The choice of 
which adjacency list to use thus depends on the particular calculations being 

9Indeed, the adjacency list for an undirected network such as that given above could be 
viewed as a special case of the directed adjacency list for a network in which each undirected 
edge is replaced by two directed ones, one in each direction. It takes only a moment to convince 
oneself that this results precisely in the sort of double representation of each edge that we saw in 
the undirected case. 
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performed. Some calculations even require both ingoing and outgoing edges, 
in which case we could create a double adjacency list like this: 

Vertex Incoming edges au tgoing edges 

1 4 3,4 
2 

3 1 4 
4 3,1,5 5,1 
5 4 4 
---~.-

Note that, as in the undirected case considered above, this double adjacency 
list stores each edge twice, once as an incoming edge and once as an outgoing 
one, and is thus in some respects wasteful of space, although not to an extent 
that is normally a problem. 

As with the adjacency matrix it is important also to ask how fast our calcu
lations will run if we use an adjacency list. Will they still run at a reasonable 
pace? If the answer is no, then the adjacency list is not a useful representation, 
no matter what its other advantages may be. 

Consider the undirected case'O and the four basic network operations that 
we considered previously for the adjacency matrix, addition and removal of 
edges, finding whether an edge is present, and enumeration of all edges con
nected to a vertex-see Table 9.2. 

We can add an edge to our network very quickly: to add an edge (i, j) we 
need only add one new entry each to the ends of the neighbor lists for vertices 
i and j, which takes time 0(1). 

Finding or removing an edge is a little harder. To find whether an edge 
exists between vertices i and j we need to go through the list of neighbors of i 
to see whether j appears in that list, or vice versa. Since the list of neighbors 
is in no particular order, there is no quicker way of doing this than simply 
going through the entire list step by step from the beginning. In the worst 
case, we will have check all elements to find our edge or to confirm that it does 
not exist, and on averagell this will take time of order the mean number c of 
elements in the list, which is given by the mean degree c = 2lnln (Eq. 6.23). 

laThe answers are essentially the same in the directed case. The demonstration is left as an 
exercise. 

llWe are thus calculating a sort of "average worst-case" behavior, allowing for the worst case 
in which we have to look through the entire list, but then averaging that worst case over many 
different lists. This is a reasonable (and standard) approach because almost all of the algorithms 
we will be considering do many successive "find" operations during a single run, but it does mean 
that we are technically not computing the complexity of the absolute worst case sihtation. 
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Thus the "find" operation takes time O(m/n) for a network in adjacency list 
form. This is a bit slower than the same operation using an adjacency matrix, 
which takes time 0(1) (Section 9.3). On a sparse graph with constant mean 
degree, so that m <X n (see Sections 6.9 and 9.1), O(m/n) = 0(1), so technically 
the complexity of the adjacency list is as good as that of the adjacency matrix, 
but in practice the former will be slower than the latter by a constant factor 
which could become large if the average degree is large. 

Removing an edge involves first finding it, which takes time O( m / n), and 
then deleting it. The deletion operation can be achieved in 0(1) time by simply 
moving the last entry in the list of neighbors to overwrite the entry for the 
deleted edge and decreasing the degree of the vertex by one (see figure). (If 
there is no last element, then we need do nothing other than decreasing the 
degree by one.) Thus the leading-order running time for the edge removal 
operation is O(m/n). 

However, the adjacency list really comes into its own when we need to 
run quickly through the neighbors of a vertex, a common operation in many 
network calculations, as discussed in Section 9.3. We can do this very easily by 
simply running through the stored list of neighbors for the vertex in question, 
which takes time proportional to the number of neighbors, which on average is 
c = 2m/n. The leading-order time complexity of the operation is thus O(m/n), 
much better than the O(n) of the adjacency matrix for the same operation. 

The computational complexity of operations on the adjacency list is sum
marized in Table 9.2. 

9.5 TREES 

The adjacency list is, as we have said, probably the most commonly used for
mat for the storage of networks. Its main disadvantage is the comparatively 
long time it takes to find or remove edges~O(m/n) time, compared with the 
0(1) of the adjacency matrix. In many of the most common network algo
rithms, such as the breadth-first search of Section 10.3 or the augmenting path 
algorithm of Section 10.5, this is not a problem, since one never needs to per
form these operations. Some algorithms, however, such as the algorithm for 
calculating the clustering coefficient given in Section 10.2, do require these op
erations and can be slowed by the use of an adjacency list. On a network with 
mean degree 100, for instance, the edge-finding operations in the clustering 
coefficient algorithm can be expected to slow the calculation down by about a 
factor of 100, which could make the difference between a calculation that takes 
an hour to finish and one that takes a week. 

A data structure that has most of the advantages of the adjacency list, while 

being considerably faster in many situations, is the adjacency tree. l2 An adja
cency tree is identical to an adjacency list except that each "row" ~the set of 
neighbors of each vertex~is stored in a tree rather than a simple array. If you 
already know what a tree is then you probably don't need to read the rest of 
this section~you'll have got the idea already. If you don't know what a tree is, 
read on.13 

A tree is a data structure for storing values of some kind, such as integers 
or real numbers, in a way that allows them to be added, removed, and located 
quickly. Trees come in a number of types. We consider the case where the val
ues stored are all distinct, which is the relevant case for our purposes, although 
it is only slightly more complicated to allow for identical values. 

Figure 9.1a shows an example of a tree that is being used to store the inte
gers {l, 3, 4, 6, 7, 10, 12, 14}. The basic structure is one of a set of nodes (not to be 
confused with the nodes of the network that we are storing), which correspond 
to memory locations in the computer, each containing one of the integers. The 
tree nodes are arranged in a top-down fashion with a root node at the topI4 
Each node can have zero, one, or two child nodes that are drawn immediately 
below it and connected to it by lines to indicate the child relationship. One can 
create trees with nodes that have more than two children, but for our purposes 
it works better to limit the number to two. A tree with at most two children 
per node is called a binary tree. 

Each node in the tree, except for the root, has exactly one parent node. The 
root has no parent. Nodes with no children are called leaves. On a computer a 
tree is typically implemented with dynamically allocated memory locations to 
store the numbers, and pointers from one node to another to indicate the child 
and parent relationships.!5 

12This is not a standard name. As far as the present author is aware, this data structure doesn't 
have a standard name, since it is not used very often. Moreover, the name isn't even entirely ac
curate. The structure is technically not a tree but a forest, i.e., a collection of many trees. Still, 
"adjacency tree" is Simple and descriptive, and analogous to "adjacency list," which is also, tech
nically, not a single list but a collection of lists. 

13Tlle word "tree" has a different meaning here from the one it had in Section 6.7, although the 
two are related. There a tree meant a network with no loops in it. Here it refers to a data structure, 
although as we will see, the tree data structure can also be regarded as a network with no loops. In 
effect we are using a network to store information about another network, which is a nice touch. 

14 As pointed out in a previous footnote on page 127, it is slightly odd to put the "root" the top 
of the tree. Most of us are more familiar with trees that have their roots at the bottom. We could 
of course draw the tree the other way up-it would have the same meaning-but it has become 
conventional to draw the root at the top of the pichtre, and we bow to that convention here. 

15 A "pointer" in computer programming is a special variable that holds the address in memory 
of another variable. 
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Figure 9.1: Two trees containing the same set of numbers. The two trees depicted here 
both store the numbers {1, 3,4, 6, 7, 10, 12, 14}. (a) A balanced tree in which the depths 
of the subtrees below each node differ by no more than 1. (b) An unbalanced tree. 

A defining property of our binary tree will be that the values stored in the 
left child of node i (if there is one) and in all other nodes descended from that 
child, are less than the value stored in i itself. Conversely, the values stored in 
the right child of i (if there is one) and all nodes descended from it are greater 
than the value stored in i. The reader might like to confirm that the values in 
Fig. 9.1a satisfy these requirements at every node in the tree. 

Our goal is to use trees to store the lists of neighbors of each vertex in a 
network. We will show that if we do so we can perform our four basic network 
operations-addition, removal, and finding of edges, and enumeration of the 
complete set of a vertex's neighbors-very quickly on average. Below we first 
explain in the general language of the binary tree how these operations are 
achieved. At the end of the section we discuss how they are used in the specific 
context of the adjacency tree format for networks. 

The find operation: The first tree operation we consider is the "find" op
eration, which is the operation of determining whether a particular value is 
present in our tree. We accomplish this operation as follows. Starting at the 
root node: 

1. Examine the value x in the current node. If it is the value we are looking 
fOf, stop-our task is done. 

2. If not and the value we are looking for is less than x, then by the prop-

erties described above, the value we are looking for must be in the left 
child of the current node or one of its descendants. So we now move to 
the left child, if there is one, which becomes our new current node. If 
there is no left child, then the value we are looking for does not exist in 
the tree and our task is done. 

3. Conversely if the value we are looking for is greater than x, we move to 
the right child, if there is one, which becomes our new current node. If 
there is no right child, the value we are looking for does not exist in the 
tree and our task is done. 

4. Repeat from step 1. 
T"lkin,,' the example of the tree in Fig. 9.1a, suppose that we are trying to de
termine whether the number 7 appears in the tree. Starting at the root note we 

a 4, which is not the number 7 that we are looking for. Since 7 is greater 
4, we move to the right child of the root and there find a 12. Since 7 is 

than 12 we move to the left child and there we find our number 7, and our 
is over. 

On the other hand, suppose we wish to determine whether the number 9 
appei,"S in the tree. Again we would start at the root and move right, then 

then right as we went down the tree, arriving after three steps at the node 
cOl,taining the number 10. This number is not equal to the number 9 and since 

is less than 10 we would normally now move to the left child down the tree. 
this case, however, there is no left child, and hence we conclude that the 

nllml,Pr we are looking for does not exist in the tree. 
How long does the "find" operation take? That depends on how many 

we have to take through the tree: we have to perform the same operations 
each step, so the time taken is simply proportional to the number of steps. 

maximum number of steps to reach any node from the root is called the 
of the tree. Unfortunately, the depth doesn't have a simple fixed value. 
are many possible ways to store the same numbers in a tree while still 

VV'"y'''r, the conditions on child and parent nodes. For instance, both of the 
in Fig. 9.1 are valid ways to store the same set of numbers. The one in 
(a) has depth 4, while the one in panel (b) has depth 8. In general the 

m'lxilml:lm pOSSible depth is given by an arrangement like (b) and is equal to 
number Ie of values stored in the tree. For such a tree the find operation 

wc,uH:Lin the worst case, take O(k) time, which is no better than what we get 
we store the values in a simple array-in either case we just end up going 

the values one by one until we find the one we want. 
On the other hand, if we can make the tree reasonably balanced, like the 
in Fig. 9.1a, then the depth can be a lot less than k. Let us calculate the 

mi:ninrrUlTI depth required to store Ie values. If we start at the top of the tree and 
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fill in the levels one by one, we can put one value at the root, two values in the 
second level, four in the third, and so forth, each level holding twice as many 
values as the previous one. In general, level I can hold 2'-1 values and the total 
number of values in L levels is 

L LzI 1=2L_1. 
1=1 

(9.1) 

Setting this equal to Ie and rearranging, we find that L = log, (k + 1). However, 
L must be an integer, so, rounding up, we conclude that a minimum of 

(9.2) 

levels are needed to store k numbers, where [xl denotes the smallest integer 
not less than x. If we can pack the values into the tree like this, filling each 
level completely, then our find operation will only take O( [log, (Ie + 1) 1) to 
complete. In fact, since [log,(k + 1)1 :S log,(k + 1) + 1 we could also say that 
it will take O(log, (Ie + 1)) time, where as usual we have kept only the leading
order term and dropped the sub-leading + 1 term. We can also neglect the 
base of the logarithm, since all logs are proportional to one another, regardless 
of their base, and we can replace log (Ie + 1) by log Ie since again we are only 
interested in the leading-order scaling. 

Thus, we conventionally say that the find operation in a balanced tree con
taining Ie values can be completed in time O(log Ie). This is much better than 
the O(Ie) of the simple list or the unbalanced tree. For a tree with Ie = 100 
values stored in it we have log, Ie "" 7, so the find operation should be about 
100/7 "" 14 times faster than for the simple list, and the speed advantage in
creases further the larger the value of k. 

The addition operation: And how do we add a new value to a tree? The 
crucial point to notice is that in adding a new value we must preserve the 
relations between parent and child nodes, that lower values are stored in the 
left child of a node and its descendants and higher ones in the right child and 
descendants. These relations were crucial to the speedy performance of the 
find operation above, so we must make sure they are maintained when new 
items are added to the tree. 

This, however, turns out not to be difficult. To add an item to the tree we 
first perform a "find" operation as above, to check if the value in question 
already exists in the tree. If the value already exists, then we don't need to add 
it. (Imagine for example that we are adding an edge to a network. If that edge 
already exists then we don't need to add it.) 

On the other hand, if the value does not exist in the tree then the find oper
ation will work its way down the tree until it gets to the leaf node that would 
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Figure 9.2: The structure of a tree depends on the order in which elements are added to it. Here the values 1 to 7 
are added to a tree in hvo different orders. In (a) they are added in the order 4, 2, 6, 1, 3, 5, 7, resulting in a perfectly 
balanced tree with the minimum possible depth of three. In (b) they are added in the order 1, 2, 3, 4, 5, 6, 7, resulting in 
an unbalanced tree with the maximum possible depth of seven. 

have been the parent of our value, but which does not have an appropriate 
child node. Then we simply add the appropriate child of that leaf node and 
store our value in it, thereby increasing the number of nodes in the tree by one. 
Since the find operation takes O(log Ie) time and the creation of the new node 
takes constant time, the leading-order complexity of the addition operation is 
O(log k). 

Balancing the tree: This is satisfying and simple, but it immediately raises 
another problem. The position a newly added value occupies in the tree de
pends on the values that are already in the tree, and hence the shape of the 
tree depends, in general, on the values we add to it and the order in which we 
add them. Indeed, it turns out a tree can take quite different shapes even for 
the same values, just as a result of adding those values in different orders. In 
particular a tree can end up balanced or not as a result of different orders of 
addition-see Fig. 9.2-and if we are unlucky and get an unbalanced tree then 
the speed of our tree operations can be severely affected. Obviously we would 
like to avoid this if pOSSible. 

4 

3 

Addition of the number 9 
to the tree. 
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For algorithms in which elements are added to the tree only at the begin
ning of the program and no elements are added or removed thereafter (the 
clustering coefficient algorithm of Section 10.2 is an example), a simple solu
tion to the problem is just to randomize the order in which the elements are 
added. Although the resulting tree is not completely packed full, as in the case 
considered above, it will still have depth O(log Ie) on average.16 

If our algorithm requires us to add or remove values as we go along, then 
this approach will not work and we must explicitly balance the tree by per
forming rebalancing operations whenever the tree becomes unbalanced. We 
typically don't attempt to keep the elements packed as tightly in the tree as 
possible, but we can still achieve O(logk) run times by adopting a looser def
inition of balance. One practical and simple definition (though not the only 
one) is that a tree is balanced if the depth of the two subtrees below any node 
differ by no more than 1. The tree in Fig. 9.1a satisfies this criterion. For in
stance, the depths of the subtrees of the node containing the value 12 are 2 on 

the left and 1 on the right. 
It is straightforward to prove that a tree satisfying this criterion, which is 

16The proof is as follows. 
Consider the set of "empty nodes," meaning the missing children immediately below current 

nodes in the tree (gray boxes in the figure on the right), Suppose that when ~ • 
there are k nodes in total in the tree there are Ck such empty nodes and that 
their average depth, measured from the root, is dk• When we add one new / \ / 
value to the tree at random it will occupy one of these empty nodes thereby [j t::J 0 
decreasing their number by one. At the same time two new empty nodes .---i, ~L., 
will appear, the children of the newly added node. Overall therefore Ck' 1 = LI LJ 
Ck + 1. Noting that c) = 2, this immediately implies that Ck = k + 1. 

At the same time the sum of the lengths of all paths from the root to an empty node, which by 
definition is equal to Ckdk, decreases (on average) by dk when a new random node is added and 
increases by 2(dk + 1) for the two new ones, so that Ck+ldk_ll = Ckdk + dk + 2. Eliminating Ck, we 
then find that dk+1 = dk + 2/(k + 2). Noting that dl = 2, this implies 

k-J 2 k+l 1 
dk~l+ I: -- ~~1+2I: ~2~-1+21nk+O(1!k), 

m=O 111 +2 111_,1111 

where I = 0.5772 ... is Euler's constant. 
Thus the average depth of the empty nodes is O(1og k). Since the find and addition operations 

on the tree both involve searching the tree until an empty node is encountered, it immediately 
follows that both operations have average complexity O(logk) on our randomized tree, just as 
they do on the optimally packed tree. 

Note that this is only a statement about the average behavior of the tree and not about the worst
case behavior. If we are unlucky the depth of the tree could be much larger than the average, up to 
the maximum depth k. The randomized tree only provides a guarantee of average performance, 
meaning performance averaged over many possible runs of an algorithm. Individual runs will 
vary around the mean. 

called an AVL Iree, has depth O(logle). What's more it is possible to maintain 
this level of balance with fairly simple rebalancing operations called "pivots" 
that themselves take only O(logle) time to perform. As a result, we can both 
find elements in and add elements to an AVL tree in time O(log Ie), even if we 
have to rebalance the tree after every single addition (although usually we will 
not have to do this). 

Details of the workings of the AVL tree can be found in most books on 
computer algorithms, such as Cormen el aZ. [SI]. However, if you need to use 
such a tree in your own work it's probably not worth programming it yourself. 
There are many readily available standard implementations of AVL trees or 
other balanced trees that will do the job just fine and save you a lot of effort. 
A suitable one appears, for instance, in the standard C++ library STL, which is 
available with every installation of C++. 

The deletion operation: The process of deleting a value from a tree is rather 
involved, but none of the algorithms described in this book require it, so we 
will not go into it in detail here. The basic idea is that you first find the value 
you want to delete in the normal way, which takes time O(logk), then delete 
it and perform a "pivot" operation of the type mentioned above to remove the 
hole left by the deletion. Each of these operations takes at most time O(log k) 
and hence the entire deletion can be complete in O(logle) time. The interested 
reader can find the details in Ref. [S1]. 

Enumerating the items in a tree: We can also quickly run through the items 
stored in a tree, an operation that takes O(k) time, just as it does for a simple 
list stored in an array. To do this we use an Euler tour, which is a circuit of the 
tree that visits each node at most twice and each edge exactly twice. An Euler 
tour starts at the root of the tree and circumnavigates the tree by following its 
outside edge all the way round (see figure). More precisely, starting from the 
root we move to the left child of the current node if we haven't already visited 
it and failing that we move to the right child. If we have already visited both 
children we move upward to the parent. We repeat these steps until we reach 
the root again, at which point the tour is complete. Since each edge is traversed 
twice and there are k - 1 edges in a tree with Ie nodes (see Section 6.7), this 
immediately tells us we can run through all elements in the tree in O(k) time. 

Given the above properties of trees, the adjacency tree for a network is now 
simple to define: we store the list of neighbors of each vertex as values in a 
binary tree. There is one tree for each vertex, or two for a directed network if 
we want to store both the incoming edges and the outgoing ones. Edges can 
be found, added, or deleted from the tree for a given vertex in time O(log Ie), 
where Ie is the degree of the vertex, or O( (log k)) when averaged over all ver-
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tices. However, the average of the logs of a set of positive numbers is always 
less than the log of their average, so a running time of O( (log k)) also implies 
a running time of O(log(k)) 0= O(log(m/n)). 

The computational complexity of operations on the adjacency tree is sum
marized in Table 9.2. Comparing our three storage formats for networks, the 
adjacency matrix, list, and tree, we see that there is no overall winner; the 
choice of format is going to depend on what we want to do with it. For use in 
algorithms where we are only going to add and remove edges and check for 
their existence, the adjacency matrix is the fastest option. On the other hand, 
in algorithms where we are only adding edges or enumerating the neighbors 
of vertices, which includes most of the algorithms in this chapter, the adja
cency list is the clear winner. The adjacency tree is the fastest format if we 
need to find or delete edges as well as create them. (Note that log(m/n) is 
usually much better than a mere min, particularly in the case where the mean 
degree c » 1.) In algorithms that only need to enumerate edges and not find, 
add, or delete them, the adjacency list and adjacency tree are equally good 
in principle. In practice, however, the additional complexity of the adjacency 
tree usually makes it somewhat slower and the adjacency list is the format of 
choice. 

It's worth bearing in mind that speed isn't everything, and in particular that 
the adjacency matrix format uses a prohibitive amount of memory space for 
networks with large numbers of vertices (see Section 9.3). Overall, as we have 
said, the adjacency list is the format used most often, but the others certainly 
have their place and each will be useful to us more than once in the remainder 
of this book. 

9.6 OTHER NETWORK REPRESENTATIONS 

We have discussed three ways of representing network data in the memory of 
a computer. These are probably the most useful simple representations and 
the ones that you are most likely to need if you write your own programs to 
analyze networks, but there are a few other representations that it is worth 
knowing about. 

Hybrid matrix/list representations: The representations of Table 9.2 all have 
their advantages and disadvantages, but none is optimal. In the best of all 
possible worlds, we would like a data structure that can insert, delete, and 
find edges in 0(1) time and enumerate the O(m/n) neighbors (on average) of 
a given vertex in O(m/n) time, but none of our representations can do this. 
It is possible to create a representation that can do this, however, if we are 

9.6 OTHER NETWORK REPRESENTATIONS 

willing to sacrifice memory space: we can make a hybrid representation that 
consists of an adjacency matrix and an adjacency list. Non-zero elements in the 
adjacency matrix, those corresponding to edges, are accompanied by pointers 
that point to the corresponding elements in the adjacency list. Then we can 
find whether an edge exists between a specified pair of vertices in 0(1) time 
using the adjacency matrix as usual. And we can enumerate the neighbors of 
a vertex in O(m/ n) time using the adjacency list. We can add an edge in 0(1) 
time since both matrix and list allow this anyway (Table 9.2). And finally, we 
can delete an edge in 0(1) time by first locating it in the adjacency matrix and 
setting the corresponding element to zero, then following the pointers to the 
relevant elements of the adjacency list and deleting those too by moving the 
last element of the list to fill their place. 

In terms of time complexity, i.e., scaling of fun time with network size, 
this hybrid data structure is optima!.'7 Its main disadvantage is that it uses 
even more memory than the ordinary adjacency matrix, and hence is suitable 
only for relatively small networks, up to a few tens of thousands of vertices 
on a typical computer at the time of writing. If this is not an issue in your 
case, however, and speed is, then this hybrid representation may be worth 
considering. 

Representations with variables on edges: In some networks the edges have 
values, weights, or labels on them. One can store additional properties like 
these using simple variants of the adjacency matrix or adjacency list represen
tations. For instance, if edges come in several types we could define an addi
tional n x n matrix to go with the adjacency matrix that has elements indicating 
the type of each extant edge. (For edges that do not exist the elements of such a 
matrix would have no meaning.) Or one could combine the tvvo matrices into 
a single one that has a non-zero element for every extant edge whose value 
indicates the edge type. If there are many different variables associated with 
each edge, as there are for instance in some social network studiesf then one 
could use many different matrices, one for each variable, or a matrix whose 
elements are themselves arrays of values or more complicated programming 
objects like structures. Similarly, with an adjacency list one could replace the 
elements of the list with arrays or structures that contain all the details of the 
edges they correspond to. 

171t does place some overhead on the edge addition and deletion operations, meaning the com
plexity is still 0(1) but the operations take a constant factor longer to complete, since we have to 
update both adjacency matrix and list, where normally we would only have to update one or the 
other. Whether this makes an significant difference to the running of a program will depend on 
the particular algorithm under consideration. 
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Howeverf these representations can be wasteful or clumsy. The matrix 
method can waste huge amounts of memory storing meaningless matrix el
ements in all the positions corresponding to edges that don't exist. The adja
cency list (for an undirected network) contains two entries for each edge, both 
of which would have to be updated every time we modify the properties of 
that edge. If each edge has many properties this means a lot of extra work and 
wasted space. 

In some casesf therefore, it is worthwhile to create an additional data struc
ture that stores the properties of the edges separately. For instance, one might 
use a suitable array of m elements, one for each edge. This array can be linked 
to the main representation of the network structure: with an adjacency list we 
could store a pointer from each entry in the list to the corresponding element 
in the array of edge data. Then we can immediately find the properties of any 
edge we encounter in the main adjacency list. Similarly, each entry in the array 
of edge data could include pointers to the elements in the adjacency list that 
correspond to the edge in question. This would allow us to go through the 
array of edge data looking for edges with some particular property and, for 
example, delete them. 

Edge lists: One very simple representation of a network that we have not yet 
mentioned is the edge list. This is simply a list of the labels of pairs of vertices 
that are connected by edges. Going back to this network, which we saw in 
Section 9.4: 

2 

• 

3 4 

5 

the edge list representation would be (1,3), (4,1), (4,3), (4,5). The order ofthe 
edges is usually not important in an edge list, nor is the order of the vertices in 
the vertex pairs. 

The edge list is a convenient and space-efficient way to store the structure 
of a network, and furthermore allows us easily to associate properties with 
the edges-we can simply store those properties along with the corresponding 
pairs of labels. It is not such a good representation if we wish to store proper
ties of vertices. Indeed, the representation doesn't explicitly list vertices at all, 
so there is no way to tell that a vertex even exists if it is not connected to any 
edges. Vertex 2 in the network above is an example of this problem: it doesn't 
appear in the edge list because it has no edges. On the other hand, this problem 

and the problem of storing vertex properties can be remedied easily enough by 
creating a separate list of vertices and the data associated with them. 

However, the edge list is a poor format for storing network data in com
puter memory for most of the algorithms we will be considering in this book. 
It does not, for instance, allow us to determine quickly whether a particular 
edge exists-we would have to go through the entire list to answer that ques
tion. And, crucially, it does not allow us easily to enumerate the neighbors of 
a given vertex, an operation that is central to many algorithms. For these rea
sons, the edge list is hardly ever used as a format for the representation of a 
network in memory_ 

Where it does find use is in file formats for networks. Being a fairly com
pact representation, edge lists are often used as a way to store network struc
ture in computer files on a disk or other storage m,edium. When we wish to 
perform calculations on these networks we must read the file and convert its 
contents into a more suitable form for calculation, such as an adjacency matrix 
or adjacency list. This, however, is simple: we create an empty network in the 
memory of our computer, one with no edges initially, then run through the 
edges stored in the edge list and add them one by one to the network in the 
memory. Since the operation of adding an edge can be accomplished quickly 
in all of the formats we have considered (Table 9.2), this normally does not take 
a significant amount of time. When it is finished, we have a complete copy of 
the network in the format of our choice stored in the memory of the computer, 
and we are ready to continue with our computations. 

9.7 HEAPS 

The last data structure we describe in this chapter is a specialized structure 
called a binary heap. Unlike the structures introduced in the last few sections, 
heaps are not normally used for storing networks themselves, but are used for 
storing values on networks, usually values associated with a network's ver
tices. The definitive property of a heap is that it allows us to quickly find the 
entry in the heap with the minimum (or maximum) value. 

We will make use of the binary heap in Section 10.4 when we study one 
of the most famous of network algorithms, Dijkstra's algorithm, which is an 
algorithm for finding shortest paths on weighted networks. This is the main 
place the heap will come up in this book, so if you are not interested in, or do 
not need to know, the detailed workings of Dijkstra's algorithm, you can safely 
skip the remainder of this chapter. Otherwise, read on. 

Suppose, then, that we have some numerical value associated with every 
vertex in a network. That value might be, for instance, the distance from an-
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other vertex in the network, or a time until something happens. To give a 
concrete example, consider a disease spreading across a social network, as dis
cussed in Chapters 1 and 3, and suppose we want to make a computer model 
of the spread. One simple and efficient way to do this is to associate with each 
vertex of the network a number representing our current estimate of the time 
at which that vertex will be infected by the disease (if it ever is). Initially each 
of these times is set to co, except for a single vertex representing the initial 
carrier of the disease, for which the time is set to zero. Then a simple algo
rithm for simulating the disease involves at each step finding the next vertex 
to be infected, i.e., the one with the earliest infection time, infecting it, and then 
calculating the time until it subsequently infects each of its neighbors. If any 
of those infection times is earlier than the current recorded time for the same 
neighbor, the new time supersedes the old one. Then we find the vertex in the 
network with the next earliest infection time and the process proceeds. 

The crucial requirements for this algorithm to run efficiently are that we 
should be able to quickly find the smallest value of the infection time anywhere 
on the network and that we should be able to quickly decrease the value at 
any other given vertex. The binary heap is a data structure that allows us to do 

these things. 
The binary heap is built upon a binary tree structure similar to the trees 

in Section 9.5, although the tree in a binary heap is arranged and used in a 
different fashion. Each of the items stored in a heap (items that will repre
sent vertices in the network context) consists of two parts, an integer label that 
identifies the item and a numerical value. In the disease example above, for 
instance, the labels are the vertex indices i = 1 ... n for vertices not yet infected 
and the values are the times at which the vertices are infected with the disease. 

The items in the heap are stored at the nodes of a binary tree as depicted in 
Fig. 9.3. There are two important features to notice about this structure. First, 
the tree is always completely packed. We fill the tree row by row starting with 
the root node at the top and filling each row from left to right. Thus the tree is 
denser than the typical binary tree of Section 9.5 and always has a depth that 
is logarithmic in the number of items in the tree-see Eq. (9.2). 

Second, the values associated with the items in the heap (the lower number 
at each node in Fig. 9.3) are partially ordered. This means that each value is 
greater than or equal to the one above it in the tree and less than or equal to 
both of the two below it. If we follow any branch down the tree-any path 
from top to bottom-the values grow larger along the branch or stay the same, 
but never decrease. The values are said to be "partially" ordered because the 
ordering only applies along branches and not between different branches. That 
is, there is no special relation between values on different branches of the tree; 
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Figure 9.3: The structure of a binary heap. A binary heap consists of hvo parts, a tree 
and an index. The nodes of the tree each contain a label and a numerical value, and 
the tree is partially ordered so that the numerical value at each node is greater than or 
equal to the value above it in the tree and less than or equal to both of the values below 
it. The index is a separate array that lists by label the positions of each of the items in 
the tree, so that we can find a given item quickly. New items are added to the tree in 
the next available space at the bottom, starting a new row if necessary. 

they may be larger or smaller than one another, whether they are on the same 
level in the tree or on different levels. 

The property of partial ordering has the important result that the value 
stored at the root node of the tree is always the smallest value anywhere. Since 
values are non-decreasing along all branches of the tree starting from the root, 
it follows that no value can be smaller than the root value. 

The binary heap also has another component to it, the index, which tells 
us the location of each item in the tree. The index is an array containing the 
coordinates in the tree of all the items, listed in order of their labels. It might, 
for instance, contain the row in the tree and position along that row of each 
item, starting with the item with label 1 and proceeding through each in turn
see Fig. 9.3 again. 

A heap allows us to perform three operations on its contents: (1) adding 
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llt~ 
Figure 9.4: Sifting a value up the heap. A branch in the tree initially contains three 
items as shown. A new item with value 1.7 is added at the bottom. The upward sift 
repeatedly compares and swaps this value with the value above it until it reaches its 
correct place in the partial ordering. In this case the added value 1.7 gets swapped 
tvvice, ending up (correctly) between the values 0.4 and 2.0. 

an item to the heap, (2) reducing the numerical value stored in the item with 
a specified label, and (3) finding and removing the item with the smallest nu
merical value from the heap. Let us look at how each of these operations is 
carried out. 

Adding an item: To add an item to the heap we place it in the first available 
free space at the bottom of the tree as indicated in Fig. 9.3. If the bottom row 
of the tree is full, we start a new row. It is important in adding an item to the 
tree that we preserve the partially ordered structure, but a new item added at 
the bottom may well violate that structure by having a numerical value smaller 
than the item above it. We can fix this by sifting the tree as illustrated in Fig. 9.4. 
The newly added item is "sifted up" its branch of the tree by comparing its 
value with that of the item above it. If its value is smaller, the two are swapped, 
the new item moving up one row. We repeat this process until the new item 
either reaches a point where it is not smaller than the item above it, or it has 
risen to the root of the tree. If it rises to the root of the tree, then by definition it 
is has the smallest value in the tree because it is smaller than the value for the 
previous root item. 

When we add a new item we also have to update the index of the heap. 
The coordinates of the new item are recorded at the position in the index cor
responding to the item's label and then during the sifting operation, we simply 

swap the index entries for every two items that are swapped in the tree. 
Since the tree is completely packed it has depth given by Eq. (9.2), which 

is O(log k), where k is the number of items in the tree. Thus the maximum 
number of swaps we have to do during the sifting process is O(log k) and 
the total time to add an item to the heap, ignoring sub-leading terms, is also 
O(logk). 

Reducing a value in the heap: Reducing the numerical value associated with 
a given labeled item is similar to the addition operation. We first use the in

dex to locate the given item in the tree and we reduce its numerical value as 
desired. Since this may mean that the item is now smaller than one or more of 
those above it, violating the partial ordering, we sift up as before until the item 
reaches its correct place in the ordering, updating the index as we go. This 
operation, like the addition operation, takes time O(logk). 

Finding and removing the smallest value: The item in the heap with the 
smallest numerical value is easily found since, as we have said, it is always 
located at the root of the tree. In Fig. 9.3, for example, the smallest value is 0.4 
for the item with label 7. 

We remove the smallest item by first deleting it from the tree and deleting 
its entry in the index. This leaves a hole in the tree which violates the condi
tion that the tree be completely packed, but we can fix this problem by taking 
the last item from the bottom row of the tree and moving it up to the root, at 
the same time updating the relevant entry in the index. This, however, creates 
its own problem because in moving the item we will likely once again create 
a violation of the partial ordering of the tree. The item at the root of the tree 
is supposed to have the smallest numerical value and it's rather unlikely that 
the item we have moved satisfies this condition. This problem we can fix by 
"sifting down." Sifting down involves comparing the numerical value stored 
in the root item with both of those below it. If it is larger than either of them, 
we swap it with the smaller of the two and at the same time swap the corre
sponding entries in the index. We repeatedly perform such comparisons and 
swaps, moving our item down the tree until either it reaches a point at which 
it is smaller than both of the items below it, or it reaches the bottom of the tree. 

Again the sifting process, and hence the entire process of removing the root 
item from the tree, takes time O(logk). 

Thus the binary heap allows us to do all three of our operations-adding 
an item, reducing a value, or finding and removing the item with the smallest 
value-in time O(logk). 

9.7 HEAPS 

305 



BASIC CONCEPTS OF ALGORITHMS 

306 

PROBLEMS 

9.1 What (roughly) is the time complexity of: 

a) Vacuuming a carpet if the size of the input to the operation is the number n of 
square feet of carpet? 

b) Finding a word in a (paper) dictionary if the size of the input is the number n of 
words in the dictionary? 

9.2 Suppose you have a sparse network with m ex n. What is the time complexity of: 

a) Multiplying an arbitrary n-element vector by the adjacency matrix, if the network 
is stored in the adjacency matrix format. 

b) Performing the same multiplication if the network is in adjacency li.st format 

e) The "modularity matrix" B of a network is the matrix with elements 

(See Eq. (7.70) on page 224.) What is the time complexity of multiplying an arbi
trary vector by the modularity matrix of our sparse network if the network is in 
adjacency list format? 

d) In fact, if we are clever about it, this last operation can be performed in time O( n) 
for the sparse network with m ex 11. Describe an algorithm that achieves this. 

9.3 An interesting question, which is discussed in some detail in Chapter 16, concerns 
what happens to a network if you disable or remove its vertices one by one. The ques
tion is of relevance, for instance, to the vaccination of populations against the spread of 
disease. One typical approach is to remove vertices in order of their degrees, starting 
with the highest degrees first. Note that once you remove one vertex (along with its 
associated edges) the degrees of some of the other vertices may change. 

In most cases it is not possible to do the experiment of removing vertices from a real 
network to see what effect it has, but we can simulate the process on a computer by tak
ing a network stored in computer memory, removing its vertices, and then measuring 
various properties of the remaining network. 

a) What is the time complexity of finding the highest-degree vertex in a network, 
assuming the vertices are given to you in no particular order? 

b) If we perform the repeated vertex removal in a dumb way, searching exhaustively 
for the highest-degree vertex, removing it, then searching for the next highest, and 
so forth, what is the time complexity of the entire operation? 

c) Describe how the same operation could be performed with the degrees of the 
vertices stored instead in a heap. You will need to modify the heap structure of 
Section 9.7 in a couple of ways to make the algorithm work. One modification 
is trivial: the heap needs to be sorted in the opposite order so that the largest 
element is at the root. What other modification is needed, and how would you do 
it? What now is the time complexity of the entire calculation? 

d) Taking the same approach, describe in a sentence or two a method for taking n 
numbers in random order and sorting them into decreasing order using a heap. 
Show that the time complexity of this sorting algorithm is O( n log n). 

e) The degrees of the vertices in a simple graph are integers between zero and n. It 
is possible to sort such a set of integers into numerical order, either increasing or 
decreasing, in time O(n). Describe briefly an algorithm that achieves this feat. 

PROBLEMS 

307 



CHAPTER 10 

FUNDAMENTAL NETWORK ALGORITHMS 

A discussion oj some of the most important and 
fundamental algorithms for performing network 
calculations on a computer 

ARMED WITH the tools and data structures of Chapter 9, we look in this 
chapter at the algorithms that are used to perform network calculations. 

We start with some simple algorithms for calculating quantities such as de
grees, degree distributions, and clustering. In the later sections of the chap
ter we look at more sophisticated algorithms for shortest paths, betweenness, 
maximum flows, and other non-local quantities. 

In the following chapter we extend our examination of network algorithms 
to algorithms based on matrix calculations and linear algebra, including algo
rithms for matrix-based centralities like eigenvector centrality and algorithms 
for graph partitioning and community discovery in networks. 

10.1 ALGORITHMS FOR DEGREES AND DEGREE DISTRIBUTIONS 

Many network quantities are easy to calculate and require only the simplest 
of algorithms, algorithms that are little more than translations into computer 
code of the definitions of the quantities in question. Nonetheless, it is worth 
looking at these algorithms at least briefly, for two reasons. First, there is in 
some cases more than one simple algorithm for calculating a quantity, and one 
algorithm may be much faster than another. It pays to evaluate one's algo
rithm at least momentarily before writing a computer program, to make sure 
one is going about the calculation in the most sensible manner. Second, it is 
worthwhile to calculate the computational complexity of even the simplest al
gorithm, so that one can make an estimate of how long a computation will take 
to finish-see Section 9.1. Even simple algorithms can take a long time to run. 
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10.1 ALGORITHMS FOR DEGREES AND DEGREE DISTRIBUTIONS 

One of the most fundamental and important of network quantities is the 
degree of a vertex. Normally degrees are very simple to calculate. In fact, if 
a network is stored in the form of an adjacency list' then, as described in Sec
tion 9.4, we normally maintain an array containing the degree of each vertex 
so that we know how many entries there are in the list of neighbors for each 
vertex. That means that finding the degree of any particular vertex is a simple 
matter of looking it up in this array, which takes 0(1) time. 

If the network is stored in an adjacency matrix, then the calculation takes 
longer. Calculating the degree of a vertex i in this case involves going through 
all elements of the ith row of the adjacency matrix and counting the number 
that are non-zero. Since there are n elements in each row of the matrix, where 
11 is the number of vertices in the network, the calculation takes time 0(11), 
making the calculation far slower than for the adjacency list. If one needed to 
find the degrees of vertices frequently during the course of a larger calculation 
using an adjacency matrix, it might make good sense to calculate the degree 
of each vertex once and for all and store the results for later easy retrieval in a 
separate array. 

In Section 8.3 we discussed degree distributions, which are of considerable 
interest in the study of networks for the effect they have on network struc
ture and processes on networks (see Chapters 13 and 14). Calculating a degree 
distribution Pk is also very straightforward: once we have the degrees of all 
vertices, we make a histogram of them by creating an array to store the num
ber of vertices of each degree up to the network maximum, setting all the array 
elements initially to zero, and then running through the vertices in turn, find
ing the degree k of each and incrementing by one the kth element of the array. 
This process trivially takes time O( n) to complete. Once it is done the fraction 
Pic of vertices of degree k is given by the count in the !cth array element divided 
by 11. 

The cumulative distribution function Pk of Section 8.4.1 requires a little 
more work. There are two common ways to calculate it. One is first to form a 
histogram of the degrees as described above and then to calculate the cumula
tive distribution directly from it using 

00 00 

Pk = L Pk' = -Pk-l + L Pic' = Pk- l - Pk-l· (10.1) 
k'=k k'=k-l 

Noting that Po = I:;;~o Pk' 1, we can then start from Po and use Eq. (10.1) 
to calculate successive Pk up to any desired value of !c. This process trivially 

lOr an adjacency tree---see Section 9.5. 
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takes O(n) time and, since the calculation of Pk also takes O(n) time, the whole 
process is O(n). 

In fact, however, as described in Section 8.4.1, this is not usually how one 
calculates the cumulative distribution function. Although the method is fast, 
it's also moderately complicated and there is a simpler way of doing the cal
culation that involves taking the degrees of all the vertices, sorting them in 
descending order, and ranking them from 1 to n. A plot of the rank divided 
by n as a function of degree then gives the cumulative distribution. The most 
time-consuming part of this calculation is the sorting of the degrees. Sort
ing is a well-studied problem and the fastest general algorithms' run in time 
O(n log n). Thus the leading order scaling of this algorithm to calculate the 
cumulative distribution is O( n log n). This is slower than the first method de
scribed above, which was O(n), but not much slower and the second method 
has the considerable advantage that almost all computers provide standard 
software for sorting numbers, which means that in most cases one doesn't have 
to write a program at all to calculate the cumulative distribution. All spread
sheet programs, for instance, include facilities for sorting numbers, so one can 
calculate cumulative distributions directly in a spreadsheet. 

Another quantity of interest is the correlation coefficient r for vertex de
grees, Eq. (8.26), which measures assortative mixing by degree. This too is 
straightforward to calculate-one uses Eq. (8.27) and the sums defined in Eqs. 
(8.28) and (8.29). Given the degrees of all vertices, the sum in Eq. (8.28) takes 
time O(m) to evaluate, where m is the number of edges in the network, and 
the sums in Eq. (8.29) each take time O(n), so the total time required to calcu
late r is O(m + n). As mentioned in Section 9.1, we are often concerned with 
sparse networks in which the mean degree remains constant as the network 
gets larger, i.e., networks in which m <X n. In such networks O(m + n) '" O(n) 
and the time to calculate r taken just scales as the number of vertices. On the 
other hand, if the network is dense, meaning that m <X n2

, then O(m) '" 0(n2
), 

which is considerably worse. 

10.2 CLUSTERING COEFFICIENTS 

The calculation of clustering coefficients is only slightly more complicated than 
the calculation of degrees. To see how it works, we start by calculating the 
local clustering coefficient Cj for a single vertex i on an undirected network, 

2por integers, such as vertex degrees, it is under certain conditions possible to sort faster, in 
time 0(/1), using the so-called radix sort algorithm. See, for example, Cormen et af. [81]. 

10.2 CLUSTERING COEFFICIENTS 

Eq. (7.42):3 

(number of pairs of neighbors of i that are connected) 
(number of pairs of neighbors of i) 

(10.2) 

Calculating the numerator involves going through every pair of distinct neigh
bors of vertex i and counting how many are connected. We need only consider 
each pair once, which we can do conveniently by restricting ourselves to pairs 
(j, I) for which j < l. For each pair we determine whether an edge exists be
tween them, which is done in various ways depending on the representation 
used for the network as described in Sections 9.3-9.5, and count up the num
ber of such edges. Then we divide the result by the number of pairs, which is 
just ~k;(k; -1), where k; is the degree of the vertex. 

To calculate the overall clustering coefficient for the entire network, which 
is given by 

C = (number of tnangles) x 3 
(number of connected triples) 

(10.3) 

(see Eq. (7.41)), we extend the same calculation to the whole network. That is 
we consider for every vertex each pair of neighbors (j, I) with j < 1 and find 
whether they are connected by an edge4 We add up the total number of such 
edges over all vertices and then divide by the number of connected triples, 
which is L; ~k;(k; -1). 

This last algorithm is simple and straightforward, a direct implementation 
of the formula (10.3) defining the clustering coefficient, but some interesting 
issues nonetheless come up when we consider its running time. Even without 
performing a full calculation of the complexity of the algorithm we can see 
that something unusual is going to happen because a vertex i with degree k; 
has ~ k; (k; - 1) pairs of neighbors. We have to check for the presence of an edge 
between each such pair on the entire network and hence the total number of 
checks we have to perform is 

(10.4) 

where 
1 

(k) = - L:k;, 
n ; 

(10.5) 

3 An equivalent to the clustering coefficient can be defined for a directed network (see Sec
tion 7.9) but we limit ourselves here to the much commoner undirected case. 

4Note that this calculation automatically accounts for the factor of three appearing in the nu
merator of Eq. (10.3), since each triangle is counted three times, once each from the point of view 
of the three vertices it connects. 
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are the mean and mean square degree for the network. (We previously denoted 
the mean degree by c, but we use the alternate notation (k) here for clarity, and 
to highlight the distinction between the mean and the mean square.) 

The interesting point here is that Eq. (10.4) depends in a non-trivial wayan 
the degree distribution of our network. The running times of other algorithms 
we have seen so far have depended on the number of vertices n and the num
ber of edges m, and hence, indirectly, on the mean degree (k) = 2m/n. For 
the clustering coefficient, however, we see that the amount of work we have 
to do, and hence also the running time, depends not only on nand (k), but on 
the second moment (k'), which is an additional independent parameter. Even 
if we suppose that the degree distribution remains the same with increasing n 
so that the quantities (k) and (k') can be considered constant, strange things 
can happen. Consider the case of a network whose degree distribution follows 
a power law Pk ~ k-", as described in Section 8.4. For such networks, the 
first moment is well behaved but the second moment (k2 ) formally diverges if 
" < 3 (see Section 8.4.2) which implies that it will take an infinite amount of 
time to evaluate the clustering coefficient! 

To understand better what is going on let us perform a more careful calcu
lation of the time complexity of our clustering coefficient algorithm. We start 
by considering again a single vertex i. And let us assume that we have our 
network stored in adjacency list form. In that case, we can, as we have seen, 
easily enumerate all of the neighbors of our vertex in time that goes like ki . For 
each neighbor j we run through each other neighbor 1 > j that could be paired 
with it, for a total of ~ ki (k i - 1) pairs and determine for each pair whether an 
edge exists between them. This latter operation takes a time proportional, to 
leading order, to either k] or to kt (see Table 9.2), depending on whether we 
find the edge by looking at the adjacency list for vertex j or for vertex I. Let us 
for the moment assume a simple algorithm that chooses at random between 
the two vertices, in which case the typical time taken will go as the average of 
the two degrees, i.e., it will be proportional to lei + let. 

Let [i denote the set of neighbors of vertex i. Then the total time taken to 
check for edges between all pairs of neighboring vertices is proportional to 

L (k] + kt ) = 1 L (k] + kt ) = L ki 
j,lEC :)<1 j,IEr, fl-I j,lEf; :jl-l 

= (k i -1) L ki· (10.6) 
jEr, 

The total time needed to calculate the numerator of Eq. (10.3) is then pro-

10.2 CLUSTERING COEFFICIENTS 

portional to the sum of this quantity over all vertices i: 

Dki -1) L ki = LAj(ki -l)kj = LA;kikj - Lkf (10.7) 
jEfi ij if 

where Ai) is an element of the adjacency matrix and we have made use of the 
result Li Aij = k] (Eq. (6.19)). 

Compare this equation with OUf earlier expression for the correlation coeffi
cient r between degrees in a network, Eq. (7.82), which quantifies assortativity 
by degree in networks: 

r= 
Li](Aij - kik;l~m)kikj 

Li](kibij - kik;l2m)kik] 
(10.8) 

As we can see, the first term in Eq. (10.7) is the same as the first term in the 
numerator of the correlation coefficient. As a result, our estimate of the time to 
calculate the clustering coefficient depends on whether the degrees of vertices 
are correlated or not. This can lead to some interesting behaviors for specific 
networks, but for simplicity let us assume here that there is no correlation be
tween degrees, that the network we are considering has no assortativity. In 
that case r = 0 in Eq. (10.8), which can only occur if the numerator is itself 

zero, or equivalently if 

(10.9) 

Combining this result with Eq. (10.7), the running time for our calculation of 
the clustering coefficient on an uncorrelated network is proportional to 

1 [" 2]2 ,,2 ( ') [(k2
) 1 2m 'Tki - L/j = n k 7J) -1 , (10.10) 

where we have made use of the fact that 2m = Li ki = n(k) (see Eq. (6.20)). 
This is a measure of the time taken to evaluate the numerator of Eq. (10.3). 

The denominator is simply equal to Li ki(k i - 1) and so just takes O(n) time 
to evaluate, given that, for a network stored in adjacency list format, we al
ready have the degrees of all vertices available. This will never be longer than 
the time represented in Eq. (10.10), so Eq. (10.10) gives the leading-order time 
complexity of the calculation of the clustering coefficient. 

So we see that the calculation of the clustering coefficient indeed takes a 
time that depends not only on nand m but also on the second moment (k2

) of 
the degree distribution. In many cases this does not matter, since the second 
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moment often tends to a modest constant val ue as the network becomes large. 
But for networks with highly skewed degree distributions (le2

) can become 
very large and in the case of a power-law degree distribution with exponent 
" < 3 it formally diverges (see Section 8.4.2) and with it so does the expected 
running time of our algorithm. 

More realistically, if the network is a simple graph with no multiedges, then 
the maximum allowed degree is k = n and the degree distribution is cut off, 
which means that the second moment scales at worst as n3

-" (Eq. (8.22» while 
the first moment remains constant. This in turn implies that the running time 
of our clustering coefficient algorithm on a scale-free network would go as 
n x n3- IX x n3-iI: = n7- 2o.:. For values of [t in the typical range of 2 :s; [t :s; 3 
(Table 8.1), this gives running times that vary from a minimum of O(n) for 
" = 3 to a maximum of O(n3 ) for" = 2. For the lower values of" this makes 
the calculation of the clustering coefficient quite arduous, taking a time that 
increases sharply as the network gets larger. 

So can we improve on this algorithm? There are various possibilities. Most 
of the work of the algorithm is in the "find" operation to determine whether 
there is an edge between a given pair of vertices, and the algorithm will be con
siderably faster if we can perform this operation more efficiently. One simple 
(though memory-inefficient) method is to make use of the hybrid matrix/list 
data structure of Section 9.6, which can perform the find operation in constant 
time.5 Even in this case, however, the number of find operations that must 
be performed is still equal to the number of connected triples in the network, 
which means the running time is given by Eq. (10.4), and hence still formally 
diverges on a network with a power-law degree distribution. On a simple 
graph for which the power law is cut off at Ie = n, it will go as n4

-", which 
ranges from O(n) to O(n2 ) for values of" in the interesting range 2 :S " :S 3. 
This is better than our earlier algorithm, but still relatively poor for the lower 

values of it. 
These difficulties are specific to the case of scale-free networks. In other 

cases there is usually no problem calculating the clustering coefficient quickly. 
Some alternative algorithms have been proposed for calculating approximate 
values of the clustering coefficient rapidly. such as the algorithm of Schank 
and Wagner [292], and these may be worth considering if you need to perform 
calculations on very large networks. 

SOther possible ways to improve the algorithm are to use the adjacency tree structure of Sec~ 
tion 9.5, or to use the adjacency list but always test for the presence of an edge between two vertices 
by searching the neighbors of the lower-degree vertex to see if the higher is among them (rather 
than the algorithm described above, which chooses which one to search at random). 
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10.3 SHORTEST PATHS AND BREADTH-FIRST SEARCH 

We now move on to some more complex algorithms, algorithms for calculat
ing mostly non-local quantities on the networks, such as shortest paths be
tween vertices. The study of each of these algorithms has three parts. Two 
are, as before, the description of the algorithm and the analysis of its running 
time. But now we also include a proof that the algorithm described performs 
the calculation it claims to. For the previous algorithms in this chapter such 
proofs were unnecessary; the algorithms were direct implementations of the 
equations defining the quantities calculated. As we move onto more complex 
algorithms, however, it will become much less obvious why those algorithms 
give the results they do, and to gain a full understanding we will need to ex
amine their working in some detail. 

The first algorithm we look at is the standard algorithm for finding shortest 
distances in a network, which is called breadth-first search.6 A single run of the 
breadth-first search algorithm finds the shortest (geodesic) distance from a sin
gle source vertex s to every other vertex in the same component of the network 
as s. In some cases we want to know only the shortest distance between a sin
gle pair of vertices s, t, but there is no procedure known for calculating such 
a distance that is faster in the worst case than calculating the distances from s 
to every other vertex using breadth-first search and then throwing away all of 
the results except for the one we want.' 

With only minor modifications, as we will describe, breadth-first search can 
also find the geodesic path one must take to realize each shortest distance and 
if there is more than one geodesic path, it can find all such paths. It works also 
on both directed and undirected networks, although our description will focus 

on the undirected case. 

10.3.1 DESCRIPTION OF THE ALGORITHM 

Breadth-first search finds the shortest distance from a given starting vertex s to 
every other vertex in the same component as s. The basic principle behind the 
algorithm is illustrated in Fig. 10.1. Initially we know only that s has distance 0 

from itself and the distances to all other vertices are unknown. Now we find all 
the neighbors of 5, which by definition have distance 1 from s. Then we find all 
the neighbors of those vertices. Excluding those we have already visited, these 

6ln physics, breadth-first search is sometimes called the "burning algorithm." 

7In many cases we may find the result we want before calculating all distances, in which 
case we can save ourselves the effort of calculating the rest, but in the worst case we will have to 
calculate them all. See Section 10.3.4 for more discussion. 
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3 
Figure 10.1: Breadth-first search. A breadth-first 
search starts at a given vertex, which by definition 
has distance 0 from itself, and grows outward in 
layers or waves. The vertices in the first wave, 
which are the immediate neighbors of the start
ing vertex, have distance L The neighbors of those 
neighbors have distance 2, and so forth. 

s 

/ 

\ t 

A network path from s to 
t of length d (where d ~ 3 
in this case) necessarily in
cludes a path of length d -
1 (i.e., 2) from s to an imme
diate neighbor of t. 
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vertices must have distance 2. And their neighbors, excluding those we have 
already visited have distance 3, and so on. On every iteration, we grow the set 
of vertices visited by one step. 

This is the basic idea of breadth-first search. Now let us go over it more 
carefully to see how it works in practice and show that it really does find cor
rect geodesic distances. We begin by noting the following fact: 

Every vertex whose shortest distance from s is d has a network neigh
bor whose shortest distance from s is d - 1. 

This follows since if the shortest path from s to a vertex t is of length d then the 
penultimate vertex along that path, which is a neighbor of t, can, by definition, 
be reached in d - 1 steps and hence cannot have shortest distance greater than 
d - 1. It also cannot have shortest distance less than d - 1 because it if did there 
would be a path to t of length less than d. 

Now suppose that we already know the distance to every vertex on the 
network that is d steps or less from our source vertex s. For example, we might 
know all the distances to vertices at distance 2 or less from the central vertex 
in Fig. 10.1. For every neighbor of one of the vertices at distance d there exists 
a path of length d + 1 to that neighbor: we can get to the vertex at distance d 
along a path of length d and then we take one more step to its neighbor. Thus 
every such neighbor is at most d + 1 steps from s, but it could be less than 
d + 1 from s if there is another shorter path through the network. However, we 
already know whether there is a shorter path to any particular vertex, since by 
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hypothesis we know the distance to every vertex d steps or less from s. 
Consider the set of all vertices that are neighbors of vertices at distance d 

but that are not already known to have distance d or less from s. We can say 
immediately that (1) all neighbors in this set have distance d + 1 from s, and 
(2) that there are no other vertices at distance d + 1. The latter follows from 
the property cited above: all vertices at distance d + 1 must be neighbors of 
vertices at distance d. Thus we have found the set of vertices at distance d + 1, 
and hence we now know the distances to all vertices that are d + 1 or less 
from s. 

Now we just repeat the process. On each round of the algorithm we find all 
the vertices one step further out from s than on the last round. The algorithm 
continues until we reach a point at all the neighbors of vertices at distance d 
are found already to have known distances of d or less. This implies that there 
are no vertices of distance d + 1 and hence, by the property above, no vertices 
of any greater distance either, and so we must have found every vertex in the 
component containing s. 

As a corollary of the process of finding distance, breadth-first search thus 
also finds the component to which vertex s belongs, and indeed breadth-first 
search is the algorithm of choice for finding components in networks. 

10.3.2 A NAIVE IMPLEMENTATION 

Let us now consider how we would implement breadth-first search on our 
computer. The simplest approach (but not, as we will see, the best) would go 
something like this. We create an array of n elements to store the distance of 
each vertex from the source vertex s, and initially set the distance of vertex s 
from itself to be zero while all other vertices have unknown distance from s. 
Unknown distances could be indicated, for instance, by setting the correspond
ing element of the array to -1, or some similar value that could never occur in 
reality. 

We also create a distance variable d to keep track of where we are in the 
breadth-first search process and set its value initially to zero. Then we do the 
following: 

1. Find all vertices that are distance d from s, by going through the distance 
array, element by element. 

2. Find all the neighbors of those vertices and check each one to see if its 
distance from s is unknown (denoted, for example, by an entry -1 in the 
distance array). 

3. If the number of neighbors with unknown distances is zero, the algo
rithm is over. Otherwise, if the number of neighbors with unknown dis-
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tances is non-zero, set the distance of each of those neighbors to d + 1. 
4. Increase the value of d by 1. 
5. Repeat from step 1. 

When the algorithm is finished we are left with an array that contains the dis
tances to every vertex in the component of the network that contains s (and 
every vertex in every other component has unknown distance). 

How long does this algorithm take? First of all we have to set up the 
distance array, which has one element for each vertex. We spend a constant 
amount of time setting up each element, so overall we spend O( n) time setting 
up the distance array. 

For the algorithm proper, on each iteration we go through all 11 vertices 
looking for those with distance d. Most will not have distance d in which case 
we pass over them, spending only O( 1) time on each. Thus there is a basic 
cost of O(n) time for each iteration. The total number of iterations we will for 
the moment call r, and overall we thus spend O(rn) time on this part of the 
algorithm, in the worst case. 

However, when we do come across a vertex with distance d, we must pause 
at that vertex and spend an additional amount of time checking each of its 
neighbors to see if their distances are unknown and assigning them distance d + 
1 if they are. If we assume that the network is stored in adjacency list format 
(see Section 9.4) then we can go through the neighbors of a vertex in O(m/n) 
on average, and during the whole course of the algorithm we pause like this 
at each vertex exactly once so that the total extra time we spend on checking 
neighbors of vertices is n x O(m/n) = O(m). 

Thus the total running time of the algorithm, including set-up, is O(n + 
rn + m). 

And what is the value of the parameter r? The value of r is the maximum 
distance from our source vertex s to any other vertex. In the worst case, this 
distance is equal to the diameter of the network (Section 6.10.1) and the worst
case diameter is simply n, which is realized when the network is just a chain 
of n vertices strung one after another in a line, Thus in the worst case our 
algorithm will have running time O(m + n2

) (where we have dropped the first 
n because we are keeping only the leading-order terms). 

This is very pessimistic, however. As discussed in Sections 8.2 and 12.7 the 
diameter of most networks increases only as log n, in which case our algorithm 
would run in time O(m + n log n) to leading order. This may be a moot point, 
however, since we can do significantly better than this if we use a little cunning 
in the implementation of our algorithm. 
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10.3.3 A BETTER IMPLEMENTATION 

The time-consuming part of the implementation described in the previous sec
tion is step 1, in which we go through the list of distances to find vertices that 
are distance d from the starting vertex s. Since this operation involves check
ing the distances of all n vertices, only a small fraction of which will be at 
distance d, it wastes a lot of time. Observe, however, that in each wave of 
the breadth-first search process we find and label all vertices with a given dis
tance d + 1. If we could store a list of these vertices, then on the next wave 
we wouldn't have to search through the whole network for vertices at dis
tance d + 1; we could just use our list. 

The most common implementation of this idea makes use of a first-inlfirst
out buffer or queue, which is nothing more than an array of (in this case) n el
ements that store a list of labels of vertices. On each sweep of the algorithm, 
we read the vertices with distance d from the list, we use these to find the ver
tices with distance d + 1, add those vertices with distance d + 1 to the list, and 
repeat. 

To do this in practice, we fill up the queue array starting from the begin
ning. We keep a pointer, called the write pointer, which is a simple integer 
variable whose value indicates the next empty location at the end of the queue 
that has not been used yet. When we want to add an item to the queue, we 
store it in the element of the array pointed to by the write pointer and then 
increase the pointer by one to point to the next empty location. 

At the same time we also keep another pointer, the read pointer, which 
points to the next item in the list that is to be read by our algorithm. Each item 
is read only once and once it is read the read pointer is increased by one to 
point to the next unread item. 

Here is a sketch of the organization of the queue: 

Read pointer 
(next item 

to read) 

t 

Write pointer 
(next empty 
space to fill) 

t 
n elements 

Our breadth-first search algorithm now uses two arrays of n elements, one for 
the queue and one for the distances from s to each other vertex. The algorithm 
is as follows. 
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1. Place the label of the source vertex s in the first element of the queue, 
set the read pointer to point to it, and set the write pointer to point to the 
second element, which is the first empty one. In the distance array, record 
the distance of vertex s from itself as being zero and the distances to all 
other vertices as "unknown" (for instance, by setting the corresponding 
elements of the distance array to -1, or some similar impossible value). 

2. If the read and write pointers are pointing to the same element of the 
queue array then the algorithm is finished. Otherwise, read a vertex label 
from the element pointed to by the read pointer and increase that pointer 
by one. 

3. Find the distance d for that vertex by looking in the distance array. 
4. Go through each neighboring vertex in turn and look up its distance in 

the distance array as well. If it has a known distance, leave it alone. If 
it has an unknown distance, assign it distance d + 1, store its label in the 
queue array in the element pointed to by the write pointer, and increase 
the write pointer by one. 

5. Repeat from step 2. 

Note the test applied in step 2: if the read pointer points to the same element 
as the write pointer, then there is no vertex to be read from the queue (since the 
write pointer always points to an empty element). Thus this test tells us when 
there are no further vertices waiting to have their neighbors investigated. 

Note also that this algorithm reads all the vertices with distance d from the 
queue array one after another and uses them to find all the vertices with dis
tance d + 1. Thus all vertices with the same distance appear one after another 
in the queue array, with the vertices of distance d + 1 immediately after those of 
distance d. Furthermore, each vertex appears in the queue array at most once. 
A vertex may of course be a neighbor of more than one other, but a vertex is 
aSSigned a distance and put in the queue only on the first occasion on which it 
is encountered. If it is encountered again, its distance is known rather than un
known, and hence it is not again added to the queue. Of course, a vertex may 
not appear in the queue array at all if it is never reached by the breadth-first 
search process, i.e., if it belongs to a different component from s. 

Thus the queue does exactly what we wanted it to: it stores all vertices with 
a specified distance for us so that we have the list handy on the next sweep of 
the algorithm. This spares us from having to search through the network for 
them and so saves us a lot of time. In all other respects the algorithm works 
exactly as in the simple implementation of Section 10.3.2 and gives the same 
answers. 

How long does this implementation of the algorithm take to run? Again 
there is an initial time of O(n) to set up the distance array (see Section 10.3.2). 
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Then, for each element in the queue, which means for each of the vertices in 
the same component as Sf we do the following operations: we run through its 
neighbors, of which there are O(m/n) on average, and either calculate their 
distance and add them to the queue, or do nothing if their distance is already 
known. Either way the operations take 0(1) time. Thus for each vertex in the 
component, of which there are in the worst case n, we spend time O(m/ 11) and 
hence we require overall at most a time 11 x O(m/l1) = O(m) to complete the 
algorithm for all 11 vertices. 

Thus, including the time to set up the distance array, the whole algorithm 
takes time O(m + 11), which is better than the O(m + nlogn) of the naive im
plementation (Section 10.3.2). For the common case of a sparse network with 
m ex n, O(m + 11) is equivalent to O(n) and our algorithm runs in time pro
portional to the number of vertices8 This seems just about optimal, since the 
algorithm is calculating the distance of all n vertices from the source vertex s. 
Thus it is assigning 11 numbers to the 11 elements of the distance array, which 
in the best possible case must take O( n) time. 

On a sparse network, therefore, the breadth-first search algorithm does as 
well as we can hope for in finding the distances from a single vertex to all 
others, and indeed it is the fastest known algorithm for performing this opera
tion. 

10.3.4 VARIANTS OF BREADTH-FIRST SEARCH 

There are a number of minor variants of breadth-first search that merit a men
tion. First, one might wish to calculate the shortest distance between only a sin
gle pair of vertices sand t, rather than between s and all others. As mentioned 
in Section 10.3 there is no known way to do this faster than using breadth-first 
search. We can, however, improve the running time slightly by the obvious 
tactic of stopping the algorithm as soon as the distance to the target vertex t 

has been found. There is no point in continuing to calculate distances to the 
remaining vertices once we have the answer we want. In the worst case, the 
calculation still takes O(m + n) time since, after all, our particular target ver
tex t might turn out to be the last one the algorithm finds. If we are lucky, 
however, and encounter the target early then the rmming time might be con
siderably shorter. 

Conversely, we sometimes want to calculate the shortest distance between 
every pair of vertices in an entire network, which we can do by performing 
a breadth-first search starting at each vertex in the network in turn. The total 

80n the other hand, for a dense netvvork where III ex [12, we have a rUlming time of 0(112). 
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running time for this "all-pairs shortest path" calculation is n x O(m + n) = 

O(n(m + n)), or 0(n2 ) on a sparse graph. As with the standard breadth-first 
search, this is optimal in the sense that we are calculating 0(n2 ) quantities in 
O(n') time, which is the best we can hope for. 

As mentioned in the previous section, breadth-first search can also be used 
to identify the members of the component to which a vertex 5 belongs. At the 
end of the algorithm the distance array contains the distance from s to every 
vertex in its component, while distances to all other vertices are recorded as 
unknown. Thus we can find the size of the component just by counting the 
number of vertices with known distances. It takes time O(n) to perform the 
count, so the operation of finding the component still takes O(m + n) time in 
total. 

The closeness centrality of Section 7.6 can also be calculated simply using 
breadth-first search. Recall that closeness is defined as the inverse of the mean 
distance from a vertex to all others in the same component. Since our breadth
first search calculates distances to all others in a component we need then only 
go through the distance array, calculate the sum of all known distances, divide 
by the size of the component, and take the inverse. Again the running time 
is O(n + m). The variant closeness defined in terms of the harmonic mean in 
Eq. (7.30) can also be calculated, in the same running time, by a similar method. 

10.3.5 FINDING SHORTEST PATHS 

The breadth-first search algorithm as we have described it so far finds the 
shortest distance from a vertex s to all others in the same component of the 
network. It does not tell us the particular path or paths by which that shortest 
distance is achieved. With only a relatively small modification of the algo
rithm, however, we can calculate the paths as well. The trick is to construct 
another network on top of our original network, this one directed, that repre
sents the shortest paths. This other network is often called the shortest path tree, 
although in the most general case it is a directed acyclic graph, not a tree. 

The idea is as follows. At the start of our algorithm we create an extra 
network, which will become our shortest path tree, with the same number n 
of vertices as our original network and the same vertex labels, but with no 
edges at all. Then we start our breadth-first search algorithm from the speci
fied source vertex s as before. The algorithm repeatedly pulls a vertex out of 
the queue and examines its neighbors, as described in Section 10.3.3, but now 
every time the neighbor j of some vertex i turns out to be a previously unseen 
vertex, one whose distance is recorded as "unknown," we not only assign j a 
distance and store it in the queue, we also add a directed edge to our shortest 
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(a) (b) 

Figure 10.2: Shortest path trees. (a) A simple shortest path tree for the network of Fig. 10.1. Each vertex has a directed 
edge pointing to the vertex by which it was reached during the breadth-first search process. By following directed 
edges from any vertex we can find a shortest path to the starting vertex in the center. (b) The full shortest path tree 
(which is actually not a tree at all but a directed acyclic graph) contains extra directed edges that allow us to reconstruct 
all possible shortest paths. 

path tree from vertex j to vertex i. This directed edge tells us that we found j 
by following a path from its neighbor i. However, vertex i will also have a di
rected edge leading from it to one of its neighbors, telling us that we found i by 
following that path, and so forth. Thus, by following a succession of these di
rected edges we eventually get all the way back to s, and so we can reconstruct 
the entire shortest path between j and s. 

So, when our breadth-first search is finished, the shortest path tree contains 
the information we need to find the actual shortest path from every vertex in 
the component containing s to s itself. An example of a shortest path tree is 
shown in Fig. 10.2a for the same network as in Fig. 10.1. 

This algorithm works well and the extra step of adding an edge to the short
est path tree can be accompanied quickly-in 0(1) time if we store the network 
in adjacency list format (see Table 9.2). Thus the overall running time of the al
gorithm is still O(m + n) to find all distances from s and the corresponding 
shortest paths. 

The algorithm does have one shortcoming, however, which is that it only 
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finds one shortest path to each vertex. As pointed out in Section 6.10.1, a pair 
of vertices may have more than one shortest path between them (see Fig. 6.10). 
Another slight modification of the algorithm allows us to deal with this case. 

Multiple shortest paths exist between any vertex and the source vertex s if 
the path to s splits in two or more directions at some point along its length. This 
occurs if there is a vertex j somewhere along that path, say at distance d + 1 
from s, that has more than one neighbor at distance d-see Fig. 1O.2b. We can 
record this circumstance in our shortest-path tree by adding more than one 
directed edge from j to each of the relevant neighbors. These directed edges 
tell us that we can find a shortest path to vertex s by taking a step to any of 

those neighboring vertices. 
To do this we modify our algorithm as follows. We perform the breadth

first search starting from s as before, and add directed edges from newly found 
vertices to their neighbor as before. But we also add an extra step. If, in the 
process of examining the neighbors of a vertex i that has distance d from the 
source vertex, we discover a neighbor j that already has an assigned distance, 
and that distance is d + 1, then we know that a path of length d + 1 has already 
been found to j, but we also know that anolher path of length d + 1 must exist 
via the current vertex i. So we add an extra directed edge to the shortest path 
tree from j to i. This makes the shortest path tree no longer a tree but, as we 
have said, it's usually called a tree anyway. In any case, the algorithm gives 
exactly what we want. When it is finished running the shortest path "tree" 
allows us to reconstruct all shortest paths from every vertex in the component 
to the source vertex s. See Fig. 10.2b. 

10.3.6 BETWEENNESS CENTRALITY 

In Section 7.7 we described betweenness centrality, a widely used centrality 
index that measures the extent to which a vertex in a network lies on the paths 
between other vertices. The betweenness centrality of vertex v is the number 
of geodesic paths between pairs of vertices s, I that pass through v. (Sometimes 
it is normalized to be the fraction of such paths, rather than the total number. 
The difference is only a multiplicative constant-see Section 7.7.) Given that 
we have a method for finding the shortest path (or paths) between any two 
vertices (Section 10.3.5), we can with only a little more work now create an 
algorithm for calculating betweenness. 

The simplest way to calculate betweenness would be to implement the defi
nition of the measure directly: use breadth-first search to find the shortest path 
between s and I, as described in Section 10.3.5 (assuming such a path exists), 
and then work our way along that path checking the vertices it passes though 
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to see if the vertex v we are interested in lies among them. Repeating this pro
cess for every distinct pair s, I, we can then count the total number of paths that 
pass through v. (Things are slightly more complicated for the case in which a 
pair of vertices are connected by more than one shortest path, but let us ignore 
this complication for the moment-we will come to it soon.) 

This algorithm is certainly a correct algorithm and it would work, but it 
is also inefficient. As we have seen, breadth-first search takes time O(m + n) 
to find a shortest path between two vertices, and there are ! 11 (n - 1) distinct 
pairs of vertices 5, I. Thus the work of calculating betweenness for a single 
vertex would take 0(n2 (m + n» time, or 0(n3 ) in the common case of a sparse 
graph for which 111 ex n. (The operation of checking the vertices along each 
shortest path will take time of the order of the length of the path, which is 
typically O(log n) (Section 8.2), making it negligible compared with the time 
taken to find the path.) This is prohibitively slow: while one might be able 
to calculate the betweenness of a vertex on a given network in, say, an hour's 
work, the same calculation on a graph ten times larger would take 103 = 1000 
hours, or more than a month of computer time. 

But we can do a lot better if we make use of some of our results about 
breadth-first search from previous sections. First, the standard breadth-first 
search can find paths between a source 5 and all other vertices (in the same 
component) in time O(m + n), which means, as noted in Section 10.3.4, we can 
find paths between all pairs in the network in time O(n(m + n», or 0(n2 ) on 
a sparse network. 

An improved algorithm for calculating the betweenness of a vertex v might 
work as follows. For each 5 we use breadth-first search to find shortest paths 
between s and all other vertices, constructing a shortest path tree as described 
in Section 10.3.5. Then we use that tree to trace the paths from each vertex 
back to 5, counting in the process the number of paths that go through v. We 
repeat this calculation for all s and so end up with a count of the total number 
of shortest paths that pass through v. 

Indeed, we can trivially extend this algorithm to calculate betweenness for 
all vertices at the same time-we simply maintain a count of the number of 
paths that go through every vertex, for example in an array9 

9Note that this actually counts each path twice (since the path between i and j is counted once 
when i is considered the source vertex and once when j is), except for the path from each vertex 
to itself, which is counted only once (when that vertex is the source). This, however, is correct: 
the betweenness centrality, as defined in Eq. (7.36), indeed counts each path twice, except for the 
path from a vertex to itself. As discussed in Section 7.7, some researchers define betweenness 
differently, counting paths only once, but that merely reduces all values by a factor of two. 
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Figure 10.3: Calculation of betweenness centrality. (a) When there is only a single 
shortest path from a source vertex s (top) to all other reachable vertices, those paths 
necessarily form a tree, which makes the calculation of the contribution to betweenness 
from this set of paths particularly simple, as described in the text. (b) For cases in 
which there is more than one shortest path to some vertices, the calculation is more 
complex. First we must calculate the number of paths from the source s to each other 
vertex (numbers to the left of vertices), and then use these to weight the path counts 
appropriately and derive the betweenness scores (numbers to the right of vertices). 

For any given s, this algorithm will take time O(m + 11) to find the shortest 
paths. Paths have length that by definition is less than or equal to the diameter 
of the network, which is typically of order log 11, and hence traversing the 11 
paths from each vertex to s will take time 0(11 log 11), for a running time of 
O(m + 11 log 11) for each value of s. Repeating for all 5, the whole algorithm 
will then take total time 0(11(111 + 11 log 11)) or 0(11' log 11) on a sparse network. 

This is much better than our earlier 0(113) algorithm, but we can do better 
still. It is in fact possible to cut the running time down to just O( 11 (111 + 11) ) by 
exploiting the fact that many of the shortest paths in the shortest path tree share 
many of the same edges. To understand this development, consider Fig. 10.3a, 
which shows a shortest path tree from a vertex s to all other vertices on a graph. 
In this case the shortest path tree really is a tree, meaning there is only one 
shortest path from s to any other vertex. This case is a good first example to 
study because of its simplicity, but we will consider the more general case in 
just a moment. 

We use the tree to calculate a score for each vertex representing the number 
of shortest paths passing through that vertex. We find first the "leaves" of the 
tree, i.e., those vertices such that no shortest paths from other vertices to s pass 

10.3 SHORTEST PATHS AND BREADTH-FIRST SEARCH 

through them. (In Fig. 10.3a the leaves are drawn at the bottom of the tree.) 
We assign a score of 1 to each of these leaves-the only path to s that passes 
through these vertices is the one that starts there.lO Then, starting at the bottom 
of the tree we work upward, assigning to each vertex a score that is 1 plus the 
sum of the scores on the neighboring vertices immediately below it. That is, 
the number of paths through a vertex v is 1 for the path that starts at v plus the 
count of all paths that start below v in the tree and hence have to pass through 
it. 

When we have worked all the way up the tree in this manner and reached 
vertex s, the scores at each vertex are equal to the betweenness counts for paths 
that end at vertex s. Repeating the process for all s and summing the scores, 
we arrive at the full betweenness scores for all paths. 

In practice, the process of working up the tree can be accomplished by run
ning through the vertices in order of decreasing distance from s. Conveniently, 
we already have a list of vertices in order of their distances, namely the en
tries in the queue array created by the breadth-first search process. Thus the 
betweenness algorithm in practice involves running backwards through the 
list of vertices in this array and calculating the number of paths through each 
vertex as above until the beginning of the array is reached. 

In the worst case, this process involves going through all 11 vertices and 
checking every neighbor of every vertex, of which there are a total of 2m, so 
that the overall running time is O(m + 11). The breadth-first search itself also 
takes time 0(111 + 11) (as usual) and hence the total time to count paths for each 
source vertex s is O( m + 11), which means the complete betweenness calcula
tion takes time O(I1(m + 11)), as promised. 

In general, however, we cannot assume that the shortest paths to a given 
vertex form a tree. As we saw in Section 10.3.5, often they do not. Consider, for 
instance, the "tree" shown in Fig. 10.3b. Following the definition of between
ness in Section 7.7, multiple shortest paths between the same pair of vertices 
are given equal weights summing to 1, so that for a vertex pair connected by 
three shortest paths, for example, we give each path weight ~. Note that some 
of the paths may share vertices for part of their length, resulting in vertices 
with greater weight. 

lOIn this case we are considering the first and last vertices on a path to be members of that path. 
As discussed in Section 7.7, the first and last vertices are sometimes excluded from the calculation, 
which means that the betweenness score of each vertex is smaller by an additive constant equal to 
twice the number of vertices in the component. If we wish to calculate betweenness according to 
this alternative definition, the simplest approach is to use the algorithm described here and then 
subtract the additive constant from each vertex's score at the end. 
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To calculate correctly the weights of the paths flowing through each vertex 
in a network, we need first to calculate the total number of shortest paths from 
each vertex to s. This is actually quite straightforward to do: the shortest paths 
from s to a vertex i must pass through one or more neighbors of i and the total 
number of shortest paths to i is simply the sum of the numbers of shortest 
paths to each of those neighbors. We can calculate these sums as part of a 
modified breadth-first search process as follows. 

Consider Fig. 1O.3b and suppose we are starting at vertex s. We carry out 
the following steps: 

1. Assign vertex s distance zero, to indicate that it is zero steps from itself, 
and set d = O. Also assign s a weight w, = 1 (whose purpose will become 
clear shortly). 

2. For each vertex i whose assigned distance is d, follow each attached edge 
to the vertex j at its other end and then do one of the following three 
things: 

a) If j has not yet been assigned a distance, assign it distance d + 1 and 

weight Wj = Wi. 

b) If j has a!read y been assigned a distance and that distance is equal 
to d + 1, then the vertex's weight is increased by Wi, that is Wj +

'Wj+Wi' 

c) If j has already been assigned a distance less than d + 1, do nothing. 
3. Increase d by 1. 
4. Repeat from step 2 until there are no vertices that have distance d. 

The resulting weights for the example of Fig. 10.3b are shown to the left of each 
vertex in the figure. Each weight is the sum of the ones above it in the "tree." 
(It may be helpful to work through this example yourself by hand to see how 
the algorithm arrives at these values for the weights.) Physically, the weight on 
a vertex i represents the number of distinct geodesic paths between the source 
vertex sand i. 

Now if two vertices i and j are connected by a directed edge in the shortest 
path "tree" pointing from j to i, then the fraction of the paths to s that pass 
through (or starting at) j and that also pass through i is given by w;/Wj. 

Thus, and finally, to calculate the contribution to the betweenness from 
shortest paths starting at all vertices and ending at s, we need only carry out 
the following steps: 

1. Find every "leaf" vertex t, i.e., a vertex such that no paths from s to other 
vertices go though t, and assign it a score of X, = 1. 

2. Now, starting at the bottom of the tree, work up towards s and assign 
to each vertex i a score Xi = 1 + Lj x{wdwjr where the sum is over the 
neighbors j immediately below vertex i. 
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3. Repeat from step 2 until vertex s is reached. 
The resulting scores are shown to the right of each vertex in Fig. 10.3b. Now 
repeating this process for all n source vertices s and summing the resulting 
scores on the vertices gives us the total betweenness scores for all vertices in 
timeO(n(m+n))l1 

This algorithm again takes time O(n(m + 11)) in general or 0(/12
) on a 

sparse network, which is the best known running time for any betweenness 
algorithm at the time of writing, and moreover seems unlikely to be beaten by 
any future algorithm given that the calculation of the betweenness necessarily 
requires us to find shortest paths between all pairs of vertices, which operation 
also has time complexity O(n(m + n)). Indeed, even if we want to calculate the 
betweelmess of only a single vertex it seems unlikely we can do better given 
that such a calculation still requires us to find all shortest paths. 

10.4 SHORTEST PATHS IN NETWORKS WITH VARYING EDGE LENGTHS 

In Section 6.3 we discussed weighted networks, networks in which the edges 
have values or strengths representing, for instance, the traffic capacities of con
nections on the Internet or the frequencies of contacts between acquaintances 
in a social network. In some cases the values on edges can be interpreted as 
lengths for the edges. The lengths could be real lengths, such as distances 
along roads in a road network, or they could represent quantities that act like 
lengths, such as transmission delays for packets traveling along Internet con
nections. In other cases they might just be approximately length-like measures: 
one might say, for instance, that a pair of acquaintances in a social network are 
twice as far apart as another pair if they see one another half as often. 

Sometimes with networks such as these we would like to calculate the 
shortest path between two vertices taking the lengths of the edges into account. 
For instance, we might want to calculate the shortest driving route from A to B 
via a road network or we might want to calculate the route across the Internet 
that gets a data packet to its destination in the shortest time. (In fact, this is 
exactly what many Internet routers do when routing data packets.) 

But now we notice a crucial-and annoying-fact. The shortest path across 
a network when we take edge lengths into account may not the be same as 
the shortest path in terms of number of edges. Consider Fig. 10.4. The short
est path between sand t in this small network traverses four edges, but is 

HAs discussed in footnote 9, these scores give the betweenness as defined in Eq. (7.36). To get 
true path counts one would have to divide by two and add a half (or equivalently add one then 
divide by two) to correct for the double counting of paths between distinct vertices. 
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still shorter, in terms of total edge length, than the competing path with just 
two edges. Thus we cannot find the shortest path in such a network using 
standard breadth-first search, which finds paths with the minimum number of 
edges. For problems like this we need a different algorithm. We need Dijlcstra's 
algorithm. 

Dijkstra's algorithm, like breadth-first search, finds the shortest 
distance from a given source vertex s to every other vertex in the 
same component of a network, but does so taking the lengths of 
edges into account. 12 It works by keeping a record of the shortest 
distance it has found so far to each vertex and updating that record 
whenever a shorter one is found. It can be shown that, at the end 
of the algorithm, the shortest distance found to each vertex is in fact 
the shortest distance possible by any route. In detail the algoritlun 
is as follows. 

We start by creating an array of n elements to hold our current 

Figure 10.4: The shortest path in a net
work with varying edge lengths. The 
numbers on the edges in this network 
represent their lengths. The short
est path between sand t, taking the 
lengths into account, is the upper path 
marked with the arrow (which has to-

estimates of the distances from s to every vertex. At all times during 
the running of the algorithm these estimates are upper bounds on 
the true shortest distances. Initially we set our estimate of the dis
tance from s to itself to be zero, which is trivially correct, and from 
s to every other vertex to be 00, which is clearly a safe upper bound. 

We also create another array of n elements in which we record 
whether we are certain that the distance we have to a given vertex is 
the smallest possible distance. For instance, we might use an integer 
array with 1s to indicate the distances we are sure about and as for 

tal length 4), even though it traverses 
more edges than the alternative, lower 
path (which has length 6). the distances that are just our best current estimate. Initially, we put 

a 0 in every element of this array. (You might argue that we know 
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for certain that the distance from s to itself is zero and hence that we should 
put a 1 in the element corresponding to vertex s. Let us, however, pretend that 
we don't know this to begin with, as it makes the algorithm work out more 
neatly.) 

Now we do the following. 
1. We find the vertex v in the network that has the smallest estimated dis

tance from s, i.e., the smallest distance about which we are not yet certain. 

12We assume that the lengths are all non-negative. If lengths can be negative, which happens in 
some cases, then the problem is much harder, falling in the class of "NP-complete" computational 
problems, for which even the best known algoritluns take an amount of time exponential in n to 
finish, in the worst case [8]. Indeed, if edges are allowed to have negative lengths, there may not 
be any shortest path between a pair of vertices, since one can have a loop in the network that has 
negative length, so that one can reduce the length of a path arbitrarily by going around the loop 
repeatedly. 
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Known distances 

Estimated distances 

Figure 10.5: Paths in Dijkstra's algorithm. If v is the vertex with the smallest estimated 
(i.e., not certain) distance from s then that estimated distance must in fact be the true 
shortest distance to v. If it were not and there were a shorter path s, ... , x, y, . .. , v then 
all points along that path must have shorter distances from s than v's estimated dis
tance, which means that y has a smaller estimated distance than v, which is impossible. 

2. We mark this distance as being certain. 
3. We calculate the distances from s via v to each of the neighbors of v by 

adding to v's distance the lengths of the edges connecting v to each neigh
bor. If any of the resulting distances is smaller than the current estimated 
distance to the same neighbor, the new distance replaces the older one. 

4. We repeat from step 1 until the distances to all vertices are flagged as 
being certain. 

Simple though it is to describe, it's not immediately obvious that this algorithm 
does what it is supposed to do and finds true shortest paths. The crucial step 
is step 2 where we declare the current smallest estimated distance in fact to be 
certain. That is, we claim that among vertices for which we don't yet definitely 
know the distance, the smallest distance recorded to any vertex is in fact the 
smallest possible distance to that vertex. 

To see why this is true consider such a vertex, which we'll again call v, 
and consider a hypothetical path from s to v that has a shorter length than 
the current estimated distance recorded for v. The situation is illustrated in 
Fig. 10.5. Since this hypothetical path is shorter than the estimated distance 
to v, the distance along the path to each vertex in the path must also be less 
than that estimated distance. 

Furthermore, there must exist somewhere along the path a pair of adjacent 
vertices x, y such that x's distance is known for certain and y's is not. Vertex x 
need not necessarily be distinct from vertex s (although we have drawn it that 
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way in the figure), but vertex y must be distinct from v: if y and v were the 
same vertex, so that v was a neighbor of x, then we would already have found 
the shorter path to v when we explored the neighbors of x in step 3 above and 
we would accordingly have revised our estimate of v's distance downward. 
Since this hasn't happened, y and v must be distinct vertices. 

But notice now that y's current estimated distance will be at most equal to 
its distance from s along the path because that distance is calculated in step 3 
above when we explore x's neighbors. And since, as we have said, all dis
tances along the path are necessarily less than the current estimated distance 
to v, it follows that y's estimated distance must be less than v's and we have a 
contradiction, because v is by hypothesis the vertex with the shortest estimated 
distance. Hence there is no path to vertex v with length less than v's current 
estimated distance, so we can safely mark that distance as being certain, as in 
step 2 above. 

Thus on each step the algorithm correctly flags one additional distance as 
being known exactly and when all distances have been so flagged the algo
rithm has done its job. 

As with breadth-first search, the running time of Dijkstra's algorithm de
pends on how it is implemented. The simplest implementation is one that 
searches through all vertices on each round of the algorithm to find the one 
that has the smallest estimated distance. This search takes time O( n). Then we 
must calculate a new estimated distance to each of the neighbors of the vertex 
we find, of which there are O(mln) on average. To leading order, one round 
thus takes time O(mln + n) and the whole algorithm, which runs (in the worst 
case of a network with a Single component) for n rounds, takes time O(m + n') 
to find the distance from s to every other vertex. 

But we can do better than this. If we store the estimated distances in a 
binary heap (see Section 9.7) then we can find the smallest one and remove 
it from the heap in time O(1ogn). The operation of replacing an estimated 
distance with a new and better estimate (which in the worst case we have to 
do an average of O(mln) times per round) also takes O(logn) time, and hence 
a complete round of the algorithm takes time O( (min) log n + log n) and all 
n rounds then take O((m + n)logn), or O(nlogn) on a sparse network with 
m c< n. This is very nearly the best running time known for this problem,13 and 
close to, though not quite as good as, the O( m + n) for the equivalent problem 
on an unweighted network (factors of log n being close to constant given that 

13In theory one can achieve a slightly better rum1ing time of O( 111 + 11 log n) using a data struc
ture known as a Fibonacci heap [81], but in practice the operation of the Fibonacci heap is so 
complicated that the calculation usually ends up running slower. 

10.5 MAXIMUM FLOWS AND MINIMUM CUTS 

the logarithm is a very slowly growing function of its argument). 
As we have described it, Dijkstra's algorithm finds the shortest distance 

from a vertex s to every other in the same component but, like breadth-first 
search, it can be modified also to find the actual paths that realize those dis
tances. The modification is very similar to the one for breadth-first search. We 
maintain a shortest path tree, which is initially empty and to which we add 
directed edges pointing from the vertices along the first step of their shortest 
path to s. We create such a directed edge when we first assign a vertex an esti
mated distance less than 00 and move the edge to point to a new vertex every 
time we find a new estimated distance that is less than the current one. The 
last position in which an edge comes to rest indicates the true first step in the 
shortest path. If a new estimate of the distance to a vertex is ever exactly the 
same as the current estimate then we put two directed edges in the shortest 
path tree indicating the two alternative paths that give the shortest distance. 
When the algorithm is finished the shortest path tree, like those in Fig. 10.2, 

can be used to reconstruct the shortest paths themselves, or to calculate other 
quantities such as a weighted version of betweenness centrality (which could 
be used for instance as a measure of traffic flow in a network where traffic 
always takes the shortest weighted path). 

10.5 MAXIMUM FLOWS AND MINIMUM CUTS 

In Section 6.12 we discussed the ideas of connectivity, independent paths, cut 
sets, and maximum flows in networks. In particular, we defined two paths 
that connect the same vertices sand t to be edge-independent if they share 
none of the same edges and vertex-independent if they share none of the same 
vertices except for 5 and t themselves. And the edge or vertex connectivity of 
the vertices is the number of edge- or vertex-independent paths between them. 
We also showed that the edge or vertex connectivity is equal to the size of the 
minimum edge or vertex cut set-the minimum number of edges or vertices 
that need to be removed from the network to disconnect s from t. Connectivity 
is thus a simple measure of the robustness of the connection between a pair 
of vertices. Finally, we showed that the edge-connectivity is also equal to the 
maximum flow that can pass from s to t if we think of the network as a network 
of pipes, each of which can carry one unit of flow. 

In this section we look at algorithms for calculating maximum flows be
tween vertices on networks. As we will see, there is a simple algorithm, the 
Ford-Fulkerson or augmenting path algorithm, that calculates the maximum 
flow between two vertices in average time O((m + n)mln). Once we have 
this maximum flow, then we also immediately know the number of edge-
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A simple breadth-first 
search finds a path from 
source s to target t (top) 
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search using only the edges 
not used in the first finds a 
second path (bottom). 
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independent paths and the size of the minimum edge cut set between the 
same vertices. With a small extension, the algorithm can also find the particu
lar edges that constitute the minimum edge cut set. A simple modification of 
the augmenting path algorithm allows us also to calculate vertex-independent 
paths and vertex cuts sets. 

All the developments of this section are described for undirected networks, 
but in fact the algorithms work perfectly well, without modification, for di
rected networks as well. Readers who want to know more about maximum 
flow algorithms are recommended to look at the book by Ahuja el a1. [8], which 
contains several hundred pages on the topic and covers almost every conceiv
able detail. 

10.5.1 THE AUGMENTING PATH ALGORITHM 

In this section we describe the augmenting path algorithm of Ford and Fulker
son for calculating maximum flows between vertices in a network. 14 The case 
of primary interest to us is the one where each edge in the network can carry 
the same single unit of flow. The algorithm can be used in the more general 
case where the edges have varying capacities, but we will not discuss that case 
here.1s 

The basic idea behind the augmenting path algorithm is a simple one. We 
first find a path from source s to target I using the breadth-first search algo
rithm of Section 10.3.16 This "uses up" some of the edges in the network, fill
ing them to capacity so that they can carry no more flow. Then we find another 
path from s to I among the remaining edges and we repeat this procedure until 
no more paths can be found. 

Unfortunately, this does not yet give us a working algorithm, because as 
we have described it the procedure will not always find the maximum flow. 
Consider Fig. 10.6a. If we apply breadth-first search between sand t we find 

14The augmenting path algorithm is not the only algorithm for calculating maximum flows. It 
is, however, the simplest and its average performance is about as good as any other, so it is a good 
choice for everyday calculations. It's worth noting, however, that the worst-case performance of 
the algorithm is quite poor: for pathological networks, the algorithm can take a very long time 
to run. Another algorithm, the pre flow-push algorithm [8], has much better worst-case performance 
and comparable average-case performance, but is considerably more complicated to implement. 

15See Ahuja et al. [8] or Cormen et al. [81] for details of the general case. 

16Technically, the augmenting path algorithm doesn't specify how paths are to be fOlllld. Here 
we study the particular version in which paths are found using breadth-first search, which is 
known to be one of the better-performing variants. Sometimes this variant is called the shortest 
augmenting path algorithm or the Edmonds-Karp algorithm. 
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Figure 10.6: The augmenting path algorithm. (a) We find a first path from source s to 
target t using breadth-first search. This leaves no more independent paths from 5 to t 
among the remaining edges. (b) However, if we allow flows in both directions along an 
edge (such as the central edge in this network), then we can find another path. Panels 
(c) and (d) show the residual graphs corresponding to panels (a) and (b). 

the path marked in bold. Unfortunately, once we have filled all the edges along 
this path to capacity there are no more paths from s to I that can be constructed 
with the remaining edges, so the algorithm stops after finding just one path. 
It is clear, however, that there are in fact two edge-independent paths from s 
to I-along the top and bottom of the network-and a maximum flow of two, 
so the algorithm has given the wrong answer. 

There is however, a simple fix for this problem, which is to allow fluid 
to flow simultaneously bolh ways down an edge in our network. That is, we 
allow a state in which there is one unit of flow in each direction along any 
given edge. If the edges were real pipes, then this would not be possible: if a 
pipe is full of fluid flowing one way, then there is no room for fluid flowing the 
other way too. However, if fluid were flowing both ways down an edge, the 
net flow in and out of either end of that edge would be zero-the two flows 
would effectively cancel out giving zero net flow. And zero flow down an edge 
certainly is possible. 

So we use a trick and allow our algorithm to place a unit of flow both ways 
down any edge, but declare this to mean in practice that there is no flow at all 
on that edge. This means that the paths we will find will no longer necessarily 
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be independent paths, since two of them can share an edge so long as they pass 
along it in opposite directions. But this doesn't matter: the flows the paths 
represent are still allowed flows, since no pipe is ever required to carry more 
than one unit of flow, and we know that in the end our final, maximum flow 
will be numerically equal to the actual number of independent paths, even 
though those independent paths may be different from the paths picked out 
by the algorithm. Thus we create an algorithm that counts independent paths 
by counting a special class of non-independent paths: strange as this sounds, 
the max-flow /min-cut theorem tells us that it must work, and indeed it does. 

More generally, since the maximum allowed flow down an edge is one unit 
in either direction, we can have any number of units flowing either way down 
an edge provided they cancel out so that net flow is no more than OTIe unit. 
Thus, two units of flow in either direction would be allowed, or three units 
one way and four the other, and so forth. Three units one way and five the 
other would not be allowed, however. '7 

To see how this works in practice, consider Fig. 10.6 again. We begin by 
performing a breadth-first search that finds the path shown in panel (a). Now, 
however, there is a second path to be found, as shown in panel (b), making use 
of the fact that we are still allowed to send one unit of flow baclewards along 
the edge in the center of the network. After this, however, there are no more 
paths left from s to t and so the algorithm stops and tells us that the maximum 
possible flow is two units, which is the correct answer, 

This is merely one example of the algorithm: we still have to prove that it 
gives the correct answer in all cases, which we do in Section 10.5.3. To under
stand the proof, however, we first need to understand how the algorithm is 
implemented. 

10.5.2 IMPLEMENTATION AND RUNNING TIME 

Implementation of the augmenting path algorithm makes use of a residual 
graph, which is a directed network in which the edges connect the pairs of ver
tices on the original network between which we still have capacity available to 
carry one or more units of flow in the given direction. For instance, Figs. lO.6c 
and 10.6d show the residual graphs corresponding to the flow states in 1O.6a 
and 1O.6b. 

The residual graph is constructed by first taking the initial network and 

170n networks with directed edges, we allow either the same flow in both directions along an 
edge (Le., zero net flow) or one more unit in the forward direction than in the backward direction, 
but not vice versa. 
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replacing each undirected edge with two directed ones, one in each direction. 
We now perform our breadth-first searches on this residual graph, rather than 
on the original network, respecting the directions of the edges. Every time 
our algorithm finds a new path through the network, we update the residual 
graph by adding a directed edge in the opposite direction to the path between 
every pair of vertices along the path, provided no such edge already exists. 
[f a vertex pair already has such a backward-pointing edge, we instead take 
away a forward-pointing one. (There will always be such a forward-pointing 
edge, otherwise the path would not exist in the first place.) The largest number 
of edges we update during this process is 111, the total number of edges in the 
original network, so the process takes time O( 111) and thus makes no difference 
to the 0(111 + n) time complexity of the breadth-first search. 

Now we find the next path by performing another breadth-first search on 
the updated residual graph. By always working on the residual graph in this 
way, we insure that we find only paths along edges that have not yet reached 
their maximum flow. Such paths are called augmenting paths. The process is 
repeated until our breadth-first search fails to find any augmenting path from s 
to t, at which point we have found all the paths there are and the number of 
paths found is equal to the number of units in the maximum flow from s to t. 

Each breadth-first search, along with the corresponding updates to the resid
ual graph, takes time 0(111 + n) for a network stored in adjacency list format 
(see Sections 9.4 and 10.3). Moreover, the number of independent paths from 
s to t can be no greater than the smaller of the two degrees le, and kt of the 
source and target vertices (since each path must leave or enter one of those 
vertices along some edge, and that edge can carry at most one path). Thus the 
rurming time of the algorithm is O( min(k" kt )(111 + n)). If we are interested in 
the average running time over many pairs of vertices, then we can make use of 
the fact that (min(k" let)) <:: (k) (where the averages are over all vertices), and 
recalling that (k) = 2111/n (Eq. (6.23)), this implies that the average running 
time of the algorithm is 0((111 + n)111/n), which is O(n) on a sparse network 
with 111 C< 11. (On the other hand, on a dense graph where 111 c< n2, we would 
have 0(n3 ), which is much worse.) 

10.5.3 WHY THE ALGORITHM GIVES CORRECT ANSWERS 

It is plausible but not immediately obvious that the augmenting path algo
rithm correctly finds maximum flows. We can prove that it does as follows. 

Suppose at some point during the operation of the algorithm (including 
the very beginning) we have found some (or no) paths for flow from s to t, but 
any paths we have found do not yet constitute the maximum possible flow. 
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That is, there is still room in the network for more flow from s to t. If this is 
the case then, as we will now show, there must exist at least one augmenting 
path from s to t, which by definition carries one unit of flow. And if there 
exists an augmenting path, our breadth-first search will always find it, and so 
the algorithm will go on finding augmenting paths until there is no room in 
the network for more flow, i.e., we have reached the maximum flow, which is 
equal to the number of paths found. 

Thus the proof that the algorithm is correct requires only that we prove the 
following theorem: 

If at some point in our algorithm the flow from s to t is less than the 
maximum possible flow, then there must exist at least one augment
ing path on the current residual graph. 

Consider such a point in the operation of the algorithm and consider the flows 
on the network as represented by I, the set of all individual net flows along 
the edges of the network. And consider also the maximum possible flow from 
s to t, represented by Ima" the corresponding set of individual net flows. By 
hypothesis, the total flow out of s and into t is greater in 1m" than in f. Let us 
calculate the difference flow!;1 = Imox - I, by which we mean we subtract the 
net flow along each edge in I from the net flow along the corresponding edge 
in Imax, respecting flow direction-see Fig. 10.7. (For instance, the difference of 
two unit flows in the same direction would be zero while the difference of two 
in opposite directions would be two in one direction or the other.) 

Since the total flow is greater in Imax than in I, the difference flow !;I must 
have a net flow out of s and net flow into t. What's more, because the "fluid" 
composing the flow is conserved at vertices, every vertex except sand t must 
have zero net flow in or out of it in both I max and I and hence also in !; f. But if 
each vertex other than sand t has zero net flow, then the flow from s to t must 
form at least one path across the network-it must leave every vertex it enters, 
except the last one, vertex t. Let us choose anyone of these paths formed by 
the flow from s to tin!;1 and let us call this path p. 

Since there is a positive flow in !; I in the forward direction along each 
edge in p, there must have been no such flow in I along any of the same edges. 
If there were such a flow in I then when we performed the subtraction!; I = 

I max - I the flow in !; I would be either zero or negative on the edge in question 
(depending on the flow in I max), but could not be positive. Thus we can always 
safely add to I a unit of flow forward along each edge in p without overloading 
any of the edges. But this immediately implies that p is an augmenting path 

for f. 
Thus, for any flow that is not maximal, at least one augmenting path always 

10.5 MAXIMUM FLOWS AND MINIMUM CUTS 

Maximum flow 

t 

Difference flow 
s t 

/y 

~ .. ~ ... -.-.-.--/ 
Submaximal flow 

Figure 10.7: Correctness of the augmenting path algorithm. If we subtract from the 
maximum flow jmax (upper left) any submaximal flow f (lower left), the resulting dif
ference flow (right) necessarily contains at least one path from s to t, and that path is 
necessarily an augmenting path for f. 

exists, and hence it follows that the augmenting path algorithm as described 
above is correct and will always find the maximum flow. 

10.5.4 FINDING INDEPENDENT PATHS AND MINIMUM CUT SETS 

Once we have found the maximum possible flow between a given pair of ver
tices, we also automatically have the size of the minimum edge cut set and the 
number of edge-independent paths, which are both numerically equal to the 
number of units in the maximum flow (see Section 6.12). 

We might also wish to know exactly where the independent paths run. The 
augmenting path algorithm does not give us this directly since, as we have 
seen, the augmenting paths it finds are not necessarily the same as the inde
pendent paths, but only a very small extension of the algorithm is necessary to 
find the independent paths: we take the final residual graph produced at the 
end of the algorithm and remove from it every pair of directed edges that joins 
the same two vertices in opposite directions-see Fig. 10,8. In other words we 
are removing all network edges that carry no net flow. The edges remaining 
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Figure 10.8: Reconstructing the independent paths from the residual graph. Deleting 
every pair of edges on the residual graph that join the same two vertices in opposite di
rections leaves a graph consisting of the independent paths only, spelled out in directed 
edges that point backwards along those paths from target to source. 

after we have done this are necessarily those that actually carry the maximum 
flow and it is a straightforward matter to trace these edges from s to t to re
construct the paths themselves.18 (In fact, as Fig. 10.8 shows, the remaining 
directed edges in the residual graph point backwards from t to s, so it is often 
easier to reconstruct the paths backwards.) 

Another thing we might want is the set of edges that constitutes the min
imum cut set for the vertices sand t. In fact in most cases there is more than 
one cut set of the minimum size, so more generally we would like to find one 
of the minimum cut sets. Again we can do this by a small extension of the 
augmenting path algorithm. The procedure is illustrated in Fig. 10.9. We again 
consider the final residual graph generated at the end of the algorithm. By 
definition this graph has no directed path in it from s to t (since if it did the 
algorithm would not have stopped yet). Thus we can reach some subset of 
vertices by starting at vertex s, but we cannot reach all of them. (For exam
ple, we cannot reach t.) Let 1/, be the subset of vertices reachable from s by 
some path on the residual graph and let Vi be the set of all the other vertices 
in the graph that are not in V,. Then the set of edges on the original graph that 
connect vertices in V~ to vertices in Vt constitutes a minimum cut set for sand t. 

Why does this work? Clearly if we removed all edges that connect vertices 
in V, to those in V, we disconnect sand t, since then there is no path at all 
between sand t. Thus the edges between 1/, and V, constitute a cut set. That it 

18Note, however, that the independent paths are not necessarily unique: there can be more than 
one choice of paths and some of them may not be found by this algorithm. Furthermore, there can 
be points in the network where paths come together at a vertex and then part ways again. If such 
points exist, YOll will have to make a choice about which way to go at the parting point. It doesn't 
matter what choice you make in the sense that all choices lead to a correct set of paths, but different 
choices will give different sets of paths. 

10.5 MAXIMUM FLOWS AND MINIMUM CUTS 
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Figure 10.9: Finding a minimum cut set. Once we have found a set of maximum flows 
for a given 5 and t (left) we can find a corresponding minimum cut set by considering 
the residual graph (right). The set Vs is the set of vertices reachable from s by following 
directed edges on the residual graph and Vt is the rest of the vertices. The minimum 
cut set is the set of edges (two of them in this case) that connect V's to Vt on the original 
network. 

is a minimum cut set we can see by the following argument. Every edge from 
a vertex in 1/, to a vertex in V, must be carrying a unit of flow from 1/, to V" If 
it were not, then it would have available capacity away from 1/" meaning that 
there would be a corresponding directed edge away from V, in the residual 
graph. In that case, however, the vertex at the far end of that edge would be 
reachable from 1/, on the residual graph and therefore would be a part of V,. 
Since the vertex in question is, by hypothesis, in V, and not in V" it follows that 
it must be carrying a unit of the maximum flow from 5 to t. 

Now, since every edge in the cut set between V, and Vi is carrying a unit of 
flow, the size of that cut set is numerically equal to the size of the flow from 
V, to V" which is also the flow from s to t. And, by the max-flow fmin-cut 
theorem, a cut set between 5 and t that is equal in size to the maximum flow 
between 5 and t is a minimum cut set, and hence our result is proved. 

10.5.5 FINDING VERTEX-INDEPENDENT PATHS 

Once we know how to find edge-independent paths it is straightforward to 
find vertex-independent paths as well. First, note that any set of vertex-inde
pendent paths between two vertices sand t is necessarily also a set of edge
independent paths: if two paths share none of the same vertices, then they also 
share none of the same edges. Thus, we can find vertex-independent paths 
using the same algorithm that we used to find edge-independent paths, but 
adding the restriction that no two paths may pass through the same vertex. 
One way to impose this restriction is the following. First, we replace our un
directed network with a directed one, as shown in Fig. 10.10, with a directed 
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(a) 

s t t 

(c) 

s t 

Figure 10.10: Mapping from the vertex-independent path problem to the edge
independent path problem. Starting with an undirected network (a), we (b) replace 
each edge by two directed edges, then (c) replace each vertex, except for sand t, with 
a pair of vertices with a directed edge between them (shaded) following the prescrip~ 
tion in Fig. 10.11. Edge-independent paths on the final network then correspond to 
vertex-independent paths on the initial network. 

edge in either direction between every connected pair of vertices. This does 
not change the maximum flow possible in the network and hence does not 
change the number of independent paths either. 

Second, we replace each of the vertices in the network, except sand t, with 
a construct like that shown in Fig. 10.11. Each vertex is replaced with two 
vertices separated by a directed edge. All original incoming edges connect 
to the first of these two (on the left in Fig. 10.11) and all outgoing edges to 
the second. This new construct functions as the original vertex did, allowing 
flows to pass in along ingoing edges and out along outgoing ones, but with one 
important difference: assuming that the new edge joining the two vertices has 
unit capacity like all others, we are now limited to just one unit of flow through 
the entire construct, since every path through the construct must traverse this 
central edge. Thus every allowed flow on this network corresponds to a flow 

Figure 10.11: Vertex transformation for the vertex-independent path algorithm. Each 
vertex in the network is replaced by a pair of vertices joined by a single directed edge. 
All incoming edges are connected to one of the pair and all outgoing edges to the other 
as shown. 

on the original network with at most a single unit passing though each vertex. 
Transforming the entire network of Fig. 1O.1Oa using this method gives 

us a network that looks like Fig. 1O.10c. Now we simply apply the normal 
augmenting path algorithm to this directed network, and the number of edge
independent paths we find is equal to the number of vertex-independent paths 
on the original network. 

PROBLEMS 

10.1 What is the time complexity, as a function of the number n of vertices and /11 
of edges, of the following network operations if the network in question is stored in 
adjacency list format? 

a) Calculating the mean degree. 

b) Calculating the median degree. 

c) Calculating the air-travel route between two airports that has the shortest total 
flying time, assuming the flying time of each individual flight is known. 

d) Calculating the minimum number of routers that would have to fail to disconnect 
two given routers on the Internet. 

10.2 For an undirected network of n vertices stored in adjacency list format show that: 

a) It takes time 0 (n (n + In)) to find the diameter of the network. 

b) It takes time O( (k)) on average to list the neighbors of a vertex, where (k) is the 
average degree in the network, but time O( (k2)) to list the second neighbors. 

10.3 For a directed network in which in- and out-degrees are uncorrelated, show that 
it takes time 0(/112 / n) to calculate the reciprocity of the network. Why is the restriction 
to uncorrelated degrees necessary? What could happen if they were correlated? 

PROBLEMS 
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10.4 Suppose that we define a new centrality measure Xi for vertex i in a network to 
be a sum of contributions as fonows: 1 for vertex i itself, 0: for each vertex at (geodesic) 
distance 1 from i, a2 for each vertex at distance 2, and so forth, where 0: < 1 is a given 
constant. 

a) Write an expression for Xi in terms of a and the geodesic distances dij betvveen 

vertex pairs. 

b) Describe briefly an algorithm for calculating this centrality measure. What is the 
time complexity of calculating Xi for all i? 

CHAPTER 11 

MATRIX ALGORITHMS AND GRAPH 

PARTITIONING 

A discussion of network algorithms that use matrix and 
linear algebra methods, including algorithms jar 
partitioning network nodes into groups 

I N THE preceding chapter we discussed a variety of computer algorithms for 
calculating quantities of interest on networks, including degrees, centrali

ties, shortest paths, and connectivity. We continue our study of network algo
rithms in this chapter with algorithms based on matrix calculations and meth
ods of linear algebra applied to the adjacency matrix or other network matrices 
such as the graph Laplacian. We begin with a simple example, the calculation 
of eigenvector centrality, which involves finding the leading eigenvector of the 
adjacency matrix, and then we move on to some more advanced examples, 
including Fiedler's spectral partitioning method and algorithms for network 
community detection. 

11.1 LEADING EIGENVECTORS AND EIGENVECTOR CENTRALITY 

As discussed in Section 7.2, the eigenvector centrality of a vertex i in a network 
is defined to be the ith element of the leading eigenvector of the adjacency 
matrix, meaning the eigenvector corresponding to the largest (most positive) 
eigenvalue. Eigenvector centrality is an example of a quantity that can be cal
culated by a computer in a number of different ways, but not all of them are 
equally efficient. One way to calculate it would be to use a standard linear 
algebra method to calculate the complete set of eigenvectors of the adjacency 
matrix, and then discard all of them except the one corresponding to the largest 
eigenvalue. This, however, would be a wasteful approach, since it involves cal-
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culating a lot of things that we don't need. A simpler and faster method for 
calculating the eigenvector centrality is the power method. 

If we start with essentially any initial vector x(O) and multiply it repeatedly 
by the adjacency matrix A, we get 

x(t) = A'x(O), (11.1) 

and, as shown in Section 7.2, x(t) will converge' to the required leading eigen
vector of A as t -. 00. This is the power method, and, simple though it is, 
there is no faster method known for calculating the eigenvector centrality (or 
the leading eigenvector of any matrix). There are a few caveats, however: 

1. The method will not work if the initial vector x(O) happens to be orthog
onal to the leading eigenvector. One simple way to avoid this problem 
is to choose the initial vector to have all elements positive. This works 
because all elements of the leading eigenvector of a real matrix with non
negative elements have the same sign? which means that any vector OT-

lTechnicaUy the power method finds the eigenvector corresponding to the eigenvalue of 
largest absolute magnitude and hence the method would fail to find the eigenvector we want 
if the largest absolute magnitude belongs to a negative eigenvalue. For a matrix with all elements 
non-negative, however, such as the adjacency matrix, it turns out this can never happen. Here is a 
proof of this result for an undirected network where A is symmetric; the general case is covered, 
for example, in Ref. [217]. Let {I be the most negative eigenvalue of a real symmetric matrix A and 
let wbe the corresponding eigenvector, with elements Wi. Then, given that wTw = L wT > 0, 

II'IwTw ~ II,wTwl ~ IWT Awl ~ ILAijWiW, I s L IAilWiwjl ~ LAillw;!lwjl ~ xT Ax. 
If If If 

where x is the vector with components IWil. TIle inequality here follows from the so-called triangle 
inequality la + bl .:::; lal + Ibl, which is true for all real numbers a, b. Rearranging, we now find that 

xI'Ax xI' Ax 
Ifll.:::; wTw' = xTx' 

where we have made use ofx'r x = Li l'wd2 = w·/'w. Now we write x as a linear combination of the 
normalized eigenvectors Yi of A thus: x = .Li CI YI, where the Ci are real coefficients whose exact 
values are not important for this proof. Then, if /(i is the eigenvalue corresponding to Vi and K1 is 
the most positive eigenvalue, we have 

where we have made use of the orthogonality property V}'Vi = Oi( (The inequality is an exact 
equality if and only if x is an eigenvector with eigenvalue /(1.) Putting these results together, we 
find that 1111 .::; K1 and hence the most negative eigenvalue never has a magnitude greater than that 
of the most positive eigenvalue (although if we are unlucky the two magnitudes could be equal). 
The result proved here is one part of the Perron-Frobenius theorem. The other part, that the leading 
eigenvector has all elements non-negative, is proved in the following footnote. 

2This result, like that in footnote 1, is a part of the Perron-Frobenius theorem. To prove it-
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thogonal to the leading eigenvector must contain both positive and neg
ative elements. Hence, if we choose all elements of our initial vector to 
be positive, we are guaranteed that the vector cannot be orthogonal to 

the leading eigenvector. 
2. The elements of the vector have a tendency to grow on each iteration

they get multiplied by approximately a factor of the leading eigenvalue 

least for the case of symmetric A-let K1 be the most positive eigenvalue of A and let Y be a 
eo'Tesp,)n,iing eigenvector. (We will allow, for the moment, the possibility that there is more than 

eigenvector with eigenvalue K1, though we show below that in fact this cannot happen in a 
eo,m("t"d network.) Note that K1 ~ 0 since the sum of the eigenvalues of A is given by Tr A 2. 0, 

hence at least one eigenvalue must be non-negative. Then, given that v T 
Y = .Li ZIT > 0 and all 

,,1,-m,-nt, of A are non-negative, we have 

KtyTy = IK\yTvl = lyT Avl = I~AljViZljl.:::; ~IAijViVjl = ~A;jlvdlvjl = x
T 

Ax, 
I} I] 'I 

x is the vector with elements Iv;!. Rearranging this result, we find 

xT Ax xT Ax 
K)::; vT V = -';''f''x-' 

we have made use of xT x =.Li Ivd2 = v'l'y. As demonstrated in footnote 1 on page 346, for 

vector x we have 
xTAx 
xTx .:::; KI, 

the equality being achieved only when x is an eigenvector corresponding to eigenvalue K!. 

only way to reconcile the two inequalities above is if they are in fact equalities in this case, 
implying that x must indeed be an eigenvector with eigenvalue 1(1. But x has all elements non
",,"ative and hence there exists an eigenvector with eigenvalue K1 and all elements non-negative. 

It is still possible that there might be more than one eigenvector with eigenvalue K1, and that one 
of the others might have negative elements. This, however, we can rule out as follows. Recall that 
eigenvectors with same eigenvalue can always be chosen orthogonal, and any eigenvector v that 
is orthogonal to the eigenvector with all elements non-negative would have to have both positive 
and negative elements in order that the product of the two vectors equal zero. Thus there is only 

one eigenvector with all elements non-negative. 
Then, for eigenvector v, by the results above, the vector x with elements Ivd is necessarily equal 

to the unique eigenvector with all clements non-negative. Thus if Vi is one of the positive elements 

of v then Vi = XI and 
LAijlVjl = LAijXj = K1Xi = K1 VI = LAijVj, 

] J j 

or, eqUivalently, .Li Aij (lZlii Vj) = O. But IVj I - Vi 2. 0 so this last result can only be true if for all j 
we have either Aij = 0 or Zli -Ivil = 0, meaning that Vi = Iv}1 ~ O. Thus if Vi > a then Vi > a 
whenever Aij i- O. In network terms, if 'Vi > 0 then Zli > a for every neighbor of i. But then we can 
start at i and work outwards, moving from neighbor to neighbor and so demonstrate that Zlj > a 
for every vertex and hence v = x and the leading eigenvector is unique. 

The only exception to this last result is when the network has more than component, so that 
some vertices are not reachable from an initial vertex i. In that case, it is possible for the elements 
of the leading eigenvector corresponding to vertices in different components to have different 
signs. This, however, causes no problems for any of the results presented here. 
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each time, which is usually greater than 1. Computers however cannot 
handle arbitrarily large numbers. Eventually the variables storing the el
ements of the vector will overflow their allowed range. To obviate this 
problem, we must periodically renormalize the vector by dividing all the 
elements by the same value, which we are allowed to do since an eigen
vector divided throughout by a constant is still an eigenvector. Any suit
able divisor will do, but we might, for instance, divide by the magnitude 
of the vector, thereby normalizing it so that its new magnitude is 1. 

3. How long do we need to go on multiplying by the adjacency matrix be
fore the result converges to the leading eigenvalue? This will depend on 
how accurate an answer we require, but one simple way to gauge con
vergence is to perform the calculation in parallel for two different initial 
vectors and watch to see when they reach the same value, within some 
prescribed tolerance. This scheme works best if, for the particular initial 
vectors chosen, at least some elements of the vector converge to the final 
answer from opposite directions for the two vectors, one from above and 
one from below. (We must make the comparisons immediately after the 
renormalization of the vector described in (2) above-if we compare un
normalized vectors, then most likely all elements will increase on every 
iteration and no convergence will be visible.) If we can find some ele
ments that do this (and we usually can), then it is a fairly safe bet that 
the difference between the two values for such an element is greater than 
the difference of either from the true value of the same element in the 
leading eigenvector. 

The power method can also be used to calculate the leading eigenvalue "I of 
the adjacency matrix. Once the algorithm has converged to the leading eigen
vector, one more multiplication by the adjacency matrix will multiply that vec
tor by exactly a factor of "I. Thus, we can take the ratio of the values of any 
element of the vector at two successive iterations of the algorithm after con
vergence and that ratio should equal "I. Or we could take the average of the 
ratios for several different elements to reduce numerical errors. (We should 
however avoid elements whose values are very smalt since a small error in 
such an element could lead to a large fractional error in the ratio; our accuracy 
will be better if we take the average of some of the larger elements.) 

11.1.1 COMPUTATIONAL COMPLEXITY 

How long does the power method take to run? The answer comes in two parts. 
First, we need to know how long each multiplication by the adjacency matrix 
takes, and second we need to know how many multiplications are needed to 
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get a required degree of accuracy in our answer. 
If our network is stored in adjacency matrix form, then multiplying that 

matrix into a given vector is straightforward. Exactly /12 multiplications are 
needed for one matrix multiplication-one for each element of the adjacency 
matrix. We can do better, however, if our network is in adjacency list form. 
Elements of the adjacency matrix that are zero contribute nothing to the matrix 
multiplication and so can be neglected. The adjacency list allows us to skip the 
zero terms automatically, since it stores only the non-zero ones anyway. 

In an ordinary unweighted network each non-zero element of the adja
cency matrix is equal to 1. Let {u j}, j = 1 ... ki be the set of neighbors of ver
tex i (where ki is the degree of i). Then the ith element of Ax, which we denote 
[Ax];, is given by [Ax]; = LJ~1 X"j. The evaluation of this sum involves only 
ki operations, so one element of the matrix multiplication can be completed in 
time proportional to lei and all elements can be completed in time proportional 
to Li lei = 2m, where m is the total number of edges in the network, or in other 
words in 0(111) time. 

And how many such multiplications must we perform? Equation (7.4) tells 
us that after t iterations our vector is equal to 

(11.2) 

where Vi is the normalized ith eigenvector, Kj is the corresponding eigenvalue, 
and the Ci are constants whose values depend on the choice of initial vector. 
Rearranging slightly, we can write this as 

(11.3) 

which gives us our estimate of the leading eigenvector V, plus the dominant 
contribution to the error. Neglecting the smaller terms, the root-mean-square 
error on the eigenvector is then 

(11.4) 

and if we want this error to be at most € then we require 

In(l/t) +In(cdc2l 
t > .--~-. 

- In(KdK2) 
(11.5) 

Neither £ nor the constants C, and C2 depend on the network size. All the vari
ation in the run time comes from the eigenvalues Kl and K2. The eigenvalues 
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range in value from a maximum of Kl to a minimum of KII 2:: -IKII and hence 
have a mean spacing of at most 2Kd (n - 1). Thus an order-of-magnitude es
timate for the second eigenvalue is K2 ':::' Kl - aKl / n, where a is a constant of 
order unity, and hence 

"1 (a) In-,,,-ln 1--
K2 11 

(11.6) 

Combining Eqs. (11.5) and (11.6), we find that the number of steps required for 
convergence of the power method is t = O( n) to leading order3 

Overall therefore, the complete calculation of the eigenvector centralities of 
all n vertices of the network takes O(n) multiplications which take O(m) time 
each, or O(mn) time overall, for a network stored in adjacency list format. If 
our network is sparse with m ()( n, a running time of O( mn) is equivalent to 
O(n'). On the other hand, ifthe network is dense, with m ()( n', then O(mn) is 
equivalent to O( n3 ). 

Conversely, if our network is stored in adjacency matrix format the multi
plications take 0(n2 ) time, as noted above, so the complete calculation takes 
O( n3 ), regardless of whether the network is sparse or dense. Thus for the com
mon case of a sparse matrix the adjacency list is the representation of choice 
for this calculation. 

11.1.2 CALCULATING OTHER EIGENVALUES AND EIGENVECTORS 

The power method of the previous section calculates the largest eigenvalue of 
a matrix and the corresponding eigenvector. This is probably the most com
mon type of eigenvector calculation encountered in the study of networks, but 
there are cases where we wish to know other eigenvectors or eigenvalues as 
well. One example is the calculation of the so-called algebraic connectivity, 
which is the second smallest (or second most negative) eigenvalue of the graph 
Laplacian. As we saw in Section 6.13.3, the algebraic connectivity is non-zero 
if and only if a network is connected (i.e., has just a single component). The 
algebraic cOlmectivity also appears in Section 11.5 as a measure of how easily 
a network can be bisected into two sets of vertices such that only a small num
ber of edges run between the sets. Moreover, as we will see the elements of the 
corresponding eigenvector of the Laplacian tell us exactly how that bisection 

3In fact, this estimate usually errs on the pessimistic side, since the spacing of the highest 
eigenvalues tends to be wider than the mean spacing, so that in practice the algorithm may be 
faster than the estimate would suggest. 
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should be performed. Thus it will be useful to us to have a method for calculat
ing eigenvalues beyond the largest one and their accompanying eigenvectors. 

There are a number of techniques that can be used to find non-leading 
eigenvalues and eigenvectors of matrices. For instance, we can calculate the 
eigenvector corresponding to the most negative eigenvalue by shifting all the 
eigenvalues by a constant amount so that the most negative one becomes the 
eigenvalue of largest magnitude. The eigenvalues of the graph Laplacian L, 
for instance, are all non-negative. If we number them in ascending order as 
in Section 6.13.2, so that Al ::; A2 ... ::; An, with VI, V2, ... f VII being the corre
sponding eigenvectors, then 

(A"I - L)v; = (A" - A;)v;, (11.7) 

and hence Vi is an eigenvector of ,1111 - L with eigenvalue ,111 - Ai. These eigen
values are still all non-negative, but their order is reversed from those of the 
original Laplacian, so that the former smallest has become the new largest. 
Now we can calculate the eigenvector corresponding to the smallest eigen
value of the Laplacian by finding the leading eigenvector of A"I - L using the 
technique described in Section 11.1. We can also find the eigenvalue A, by 
taking the measured value of All - Al! subtracting All, and reversing the sign. 
(Performing these calculations does require that we know the value of A", so 
the complete calculation would be a two-stage process consisting of first find
ing the largest eigenvalue of L, then using that to find the smallest4 ) 

In this particular case, it would not in fact be very useful to calculate the 
smallest eigenvalue or its associated eigenvector since, as we saw in Section 
6.13.2, the smallest eigenvalue of the Laplacian is always zero and the eigen
vector is (1,1,1, ... ). However, if we can find the second-largest eigenvalue 
of a matrix we can use the same subtraction method also to find the second
smallest. And the second-smallest eigenvalue of the Laplacian is, as we have 
said, definitely of interest. 

We can find the second-largest eigenvalue (and the corresponding eigen
vector) using the following trick. Let v, be the normalized eigenvector corre
sponding to the largest eigenvalue of a matrix A, as found, for instance, by the 
power method of Section 11.1. Then we choose any starting vector x as before 

4If we wish to be more sophisticated, we can note that it is sufficient to shift the eigenvalues by 
any amount greater than or equal to Al" Anderson and Morley [18] have shown that All ::; 2kmax 
where krnax is the largest degree in the netvvork, which we can find in time O(n), considerably 
faster than we can find All itself. Thus a quicker way to find the smallest eigenvalue would be to 
find the largest eigenvalue of 2krnaxI - L. 
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and define 
y = x- (vixh. 

This vector has the property that 

= {~Tx if i = 1, 
otherwise, 

(11.8) 

(11.9) 

where v; is again the ith eigenvector of A and 0u is the Kronecker delta. In other 
words it is equal to x along the direction of every eigenvector of A except the 
leading eigenvector, in whose direction it has no component at all. This means 
that the expansion of y in terms of the eigenvectors of A, which is given by 
y = L:'~l CiVi with Ci = vT y, has no term in V}, since c1 = vi y = O. Thus 

with the sum starting at i = 2. 

" 
Y = LCiVit 

i=2 

(11.10) 

Now we use this vector y as the starting vector for repeated multiplication 
by A, as before. After multiplying y by A a total of t times, we have 

" [ ]( 1 ' y(t) = A'y(O) = Kl Le; --'- v;. 
i=2 K2 

(11.11 ) 

The ratio K;/ K2 is less than 1 for all i > 2 (assuming only a single eigenvalue 
of value K2) and hence in the limit of large t all terms in the sum disappear 
except the first so that y(t) tends to a multiple of V2 as t -; 00. Normalizing 
this vector, we then have our result for V2· 

This method has the same caveats as the original power method for the 
leading eigenvector, as well as one additional OTIe: it is in practice possible 
for the vector y, Eq. (11.8), to have a very small component in the direction of 
VI_ This can happen as a result of numerical error in the subtraction, or be
cause our value for VI is not exactly correct. If y does have a component in 
the direction of V" then although it may start out small it will get magnified 
relative to the others when we multiply repeatedly by A and eventually it may 
come to dominate y(t), Eq. (11.11), or at least to contribute a sufficiently large 
term as to make the calculation of V2 inaccurate. To prevent this happening, 
we periodically perform a subtraction similar to that of Eq. (11.8), removing 
any component in the direction of VI from y(t), while leaving the components 
in all other directions untouched. (The subtraction process is sometimes re
ferred to as Gram-Schmidt orthogonalization-a rather grand name for a simple 
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procedure. The repeated application of the process to prevent the growth of 
unwanted terms is called reorthogonalization.) 

We could in theory extend this method to find further eigenvectors and 
eigenvalues of our matrix, but in practice the approach does not work well be
yond the first couple of eigenvectors because of cumulative numerical errors. 
Moreover it is also slow because for each additional eigenvector we calculate 
we must carry out the entire repeated multiplication process again. In practice, 
therefore, if we wish to calculate anything beyond the first eigenvector or two, 
other methods are used. 

11.1.3 EFFICIENT ALGORITHMS FOR COMPUTlNG ALL EIGENVALUES AND 

EIGENVECTORS OF MATRICES 

If we wish to calculate all or many of the eigenvalues or eigenvectors of a 
matrix A then specialized techniques are needed. The most widely used such 
techniques involve finding an orthogonal matrix Q such that the similarity 
transform T = QT AQ gives either a tridiagonal matrix (if A is symmetric) or a 
Hessenberg matrix (if A is asymmetric). If we can find such a transformation 
and if Vi is an eigenvector of A with eigenvalue Ki, then, bearing in mind that 
for an orthogonal matrix Q-l = QT, we have 

(11.12) 

Tn other words, the vector Wi = QT Vi is an eigenvector of T with eigenvalue Ki. 

Thus if we can find the eigenvalues of T and the corresponding eigenvectors, 
we automatically have the eigenvalues of A as well, and the eigenvectors of A 
are simply v; = Qw;. Luckily there exist efficient numerical methods for find
ing the eigenvalues and eigenvectors of tridiagonal and Hessenberg matrices, 
such as the QL algorithm [273]. The QL algorithm takes time O( n) to reach an 
answer for an n x n tridiagonal matrix and O( n2 ) for a Hessenberg one. 

The matrix Q can be found in various ways. For a general symmetric matrix 
the Householder algorithm [273] can find Q in time O(n3 ). More often, however, 
we are concerned with sparse matrices, in which case there are faster methods. 
For a symmetric matrix, the Lanczos algorithm [217] can find Q in time O(mn), 
where m is the number of network edges in an adjacency matrix, or more gen
erally the number of non-zero elements in the matrix. For sparse matrices with 
111 ex n this gives a running time of O(n2 ), considerably better than the House
holder method. A similar method, the Arnoldi algorithm [217], can find Q for 
an asymmetric matrix. 

Thus, combining the Lanczos and QL algorithms, we expect to be able to 
find all eigenvalues and eigenvectors of a sparse symmetric matrix in time 
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O(mn), which is as good as the worst-case run time of our direct multipli
cation method for finding just the leading eigenvector. (To be fair, the direct 
multiplication is much simpler, so its overall run time will typically be better 
than that of the combined Lanczos/QL algorithm, although the scaling with 
system size is the same.) 

While there is certainly much to be gained by learning about the details of 
these algorithms, one rarely implements them in practice. Their implemen
tation is tricky (particularly in the asymmetric case), and has besides already 
been done in a careful and professional fashion by many software developers. 
In practice, therefore, if one wishes to solve eigensystem problems for large 
networks, one typically turns to commercial or freely available implementa
tions in professionally written software packages. Examples of such packages 
include Matlab, LAPACK, and Mathematica. We will not go into more detail 
here about the operation of these algorithms. 

11.2 DIVIDING NETWORKS INTO CLUSTERS 

We now tum to the topics that will occupy us for much of the rest of the chap
ter, graph partitioning and community detection.' Both of these terms refer to the 
division of the vertices of a network into groups, clusters, or communities ac
cording to the pattern of edges in the network. Most commonly one divides 
the vertices so that the groups formed are tightly knit with many edges inside 
groups and only a few edges between groups. 

Consider Fig. 11.1, for instance, which shows patterns of collaborations be
tween scientists in a university department. Each vertex in this network rep
resents a scientist and links between vertices indicate pairs of scientists who 
have coauthored one or more papers together. As we can see from the figure, 
this network contains a number of densely connected clusters of vertices, cor
responding to groups of scientists who have worked closely together. Readers 
familiar with the organization of university departments will not be surprised 
to learn that in general these clusters correspond, at least approximately, to 
formal research groups within the department. 

But suppose one did not know how university departments operate and 
wished to study them. By constructing a network like that in Fig. 11.1 and then 
observing its clustered structure, one would be able to deduce the existence of 
groups within the larger department and by further investigation could prob-

sCommunity detection is sometimes also called "clustering," although we largely avoid this 
term to prevent confusion with the other, and quite different, use of the word clustering introduced 
in Section 7.9. 
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17 ~ 
Figure 11.1: Network of coauthorships in a university department. The vertices in this 
network represent scientists in a lmiversity department, and edges links pairs of scien~ 
lists who have coauthored scientific papers. The network has clear clusters or "commu
nity structure/' presumably reflecting divisions of interests and research groups within 
the department. 

ably quickly work out how the department was organized. Thus the ability 
to discover groups or clusters in a network can be a useful tool for reveal
ing structure and organization within networks at a scale larger than that of a 
Single vertex. In this particular case the network is small enough and sparse 
enough that the groups are easily visible by eye. Many of the networks that 
have engaged our interest in this book, however, are much larger or denser 
networks for which visual inspection is not a useful tool. Finding clusters in 
such networks is a task for computers and the algorithms that run on them. 
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11.2.1 PARTITIONING AND COMMUNITY DETECTION 

There are a number of reasons why one might want to divide a network into 
groups or clusters, but they separate into two general classes that lead in turn 
to two corresponding types of computer algorithm. We will refer to these two 
types as graph partitioning and community detection algorithms. They are dis
tmgUlshed from one another by whether the number and size of the groups is 
fixed by the expenmenter or whether it is unspecified. 

Graph partitioning is a classic problem in computer science, studied since 
the 1960s. It is the problem of dividing the vertices of a network into a given 
number of non-overlapping groups of given sizes such that the number of 
edges between groups is minimized. The important point here is that the 
number and sizes of the groups are fixed. Sometimes the sizes are only fixed 
roughly-within a certain range, for instance-but they are fixed nonetheless. 
For instance, a simple and prototypical example of a graph partitioning prob
lem IS the problem of dividing a network into two groups of equal size, such 
that the number of edges between them is minimized. 

Graph partitioning problems arise in a variety of circumstances, particu
larly in computer science, but also in pure and applied mathematics, physics, 
and of course in the study of networks themselves. A typical example is the 
numerical solution of network processes on a parallel computer. 

Partition of a network into In the last part of this book (Chapters 16 to 19) we will study processes that 
tvvo groups of equal sizes. take place on networks, such as diffusion processes or the spread of diseases. 
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These processes can be modeled mathematically by placing variables on the 
vertices of a network and evolving them according to equations that typically 
depend on the variables' current values and the values on neighboring ver
tice~. The solution of such equations is often a laborious computational task, 
but It can be sped up by using a parallel computer, a computer with more than 
one processor or CPU. Many modern personal computers have two or more 
proce~sors and large research organizations sometimes use parallel comput
ers WIth very many processors. Solutions of network equations can be spread 
across several processors by assigning to each processor the task of solving the 
equatIons on a subset of the vertices. For instance, on a two-processor desktop 
computer we might give a half of the vertices to each processor. 

The catch is that, unless the network consists of totally unconnected compo
nents, some vertices on one processor are always going to have neighbors that 
are on the other processor and hence the solution of their equations involves 
variables whose value is known only to the other processor. To complete the 
solutIon, therefore, those values have to be transmitted from the one processor 
to the other at regular intervals throughout the calculation and this is typically 
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slow process (or at least it's slow compared to the dazzling speed of most 
computer operations). The time spent sending messages between pro

rp,,,,,,, can, in fact, be the primary factor limiting the speed of calculations 
parallel computers, so it is important to minimize interprocessor commu

nic:atilon as much as possible. One way that we do this is by minimizing the 
numlJer of pairs of neighboring vertices assigned to different processors. 

Thus we want to divide up the vertices of the network into different groups, 
for each processor, such that the number of edges between groups is min

irrtiz<ed. Most often we want to assign an equal or roughly equal number of 
verti<:es to each processor so as to balance the workload among them. This is 
DH,ciE:eh a graph partitioning problem of the type described above. 

The other type of cluster finding problem in networks is the problem we 
community detection. Community detection problems differ from graph 

partiltiol~irtg in that the number and size of the groups into which the network 
divided are not specified by the experimenter. Instead they are determined 
the network itself: the goal of community detection is to find the natural 

fault lines along which a network separates. The sizes of the groups are not 
merely unspecified but might in principle vary widely from one group to an
other. A given network might divide into a few large groups, many small ones, 
or a mixture of all different sizes. 

The most common use for community detection is as a tool for the analysis 
and understanding of network data. We saw in Fig. 11.1 an example of a net
work for which a knowledge of the group structure might help us understand 
the organization of the underlying system. Figure 7.10 on page 221 shows an
other example of clusters of vertices, in a network of friendships between US 
high-school students. In this case the network splits into two clear groups, 
which, as described in Section 7.13, are primarily dictated by students' ethnic
ity, and this structure and others like it can give us clues about the nature of 
the social interactions within the commtmity represented. 

Community detection has uses in other types of networks as well. Clusters 
of nodes in a web graph for instance might indicate groups of related web 
pages. Clusters of nodes in a metabolic network might indicate functional 
units within the network. 

Community detection is a less well-posed problem than graph partitioning. 
Loosely stated, it is the problem of finding the natural divisions of a network 
into groups of vertices such that there are many edges within groups and few 
edges between groups. What exactly we mean by "many" or "few," however, 
is debatable, and a wide variety of different definitions have been proposed, 
leading to a correspondingly wide variety of different algorithms for commu
nity detection. In this chapter we will focus mainly on the most widely used 
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formulation of the problem, the formulation in terms of modularity optimiza
tion, but we will mention briefly a number of other approaches at the end of 
the chapter. 

In summary, the fundamental difference between graph partitioning and 
community detection is that the number and size of the groups into which a 
network is divided is specified in graph partitioning but unspecified in com
munity detection. However, there is also a difference between the goals of the 
two types of calculations. Graph partitioning is typically performed as a way 
of dividing up a network into smaller more manageable pieces, for example to 
perform numerical calculations. Community detection is more often used as a 
tool for understanding the structure of a network, for shedding light on large
scale patterns of connection that may not be easily visible in the raw network 
topology. 

Notice also that in graph partitioning calculations the goal is usually to 
find the best division of a network, subject to certain conditions, regardless 
of whether any good division exists. If the performance of a calculation on 
a parallel computerf for example, requires us to divide a network into pieces, 
then we had better divide it up. If there are no good divisions, then we must 
make do with the least bad one. With community detection, on the other hand, 
where the goal is normally to understand the structure of the network, there is 
no need to divide the network if no good division exists. Indeed if a network 
has no good divisions then that in itself may be a useful piece of information, 
and it would be perfectly reasonable for a community detection algorithm only 
to divide up networks when good divisions exist and to leave them undivided 
the rest of the time. 

11.3 GRAPH PARTITIONING 

In the next few sections we consider the graph partitioning problem and look 
at two well-known methods for graph partitioning. The first, the Kernighan
Lin algorithm, is not based on matrix methods (and therefore doesn't strictly 
belong in this chapter) but it provides a simple introduction to the partitioning 
problem and is worth spending a little time on. In Section 11.5 we look at 
a more sophisticated partitioning method based on the spectral properties of 
the graph Laplacian. This spectral partitioning method both is important in 
its own right and will also provide a basis for our discussion of community 
detection later in the chapter. 

First, however, we address an important preliminary question: why does 
one need fancy partitioning algorithms at all? Partitioning is an easy problem 
to state, so is it not just as easy to solve? 

11.3 

11.3.1 WHY PARTITIONING IS HARD 

The simplest graph partitioning problem is the division of a network into just 
two parts. Division into two parts is sometimes called graph bisection. Most of 
the algorithms we consider in this chapter are in fact algorithms for bisecting 
networks rather than for dividing them into arbitrary numbers of parts. This 
may at first appear to be a drawback, but in practice it is not, since if we can 
divide a network into wo parts, then we can divide it into more than two 
by further dividing one or both of those parts. This repeated bisection is the 
commonest approach to the partitioning of networks into arbitrary numbers 
of parts. 

Formally the graph bisection problem is the problem of dividing the ver
tices of a network into two non-overlapping groups of given sizes such that the 
number of edges running between vertices in different groups is minimized. 
The number of edges between groups is called the cut size6 

Simple though it is to describe, this problem is not easy to solve. One might 
imagine that one could bisect a network simply by looking through all possible 
divisions of the network into two parts of the required sizes and choosing the 
one with the smallest cut size. For all but the smallest of networks, however, 
this so-called exhaustive search turns out to be prohibitively costly in terms of 
computer time. 

The number of ways of dividing a network of n vertices into two groups 
of n, and nz vertices respectively is n!/(n,! n2!). Approximating the factorials 
using Stirling's formula n! '" .J2rrn(n/e)" and making use of the fact that 
HI + n2 = H, we get 

n! .J2rrn(n/e)" 
(11.13) 

.J2rrn, ( nd e)'" .J2rrn2 (n2/ e)'" 

Thus, for instance, if we want to divide a network into two parts of equal 
size ~n the number of different ways to do it is roughly 

(n/2)"+1 
(11.14) 

So the amount of time required to look through all of these divisions will go 
up roughly exponentially with the size of the network. Unfortunately, the ex
ponential is a very rapidly growing function of its argument, which means the 

6The problem is somewhat similar to the minimum cut problem of Section 6.12, but we are 
now searching for the minimum cut over all possible bisections of a network, rather than just 
betvveen a given pair of vertices. 

GRAPH PARTITIONING 
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partitioning task quickly leaves the realm of the possible at quite moderate val
ues of n. Values up to about n = 30 are feasible with current computers, but 
go much beyond that and the calculation becomes intractable. 

One might wonder whether it is possible to find a way around this prob
lem. After all, brute-force enumeration of all possible divisions of a network 
is not a very imaginative way to solve the partitioning problem. Perhaps one 
could find a way to limit one's search to only those divisions of the network 
that have a chance of being the best one? Unfortunately, there are some funda
mental results in computer science that tell us that no such algorithm will ever 
be able to find the best division of the network in all cases. Either an algorithm 
can be clever and run quickly, but will fail to find the optimal answer in some 
(and perhaps most) cases, or it always finds the optimal answer but takes an 
impractical length of time to do it. These are the only options'" 

This is not to say, however, that clever algorithms for partitioning networks 
do not exist or that they don't give useful answers. Even algorithms that fail 
to find the very best division of a network may still find a pretty good one, 
and for many practical purposes pretty good is good enough. The goal of 
essentially all practical partitioning algorithms is just to find a "pretty good" 
division in this sense. Algorithms that find approximate, but acceptable, so
lutions to problems in this way are called heuristic algorithms or just heuristics. 
All the algorithms for graph partitioning discussed in this chapter are heuristic 

algorithms. 

11.4 THE KERNIGHAN-LIN ALGORITHM 

The Kernighan-Lin algorithm, proposed by Brian Kernighan8 and Shen Lin in 
1970 [171], is one of the simplest and best known heuristic algorithms for the 
graph bisection problem. The algorithm is illustrated in Fig. 11.2. 

We start by dividing the vertices of our network into two groups of the re
quired sizes in any way we like. For instance, we could divide the vertices ran
domly. Then, for each pair (i, j) of vertices such that i lies in one of the groups 

7Technically, this statement has not actually been proved. Its truth hinges on the assumption 
that two fundamental classes of computational problem, called P and NP, are not the same. Al
though this assumption is universally believed to be true-the world would pretty much fall apart 
if it weren't-no one has yet proved it, nor even has any idea about where to start. Readers in
terested in the fascinating branch of theoretical computer science that deals with problems of this 
kind are encouraged to look, for example, at the book by Moore and Mertens [227]. 

8Some readers may be familiar with Kernighan's name. He was one of the authors of 
the original book describing the C programming language [172]. "Kernighan" is pronounced 

"Kernihan"-the "g" is silent. 
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(a) (b) 

Figure 11.2: The Kernighan-Lin algorithm. (a) The Kernighan-Lin algorithm starts with any division of the vertices 
of a network into two groups (shaded) and then searches for pairs of vertices, such as the pair highlighted here, whose 
interchange would reduce the cut size between the groups. (b) The same network after interchange of the two vertices. 

and j in the other, we calculate how much the cut size between the groups 
would change if we were to interchange i and j, so that each was placed in the 
other group. Among all pairs (i, j) we find the pair that reduces the cut size by 
the largest amount or, if no pair reduces it, we find the pair that increases it by 
the smallest amount. Then we swap that pair of vertices. Clearly this process 
preserves the sizes of the two groups of vertices, since one vertex leaves each 
group and another joins. Thus the algorithm respects the requirement that the 
groups take specified sizes. 

The process is then repeated, but with the important restriction that each 
vertex in the network can only be moved once. Once a vertex has been swapped 
with another it is not swapped again (at least not in the current round of the 
algorithm-see below). Thus, on the second step of the algorithm we consider 
all pairs of vertices excluding the two vertices swapped on the first step. 

And so the algorithm proceeds, swapping on each step that pair that most 
decreases, or least increases, the number of edges between our two groups, 
until eventually there are no pairs left to be swapped, at which point we stop. 
(If the sizes of the groups are unequal then there will be vertices in the larger 
group that never get swapped, equal in number to the difference between the 
sizes of the groups.) 

When all swaps have been completed, we go back through every state 
that the network passed through during the swapping procedure and choose 
among them the state in which the cut size takes its smallest value.' 

90ne might imagine that an equivalent procedure would be to go on swapping vertex pairs 
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Finally, this entire process is performed repeatedly, starting each time with 
the best division of the network found on the last time around and continuing 
until no improvement in the cut size occurs. The division with the best cut size 
on the last round is the final division returned by the algorithm. 

Once we can divide a network into tvvo pieces of given size then, as we 
have said, we can divide into more than two simply by repeating the process. 
For instance, if we want to divide a network into three pieces of equal size, 
we would first divide into two pieces, one twice the size of the other, and then 
further divide the larger one into two equally sized halves. (Note, however, 
that even if the algorithm were able to find the optimal division of the network 
in each of these two steps, there would be no guarantee that we would end up 
with the optimal division of the network into three equal parts. Nonetheless, 
we do typically find a reasonably good division, which, as we have said, is 
often good enough. This point is discussed further in Section 11.9.) 

Note that if we choose the initial assignment of vertices to groups ran
domly, then the Kernighan-Lin algorithm may not give the same answer if it 
is run twice on the same network. Two different random starting states could 
(though needn't necessarily) result in different divisions of the network. For 
this reason, people sometimes run the algorithm more than once to see if the 
results vary. If they do vary then among the divisions of the network returned 
on the different runs it makes sense to take the one with the smallest cut size. 

As an example of the use of the Kernighan-Lin algorithm, consider Fig. 11.3, 
which shows an application of the algorithm to a mesh, a two-dimensional net
work of the type often used in parallel finite-element computations. Suppose 
we want to divide this network into two parts of equal size. Looking at the 
complete network in Fig. 11.3a there is no obvious division-there is no easy 
cut or bottleneck where the network separates naturally-but we must do the 
best we can. Figure 11.3b shows the best division found by the Kernighan-Lin 
algorithm, which involves cutting 40 edges in the network. Though it might 
not be the best possible division of the network, this is certainly good enough 

for many practical purposes. 
The primary disadvantage of the Kernighan-Lin algorithm is that it is quite 

slow. The number of swaps performed during one round of the algorithm is 

until no swap can be found that decreases the cut size. This, however, turns out to be wrong. It is 
perfectly possible for the cut size to decrease for a few steps of the algorithm, then increase, t~en 
decrease again. If we halt the algorithm the first time we see the cut size increasing, we run the nsk 
of missing a later state with smaller cut size. Thus the correct algorithm is the one described here, 
with two separate processes, one of vertex swapping, and one of checking the states so generated 

to see which is optimal. 
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(a) (b) (e) 

Figure 11.3: Graph partitioning applied to a small mesh network. (a) A mesh network of 547 vertices of the kind 
common1y used in finite element analysis. (b) The edges removed indicate the best division of the network into parts of 
273 and 274 vertices found by the Kernighan-Lin algorithm. (c) The best division found by spectral partitioning. The 
network is from Bern et al. [35}. 

equal to the smaller of the sizes of the two groups, which lies between zero 
and ~n in a network of n vertices. Thus there are O(n) swaps in the worst case. 
For each swap we have to examine all pairs of vertices in different groups, of 
which there are, in the worst case, ~n x ~n = ~n2 = O(n2). And for each of 
these we need to determine the change in the cut size if the pair is swapped. 

When a vertex i moves from one group to the other any edges connecting it 
to vertices in its current group become edges between groups after the swap. 
Let us suppose that there are k~'me such edges. Similarly, any edges that i has 
to vertices in the other group, of which there are say kither , become within
group edges after the swap, but with one exception. If i is being swapped 
with vertex j and there is an edge between i and j, then that edge lies between 
groups before the swap and still lies between groups after the swap. Thus the 
change in the cut size due to the movement of i is kither - kjame - A ij . A similar 
expression applies for vertex j also and the total change in cut size as a result 
of the swap is 

11 = k?ther _ k~amc + k9thcr _ ksamc _ 2A ,.). 
1 I ] ] 

(11.15) 

For a network stored in adjacency list form, the evaluation of this expression 
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involves running through all the neighbors of i and j in turn, and hence takes 
time of order the average degree in the network, or O(m//1), where m is, as 
usual, the total number of edges in the network. 

Thus the total time for one round of the algorithm is O(n x n2 x min) = 
0(mn2 ), which is 0(/13 ) on a sparse network in which m ex n or 0(n4) on 
a dense network. This in itself would already be quite bad, but we are not 
yet done. This time must be multiplied by the number of rounds the algo
rithm performs before the cut size stops decreasing. It is not well understood 
how the number of rounds required varies with network size. In typical ap
plications the number is small, maybe five or ten for networks of up to a few 
thousand vertices, and larger networks are currently not possible because of 
the demands of the algorithm, so in practice the number of rounds is always 
small. Still, it seems quite unlikely that the number of rounds would actu
ally increase as network size grows, and even if it remains constant the time 
complexity of the algorithm will still be 0(mn2

), which is relatively slow. 
We can improve the running time of the algorithm a little by a couple of 

tricks. If we initially calculate and store the number of neighbors, kl,m, and 
lcither, that each vertex has within and between groups and update it every 
time a vertex is moved, then we save ourselves the time taken to recalculate 
these quantities on each step of the algorithm. And if we store our network 
in adjacency matrix form then we can tell whether two vertices are connected 
(and hence evaluate A,j) in time 0(1). Together these two changes allow us to 
calculate /'; above in time 0(1) and improve the overall running time to 0(/13

). 

For a sparse graph this is the same as O(mn'), but for a dense one it gives us 
an extra factor of n, 

Overall, however, the algorithm is quite slow. Even with 0(n3
) perfor

mance the algorithm is suitable only for networks up to a few hundreds or 
thousands of vertices, but not more. 

11.5 SPECTRAL PARTITIONING 

So are there faster methods for partitioning networks? There are indeed, al
though they are typically more complex than the simple Kernighan-Lin al
gorithm, and may be correspondingly more laborious to implement. In this 
section we discuss one of the most widely used methods, the spectral partition
ing method of Fiedler [118,271], which makes use of the matrix properties of 
the graph Laplacian. We describe the spectral partitioning method as applied 
to the graph bisection problem, the problem of dividing a graph into two parts 
of specified sizes. As discussed in the previous section, division into more than 
two groups is typically achieved by repeated bisection, dividing and subdivid-

11.5 

ing the network to give groups of the desired number and size. 
Consider a network of n vertices and m edges and a division of that net

work into two groups, which we will call group 1 and group 2. We can write 
the cut size for the division, i.e., the number of edges running between the two 
groups, as 

R =! L Aij , 
i, j in 

different 
groups 

(11.16) 

where the factor of ! compensates for our counting each edge twice in the sum. 
Let us define a set of quantities 5i, one for each vertex i, which represent the 

di vision of the network thus: 

Then 

Si = {+1 
-1 

if vertex i belongs to group 1, 
if vertex i belongs to group 2. 

if i and j are in different groups, 
if i and j are in the same group, 

which allows us to rewrite Eq. (11.16) as 

R = ~ [;Aii(l- sisi)' 
if 

with the sum now over all values of i and j. The first term in the sum is 

LAij = Lki = LkiST = L ki6ij SiSj, 
~ ~ 

(11.17) 

(11.18) 

(11.19) 

(11.20) 

where ki is the degree of vertex i as usual, 6ij is the Kronecker delta, and we 
have made use of the fact that Lj Aii = ki (see Eq. (6.19» and si = 1 (since 
Si = ±1). Substituting back into Eq. (11.19) we then find that 

(11.21) 

where Lii = kiSij - Aii is the ijth element of the graph Laplacian matrix-see 
Eq. (6.44). 

Equation (11.21) can be written in matrix form as 

R = lsTLs 
4 ' (11.22) 

where s is the vector with elements 5i. This expression gives us a matrix formu
lation of the graph partitioning problem. The matrix L specifies the structure 
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of our network, the vector s defines a division of that network into groups, and 
our goal is to find the vector s that minimizes the cut size (11.22) for given L. 

You will probably not be surprised to learn that, in general, this minimiza
tion problem is not an easy one. If it were easy then we would have a cor
responding easy way to solve the partitioning problem and, as discussed in 
Section 11.3.1, there are good reasons to believe that partitioning has no easy 
solutions. 

What makes our matrix version of the problem hard in practice is that the 
Si cannot take just any values. They are restricted to the special values ±1. If 
they were allowed to take any real values the problem would be much easier; 
we could just differentiate to the find the optimum. 

This suggests a possible approximate approach to the minimization prob
lem. Suppose we indeed allow the Si to take any values (subject to a couple of 
basic constraints discussed below) and then find the values that minimize R. 
These values will only be approximately the correct ones, since they probably 
won't be ±1, but they may nonetheless be good enough to give us a handle on 
the optimal partitioning. This idea leads us to the so-called relaxation method, 
which is one of the standard methods for the approximate solution of vector 
optimization problems such as this one. In the present context it works as fol
lows. 

The allowed values of the Si are actually subject to two constraints. First, as 
we have said, each individual one is allowed to take only the values ±1. If we 
regard s as a vector in a Euclidean space then this constraint means that the 
vector always points to one of the 2!1 corners of an n-dimensional hypercube 
centered on the origin, and always has the same length, which is .;n. Let 
us relax the constraint on the vector's direction, so that it can point in any 
direction in its n-dimensional space. We will however still keep its length the 
same. (It would not make sense to allow the length to vary. If we did that then 
the minimization of R would have the obvious trivial solution s = 0, which 
would tell us nothing.) So s will be allowed to take any value, but subject to 
the constraint that lsi = .;n, or equivalently 

\' 'L.JSj - n. (11.23) 

Another way of putting this is that s can now point to any location on the sur
face of a hypersphere of radius .;n in our n-dimensional Euclidean space. The 
hypersphere includes the original allowed values at the corners of the hyper
cube, but also includes other points in between. 

The second constraint on the Si is that the numbers of them that are equal 
to + 1 and -1 respectively must equal the desired sizes of the two groups. If 

11.5 

those two sizes are nl and n2, this second constraint can be written as 

L: Si = nl - n,. (11.24) 

or in vector notation 
(11.25) 

where 1 is the vector (1,1,1, ... ) whose elements are aliI. We keep this second 
constraint unchanged in our relaxed calculations, so that our partitioning prob
lem, in its relaxed form, is a problem of minimizing the cut size, Eq. (11.22), 

subject to the two constraints (11.23) and (11.24). 
This problem is now just a standard piece of algebra. We differentiate with 

respect to the elements Sf! enforcing the constraints using two Lagrange mul
tipliers, which we denote A and 211 (the extra 2 being merely for notational 

convenience): 

Performing the derivatives, we then find that 

L: Lijsj = ASi + fI, 

Of, in matrix notation 
Ls = As + fll. 

(11.26) 

(11.27) 

(11.28) 

We can calculate the value of fI by recalling that 1 is an eigenvector of the 
Laplacian with eigenvalue zero so that L ·1 = ° (see Section 6.13.2). Multiply
ing (11.28) on the left by 1 T and making use of Eq. (11.25), we then find that 

A(nl - n,) + fin = 0, or 

fI= (11.29) 

If we define the new vector 

1-' nl - n2 
x = s + - 1 = s - 1, 

,\ n 
(11.30) 

then Eq. (11.28) tells us that 

Lx = L (s + * 1) = Ls = As + III = Ax, (11.31) 

where we have used L . 1 = 0 again. 
In other words, x is an eigenvector of the Laplacian with eigenvalue A. 

We are still free to choose which eigenvector it is-any eigenvector will satisfy 
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Eq. (11.31)-and clearly we should choose the one that gives the smallest value 
of the cut size R. Notice, however, that 

T T l-l T 111 - 172 
1 x = 1 s - Al 1 = (111 - 112) - ---11- 11 = 0, (11.32) 

where we have used Eq. (11.25). Thus x is orthogonal to 1, which means that, 
while it should be an eigenvector of L, it cannot be the eigenvector (1,1,1, ... ) 
that has eigenvalue zero. 

So which eigenvector should we choose? To answer this question we note 
that 

R = ±sTLs = ~xTLx = !AXTX. (11.33) 

But from Eq. (11.30) we have 

/t ft 2 

xTx= sTs+ -(sTl+ITs) + -ITl 
A A2 

2
"1 - 112 ( ) (111 - 112)2 

= n - 111 - 112 + n 
11 11 

(11.34) 

and hence 
(11.35) 

Thus the cut size is proportional to the eigenvalue A. Given that our goal is to 
minimize R, this means we should choose x to be the eigenvector correspond
ing to the smallest allowed eigenvalue of the Laplacian. All the eigenvalues 
of the Laplacian are non-negative (see Section 6.13.2). The smallest one is the 
zero eigenvalue that corresponds to the eigenvector (1,1,1, ... ) but we have 
already ruled this one out-x has to be orthogonal to this lowest eigenvector. 
Thus the best thing we can do is choose x proportional to the eigenvector V2 

corresponding to the second lowest eigenvalue A21 with its normalization fixed 
by Eq. (11.34). 

Finally, we recover the corresponding value of s from Eq. (11.30) thus: 

(11.36) 

or equivalently 

(11.37) 

This gives us the optimal relaxed value of s. 
As we have said, however, the real vector s is subject to the additional con

straints that its elements take the values ±1 and moreover that exactly 111 of 
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them are + 1 and the other 112 are -1. Typically these constraints will prevent s 
from taking exactly the value given by Eq. (11.37). Let us, however, do the best 
we can and choose s to be as close as possible to our ideal value subject to its 
constraints, which we do by making the product 

Sf (x + 111 - 112 1) = L: S, (XI + _",,-1_-_n~2) 
n i n 

(11.38) 

as large as possible. The maximum of this expression is achieved by assigning 
51 = +1 for the vertices with the largest (i.e., most positive) values of X, + (111 -

/12) / 11 and s I = -1 for the remainder. 
Note however that the most positive values of X, + (/11 - 112) / 11 are also the 

lTIOst positive values of Xi, which are in turn also the most positive elements 
of the eigenvector V2 (to which, as we have said, x is proportional). So after 
this moderately lengthy derivation we actually arrive at a very simple final 
prescription for dividing our network. We calculate the eigenvector V2, which 
has n elements, one for each vertex in the network, and place the nl vertices 
with the most positive elements in group 1 and the rest in group 2. 

There is one further small subtlety. It is arbitrary which group we call 
group 1 and which we call group 2, and hence which one we assign to the more 
positive elements of the eigenvector and which to the more negative. Thus, if 
the sizes of the two groups are different there are two different ways of making 
the split-either the larger or the smaller group could correspond to the more 
positive values. (In the geometrical language of our vectors, this is equivalent 
to saying our eigenvector calculation might find the vector x that we actually 
want, or minus that vector-both are good eigenvectors of the Laplacian.) To 
get around this problem, we simply compute the cut size for both splits of the 
network and choose the one with the smaller value. 

Thus our final algorithm is as follows: 
1. Calculate the eigenvector V2 corresponding to the second smallest eigen

value A2 of the graph Laplacian. 
2. Sort the elements of the eigenvector in order from largest to smallest. 
3. Put the vertices corresponding to the 111 largest elements in group 1, the 

rest in group 2, and calculate the cut size. 
4. Then put the vertices corresponding to the 111 smallest elements in group 

1, the rest in group 2, and recalculate the cut size. 
5. Between these two divisions of the network, choose the one that gives 

the smaller cut size. 
In Fig. 11.3c we show the result of the application of this method to the 

same mesh network that we studied in conjunction with the Kernighan-Lin 
algorithm. In this case the spectral method finds a division of the network 
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very similar to that given by the Kernighan~Lin algorithm, although the cut 
size is slightly worse-the spectral method cuts 46 edges in this case, where the 
Kernighan~Lin algorithm cut only 40. This is typical of the spectral method. It 
tends to find divisions of a network that have the right general shape, but are 
not perhaps quite as good as those returned by other methods. 

An advantage of the spectral approach, however, is its speed. The time
consuming part of the algorithm is the calculation of the eigenvector V2, which 
takes time O(mn) using either the orthogonalization method or the Lanczos 
method (see Section 11.1.2), or O(n2 ) on a sparse network having m <X n. This 
is one factor of n better than the O(n3 ) of the Kernighan~Lin algorithm, which 
makes the algorithm feasible for much larger networks. Spectral partitioning 
can be extended to networks of hundreds of thousands of vertices, where the 
Kernighan~Lin algorithm is restricted to networks of a few thousand vertices 
at most. 

The second eigenvalue of the Laplacian has come up previously in this 
book in Section 6.13.3, where we saw that it is non-zero if and only if a network 
is connected, The second eigenvalue is for this reason sometimes called the al
gebraic connectivity of a network. In this section we have seen it again in another 
context, that of partitioning. What happens if a network is not connected and 
the second eigenvalue is zero? In that case, the two lowest eigenvalues are the 
same, and the corresponding eigenvectors are indeterminate-any mixture of 
two eigenvectors with the same eigenvalue is also an eigenvector. This is not 
however a serious problem. If the newark is not connected, having more than 
one component, then usually we are interested either in partitioning one par
ticular component, such as the largest component, or in partitioning all com
ponents individually, and so we just treat the components separately as con
nected networks according to the algorithm above. 

The algebraic connectivity itself appears in our expression for the cut size, 
Eq. (11.35), and indeed is a direct measure of the cut size, being directly pro
portional to it, at least within the "relaxed" approximation used to derive the 
equation. Thus the algebraic connectivity is a measure of how easily a network 
can be divided. It is small for networks that have good cuts and large for those 
that do not. This in a sense is a generalization of our earlier result that the 
algebraic connectivity is non-zero for connected networks and zero for uncon
nected ones-we now see that how non-zero it is is a measure of how connected 
the network is. 

11.6 COMMUNITY DETECTION 

11.6 COMMUNITY DETECTION 

In the last few sections we looked at the problem of graph partitioning, the di
vision of network vertices into groups of given number and size, so as to min
imize the number of edges running between groups. A complementary prob
lem, introduced in Section 11.2.1, is that of community detection, the search 
for the naturally occurring groups in a network regardless of their number or 
size, which is used primarily as a tool for discovering and understanding the 
large-scale structure of networks. 

The basic goal of community detection is similar to that of graph partition
ing: we want to separate the network into groups of vertices that have few con
nections between them. The important difference is that the number or size of 
the groups is not fixed. Let us focus to begin with on a very simple example of 
a community detection problem, probably the simplest, which is analogous to 
the graph bisection problems we examined in previous sections. We will con
sider the problem of dividing a network into just two non-overlapping groups 
or communities, as previously, but now without any constraint on the sizes of 
the groups, other than that the sum of the sizes should equal the size n of the 
whole network. Thus, in this simple version of the problem, the number of 
groups is still specified but their sizes are not, and we wish to find the "natu
ral" division of the network into two groups, the fault line (if any) along which 
the network inherently divides, although we haven't yet said precisely what 
we mean by that, so that the question we're asking is not yet well defined. 

Our first guess at how to tackle this problem might be simply to find the 
division with minim,um cut size, as in the corresponding graph partitioning 
problem, but without any constraint on the sizes of our groups. However, a 
moment's reflection reveals that this will not work. If we divide a network 
into two groups with any number of vertices allowed in the groups then the 
optimum division is simply to put all the vertices in one of the groups and none 
of them in the other. This trivial division insures that the cut size between the 
two groups will be zero-there will be no edges between groups because one 
of the groups contains no vertices] As an answer to our community detection 
problem, however, it is clearly not useful. 

One way to do better would be to impose loose constraints of some kind 
on the sizes of the groups. That is, we could allow the sizes of the groups 
to vary, but not too much. An example of this type of approach is ratio cut 
partitioning in which, instead of minimizing the standard cut size R, we instead 
minimize the ratio R/ (n, n2), where n, and n2 are the sizes of the two groups. 
The denominator n,n2 has its largest value, and hence reduces the ratio by the 
largest amount, when n1 and n2 are equal nl = n2 = ~n. For unequal group 
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sizes the denominator becomes smaller the greater the inequality, and diverges 
when either group size becomes zero. This effectively eliminates solutions in 
which all vertices are placed in the same group, since such solutions never 
give the minimum value of the ratio, and biases the division towards those 
solutions in which the groups are of roughly equal size. 

As a tool for discovering the natural divisions in a network, however, the 
ratio cut is not ideal. In particular, although it allows group sizes to vary it 
is still biased towards a particular choice, that of equally sized groups. More 
importantly, there is no principled rationale behind its definition. It works 
reasonably well in some circumstances, but there's no fundamental reason to 
believe it will give sensible answers or that some other approach will not give 
better ones. 

An alternative strategy is to focus on a different measure of the quality of a 
division other than the simple cut size or its variants. It has been argued that 
the cut size is not itself a good measure because a good division of a network 
into communities is not merely one in which there are few edges between com
munities. On the contrary, the argument goes, a good division is one where 
there are fewer than expected such edges. If we find a division of a network that 
has few edges between its groups, but nonetheless the number of such edges 
is about what we would have expected were edges simply placed at random 
in the network, then most people would say we haven't found anything sig
nificant. It is not the total cut size that matters, but how that cut size compares 
with what we expect to see. 

In fact, in the conventional development of this idea one considers not the 
number of edges between groups but the number within groups. The two 
approaches are equivalent, however, since every edge that lies within a group 
necessarily does not lie between groupsf so one can calculate one number from 
the other given the total number of edges in the network as whole. We will 
follow convention here and base our calculations on the numbers of within
group edges. 

Our goal therefore will be to find a measure that quantifies how many 
edges lie within groups in our network relative to the number of such edges 
expected on the basis of chance. This, however, is an idea we have encoun
tered before. In Section 7.13.1 we considered the phenomenon of assortative 
mixing in networks, in which vertices with similar characteristics tend to be 
connected by edges. There we introduced the measure of assortative mixing 
known as modularity, which has a high value when many more edges in a net
work fall between vertices of the same type than one would expect by chance. 
This is precisely the type of measure we need to solve our current community 
detection problem. If we consider the vertices in our two groups to be vertices 
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of two types then good divisions of the network into communities are precisely 
those that have high values of the corresponding modularity. 

Thus one way to detect communities in networks is to look for the divisions 
that have the highest modularity scores and in fact this is the most commonly 
used method for community detection. Like graph partitioning, modularity 
maximization is a hard problem (see Section 1l.3.1). It is believed that, as with 
partitioning, the only algorithms capable of always finding the division with 
maximum modularity take exponentially long to run and hence are useless 
for all but the smallest of networks [54]. Instead, therefore, we turn again to 
heuristic algorithms, algorithms that attempt to maximize the modularity in 
an intelligent way that gives reasonably good results most of the time. 

11.7 SIMPLE MODULARITY MAXIMIZATION 

One straightforward algorithm for maximizing modularity is the analog of 
the Kernighan-Lin algorithm [245]. This algorithm divides networks into two 
communities starting from some initial division, such as a random division 
into equally sized groups. The algorithm then considers each vertex in the net
work in turn and calculates how much the modularity would change if that 
vertex were moved to the other group. It then chooses among the vertices the 
one whose movement would most increase, or least decrease, the modularity 
and moves it. Then it repeats the process, but with the important constraint 
that a vertex once moved cmulot be moved againf at least on this round of the 
algorithm. 

And so the algorithm proceeds, repeatedly moving the vertices that most 
increase or least decrease the modularity. Notice that in this algorithm we 
are not swapping pairs as we did in the Kernighan-Lin algorithm. In that 
algorithm we were required to keep the sizes of the groups constant, so for 
every vertex removed from a group we also had to add one. Now we no longer 
have such a constraint and so we can move single vertices on each step. 

When all vertices have been moved exactly once, we go back over the states 
through which the network has passed and select the one with the highest 
modularity. We then use that state as the starting condition for another round 
of the same algorithm, and we keep repeating the whole process until the mod
ularity no longer improves. 

Figure 11.4 shows an example application of this algorithm to the "karate 
club" network of Zachary, which we encountered previously in Chapter 1 (see 
Fig. l.2 on page 6). This network represents the pattern of friendships between 
members of a karate club at a North American university, as determined by 
direct observation of the club's members by the experimenter over a period 
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Figure 11.4: Modularity maximization applied to the karate club network. When 
we apply our vertex-moving modularity maximization algorithm to the karate club 
network, the best division found is the one indicated here by the two shaded regions, 
which split the network into two groups of 17 vertices each. This division is very nearly 
the same as the actual split of the network in real life (open and solid circles), fol1owing 
the dispute among the club's members. Just one vertex is classified incorrectly. 

of about two years. The network is interesting because during the period of 
observation a dispute arose among the members of the club over whether to 
raise the club's fees and as a result the club eventually split into two parts, of 
18 and 16 members respectively, the latter departing to form their own club. 
The colors of the vertices in Fig. 11.4 denote the members of the two factions, 
while the shaded regions show the communities identified in the network by 
our vertex-moving algorithm. As we can see from the figure, the communities 
identified correspond almost perfectly to the known groups in the network. 
Just one vertex on the border between the groups is incorrectly assigned. Thus 
in this case our algorithm appears to have picked out structure of genuine 
sociological interest from an analysis of network data alone. It is precisely for 
results of this kind, that shed light on potentially important structural features 
of networks, that community detection methods are of interest. 

The vertex moving algorithm is also quite efficient. At each step of the al
gorithm we have to evaluate the modularity change due to the movement of 
each of O( n) vertices, and each such evaluation, like the corresponding ones 
for the Kernighan-Lin algorithm, can be achieved in time O( m / n) if the net
work is stored as an adjacency list. Thus each step takes time O( m) and there 
are n steps in one complete round of the algorithm for a total time of O(mn). 
This is considerably better than the O(mn2 ) of the Kernighan-Lin algorithm, 

11.8 SPECTRAL MODULARITY MAXIMIZATION 

and the algorithm is in fact one of the better of the many proposed algorithms 
for modularity maximizationW The fundamental reason for the algorithm's 
speed is that when moving single vertices we only have to consider O(n) pos
sible moves at each step, by contrast with the O(n2 ) possible swaps of vertex 
pairs that must be consider in a step of the Kernighan-Lin algorithm. 

11.8 SPECTRAL MODULARITY MAXIMIZATION 

Having seen in the previous section an algorithm for modularity maximiza
tion analogous to the Kernighan-Lin algorithm, it is natural to ask whether 
there also exists an analog for community detection of the spectral graph par
titioning algorithm of Section 11.5. The answer is yes, there is indeed such an 
algorithm, as we now describe. 

In Section 7.13.1 we wrote an expression for the modularity of a division of 
a network as follows (Eq. (7.69)): 

(11.39) 

where Ci is the group or community to which vertex i belongs, o(m, n) is the 
Kronecker delta, and 

(11.40) 

Note that Bij has the property 

(11.41) 

and similarly for sums over i. (We have made use of Eq. (6.20) in the second 
equality.) This property will be important shortly. 

Let us again consider the division of a network into just two parts (we will 
consider the more general case later) and again represent such a division by 
the quantities 

Si = { +1 
-1 

if vertex i belongs to group 1, 
if vertex i belongs to group 2. 

(11.42) 

IOlf the network is stored in adjacency matrix form then the total run time can be improved 
further to O(n2 ), although for the common case of a sparse network this makes relatively little 
difference, and the adjacency matrix is costly in terms of memory space. 
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We note that the quantity ~(SiSj + 1) is 1 if i and j are in the same group and 
zero othervvise, so that 

b(ei,Cj) = ~(SiSj + 1). (11.43) 

Substituting this expression into Eq. (11.39), we find 

1 1 
Q = -- LBij (SiSj + 1) = - LBijSiSj, (11.44) 

4m ij 4m ij 

where we have used Eq. (11.41). In matrix terms we can write this as 

1 
Q = 4m sTBs, (11.45) 

where s is, as before, the vector with elements Si, and B is the n x n matrix with 
elements Bij, also called the modularity matrix. 

Equation (11.45) is similar in form to our expression, Eq. (11.22), for the cut 
size of a network in terms of the graph Laplacian. By exploiting this similar
ity we can derive a spectral algorithm for community detection that is closely 
analogous to the spectral partitioning method of Section 11.5. 

We wish to find the division of a given network that maximizes the mod
ularity Q. That is, we wish to find the value of s that maximizes Eq. (11.45) 

for a given modularity matrix B. The elements of s are constrained to take 
values ±1, so that the vector always points to one of the corners of an n
dimensional hypercube, but otherwise there are no constraints on the prob
lem. In particular, the number of elements with value + 1 or -1 is not fixed 
as it was in the corresponding graph partitioning problem-the sizes of our 
communities are unconstrained. 

As before, this optimization problem is a hard one, but it can be tackled 
approximately-and effectively-by a relaxation method. We relax the con
straint that s must point to a corner of the hypercube and allow it to point in 
any direction, though keeping its length the same, meaning that it can take any 
real value subject only to the constraint that 

(11.46) 

The maximization is now a straightforward problem. We maximize Eq. (11.44) 

by differentiating, imposing the constraint with a single Lagrange multiplier ~: 

a~i [Lk BjksjSk + ~ (n - LSJ) 1 = o. (11.47) 
j j 

When we perform the derivatives, this gives us 

LBijSj = ~Si' (11.4S) 
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or in matrix notation 
Bs = ~s. (11.49) 

In other words, s is one of the eigenvectors of the modularity matrix. Substi
tuting (11.49) back into Eq. (11.45), we find that the modularity itself is given 

by 
1 T n 

Q = 4m ~s s = 4m~' (11.50) 

where we have used Eq. (11.46). For maximum modularity, therefore, we 
should choose s to be the eigenvector U, corresponding to the largest eigen
value of the modularity matrix. 

As before, we typically cannot in fact choose s = U" since the elements of 
s are subject to the constraint Si = ±1. But we do the best we can and choose it 
as close to Ul as possible, which means maximizing the product 

(11.51) 

where [ulli is the ith element of U,. The maximum is achieved when each term 
in the sum is non-negative, i.e., when 

Si = {+1 
-1 

if [udi > 0, 
if [udi < O. 

(11.52) 

In the unlikely event that a vector element is exactly zero, either value of Si is 
equally good and we can choose whichever we prefer. 

And so we are led the following very simple algorithm. We calculate the 
eigenvector of the modularity matrix corresponding to the largest (most posi
tive) eigenvalue and then assign vertices to communities according to the signs 
of the vector elements, positive signs in one group and negative signs in the 
other. 

In practice this method works very well. For example, when applied to the 
karate club network of Fig. 11.4 it works perfectly. classifying everyone of the 
34 vertices into the correct group. 

One potential problem with the algorithm is that the matrix B is, unlike the 
Laplacian, not sparse, and indeed usually has all elements non-zero. At first 
sight, this appears to make the algorithm's complexity significantly worse than 
that of the normal spectral bisection algorithm; as discussed in Section 11.1.1, 
finding the leading eigenvector of a matrix takes time O(mn), which is equiv
alent to O(n3

) in a dense matrix, as opposed to O(n2
) in a sparse one. In fact, 

however, by exploiting special properties of the modularity matrix it is still 
possible to find the eigenvector in time O(n2 ) on a sparse network. The details 
can be found in [246]. 
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Overall, this means that the spectral method is about as fast as, but not 
significantly faster than, the vertex-moving algorithm of Section 11.7. Both 
have time complexity O( n2 ) on sparse networksll There is, however, merit 
to having both algorithms. Given that all practical modularity maximizing 
algorithms are merely heuristics-clever perhaps, but not by any means guar
anteed to perform well in all cases-having more than one fast algorithm in 
our toolkit is always a good thing. 

11.9 DIVISION INTO MORE THAN TWO GROUPS 

The community detection algorithms of the previous two sections both per
form a limited form of community detection, the division of a network into 
exactly two communities, albeit of illlspecified sizes. But "communities" are 
defined to be the natural groupings of vertices in networks and there is no 
reason to suppose that networks will in general have just two of them. They 
might have two, but they might have more than two, and we would like to be 
able to find them whatever their number. Moreover we don't, in general, want 
to have to specify the number of communities; that number should be fixed by 
the structure of the network and not by the experimenter. 

In principle, the modularity maximization method can handle this problem 
perfectly well. Instead of maximizing modularity over divisions of a network 
into two groups, we should just maximize it over divisions into any number 
of groups. Modularity is supposed to be largest for the best division of the 
netvvork, no matter how many groups that division possesses. 

There are a number of community detection algorithms that take this "free 
maximization" approach to determining community number, and we discuss 
some of them in the following section. First, however, we discuss a simpler 
approach which is a natural extension of the methods of previous sections and 
of our graph partitioning algorithms, namely repeated bisection of a network. 
We start by dividing the network first into two parts and then we further sub
divide those parts in to smaller ones, and so on. 

One must be careful about how one does this, however. We cannot pro
ceed as one can in the graph partitioning case and simply treat the commu
nities found in the initial bisection of a network as smaller networks in their 

lINote, however, that the vertex moving algorithm takes time O(n 2) for each round of the 
algorithm, but we have not calculated, and do not in fact know, how many rounds are needed 
in general. As with the Kernighan-Lin algorithm, it is reasonable to suppose that the number of 
rounds needed might increase, at least slowly, with network size, which would make the time 
complexity of the vertex moving algorithm poorer than that of the spectral algorithm. 
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own right, applying our bisection algorithm to those smaller networks. The 
modularity of the complete network does not break up (as cut size does) into 
independent contributions from the separate communities and the individual 
maximization of the modularities of those communities treated as separate net
works will not, in general, produce the maximum modularity for the network 
as a whole. 

Instead, we must consider explicitly the change "'Q in the modularity of the 
entire network upon further bisecting a community c of size nco That change is 
given by 

(11.53) 

where we have made use of sT = 1, and B(c) is the nc x nc matrix with elements 

B(c) - B \' 
ij - ij - bij L Bik · (11.54) 

kEf 

Since Eq. (11.53) has the same general form as Eq. (11.45) we can now apply 
our spectral approach to this generalized modularity matrix, just as before, 
to maximize "'Q, finding the leading eigenvector and dividing the network 
according to the signs of its elements. 

In repeatedly subdividing a network in this way, an important question we 
need to address is at what point to halt the subdivision process. The answer is 
quite simple. Given that our goal is to maximize the modularity for the entire 
network, we should only go on subdividing groups so long as doing so results 
in an increase in the overall modularity. If we are unable to find any division 
of a community that results in a positive change "'Q in the modularity, then we 
should simply leave that community undivided. The practical indicator of this 
situation is that our bisection algorithm will put all vertices in one of its two 
groups and none in the other, effectively refusing to subdivide the community 
rather than choose a division that actually decreases the modularity. When we 
have subdivided our network to the point where all communities are in this 
indivisible state, the algorithm is finished and we stop. 

This repeated bisection method works well in many situations, but it is by 
no means perfect. A particular problem is that, as in the equivalent approach 
to graph partitioning, there is no guarantee that the best division of a network 
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Figure 11.5: Division of a simple network by repeated maximization of the modu~ 
larity. (a) The optimal bisection of this network of eight vertices and seven edges is 
straight down the middle. (b) The optimal division into an arbitrary number of groups 
is this division into three. 

into, say, three parts, can be found by first finding the best division into two 
parts and then subdividing one of the two. Consider for instance the simple 
network shown in Fig. 11.5, which consists of eight vertices joined together in a 
line. The bisection of this network with highest modularity is the one shown in 
Fig. l1.5a, down the middle of the network, splitting it into two equally sized 
groups of four vertices each. The best modularity if the number of groups is 
unconstrained, however, is that shown in Fig. ll.5b, with three groups of sizes 
3, 2, and 3, respectively. A repeated optimal bisection algorithm would never 
find the division in ll.5b because, having first made the bisection in 11.5a, 
there is no further bisection that will get us to ll.5b. 

As mentioned above, an alternative method for dividing networks into 
more than two communities is to attempt to find directly the maximum modu
larity over divisions into any number of groups. This approach can, in princi
ple, find better divisions than repeated bisection, but in practice is more com
plicated to implement and often runs slower. A number of promising methods 
have been developed, however, some of which are discussed in the next sec
tion. 

11.10 OTHER MODULARITY MAXIMIZATION METHODS 

There are a great variety of general algorithms for maximizing (or minimizing) 
functions over sets of states, and in theory anyone of them could be brought 
to bear on the modularity maximization problem, thereby creating a new com
munity detection algorithm. We describe briefly here three approaches that 
have met with some success. Each of these approaches attempts to maximize 
modularity over divisions into any number of communities of any sizes and 

11.10 OTHER MODULARITY MAXIMIZATION METHODS 

thus to determine both the number and size of communities in the process. 
One of the most widely used general optimization strategies is simulated 

annealing, which proceeds by analogy with the physics of slow cooling or "an
nealing" of solids. It is known that a hot system, such as a molten metal, will, 
if cooled sufficiently slowly to a low enough temperature, eventually find its 
ground state, that state of the system that has the lowest possible energy. Simu
lated annealing works by treating the quantity of interest--modularity in this 
case--as an energy and then simulating the cooling process until the system 
finds the state with the lowest energy. Since we are interested in finding the 
highest modularity. not the lowest, we equate energy in our case with minus 
the modularity, rather than with the modularity itself. 

The details of the simulated annealing method are beyond the scope of 
this book, but the application to modularity maximization is a straightforward 
one and it appears to work very well [85,150,151,215,281]. For example, 
Danon et 01. [85] performed an extensive test in which they compared the per
formance of a large number of different community detection algorithms on 
standardized tasks and found that the simulated annealing method gave the 
best results of any method tested. The main disadvantage of the approach 
is that it is slow, typically taking several times as long to reach an answer as 
competing methods do. 

Another general optimization method is the genetic algorithm, a method 
inspired by the workings of biological evolution. Just as fitter biological species 
reproduce more and so pass on the genes that confer that fitness to future gen
erationsr so one can consider a population of different divisions of the same 
network and assign to each a "fitness" proportional to its modularity. Over 
a series of generations one simulates the preferential "reproduction" of high
modularity divisions, while those of low modularity die out. Small changes 
or mutations are introduced into the offspring divisionsr allowing their mod
ularity values either to improve or get worse and those that improve are more 
likely to survive in the next generation while those that get worse are more 
likely to be killed off. After many generations one has a population of divi
sions with good modularity and the best of these is the final division returned 
by the algorithm. Like simulated annealing the method appears to give results 
of high quality, but is slow, which restricts its use to networks of a few hundred 
vertices or fewer [295]. 

A third method makes use of a so-called greedy algorithm. In this very sim
ple approach we start out with each vertex in our network in a one-vertex 
group of its own, and then successively amalgamate groups in pairs, choos
ing at each step the pair whose amalgamation gives the biggest increase in 
modularitYf or the smallest decrease if no choice gives an increase, Eventually 
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all vertices are amalgamated into a single large community and the algorithm 
ends. Then we go back over the states through which the network passed 
during the course of the algorithm and select the one with the highest value 
of the modularity. A naive implementation of this idea runs in time O(n2), 
but by making use of suitable data structures the run time can be improved 
to O(n log' n) on a sparse graph [71, 319J. Overall the algorithm works only 
moderately well: it gives reasonable divisions of networks, but the modularity 
values achieved are in general somewhat lower than those found by the other 
methods described here. On the other hand, the running time of the method 
may be the best of any current algorithm, and this is one of the few algorithms 
fast enough to work on the very largest networks now being explored. Wakita 
and Tsurumi [319J have given one example of an application to a network of 
more than five million vertices, something of a record for studies of this kind. 

11.11 OTHER ALGORITHMS FOR COMMUNITY DETECTION 

As we have seen, the problem of detecting communities in networks is a less 
well-posed one than the problem of graph partitioning. In graph partitioning 
the goal is clear: to find the division of a network with the smallest possible 
cut size. There is, by contrast, no universally agreed upon definition of what 
constitutes a good division of a nehvork into communities. In the previous 
sections we have looked at algorithms based one particular definition in terms 
of the modularity function, but there are a number of other definitions in com
mon use that lead to different algorithms. In the following sections we look 
briefly at a few of these other algorithms. 

11.11.1 BETWEENNESS-BASED METHODS 

One alternative way of finding conununities of vertices in a network is to look 
for the edges that lie between communities. If we can find and remove these 
edges, we will be left with just the isolated communities. 

There is more than one way to quantify what we mean when we sayan 
edge lies "between communities," but one common approach is to use be
tweenness centrality. As described in Section 7.7, the betweenness centrality 
of a vertex in a network is the number of geodesic (i.e., shortest) paths in the 
network that pass through that vertex. Similarly, we can define an edge be
tweenness that counts the number of geodesic paths that run along edges and, 
as shown in Fig. 11.6, edges that lie between communities can be expected to 
have high values of the edge betweenness. 
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Figure 11.6: Identification of between-group edges. This simple example network is 
divided into two groups of vertices (denoted by the dotted lines), with only two edges 
connecting the groups. Any path joining vertices in different groups (such as vertices u 
and v) must necessarily pass along one of these two edges. Thus if we consider a set of 
paths between all pairs of vertices (such as geodesic paths, for instance), we expect the 
between-group edges to carry more paths than most. By counting the number of paths 
that pass along each edge we can in this way identify the between-group edges. 

The calculation of edge betweenness is precisely analogous to the vertex 
case: we consider the geodesic path or paths between every pair of vertices 
in the network (except vertices in different components, for which no such 
path exists), and count how many such paths go along each edge. Edge be
tweenness can be calculated for all edges in time O( n (m + n» using a slightly 
modified version of the algorithm described in Section 10.3.6 [250]. 

Our algorithm for detecting communities is then as follows. We calculate 
the betweenness scores of all edges in our network and then search through 
them for the edge with the highest score and remove it. In removing the edge 
we will change the betweenness scores of some edges, because any shortest 
paths that previously traversed the removed edge will now have to be rerouted 
another way. So we must recalculate the betweenness scores following the 
removal. Then we search again for the edge with the highest score and remove 
it, and so forth. As we remove one edge after another an initially connected 
network will eventually split into two pieces, and then into three, and so on. 

The progress of the algorithm can be represented using a tree or dendrogram 

like that depicted in Fig. 11.7. At the bottom of the figure we have the "leaves" 
of the tree, which each represent one of the vertices of the network, and as 
we move up the tree, the leaves join together first in pairs and then in larger 
groups, until at the top of the tree all are joined together to form a single whole. 
Our algorithm in fact generates the dendrogram from the top, rather than the 
bottom, starting with a single connected network and splitting it repeatedly 
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Figure 11.7: A dendrogram. The results of the edge betweenness algorithm can be rep
resented as a tree or "dendrogram" in which the vertices are depicted (conventionally) 
at the bottom of the tree and the "root" at the top represent the whole network. The pro
gressive fragmentation of the network as edges are removed one by one is represented 
by the successive branching of the tree as we move down the figure and the identities 
of the vertices in a connected subset at any point in the procedure can be fOW1d by 
following the lines of the tree down to the bottom of the picture. Each intermediate di
vision of the network through which the algorithm passes corresponds to a horizontal 
cut through the dendrogram. For instance, the cut denoted by the dotted line in this 
dendrogram splits the network into four groups of 6,1, 2, and 3 vertices respectively. 

until we get to the level of single vertices. Individual intermediate configura
tions of the network during the run of the algorithm correspond to horizontal 
cuts through the dendrogram, as indicated by the dotted line in the figure. 
Each branch of the tree that intersects this dotted line represents one group of 
vertices, whose membership we can determine by following the branch down 
to its leaves at the bottom of the figure. Thus the dendrogram captures in a 
single diagram the configuration of groups in the network at every stage from 
start to finish of the algorithm. 

This algorithm is somewhat different from previous ones, therefore, in that 
it doesn't give a single decomposition of a network into communities, but a 
selection of different possibilities, ranging from coarse divisions into just a few 
large communities (at the top of the dendrogram) to fine divisions into many 
small communities (at the bottom). It is up to the user to decide which of 
the many divisions represented is most useful for their purposes. One could 
in principle use a measure such as modularity to quantify the quality of the 
different divisions and select the one with the highest quality in this sense. 
This, however, somewhat misses the point. If high modularity is what you 
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care about, then you are better off simply using a modularity maximization 
algorithm in the first place. It is more appropriate simply to think of this 
betweenness-based algorithm as producing a different kind of output, one that 
has its own advantages and disadvantages but that can undoubtedly tell us in
teresting things about network structure. 

The betweenness-based algorithm is, unfortunately, quite slow. As we have 
said the calculation of betweenness for all edges takes time of order O(n(111 + 
/1)) and we have to perform this calculation before the removal of each of the /11 

edges, so the entire algorithm takes time O(111n(/11 + n)), or 0(n3 ) on a sparse 
graph with 111 ex n. This makes this algorithm one of the slower algorithms 
considered in this chapter. The algorithm gives quite good results in prac
tice [138,250], but has mostly been superseded by the faster modularity maxi
mization methods of previous sections. 

Nonetheless, the ability of the algorithm to return an entire dendrogram, 
rather than just a single division of a network, could be useful in some cases. 
The divisions represented in the dendrogram form a hierarchical deco111position 
en which the communities at one level are completely contained within the 
larger communities at all higher levels. There has been some interest in hi
erarchical structure in networks and hierarchical decompositions that might 
capture it. We look at another algorithm for hierarchical decomposition in Sec
tion 11.11.2. 

An interesting variation on the betweenness algorithm has been proposed 
by Radicchi et al. [276J. Their idea revolves around the same basic principle of 
identifying the edges between communities and removing them, but the mea
sure used to perform the identification is different. Radicchi et al. observe that 
the edges that fall between otherwise poorly connected communities are un
likely to belong to short loops of edges, since doing so would require that there 
be two nearby edges joining the same groups-see Fig. 1l.S. Thus one way to 
identify the edges between communities would be to look for edges that be
long to an unusually small number of short loops. Radicchi et al. found that 
loops of length three and four gave the best results. By repeatedly removing 
edges that belong to small numbers of such loops they were able to accurately 
uncover communities in a number of example networks. 

An attractive feature of this method is its speed. The calculation of the 
number of short loops to which an edge belongs is a local calculation and 
can be performed for all edges in time that goes like the total size of the net
work. Thus, in the worst case, the running time of the algorithm will only 
go as 0(/12 ) on a sparse graph, which is one order of system size faster than 
the betweenness-based algorithm and as fast as the earlier methods based on 
modularity maximization. 
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Figure 11.8: The algorithm of Radicchi et al. The algorithm of Radicchi et ai. uses a 
different measure to identify between-group edges, looking for the edges that belong 
to the fewest short loops. In many networks, edges within groups typically belong to 
many short loops, such as the loops of length three and four labeled "I" and {/2." But 
edges between groups, such as the edge labeled "3" here, often do not belong to such 
loops, because to do so would require there to be a return path along another benveen
group edge, of which there arc, by definition, few. 

On the other hand, the algorithm of Radicchi et al. has the disadvantage 
that it only works on networks that have a significant number of short loops 
in the first place. This restricts the method primarily to social networks, which 
indeed have large numbers of short loops (see Section 7.9). Other types of 
network, such as technological and biological networks, tend to have smaller 
numbers of short loops, and hence there is little to distinguish between-group 
edges from within-group ones. 

11.11.2 HIERARCHICAL CLUSTERING 

The algorithms of the previous section differ somewhat from the other com
munity detection algorithms in this chapter in that they produce a hierarchical 
decomposition of a network into a set of nested communities, visualized in the 
form of a dendrogram as in Fig. 1l.7, rather than just a single division into a 
unique set of communities. In this section we look at another algorithm that 
also produces a hierarchical decomposition, one of the oldest of community 
detection methods, the method of hierarchical clustering12 

Hierarchical clustering is not so much a single algorithm as an entire class 

12The word "clustering" as used here just refers to community detection. We have mostly 
stayed away from using this word in this chapter, to avoid confusion with the other use of the 
word clustering introduced in Section 7.9 (see footnote 5 on page 354), but the name "hierarchical 
clustering" is a well established and traditional one, and we use it here in deference to convention. 
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of algorithms, with many variations and alternatives. Hierarchical clustering 
is an agglomerative technique in which we start with the individual vertices of 
a network and join them together to form groups. This contrasts with most 
of the other methods we have looked at for community detection and graph 
partitioning, which were divisive methods that took a complete network and 
split it apart. (One earlier algorithm, the greedy modularity maximization al
gorithm of Section 11.10, was an agglomerative method.) 

The basic idea behind hierarchical clustering is to define a measure of simi
larity or connection strength between vertices, based on the network structure, 
and then join together the closest or most similar vertices to form groups. We 
discussed measures of vertex similarity in networks at some length in Sec
tion 7.12. Any of the measures of structural equivalence introduced there 
would be suitable as a starting point for hierarchical clustering, including co
sine similarity (Section 7.12. n correlation coefficients between rows of the 
adjacency matrix (Section 7.12.2), or the so-called Euclidean distance (Section 
7.12.3). The regular equivalence measures of Section 7.12.4 might also be good 
choices, although the author is not aware of them having been used in this 
context. 

That there are many choices for Similarity measures is both a strength and a 
weakness of the hierarchical clustering method. It gives the method flexibility 
and allows it to be tailored to specific problems, but it also means that the 
method gives different answers depending on which measure we choose, and 
in many cases there is no way to know if one measure is more correct or will 
yield more useful information than another. Most often the choice of measure 
is determined more by experience or experiment than by argument from first 
principles. 

Once a similarity measure is chosen we calculate it for all pairs of vertices 
in the network. Then we want to group together those vertices having the 
highest similarities. This, however, leads to a further problem: the similarities 
can give conflicting messages about which vertices should be grouped. Sup
pose vertices A and B have high similarity, as do vertices Band C. One might 
therefore argue that A, B, and C should all be in a group together. But suppose 
that A and C have low similarity. Now we are left with a dilemma. Should A 
and C be in the same group or not? 

The basic strategy adopted by the hierarchical clustering method is to start 
by joining together those pairs of vertices with the highest similarities, forming 
a group or groups of size two. For these there is no ambiguity, since each pair 
only has one similarity value. Then we further join together the groups that are 
most similar to form larger groups, and so on. When viewed in terms of ag
glomeration of groups like this, the problem above can be stated in a new and 

B 

If the connections (A,B) 
and (B,C) are strong but 
(A,C) is weak, should A 
and C be in the same group 
or not? 
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useful way. OUf process requires for its operation a measure of the similarity 
between groups, so that we can join the most similar ones together. But what 
we actually have is a measure of similarity between individual vertices, so we 
need to combine these vertex similarities somehow to create similarities for the 
groups. If we can do this, then the rest of the algorithm is straightforward and 
the ambiguity is resolved. 

There are three cornmon ways of combining vertex similarities to give simi
larity scores for groups. They are called single-, complete-, and average-linkage 
clustering. Consider two groups of vertices, group 1 and group 2, containing 
111 and 112 vertices respectively. There are then 111112 pairs of vertices such that 
one vertex is in group 1 and the other in group 2. In the single-linkage clustering 
method, the similarity between the two groups is defined to be the similarity of 
the most similar of these n, n, pairs of vertices. Thus if the values of the similar
ities of the vertex pairs range from 1 to 100, the similarity of the two groups 
is 100. This is a very lenient definition of similarity: only a single vertex pair 
need have high similarity for the groups themselves to be considered similar. 
(This is the origin of the name" single-linkage clustering" -similarity between 
groups is a function of the similarity between only the single most similar pair 
of vertices.) 

At the other extreme, coml7lete-linkage clustering defines the similarity be
tween two groups to be the similarity of the least similar pair of vertices. If the 
similarities range from 1 to 100 then the similarity of the groups is l. By con
trast with single-linkage clustering this is a very stringent definition of group 
similarity: every single vertex pair must have high similarity for the groups to 
have high similarity (hence the name "complete-linkage clustering"). 

In between these two extremes lies average-linkage clustering, in which the 
similarity of two groups is defined to be the mean similarity of all pairs of ver
tices. Average-linkage clustering is probably the most satisfactory choice of the 
three, being a moderate one-not extreme in either direction-and depending 
on the similarity of all vertex pairs and not just of the most or least similar pair. 
It is, however, relatively rarely used, for reasons that are not entirely clear. 

The full hierarchical clustering method is as follows: 
1, Choose a similarity measure and evaluate it for all vertex pairs. 
2. Assign each vertex to a group of its own, consisting of just that one ver

tex. The initial similarities of the groups are simply the similarities of the 
vertices. 

3. Find the pair of groups with the highest similarity and join them together 
into a single group. 

4. Calculate the similarity between the new composite group and all others 
using one of the three methods above (single-, complete-, or average-
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linkage clustering). 
5. Repeat from step 3 until all vertices have been joined into a single group. 
In practice, the calculation of the new similarities is relatively straightfor

ward. Let us consider the three cases separately. For single-linkage clustering 
the similarity of two groups is equal to the similarity of their most similar pair 
of vertices. In this case, when we join groups 1 and 2 together, the similarity 
of the composite group to another group 3, is the greater of the similarities of 
1 with 3 and 2 with 3, which can be found in 0(1) time. 

For complete-linkage clustering the similarity of the composite group is the 
smaller of the similarities of 1 with 3 and 2 with 3, which can also be found in 
0(1) time. 

The average-linkage case is only slightly more complicated. Suppose as 
before that the groups 1 and 2 that are to be joined have 111 and 112 vertices 
respectively. Then if the similarities of 1 with 3 and 2 with 3 were previously 
(T13 and (T23, the similarity of the composite group with another group 3 is given 
by the weighted average 

1110'13 + n20'23 
(T12,3 = 

111 + 112 

Again this can be calculated in 0(1) time. 

(11.55) 

On each step of the algorithm we have to calculate similarities in this way 
for the composite group with every other group, of which there are O(n). 
Hence the recalculation of similarities will take O(n) time on each step. A naive 
search through the similarities to find the greatest one, on the other hand, takes 
time 0(11'), since there are 0(n2 ) pairs of groups to check, so this will be the 
most time-consuming step in the algorithm. We can speed things up, however, 
by storing the similarities in a binary heap (see Section 9.713), which allows us 
to add and remove entries in time O(log n) and find the greatest one in time 
0(1). This slows the recalculation of the similarities to O(nlog n) but speeds 
the search for the largest to 0(1). 

Then the whole process of joining groups has to be repeated n - 1 times 
until all vertices have been joined into a single group. (To see this, simply 
consider that the number of groups goes down by one every time two groups 
are joined, so it takes 11 - 1 joins to go from n initial groups to just a single one 

13The heap must be modified slightly from the one described in Section 9.7. First, the partial 
ordering must be inverted so that the largest, not the smallest, element of the heap is at its root. 
Second, we need to be able to remove arbitrary items from the heap, not just the root item, which 
we do by deleting the relevant item and then moving the last item in the heap to fill the vacated 
space. Then we have to sift the moved item both up and down the heap, since it might be either 
too large or too small for the position in which it finds itself. 
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Figure 11.9: Partitioning of the karate club network by average linkage hierarchi
cal clustering. This dendrogram is the result of applying the hierarchical clustering 
method described in the text to the karate club netvvork of Fig. 11.4, using cosine sim
ilarity as our measure of vertex similarity. The shapes of the nodes represent the two 
known factions in the network, as in the two previous figures. 

at the end.) Thus the total running time of the algorithm is O(n3 ) in the naive 
implementation or O( n'log n) if we use a heap14 

And how well does it work in practice? The answer depends on which 
similarity measure one chooses and which linkage method, but a typical ap
plication, again to the karate club network, is shown in Fig. 11.9. This figure 
shows what happens when we apply average-linkage clustering to the karate 
network using cosine similarity as our similarity measure, The figure shows 
the dendrogram that results from such a calculation and we see that there is a 
clear division of the dendrogram into two communities that correspond per
fectly to the two known groups in the network. 

Hierarchical clustering does not always work as well as this, however. In 
particular, though it is often good at picking out the cores of groups, where 
the vertices are strongly similar to one another, it tends to be less good at as
signing peripheral vertices to appropriate groups. Such vertices may not be 
strongly similar to any others and so tend to get left out of the agglomerative 

14Por the special case of single-linkage clustering, there is a slightly faster way to implement the 
algorithm that makes use of a so-called union/find technique and runs in time O(n2 ). In practice 
the performance difference is not very large but the union/find method is conSiderably simpler 
to program. It is perhaps for this reason that single-linkage is more often used than complete- or 
average-linkage clustering. 

clustering process until the very end. A common result of hierarchical cluster
ing is therefore a set of tightly knit cores surrounded by a loose collection of 
single vertices or smaller groups. Such a result may nonetheless contain a lot 
of valuable information about the underlying network structure. 

Many other methods have been proposed for community detection and there 
is not room in this book to describe them all. For the reader interested in pursu
ing the topic further the review articles by Fortunato [124] and Schaeffer [291] 
provide useful overviews. 

PROBLEMS 

11.1 Show that the inverse of a symmetric matrix M is given by M--1 = UDUT where 
U is the orthogonal matrix whose columns are the normalized eigenvectors of M and 
D is the diagonal matrix whose elements are the reciprocals of the eigenvalues of M. 
Hence argue that the time complexity of the best algorithm for inverting a symmetric 
matrix can be no worse than the time complexity of finding all of its eigenvalues and 
eigenvectors. (In fact they are the same-both are O( n) for an n x J1 matrix.) 

11.2 Consider a general n x n matrix M with eigenvalues f1i where i = 1 ... 11. 

a) Show that the matrix M - aI has the same eigenvectors as M and eigenvalues 

fl-j - a. 

b) Suppose that the matrix's two eigenvalues of largest magnitude are both positive. 
Show that the time taken to find the leading eigenvector of the matrix using the 
power method of Section 11.1 can be improved by performing the calculation 
instead for the matrix M - aI, where a is positive. 

c) What stops us from increasing the constant a arbitrarily until the calculation takes 
no time at all? 

11.3 Consider a "line graph" consisting of J1 vertices in a line like this: 

• • • • • • • 
a) Show that if we divide the network into two parts by cutting any single edge, such 

that one part has f vertices and the other has J1 - f, the modularity, Eq. (7.76), takes 
the value 

Q= 3-4n+4rn-4r2 
2(11-1)' . 
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b) Hence show that when n is even the optimal such division, in terms of modularity, 
is the division that splits the network exactly down the middle. 

11.4 Using your favorite numerical software for finding eigenvectors of matrices, con
struct the Laplacian and the modularity matrix for this small network: 

a) Find the eigenvector of the Laplacian corresponding to the second smallest eigen
value and hence perform a spectral bisection of the network into two equally sized 

parts. 

b) Find the eigenvector of the modularity matrix corresponding to the largest eigen
value and hence divide the network into two communities. 

You should find that the division of the network generated by the two methods is, in 
this case, the same. 

11.5 Consider this small network with five vertices: 

a) Calculate the cosine similarity for each of the (~) = 10 pairs of vertices. 

b) Using the values of the ten similarities construct the dendrogram for the single
linkage hierarchical clustering of the network according to cosine similarity. 
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CHAPTER 12 

RANDOM GRAPHS 

All introduction to the most basic of network models, the 
rand0l11 graph 

SO FAR in this book we have looked at how we measure the structure of 
networks and at mathematical, statistical, and computational methods for 

making sense of the network data we get from our measurements. We have 
seen for instance how to measure the structure of the Internet, and once we 
have measured it how to determine its degree distribution, or the centrality of 
its vertices, or the best division of the network into groups or communities. 
An obvious next question to ask is, "If I know a network has some particular 
property, such as a particular degree distribution, what effect will that have 
on the wider behavior of the system?" It turns out that properties like degree 
distributions can in fact have huge effects on networked systems, which is one 
of the main reasons we are interested in them. And one of the best ways to 
understand and get a feel for these effects is to build mathematical models. 
The remainder of this book is devoted to the examination of some of the many 
network models in common use. 

In Chapters 12 to 15 we consider models of the structure of networks, mod
els that mimic the patterns of connections in real networks in an effort to un
derstand the implications of those patterns. In Chapters 16 to 19 we consider 
models of processes taking place on networks, such as epidemics on social net
works or search engines on the Web. In many cases these models of network 
processes are themselves built on top of our models of network structure, com
bining the two to shed light on the interplay between structure and dynamics 
in networked systems. 

In Section 8.4, for instance, we noted that many networks have degree dis
tributions that roughly follow a power law-the so-called scale-free networks. 
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A reasonable question would be to ask how the structure and behavior of such 
scale-free networks differs from that of their non-scale-free counterparts. A 
good way to address this question would be to create, on a computer for ex
ample, two artificial networks, one with a power-law degree distribution and 
one without, and explore their differences empirically. Better still, one could 
create a large number of networks in each of the two classes, to see what sta
tistically significant features appear in one class and not in the other. This is 
precisely the rationale behind random graph models, which are the topic of 
this chapter and the following one. In random graph models, one creates net
works that possess particular properties of interest, such as specified degree 
distributions, but which are otherwise random. Random graphs are interest
ing in their own right for the light they shed on the structural properties of 
networks, but have also been widely used as a substrate for models of dynam
ical processes 011 networks. In Chapter 17, for instance, we examine their use 
in epidemic modeling. 

We also look at a number of other types of network model in succeed
ing chapters. In Chapter 14 we look at generative models of networks, mod
els in which the network is "grown" according to a specified set of growth 
rules. Generative models are particularly useful for understanding how net
work structure arises in the first place. By growing networks according to a 
variety of different rules and comparing the results with real networks, we can 
get a feel for which growth processes are plausible and which can be ruled 
out. In Chapter 15 we look at "small-world models," which model the phe
nomenon of network transitivity or clustering (see Section 7.9), and at "expo
nential random graphs," which are particularly useful when we want to create 
model networks that match the properties of observed networks as closely as 
possible. 

12.1 RANDOM GRAPHS 

In general, a random graph is a model network in which some specific set of 
parameters take fixed values, but the network is random in other respects. One 
of the simplest examples of a random graph is the network in which we fix only 
the number of vertices n and the number of edges m. That is, we take n vertices 
and place m edges among them at random. More precisely, we choose m pairs 
of vertices uniformly at random from all possible pairs and connect them with 
an edge. Typically one stipulates that the network should be a simple graph, 
i.e., that it should have no multiedges or self-edges (see Section 6.1), in which 
case the position of each edge should be chosen among only those pairs that 

12.1 

are distinct and not already connected 1 This model is often referred to by its 
mathematical name G(n, m). 

Another entirely equivalent definition of the model is to say that the net
work is created by choosing uniformly at random among the set of all simple 
graphs with exactly n vertices and m edges. 

Strictly, in fact, the random graph model is not defined in terms of a sin
gle randomly generated network, but as an ensemble of networks, i.e., a prob
ability distribution over possible networks. Thus the model G(n, m) is cor
rectly defined as a probability distribution P( G) over all graphs G in which 
P(G) = 1/0 for simple graphs with n vertices and m edges and zero other
wise, where 0 is the total number of such simple graphs. We will see more 
complicated examples of random graph ensembles shortly. 

When one talks about the properties of random graphs one typically means 
the average properties of the ensemble. For instance, the "diameter" of G(n, m) 
would mean the diameter £(G) of a graph G, averaged over the ensemble thus 

(£) = L:P(G)€(G) = ~ L:€(G). 
G G 

(12.1) 

This is a useful definition for a several of reasons, First, it turns out to lend 
itself well to analytic calculations; many such average properties of random 
graphs can be calculated exactly, at least in the limit of large graph size. Sec
ond, it often reflects exactly the thing we want to get at in making our model 
network in the first place. Very often we are interested in the typical properties 
of networks. We might want to know, for instance, what the typical diameter is 
of a network with a given number of edges. Certainly there are special cases of 
such networks that have particularly large or small diameters, but these don't 
reflect the typical behavior. If it's typical behavior we are after, then the en
semble average of a property is often a good guide. Third, it can be shown that 
the distribution of values for many network measures is sharply peaked, be
coming concentrated more and more narrowly around the ensemble average 
as the size of the network becomes large, so that in the large n limit essentially 
all values one is likely to encounter are very close to the mean. 

Some properties of the random graph G(n, m) are straightforward to calcu
late: obviously the average number of edges is m, for instance, and the average 
degree is (k) = 2m/n. Unfortunately, other properties are not so easy to calcu
late, and most mathematical work has actually been conducted on a slightly 
different model that is considerably easier to handle. This model is called 

lit would in theory be perfectly possible, however, to create a variant of the model with multi
edges or self-edges, or both. 
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G(n, pl. In G(n, p) we fix not the number but the probability of edges between 
vertices. Again we have n vertices, but now we place an edge between each 
distinct pair with independent probability p. In this network the number of 
edges is not fixed. Indeed it is possible that the network could have no edges 
at all, or could have edges between every distinct pair of vertices. (For most 
values of p these are not likely outcomes, but they could happen.) 

Again, the technical definition of the random graph is not in terms of a 
Single network, but in terms of an ensemble, a probability distribution over all 
possible networks. To be specific, G(n, p) is the ensemble of networks with n 
vertices in which each simple graph G appears with probability 

P(G) = p"'(1 - p)(;l"" (12.2) 

where m is the number of edges in the graph, and non-simple graphs have 
probability zero. 

G(n, p) was first studied, to this author's knowledge, by Solomonoff and 
Rapoport [303], but it is most closely associated with the names of Paul Erdos 
and Alfred Renyi, who published a celebrated series of papers about the model 
in the late 1950s and early 1960s [105-107]. If you read scientific papers on this 
subject, you will sometimes find the model referred to as the "Erdos-Renyi 
model" or the "Erdos-Renyi random graph" in honor of their contribution. It 
is also sometimes called the "Poisson random graph" or the "Bernoulli random 
graph," names that refer to the distributions of degrees and edges in the model. 
And sometimes the model is referred to simply as "the" random graph-there 
are many random graph models, but G(n, p) is the most fundamental and 
widely studied of them, so if someone is talking about a random graph but 
doesn't bother to mention which one, they are probably thinking of this one. 

In this chapter we describe the basic mathematics of the random graph 
G(n, p), focusing particularly on the degree distribution and component sizes, 
which are two of the model's most illuminating characteristics. The techniques 
we develop in this chapter will also prove useful for some of the more complex 
models examined later in the book. 

12.2 MEAN NUMBER OF EDGES AND MEAN DEGREE 

Let us start our study of the random graph G(n, p) with a very simple calcu
lation, the calculation of the expected number of edges in our model network. 
We have said that the number of edges in the model is not fixed, but we can 
calculate its mean or expectation value as follows. The number of graphs with 
exactly n vertices and m edges is equal to the number of ways of picking the 
positions of the edges from the (;) distinct vertex pairs. Each of these graphs 
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appears with the same probability P( G), given by Eq. (12.2), and hence the 
total probability of drawing a graph with m edges from our ensemble is 

P(111) = (~~) p"'(1 - p)Gl-"', (12.3) 

which is just the standard binomial distribution. Then the mean value of 111 is 

("I 

(m) = ,~omp(111) = G)p (12.4) 

This result comes as no surprise. The expected number of edges between any 
individual pair of vertices is just equal to the probability p of an edge between 
the same vertices, and Eq. (12.4) thus says merely that the expected total num
ber of edges in the network is equal to the expected number p between any 
pair of vertices, multiplied by the number of pairs. 

We can lise this result to calculate the mean degree of a vertex in the random 
graph. As pointed out in the previous section, the mean degree in a graph with 
exactly 111 edges is (k) = 2m/n, and hence the mean degree in G(n, 17) is 

GI 2m 2 (n) (k) = L -P(m) = - p = (n -1)p, 
111=0 n n 2 

(12.5) 

where we have used Eq. (12.4) and the fact that n is constant. The mean degree 
of a random graph is often denoted c in the literature, and we will adopt this 
convention here also, writing 

c = (n - 1)p. (12.6) 

This result is also unsurprising. It says that the expected number of edges 
connected to a vertex is equal to the expected number p between the vertex 
and any other vertex, multiplied by the number n - 1 of other vertices. 

12.3 DEGREE DISTRIBUTION 

Only slightly more taxing is the calculation of the degree distribution of G (n, p). 
A given vertex in the graph is connected with independent probability p to 
each of the n - 1 other vertices. Thus the probability of being connected to a 
particular Ie other vertices and not to any ofthe others is pk(1_ p),,-1-k There 
are (";;1) ways to choose those k other vertices, and hence the total probability 
of being connected to exactly k others is 

_ (n -1) k( ),,-1-k Pk - Ie P 1 - P , (12.7) 
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which is a binomial distribution again. In other words, G(n, p) has a binomial 
degree distribution. 

In many cases we are interested in the properties of large networks, so that 
n can be assumed to be large. Furthermore, as discussed in Section 6.9, many 
networks have a mean degree that is approximately constant as the network 
size becomes large. (For instance, the typical number of friends a person has 
does not depend strongly on the total number of people in the world.) In such 
a case Eq. (12.7) simplifies as follows. 

Equation (12.6) tells us that p = c/(n -1) will become vanishingly small 
as n -----+ 00, which allows us to write 

In[(l- p)',-I-kj = (n -1 _ k) In(l _ ~c~) 
n-1 

c '" -en -1 - k)-- '" -c, 
n -1 

(12.8) 

where we have expanded the logarithm as a Taylor series, and the equalities 
become exact as n --.> 00. Taking exponentials of both sizes, we thus find that 
(1 - P ),,-I-k = e-' in the large-n limit. Also forlarge n we have 

(n -I)! 
(n-1-k)!k! 

and thus Eq. (12.7) becomes 

(n - l)k 

k! 

= (n _l)k k _, _ (n _l)k (_C_)k _, _ _ .,ck 
Pk k! P e - k! n _ 1 e - e k!' 

in the limit of large n. 

(12.9) 

(12.10) 

Equation (12.10) is the Poisson distribution: in the limit of large n, G(n, p) 
has a Poisson degree distribution. This is the origin of the name Poisson random 
graph, which we will use occasionally to distinguish this model from some of 
the more sophisticated random graphs in the following chapter that don't in 
general have Poisson degree distributions. 

12.4 CLUSTERING COEFFICIENT 

A very simple quantity to calculate for the Poisson random graph is the clus
tering coefficient. Recall that the clustering coefficient C is a measure of the 
transitivity in a network (Section 7.9) and is defined as the probability that two 
network neighbors of a vertex are also neighbors of each other. In a random 
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graph the probability that any two vertices are neighbors is exactly the same
all such probabilities are equal to p = c I (n - 1). Hence 

c 
C=--. 

n-1 
(12.11) 

This is one of several respects in which the random graph differs sharply from 
most from real-world networks, many of which have quite high clustering 
coefficients-see Table S.l-while Eq. (12.11) tends to zero in the limit n --.> 00 

if the mean degree c stays fixed. This discrepancy is discussed further in Sec
tion 12.8. 

12.5 GIANT COMPONENT 

Consider the Poisson random graph G( n, p) for P = O. In this case there are 
no edges in the network at all and it is completely disconnected. Each vertex 
is an island on its own; the network has n separate components of exactly one 
vertex each. 

In the opposite limit, when p = 1, every possible edge in the network is 
present and the network is an n-vertex clique in the technical sense of the word 
(see Section 7.S.1) meaning that every vertex is connected directly to every 
other. In this case, all the vertices are connected together in a single component 
that spans the entire network. 

Now let us focus on the size of the largest component in the network in 
each of these cases. In the first case (p = 0) the largest component has size l. 
In the second (p = 1) the largest component has size n. Apart from the second 
being much larger than the first, there is an important qualitative difference 
between these two cases: in the first case the size of the largest component is 
independent of the number of vertices n in the network; in the second it is 
proportional to n, or extensive in the jargon of theoretical physics. In the first 
case, the largest component will stay the same size if we make the network 
larger, but in the second it will grow with the network. 

The distinction between these two cases is an important one. In many ap
plications of networks it is crucial that there be a component that fills most 
of the network. For instance, in the Internet it is important that there be a 
path through the network from most computers to most others. If there were 
not, the network wouldn't be able to perform its intended role of providing 
computer-to-computer communications for its users. Moreover, as discussed 
in Section S.l, most networks do in fact have a large component that fills most 
of the network. We can gain some useful insights about what is happening 
in such networks by considering how the components in our random graph 
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behave. Although the random graph is a very simple network model and 
doesn't provide an accurate representation of the Internet or other real-world 
networks, we will see that when trying to understand the world it can be very 
helpful to study such simplified models. 

So let us consider the largest component of our random graph, which, as we 
have said, has constant size 1 when p = 0 and extensive size n when p = 1. An 
interesting question to ask is how the transition between these two extremes 
occurs if we construct random graphs with gradually increasing values of p, 
starting at 0 and ending up at 1. We might guess, for instance, that the size 
of the largest component somehow increases gradually with p, becoming ex
tensive only in the limit where p = 1. In reality, however, something much 
more interesting happens. As we will see, the size of the largest component 
undergoes a sudden change, or phase transition, from constant size to extensive 
size at one particular special value of p. Let us take a look at this transition. 

A network component whose size grows in proportion to n we call a giant 
component. We can calculate the size of the giant component in the Poisson 
random graph exactly in the limit of large network size n --; 00 as follows. 
We denote by u the average fraction of vertices in the random graph that do 
not belong to the giant component. Thus if there is no giant component in 
our graph, we will have u = 1, and if there is a giant component we will have 
u < 1. Alternatively, we can regard u as the probability that a randomly chosen 
vertex in the graph does not belong to the giant component. 

For a vertex i not to belong to the giant component it must not be connected 
to the giant component via any other vertex. That means that for every other 
vertex j in the graph either (a) i is not connected to j by an edge, or (b) i is 
connected to j but j is itself not a member of the giant component. The prob
ability of outcome (a) is simply 1 - p, the probability of not having an edge 
between i and j, and the probability of outcome (b) is pu, where the factor of p 
is the probability of having an edge and the factor of u is the probability that 
vertex j doesn't belong to the giant component2 Thus the total probability of 
not being connected to the giant component via vertex j is 1 - I' + IJU. 

Then the total probability of not being connected to the giant component 

2WC need to be a little careful here: u here should really be the probability that j is not con
nected to the giant component via any of its cormections other than the connection to i. However, 
it turns out that in the limit of large system size this probability is just equal to u. For large 11. the 
probability of not being connected to the giant component via any of the n - 2 vertices other than i 
is not significantly smaller than the probability for all n - 1 vertices. 
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via any of the n - 1 other vertices in the network is 

u=(l-p+pU),,-l= l __ c_(l_u) , [ l"-' n-1 
(12.12) 

where we have used Eq. (12.6). Now we take logs of both sides thus: 

In u = (n - 1) In [1 - n ~ 1 (1 - u) 1 
c 

"" -(n - 1) n -1 (1 - u) = -c(l- u), (12.13) 

where the approximate equality becomes exact in the limit of large n. Taking 
exponentials of both sides, we then find that 

u = e-c(l-,,) (12.14) 

But if u is the fraction of vertices not in the giant component, then the fraction 
of vertices that are in the giant component is S = 1 - u. Eliminating u in favor 

of S then gives us 
S = 1- e-cs (12.15) 

This equation, which was first given by Erdos and Renyi in 1959 [105], tells 
us the size of the giant component as a fraction of the size of the network in the 
limit of large network size, for any given value of the mean degree c. Unfor
tunately, though the equation is very simple it doesn't have a simple solution 
for S in closed form 3 We can however get a good feeling for its behavior from 
a graphical solution. Consider Fig. 12.1. The three curves show the function 
!f = 1 - e-c5 for different values of c. Note that S can take only values from 
zero to one, so only this part of the curve is shown. The dashed line in the 

30ne can write a closed-form solution in terms of the Lambert W1unctiolt, which is defined 
as the solution to the equation W(z)eW(z) = z. In terms of this function the size of the giant 
component is 

W( -ce~') 
S ~ 1+ , 

c 
where we take the principal branch of the W-function. This expression may have some utility for 
numerical calculations and series expansions, but it is not widely used. Alternatively, although we 
cannot write a simple solution for 5 as a ftmction of (, we can write a solution for c as a function 
of S. Rearranging Eq. (12.15) for (gives 

In(l- S) 
( = - -~-S"""'~'-' 

which can be useful, for instance, for plotting purposes. (We can make a plot of 5 as a function of c 
by first making a plot of ( as a function of 5 and then swapping the axes.) 
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Figure 12.1: Graphical solution for the size of the giant component. (a) The three curves in the left panel show 
y ~'" 1 - e-("s for values of c as marked, the diagonal dashed line shows y = 5, and the intersection gives the solution to 
Eq. (12.15), S = 1 - e-cs . For the bottom curve there is only OTIC intersection, at S = 0, so there is no giant component, 
while for the top curve there is a solution at 5 = 0.583 ... (vertical dashed line). The middle curve is precisely at the 
threshold between the regime where a non-trivial solution for S exists and the regime where there is only the trivial 
solution 5 = O. (b) The resulting solution for the size of the giant component as a function of c. 
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figure is the function y = S. Where line and curve cross we have 5 = 1 - e's 
and the corresponding value of 5 is a solution to Eq. (12.15). 

As the figure shows, depending on the value of c there may be either one 
solution for 5 or two. For small c (bottom curve in the figure) there is just 
one solution at 5 = 0, which implies that there is no giant component in the 
network. (You can confirm for yourself that 5 = 0 is a solution directly from 
Eq. (12.15).) On the other hand, if c is large enough (top curve) then there are 
two solutions, one at 5 = 0 and one at 5 > o. Only in this regime can there be 
a giant component. 

The transition between the two regimes corresponds to the middle curve 
in the figure and falls at the point where the gradient of the curve and the 
gradient of the dashed line match at 5 = O. That is, the transition takes place 
when 

(12.16) 

12.5 GIANT COMPONENT 

(a) (b) 

Figure 12.2: Growth of a vertex set in a random graph. (a) A set of vertices (inside the gray circles) consists of a core 
(dark gray) and a periphery (lighter). (b) If we grow the set by adding to it those vertices immediately adjacent to the 
periphery, then the periphery vertices become a part of the new core and a new periphery is added. 

or 
(12.17) 

Setting 5 = 0 we then deduce that the transition takes place at c = l. 
In other words, the random graph can have a giant component only if c > l. 

At c = 1 and below we have 5 = 0 and there is no giant component. 
This does not entirely solve the problem, however. Technically we have 

proved that there can be no giant component for c <::: 1, but not that there has 
to be a giant component at c > 1 ~in the latter regime there are two solutions 
for 5, one of which is the solution 5 = 0 in which there is no giant component. 
So which of these solutions is the correct one that describes the true size of the 
giant component? 

In answering this question, we will see another way to think about the 
formation of the giant component. Consider the following process. Let us find 
a small set of connected vertices somewhere in our nework-say a dozen or 
so, as shown in Fig. 12.2a. In the limit of large n --; 00 such a set is bound to 
exist somewhere in the network, so long as c > O. We will divide the set into 
its core and its periphery. The core is the vertices that have connections only to 
other vertices in the set~the darker gray region in the figure. The periphery is 
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the vertices that have at least one neighbor outside the set-the lighter gray. 
Now imagine enlarging our set by adding to it all those vertices that are im

mediate neighbors, cmmected by at least one edge to the set-Fig. 12.2b. Now 
the old periphery is part of the core and there is a new periphery consisting 
of the vertices just added. How big is this new periphery? We don't know for 
certain, but we know that each vertex in the old periphery is connected with 
independent probability p to every other vertex. If there are 5 vertices in our 
set, then there are n - s vertices outside the set, and the average number of 
connections a vertex in the periphery has to outside vertices is 

n -5 
p(n - 5) = c-- '" C, 

n-l 
(12.18) 

where the equality becomes exact in the limit 11 --; 00. This means that the 
average number of immediate neighbors of the set-the size of the new pe
riphery when we grow the set-is c times the size of the old periphery. 

We can repeat this argument, growing the set again and again, and each 
time the average size of the periphery will increase by another factor of c. 
Thus if c > 1 the average size of the periphery will grow exponentially. On 
the other hand, if c < 1 it will shrink exponentially and eventually dwindle to 
zero. Furthermore, if it grows exponentially our connected set of vertices will 
eventually form a component comparable in size to the whole network-a gi
ant component-while if it dwindles the set will only ever have finite size and 
no giant component will form. 

So we see that indeed we expect a giant component if (and only if) c > 1. 
And when there is a giant component the size of that giant component will be 
given by the larger solution to Eq. (12.15). This now allows us to calculate the 
size of the giant component for all values of c. (For c > 1 we have to solve for 
the larger solution of Eq. (12.15) numerically, since there is no exact solution, 
but this is easy enough to do.) The results are shown in Fig. 12.1. As the figure 
shows, the size of the giant component grows rapidly from zero as the value 
of c passes 1, and tends towards 5 = 1 as c becomes large. 

12.6 SMALL COMPONENTS 

In this section we look at the properties of random graphs from a different 
point of view, the point of view of the non-giant components. We have seen 
that in a random graph with c > 1 there exists a giant component that fills 
an extensive fraction of the network. That fraction is typically less than 100%, 
however. What is the structure of the remainder of the network? The answer 
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is that it is made up of many small components whose average size is constant 
and doesn't increase with the size of the network. 

The first step in demonstrating this result and shedding light on the struc
ture of the small components is to show that there is only one giant component 
in a random graph, and hence that all other components are "non-giant" com
ponents. This is fairly easy to establish. Suppose that there were two or more 
giant components in a random graph. Take any two giant components, which 
have size 51n and 5,11, where 51 and 5, are the fractions of the network filled 
by each. The number of distinct pairs of vertices (i, j), where i is in the first 
giant component and j is in the second, is just 51n x 5,11 = 515,n2 Each of 
these pairs is connected by an edge with probability p, or not with probability 
1 - p. For the two giant components to be separate components we require 
that there be zero edges connecting them together, which happens with prob
ability q given by 

( ) 
s,s.,,' 

q = (1 _ p)S,S,,,' = 1 _ _ c_ " 
n-l 

(12.19) 

where we have made use of Eq. (12.6). 
Taking logs of both sides and going to the limit n --; 00, we then find 

Inq=515,,!~[n'ln(l- n~l)l =515,[-c(n+l)+~c2] 
= c515,[-11 + nc-1)], (12.20) 

where we have dropped terms of order 1/ n. Taking the exponential again, we 
get 

(12.21) 

where qo = ec(c/2-1)S15z, which is independent of n if c is constant. Thus, 
for constant c, the probability that the two giant components are really sep
arate components dwindles exponentially with increasing n, and in the limit 
of large n will vanish altogether. In a large random graph, therefore, there is 
only the very tiniest of probabilities that we will have two giant components, 
and for infinite n the probability is formally zero and it will never happen. 

Given then that there is only one giant component in our random graph 
and that in most situations it does not fill the entire network, it follows that 
there must also be some non-giant components, i.e., components whose size 
does not increase in proportion to the size of the network. These are the small 
components. 
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Recall that a tree is a graph 
or sub graph that has no 
loops-see Section 6.7. 

If we add an edge (dashed) 
to a tree we create a loop. 
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12.6.1 SIZES OF THE SMALL COMPONENTS 

The small components can, in general, corne in various different sizes. We can 
calculate the distribution of these sizes as follows. 

The basic quantity we focus on is the probability 7[, that a randomly chosen 
vertex belongs to a small component of size exactly s vertices total. Note that 
if there is a giant component in our network then some vertices do not belong 
to a small component of any size and hence ITs is not normalized to unity. The 
sum of 1[5 over all sizes s is equal to the fraction of vertices that are not in the 
giant component. That is, 

00 

I.: 7[, = 1 - 5, (12.22) 
5=0 

where 5 is, as before, the fraction of vertices in the giant component. 
The crucial insight that allows us to calculate 7[, is that the small compo

nents are trees, as we can see by the following argument. Consider a small 
component of s vertices that takes the form of a tree. A tree of s vertices con
tains s - 1 edges, as shown in Section 6.7, and this is the smallest number of 
edges that is needed to connect this many vertices together. If we add another 
edge to our component then we will create a loop, since we will be adding a 
new path between two vertices that are already connected (see figure). In a 
Poisson random graph the probability of such edge being present is the same 
as for any other edge, p = c / (n - 1). The total number of places where we 
could add such an extra edge to the component is given by the number of dis
tinct pairs of vertices minus the number that are already connected by an edge, 
or 

G) -(s-l) = ~(s -1)(5-2), (12.23) 

and the total number of extra edges in the component is ~(s - 1) (s - 2)c/ (n-
1). Assuming that 5 increases more slowly than Vn (and we will shortly see 
that it does), this probability tends to zero in the limit n --4 00, and hence there 
are no loops in the component and the component is a tree. 

We can use this observation to calculate the probability 7[, as follows. Con
sider a vertex i in a small component of a random graph, as depicted in Fig. 12.3. 

Each of i's edges leads to a separate sub graph-the shaded regions in the 
figure-and because the whole component is a tree we know that these sub
graphs are not connected to one another, other than via vertex i, since if they 
Were there would be a loop in the component and it would not be a tree. Thus 
the size of the component to which i belongs is the sum of the sizes of the 
subgraphs reachable along each of its edges, plus 1 for vertex i itself. To put 

12.6 SMALL COMPONENTS 

• 

(a) (b) 

Figure 12.3: The size of one of the small components in a random graph. (a) The size of the component to which a 
vertex i belongs is the sum of the number of vertices in each of the subcomponents (shaded regions) reachable via i's 
neighbors nl, 112, nJ, plus one for i itself. (b) If vertex i is removed the subcomponents become components in their own 

right. 

that another way, vertex i belongs to a component of size 5 if the sizes of the 
subgraphs to which its neighbors nl, n" . .. belong sum to 5 - 1. 

Bearing this in mind, consider now a slightly modified network, the net
work in which vertex i is completely removed, along with all its edges4 This 
network is still a random graph with the same value of p-each possible edge 
is still present with independent probability p-but the number of vertices has 
decreased by one, from n to n - 1. In the limit oflarge n, however, this decrease 
is negligible. The average properties, such as size of the giant component and 
size of the small components will be indistinguishable for random graphs with 
sizes n and n - 1, but the same p. 

In this modified network, what were previously the subgraphs of our small 
component are now separate small components in their own right. And since 
the network has the same average properties as the original network for large n, 
that means that the probability that neighbor nl belongs to a small compo
nent of size 51 (or a sub graph of size 81 in the original network) is itself given 
by 7[Sl' We can use this observation to develop a self-consistent expression for 

4In the statistical physics literature, this trick of removing a vertex is called a cavity method. 
Cavity methods are used widely in the solution of all kinds of physics problems and are a pow
erful method for many calculations on lattices and in low-dimensional spaces as well as on net
works [218]. 
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the probability n,. 
Suppose that vertex i has degree k. As we have said, the probability that 

neighbor nl belongs to a small component of size SI when i is removed from the 
network is n". So the probability P(slk) that vertex i belongs to a small com
ponent of size s, given that its degree is Ie, is the probability that its k neighbors 
belong to small components of sizes s" . .. , sk-which is rr7~1 n,/-and that 
those sizes add up to s - 1: 

P(slle) = '~1'" '~l [tJ n,!] 5(s -1,LjSj), 

where 5(m, n) is the Kronecker delta. 

(12.24) 

To get n" we now just average P(slk) over the distribution Pk of the degree 
thus: 

rOCk 00 OO[k ] 
= e-'E k! '~l"',~ D n" 5(5 -1,Lj SJ)' (12.25) 

where we have made use of Eq. (12.10) for the degree distribution of the ran
domgraph. 

This expression would be easy to evaluate if it were not for the delta func
tion: one could separate the terms in the product, distribute them among the 
individual summations, and complete the sums in closed form. With the delta 
function, however, it is difficult to see how the sum can be completed. 

Luckily there is a trick for problems like these, a trick that we will use many 
times in the rest of this book. We introduce a generating function or z-transform, 
defined by 

00 

h(z) = nlZ + n2z' + n3z3 + ... = L: n,z'. (12.26) 
5=1 

This generating function is a polynomial or series in z whose coefficients are 
the probabilities n,. It encapsulates all of the information about the probability 
distribution in a single function. Given h(z) we can recover the probabilities 
by differentiating: 

n, = ~ ~:~ I . 
2=0 

(12.27) 

Thus h (z) is a complete representation of our probability distribution and if 
we can calculate it, then we can calculate n,. We will look at generating func
tions in more detail in the next section, but for now let us complete the present 
calculation. 

12.6 

We can calculate h(z) by substituting Eq. (12.25) into Eq. (12.26), which 

gives 

OOk[OO]k oock 
k 

= ze' E ~! {; n,z' = ze-' {;, k! [h(z)] 

= zexp[c(h(z) -1)]. (12.28) 

Thus we have a simple, self-consistent equation for h(z) that eliminates the 
awkward delta function of (12.25). 

Unfortunately, like the somewhat similar Eq. (12.15), this equation doesn't 
have a known closed-form solution for h(z), but that doesn't mean the expres
sion is useless. In fact we can calculate many useful things from it without 
solving for h(z) explicitly. For example, we can calculate the mean size of the 
component to which a randomly chosen vertex belongs, which is given by 

(s) = L, sn, = h'(I) , 
L, n, 1 - 5 

(12.29) 

where h!(z) denotes the first derivative of h(z) with respect to its argument 
and we have made use of Eqs. (12.22) and (12.26). (The denominator in this 
expression is necessary because lIs is not normalized to 1.) 

From Eq. (12.28) we have 

h'(z) = exp[c(h(z) -1)] + czh'(z) exp[c(h(z) -1)] 

= h(z) + ch(z)h!(z), 
Z 

Of, rearranging, 
, h(z) 

h (z) = z[l- ch(z)], 

and thus 
, h(l) 

h (1) = 1-ch(1) 

(12.30) 

(12.31) 

(12.32) 

SMALL COMPONENTS 

413 



RANDOM GRAPHS 

414 

But h(l) =~, 7[, = 1- S, from Eqs. (12.22) and (12.26), so that 

h'(I) = 1 - S 
1 - c + cS 

(12.33) 

And so the average size (s) of Eq. (12.29) becomes 

1 
(5) = 1 _ c + cS (12.34) 

When c < 1 and there is no giant component, this gives simply (s) = 

1/ (1 - c). When there is a giant component, the behavior is more complicated, 
because we have to solve for S first before finding the value of (8), but the cal
culation can still be done. We first solve Eq. (12.15) for 5 and then substitute 
into Eq. (12.34). 

It's interesting to note that Eq. (12.34) diverges when c = 1. (At this point 
5 = 0, so the denominator vanishes.) Thus, if we slowly increase the mean de
gree c of our network from some small initial value less than 1, the average size 
of the component to which a vertex belongs gets bigger and bigger and finally 
becomes infinite exactly at the point where the giant component appears. For 
c > 1 Eq. (12.34) measures only the sizes of the non-giant components and the 
equation tells us that these get smaller again above c = 1. Thus the general pic
ture we have is in one in which the small components get larger up to c = 1, 
where they diverge and the giant component appears, then smaller again as 
the giant component grows larger. Figure 12.4 shows a plot of (8) as a function 
of c with the divergence clearly visible. 

Although the random graph is certainly not a realistic model of most net
works, this general picture of the component structure of the network turns out 
to be a good guide to the behavior of networks in the real world. If a network 
has a low density of edges then typically it consists only of small components, 
but if the density is becomes enough then a single large component forms, 
usually accompanied by many separate small ones. Moreover, the small com
ponents tend on average to be smaller if the largest component is very large. 
This is a good example of the way in which simple models of networks can 
give us a feel for how more complicated real-world systems should behave in 
general. 

12.6.2 AVERAGE SIZE OF A SMALL COMPONENT 

A further important point to notice about Eq. (12.34) is that the average size 
of the small components does not grow with the number of vertices n. The 
typical size of the small components in a random graph remains constant as 

12.6 

8 

6 

.~ 4 
UJ 

2 

Mean degree c 

Figure 12.4: Average size of the small components in a random graph. The upper 
curve shows the average size (s) of the component to which a randomly chosen vertex 
belongs, calculated from Eq. (12.34). The lower curve shows the overall average size R 
of a component, calculated from Eq. (12.40). The dotted vertical line marks the point 
c = 1 at which the giant component appears. Note that, as discussed in the text, the 
upper curve diverges at this point but the lower one does not. 

the graph gets larger. We must, however, be a little careful with these state
ments. Recall that 7T, is the probability that a randomly chosen vertex belongs 
to a component of size s, and hence (s) as calculated here is not strictly the 
average size of a component, but the average size of the component to which a 
randomly chosen vertex belongs. Because larger components have more ver
tices in them, the chances of landing on them when we choose a random vertex 
is larger, in proportion to their size, and hence (8) is a biased estimate of the 
actual average component size. To get a correct figure for the average size of a 
component we need to make a slightly different calculation. 

Let n, be the actual number of components of size s in our random graph. 
Then the number of vertices that belong to components of size 8 is sn, and 
hence the probability of a randomly chosen vertex belonging to such a compo-

nent is 
sns 

Trs=-· 
n 

(12.35) 
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The average size of a component, which we will denote R, is 

R = ~.s!'3 = ~l,.:, n, = 1 - S 
Lsns nLslfs/s L:slTs/s' 

(12.36) 

where we have made use of Eq. (12.22). The remaining sum we can again 
evaluate using our generating function by noting that 

r' h(z) d _ ~ r' ,-1 d _ ~ n, in -- Z - L...lfs ir Z Z - L...-. 
o Z 5=1 . 0 5=1 S 

(12.37) 

A useful expression for II(z)/z can be obtained by rearranging Eq. (12.31) to 
yield 

h(z) = [1- eh(z)] dh, 
z dz 

(12.38) 

and hence we find that 

00 n j" dh j"-S I.: --" = [1- ch(z)]-d dz = (1 - ell) dli 
5=1 5 0 Z () 

= 1 - S - ~e(1 - S)2, (12.39) 

where we have used 11(1) = L n, = 1- S for the upper integration limit. 
Substituting this result into Eq. (12.36), we find that the average component 

size is 
2 

R = co2-_-c-+-c-;CS (12.40) 

As with Eq. (12.34), this expression is independent of n, so the average size of 
a small component indeed does not grow as the graph becomes large. 

On the other hand, R does not diverge at e = 1 as (s) does. At e = 1, 
with S = 0, Eq. (12.40) gives just R = 2. The reason for this is that, while the 
largest component in the network for c = 1 does become infinite in the limit of 
large n, so also does the total number of components. So the average size of a 
component is the ratio of two diverging quantities. Depending on the nature 
of the divergences, such a ratio could be infinite itself, or zero, or finite but non
zero in the special case where the two divergences have the same asymptotic 
form. In this instance the latter situation holds-both quantities are diverging 
linearly with n-and the average component size remains finite. A plot of R is 
included in Fig. 12.4 for comparison with (s). 

12.6.3 THE COMPLETE DISTRIBUTION OF COMPONENT SIZES 

So far we have calculated the average size of a small component in the random 
graph, but not the individual probabilities n, that specify the complete distri
bution of sizes. In principle, we should be able to calculate the n, by solving 

12.6 

Eq. (12.28) for the generating function h (z) and then differentiating according 
to Eq. (12.27) to get IT,. Unfortunately we cannot follow this formula in practice 
because, as mentioned above, Eq. (12.28) does not have a known solution. 

Remarkably, however, it turns out that we can still calculate the values of 
the individual ITSf by an alternative route. The calculations involve some more 
advanced mathematical techniques and if you are not particularly interested 
in the details it will do no harm to skip this section. If you're interested in this 
rather elegant development, however, read on. 

To calculate an explicit expression for the probabilities n, of the component 
sizes we make use of a beautiful result from the theory of complex variables, 
the Lagrange inversion lormula. The Lagrange inversion formula is a formula 
that allows the explicit solution of equations of the form 

I(z) = z1'(I(z)) (12.41) 

for the unknown function I(z), where 1'(1) is a known function which at 1= 0 
is finite, non-zero, and differentiable. 

Equation (12.41) has precisely the form of the equation for our generating 
function, Eq. (12.28). What's more, the Lagrange formula gives a solution for 
I (z) in terms of the coefficients of the series expansion of I (z) in powers of z, 
which is precisely what we want in the present case, since the coefficients are 
the probabilities IT" which is what we want to calculate. The Lagrange formula 
is thus perfectly suited to the problem in hand. Here we first derive the general 
form of the formula then apply it to the current problem.5 

Let us write the function I(z) in Eq. (12.41) as a series expansion thus: 

I(z) = I.:a,z', (12.42) 
5=1 

The coefficient n, in this expansion is given explicitly by 

(12.43) 

Cauchy's formula for the nth derivative of a function g(z) at z = Zo says that 

d"g I n! f g(z) 
dzll 2=20 = 2rri (; - 20)11+1 dz, 

(12.44) 

5The formula derived here is not the most general form of the Lagrange inversion formula. It 
is adequate for the particular problem we are interested in solving, but the full Lagrange inver
sion formula is even more powerful, and can solve a broader range of problems. For details, see 
Wilf [329J. 
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where the integral is around a contour that encloses Zo in the complex plane 
but encloses no poles in g(z). We will use an infinitesimal circle around Zo as 
our contour. 

Applying Cauchy's formula to (12.43) with g(z) = I'(z), Zo = 0, and n = 
s -1, we get 

(12.45) 

where the second integral is now around a contour in J rather than z. In this 
equation we are now thinking of 2 as being a function of J, z = z(f), rather 
than the other way around. We are perfectly entitled to do this-knowing 
either quantity specifies the value of the other6 

It will be important later that the contour followed by J surrounds the ori
gin, so let us pause for a moment to demonstrate that it does. OUf choice of 
contour for 2 in the first integral of Eq. (12.45) is an infinitesimal circle around 
the origin. Expanding Eq. (12.41) to leading order around the origin, we find 
that 

J(Z) = 2CP(f(0)) +0(22) = zcp(O) +0(z2), (12.46) 

where we have made use of the fact that J(O) = 0, which is easily seen from 
Eq. (12.41) given that cp(f) is non-zero and finite at J = 0 by hypothesis. In 
the limit of small Izl where the terms of order Z2 can be neglected, Eq. (12.46) 

implies that J traces a contour about the origin if z does, since the two are 
proportional to one another. 

We now rearrange our original equation, Eq. (12.41), to give the value of 2 

in terms of J thus 

z(f) = cprJ) , (12.47) 

and then substitute into Eq. (12.45) to get 

a, = _1_ f [¢(f)]' df. 
2nis J' (12.48) 

Since, as we have said, the contour encloses the origin, this expression can be 
written in terms of a derivative evaluated at the origin by again making use of 
Cauchy's formula, Eq. (12.44): 

a, = ~ [d~:~l [¢(f) I' Lo (12.49) 

6The situation gets complicated if z(f) is many-valued for some /' i.e., if fez) is non
monotonic. In our case, however, where the coefficients in the expansion of fez) are necessar
ily all non-negative because they are probabilities, fez) is monotonically increasing and no such 
problems arise. 
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Figure 12.5: Sizes of small components in the 
random graph. This plot shows the probabil
ity lIs that a randomly chosen vertex belongs 
to a small component of size s in a Poisson 
random graph with c = 0.75 (top), which is in 
the regime where there is no giant component, 
and c = 1.5 (bottom), where there is a giant 
component. 

Component size s 

This is the Lagrange inversion formula. This remarkably simple formula gives 
us, in effect, a complete series solution to Eq. (12.41). 

To apply the formula to the current problem, of the component size distri
butionfor the random graph,we setJ(z) -> h(z) andcp(f) -> e,("-I). Then the 

coefficients n, of h(z) are given by 

_ ~ [d'-l "(1<-11] 
ITs - s! dhs - 1 e 

11=0 

(12.50) 

These are the probabilities that a randomly chosen vertex belongs to a small 
component of size s in a random graph with mean degree c. Figure 12.5 shows 
the shape of n, as a function of s for two different values of c. As the plot 
shows, the distribution is heavily skewed, with many components of small 
size and only a few larger ones. 

12.7 PATH LENGTHS 

In Sections 3.6 and 8.2 we discussed the small-world effect, the observation 
that the typical lengths of paths between vertices in networks tend to be short. 
Most people find the small-world effect surprising upon first learning about it. 
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cuss of geodesic distances 
and diameters. 
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We can use the random graph model to shed light on how the effect arises by 
examining the behavior of the network diameter in the model. 

Recall that the diameter of a network is the longest geodesic distance be
tween any two vertices in the same component of the network. As we now 
show, the diameter of a random graph varies with the number n of vertices as 
In 11. Since In 11 is typically a relatively small number even when 11 is large, this 
offers some explanation of the small-world effect, although it also leaves some 
questions open, as discussed further below. 

The basic idea behind the estimation of the diameter of a random graph is 
simple. As discussed in Section 12.5, the average number of vertices s steps 
away from a randomly chosen vertex in a random graph is cS

• Since this num
ber grows exponentially with s it doesn't take very many such steps before the 
number of vertices reached is equal to the total number of vertices in the whole 
network; this happens when c' '" n or equivalently s '" In 11/ In c. At this point, 
roughly speaking, every vertex is within s steps of our starting point, implying 
that the diameter of the network is approximately In 11/ In c. 

Although the random graph is, as we have said, not an accurate model of 
most real-world networks, this is, nonetheless, believed to be the basic mech
anism behind the small-world effect in most networks: the number of vertices 
within distance s of a particular starting point grows exponentially s and hence 
the diameter is logarithmic in 11. We discuss the comparison with real-world 
networks in more detail below. 

The argument above is only approximate. It's true that there are on average 
CS vertices s steps away from any starting point so long as 5 is smalL But once 
c' becomes comparable with 11 the result has to break down since clearly the 
number of vertices at distance 5 cannot exceed the number of vertices in the 
whole graph. (Indeed it cannot exceed the number in the giant component.) 

One way to deal with this problem is to consider two different starting 
vertices i and j. The average numbers of vertices 5 and t steps from them 
respectively will then be equal to c' and c' so long as we stay in the regime 
where both these numbers are much less than 11. In the following calculation 
we consider only configurations in which both remain smaller than order n in 
the limit n ---+ 00 so as to satisfy this condition. 

The situation we consider is depicted in Fig. 12.6, with the two vertices i 
and j each surrounded by a "ball" or neighborhood consisting of all vertices 
with distances up to and including sand t respectively. If there is an edge be
tween the "surface" (i.e., most distant vertices) of one neighborhood and the 
surface of the other, as depicted by the dashed line, then it is straightforward 
to show that there is also an edge between the surfaces of any pair of neigh
borhoods with larger sort (or both). Turning that statement around, if there 

..........-t=2~ 

............... s = 3 -------.-

Figure 12.6: Neighborhoods of two vertices in a random graph. In the argument given 
in the text we consider the sets of vertices within distances sand t respectively of two 
randomly chosen vertices i and j. If there is an edge between any vertex on the surface 
of one neighborhood and any vertex on the surface of the other (dashed line), then there 

is a path between i and j of length s + t + 1. 

is no edge between the surfaces of our neighborhoods, then fhere is also no 
edge between any smaller neighborhoods, which means that the shortest path 
between i and j must have length greater than 5 + t + 1. The reverse is also 
trivially true, that a shortest path longer than s + t + 1 implies there is no edge 
between our surfaces. Thus the absence of an edge between the surfaces is 
a necessary and sufficient condition for the distance d;j between i and j to be 
greater than s + t+ 1. This in turn implies that the probability P(d;j > s + t+ 1) 
is equal to the probability that there is no edge between the two surfaces. 

There are on average c5 x ct pairs of vertices such that one lies on each 
surface, and each pair is connected with probability p = c / (n - 1) '" c / 11 

(assuming 11 to be large) or not with probability 1 - p. Hence P(d;j > S + t + 
1) = (1 - P )"H. Defining for convenience £ = s + t + 1, we can also write this 

as 

P(d;j > £) = (1- p),'-' = (1- ~)"-'. 
Taking logs of both sides, we find 

( c 
~ --- , 

11 

(12.51) 

(12.52) 
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where the approximate inequality becomes exact as n ---+ 00. Thus in this limit 

P(dij > f) = exp ( - ~). (12.53) 

The diameter of the network is the smallest value of £ such that P(dij > £) 
is zero, i.e., the value such that no matter which pair of vertices we happen to 
pick there is zero chance that they will be separated by a greater distance. In 
the limit of large 11, Eq. (12.53) will tend to zero only if c( grows faster than 11, 

meaning that our smallest value of R is the value such that c( = an1+' with 

a constant and to ---+ 0 from above. Note that we can, as promised, achieve 
this while keeping both c' and c' smaller than order n, so that our argument 
remains valid. 

Rearranging for £, we now find our expression for the diameter: 

R= Ina + lim (l+t)lnn = A+ Inn 
Inc E~'O Inc Inc' (12.54) 

where A is a constant. 7 Apart from the constant, this is the same result as 
we found previously using a rougher argument. The constant is known-it 
has a rather complicated value in terms of the Lambert W-function [114]-but 
for our purposes the important point is that it is (asymptotically) independent 
of n. Thus the diameter indeed increases only slowly with n, as In 11, making it 
relatively small in large random graphs. 

The logarithmic dependence of the diameter on n offers some explanation 
of the small-world effect of Section 3.6. Even in a network such as the acquain
tance network of the entire world, with nearly seven billion inhabitants (at the 
time of writing), the value of lnn/lnc can be quite small. Supposing each 
person to have about a thousand acquaintances,s we would get 

Inn ln6 x 109 

£ = Inc = lnl000 = 3.3 ... , (12.55) 

which is easily small enough to account for the results of, for example, the 
small-world experiments of Milgram and others [93,219,311]. 

7There are still some holes in our argument. In particular, we have assumed that the product of 
the numbers of vertices on the surface of our two neighborhoods is cS+1 when in practice this is only 
the average value and there will in general be some variation. Also the calculation should really 
be confined to the giant component, since the longest path always falls in the giant component 
in the limit of large n. For a careful treatment of these issues see, for instance, Fernholz and 
Ramachandran [114]. 

llThis appears to be a reasonable figure. Bernard et al. [36] estimated the typical number of 
acquaintances for people in the United States to be about 2000-see Section 3.2.1. 

12.8 PROBLEMS WITH THE RANDOM GRAPH 

On the other hand, although this calculation gives us some insight into the 
nature of the small-world effect, this cannot be the entire explanation. There 
are clearly many things wrong with the random graph as a model of real social 
networks, as we now discuss. 

12.8 PROBLEMS WITH THE RANDOM GRAPH 

The Poisson random graph is one of the best studied models of networks. In 
the half century since its first proposal it has given us a tremendous amount of 
insight into the expected structure of networks of all kinds, particularly with 
respect to component sizes and network diameters. The fact that it is both 
simple to describe and straightforward to study using analytic methods makes 
it an excellent tool for investigating all sorts of network phenomena. We will 
return to the random graph many times in the remainder of this book to help 
us understand the way networks behave. 

The random graph does, however, have some severe shortcomings as a 
network model. There are many ways in which it is completely unlike the real
world networks we have seen in the previous chapters. One clear problem is 
that it shows essentially no transitivity or clustering. In Section 12.4 we saw at 
the clustering coefficient of a random graph is C = c/(n -1), which tends to 
zero in the limit of large 11. And even for the finite values of 11 appropriate to 
real-world networks the value of C in the random graph is lypically very small. 
For the acquaintance network of the human population of the world, with its 
n '" 7 billion people, each having about 1000 acquaintances [175], a random 
graph with the same 11 and c would have a clustering coefficient of 

~ 1000 ~ 1 -7 
C - 7000000000 - 0 . (12.56) 

Whether the clustering coefficient of the real acquaintance network is 0.01 or 
0.5 hardly matters. (It is probably somewhere in between.) Either way it is 
clear that the random graph and the true network are in strong disagreement.' 

The random graph also differs from real-world networks in many other 
ways. For instance, there is no correlation between the degrees of adjacent 
vertices-necessarily so, since the edges are placed completely at random. The 
degrees in real networks, by contrast, are usually correlated, as discussed in 
Section 8.7. Many, perhaps most, real-world networks also show grouping of 

9This disagreement, highlighted particularly by Watts and Strogatz [323], was one of the ob
servations that prompted the current wave of interest in the properties of networks in the mathe
matical sciences, starting in the late 1990s. 
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Figure 12.7: Degree distribution of the Internet and a Poisson random graph. The 
dark bars in this plot show the fraction of vertices with the given degrees in the network 
representation of the Internet at the level of autonomous systems. The lighter bars 
represent the same measure for a random graph with the same average degree as the 
Internet. Even though the two distributions have the same averages, it is clear that they 
are entirely different in shape. 

their vertices into "communities," as discussed on Section 11.2.1, but random 
graphs have no such structure. And there are many other examples of inter
esting structure in real networks that is absent from the random graph. 

However, perhaps the most significant respect in which the properties of 
random graphs diverge from those of real-world networks is the shape of their 
degree distribution. As discussed in Section S.3, real networks typically have 
right-skewed degree distributions, with most vertices having low degree but 
with a small number of high-degree "hubs" in the tail of the distribution. The 
random graph on the other hand has a Poisson degree distribution, Eq. (12.10), 

which is not right-skewed to any significant extent. Consider Fig. 12.7, for 
example, which shows a histogram of the degree distribution of the Internet 
(darker bars), measured at the level of autonomous systems (Section 2.1.1). 
The right-skewed form is clearly visible in this example. On the same figure 
we show the Poisson degree distribution of a random graph (lighter bars) with 
the same average degree c as the Internet example. Despite having the same 
averages, the two distributions are clearly entirely different. It turns out that 

this difference has a profound effect on all sorts of properties of the network
we will see many examples in this book. This makes the Poisson random graph 
inadequate to explain many of the interesting phenomena we see in networks 
today, including resilience phenomena, epidemic spreading processes, perco
latioll, and many others. 

Luckily it turns out to be possible to generalize the random graph model to 
allow for non-Poisson degree distributions. This development, which leads to 
some of the most beautiful results in the mathematics of networks, is described 
in the next chapter. 

PROBLEMS 

12.1 Consider the random graph G(n, p) with mean degree c. 

a) Show that in the limit of large n the expected number of triangles in the network 
is ~C3. This means that the number of triangles is constant, neither growing nor 
vanishing in the limit of large n. 

b) Show that the expected number of connected triples in the network (as defined on 

page 200) is ! nc2
. 

c) Hence calculate the clustering coefficient C, as defined in Eq. (7.41L and confirm 
that it agrees for large n with the value given in Eq. (12.11). 

12.2 Consider the random graph G(n, p) with mean degree c. 

a) Argue that the probability that a vertex of degree k belongs to a small component 
is (1 - S)k, where 5 is the fraction of the network occupied by the giant compo

nent. 

b) Thus, using Bayes' theorem (or otherwise) show that the fraction of vertices in 
small components that have degree k is e- Cck(1 - S)k-l /k!. 

12.3 Starting from the generating function l1(z) defined in Eq. (12.26), or otherwise, 

show that 

a) the mean-square size of the component in a random graph to which a randomly 
chosen vertex belongs is 1/(1 - C)3 in the regime where there is no giant compo
nent; 

b) the mean-square size of a randomly chosen component in the same regime is 

1/[(1- c)(l- ~c)l. 

Note that both quantities diverge at the phase transition where the giant component 

appears. 
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12.4 In Section 7.8.2 we introduced the idea of a bicomponent. A vertex in a random 
graph belongs to a bicomponent if two or more of its neighbors belong to the giant 
component of the network (since the giant component completes a loop between those 
neighbors forming a bicomponent). In principle, a vertex can also be in a bicomponent 
if two or more of its neighbors belong to the same small component, but in practice this 
never happens, since that would imply that the small component in question contained 
a loop and, as we have seen, the small components in a random graph are trees and so 
have no loops. 

a) Show that the fraction of vertices in a random graph that belong to a bicomponent 
is 5, ~ (1- cu)(l- u), where u is defined by Eq. (12.14). 

b) Show that this expression can be rewritten as 52 ~ 5 + (1- 5) In(l- 5), where 5 
is the size of the giant component. 

c) Hence argue that the random graph contains a giant bicomponent whenever it 
contains an ordinary giant component. 

12.5 The cascade model is a simple mathematical model of a directed acyclic graph, 
sometimes used to model food webs. We take n vertices labeled i = 1 ... n and place an 
undirected edge betvveen each distinct pair with independent probability p, just as in 
the ordinary random graph. Then we add directions to the edges such that each edge 
runs from the vertex with numerically higher label to the vertex with lower labeL This 
ensures that all directed paths in the network run from higher to lower labels and hence 
that the network is acyclic, as discussed in Section 6.4.2. 

a) Show that the average in-degree of vertex i in the ensemble of the cascade model 
is (k:n) = (11 - i)p and the average out-degree is (kinl) = (i -l)p. 

b) Show that the expected number of edges that connect to vertices i and lower from 
vertices above i is (ni - P)p. 

c) Assuming n is even, what are the largest and smallest values of this quantity and 
where do they occur? 

In a food web this expected number of edges from high- to low-numbered vertices is a 
rough measure of energy ,flow and the cascade model predicts that energy flow will be 
largest in the middle portions of a food web and smallest at the top and bottom. 

12.6 We can make a simple random graph model of a network with clustering or tran
sitivity as follows. We take n vertices and go through each distinct trio of three vertices, 
of which there are G), and with independent probability p we connect the members 
of the trio together using three edges to form a triangle, where p = e/CI~l) with c a 
constant. 

a) Show that the mean degree of a vertex in this model network is 2e. 

b) Show that the degree distribution is 

if k is even, 
if k is odd. 

c) Show that the clustering coefficient, Eq. (7.41), is C ~ 1/ (2c + 1). 

d) Show that when there is a giant component in the network its expected size S as 
a fraction of network size satisfies S = 1 - e-- cS (2-Sj. 

e) What is the value of the clustering coefficient when the giant component fills half 

of the network? 
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CHAPTER 13 

RANDOM GRAPHS WITH GENERAL DEGREE 

DISTRIBUTIONS 

This chapter describes more sophisticated random graph 
models that mimic networks with arbitrary degree 
distributions 

IN THE previous chapter we looked at the classic random graph model, in 
. whlch pairs of vertices are connected at random with uniform probabili

ties. Although this model has proved tremendously useful as a source of in
sight into the structure of networks, it also has, as described in Section 12.8, a 
nu~ber of serious shortcomings. Chief among these is its degree distribution, 
whIch follows the Poisson distribution and is quite different from the degree 
dlstnbutIons seen in most real-world networks. In this chapter we show how 
~e can create more sophisticated random graph models, which incorporate ar
bItrary degree distributions and yet are still exactly solvable for many of their 
properties in the limit of large network size. 

The fundamental mathematical tool that we will use to derive the results 
of this chapter is the probability generating function. We have already seen in 
SectIon 12.6 one example of a generating function, which was useful in the cal
culation of the distribution of component sizes in the Poisson random graph. 
We begm thIS chapter with a more formal introduction to generating functions 
and to some of their properties which will be useful in later calculations. Read
ers interested in pursuing the mathematics of generating functions further may 
like to look at the book by Wilf [329j1 

1 Professor Wilf has generously made his book available for free in electronic form. You can 
download it from www.math.upenn.edurwilf/DownldGF . html. 
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13.1 GENERATING FUNCTIONS 

Suppose we have a probability distribution for a non-negative integer vari
able, such that separate instances, occurrences, or draws of this variable are 
independent and have value Ie with probability Pk. A good example of such a 
distribution is the distribution of the degrees of randomly chosen vertices in a 
network. If the fraction of vertices in a network with degree Ie is 17k then Pk is 
also the probability that a randomly chosen vertex from the network will have 

degree Ie 
The generating function for the probability distribution 17k is the polynomial 

() 2 3 "k g Z = po + plZ + P22 + p3Z + ... = i...J PkZ . (13.1 ) 
k=O 

Sometimes a function of this kind is called a probability generating function to 
distinguish it from another common type of function, the exponential generating 
function. We will not use exponential generating functions in this book, so for 
us all generating functions will be probability generating functions. 

If we know the generating function for a probability distribution Pk then 
we can recover the values of Pk by differentiating: 

Pk = ~ ~:~ I,~o (13.2) 

Thus the generating function gives us complete information about the proba
bility distribution and vice versa. The distribution and the generating function 
are really just two different representations of the same thing. As we will see, 
it is easier in many cases to work with the generating function than with the 
probability distribution and doing so leads to many useful new results about 

networks. 

13.1.1 EXAMPLES 

Right away let us look at some examples of generating functions. Suppose 
our variable Ie takes only the values 0, 1, 2, and 3, with probabilities po, PI, 
P2, and P3, respectively, and no other values. In that case the corresponding 
generating function would take the form of a cubic polynomial: 

(13.3) 

For instance, if we had a network in which vertices of degree 0, 1, 2, and 3 
occupied 40%, 30%, 20%, and 10% of the network respectively then 

g(z) =0.4+0.3z+0.222 +O.1z3 (13.4) 

429 



RANDOM GRAPHS WITH GENERAL DEGREE DISTRIBUTIONS 

430 

As another example, suppose that k follows a Poisson distribution with 
meane: 

ek 
-c 

pk=e k"!. 
Then the corresponding generating function would be 

00 (ez)k 
g(z) = e-c L -,- = e*-l) 

k~O k. 

(13.5) 

(13.6) 

Alternatively, suppose that k follows an exponential distribution of the form 

Pk = C e"",·Ak, (13.7) 

with'\ > 0. The normalizing constant is fixed by the condition that Lk Pk = 1, 
which gives C = 1 - e- A and hence 

(1 -A)-Ak Pk = - e e . (13.8) 

Then 
00 eA - 1 

g(z) = (1 - e-") L(e-Az)k = ~, 
k=O e z 

(13.9) 

so long as z < eA (If z :;> e" the generating function diverges. Normally, 
however, we will be interested in generating functions only in the range ° ::; 
z ::; 1 so, given that ,\ > ° and hence eA > 1, the divergence at e" will not be a 
problem.) 

13.l.2 POWER-LAW DISTRIBUTIONS 

One special case of particular interest in the study of networks is the power
law distribution. As we saw in Section 8.4, a number of networks, including 
the World Wide Web, the Internet, and citation networks, have degree distri
butions that follow power laws quite closely and this turns out to have inter
esting consequences that set these networks apart from others. To create and 
solve models of these networks it will be important for us to be able to write 
down generating functions for power-law distributions. 

There are various forms that are used to represent power laws in practice 
but the simplest choice, which we will use in many of our calculations, is the 
"pure" power law 

(13.10) 

for constant it > 0. This expression cannot apply all the way down to k = 0, 
however, or it would diverge. So commonly one stops at k = 1. The normal
ization constant C can then be calculated from the condition that Lk Pk = 1, 

13.1 

which gives 
00 

eLk-a = l. (13.11) 
k=l 

The sum unfortunately cannot be performed in closed form. It is, however, a 
common enough sum that it has a name-it is called the Riemann zeta function, 
denoted i;(it): 

Thus we can write C = 1/ i;(it) and 

for k = 0, 
for k :;> l. 

(13.12) 

(13.13) 

Although there is no closed-form expression for the zeta function, there exist 
good numerical methods for calculating its value accurately, and many pro
gramming languages and numerical software packages include functions to 
calculate it. 

For this probability distribution the generating function is 

(13.14) 

Again the sum cannot be expressed in closed form, but again it has a name-it 
is called the polylogarithm of z and is denoted Lia(z): 

Thus we can write 

00 

Lia(z) = L Icazk 

k=l 

( ) 
_ Lia(z) 

g z - i;(it) . 

(13.15) 

(13.16) 

This is not completely satisfactory. We would certainly prefer a closed-form 
expression as in the case of the Poisson and exponential distributions of Eqs. 
(13.6) and (13.9). But we can live with it. Enough properties of the polyloga
rithm and zeta functions are known that we can carry out useful manipulations 
of the generating function. In particular, since derivatives of our generating 
functions will be important to us, we note the following useful relation: 

dLi"(z) = ~ fk~azk = fk-I"-llZk-1 = Li"_l(Z) 
dZ dZ k~l k~l Z 

(13.17) 

We should note also that in real-world networks the degree distribution 
does not usually follow a power law over its whole range-the distribution 
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is not a "pure" power law in the sense above. Instead, it typically obeys a 
power law reasonably closely for values of lc above some minimum value kmin 

but below that point it has some other behavior. In this case the generating 
function will take the form 

g(z) = Qkmm -l(Z) + c L: k-"zk, (13.18) 
k=kmin 

where Q,,(z) = Lk~() Pkzk is a polynomial in z of degree nand C is a normaliz
ing constant. The sum in Eq. (13.18) also has its own name: it is called the Lerch 
transcendent2 In the calculations in this book we will stick to the pure power 
law, since it illustrates nicely the interesting properties of power-law degree 
distributions and is relatively simple to deal with, but for serious modeling 
one might sometimes have to use the cut-off form, Eq. (13.18). 

13.1.3 NORMALIZATION AND MOMENTS 

Let us now look briefly at some of the properties of generating functions that 
will be useful to us. First of all, note that if we set z = 1 in the definition of the 
generating function, g(z) = Lk Pkzk (Eq. (13.1», we get 

g(l) = L: Pk· (13.19) 
k=O 

If the probability distribution is normalized to unity, Lk Pk = 1, as are all the 
examples above, then this immediately implies that 

g(l) = 1. (13.20) 

For most of the generating functions we will look at, this will be true, but not 
all. As a counter-example, consider the generating function for the sizes of the 
small components in the Poisson random graph defined in Eq. (12.26). The 
probabilities 7[, appearing in this generating function were the probabilities 
that a randomly chosen vertex belongs to a small component of size s. If we 
are in the regime where there is a giant component in the network then not all 
vertices belong to a small component, and hence the probabilities 7[, do not 
add up to one. In fact, their sum is equal to the fraction of vertices not in the 
giant component. 

The derivative ofthe generating function g(z) of Eq. (13.1) is 

(13.21) 

2No, really. I'm not making this up. 

13.1 

(We will use the primed notation g'(z) for derivatives of generating functions 
extensively in this chapter, as it proves much less cumbersome than the more 
common notation dg / dz.) 

If we set z = 1 in Eq. (13.21) we get 

g'(I) = L:kPk = (k), (13.22) 
k=() 

which is just the average value of k. Thus, for example, if Pk is a degree distri
bution, we can calculate the average degree directly from the generating func
tion by differentiating. This is a very convenient trick. In many cases we will 
calculate a probability distribution of interest by calculating first its generating 
function. In principle, we can then extract the distribution itself by applying 
Eq. (13.2) and so derive any other quantities we want such as averages. But 
Eq. (13.22) shows us that we don't always have to do this. Some of the quan
tities we will be interested in can be calculated directly from the generating 
function without going through any intermediate steps. 

In fact, this result generalizes to higher moments of the probability distri
bution as welL For instance, note that 

(13.23) 

and hence, setting z = 1, we can write 

(13.24) 

It is not hard to show that this result generalizes to all higher moments as well: 

(13.25) 

This result can also be written as 

(13.26) 

13.1.4 POWERS OF GENERATING FUNCTIONS 

Perhaps the most useful property of generating functions-and the one that 
makes them important for the study of networks-is the following. Suppose 
we are given a distribution Pk with generating function g(z). And suppose 
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we have In integers kif i = 1 ... rn, which are independent random numbers 
drawn from this distribution. For instance, they could be the degrees of m 
randomly chosen vertices in a network with degree distribution Pk. Then the 
probability distribution of the sum L.:::l ki of those m integers has generating 
function [g(z)]"'. This is a very powerful result and it is worth taking a moment 
to see how it arises and what it means. 

Given that our integers are independently drawn from the distribution Ph 
the probability that they take a particular set of values {k i } is simply ITi Pk, and 
the probability 7[, that the values drawn add up to a specific sum s is the sum 
of these probabilities over all sets {lei} that add up to s: 

00 00 

7[, = L ... L J(S,L.:iki) rr::l Pk" (13.27) 
k1=O k",=O 

where J (a, b) is the Kronecker delta. Then the generating function h( z) for the 
distribution ITs is 

00 

s=o 
00 00 00 

= L Z' L ... L J(s, L.:i ki ) IT::1 Pk, 
5=0 kJ =0 k",=O 

00 00 III 

= L'" L ZL,k'TIPk, 
kl =0 k",=O i=l 

(13.28) 

Thus, for example, if we know the degree distribution of a network, it is a 
straightforward matter to calculate the probability distribution of the sum of 
the degrees of m randomly chosen vertices from that network. This will turn 
out to be important in the developments that follow. 

13.2 THE CONFIGURATION MODEL 

Let us turn now to the main topic of this chapter, the development of the theory 
of random graphs with general degree distributions. 

We can turn the random graph of Chapter 12 into a much more flexible 
model for networks by modifying it so that the degrees of its vertices are no 
longer restricted to having a Poisson distribution, and in fact it is possible to 

13.2 THE CONFIGURATION MODEL 

mlJdity the model so as to give the network any degree distribution we please. 
as with the Poisson random graph, which can be defined in several slightly 

different ways, there is more than one way to define random graphs with gen
eral degree distributions. Here we describe two of them, which are roughly 
the equivalent ofthe G( n, m) and G(n, p) random graphs of Section 12.1. 

The most widely studied of the generalized random graph models is the 
configuration model. The configuration model is actually a model of a random 
graph with a given degree sequence, rather than degree distribution. That is, 
the exact degree of each individual vertex in the network is fixed, rather than 
merely the probability distribution from which those degrees are chosen. This 
in turn fixes the number of edges in the network, since the number of edges 
is given by Eq. (6.21) to be m = ~ L.:,J(i. Thus this model is in some ways 
analogous to G (n, m), which also fixes the number of edges. (It is quite simple, 
however, to modify the model for cases where only the degree distribution is 
known and not the exact degree sequence. We describe how this is done at the 
end of this section.) 

Suppose then that we specify the degree ki that each ver
tex i = 1 ... n in our network is to take. We can create a 
random network with these degrees as follows. We give each 
vertex i a total of ki "stubs" of edges as depicted in Fig. 13.1. 
There are L ki = 2m stubs in total, where m is the total num
ber of edges. Then we choose two of the stubs uniformly at 
random and we create an edge by connecting them to one an
other, as indicated by the dashed line in the figure. Then we 
choose another pair from the remaining 2m - 2 stubs, connect 

See Section 8.3 for a dis
cussion of the distinction 
behveen degree sequences 
and degree distributions. 

• 

those, and so on until all the stubs are used up. The end re
sult is a network in which every vertex has exactly the desired 
degree. 

More specifically the end result is a particular matching of 
the stubs, a particular set of pairings of stubs with other stubs. 
The process above generates each possible matching of stubs 
with equal probability. Technically the configuration model 

Figure 13.1: The configuration model. Each 
vertex is given a number of "stubs" of edges 
equal to its desired degree. Then pairs of stubs 
are chosen at random and connected together 
to form edges (dotted line). 

is defined as the ensemble in which each matching with the chosen degree 
sequence appears with the same probability (those with any other degree se
quence having probability zero), and the process above is a process for draw
ing networks from the configuration model ensemble. 

The uniform distribution over matchings in the configuration model has 
the important consequence that any stub in a configuration model network is 
equally likely to be connected to any other. This, as we will see, is the crucial 
property that makes the model solvable for many of its properties. 
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There are a couple of minor catches with the netvvork generation process 
described here. First, there must be an even number of stubs overall if we 
want to end up with a network consisting only of vertices and edges, with no 
dangling stubs left over. This means that the sum Li ki of the degrees must 
add up to an even number. We will assume that the degrees we have chosen 
satisfy this condition, otherwise it is clearly not possible to create a graph with 
the given degree sequence. 

A second issue is that the network may contain self-edges or multiedges, 
or both. There is nothing in the network generation process that prevents us 
from creating an edge that connects a vertex to itself or that connects two ver
tices that are already connected by another edge. One might imagine that one 
could avoid this by rejecting the creation of any such edges during the pro
cess, but it turns out that this is not a good idea. A network so generated is no 
longer drawn uniformly from the set of possible matchings, which means that 
properties of the model can no longer be calculated analytically, at least by any 
means currently known. It can also mean that the network creation process 
breaks down completely. Suppose, for example, that we come to the end of the 
process, when there are just two stubs left to be joined, and find that those two 
both belong to the same vertex so that joining them would create a self-edge. 
Then either we create the self-edge or the network generation process fails. 

In practice, therefore, it makes more sense to allow the creation of both 
multiedges and self-edges in our networks and the standard configuration 
model does so. Although some real-world networks have self-edges or multi
edges in them, most do not, and to some extent this makes the configuration 
model less satisfactory as a network model. However, as shown below, the 
average number of self-edges and multiedges in the configuration model is a 
constant as the network becomes large, which means that the density of self
edges and multiedges tends to zero in this limit. This means, to all intents and 
purposes, that we can ignore the self-edges and multi edges in the large size 
limit.' 

A further issue with the configuration model is that, while all matchings 
of stubs appear with equal probability in the model, that does not mean that 
all networks appear with equal probability because more than one matching 
can correspond to the same network, i.e., the same topological connections 
between vertices. If we label the stubs to keep track of which is which, then 

3Even for finite-sized networks the difference betvveen the properties of a configuration model 
network and a similar network without self-edges and multiedges would only result in a correc
tion of order lin into our results. For the large networks that are the focus of most modern net
work studies this means that the error introduced by allowing self-edges and multiedges is small. 
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Figure 13.2: Eight stub matchings that all give the same network. This small network is composed of three vertices 
of degree two and hence having two stubs each. The stubs are lettered to identify them and there are two distinct 
permutations of the stubs at each vertex for a total of eight permutations overall. Each permutation gives rise to a 
different matching of stub to stub but all matchings correspond to the same topological configuration of edges, and 
hence there are eight ways in which this particular configuration can be generated by the stub matching process. 

there are typically many different ways we can join up pairs of labeled stubs to 
create the same final configuration of edges. Figure 13.2 shows an example of 
a set of eight matchings that all correspond to the same three-vertex network. 

In general, one can generate all the matchings that correspond to a given 
network by taking anyone matching for that network and permuting the stubs 
at each vertex in every possible way. Since the number of permutations of the 
Ie, stubs at a vertex i is ki !, this implies that the number of matchings corre
sponding to each network is N( {k i }) = TIi ki !, which takes the same value for 
all networks, since the degrees are fixed. This implies that in fact networks 
occur with equal probability in the configuration model: if there are 0 ( {ki } ) 

matchings, each occurring with the same probability, then each network occurs 
with probability N / O. 

However, this is not completely correct. If a network contains self-edges 
or multiedges then not all permutations of the stubs in the network result in 
a new matching of stubs. Consider Fig. 13.3. Panel (a) shows a network with 
the same degree sequence as those of Fig. 13.2, but a different matching of the 
stubs that creates a network with one self-edge and a multiedge consisting of 
two parallel single edges. In panel (b) we have permuted the stubs a and b 
at the ends of the self-edge but, as we can see, this has not resulted in a new 
matching of the stubs themselves. Stubs a and b are still connected to one 
another just as they were before. (The network is drawn differently now, but 
in terms of the matching and the topology of the edges nothing has changed 
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Figure 13.3: Permutations that do not produce new matchings. (a) The network shown 
here has the same degree sequence as those of Fig. 13.2 but a different configuration of 
edges, having one self-loop and a multiedge consisting of two parallel edges. (b) If we 
permute the stubs a and b of the self-edge we do not generate a new matcillng, because 
a is still matched with h, just as before. (c) If we permute the stubs at either end of a 
multiedge in exactly the same way we do not generate a new matching, since each stub 
at one end of the multiedge is still matched with the same stub at the other end. 

from panel (a).) In panel (c) we have identically permuted the stubs at both 
ends of the multiedge. Again this has no effect on which stubs are matched 
with which others. 

In general, for each multi edge in a network a permutation of the stubs at 
one end fails to generate a new matching if we simultaneously permute the 
stubs at the other end in the same way. This means that the total number of 
matchings is reduced by a factor of Aj!, since Aj is equal to the multiplicity 
of the edge between i and j. Indeed, this expression is correct even for vertex 
pairs not connected by a multiedge, if we adopt the convention that O! = 1. 
For self-edges there is a further factor of two because the interchange of the 
two ends of the edge does not generate a new matching. Combining these 
results, the number of matchings corresponding to a network turns out to be 

N = Iliki! 
I1i<j Aij! Il Aii!! ' 

(13.29) 

where n!! = n(n - 2)(n - 4) ... 2 with n even is the so-called double factorial 
of n. Then the total probability of a particular network within the configura
tion model ensemble is N / [1 as before. Since the denominator in Eq. (13.29) 
depends not only on the degree sequence but also on the structure of the net
work itself, different networks do appear with different probabilities. 

As we mentioned, however, the average densities of self-edges and multi
edges in the configuration model vanish as n becomes large, so that the vari-

13.2 THE CONFIGURATION MODEL 

ation in probabilities is relatively small in the large-n limit, but it nonetheless 
does occasionally assume some importance and is therefore worth bearing in 
mind (see, for instance, Ref. [220]). 

As discussed above, we are sometimes (indeed often) interested in the case 
where it is the degree distribution of the network that is specified rather than 
the degree sequence. That is, we specify the probability distribution Pk from 
which the degree sequence is drawn rather than the sequence itself. We can 
define an obvious extension of the configuration model to this case: we draw 
a degree sequence from the specified distribution and then generate a network 
with that degree sequence using the technique described above. More pre
cisely, we define an ensemble in which each degree sequence {ki} appears with 
probability Ili Pk,' Then if we can calculate an average value X( {lei}) for some 
quantity of interest X in the standard configuration model, the average value 
in the extended model is given by 

00 00 " 

(X) = I: I: X( {lei}) DPk,. (13.30) 
kr=O k,,=O i=O 

In practice the difference between the two models is not actually very great. 
As we will see, the crucial parameter that enters into most of our configuration 
model calculations is the fraction of vertices that have each possible degree k. 
In the extended model above, this fraction is, by definition, equal to Pk in the 
limit of large n. If, on the other hand, the degree sequence is fixed then we sim
ply calculate the fraction from the degree sequence and then use those num
bers. In either the case the formulas for calculated quantities are the same. 

13.2.1 EDGE PROBABILITY IN THE CONFIGURATION MODEL 

A central property of the configuration model is the probability Pij of the oc
currence of an edge between two specified vertices, i and j. Obviously if either 
vertex i or vertex j has degree zero then the probability of an edge is zero, so let 
us assume that ki, ki > O. Now consider anyone of the stubs that emerges from 
vertex i. What is the probability that this stub is connected by an edge to any of 
the stubs of vertex j? There are 2m stubs in total, or 2m - 1 excluding the one 
connected to i that we are currently looking at. Of those 2m - 1, exactly Ie] of 
them are attached to vertex j. So, given that any stub in the network is equally 
likely to be connected to any other, the probability that our particular stub is 
connected to any of those around vertex j is lej / (2m - 1). But there are ki stubs 
around vertex i, so the total probability of a connection between i and j is 

kik j 
Pij=-2 l' m-

(13.31) 
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Technically, since we have added the probabilities of independent events, this 
is really the average number of edges between i and j, rather than the proba
bility of having an edge at all. But in the limit of large m, this number becomes 
small (for given ki, kj)' and the average number of edges and the probability of 
an edge become equal. Also in the limit of large m we can ignore the -1 in the 
denominator and hence we can write 

(13.32) 

Note that, even though we assumed lei, le j > 0, this expression also gives the 
right result if either degree is zero, namely that in that case the probability of 
connection is zero. 

We can use this result, for example, to calculate the probability of having 
two edges between the same pair of vertices. The probability of having one 
edge between vertices i and j is Pij as above. Once we have one edge between 
the vertices the number of available stubs at each is reduced by one, and hence 
the probability of having a second edge is given by Eq. (13.32) but with ki and 
kj each reduced by one: (ki - l)(kj - 1)/2m. Thus the probability of having 
(at least) two edges, i.e., of having a multiedge between i and j, is kikj(ki -
1) (k j - 1) / (2m)' and, summing this probability over all vertices and dividing 
by two (to avoid double counting of vertex pairs), we find that the expected 
total number of multiedges in the network is 

1 1 
2(2m)2 ~kikJ(ki - l)(lej -1) = 2(k)' n' L;ki(ki -1) I(lej(lej -1) 

= ~ [(k') - (Ie)]' (13.33) 
2 (k) , 

where 

(13.34) 
1 

(Ie) = - Lki' 
n i 

and we have used 2m = (Ie)n (see Eq. (6.23». Thus the expected number of 
multiedges remains constant as the network grows larger, so long as (Ie') is 
constant and finite, and the density of multiedges-the number per vertex
vanishes as 1/ n. We used this result in a number of our earlier argurnents.4 

Another way to derive the expression in Eq. (13.32) is to observe that there 
are kile j possible edges we could form between vertices i and j, while the to
tal number of possible edges in the whole graph is the number of ways of 

"Por networks with power-law degree distributions (k2 ) diverges, as described in Section 8.4.2, 
and in that case the density of multiedges may not vanish or may do so more slowly than l/n. 

13.2 THE CONFIGURATION MODEL 

choosing a pair of stubs from the 2m total stubs, or en = m(2m - 1). The 
probability that any particular edge falls between i and j is thus given by the 
ratio leikj/m(2m -1), and if we make a total of m edges then the expected to
tal number of edges between i and j is m times this quantity, which gives us 
Eq. (13.31) again. 

The only case in which this derivation is not quite right is for self-edges. In 
that case the number of pairs of stubs is not leikj but instead is (~) = ~ki(lei -1) 
and hence the probability of a self-edge from vertex i to itself is 

lei(ki -1) 
Pii = 4m . (13.35) 

We can use this result to calculate the expected number of self-edges in the 
network, which is given by the sum over all vertices i: 

" .. _ "ki(ki -1) _ (k') - (k) 
,!p" - '! 4m - 2(k) , (13.36) 

This expression remains constant as n -+ 00 provided (k2 ) remains constant, 
and hence, as with the multiedges, the density of self-edges in the network 
vanishes as 1/ n in the limit of large network size. 

We can use Eqs. (13.32) and (13.35) to calculate a number of other prop
erties of vertices in the configuration model. For instance, we can calculate 
the expected number nij of common neighbors that vertices i and j share. The 
probability that i is connected to another vertex 1 is Pi/ and the probability that 
j is connected to the same vertex would likewise normally be Pjl. However, 
as with the calculation of multiedges above, if we already know that i is con
nected to 1, then the number of available stubs at vertex 1 is reduced by one 
and, rather than being given by the normal expression (13.32), the probability 
of a connection between j and 1 is kj(k/ -1)/2m. Multiplying the probabili
ties for the two edges and summing over 1, we then get our expression for the 
expected number of common neighbors of i and j: 

. _ "kih kj(k/ -1) 
nij - L., 2 2 / m m 

kikj L/ k/(k/ -1) 
2m n(lc) 

(k') - (k) 
= Pij (k) (13.37) 

Thus the probability of sharing a common neighbor is equal to the probabil
ity Pij = kikj/2m of having a direct connection times a multiplicative factor 
that depends only on the mean and variance of the degree distribution but not 
on the properties of the vertices i and j themselves. 
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In this calculation we have ignored the fact that the probability of self
edges, Eq. (13.35), is different from the probability for other edges. As we 
have seen, however, the density of self-edges in the configuration model tends 
to zero as n ---J. co, so in that limit it is usually safe to make the approximation 
that Eq. (13.32) applies for all i and j. 

13.2.2 RANDOM GRAPHS WITH GIVEN EXPECTED DEGREE 

The configuration model of the previous section is, as we have said, similar in 
some ways to the standard random graph G(n, m) described in Section 12.1, in 
which we distribute a fixed number m of edges at random between n vertices. 
In the configuration model the total number of edges is again fixed, having 
value m = 1 Li ki' but in addition we now also fix the individual degree of 
every vertex as well. 

It is natural to ask whether there is also an equivalent of G(n, p )-the model 
in which only the probability of edges is fixed and not their number-and 
indeed there is. We simply place an edge between each pair of vertices i, j 
with independent probabilities taking the form of Eq. (13.32). We define a 
parameter Ci for each vertex and then place an edge betvveen vertices i and j 
with probability pi] = CiCj 12m. As with the configuration model, we must 
allow self-edges if the model is to be tractable, and again self-edges have to 
be treated a little differently from ordinary edges. It turns out that the most 
satisfactory definition of the edge probability isS 

where m is now defined by6 

fori",j, 
for i = j, 

(13.38) 

(13.39) 

5 As before, Pij should really be regarded as the expected number of edges between i and j 
rather than the probability and in fact the proper formulation of the model is that we place a 
Poisson-distributed number of edges with mean Pi} between each pair of vertices i,j. Thus the 
model can in principle have multiedges as well as self-edges, just as in the configuration model. 
In the limit of large m and constant Cir howevel~ the probability and the expected number again 
become equal, and the density of multiedges tends to zero, so the distinction is unimportant. 

6 Another way of putting this is that the average value (Aii; of an element of the adjacency 
matrix is Simply (AU; = Cic/2m for all i,j-recall that the diagonal element Aii of the adjacency 
matrix is defined to be twice the number of self-edges at vertex i, and this compensates for the 
extra factor of two in Eq. (13.38). 
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With this choice the average number of edges in the network is 

" " CiCj "cf _" CiCj _ 
~Pij = ~ 2111 + ~ 4111 - ~ 4111 - In, 
J5cJ 1<J J IJ 

(13.40) 

as before. We can also calculate the average number of ends of edges connected 
to a vertex i, i.e., its average degree (k i ). Allowing for the fact that a self-edge 
contributes two ends of edges to the degree, we get 

CT "CiCj " CiCj 
(k i ) = 2Pii + L Pij = -2 + ~ -2- = ~ -2 = Ci· 

j(",i) m j(",i) In j m 
(13.41) 

In other words the parameters Ci appearing in the definition of pij' Eq. (13.38), 

are the average or expected degrees in this model, just as the parameter C in 
G( n, p) is the average degree of a vertex. The actual degree of a vertex could 
in principle take almost any value, depending on the luck of the draw about 
which edges happen to get randomly created and which do not. In fact one can 
show that the degree of vertex i will have a Poisson distribution with mean Ci, 

meaning that in practice it will be quite narrowly distributed about Ci, but there 
will certainly be some variation, unless Ci is zero? Note that Ci does not have 

7The probabilities of edges between vertex i and each other vertex are independent, which 
immediately implies that the degree has a Poisson distribution. This may be obvious to you
if you're a statistician, for example-but if not, here is a proof, which makes use of generating 
functions. 

The probability that there are edges connecting vertex i to any specific set of vertices, including 
itself, is given by a product of factors Pij for each edge present and (1 ~ Pij) for each edge not 
present. This product can conveniently be written in the form 

pt,,12(1- Pi;)l-l1,,12 n p~'I(1 ~ Pij)l-A,i, 
i{ Ii) 

where Aii is the standard adjacency matrix and we adopt the convention that 00 = 1 for any cases 
where Pij = O. Note that it is important to separate out the term for Pii as shown, since it takes a 
slightly different form from the others. Recall that a self-edge is represented by a diagonal element 
Aii = 2 in the adjacency matrix (see Section 6.2) and we must allow for this with the factors of two 
above. 

The probability pii) that vertex i has degree exactly k is the sum of these probabilities over all 
cases where there the ith row of the adjacency matrix adds up to k (including the 2s that appear 
for self-edges, since a self-edge contributes +2 to the degree). We can write this sum as 

" '(k ~ A ) A,,/2(l .. )1 A,,/2 n 1/"(1 p .)I-A., L...; () 'L.] ·ij Pii ~PII llj(lil i] - i] , 

!l",~O,l 

where o(a,b) is the Kronecker delta. It is tricky to evaluate this sum directly because of the con
straint imposed by the delta function, but we can do it using a generating function. Multiply
ing both sides of the equation by Zk, summing over all k, and defining the generating function 

gi(Z) = Lk piiJzk, we get 
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to be an integer, unlike the degrees lei appearing in the configuration model. 
Thus in this model we specify the expected number of edges m and the ex

pected degree sequence { Ci} of the network but not the actual number of edges 
and actual degree sequence. This is again analogous to G(n, p), in which we 
specify only the expected number of edges and not the actual number. Un
fortunately, this means we usually cannot choose the degree distribution of our 
network, because the distribution of the actual degrees ki is not the same as 
the distribution of the expected degrees Ci. This is a substantial disadvantage 

I.: .. I.: z[.A'p~'/'(I_ Ph)l-A,12 TI p~'(I- Pi;)l-A, 
A,,--O,2 A",=O,l j(i-i} 

I.: I.: (piiZ')A,,12(1- Pii)l-A,/, TI (Piiz)A'(1- Pij)'-A,. 
il.,,=O,2 A,,,=O,l j(#i) 

~ (1- Pii + PhZ') TI (I - Pi; + PijZ) 
j{i'i) 

[ 
C' 

= 1+----.L(z2 
4111 

I)] TI [I + C2iC; (z -I)]. 
i{fi ) m 

Taking logs of both sides and going to the limit of large size, where 111 -----7 co (with the Cj remaining 
finite), we then get 

Ing;(z)~ lim{ln[I+~(Z'-I)] + ,I.: In[l+ CiCj(Z_I)]} 
1>1--->00 4m . 2m 

;(t'j 

cf 2 Ci C) 
~ -(z -1)+ I.: -(z-I) 

4111 jUi) 2m 

cf 2 CT II Cjc} 
~-(z -I)--(z-I)+I.:-(z-I) 

4111 2m j=12m 

2 2 

~-"'-(z2--I)--"'-(Z-I)+ci(Z I) 
4111 2m 

~C'(Z-I)[I+ l i (Z-I)]. 
4m 

where we have made use of Eq. (13.39) in the second-ta-last line. For large 11'1, the second term in 
the square brackets becomes negligible compared to the first and, taking exponentials again, 

gi(Z) = eCi (z-1), 

Now we can derive the probability distribution of the degree of vertex i by differentiating: 

(i) _ 1 d
k 

g!. I _ -c, c7 
Pk - kI dzk - e kI ' 

. z=o . 

which is indeed a Poisson distribution, with mean Ci, as promised. 

13.3 EXCESS DEGREE DlSTRIBUTlON 

of the model since the degree distribution is widely considered to be a crucial 
property of networks.8 

This is unfortunate, because this model is in other respects a very nice one. 
Il is straightforward to treat analytically and many of the derivations are sub
stantially simpler for this model than for the configuration model. Nonethe
less, because we place such a premium on being able to choose the degree 
distribution, this model is in fact hardly ever used in real calculations of the 
properties of networks. Instead, most calculations are made using the configu
ration model and this is the direction that we will take in this book as well. In 
the following sections, we describe how one can make use of the machinery of 
generating functions to calculate many of the properties of the configuration 
model exactly in the limit of large network size. 

13.3 EXCESS DEGREE DISTRIBUTION 

In the remainder of this chapter we describe the calculation of a variety of 
properties of the configuration model. We begin our discussion with some 
fundamental observations about the model-and networks in general-that 
will prove central to later developments. 

Consider a configuration model with degree distribution p" meaning that 
a fraction Pk of the vertices have degree k. (We can consider either the standard 
version of the model in which the degree sequence is fixed, as in Section 13.2, 
or the version of Eq. (13.30) in which only the distribution is fixed but not the 
exact degree sequence.) The distribution Pk tells us the probability that a vertex 
chosen uniformly at random from our network has degree k. But suppose 
instead that we take a vertex (randomly chosen or not) and follow one of its 
edges (assuming it has at least one) to the vertex at the other end. What is the 
probability that this vertex will have degree k? 

The answer cannot just be Pk. For instance, there is no way to reach a ver
tex with degree zero by following an edge in this way, because a vertex with 
degree zero has no edges. So the probability of finding a vertex of degree zero 
is itself zero, and not po. 

In fact, the correct probability for general k is not hard to calculate. We 
know that an edge emerging from a vertex in a configuration model network 
has equal chance of terminating at any "stub" of an edge anywhere else in the 
network (see Section 13.2). Since there are Li ki = 2m stubs in total, or 2m - 1 

81t is easy to see that there are some degree distributions that the model cannot reproduce at 
all-any distribution for which Pk is exactly zero for any k, for instance, since there is always a 
non-zero probability that any vertex can have any degree. 
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excluding the one at the beginning of our edge, and k of them are attached 
to any particular vertex with degree k, our edge has probability k/(2111 -1) 
of ending at any particular vertex of degree k. In the limit of large network 
size, where 111 becomes large (assuming the degree distribution, and hence the 
average degree, remain constant), we can ignore the -1 and just write this as 
k/2m. 

Given that Pk is the total fraction of vertices in the network with degree k, 
the total number of such vertices is nph and hence the probability of our edge 
attaching to any vertex with degree Ie is 

(13.42) 

where (k) is the average degree over the whole network and we have made 
use of the fact that 2m = n(k), Eq. (6.23). 

Thus the probability that we reach a vertex of degree k upon following 
an edge in this way is proportional not to Pk but to kpk. To put that another 
way, the vertex you reach by following an edge is not a typical vertex in the 
network. It is more likely to have high degree than a typical vertex. Physically, 
the reasomng behind this observation is that a vertex with degree k has kedges 
attached to it, and you can reach that vertex by following anyone of them. 
Thus if we choose an edge and follow it you have k times the chance of reaching 
a vertex wIth degree k that you have of reaching a vertex with degree 1. 
. It is important to recognize that this is a property specifically of the con

figuration model (or similar random graph models). In the real world, the 
degrees of adjacent vertices in networks are often correlated (see Section 7.13) 
and hence the probability of reaching a vertex of degree Ie when we follow an 
edge depends on what vertex we are coming from 9 Nonetheless, it is found to 
apply approximately to many real-world networks, which is one of the reasons 
why insights gained from the configuration model are useful for understand
ing the world around us. 

Equation (13.42) has some strange and counter-intuitive consequences. As 
an example, consider a randomly chosen vertex in the configuration model 
and let us calculate the average degree of a neighbor of that vertex. If we were 
using the configuration model to model a friendship network, for instance, 
the average degree of an individual's network neighbor would correspond to 
the average number of friends their friend has. This number is the average 

900 the other hand, if we pick a random edge in a network and follow it to one of its ends then 
the degree of the vertex we reach is distributed according to (13.42), regardless of whether d:grees 
are correlated or not. 

13.3 EXCESS DEGREE DISTRIBUTION 

of the distribution in Eq. (13.42), which we get by multiplying by k and then 
summing over k thus:10 

kp (k') 
average degree of a neighbor = ~Ie (k) = (Ie)· (13.43) 

Note that the average degree of a neighbor is thus different from the average 
degree (Ie) of a typical vertex in the network. In fact, it is in general larger, as 
we can show by calculating the difference 

(k') (k) _ 1 (' ()') rTf 7J0 - - (k) (k) - Ie = (Ie)' (13.44) 

where rTf = (k') - (k)2 is the variance of the degree distribution. The variance, 
which is the square of the standard deviation, is necessarily non-negative and 
indeed is strictly positive unless every single vertex in the network has the 
same degree. Let us assume that there is some variation in the degrees so that 
rTf is greater than zero. The average degree (k) is also greater than zero, unless 
all vertices have degree zero. Thus Eq. (13.44) implies that (k') / (k) - (k) > 0, 

or 

(13.45) 

In other words, the average degree of the neighbor of a vertex is greater than 
the average degree of a vertex. In colloquial terms, "Your friends have more 
friends than you do." 

At first sight, this appears to be a very strange result. Certainly it seems 
likely that there will be some vertices in the network with higher degree than 
the average. But there will also be some who have lower degree and when 
you average over all neighbors of all vertices surely the two should cancel out. 
Surely the average degree of a neighbor should be the same as the average de
gree in the network as a whole. Yet Eq. (13.45) tells us that this is not so. And 
the equation really is correct, You can create a configuration model network 
on a computer and average the degrees of the neighbors of every vertex, and 
you'll find that the formula works to very high accuracy. Even more remark
ably, as first shown by Feld [113], you can do the same thing with real networks 
and, although the configuration model formula doesn't apply exactly to these 
networks, the basic principle still seems to hold. Here, for instance, are some 
measurements for tvvo academic collaboration networks, in which scientists 

lOThe ratio (k2 ) I (k) that appears in Eg. (13.43) crops up repeatedly in the Shtdy of nehvorks. It 
appeared previously in Section 13.2.1 and it will come up in many later calculations. 
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are connected together by edges if they have coauthored scientific papers, and 
for a recent snapshot of the structure of the Internet at the autonomous system 
level: 

Average Average ---- (k') 

Network n degree neighbor degre~ (k) 
Biologists 1520252 15.5 68.4 130.2 

Mathematicians 253339 3.9 9.5 13.2 
Internet 22963 4.2 224.3 261.5 

According to these results a biologist's collaborators have, on average, more 
than four times as many collaborators as they do themselves. On the Inter
net, a node's neighbors have more than 50 times the average degree! Note 
that in each of the cases in the table the configuration model value of (k2 ) / (lc) 
overestimates the real average neighbor degree, in some cases by a substantial 
margin,u This is typical of calculations using simplified network models: they 
can give you a feel for the types of effect one might expect to see, or the general 
directions of changes in quantities. But they usually don't give quantitatively 
accurate predictions for the behavior of real networks. 

The fundamental reason for the result, Eq. (13.45), is that when you go 
through the vertices of a network and average the degrees of the neighbors 
of each one, many of those neighbors appear in more than one average. In fact, 
a vertex with degree lc will appear as one of the neighbors of exactly k other 
vertices, and hence appear in lc of the averages. This means that high-degree 
vertices are over-represented in the calculations compared with low-degree 
ones and it is this bias that pushes up the overall average value. 

In most of the calculations that follow, we will be interested not in the total 
degree of the vertex at the end of an edge but in the number of edges attached 
to that vertex other than the one we arrived along. For instance, if we want 
to calculate the size of the component to which a vertex i belongs then we 
will want to know first of all how many neighbors i has, and then how many 
neighbors those neighbors have, other than i, and so on. 

The number of edges attached to a vertex other than the edge we arrived 
along is called the excess degree of the vertex and it is just one less than the total 
degree. Since the vertex at the end of an edge always has degree at least 1 
(because of that edge) the minimum value of the excess degree is zero. 

llThere is no reason in principle why the configuration model should always overestimate the 
average degree of a neighbor. In some cases it could underestimate too. 

13.4 CLUSTERING COEFFICIENT 

We can calculate the probability distribution of the excess degree from Eq. 
(13.43). The probability qk of having excess degree k is simply the probability 
of having total degree k + 1 and, putting k -; k + 1 in Eq. (13.43), we get 

(k+1)pk+l 
qk = (k) . (13.46) 

(Note that the denominator is still just (k), and not (k + 1), as you can verify for 
yourself by checking that Eq. (13.46) is correctly normalized so that Lk~O qk = 

1.) 
The distribution qk is called the excess degree distribution and it will come up 

repeatedly in the sections that follow. It is the probability distribution, for a 
vertex reached by following an edge, of the number of other edges attached to 

that vertex. 

13.4 CLUSTERING COEFFICIENT 

As a simple application of the excess degree distribution, let us calculate the 
clustering coefficient for the configuration model. Recall that the clustering co
efficient is the average probability that two neighbors of a vertex are neighbors 

of each other. 
Consider then a vertex v that has at least two neighbors, which we will 

denote i and j. Being neighbors of v, i and j are both at the ends of edges 
from v, and hence the number of other edges connected to them, ki and ki 
are distributed according to the excess degree distribution, Eq. (13.46). The 
probability of an edge between i and j is then kik/2m (see Eq. (13.32)) and, 
averaging both ki and k

J 
over the distribution q" we get an expression for the 

clustering coefficient thus: 
, 

- ~ ~'2 - ~ [~k ] C - "--- qk,qk, 2m - 2m L.., qk 
k"k,-O k-O , 

= ~( )' [f: k(k + l)Pk .. ,l] 
2m k k~O 

= -~ [f:. (k _1)kPk]2 
2m(k) k~O 

1 [(k') - (k) ]2 
n (k)3 

(13.47) 

where we have made use of 2m = n(lc), Eq. (6.23). 
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Like the clustering coefficient of the Poisson random graph, Eq. (12.11), 
this expression goes as n -1 for fixed degree distribution, and so vanishes in 
the limit of large system size. Hence, like the Poisson random graph, the 
configuration model appears to be an unpromising model for real-world net
works with high clustering. Note, however, that Eq. (13.47) contains the sec
ond moment (Ie') of the degree distribution in its numerator which can become 
large, for instance in networks with power-law degree distributions (see Sec
tion 8.4.2). This can result in surprisingly large values of C in the configuration 
model. For further discussion of this point see Section 8.6. 

13.5 GENERATING FUNCTIONS FOR DEGREE DISTRIBUTIONS 

In the calculations that follow, we will make heavy use of the generating func
tions for the degree distribution and the excess degree distribution of a net
work. We will denote these generating functions by go (z) and g, (z) respec
tively. They are defined by 

00 

ga(z) = I: Pkzk , 
k=O 

00 

g, (z) = I: qkzk 

k=O 

(13.48) 

(13.49) 

Although it will be convenient to have separate notations for these two com
monly occurring functions, they are not really independent, since the excess 
degree distribution is itself defined in terms of the ordinary degree distribu
tion via Eq. (13.46). Using Eq. (13.46) we can write g, (z) as 

1 ~ k 1 ~ k-l 
g,(Z) = (Ie) t:o(le+l)Pk+1Z = (Ie) t:o kPkZ 

1 dgo 
(k) dz 

But Eq. (13.22) tells us that the average vertex degree is (Ie) = gb(I), so 

gb(z) 
gl (z) = gG(I)" 

(13.50) 

(13.51) 

Thus if we can find gu(z), we can also find gl (z) directly from it, without the 
need to calculate the excess degree distribution explicitly. 

For example, suppose our degree distribution is a Poisson distribution with 
mean c: 

ck 
-c Pk = e k!. (13.52) 

13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX 

Then its generating function is given by Eq. (13.6) to be 

go(z) = e* l) 

Applying Eq. (13.51), we then find that 

g, (z) = e*-l) 

(13.53) 

(13.54) 

In other words, ga(z) and g,(Z) are identical in this case. (This is one rea
son why calculations are relatively straightforward for the Poisson random 
graph-there is no difference between the degree distribution and the excess 
degree distribution in that case, a fact you can easily demonstrate for yourself 
by substituting Eq. (13.52) directly into Eq. (13.46).) 

A more complicated example is the power-law distribution, Eq. (13.10), 

which has a generating function given by Eq. (13.16) to be 

( ) 
_ Lia(z) 

go z - '(a) , (13.55) 

where Lia (z) is the polylogarithm function and a is the exponent of the power 
law. Substituting this result into Eq. (13.51) and making use of Eq. (13.17) gives 

( ) 
_ Lie _ 1(z) _ Lia .... l(z) 

g, z - zLia - 1 (1) - z'(a -1)' (13.56) 

where we have made use of the fact that Lia(1) = na) (see Eqs. (13.12) and 
(13.15». 

13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX 

Armed with these results, we are now in a position to make some more de
tailed calculations of the properties of the configuration model. The first ques

tion we will address is a relatively simple one: what is the probability p;') that 
a vertex has exactly k second neighbors in the network? 

Let us break this probability down by writing it in the form 

pi') = f: p",p(2)( le lm), (13.57) 
m=O 

where p I21(klm) is the probability of having Ie second neighbors given that 
we have m first neighbors and pm is the ordinary degree distribution. Equa
tion (13.57) says that the total probability of having k second neighbors is the 
probability of having Ie second neighbors given that we have m first neighbors, 
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vertex 

ftrst neighbors 

second neighbors 

Figure 13.4: Calculation of the number of second neighbors of a vertex. The number 
of second neighbors of a vertex (top) is equal to the sum of the excess degrees of the 
first neighbors. 

averaged over all possible values of m. We assume that we are given the degree 
distribution P"'; we need to find pI21(lcjm) and then complete the sum. 

As illustrated in Fig. 13.4, the number of second neighbors of a vertex is 
equal to the sum of the excess degrees of the first neighbors. And as discussed 
in the previous section, the excess degrees are distributed according to the dis
tribution q" Eq. (13.46), so that the probability that the excess degrees of our m 
first neighbors take the values it .. . jm is n::~l qjr' Summing over all sets of val
ues h ... j"" the probability that the excess degrees sum to k and hence that we 
have Ic second neighbors is 

co 00 III 

pI21(kjm) = I.: ... I.: S(U:::''=IJ,) n qj. .. (13.58) 
h=O ),,,=0 r=1 

Substituting this expression into (13.57), we find that 

00 N 00 III 

Pk21 
= I.: P'" I.: ... I.: S (Ic, I.:::'=Ji,) n qj. .. (13.59) 

111",,0 h =0 )",=0 r=1 

By now, you may be starting to find sums of this type familiar. We saw 
them previously in Eqs. (12.25) and (13.27), for example. We can handle this 

one by the same trick we used before: instead of trying to calculate Pk2
) directly, 

13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX 

calculate instead its generating function g(2) (z) thus: 

g(2)(Z) = f Pk2)Zk 
k=O 
0000 00 co III 

= I.:zk I.: P'" I.: .. I.: S(k,I.:;:'=Ji,) n qj, 
k=O 111=0 h =0 ),,1=0 r"d 

00 00 00 11/ 

= I.: P'" I.: ... I.: z!:,~,}, n qj, 
111=0 h =0 ),,,=0 r=l 

00 00 com 

= I.: P'" I.: ... I.: n qj, zj· 
m=O h =0 j,,,=O r=l 

(13.60) 

But now we notice an interesting thing: the sum in square brackets in the last 
line is none other than the generating function gl (z) for the excess degree dis
tribution, Eq. (13.49). Thus Eq. (13.60) can be written as 

00 

g(2)(Z) = I.: P",[gl(Z)]''' = gO(gl(Z)), (13.61) 
111=0 

where go(z) is the generating function for the ordinary degree distribution, 
defined in Eq. (13.48). So once we know the generating functions for our two 
basic degree distributions the generating function for the distribution of the 
second neighbors is very simple to calculate. 

In fact, there was no need to go through this lengthy calculation to reach 
Eq. (13.61). We can derive the same result much more quickly by making 
use of the "powers" property of generating functions that we derived in Sec
tion 13.1.4. There we showed (Eq. (13.28)) that, given a quantity k distributed 
according to a distribution with generating function g(z), m independent quan
tities drawn from the same distribution have a sum whose distribution is given 
by the generating function [g(z)]"'. We can apply this result here, by noting 
that the m excess degrees of the first neighbors of our vertex are just such a set 
of independent quantities. Given that gl (z) is the generating function for the 
distribution of a single one of them (Eq. (13.49)), the distribution p(21(kjm) of 
their sum-which is the number of second neighbors-has generating function 
[gl(Z)]"'. That is, 

00 

I.:p(2)(klm)zk = [gl(Z)]'''. (13.62) 
k=O 
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Now, using Eq. (13.57), the generating function for pi2) is 

g(2)(Z) = f::pi2)Zk = f:: f:: p",P(2)(klm)z' 
k=O k=O 111=0 

00 00 00 

= L P'" LP(2)(klm)zk = L P",[gl(Z)]'" 
111=0 k=O 111=0 

(13.63) 

In future calculations, we will repeatedly make use of this shortcut to get our 
results, rather than taking the long route exemplified in Eq. (13.60). 

We can also use similar methods to calculate the probability distribution 
of the number of third neighbors. The number of third neighbors is the sum 
of the excess degrees of each of the second neighbors. Thus, if there are m 
second neighbors, then the probability distribution p(3) (kim) of the number of 
third neighbors has generating function [gl (z)] '" and the overall probability of 
having Ie third neighbors is exactly analogous to Eq. (13.63): 

0000 00 00 

g(3)(z) = L L p\;)P(3)(klm)zk = L p\;) L p(3) (lelm)zk 
k=O 111=0 II/=() k=O 

= f:: p;,;)L~I(Z)]'" = g(2)(g,(Z)) 
111=0 

(13.64) 

Indeed, the generating function for the number of neighbors at any distance d 
can be expressed this way as 

g(d)(Z) = f:: f:: p\:')p(d)(klm)zk 
k=O 111=0 

00 00 00 

= L p\:-l) LP(d)(klm)zk = L p\:-l) [g,(Z)]'" 
111-=0 k=O 111=0 

(13.65) 

In other words g(d)(z) = gO(gl( ... g,(Z) .. . )), with d -1 copies of gl nested 
inside a single go- This expression is correct at arbitrary distances on an infinite 
network. On a finite network it will break down if d becomes large enough but 
will be accurate for small values of d. 

These results are all very good, but what use are they? Even given the 
generating function g(2) (z) it is typically quite difficult to extract explicit prob
abilities for numbers of second neighbors in the network. For instance, if our 

13.6 NUMBER OF SECOND NEIGHBORS OF A VERTEX 

delgrE,e distribution were Poisson with mean c then go (z) = gl (z) = e,(,-l) as 
in Eqs. (13.53) and (13.54) and 

(13.66) 

But to find the achwl probabilities we have to apply Eq. (13.2), which involves 
calculating derivatives of g(2) (z). One can, with a little work, calculate the first 
few derivatives, but finding a general formula for the nth derivative is hard.12 

What we can do, however, is calculate the average number of neighbors at 
distance d. The average of a distribution is given by the first derivative of its 
generating function evaluated at z = 1 (see Eq. (13.22)) and the derivative of 
Eq. (13.63) is 

(13.67) 

Setting z = 1 and recalling that gl (1) = 1 (Eq. (13.20)), we find that the average 
number C2 of second neighbors is 

(13.68) 

But gb(l) = (Ie) and 

00 

g~(l) = Lkqk 
k=O 

1 00 1 00 

= (k) E,k(k+1)Pk+1 = (k) E,(k-1)kPk 

= (~) «k2
) - (k)). (13.69) 

where we have used Eq. (13.46). Thus the mean number of second neighbors 
can also be written 

C2 = (k2
) - (k). (13.70) 

We can take this approach further and calculate the mean number Cd of 
neighbors at any distance d. Differentiating Eq. (13.65) we get 

dg(d) , 
dZ = g(d-l) (gl(Z)) g( (z), (13.71) 

and setting z = 1 we get 

Cd = g(d-I)'(l)g((1) = cd-lg(l). (13.72) 

12In fact, the general derivative in this case can be expressed in terms of the so-called Bell 
numbers. No closed-form solution exists for third-nearest neighbors or higher, however, nor for 
most other choices of degree distribution. 
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Making use of Eq. (13.68) to write g; (1) = c, / C, where C, 

expressed in the simple form 

which implies that 

(
C2)d-l 
- Cl· C, 

(k), this can be 

(13.73) 

(13.74) 

In other words, once we know the mean numbers of first and second neigh
bors, C1 and e2, we know everything. What's more, the average number of 
neighbors at distance d either grows or falls off exponentially, depending on 
whether C2 is greater or less than Cl. This observation is strongly reminiscent 
of the argument we made in Section 12.5 for the appearance of a giant compo
nent in a random graph. There we argued that if the number of vertices you 
can reach within a certain distance is increasing with that distance (on average) 
then you must have a giant component in the network, while if it is decreas
ing there can be no giant component. Applying the same reasoning here, we 
conclude that the configuration model has a giant component if and only if we 
have 

(13.75) 

Using Eq. (13.70) for C2 and putting C, = (k), we can also write this condition 
as (k2 ) - (k) > (k) or 

(k') - 2(k) > O. (13.76) 

This condition for the existence of a giant component in the configuration 
model was first given by Molloy and Reed [224] in 199513 

13.7 GENERATING FUNCTIONS FOR THE SMALL COMPONENTS 

In this section and the following one we examine the sizes of components in 
the configuration model. As we will see, the situation is qualitatively similar 

13This expression has an interesting history. In the 19405 Flory [123] considered a model of 
branching polymers in which elemental units with a fixed number of "legs"-vertices with uni~ 
form degree, in effect-joined together to form connected clumps. He showed that, if the system 
was restricted to forming only trees, then there was a transition at which the polymer "gelled" to 
create a clump of joined units which corresponds to our giant cluster and found the size of the 
gel. In effect, Flory's results were a special case of the solution given here for the uniform degree 
distribution, although they were not expressed in the language of networks. It was not until much 
later that Molloy and Reed, who were, as far as I know, unaware of Flory's work, gave the full 
solution for general degree distribution. 

13.7 GENERATING FUNCTIONS FOR THE SMALL COMPONENTS 

to that for the Poisson random graph in that a configuration model network 
generally has at most one giant component, plus a large number of small com
ponents. We will approach the calculation of component sizes by a route dif
ferent from the one we took for the Poisson random graph and examine first 
the properties of the small components. We will see that it is possible to calcu
late the distribution of the sizes of the small components by a method similar 
to the one we used in the Poisson case. Then we can use these results to get 
at the properties of the giant component: once we have the sizes of the small 
components, we can subtract them from the size of the graph as a whole and 
whatever is left, if anything, must be the giant component. 

Let 7[, be the probability that a randomly chosen vertex belongs to a small 
(non-giant) component of size s. We will calculate 7[, by first calculating its 
generating function 

ho(z) = L: 7[,z'. (13.77) 
s=l 

Note that the minimum value of 5 is 1, since every vertex belongs to a compo
nent of size at least one (namely itself). 

By an argument exactly analogous to that of Section 12.6.1 we can show 
that the small components in the configuration model are trees (in the limit 
of large n, provided the degree distribution is held constant as we go to the 
limit). We can use this fact to derive an expression for the distribution of small 
component sizes as follows. 

Consider Fig. 13.5 (which is actually the same as the figure for the Poisson 
random graph in the previous chapter (Fig. 12.3), but it works just as well as 
an illustration of the configuration model). If vertex i is a member of a small 
component then that component is necessarily a tree. Just as in the Poisson 
case, this implies that the sets of vertices reachable along each of its edges 
(shaded areas in Fig. 13.5a) are not connected, other than via vertex i, since 
if they were connected there would be a loop in the component and hence it 
would not be a tree. 

Now, taking a hint from OUf argument in the Poisson case, let us remove 
vertex i from the network along with all its edges-see Fig. 13.5b. The shaded 
areas in the figure are now not connected to one another at all and hence are 
each now separate components in their own right. And the size of the compo
nent to which vertex i belongs on the original network is equal to the sum of 
the sizes of these new components, plus one for vertex i itself. 

A crucial point to notice, however, is that the neighbors n" n2, . .. of vertex i 
are, by definition, reached by following an edge. Hence, as we have discussed, 
these are not typical network vertices, being more likely to have high degree 
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Figure 13.5: The size of one of the small components in the configuration model. (a) The size of the component to 
which a vertex i belongs is the sum of the number of vertices in each of the subcomponents (shaded regions) reachable 
via i's neighbors 111, H2, /13, plus one for i itself. (b) If vertex i is removed the subcomponents become components in 

their own right. 
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than the typical vertex. Thus the components that they belong to in Fig. 135b
the shaded regions in the figure-are not distributed according to 7[,. Instead 
they must have some other distribution. Let us denote this distribution by p,. 
More specifically, let p, be the probability that the vertex at the end of an edge 
belongs to a small component of size s after that edge is removed. Let us also 
define the generating function for this distribution to be 

00 

hl(Z) = LP,z'. (13.78) 
5=0 

We don't yet know the value of p, or its generating function and we will have 
to calculate them later, but for the moment let us proceed with the information 
we have. 

Suppose that vertex i on the original network has degree k and let us denote 
by P(slk) the probability that, after i is removed, its k neighbors belong to 
small components of sizes summing to exactly s. Alternatively, P(s - 11k) is 
the probability that i itself belongs to a small component of size s given that its 
degree is Ie. Then the total probability 7[, that i belongs to a small component 
of size s is this probability averaged over k thus: 

00 

7[, = L PkP(S -11k). 
k=O 

(13.79) 

13.7 GENERATING FUNCTIONS FOR THE SMALL COMPONENTS 

Substituting this expression into Eq. (13.77) we then get an expression for the 
generating function for 7Ts as follows: 

00 co 00 00 

ho(z) = L L PkP(S -llk)z' = Z L Pk L P(s -llk)z,-1 
5=1 k=O k=O 5=1 

00 00 

= Z L Pk L P(slk)z'. (13.80) 
k=O 5=0 

The final sum in this expression is the generating function for the probability 
that the k neighbors belong to small components whose size sums to s. But the 
sizes of the small components are independent of one another and hence we 
can use the "powers" property of generating functions (Section 13.1.4), which 
tells us that the generating function we want is just equal to the generating 
function for the size of the component any single neighbor belongs to-the 
function that we denoted hI (z) above-raised to the kth power. Thus 

ho(z) = z L p,[hl(Z)]k = zgO(hl(Z». 
k=O 

(13.81) 

We still don't know the generating function hI (z) but we can derive it now 
quite eaSily We consider the network in which vertex i is removed and ask 
what is the probability p, that one of the neighbors of i belongs to a component 
of size s in this network. In the limit of large network size, the removal of the 
single vertex i will have no effect on the degree distribution, so the network 
still has the same distribution as before, which means that if the neighbor has 
degree k then its probability of belonging to a component of size s is P(s - 11k), 
just as before. Note, however, that the degree k does not follow the ordinary de
gree distribution. Since the neighbor was reached by following an edge from i, 
its degree, discounting the edge to i that has been removed, follows the excess 
degree distribution qk defined in Eq. (13.46), rather than the ordinary degree 
distribution. Thus 

00 

p, = L qkP(S - 11k), (13.82) 
k=Q 

and, substituting this expression into Eq. (13.78), we have 

00 00 00 00 

hl(2) = L LqkP(S -llk)z' = Z Lqk LP(slk)z'. (13.83) 
8=1 k=Q k=O s=O 

As before, the last sum is the generating function for P(slk), which is equal 
to [h 1(z)]k, and hence 

h,(Z) = Z Lq,[h1(z)j' = zg,(h , (z». 
k=O 

(13.84) 
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Collecting together our results, the generating functions for 7[, and p, thus 

satisfy 

ho(z) = zgo(h,(z)), 

h,(z) = zg,(h,(z)). 

(13.85) 

(13.86) 

If we can solve the second of these equations for h, (z) then we can substitute 
the result into the first equation and we have our answer for ho (z). In practice, 
it is often not easy to solve for h, (z), and, even if it is, extracting the actual 
component size distribution from the generating function can be difficult. But 
that does not mean that these results are useless. On the contrary there are 
many useful things we can deduce from them. One important quantity we can 

calculate is the size of the giant component. 

13.8 GIANT COMPONENT 

Given the definition ho (z) = L 7[,Z', where 7[, is the probability that a ran
domly chosen vertex belongs to a small component of size s, we have ho(l) = 
L, 7[" which is the total probability that a randomly chosen vertex belongs to 
a small component. Unlike most generating functions, it is not necessarily the 
case that h(l) = 1 because there may be a giant component in the network. 
If there is a giant component then some of the vertices do not belong to any 
small component and L, 7[, will be less than 1. In fact, L, 7[, will be simply the 
fraction of vertices that belong to small components and hence the fraction S 
of vertices belonging to the giant component is 

00 

S = 1- I: 7[, = 1- ho(l) = 1- go(h, (I)), (13.87) 
5=0 

where we have used Eq. (13.85). The value of h, (1) we can get from Eq. (13.86): 

h, (1) = gl(h, (I)). (13.88) 

The quantity h, (1) will occur frequently in subsequent developments, so for 
convenience let us define the shorthand notation 

u=h, (I), 

in which case Eqs. (13.87) and (13.88) can be written 

5 = l-go(u), 

u = g,(U). 

(13.89) 

(13.90) 

(13.91) 

13.8 

In other words, u is a fixed point of the function g,(z)-a point where the 
function is equal to its own argument-and if we can find this fixed point then 
we need only substitute the result into Eq. (13.90) and we have the size of the 
giant component. 

Since g,(I) = 1 (see Eq. (13.20) and the discussion that precedes it), there 
is always a fixed point of gl at u = 1, but this solution gives 5 = 1 - go(l) = 

o and hence no giant component. If there is to be a giant component there 
must be at least one other non-trivial solution to Eq. (13.91). We will see some 
examples of such solutions shortly. 

The quantity u = h, (1) has a simple physical interpretation. Recall that 
h, (z) = L, p,z' is the generating function for the probability p, that the vertex 
reached by following an edge belongs to a small component of size s if that 
edge is removed. Thus h, (1) = L p, is the total probability that such a vertex 
belongs to a small component of any size, or equivalently the probability that 
it doesn't belong to the giant component. 

This observation suggests an alternative and simpler derivation of Eqs. 
(13.90) and (13.91) for the size of a giant component, as follows. To belong 
to the giant component, a vertex A must be connected to the giant component 
via at least one of its neighbors. Or equivalently, A does not belong to the gi
ant component if (and only if) it is not connected to the giant component via 
any of its neighbors. Let us define u to be the average probability that a vertex 
is not connected to the giant component via its connection to some particular 
neighboring vertex. If vertex A has k neighbors, then the probability that it 
is not connected to the giant component via any of them is thus uk And the 
average of this probability over the whole network is Lk PkUk = go(u), which 
is the average probability that a vertex is not in the giant component. But this 
probability is also, by definition, equal to 1 - 5, where 5 is the fraction of the 
graph occupied by the giant component and hence 1 - 5 = go (u) or 

5 = l-go(u), (13.92) 

which is Eq. (13.90) again. 
Now let us ask what the value of u is. The probability that you are not 

cOlmected to the giant component via a particular neighboring vertex is equal 
to the probability that that vertex is not connected to the giant component via 
any of its other neighbors. If there are k of those other neighbors, then that 
probability is again uk But because we are talking about a neighboring vertex, 
Ic is now distributed according to the excess degree distribution q" Eq. (13.46), 
and hence taking the average, we find that u = Lk qkuk or 

U=g,(U), (13.93) 

GIANT COMPONENT 
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which is Eq. (13.91) again. Thus we have rederived our two equations for the 
size of the giant component, but by a much shorter route. The main disadvan
tage of this method is that it only gives the size of the giant component and 
not the complete generating function for all the other components as well, and 
this is the reason why we took the time to go through the longer derivation. 
There are many further results we can derive by knowing the entire generating 
function, as we show in the next section. 

13.S.1 EXAMPLE 

Let's take a look at a concrete example and see how calculations for the con
figuration model work out in practice. Consider a network like that of the first 
example in Section 13.1.1 that has vertices only of degree 0, 1, 2 and 3, and no 
vertices of higher degree. Then the generating functions go (z) and g, (z) take 
the form 

go(z) = po + p,z + p,z' + P3z3, 

gl(Z) = gb(z) = PI +2p,z+3p3Z' 
gb(l) pI+2p,+3p3 

= qo + qlZ + q,z2 

(13.94) 

(13.95) 

Equation (13.91) is thus quadratic in this case, U = qo + qlU + q,u', which has 
the solutions 

1 - ql ± '/(1 - q,)' - 4qoq, 
U = 2q, . 

However, we know that Lk qk = 1, and hence in this case 1 - ql 
Using this result to eliminate ql we get 

(qo + q,) ± '/(qo + q,)' - 4qoq, 
u=-'-'-~~~~--;c"-----'-=----'-= 

2q, 
(qo + q,) ± (qo - q,) 

2q, 

= 1 or qo 
q2 

(13.96) 

(13.97) 

Thus, as expected we have a solution u = 1, but we also have another non
trivial solution which might imply that we have a giant component. 

If q, < qo then this non-trivial solution gives u > 1. Since u is a probability 
it cannot be greater than 1, so in this case we definitely do not have a giant 
component. On the other hand, if q, > qo we have a viable non-trivial solution 

13.8 

u < 1 equal to 

u = qo = ~ (13.98) 
q, 3p,' 

where we have extracted values of qo and q, from Eq. (13.95). We can also write 
the condition q, > qo in terms of the Pk as 

P3 > ~Pl. (13.99) 

In other words, there can be a giant component if the number of vertices of 
degree three exceeds one third the number of degree one. This is a remarkable 
result. It says that the number of vertices of degree zero and degree two don't 
matter at all (except to the extent that their absence makes room for more ver
tices of the other degrees). As we will see, this is actually a general result-the 
values of po and P' never make any difference to the presence or absence of a 
giant component. On the other hand, the size of the giant component for the 
current example is given by Eq. (13.90) to be 

" 3 S = l-go(u) = 1- po- J'L _ PIP' -~. 
3P3 9p~ 27p~ 

(13.100) 

Thus the size of the giant component does depend on po and P2, even though 
jts presence or absence does not. 

We have not, however, yet proved that a giant component actually does ex
ist. In the regime where we have two solutions for u, one with u = 1 (no giant 
component) and one with u < 1 (there is a giant component) it is unclear which 
of these solutions we should believe. In Section 13.6, however, we showed that 
there is a giant component in the network when the degree sequence satisfies 
a specific condition, Eq. (13.76). In the next section, we show that in fact this 
condition is always satisfied whenever a non-trivial solution u < 1 exists, and 
hence that there is always a giant component when we have such a solution. 

13.8.2 GRAPHICAL SOLUTIONS AND THE EXISTENCE OF THE GIANT 

COMPONENT 

The example given in the last section is unusual in that we can solve the fixed
point equation (13.91) exactly for the crucial parameter u. In most other cases 
exact solutions are not possible, but we can nonetheless get a good idea of the 
behavior of u by graphical means. The derivatives of gl (z) are proportional to 
the probabilities p, and hence are all non-negative. That means that for z :> 0, 
gl (z) is in general positive, an increasing function of its argument, and upward 
concave. It also takes the value 1 when z = 1. Thus it must look qualitatively 
like one of the curves in Fig. 13.6. The solution of the fixed-point equation 

GIANT COMPONENT 
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Y 0.5 

,~y=u 

Figure 13.6: Graphical solution of Eq. (13.91). The so
lution of the equation u = gl (u) is given by the point 
at which the curve y = gl (u) intercepts the line y = u. 

464 

u 

u = gl (u) is then given by the intercept of the curve y = gl (u) with the line 
y = u (the dotted line in the figure). 

As we already know, there is always a trivial solution at u = 1 (top right 
in the figure). But now we can see that there can be just one other solution 
with u < 1 and only if the curve takes the right form. In particular, we have a 
non-trivial solution at u < 1 if the slope g; (1) of the curve at u = 1 is greater 
than the slope of the dotted line. That is, if 

Using Eq. (13.49) for gl (z), we have 

00 100 100 
g; (1) = J-; leqk = (Ie) J-; Ie (Ie + I)Pk = (k) J-;(Ie -1)lepk 

(Ie') - (Ie) 
(k) 

Thus our condition for the solution at u < 1 is 

or equivalently, 

(Ie') - (k) 
(Ie) >1. 

(13.101) 

(13.102) 

(13.103) 

(13.104) 

13.9 SIZE DISTRIBUTION FOR SMALL COMPONENTS 

But this is none other than the condition for the existence of a giant compo
nent, Eq. (13.76). In other words, the conditions for the existence of a giant 
component and the existence of the non-trivial solution to Eq. (13.91) are ex
actly the same and and hence, as promised, there is always a giant component 
whenever a solution u < 1 exists for Eq. (13.91). 

Writing (Ie) = n- 1 Li ki and (Ie') = n-1 Li IcT, we can also write Eq. (13.104) 

as 
"L,lci(lei - 2) > o. (13.105) 

But note now that, as before, vertices of degree zero and degree tvvo make no 
contribution to the sum, since terms in which ki = 0 or lei = 2 vanish. Thus we 
can add as many vertices of degree zero or two to the network as we like (or 
take them away) and it will make no difference to the existence or not of a giant 
component. We noted a special case of this phenomenon in Section 13.8.1. 

13.9 SIZE DISTRIBUTION FOR SMALL COMPONENTS 

Having looked in some detail at the behavior of the giant component in the 
configuration model, let us return once more to the small components. In 
Eqs. (13.85) and (13.86) we have-in theory at least-the generating functions 
that give the entire distribution of sizes of the small components. Unfortu
nately, it is in most cases impossible to solve these equations exactly, but we 
can still extract plenty of useful information from them. For example, we can 
calculate the mean size of the component to which a randomly chosen vertex 
belongs, which is given by the equivalent of Eq. (12.29) thus: 

( ) _ L SJT, _ h~(l) = h~(l) 
S - L; IT, - 1 - 5 go (u) , (13.106) 

where we have used Eq. (13.90) in the final equality. Differentiating Eq. (13.85) 
we get 

h~(z) = go(h1(z)) +Zg~(h,(Z))h;(z) 

= go(h1 (z)) + zg~(l )g, (h1 (z) )It; (z) 

= ~.".(:) +g~(I)h1(z)h;(z), 
z 

(13.107) 

where we have used Eq. (13.51) in the second equality and Eqs. (13.85) and 
(13.86) in the third. Setting z = 1 we then get 

(13.108) 
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where we have used Eqs. (13.87) and (13.89). To calculate h; (1) we differentiate 
Eq. (13.86) thus: 

Of, rearranging, 

h;(z) = g](h](z)) +Zg;(hl(Z))h;(z) 

= h,(Z) +zg;(h, (z))h;(z), 
z 

h'(z) = hl(Z)/Z 
1 l-zg;(h, (z))" 

Setting z = 1 in this expression gives 

h; (1) = u, ( )" 1- g, u 

Combining Eqs. (13.106), (13.108), and (13.111), we then find that 

_ gb(l)u' 
(5) -1+ go(u)[I-g;(u)] 

(13.109) 

(13.110) 

(13.111) 

(13.112) 

Using values of 5 and u from Eqs. (13.90) and (13.91) we can then calculate (5) 
from this equation. 

A simple case occurs when we are in the region where there is no giant 
component. In this region we have 5 = 0 and u = 1 by definition and hence 

(s) = 1 + gb(l) 
1- g;(1) 

(13.113) 

Thus the average size of the component to which a vertex belongs diverges 
precisely at the point where g; (1) = 1, the point at which the curve in Fig. 13.6 

is exactly tangent to the dotted line (the middle curve in the figure). This is, of 
course, also the point at which the giant component first appears. 

Thus the picture we have is similar to that shown in Fig. 12.4 for the Poisson 
random graph, in which the typical size of the component to which a vertex 
belongs grows larger and larger until we reach the point, or phase transition, 
where the giant component appears, at which it diverges. Beyond this point 
the small components shrink in size again, although the overall mean compo
nent size, including the giant component, is infinite. 

Equation (13.113) can also be expressed in a couple of other forms that 
may be useful in some circumstances. From Eq. (13.69) we know that g; (1) = 
((k') - (Ie))/ (Ie) and, putting gb(l) = (Ie) also, we find that 

(Ie)' 
(5) = 1 + 2(lc) _ (Ie') . (13.114) 

13.9 SIZE DISTRIBUTION FOR SMALL COMPONENTS 

This expression can be evaluated easily given only a knowledge of the degree 
sequence and avoids the need to calculate any generating functions. Using the 
notation introduced earlier in which C1 and C2 are the mean number of first 
and second neighbors of a vertex, with c, given by Eq. (13.70), we can also 
write (13.114) in the form 

c' (5) = 1 + __ 1 -, 
C1 - C2 

(13.115) 

so that the average size of the component a vertex belongs to is dictated en
tirely by the mean numbers of first and second neighbors. 

13.9.1 AVERAGE SIZE OF A SMALL COMPONENT 

As with the Poisson random graph, we must be careful about our claims in 
the previous section. We have calculated the average size (5) of the compo
nent to which a randomly chosen vertex belongs but this is not the same thing 
as the average size of a component, since more vertices belong to larger com
ponents, which biases the value of (5). If we want the true average size R of 
the small components, we must use Eq. (12.36), which we reproduce here for 
convenience: 

1-5 
R = -;=;--, 

["n,/s' 
(13.116) 

The sum can be calculated as before using the equivalent of Eq. (12.37): 

f: n, = l' ho(z) dz. 
s=l S in z 

(13.117) 

Taking ho(z)/z from Eq. (13.107), we get 

~ n, lo' dho '( ) 101 
() dh, L.... -'- = -d dz - go 1 hI z -d dz 

5=1 5 0 Z . () Z 

Io
'-s loU = dho - (Ie) hI dh, 

. 0 0 

= 1 - 5 - ~ (le)u2 (13.118) 

Then 
2 

R - =-""'-o-~----c" - 2 - (le)u'/(I- 5)" 
(13.119) 

Note that the value of this average at the transition point where 5 = 0 and 
u = 1 is just 2/ (2 - (Ie)), which is normally perfectly finite. 14 Thus the average 
component size does not normally diverge at the transition (unlike (5)). 

14The only exception is when (k) = 2 at the transition point. 
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13.9.2 COMPLETE DISTRIBUTION OF SMALL COMPONENT SIZES 

One of the most surprising results concerning the configuration model is that 
it is possible to derive an expression not just for the average size of the compo
nent to which a vertex belongs, but for the exact probability that it belongs to a 
component of any specific size-the probability that it belongs to a component 
of size ten, or a hundred, or a million. The derivation of this result is similar 
to the derivation given in Section 12.6.3 for the corresponding quantity for the 
Poisson random graph. 

Since a component cannot have size zero, the generating function for the 
probabilities 77:, has the form 

00 

ho(z) = L 77:,Z', (13.120) 
5=1 

with the sum starting at 1. Dividing by z and differentiating s - 1 times, we 
then find that 

1 [d'-1 (ho(Z»)] 
77:, = (s-I)! dZ,-1 -z- ,~o' (13.121) 

(which is just a minor variation on the standard formula, Eq. (l3.2». Using 
Eq. (13.85), this can also be written 

77:, = (5 ~ I)! [:;:~lg0(hl(Z»Lo 
(5 ~ 1 )! [:;:~2 [g~(hl (z) )h; (z)] Lo· (13.122) 

Now we make use of the Cauchy formula for the n derivative of a function, 
which says that 

d"J I n! J J(z) 
dz" _ = 277:i.r (z _ zo),,+1 dz, 

Z-20 

(13.123) 

where the integral is around a contour that encloses Zo in the complex plane 
but encloses no poles inJ(z). Applying this formula to Eq. (13.122) withzo = 0 
we get 

77:,= 1. f·g~(hl(Z»dhldZ. 
277:i(s - 1) Z·,-1 dz 

(l3.124) 

For our contour, we choose an infinitesimal circle around the origin. 
Changing the integration variable to hI' we can also write this as 

77:, = 1 J g~(hl) dhl 
277:i(s-I).f Z,-1 . 

(13.125) 

13.9 SIZE DISTRIBUTION FOR SMALL COMPONENTS 

Here we are regarding z now as a function of hI, rather than the other way 
around. Furthermore, since hl (z) goes to zero as z -----> 0, the contour in hI 
surrounds the origin too. (The proof is the same as for Eq. (12.46).) 

Now we make use of Eq. (13.86) to eliminate z and write 

(13.126) 

where we have made use of Eq. (13.51) in the second line. Given that the con
tour surrounds the origin, this integral is now in the form of Eq. (13.123) again, 
and hence 

(k) [ d,-2 ,] 
77:, = (s -I)! dz,-2 [gl(Z)] ,~O' (13.127) 

where we have written gb (1) = (k). 
The only exception to this formula is for the case s = 1, for which Eq. 

(13.124) gives % and is therefore clearly incorrect. However, since the only 
way to belong to a component of size 1 is to have no connections to any other 
vertices, the probability 77:1 is trivially equal to the probability of having degree 
zero: 

77:1 = po· (13.128) 

Equations (l3.127) and (13.128) give the probability that a randomly chosen 
vertex belongs to a component of size s in terms of the degree distribution. In 
principle if we know Pk we can calculate 77:,. It is not always easy to perform 
the derivatives in practice and in some cases we may not even know the gener
ating function gl (z) in closed form, but at least in some cases the calculations 
are possible. As an example, consider a network with the exponential degree 
distribution 

(13.129) 

with exponential parameter A > O. From Eqs. (13.9) and (13.51) the generating 
functions go (z) and g, (z) are given by 

eA -1 
go(z) = -,\-, 

e - z 

Then it is not hard to show that 

gl (z) = (
eA _1)2 
eA - z 

d" ,(2s-l+n)! [gl(Z)j' 
dZ,,[gl(Z)] = (2s-1)1 (e'-z)'" 

(l3.130) 

(l3.131) 
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o 20 40 60 80 100 

Component size s 

Figure 13.7: The distribution of component sizes in a configuration model. The prob
ability lts that a vertex belongs to a component of size s for the configuration model 
with an exponential degree distribution of the form (13.129) for A = 1.2. The solid lines 
represent the exact formula, Eq. (13.132), for the n --+ 00 limit and the points are mea
surements of lIs averaged over 100 computer-generated networks with n = 107 vertices 

each. 

and hence 

7"[s= 
(3s-3)! e-A('-1)(1_e-,\)"-1 

(s -1)!(2s -1)! 
(13.132) 

Figure 13.7 shows a comparison of this formula with the results of numerical 
simulations for il = 1.2 and, as we can see, the agreement between formula and 
simulations is good~our calculations seem to describe the simulated random 
graph well even though the graph is necessarily finite in size while the calcu
lations are performed in the limit of large n. 

13.10 POWER-LAW DEGREE DISTRIBUTIONS 

As we saw in Section 8.4, a number of networks have degree distributions 
that approximately obey a power law. As an example of the application of the 
machinery developed in this chapter, let us look at the properties of a random 
graph with a power-law degree distribution. 

Suppose we have a network with a "pure" power-law degree distribution 

13.10 POWER-LAW DEGREE DISTRIBUTIONS 

the form 
for k = 0, 
for k ::> 1. 

(13.133) 

Eq. (13.13).) Here 0: > 0 is a constant exponent and (;(0:) is the Riemann 
function: 

00 

(;(0:) = I>-'. (13.134) 
k=l 

Using the results of the previous sections we can, for instance, say whether 
is a giant component in this network or not. Equation (13.76) tells us that 
will be a giant component if and only if 

(k2
) - 2(k) > o. 

the present case 

() 
~ 1 ~ -HI I; (0: - 1) 

k = t:'r/Pk = (;(0:) tl = 1;(0:) , 
(13.136) 

(k2) = f:: k2 Pk = ~1~ f:: k-,+2 = (;(a - 2) . 
k~O 1;(0:) k~l I;(a) 

(13.137) 
there is a giant component if 

(;(a - 2) > 2(;(a -1). (13.138) 

(13.135) 

5 

4 

3 l- I y f 
t y~2S(lX-l) 

2 

------
y~s(a -2) 

1 , 

Figure 13.8 shows this inequality in graphical form. 
two curves in the figure show the values of 1;(0: - o~~~~~~~~~~~~~ 

and 21;(0: - 1) as functions of 0: and, as we can see, 
inequality (13.138) is satisfied only for sufficiently 
values of 0:, below the dotted line in the figure. In 
a numerical solution of the equation (; (0: - 2) = 
- 1) indicates that the network will have a giant 

cOlnponent only for 0: < 3.4788 ... , a result first given 
Aiello et aZ. [9] in 2000. 
In practice this result is of only limited utility be

it applies only for the pure power law. In general, 
distributions with power-law tails but different 

2 3 4 5 

Exponent a 

Figure 13.8: Graphical solution of Eq. (13.138). The 
configuration model with a pure power-law degree 
distribution (Eq. (13.133)) has a giant component if 
(;(a - 2) > 2(;(a -1). This happens for values of a 

below the crossing point of the two curves. 

Del1a,'lor for low k will have different thresholds at which the giant compo
appears. There is however a general result we can derive that applies 

all distributions with power-law tails. In Section 8.4.2 we noted that the 
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second moment (k') diverges for any distribution with a power-law tail with 
exponent IX <:; 3, while the first moment (k) remains finite so long as IX > 2, 

This means that Eq, (13,135) is always satisfied for any configuration model 
with a power-law tail to its degree distribution so long as IX lies in the range 
2 < IX <:; 3, and hence there will always be a giant component no matter what 
else the distribution does, For IX > 3, on the other hand, there mayor may not 
be a giant component, depending on the precise functional form of the degree 
distribution, (For IX <:; 2 it turns out that there is always a giant component, 
although more work is needed to demonstrate this,) Note that, as discussed in 
Section 8.4, most observed values of IX for real-world networks lie in the range 
2 < IX <:; 3 and hence we tentatively expect such networks to have a giant com
ponent, although we must also bear in mind that the configuration model is a 
simplified model of a network and is not necessarily a good representation of 
any specific real-world network. 

Returning to the pure power law let us calculate the size 5 of the giant 
component, when there is one, The fundamental generating functions ga(z) 
and gl (z) for the power-law distribution are given by Eqs, (13.55) and (13.56), 
which we repeat here for convenience: 

(13.139) 

Here, (IX) is the Riemann zeta function again and Li, (z) is the polylogarithm 

00 

Li,(z) = L: lc-'zk 
k=l 

(13.140) 

(See Eq, (13,15),) Now the crucial equation (13.91) for the probability u = hl (1) 

reads 

(13.141) 

where we have used the explicit definition of the polylogarithm for clarity, 
In general there is no closed-form solution for this equation, but we do no

tice some interesting points. In particular, note that the sum in the numerator 
is strictly positive for u ::> 0, which means that if '(IX -1) diverges we will get 
a solution u = 0, And indeed nIX -1) does diverge, It diverges at IX = 2 and 
all values below, as one can readily verify from the definition, Eq, (13,134),15 

15Traditionally s"(x) is actually defined to have finite values below x = 1 by analytic continua
tion. But in our case we are really interested in the value of the sum r:t',_.jlc-' I which diverges for 
allx:S1. 

13.11 DIRECTED RANDOM GRAPHS 

Thus for IX <:; 2 we have u = ° and Eq, (13,90) then tells us that the giant com
ponent has size 5 = 1 - go (0) = 1 - po, However, for our particular choice 
of degree distribution, Eq, (13,133), there are no vertices with degree zero, and 
hence Po = 0 and 5 = 1. That is, the giant component fills the entire network 
and there are no small components at all! 

Technically, this statement is not quite correct. There is always some chance 
that, for instance, a vertex of degree 1 will connect to another vertex of degree 
1, forming a small component. What we have shown is that the probability that 
a randomly chosen vertex belongs to a small component is zero in the limit of 
large n, i.e" that what small components there are fill a fraction of the network 
that vanishes as n -. 00, In the language used by mathematicians, a randomly 
chosen vertex" almost surely" belongs to the giant component, meaning it is 
technically possible to observe another outcome, but the probability is vanish
ingly small. 

Thus our picture of the pure power-law configuration model is one in which 
there is a giant component for values of" < 3.4788, , , and that giant compo
nent fills essentially the entire network when IX <:; 2, In the region between 

" = 2 and" = 3.4788 there is a giant component but it does not fill the whole 
network and some portion of the network consists of small component. If 
" > 3,4788", there are only small components, As a confirmation of this 
picture, Fig, 13,9 shows the size of the giant component extracted from a nu
merical solution of Eq, (13,141).16 As we can see it fits nicely with the picture 
described above, 

We could in principle take our calculations further, calculating, for instance, 
the mean size of the small components in the region IX > 2 using Eq, (13,112), 
or the entire distribution of their sizes using Eq, (13,127), 

13,11 DIRECTED RANDOM GRAPHS 

In this chapter we have studied random graph models that go a step beyond 
the Poisson random graph of Chapter 12 by allowing us to choose the degree 
distribution of our model network. This introduces an additional level of real
ism to the model that makes it substantially more informative, It is, however, 
only a first step, There are many other features we can add to the model to 
make it more realistic still, We can for instance create random graph models 
of networks with assortative (or disassortative) mixing [237], bipartite struc-

16The numerical solution is simple: we just choose a suitable starting value (u = ! works 
fine) and iterate Eq. (13.141) until it converges. Fifty iterations are easily enough to give a highly 
accurate result. 
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Figure 13.9: Size of the giant component for the configuration model with a power
law degree distribution. This plot shows the fraction of the network filled by the giant 
component as a function of the exponent it of the power law, calculated by numerical 
solution of Eqs. (13.91) and (13.141). The dotted lines mark the value" ~ 2 below which 
the giant component has size 1 and the value IX = 3.4788 above which there is no giant 
component. 

ture [253], or clustering [247]. All of these models are still exactly solvable 
in the limit of large system size, although the solutions are more complicated 
than for the models we have seen in this chapter. For instance, in the case of 
the random graph with assortative mixing the fundamental generating func
tion gl (2) becomes a vector, the corresponding equation (13.86) for the distri
bution of component sizes becomes a vector equation, and the condition for 
the existence of a giant component, Eq. (13.76), becomes a condition on the 
determinant of a matrix. 

We will not go into detail on all of the many random graph models that 
have been proposed and studied, but in this section we take a look at one case, 
that of the directed random graph, as an example of the types of calculation 
that are possible. 

13.11.1 GENERATING FUNCTIONS FOR DIRECTED GRAPHS 

As discussed in Section 6.4, many networks, including the World Wide Web, 
metabolic networks, food webs, and others, are directed. The configuration 
model can be generalized to directed networks in a straightforward fashion, 

13.11 DIRECTED RANDOM GRAPHS 

although the generalization displays some new behaviors not seen in the un
directed case. Our presentation follows that of Refs. [100] and [253]. 

To create a directed equivalent of the configuration model, we must specify 
a double degree sequence, consisting of an in-degree h and an out-degree ki for 
each vertex i. We can think of these as specifying the numbers of ingoing and 
outgoing stubs of edges at each vertex. Then we create a network by repeatedly 
choosing pairs of stubs-one ingoing and one outgoing-uniformly at random 
and connecting them to make directed edges, until no unused stubs remain. 
The result is a matching of the stubs drawn uniformly at random from the set 
of all possible matchings, just as in the configuration model, and the model 
itself is defined to be the ensemble of such directed networks in which each 
matching appears with equal probability. (The only small catch is that we must 
make sure that the total number of ingoing and outgoing stubs is the same, so 
that none are left over at the end of the process. We will assume this to be the 
case in the following developments.) 

The probability that a particular outgoing stub at vertex w attaches to one 
of the j, ingoing stubs at vertex v is 

iv 
m' 

(13.142) 

where m is the total number of edges and we have made use of Eq. (6.26). 
Since the total number of outgoing stubs at w is k,", the total expected number 
of directed edges from vertex w to vertex v is then jvkw/m, which is also the 
probability of an edge from w to v in the limit of large network size, provided 
the network is sparse. This is similar to the corresponding result, Eq. (13.32), 

for the undirected configuration model, but not identical-notice that there is 
no factor of two now in the denominator. 

As in the undirected case we can, if we prefer, work with the degree dis
tribution, rather than the degree sequence. As discussed in Section 8.3, the 
most correct way to describe the degree distribution of a directed network is 
by a joint distribution: we define Pjk to be the fraction of vertices in the net
work that have in-degree j and out-degree k. This allows for the possibility 
that the in- and out-degrees of vertices are correlated. For instance, it would 
allow us to represent a network in which the in- and out-degrees of each vertex 
were exactly equal to one anotherl ? (This is rather an extreme example, but it 
demonstrates the point.) 

The joint degree distribution can be captured in generating function form 

17Given the joint degree distribution we can still, if we wish, calculate the distributions of in- or 
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by defining a double generating function goo (x, y) thus: 

( ) \' jk goo x,y = w PjkX Y . (13.143) 
j,k:=o:O 

(The two subscript zeros are the equivalent for the double generating func
tion of the subscript zero in our previous generating function go(z) for the un
directed network.) As in the undirected case, the generating function goo (x, y) 
captures all the information contained in the degree distribution. Given the 
generating function we can reconstruct the degree distribution by differentiat
ing: 

. k I 1 i)fa goo 
k=----

P; I'! k! axjayk . 
x,y=o 

(13.144) 

This is the equivalent for the directed case of Eq. (13.2) in the undirected case. 
Just as in the undirected case the generating function satisfies certain con

ditions. First since the degree distribution must be normalized according to 
L,jk pjk = 1, the generating function satisfies 

goo(l, 1) = 1. (13.145) 

Second, the average in- and out-degrees are given by 

( .) ~. agoo I I =.w IPjk = ax ' 
j,k=o x,y=l 

(13.146) 

~ agoo I (k) = ,w kpjk = -a- . 
j,k=O Y x,y=l 

(13.147) 

In a directed graph, however, the average in- and out-degrees are equal-see 
Eq. (6.27)-so (j) = (k) and 

(13.148) 

For convenience we will denote the average in-degree and out-degree by c in 
the equations that follow. Thus (j) = (Ic) = c. 

out-degrees alone. They are given by 

(in) ~ 
P, = L... Pib 

k=O 

00 

(out) '\"' 
Pk = L... pjk. 

j=O 

13.11 DIRECTED RANDOM GRAPHS 

We can also write down generating functions for the excess degree distri
bution of vertices reached by following an edge in the network. There are two 
different ways of following a directed edge-either forward or backward. Con
sider first the forward case. If we follow an edge forward to the vertex it points 
to, then the probability of reaching a particular vertex will be proportional to 
the number of edges pointing to that vertex, i.e., to its in-degree. Thus the joint 
degree distribution of such a vertex is proportional not to pjk but to jpjk. As 
before, we will be interested primarily in the number of edges entering and 
leaving a vertex other than the one we arrived along. If j and k denote these 
numbers then the total in-degree is j + 1 and the total out-degree is just k, so 
the distribution we want is proportional to (j + l)pj+l,k or, correctly normal
ized, (j + 1) pj+l,d c. The double generating function for this excess degree 
distribution is then 

. ' k .' 1 k 

( ) 
L,jk{J + l)pj+l,kxj y L,jklPjkX;- Y 

glO X Y = --- = 
, L,jk(j + l)pj+l,k L,jdpjk 

~ agoo 
c ax . 

(13.149) 

The backward case is similar. The appropriate excess degree distribution 
for the vertex from which an edge originates is (k + l)pj,k+d c and has gener
ating function 

(13.150) 

13.11.2 GIANT COMPONENTS 

A directed graph has various different types of component, as discussed in Sec
tions 6.11.1 and 8.1.1, including strongly and weakly connected components, 
in-components, and out-components. (Take a look at the "bow tie" diagram, 
Fig. 8.2 on page 240, for a reminder of the definitions of the components.) In 
general there can be both small and giant components of each of these types. 
Let us look at the giant components, 

A strongly connected component is a set of vertices in which every vertex is 
reachable by a directed path from every other in the set. To put that a different 
way, for a vertex to belong to a strongly connected component at least one of its 
outgoing edges must lead to another vertex from which there is a path to the 
strongly connected component, and at least one of its ingoing edges must lead 
from a vertex to which there is path from the strongly connected component 
(see figure). 

A vertex belongs to a 
strongly connected com
ponent if it has a directed 
path to the component 
and another from the 
component. 
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Let v be the probability that the vertex to which a randomly chosen edge 
in our graph leads has no directed path to the giant strongly connected com
ponent. For this to happen, it must be that none of the other outgoing edges 
from that vertex themselves have such a path. If the vertex has out-degree k, 
this happens with probability vk But j and k are distributed according to the 
excess degree distribution (j + 1 )Pi+1.kl c and hence, averaging over both, we 
find that 

v = ~t (j + I)Pfl1.kVk = glO(l, v). 
j,k=O 

(l3.151) 

Similarly, consider the vertex from which a randomly chosen edge origi
nates and let u be the probability that there is no path from the giant strongly 
connected component to that vertex. Then u is the solution to 

u = g01(u,I). (13.152) 

Now consider a vertex with in-degree j and out-degree Ie. The probability 
that there is no path to the vertex from the giant strongly connected component 
via any of the vertex's j ingoing edges is ui and the probability that there is such 
a path is 1 - ui. Similarly the probability that there is a path from the vertex 
to the giant strongly connected component is 1 - vk And the probability that 
there are both~and hence that the vertex itself belongs to the giant strongly 
connected component~is the product of these two, or (1 - ui)(1 - Vk). Av
eraging this expression over the joint distribution of j and Ie we then find that 
the average probability S, that a vertex lies in the giant strongly connected 
component, which is also the size of the giant strongly connected component 
measured as a fraction of the network SiZ€f is 

00 

S, = L: Pik(1 - ui)(l - vk) 
j,k=O 

00 00 00 00 

= L: Pik - L: PikUi - L: PikVk + L: PikUiVk 

j,b-~'O j,k=O j,k=O j,k=O 

= 1 - goo ( u, 1) - goo (1, v) + goo ( u, v), 

with u and v given by Eqs. (13.151) and (13.152). 

(13.153) 

As discussed in Section 6.11, each strongly connected component in a net
work also has an in-component and an out-component associated with it-the 
sets of vertices from which it can be reached, and which can be reached from 
it. The in- and out-components of the giant strongly connected component are 
usually called the giant in- and out-components. By their definition, both are 

13.11 DIRECTED RANDOM GRAPHS 

supersets of the giant strongly connected component itself, and we can calcu
late the size of both for our directed random graph. In fact, we have performed 
most of the calculation already. 

A vertex with out-degree k fails to belong to the giant in-component only 
if none of its outgoing edges leads to a vertex that has a path to the strongly 
connected component. This happens with probability vk , where v is as above. 
Averaging over j and Ie, we find the probability Si that the vertex does belong 
to the giant in-component (which is also the size of the giant in-component) to 
be 

00 

Si = 1 - L: PikVk = 1 - goo(l, v). 
j,k=O 

Similarly the size of the giant out-component is given by 

S, = 1 - goo(u, 1). 

(13.154) 

(13.155) 

Using these results we can also write an expression for the combined size 
of the giant strongly connected component and its in- and out-components~ 
the entire "bow tie" in Fig. 8.2. Since the giant in- and out-components both 
include the giant strongly connected component as a subset, their sum is equal 
to the size of the whole bow tie except that it counts the strongly connected 
part twice. Subtracting S, to allow for this overcounting we then find the size 
of the bow tie to be 

Si + S, - S, = 1- goo(u,v), (13.156) 

and the fraction of the network not in the bow tie is just gOO(L/, v). (We could 
have derived this result by more direct means, just by noting that a vertex 
not in the bow tie has a path neither to nor from the giant strongly connected 
component.) 

And what about the giant weakly connected component? A weakly con
nected component in a directed graph is a normal graph component of con
nected vertices in which we ignore the directions of all the edges. At first 
glance one might imagine that the size of the giant weakly connected com
ponent was just equal to the combined size Si + S, - S, of the in-, out-, and 
strongly connected components calculated above. This, however, is not cor
rect because the definition of the giant weakly connected component includes 
some vertices that are not in the in-, Qut-, Of strongly connected components. 
An example would be any vertex that is reachable from the giant in-component 
but that does not itself have a path to the strongly connected component and 
hence is not in the giant in-component. Thus the size of the giant weakly con
nected component is, in general, larger than Si + So - 55' Nonethelessf we can 
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still calculate the size of the giant weakly connected component by an argu
ment quite similar to the ones we have already seen. 

A vertex belongs to the giant weakly connected component if any of its 
edges, ingoing or outgoing, are connected to a vertex in that component. Let u 
now be the probability that a vertex is not connected to the giant weakly con
nected component via the vertex at the other end of one of its ingoing edges 
and let v be the equivalent probability for an outgoing edge. Then the proba
bility that a vertex with in-degree j and out-degree Ie is not in the giant weakly 
connected component is Ulvk and the probability that it is in the giant weakly 
connected component is 1 - ul,l. Averaging over the joint distribution Pik of 
the two degrees we then find that the size 5", of the giant weakly connected 
component is 

5", = I">ik - L,Pikuivk = 1 - goo(u, v). (13.157) 
jk jk 

We can derive the value of u by noting that the vertex at the end of an 
ingoing edge is not in the giant weakly connected component with probability 
uivk again, but with j and k being the numbers of edges excluding the edge we 
followed to reach the vertex. These numbers are distributed according to the 
appropriate excess degree distribution and, performing the average, we find 
that 

U=g01(U,V). (13.158) 

Similarly we can show that 
v =glO(U,V), (13.159) 

and Eqs. (13.157) to (13.159) between them give us our solution for the size of 
the giant weakly connected component. 

13.11.3 THE APPEARANCE OF THE GIANT COMPONENTS 

As in the undirected random graph, there mayor may not be giant compo
nents in the direct random graph, depending on the degree distribution. We 
can derive conditions for the existence of the giant components using the ma
chinery developed above. The calculation is easiest for the giant in- and out
components. Their size is given by Eqs. (13.154) and (13.155). Given that 
goa(1,1) = 1 (Eq. (13.145», these equations give a non-zero size only if u or 
v is less than 1. Looking at Eq. (13.151) for the value of v we see a similar situa
tion to that depicted in Fig. 13.6: we can have a solution with v < 1, and hence 
a giant in-component, only if 

(13.160) 
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or equivalently if 

a
2
gaa I -- >c 

axay x.y~l ' 
(13.161) 

where we have made use of Eqs. (13.148) and (13.149). Similarly we can have 
a giant out-component only if 

agO! I > 1 
ax x,y=l " 

(13.162) 

or equivalently, 

a'gaa I -- >c. 
axay x.y~l 

(13.163) 

Interestingly, Eqs. (13.161) and (13.163) are identical, meaning that the condi
tions for the giant in- and out-components to appear are the same. If there is a 
phase transition at which one appears, the other also appears at the exact same 
moment. lS 

We can express (13.161) directly in terms of the degree distribution if we 
want. Substituting from Eq. (13.143) we find that 

a2g0a
l ~ . aa =L." JIePik 

x y x,Y= 1 J,k=O 

and hence the giant in- and out-components appear if 

00 

L, jkPik > C. 

j,k=O 

(13.164) 

(13.165) 

If we prefer we can write c = Lj jpik = Lj kPik to give the alternative form 

00 

L, (2jk - j -1e)Pjk > O. 
j,k=O 

(13.166) 

This result is the equivalent for a directed network of Eq. (13.76) for the un
directed case. 

The calculation for the giant strongly connected component is similar. From 
Eq. (13.153) we see that 5, = 0 unless at least one of u and v is non-zero, 

18Strictly we have not shown that a giant component actually appears if the condition (13.161) 
is satisfied. We have only shown that (13.161) is a necessary condition for a giant component to 
appear. However, we can go through an argument similar to the one we made for the undirected 
case in Section 13.6 to convince ourselves that there must be a giant component when the condition 
is satisfied. 
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so the condition for the existence of a giant strongly connected component is 
the same as for the in- and out-components, Eq. (13.166). In other words, the 
giant in-, out-, and strongly connected components all appear or disappear 
simultaneously. 

The giant weakly connected component, however, is different. It is possible 
for there to be a giant weakly connected component in a network but no giant 
strongly connected component and hence the condition for the existence of a 
giant weakly connected component must be different from that for the other gi
ant components. For instance, a network in which all vertices have either only 
ingoing edges or only outgoing edges can have a giant weakly connected com
ponent but trivially has no strongly connected component of size greater than 
one, since there are only paths to or from each vertex, but not both. Weakly 
connected components, however, are generally of less interest than strongly 
connected ones, and the calculation of the condition for the existence of the 
giant weakly connected component is non-trivial, so we leave it as an exercise 
for the motivated reader and move on to other things. 

13.11.4 SMALL COMPONENTS 

We can also calculate the distribution of small components in a directed ran
dom graph. In fact the distribution of small strongly coIDlected components is 
trivial: there aren't any. Or more properly the probability that a randomly cho
sen vertex belongs to a strongly connected component of size greater than one 
other than the giant strongly connected component is zero in the limit of large 
network size. To see this, recall that the small components in the undirected 
configuration model take the form of trees (see Section 13.7). If we consider 
a small strongly connected component in a directed network and ignore the 
directions of its edges, then the same argument we used before indicates that 
the resulting subgraph will also be a tree. But a tree has no loops in it, which 
leads to a contradiction because a strongly connected component must have 
loops-the paths in either direction between any pair of vertices form a loop. 
Thus, we conclude, there cannot be any small strongly connected components 
of size greater than one in the network. 

In fact, this is not precisely true. In a random network there is always some 
chance that, for example, two vertices will each have a directed edge to the 
other, forming a strongly connected component of two vertices. In the limit 
of large n, however, the probability that a randomly chosen vertex belongs to 
such a component tends to zero. A detailed calculation shows that on average 
there is only a constant number of short loops in the network and their density 
vanishes as lin in the limit of large network size. 

There can however be small in- and out-components. In a directed net
work, each strongly connected component has its own in- and out-components. 
In the present model, as we have said, we have no small strongly connected 
cOlnponents, other than single vertices, so the component structure consists of 
the giant in- and out-components and then a large number of small in- and 
out-components for single vertices. Let us ask what the probability is that a 
randomly chosen vertex has a small out-component of size s, i.e., that there are 
s vertices including itself that can be reached by directed paths starting from 
the vertex. We can calculate the distribution of sizes by the same method we 
used for the undirected case. We define a generating function hI (y) for the 
distribution of the size of the out-component of a vertex reached by following 
an edge in the forward direction, which then satisfies an equation of the form 
of Eq. (13.86), except that the generating function gl for the excess degree dis
tribution is replaced by the corresponding generating function for the directed 
network, Eq. (13.149), giving 

(13.167) 

And the generating function ho(y) for the size of the out-component to which 
a randomly chosen vertex belongs is then 

(l3.168) 

We can write similar equations for in-components too and, armed with these 
equations, we can find the average size of the in- or out-component to which 
a vertex belongs, or even find the entire distribution of component sizes using 
the equivalent of Eq. (13.127). 

PROBLEMS 

13.1 Consider the binomial probability distribution Pk = G)pk(1- p)/!-k. 

a) Show that the distribution has probability generating function g(z) = (pz + 1 -
p)". 

b) Find the first and second moments of the distribution from Eq. (13.25) and hence 
show that the variance of the distribution is (/2 = np(l - p). 

c) Show that the sum of two numbers drawn independently from the same binomial 
distribution is distributed according to (2n pk (1 _ P )2/!-k. 

PROBLEMS 
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13.2 Consider a configuration model in which every vertex has the same degree k. 

a) What is the degree distribution Pk? What are the generating functions go and gl 
for the degree distribution and the excess degree distribution? 

b) Show that the giant component fills the whole network for all k 2: 3. 

c) What happens when k = l? 

d) When Ie = 2 show that in the limit of large 11 the probability ?Is that a vertex 
belongs to a component of size s is given by ?Is 1/ [2 V 11 (n - s) ] . 

13.3 Consider the configuration model with exponential degree distribution Pk = (1-
e-;\)e,·Ak with A > 0, so that the generating functions go(z) and gl(Z) arc given by 
Eq. (13.130). 

a) Show that the probability it of Eq. (13.91) satisfies the cubic equation 

u3 - 2e'\u 2 +e2/l u - (e'\ -I? = o. 

b) Noting that u = 1 is always a trivial solution of this equation, show that the non
trivial solution corresponding to the existence of a giant component satisfies the 
quadratic equation [/2 - (2eA -l)u + (eA _1)2 = 0, and hence that the size of the 
giant component, if there is one, is 

s = ~ - ~/\ - ~. 

c) Show that the giant component exists only if 1\ < In3. 

13.4 Equation (13.74) tells us on average how many vertices are a distance d away 
from a given vertex. 

a) Assuming that this expression works for all values of d (which is only a rough 
approximation to the truth), at what value of d is this average number of vertices 
equal to the number n in the whole netw'ork? 

b) Hence derive a rough expression for the diameter of the netw'ork in terms of C1 

and C2, and so argue that configuration model networks display the small-world 
effect in the sense that typical geodesic distances between vertices are G(log 11). 

13.5 Consider a network model in which edges are placed independently between 
each pair of vertices i,j with probability Pi) = KIfJ, where K is a constant and I is a 
number assigned to vertex i. Show that the expected degree Ci of vertex i Withlll the 
model is proportional to ii, and hence that the only possible choice of probability with 
this form is Pi) = cici/2m, as in the model of Section 13.2.2. 

13.6 As described in Section 13.2, the configuration model can be thought of as the 
ensemble of all possible matchings of edge stubs, where vertex i has ki stubs. Show that 
for a given degree sequence the number 0 of matchings is 

[] = (2m)! 
2111m! ' 

which is independent of the degree sequence. 

13.7 Consider the example model discussed in Section 13.8.1, a configuration model 
with vertices of degree three and less only and generating functions given by Eqs. (13.94) 
and (13.95). 

a) In the regime in which there is no giant component, show that the average size of 
the component to which a randomly chosen vertex belongs is 

(s) = 1 + (PI +2pz +3p3)2. 
PI - 3P3 

b) In the same regime find the probability that such a vertex belongs to components 
of size I, 2, and 3. 

13.8 Consider a directed random graph of the kind discussed in Section 13.11. 

a) If the in- and out-degrees of vertices are uncorre1ated, i.e., if the joint in/out
degree distribution Pik is a product of separate functions of j and k, show that a 
giant strongly connected component exists in the graph if and only if c(c -1) > a, 
where c is the mean degree, either in or out. 

b) In real directed graphs the degrees are usually correlated (or anti-correlated). The 
correlation can be quantified by the covariance p of in- and out-degrees. Show 
that in the presence of correlations, the condition above for the existence of a giant 
strongly connected component generalizes to c( c - 1) + P > O. 

c) In the World Wide Web the in- and out-degrees of the vertices have a measured 
covariance of about p = 180. The mean degree is around c = 4.6. On the ba
sis of these numbers, do we expect the Web to have a giant strongly connected 
component? 

PROBLEMS 
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CHAPTER 14 

MODELS OF NETWORK FORMATION 

A discussion of models of the Jom/afion of networks, 
particularly models of networks that grow by addition of 
vertices, such as the World Wide Web or citation 
networks 

THE MODELS described in Chapters 12 and 13 provide an excellent tool for 
studying the structural features of networks, such as giant and small com

ponents, degree distributions, the lengths of paths in networks, and so forth. 
Moreover, as we will see in later chapters, they can also serve as a convenient 
basis for further modeling work, such as the modeling of network resilience or 
of the spread of diseases over contact networks. 

But there is another important class of network model that has an entirely 
different purpose. In the models we have seen so far, the parameters of the 
network, such as the number of vertices and edges or the degree distribution, 
are fixed from the outset~chosen by the modeler to have some desired values. 
For instance, if we are interested in networks with power-law degree distribu
tions, we make a random graph model with a power-law degree distribution as 
in Section 13.10 and then explore its structure analytically or computationally. 
But models of this kind offer no explanation of why the network should have 
a power-law degree distribution in the first place. In this chapter we describe 
models of a different kind that offer such an explanation, 

The models in this chapter are generative network models. That is, they model 
the mechanisms by which networks are created. The idea behind models such 
as these is to explore hypothesized generative mechanisms to see what struc
tures they produce. If the structures are similar to those of networks we ob
serve in the real world, it suggests~though does not prove~that similar gen
erative mechanisms may be at work in the real networks. The best-known 
example of a generative network model, and the one that we study first in this 
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chapter, is the "preferential attachment" model for the growth of networks 
with power-law degree distributions. Later in the chapter we examine a num
ber of other models, including generalizations of preferential attachment mod
els, vertex copying models, and models based on optimization. 

14.1 PREFERENTIAL ATTACHMENT 

As discussed in Section 8.4, many networks are observed to have degree distri
butions that approximately follow power laws, at least in the tail of the distri
bution. Examples include the Internet, the World Wide Web, citation networks, 
and some social networks and biological networks. The power law is a some
what unusual distribution and its occurrence in empirical data is often con
sidered a potential indicator of interesting underlying processes 1 A natural 
question to ask therefore is how might a network come to have such a distri
bution? This question was first directly considered in the 1970s by Price [275], 
who proposed a simple and elegant model of network formation that gives 
rise to power-law degree distributions. 

Price was interested in, among other things, the citation networks of sci
entific papers, having authored an important early paper on the topic in the 
1960s in which he pointed out the power-law degree distribution seen in these 
networks [274J. In considering the possible origins of the power law, Price was 
inspired by the work of economist Herbert Simon [299J, who noted the occur
rence of power laws in a variety of (non-network) economic data, such as the 
distribution of people's personal wealth. Simon proposed an explanation for 
the wealth distribution based on the idea that people who have money already 
gain more at a rate proportional to how much they already have. This seems 
a reasonable supposition. Wealthy individuals make money by investing the 
money they have, and the return on their investment is essentially propor
tional to the amount invested. Simon was able to show mathematically that 
this "rich-get-richer" effect can give rise to a power-law distribution and Price 
adapted Simon's methods, with relatively little change, to the network context. 
Price gave a name to Simon's mechanism:2 he called it cumulative advantage, al
though it is more often known today by the name preferential attachment, which 
was coined in 1999 by Barabasi and Albert [27J. In this book we use principally 
the latter term, which has become the accepted name in recent years. 

JFor a discussion see, for instance, Refs. [222] and [244]. 

2Simon himself called the mechanism the Yule process, in recognition of the statistician Udny 
Yule, who had studied a simple version many years earlier [333]. 

See Section 4.2 for a discus
sion of citation networks. 
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Price's model of a citation network is as follows. We assume that papers 
are published continually (though they do not have to be published at a con
stant rate) and that newly appearing papers cite previously existing ones. As 
discussed in Section 4.2, the papers and citations form a directed citation net
work, the papers being the vertices and the citations being the directed edges 
between them. Since no paper ever disappears after it is published, vertices in 
this network are created but never destroyed. 

Let the average number of papers cited by a newly appearing paper be c. 
In the language of graph theory, c is the average out-degree of the network; in 
the language of publishing, c is the average size of the bibliography of a paper. 
The model allows for the actual sizes of the bibliographies to fluctuate about c. 
So long as the distribution of sizes satisfies a few basic sanity conditions,3 only 
the average value is important for the behavior of the model in the limit of 
large network size. In real citation networks the sizes of bibliographies also 
vary from one field to another and depend on when papers were published, 
the average bibliography having grown larger over the years in most fields, 
but these effects are neglected in the model. 

The crucial central assumption of Price's model is that a newly appearing 
paper cites previous ones chosen at random with probability proportional to 
the number of citations those previous papers already have. In this most basic of 
models there is no question of which papers are most relevant topically or 
which papers are most original or best written or the difference between re
search articles and reviews, or any of the many other factors that certainly 
affect real citation patterns. The model is thus very much a simplified repre
sentation of the citation process. As we have seen with the random graphs of 
previous chapters, however, even simple models can lead to real insights. We 
certainly need to remember that the model only represents one aspect of the 
citation process-and a hypothetical one at that-but with this in mind let us 
press on and see what we can discover. 

As with personal wealth, it is not implausible that the number of citations 
a paper receives could increase with the number it already has. When one 
reads papers, one often looks up the other works that those papers cite and 
reads some of them too. If a work is cited often, then, all other things being 
equal, we are more likely to come across it than a less cited work. And if we 

3The main condition on the distribution is that it should have finite variance. This rules out, 
for example, cases in which bibliographies have a power-law distribution of sizes with exponent 
less than three. Empirical evidence suggests that real bibliographies have an unexceptionable 
distribution of sizes with a modest and finite variance, so the assumptions of Price's model are 
met. 
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read it and like it, then perhaps we will cite it ourselves if we write a paper on 
the same topic. This does not mean that the probability of a paper receiving 
a citation is precisely proportional to the number of citations the paper has 
already, but it does at least give some justification for why the rich should get 
richer in this paper citation context. 

In fact, upon further thought, it's clear that the probability of receiving a 
new citation cannot be precisely proportional to the number of citations a paper 
already has. Except under unusual circumstances, papers start out life with 
zero citations, which, with a strict proportionality rule, would mean that their 
probability of getting new citations would also be zero and so they would have 
zero citations for ever afterwards. To get around this hitch, Price proposed that 
in fact the probability that a paper receives a new citation should be propor
tional to the number that it already has plus a positive constant a. (In fact, Price 
only considered one special case a = 1 in his original model, but there seems 
to be no particular reason to limit ourselves to this case, so we will treat the 
case of general a > 0.) 

The constant a in effect gives each paper a number of "free" citations to get 
it started in the race-each paper acts as though it started off with a citations 
instead of none, An alternative interpretation is that a certain fraction of cita
tions go to papers chosen uniformly at random without regard for how many 
citations they current have, while the rest go to papers chosen in proportion 
to current citation count.4 This gives all papers a chance to accrue citations, 
even if they currently have none. (We discuss this interpretation in more detail 
in Section 14.1.1, where we use it to construct a fast algorithm for simulating 
Price's model.) 

We also need to specify what the starting state of the network is, how we 
initialize the model to begin with. It turns out in fact that in the limit of large 
network size the predictions of the model don't depend on the initial condi
tions, but we could, for instance, start the network out with a small set of 
initial papers having zero citations each. 

Thus, in summary, Price's model consists of a growing network of papers 
and their citations in which vertices (papers) are continually added but none 
are ever taken away, each paper cites on average c others (so that the mean 
out-degree is c), and the cited papers are chosen at randoms with probability 

4The two fractions are in fact a/ (c + a) and c/ (c + a), respectively, as shown in Section 14.1.1. 

.5There is nothing in the definition of Price's model to prevent a paper from listing the same 
other paper twice in its bibliography, something that doesn't happen in real citation networks. In 
the language of graph theory, such double citations would correspond to directed multiedges in 
the citation network (see Section 6.1) while true citation networks are simple graphs having no 
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proportional to their in-degree plus a constant a. 
One important property of Price's model is immediately apparent: it gen

erates purely acyclic networks, since every edge points from a more recently 
added vertex to a less recently added one, i.e., backward in time. Thus all di
rected paths in the network point backward in time and hence there can be no 
closed loops, because to close a loop we would need edges pointing forward 
in time as well. This fits well with the original goal of the model as a model of 
citation, since citation networks are acyclic, or very nearly so (see Section 4.2). 
On the other hand it fits poorly with some other directed networks such as the 
World Wide Web, although the model is still sometimes used as a model for 
power-law distributions in the Web. 

Armed with our definition of Price's model, we will now write down equa
tions governing the distribution of the in-degrees of vertices, i.e., the numbers 
of citations received by papers in terms of the parameters c and a, and hence 
solve for the degree distribution and various other quantities, at least in the 
limit of large network size. We will discuss models of both directed and un
directed graphs in this chapter, so we will need to be careful to distinguish in
degree in the directed case from ordinary undirected degree in the undirected 
case. Previously in this book we have done this by denoting the in-degree of a 
vertex i by Ie:n (see Section 6.9), but this notation can make our equations quite 
difficult to read, so in the interests of clarity we will in this chapter adopt in
stead the notation introduced by Dorogovtsev et al. [99J in which the in-degree 
of vertex i is denoted qi. Degrees in undirected graphs will still be denoted ki 
just as before. 

So consider Price's model of a growing network and let pq(n) be the frac
tion of vertices in the network that have in-degree q when the network con
tains n vertices~this is the in-degree distribution of the network~and let us 
examine what happens when we add a single new vertex to the network. 

Consider one of the citations made by this new vertex. In the model, the 
probability that the citation is to a particular other vertex i is proportional to 
qi + a, where a is a positive constant. Since the citation in question has to be 
to some paper, this probability must be normalized such that its sum over all i 
is 1. In other words the correctly normalized probability must be 

qi +a 
Li(qi + a) 

qi + a 
n(q) +na 

qi +a 
n(c+a)' 

(14.1) 

multiedges. However, as with random graph models, the probability of generating a multiedgc 
vanishes in the limit of large nemark size and so the predictions of the model in this limit are 
not altered by allowing them, and doing so makes the mathematical treatment of the model much 
simpler. 

14.1 PREFERENTlAL ATTACHMENT 

where we have written the average in-degree as (q) = 11-
1 Li qi. In the second 

equality we have made use of the fact that the average out-degree of the net
work is c by definition, and that the average in- and out-degrees of a directed 
network are equal (see Eq. (6.27» so that (q) = c. 

Each newly appearing paper cites c others on average, so the expected 
number of new citations to vertex i upon appearance of our new paper is c 
times Eq. (14.1). And there are npq(n) vertices with degree q in our network 
and hence the expected number of new citations to all vertices with degree q is 

q+a c(q+a) () 
npq(n) x c x n(c+a) = c+a Pq 11 . 

(14.2) 

Now we can write down a so-called master equation for the evolution of the 
in-degree distribution as follows. When we add a single new vertex to our 
network of 11 vertices, the number of vertices in the network with in-degree q 
increases by one for every vertex previously of in-degree q - 1 that receives a 
new citation,6 thereby becoming a vertex of in-degree q. From Eq. (14.2) we 
know that the expected number of such vertices is 

(14.3) 

SimilarlYf we lose one vertex of in-degree q every time such a vertex receives 
a new citation, thereby becoming a vertex of in-degree q + 1. The expected 
number of such vertices receiving citations is 

c(q+a) () 
c + a pq 11 . 

(14.4) 

The number of vertices with in-degree q in the network after the addition of a 
single new vertex is (n + 1) pq( n + 1) which, putting together the results above, 
is given by 

c(q-1+a) c(q+a) 
(n + l)pq(n + 1) = npq(n) + pql(n) - -···~pq(n). (14.5) 

c+a c+a 

The first term on the right-hand side here represents the number of vertices 
previously of in-degree q, the second term represents the vertices gained, and 
the third term the vertices lost. 

611, theory, it also increases by one if a vertex of in-degree q - 2 receives two new citations, 
and Similarly for larger numbers of citations. This, however, would create a multi edge, and multi
edges, as we have said, are vanishingly improbable in the limit of large network size, so we can 
ignore this possibility. 
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Equation (14.5) applies for all values of q except q = o. When q = 0 there 
are no vertices of lower degree that can gain an edge to become vertices of 
degree zero, and hence the second term in Eq. (14.5) doesn't appear. On the 
other hand, we gain a vertex of degree zero whenever a new vertex is added 
to the network, since by hypothesis papers have no citations when they are 
first published. Since exactly one vertex is added in going from a network of n 
vertices to a network of n + 1, the appropriate equation for q = 0 is: 

ea 
(n + l)po(n + 1) = npo(n) + 1 - ·-po(n). 

e+a 
(14.6) 

Now let us consider the limit of large network size n -+ 00 and calculate 
the asymptotic form of the degree distribution in this limit.7 Taking the limit 
n --+ 00 and using the shorthand pq = pq( 00), Eqs. (14.5) and (14.6) become 

e 
Pq=-[(q-1+a)pq_I-(q+a)pq] 

e+a 
ca 

po = 1- --po 
e+a 

for q ::> 1, 

for q = o. 

(14.7) 

(14.8) 

The second of these equations we can easily rearrange to give an explicit ex
pression for the fraction po of degree-zero vertices: 

1 + a/e 
PO=a+1+a/e· (14.9) 

The solution for q ::> 1 is a little more complicated, though only a little. Rear
ranging Eq. (14.7) for pq we find that 

q+a-1 
pq = q+a+1 +a/c Pq-J. (14.10) 

We can use this equation to calculate Pq iteratively for all values of q starting 
from our solution for po, Eq. (14.9). First, we set q = 1 in Eq. (14.10) to get 

a a (l+a/c) 
PI = a+2+a/e po = (a+2+a/e) (a+1+a/er 

Now we can use this result to calculate P2: 

a+1 (a+1)a 
P2 = a+3+a/c PI = (a+3+a/e)(a+2+a/e) 

(l+a/e) 
(a+1+a/e)' 

(14.11) 

(14.12) 

7Strictly we should first prove that the degree distribution has an asymptotic form in the limit 
of large n and doesn't go on changing forever, but for the purposes of the present discussion let us 
assume that there is an asymptotic form. 

14.1 PREFERENTIAL ATTACHMENT 

and 

a+2 
P3 = a +4+a/e P2 

(a+2)(a+1)a (l+a/c) 
= (a-+-4c-+-a-c/ e-cC)'(a-+--c3=-'+-a/ c)(a + 2 + a/ e) (a + 1 + a/c)' 

(14.13) 

and so forth. It's easy to see that for general q the correct expression must be 

(q+a-1)(q+a-2) ... a (l+a/c) 
Pq = (q+a+1+a/c) ... (a+2+a/e) ~+l+a/cr 

(14.14) 

This is effectively a complete solution for the degree distribution of Price's 
model, but there is a little more we can do to write it in a useful form. We make 

use of the gamma function, 

r(x) = 1000 lx-Ie -I dt, 

which has the useful property thatS 

r(x + 1) = xf(x) 

for all x > o. Iterating this formula, we see that 

f(x + n) 
f(x) = (x+n-1)(x+n-2) ... x. 

Using this result in Eq. (14.14) we can write 

_( / /(q+a)f(a+1+a/e) 
Pq- l+a c r(a)f(q+a+2+a/er 

(14.15) 

(14.16) 

(14.17) 

(14.18) 

This expression can be simplified further by writing it in terms of Euler's 

beta function, which is defined by 

B(x,y) = f(x)f(y). 
f(x + y) 

(14.19) 

If we multiply both the numerator and the denominator of Eq. (14.18) by f(2 + 

a/c) = (l+a/e)f(l+a/c),wefindthat 

f(q+a)f(2+a/c) f(a+1+a/e) 
Pq= f(q+a+2+a/e) x r(a)r(l+a/c)' 

(14.20) 

8The proof of this result is simple, making use of integration by parts: 

r(x + 1) ~ r~ t'e-' dt ~ - [t'e-'r + x r~ t,-l e-' dt ~ xr(x), 
.10 0 .10 

where the boundary term [ ... ] disappears at both limits. 
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or 
B(q+a,2+a/e) 

pq = B(a,l+a/c) (14.21) 

Note that this expression is not only correct for q 2: 1 but also gives the correct 
value when q = O. 

One of the nice things about Eq. (14.21) is that it depends on q only via the 
first argument of the upper beta function. Thus if we want to understand the 
shape of the degree distribution we need only to understand the behavior of 
this one flll1ction. 

In particular, let us examine the behavior for large q and fixed a and e. 

For large values of its first argument, we can rewrite the beta function using 
Stirling's approximation for the gamma function [2] 

(14.22) 

which means that 

B(x ) = f(x)f(y) 
,y f(x+y) (14.23) 

But 
x+y_l 

(x + yy+y-l =xx+y-l[l+~l 'o=xx+y-leY, (14.24) 

where the last equality becomes exact in the limit of large x. Then 

(14.25) 

In other words, the beta function B( x, y) falls off as a power law for large values 
of x, with exponent y. 

Applying this finding to Eq. (14.21) we then discover that for large values 
of q the degree distribution of our network goes as Pq ~ (q + a)-a, or simply 

when q » a, where the exponent a is 

a 
a=2+-. 

c 

(14.26) 

(14.27) 

Thus Price's model for a citation network gives rise to a degree distribution 
with a power-law tail. This is very much in keeping with the degree distribu
tions of real citation networks, which, as we saw in Fig. 8.8, appear to have 
clear power-law tails. 

14.1 PREFERENTIAL ATTACHMENT 

Note that the exponent a = 2 + a/ e is strictly greater than two (since a and 
c are both strictly positive). Most measurements put the exponent of the power 
law for citation networks around a = 3 (see Table S.l), which is easily achieved 
in the model by setting the constants a and c equal. In a typical experimen
tal situation the exponent a and the parameter c, the mean size of a paper's 
bibliography, are easily measured, but the parameter a, which represents the 
number of 11 free" effective citations a paper receives upon publication, is not. 
Typically therefore the value of a is extracted by rearranging Eq. (14.27) to give 
a = e(a - 2). 

While it is delightful that Price's simple model generates a power-law de
gree distribution similar to that seen in real networks, we should not take the 
details of the model too seriously, nor the exact relation between the parame
ters and the exponent of the power law. As we noted at the start of this sec
tion, the model is highly simplified and substantially incomplete as a model 
of the citation process, omitting many factors that are undoubtedly important 
for real citations, including the quality and relevance of papers, developments 
and fashions in the field of study, the reputation of the publishing journal and 
of the author, and many others besides. Still, Price's model is striking in its 
ability to reproduce one of the most interesting features of citation networks 
using only a small number of reasonable assumptions, and many scholars be
lieve that it may capture the fundamental mechanism behind the observed 
power-law degree distribution. 

14.1.1 COMPUTER SIMULATION OF PRICE'S MODEL 

When Price proposed his model in the 1970s, analytic treatments like the one 
above were essentially the only tool available for understanding the behavior 
of such models. Today, however, we can go further and study the operation of 
the model explicitly by performing computer simulations following the rules 
Price laid down. In addition to providing a useful check on our solution for 
the degree distribution, such simulations also allow us to generate real exam
ples of networks on our computer. We can then measure these networks to 
determine the values, within the model, of any network quantities we like
path lengths, correlations, clustering coefficients, and so forth-including ones 
for which we do not at present have an analytic solution. Researchers have 
also made use of simulated networks as a convenient but still relatively real
istic substrate for other kinds of calculation, including solutions of dynamical 
models, percolation processes, opinion formation models, and others. 

In principle, simulation of Price's model appears straightforward. Typ
ically one simulates the model with the out-degrees of vertices fixed to be 
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exactly equal to c, where c is restricted to integer values. (In the original 
model and our analysis above, c was only the average out-degree-actually 
out-degree could fluctuate about the average.) Then the only complicated part 
of the simulation is the selection of the vertices that receive new edges, which 
has to he done in a random but non-uniform way as a function of the ver
tices' current in-degree. There are standard techniques for simulating such 
non-uniform random processes and one can without too much labor create 
a simple program that carry out the steps of the model. This, however, is 
not usually the best way to proceed. A naive direct simulation of this kind 
becomes slow when the network gets large, which limits the size of the net
work that can be generated. Luckily, there is a much faster way to perform the 
simulation that allows larger networks to be generated in shorter times, while 
still being simple to program on a computer. This method, first proposed by 
Krapivsky and Redner [187], works as follows. 

When we create a new edge in Price's model we attach it to a vertex chosen 
in proportion to in-degree plus a constant a. Let us denote by ei the probability 
that an edge attaches to vertex i, which from Eq. (14.1) is given by 

e. - qi+ a (1428) 
'-n(c+a)" . 

Now consider an alternative process in which upon creating a new edge we 
do one of two things. With some probability cp we attach the edge to a vertex 
chosen strictly in proportion to its current in-degree, i.e., with probability 

qi 
nc 

(14.29) 

Alternatively, with probability 1 - cp, we attach to a vertex chosen uniformly 
at random from all n possibilities, i.e., with probability 1/ n. Then the total 
probability e; of attaching to vertex i in this process is 

(14.30) 

Now let us make the choice cp = c / (c + a), so that 

e' = ~c_ 'Ii + (1- ~c_)~ = qi+ a 
, c+a nc c+a n n(c+a)" 

(14.31) 

This, however, is precisely equal to the probability ei, Eq. (14.28), of selecting a 
vertex in the Price model and the two processes thus choose vertices with the 
exact same probabilities. 

So an alternative way of performing a step of Price's model is the following: 

14.1 PREFERENTIAL ATTACHMENT 

Figure 14.1: The vertex label list used in the simulation of Price's model. The list 
(bottom) contains one entry for the target of each edge in the network (top). In this 
example, there are three edges that point to vertex 1 and hence there are three elements 
containing the number 1 in the list. Similarly there are two containing the number 2, 
because vertex 2 is the target of two edges. And so forth. 

With probability c/(c + a) choose a vertex in strict proportion to in
degree. Otherwise choose a vertex uniformly at random from the set 
of all vertices. 

The choice between the two parts can be achieved, for example, by generating 
a random number r in the range 0 S; r < 1. If r < c / (c + a) then we choose a 
vertex in proportion to in-degree. Otherwise we choose uniformly. 

Choosing a vertex uniformly is easily accomplished. Choosing a vertex in 
proportion to in-degree is only slightly harder. It can be done rapidly by noting 
that choosing in proportion to in-degree is equivalent to picking an edge in the 
network uniformly at random and choosing the vertex which that edge points 
to. By definition this makes a vertex with in-degree q exactly q times as likely 
to be chosen as a vertex with in-degree 1, since it has q opportunities to be 
chosen, one for each of the edges that point to it. 

To turn this observation into a computer algorithm we make a list, stored 
for instance in an ordinary array. of the target of each directed edge in the 
network. That is, the list's elements contain the vertex labels i of the vertices 
to which each edge points. Figure 14.1 shows an example for a small network. 
Note that the edges do not have to be in any particular order. Any order will 
do. Nor does the size of the array used to store the list have to match the 
length of the list exactly; it can contain empty elements at the end as shown 
in the figure. Indeed, since making already existing arrays larger is difficult 
in most computer languages, it makes sense to initially create an array that is 
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large enough to hold the longest list we will need. (This means that it should 
have length nc if the out-degree of vertices is constant. If out-degree is allowed 
to fluctuate then the longest list might be a bit larger or smaller than nc, in 
which case one might create an array of size nc plus a few percent, to be on the 
safe side.) 

Once we have our list, choosing a vertex in proportion to its in-degree be
comes a trivial operation: we simply choose an element uniformly at random 
from the list and our vertex is identified by the contents of that element. When 
a new edge is added to the network, we must also update the list by adding 
the target of that edge to the end of the list. 

Thus our algorithm for creating a new edge is the following: 
1. Generate a random number r in the range 0 s:: r < l. 
2. If r < c / (c + a), choose an element uniformly at random from the list of 

targets. 
3. Otherwise choose a vertex uniformly at random from the set of all ver

tices. 

4. Create an edge linking to the vertex thus selected, and add that vertex to 
the end of the list of targets. 

Each step in this process can be accomplished in constant time and hence the 
growth of a network of n vertices can be accomplished in time O( n) (provided 
other parts of the program are implemented efficiently so that they also take 
constant time per step). 

Figure 14.2a shows the degree distribution of a lOG-million-node network 
generated computationally in this fashion, and the power-law form in the tail 
of the distribution is clearly visible. A practical problem, however, is the noise 
in the tail of the histogram, which makes the exact form of the distribution 
hard to gauge. This is exactly the same problem as we encountered for real
world data in Section 8.4.1: the bins in the tail of the histogram have relatively 
few samples in them and so the statistical fluctuations are large as a fraction 
of the number of samples. Indeed, in many respects simulation data often 
behave in similar ways to experimental data and they can often be treated 
using the same techniques. In this case we can take a hint from Section 8.4.1 
and plot a cumulative distribution function instead of a histogram. To recap, 
the cumulative distribution function Pq is 

00 

Pq = L: Pq', (14.32) 
q'=q 

(see Eq. (8.4)) and is expected to have a power-law tail with an exponent a -
1 = 1 + a/ c, one less than the exponent of the degree distribution itself. Fig-

14.1 PREFERENTIAL ATTACHMENT 

ure 14.2b shows the cumulative distribution of degrees for our simulation and 
we now see a much cleaner power-law behavior over several decades in q. 

For comparison we can also calculate the cumulative distribution function 

analytically from our solution of the model. To do this, we make use of the 
standard integral form for the beta function: 9 

B(x,y) = (I uX1 (1_ U)y-I duo 
.fo 

Using this expression we find that 

1 (I q+" "(1 _ u)"j, du 
= B(a,l+a/c).fo u 

B(q+a,l+a/c) 
B(a,l+a/c) 

(14.33) 

(14.34) 

Given that B(x, y) goes as x-y for large x (Eq. (14.25)), this implies that indeed 
the cumulative distribution function has a power-law tail with exponent 1 + 
a/ C. 

In Fig. 14.2b we show Eq. (14.34) along with the simulation data, and the 
simulation and analytic solution agree well, as we would hope. 

9The integral form can be derived by making use of the definition of B (x, y) in terms of gamma 
functions and the integral form of the gamma function, Eq. (14.15): 

B(x,y) ~ r(x)r(y) ~ _1_ r~ s"-le-ods roo IS·'e'cll. 
r(x+y) r(X+Y))Q )0 

We change variables to u = s/(s + t), v = 5 + t (which implies 5 = UV, t = (1 - u)v and a Jacobian 
of v), giving 

= f(x ~ y)' ,10'" vx+y-1e-v dv fal ux--- 1 (1 - u)!I-1 duo 

The firstintegral, however, is equal to f(x + y) by Eq. (14.15) and hence we recover Eq. (14.33). 
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Figure 14.2: Degree distribution in Price's model of a growing network. (a) A histogram of the in-degree distribution 
for a computer-generated network with c = 3 and a = 1.5 which was grown until it had n = 108 vertices. The 
simulation took about 80 seconds on the author's computer using the fast algorithm described in the text. (b) The 
cumulative distribution function for the same network. The points are the results from the simulation and the solid line 
is the analytic solution, Eg. (14.34). 
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14.2 THE MODEL OF BARABAsl AND ALBERT 

Price's model of a growing netvvork is an elegant one and the existence of an 
exact solution showing that its degree distribution has a power-law tail makes 
a persuasive case for preferential attachment as a possible origin for power-law 
behavior. At least until recently, however, Price's work in this area was not well 
known outside of the information science community. Preferential attachment 
did not become widely accepted as a mechanism for generating power laws in 
networks until much later, in the 1990s, when it was independently discovered 
by Barabasi and Albert [27], who proposed their own model of a growing net
work (along with the name "preferential attachment"). The Barabasi-Albert 
model, which is certainly the best known generative network model in use to
day, is similar to Price's, though not identical, being a model of an undirected 
rather than a directed network. 

In the model of Barabasi and Albert, vertices are again added one by one 
to a growing network and each vertex connects to a suitably chosen set of 
previously existing vertices. The connections, however, are now undirected 

14.2 THE MODEL OF BARABAS] AND ALBERT 

and the number of connections made by each vertex is exactly c (unlike Price's 
model, where the number of connections was required only to take an average 
value of c but might vary from step to step). Note that this implies that c must 
be an integer, since a vertex cannot have non-integer degree. Connections are 
made to vertices with probability precisely proportional to the vertices' current 
degree. Notice that there is no in- or out-degree now because the network is 
undirected. Connections are made simply in proportion to the (undirected) 
degree. We will denote the degree of vertex i by lei to distinguish it from the 
directed in-degree q i of the last section. As before, vertices and edges are only 
ever added to the network and never taken way, which means, among other 
things, that there are no vertices with degree Ie < c. The smallest degree in the 
network is always k = c. 

One can write down a solution for the model of Barabasi and Albert using 
a master equation method similar to that of Section 14.1,10 but in fact there is 
no need, because it is straightforward to show that the model is equivalent to 
a special case of Price's modeL Imagine that, purely for the purposes of our 
discussion, we give each edge added to the network a direction, running from 
the vertex just added to the previously existing vertex that the edge connects 
to. That is each edge runs from the more recent of the two vertices it connects 
to the less recent. In this way we convert our network into a directed network 
in which each vertex has out-degree exactly c (since this is the number of out
going edges a vertex starts with and it never gains any more). And the total 
degree lei of a vertex in the sense of the original undirected network is the sum 
of the vertex's in-degree and out-degree, which is ki = qi + c where qi is the 

in-degree as before. 
But given that the probability of an edge attaching to a vertex is simply 

proportional to lei, it is thus also proportional to qi + c, which is the same as in 
Price's model if we make the particular choice a = c. Thus the distribution of 
in-degrees in this directed network is the same as for Price's model with a = c, 
which we find from Eq. (14.21) to be 

B(q+c,3) 
pq=~~ (14.35) 

To get the distribution of the total degree we then simply replace q + c by k to 

get 

{ 

B(k,3) 

Pk = ~(C,2) 

lOSee for instance [99] or [189]. 

for k 2: c, 
(14.36) 

for Ie < c. 
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This expression can be simplified further by making use of Eq. (14.17) to 
write 

B(k 3) = r(k)r(3) 
, r(k+3) 

r(3) 
(14.37) 

k(k+l)(k+2)' 

and similarly 
r(2) 

B(c,2) = ( )' cc+l 
(14.38) 

so that 
r(3) c(c+l) 

Pk = r(2) k(k + 1)-0,+2) 
2c(c+l) 

(14.39) 
k(/c + l)(k + 2) 

for k 2: c, where we have used (14.17) again to get rid of the remaining gamma 
functions. In the limit where k becomes large, this gives 

(14.40) 

and hence the Barabiisi-Albert model generates a degree distribution with a 
power-law tail that always has an exponent a = 3. 

Equation (14.39) was first derived by Krapivsky et al. [189] and indepen
dently by Dorogovtsev et al. [99]. A more detailed treatment was later given 
by Bollobas et al. [48], which clarifies precisely the domain of validity of the 
solution and the possible deviations from the expected value of Pk. 

The model of Barabasi and Albert can be simulated efficiently on a com
puter by exploiting the same mapping to Price's model and the simulation 
method described in Section 14.1.1. Again we regard the network as a directed 
one and maintain a list of targets of every directed edge, i.e., the vertices that 
the edges point to. Then, setting a = c, the algorithm of Section 14.1.1 becomes 
particularly simple: with probability! we choose an element from our list uni
formly at random and take the contents of that element as our target vertex. 
Otherwise we choose a target uniformly at random from the set of all vertices 
currently in existence. Then we create a new edge from the vertex just added 
to the target we have selected and also add that target to the end of our list. 

The Barabasi-Albert model is attractive for its simplicity-it doesn't require 
the offset parameter a of Price's model and hence has one less parameter to 
worry about. It is also satisfying that one can write the degree distribution 
without using special functions such as the beta and gamma functions that 
appear in the solution of Price's model. The price one pays for this simplicity 
is that the model can no longer match the exponents observed in real networks, 
being restricted to just a single exponent value a = 3. 

14.3 FURTHER PROPERTIES OF PREFERENTIAL ATTACHMENT MODELS 
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The models of Price and of Barabasi and Albert were proposed as explanations 
for the observed power-law degree distributions in networks such as the Web, 
citation networks, and others, and for this reason the degree distribution is the 
property of these models that has attracted most interest. However, it is not 
the only property that can be calculated. The master equation method can be 
extended to the calculation of a number of other properties, many of which are 
interesting in their own right. We describe a few of these calculations in this 
section. 

14.3.1 DEGREE DISTRIBUTION AS A FUNCTION OF TIME OF CREATION 

Consider a network grown according to Price's model of Section 14.1. Older 
vertices in the network-those added earlier in the growth process-have more 
time to acquire links from other vertices and hence we might expect that they 
would on average have higher in-degree. This indeed turns out to be the case, 
as we can show by calculating the degree distribution as a function of the time 
at which vertices are created. 

Let Pq (t, n) be the average fraction of vertices in our directed network that 
were created at time t and have in-degree q when the network has n vertices 
total. The time of creation is measured in terms of the number of vertices, the 
first vertex having t = 1 and the last having t = n. Alternatively, you can just 
think of t as counting the vertices from 1 to n, recording the order in which 
they were added. Strictly t need not reflect actual time, because the vertices 
need not have been added at a constant rate, but if we know the real times at 
which vertices were added we can easily convert between our timescale and 
real time. 

We can write down a master equation for the evolution of Pq (t, n) as fol
lows. Upon the addition of a new vertex to the network, the expected number 
of new edges acquired by previously existing vertices with in-degree q is in
dependent of time of those vertices creation and, following Eq. (14.2), is given 
by 

q+a c(q+a) 
npq(t, n) x c x ( ) = Pq(t, 11), 

n c+a c+a 
(14.41) 

with the parameters c and a defined as in Section 14.1. Then the master equa
tion takes the form 

(n + 1) pq(t, n + 1) = npq(t, n) + c: a [(q - 1 + a) Pq-l (t, n) - (q + a )Pq (t, n)]. 
(14.42) 
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The only exception to this equation is, as before, for the case of q = 0, where 
we get 

ca 
(n + l)Po(t, n + 1) = npo(t, n) + bt" - --po(t, n). 

c+a 
(14.43) 

Notice the Kronecker delta, which adds a single vertex of in-degree zero if 
t = n, but none otherwise. 

These equations, though correct, don't make much sense in the limit of 
large n, since the fraction of vertices created at time t goes to zero in this limit 
because only one vertex is created at any particular t. So instead we change 
variables to a rescaled time 

(14.44) T= -, 
n 

which takes values between zero (oldest vertices) and one (youngest vertices). 
At the same time we also change from pq (t, n) to a density function 7rq (T, n) 
such that 7rq (T, n) d T is the fraction of vertices that have in-degree q and fall in 
the interval from T to T + dT. The number of vertices in the interval dT is n dT, 
which implies that 7rq dT = pq x n dT and hence 

7rq(T,n) = npq(t,n). (14.45) 

Being a density function, Teq does not vanish as n ---+ 00. 

The downside of this variable change is that T is no longer constant for a 
given vertex. A vertex created at time t has rescaled time t / n when there are n 
vertices in the network but t I (n + 1) when there are n + 1. Thus, in terms of T 

and 7rq, Eq. (14.42) becomes 

7rq(_n_T,n+1) = 7rq(T,n) 
n+1 

+_c_[(q_1+a)7rq 
c+a 

1(t,n) ( )7rq(t,n)] - q+a . 
n n 

(14.46) 

Now we consider the limit where n --; co. If we define the shorthand notation 
7rq(t) = 7rq(t,co) and the small quantity € = lin, Eq. (14.42) becomes 

7rq(T) -7r (T-<:T) c 
q +_.-[(q-1+a)7rq_1(T)-(q+a)7rq(T)] =0, (14.47) 

t c+ a 

where we have dropped terms of order <:2. 

As n ---+ co, we have € -----t 0 and the first two terms become a derivative 
thus: 

(14.48) 
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and so our master equation becomes a differential equation in this case: 

d7r c 
T-

d 
q +~[(q-1+a)7rq_1(T)-(q+a)7rq(T)] =0. (14.49) 

T c+a 

The corresponding equation for q = ° is 

d7ro ca 
T- - --7ro(T) = 0, 

dT c +a 
(14.50) 

so long as T < 1. For the special case T = 1 the bt" in Eq. (14.43) presents a 
problem, but on the other hand for T = 1 we know what the answer is anyway: 
there is always exactly one vertex created at time t = n, which has in-degree 
zero, so 7ro(l) = 1 in the language of our rescaled variablesl1 In effect, this 
just provides a boundary condition on 7ro (T). The corresponding boundary 
condition for q 2: 1 is 7rq (1) = 0, since there are no vertices with t = nand 
q 2: 1. 

We can solve Eqs. (14.49) and (14.50) by starting with a solution for q = ° 
and working up through increasing values of q. This is similar to our solution 
for the degree distribution, Eq. (14.21), except that the equations we are solving 
are now differential equations. 

The solution for the q = ° case is straightforward-Eq. (14.50) is homoge
neous in 7ro and can be solved by standard methods. You can easily verify that 
the solution is 7rO(T) = AT"/(,+"I where A is an integration constant. The con
stant is fixed by the boundary condition 7ro(l) = 1, which implies that A = 1 
and hence 

(14.51) 

As a check, we can integrate over T to get the total fraction of vertices with 
in-degree zero: 

(1 T"/('+HI dT = 1 + al e , 
Jo a+1+ale 

(14.52) 

which agrees nicely with our previous result for the same quantity, Eq. (14.9). 
Now we can use this solution to find 7r1 (T). Equation (14.49) tells us that 

d7r1 e ( ) () e ( ) ea w/('+"1 T-- - --" a+l 7[1 T = ---ano T = ---T . 
dT e+a c+a e+a 

(14.53) 

This is again just an ordinary first-order differential equation, although an in
homogeneous one this time (i.e., it has a driving term on the right-hand side). 

Hit may not be immediately obvious that no (1) must equal 1. There is one vertex in the time 
interval between T = 1 and T = 1 -l/n and it always has in-degree zero. One vertex is a fraction 
1/n of the whole network, so there is l/n of the nehvork in an interval of width l/n, which 
corresponds to a density no(l) = 1. 
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We tackle it in standard fashion. First we find the general solution for the 
homogeneous equation in which the right-hand side is set to zero, which is 
By c(a+lj/(c+l1) where B is an integration constant. Then we find any (non

general) solution to the full equation with the driving term included-the ob
vious one is aTca/(c+a)_and sum the two. The constant is fixed by the bound

ary condition 71"1 (1) = 0, which implies that B = -a, and we get 

(14.54) 

Now, by a similar method, we can use this solution to solve for 71",(T), and 
so forth to higher and higher values of q. The algebra is tedious, but with 
persistence you can show that the next two results are 

71"2(T) = ~a(a + I)T"/('H) (1- T,/(n"))', 

71"3(T) = ~a(a + l)(a + 2)Tm /(,H) (1- T'/('H))3 

(14.55) 

(14.56) 

These results suggest the general solution (first given by Dorogovtsev et al. 
[99]) 

7Tq(T) = ~[a(a+l) ... (a+q-l)JT,"/('H)(I-T,/(,,"))q 

f(q + a) Tm/(,+") (1- T'/('H))Q 
r(q+l)f(a) , 

(14.57) 

where we have made use again of the convenient property of the gamma func
tion derived in Eq. (14.17) as well as the result that r(n + 1) = n! when n is a 
positive integer12 With a little work you can verify that this is indeed a com
plete solution of Eq. (14.49) for all q. As a check we can also integrate over T to 
find the total fraction of vertices with in-degree q and confirm that the result 
agrees with Eq. (14.21). We leave this calculation as an exercise for the reader.13 

Let us take a moment to examine the structure of our solution for 71"Q(T) 

and see what it tells us about the network. The general shape of the solution 
is shown in Fig. 14.3. Panel (a) shows the distribution of creation times T for 
vertices of given in-degree q for various values of q and for each value there is 
a clear peak in the distribution, indicating that vertices of a given degree are 
concentrated around a particular era in the growth of the graph. As degree 
increases, that era gets earlier, so that the times of creation of vertices that ulti
mately achieve high in-degree are strongly concentrated around the beginning 

of the growth process. 

l2To prove this we set x = 1 in Eq. (14.17) to get f(n + 1)/f(1) = n(n - 1) ... 1 = nl and from 
Eg. (14.15) we have r(1) ~ .f~,°O e' dt ~ ,. 

13Hint: you will probably need Eq. (14.33). 
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(a) (b) 
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0.5 1 0 10 20 

Rescaled time T In-degree q 

Figure 14.3: Distribution of vertices in Price's model as a function of in-degree and 
time of creation. The two panels show the distribution 7rq( T), Eq. (14.57), for c = 3 and 
" ~ 1.5 as (a) a function of Tior (top to bottom) q = 1,2,5,10, and 20, and (b) a function 
of q for T ~ 0.01 (flattest curve), 0.05, 0.1, 0.5, and 0.9 (steepest curve). 

Panel (b) of Fig. 14.3 shows the distribution of in-degrees for vertices cre
ated at a selection of different times T. This distribution also has a peak, then 
falls off sharply as q becomes large14 Indeed the distribution falls off roughly 
exponentially as q becomes large, as we can see from Eq. (14.57) by writing 

r(q+a) f(q+a) 
f(q + l)f(a) - qr(q)f(a) 

1 

qB(q,a)' 
(14.58) 

where we have used Euler's beta function again, Eq. (14.19). As shown in 
Section 14.1, the beta function has a power-law tail B(x, y) ~ x-Y for large x 
(Eq. (14.25)) so 71"q goes with q as 

(14.59) 

In other words it decays exponentially except for a leading algebraic factor. 
Thus the degree distribution for vertices with specific values of T does not fol
Iowa power law. The power-law behavior seen in the full degree distribution 

14 Actually, the peak only exists for small values of T and disappears once T becomes large 
enough. There are no peaks in the degree distribution for the T = 0.5 and T = 0.9 curves in 
Fig. 14.3b. 
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of the model, Eq. (14.21), only appears when we integrate over all times T. 

However, the decay of the exponential in Eq. (14.59) is slower for smaller T, so 
older vertices are more likely to have high in-degree than younger ones, as we 
saw in Fig. 14.3. 

To investigate this point further, we can calculate the mean in-degree ,,(T) 
for a vertex created at time T thus: 

00 

,,(T) = I: qnq(T) = a(T-c/(c,"l ~ 1). 
q=O 

(14.60) 

Figure 14.4 shows the shape of ,,( T) for a vari
ety of choices of the parameters and, as we expect, 
the mean value of the in-degree increases with de
creasing T and eventually diverges as T approaches 
zero. Notice, though, that no vertex ever actually 
has T = O. The first vertex added to the network has 

a ~ 1 I = 1, so the smallest value of T is l/n. Nonethe
less, we see that vertices added to the network early 
have an enormous advantage in terms of in-degree 
over those added even a little later. For a citation 
network, for instance, this suggests that the early 
papers in a field will receive substantially more ci
tations than later ones, purely because they were 
published first. 

a~8 
a~ 16 

I 
0.4 0.6 0.8 

Rescaled time r 

Figure 14.4: Average in-degree of vertices as a func
tion of their time of creation. The average in-degree 
of vertices in Price's network model as a function of the 
rescaled time T = t / n at which they were added to the 
network, in the limit of large n for various values of the 

Indeed, this is a pattern seen in many different 
areas, not just in networks. In any situation where 
success begets more success, first movers are ex
pected to have a large advantage over others. Any 
small lead gained early in the process is quickly am
plified by the preferential attachment process into 
a bigger lead and soon the lucky first movers find 
themselves racing ahead of the pack. Those who 
enter the game later may experience chance fluc
tuations that give them a small boost, but since 
there are probably many others already ahead of 
them, that boost is not amplified significantly be
cause most of the wealth is already going to the 
leaders under the preferential attachment rule. 

parameter a. The out-degree parameter c was in each case 
c = 2a, so that the exponent of the power-law degree dis
tribution" ~ 2 + ale (Eq. (14.27)) is 2.5 for all curves, 
which is a typical value for real-world networks. 
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A nice demonstration of this process, although 
not in the field of networks, has been given by Salganik et al. [288], who ex
amined the behavior of a group of people downloading popular music on-
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line. Salganik el al. created a website on which participants could download 
and listen to songs by little-known artists for free. Participants were told how 
many times each song had previously been downloaded and Salganik and co
workers found that there was a clear preferential attachment effect: songs with 
many previous downloads were downloaded far more than those with few. 
As a result there was a strong first-mover advantage, with songs that took an 
early lead benefiting from the preferential attachment and turning that lead 
into a much larger one, resulting in a roughly power-law distribution in the 
numbers of downloads. 

To test the theory that they were seeing a preferential attachment process 
rather than actual differences in song quality leading to different download 
rates, Salganik el al. then changed the download numbers reported for each 
song, deliberately misrepresenting the number of times each had been down
loaded. They discovered when they did this that the songs with the highest 
reporled numbers of downloads were still downloaded most often, even though 
the reported numbers no longer corresponded to true popularity.15 These re
sults strongly suggest that success is, at least in this context and at least in part, 
a result of previous success and that a good way to be successful is to get in at 
the beginning and get an early lead. Of course, that may be easier said than 
done. Many people would like to get in at the beginning of a new field of sci
entific research or a new business opportunity, but it's not always clear how 
one should do it. 

Returning to our network growth model, it is also interesting to ask how 
the expected in-degree of a vertex varies with its age after it enters the net
work. This differs from the expected degree for a particular T calculated above 
because a given vertex does not have a fixed value of T. The value of T = t / n 
for a vertex decreases as time passes because n is increasing. For this reason 
the behavior of individual vertices is more easily understood in terms of our 
original non-rescaled time tf which does remain constant. 

So let I again be the time at which a vertex is added to the network and let s 
be the subsequent elapsed time, i.e., the age of the vertex. Necessarily we have 
s + I = n and hence 

I I 
T= - = -~. 

n t + s 
(14.61) 

Substituting this expression into Eq. (14.60), we then find the expected in-

lSSalganik et al. did find a weak effect of song quality-songs that had proved popular when 
the download numbers were reported faithfully continued to do better than expected even when 
the download numbers were misreported. 
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degree 'Yt(s) of the vertex added at time t, as a function ofits age s, to be 

[( )

cI(CHI 1 
'Yt(S) = a 1 + ~ -1 . (14.62) 

When a vertex is first added to the network and s « t, we can expand in the 
small quantity s / t to give 

'Yt(s) "'" - - . ca (s) 
c + a t 

(14.63) 

In other words, the in-degree of a vertex initially grows linearly with the age of 
the vertex, on average, but with a constant of proportionality that is smaller the 
later the vertex entered the network-again we see that there is a substantial 
advantage for vertices that enter early. 

As the vertex ages, there is a crossover to another regime around the point 
s = t, i.e., at the point where the vertex switches from being in the younger 
half of the population to being in the older. For s » t, 

(14.64) 

which has a similar form to Eq. (14.63) but with a different exponent, c/ (c + a), 
which is always less than 1, so the growth is slower than linear but still favors 
vertices that appear early. Figure 14.5 shows the behavior of 'Yt(s) with time 
for vertices created at a selection of different times t. 

All of these results can be applied to the BaraMsi-Albert model as well 
by setting a = c with c an integer and writing the formulas in terms of total 
degree k = q + c rather than in-degree. For instance, the joint degree/time 
distribution, Eq. (14.57), becomes 

(
k - 1) C( C)k-, 7Tk(T)= k_cyT1-YT (14.65) 

for k 2: c and 7Tk (T) = 0 for k < c. This result was first given by Krapivsky and 
Redner [187] for the case c = 1. 

14.3.2 SIZES OF IN-COMPONENTS 

The in-components of vertices in our growing networks have some interesting 
properties. Recall that the in-component of vertex i is the set of vertices from 
which i can be reached by following a directed path through the network (see 
Section 6.11). In a citation network, for instance, the in-component of paper A 
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Figure 14.5: Average in-degree of vertices created at different times. The curves show 
the average in-degrees in Price's model of vertices created at times (top to bottom) t = 

100,200,400,1000,2000, and 4000 as a function of time since the creation of the network. 
The model parameters were c = 3 and a = 1.5. 

is the set of all papers from which A can be reached by following some trail 
of successive citations. The reader reading any paper in the in-component can 
look up other papers in its bibliography, find those papers and look up further 
ones in their bibliographies and so forth, and ultimately reach paper A. One can 
think of the in-component as representing the set of all papers that "indirectly 
cite" paper A and the size of the in-component can be considered a measure of 
the total impact of paper A. 

We can study the distribution of in-component sizes by a method simi
lar to the one we used for the degree distribution. Consider Fig. 14.6, which 
shows a sketch of the in-component of a single vertex A. We have drawn the 
in-component as a tree, which is accurate so long as the size 5 of the component 
is small, S « n. Just as in the random graph models of Chapters 12 and 13, the 
probability of a small component having an extra edge that destroys its tree 
structure vanishes in the limit of large n (see Section 12.6.1). We must be care
ful however. As we will shortly see, it is possible for the sizes of in-components 
to become comparable with n in preferential attachment models, in which case 
the arguments below break down. For the moment, however, let us proceed 
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under the assumption that our component is a tree. 

Figure 14.6: The in-component of 
a vertex A. The total number of in
coming links attached to vertices 
in an in-component is equal to the 
number of vertices in the compo
nent minus 1. Note that there are, 
in generat many edges outgoing 
from vertices in the in-component 
(shown in gray) which connect to 
vertices not in the in-component 
and which can thus be ignored for 
the purposes of our calculation. 

OUf in-component will grow in size as vertices and edges are added 
to the network. Specifically, it will grow larger every time a newly 
added edge links to any of its members. The probability of a new edge 
linking to vertex i is given by Eq. (14.1) and summing this probability 
over all vertices in the in-component '6' gives a total probability of 

\' qi + a 1 [ ] 
L...n(c+a) = n(c+a) as+Lqi' 

IEY5 lEY? 

(14.66) 

where s is the number of vertices in the in-component. 
Considering Fig. 14.6, we see that every incoming edge in the in

component is necessarily also an outgoing edge from another vertex 
in the in-component, and moreover that there is exactly one such out
going edge from each vertex in the in-component, except for A itself. 
(There are also other outgoing edges from vertices in the in-component, 
as shown in gray in the figure, but these connect to vertices outside the 
component itself and play no part in our calculation.) Thus the total 
number LieI&' qi of incoming edges is equal to the number of vertices in 
the in-component minus one, which means our probability of connec
tion, Eq. (14.66), can also be written as 

1 ( 1) (l+a)s-1 
n(c+a) as+s- = n(c+a) (14.67) 

Let us define p, (n) to be the probability that a randomly chosen 
vertex has an in-component of size s when the network has n vertices 
(still assuming s « n). Then np, (n) is the number of in-components of 
size 5 and, given that each new vertex arrives with c outgoing links, the 
total number of in-components of size s receiving a new link upon the 
addition of a new vertex to the network is 

(1+a)5-1 c 
np,(n)xcx ( ) =-[(I+a)s-l]p,(n). 

nc+a c+a (14.68) 

Now, by an argument similar to the one used to derive Eq. (14.5), we can show 
that p, (n) satisfies the master equation 
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(n + l)p,(n + 1) = np,(n) 

+ cc::
a [(s -1-1 ~a)P'-I(n) - (5 -1 ~a)p,(n)l (14.69) 

The only exception is for in-components of size 1, the smallest size possible, 
for which 

ca 
(n + I)PI(n + 1) = npl(n) + 1- -Pl(n). 

c+a 
(14.70) 
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The + 1 here represents the fact that there is one new in-component of size 1 
created for each vertex added. 

We now take the limit n ~ co and write p, = p, (co) to get 

p, = c + ca [(5 -1- _1_) P,-l - (5 - ~11 _) p,] (14.71) 
c c+a l+a +a 

for s 2: 2 and 
ca 

PI = 1 - ---Pl· 
c+a 

(14.72) 

The solution of these equations follows exactly the same lines as the solution 
for degree distribution. The final result is 

B(s -1/(1+a),,6) 
p, = B(I-I/(1+ a),,6 -1)' 

where B(x,y) is the Euler beta function, Eq. (14.19), and 

g-1 l+a/c ,.,- +---. 
l+a 

(14.73) 

(14.74) 

As we have seen previously, the beta function has a power-law tail B(x, y) ~ 
x-Y (see Eq. (14.25)), so the in-component size distribution also has a power
law tail: 

(14.75) 

although with an exponent ,6 that is in general different from that of the de
gree distribution (see Eq. (14.27)). Indeed, note that for the normal situation 
where c 2: 1 we have 1 < ,6 <:: 2, which is puzzling: power laws with,6 <:: 2 
have no finite mean, but for any finite value of n our network must certainly 
have a finite average component size. The solution to this conundrum is rel
atively simple, however. As we pointed out above, our calculations are only 
valid for component sizes 5 « n. For larger sizes the method will break down 
and the power-law behavior will be lost. In physical terms, in-components 
clearly cannot be larger than the size of the whole network, and so we must 
expect finite-size effects that cut off the size distribution as s approaches n. 
In mathematical terms, the components stop being trees as their size becomes 
comparable with n and hence Eq. (14.67) ceases to be correct. 

It's also possible to derive solutions for the component size distribution as 
a function of the time of creation of a vertex or the age of a vertex, just as we 
did for the degree distribution in the first part of this section. Indeed there are 
many more properties of these models that can be calculated using the master 
equation approach, which is an immensely useful technique for problems such 
as these. Life, however, is short, and there are many other interesting matters 
to look into, so we will move on to other things. 

See Section 8.4.2 for a dis
cussion of the mean and 
other moments of power
law distributions. 
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14.4 EXTENSIONS OF PREFERENTIAL ATTACHMENT MODELS 

Many extensions and generalizations of preferential attachment models have 
been suggested, typically addressing questions about what happens when we 
vary the details of the model definition or attempt to make the model more 
faithful to the way real networks grow. For instance: 

l. By contrast with citations, links in the Web are not permanent. They can 
and frequently do disappear as well as appear, and links can be added 
between vertices not just at the moment a vertex is created but at any 
later time too. 

2. Entire web pages also disappear as well as appear. 
3. There is no obvious reason why the preferential attachment process has 

to be linear in the degree. What happens if it is non-linear? 
4. Not all vertices are created equal. Some papers or websites might be 

intrinsically more interesting or important by virtue of their content and 
hence attract more links. Can this process be incorporated into the model? 

In this section we describe modifications of the preferential attachment process 
that address each of these questions. In the interests of simplicity, we describe 
the developments in the context of the Barabasi-Albert model, rather than the 
more general Price model. Generalizations of Price's model are certainly pos
sible but the algebra is in many cases unwieldy, and the main conclusions are 
easier to understand in the context of the simpler model. 

14.4.1 ADDITION OF EXTRA EDGES 

Price proposed his model of a growing network with citation networks in 
mind. Since the bibliography of a paper cannot be changed after the paper is 
published, the edges in a citation network are effectively frozen in place from 
the moment they are first created, and Price's model mimics this behavior with 
edges being added only at the moment a vertex is created and never moved or 
removed thereafter. 

This is not true of all networks, however. The World Wide Web, for ex
ample, is constantly changing. Links between web pages can, and often are, 
added or removed after the pages are created. This state of flux is not captured 
by Price's model or by the Barabasi-Albert model of Section 14.2. Yet the Web 
still has a power-law degree distribution. This leads us to wonder whether it is 
possible to create a generalized model that includes the addition and removal 
of edges after vertices are created but still generates power-law distributions. 
It turns out that we can indeed, as we now describe. 

We first consider the relatively simple case in which edges are added to 
our network but never taken away, which has been studied by a number of 
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authors [11,96,190]. The case of edge removal is more complex and is con
sidered in the following section. The model we consider is a generalization 
of the Barabasi-Albert model in which vertices are added to the network one 
by one as before and each starts out with c undirected edges which attach to 
other vertices with probability proportional to degree Ie But we now include 
a second process in the model as well: at each step some number w of extra 
edges are added to the network with both ends attaching to vertices chosen in 
proportional to degree. Thus when the network has n vertices it will have a 
total of n(c + w) edges. (In fact, it is only necessary that an average number w 
of extra edges be added at each step. The actual number can fluctuate around 
this figure, provided the fluctuations satisfy some modest constraints on their 
size, and the net result, in the limit of large network size, will be the same. This 
allows us to give w a non-integer value if we wish.) 

This model turns out to be quite easy to solve given the results of previ
ous sections. The only difference between it and the standard Barabasi-Albert 
model is that, instead of c new ends of edges attaching to old vertices for ev
ery new vertex added, we now have c + 2w new ends of edges-two extra for 
each of the w extra edges. The probability of attachment of anyone of those 
edges to a particular vertex i is k; / L k; as before. The sum in the denomina
tor is equal to twice the number of edges in the network (see Eq. (6.20», or 
Lie; = 211(C + w). 

Then, if Pk(n) denotes the fraction of vertices with degree k when the net
work has n vertices in totat the number of vertices of degree k receiving a new 
edge, per vertex added, is 

k 
npk(n) x (c+2w) x 2 ( ) nc+w 

c+2w 
= ( ) kpk(n). 

2 c+w 

We can use this result to write a master equation for Pk(n) thus: 

c+2w 
(n + I)Pk(n + 1) = I1Pk(n) + ( ) [(k -1)Pk-l(n) - kpk(n)], 

2 c+1O 

for Ie > c and 
c+2w 

(n + l)p,(n + 1) = np,(n) + 1 - ( ) cp,(n), 
2 c+w 

(14.76) 

(14.77) 

(14.78) 

for k = c. (There are, as before, no vertices of degree less than c.) Taking the 
limit of large n and writing Pk = Pk( (0), these equations simplify to 

c+2w 
Pk = 2(c + w) [(k -1)Pk-l - kpk] for k > c, (14.79) 

c+2w 
P, = 1 - ( ) cp, 

2 c+1o 
for k = c. (14.80) 
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Rearranging these equations along the lines of Eqs. (14.9) to (14.21), we then 
find that 

B(k,~) 
Pk=B(c,~-I)' 

where B(x, y) is the Euler beta function again, Eq. (14.19), and 

c 
~=2+--. 

C+21O 

(14.81) 

(14.82) 

Since B(x, y) goes as x-Y for large x (Eq. (14.25)), our degree distribution 
has a power-law tail with exponent a. For the special case of 10 = 0, in which 
no additional edges are added to the network, we recover the standard result 
a = 3 for the Barabasi-Albert model; for 10 > ° we get exponents in the range 
2 < a < 3, which agrees nicely with the values typically observed for degree 
distributions on the Web (see Table 8.1). Bear in mind though that the Web is 
a directed network while the model described here is undirected. If we want 
to build a model of a directed network we would need to start with something 
like the Price model of Section 14.1. Generalizations of Price's model that in
clude addition of extra edges as above are certainly possible-see for example 
Krapivsky et al. [190]. 

14.4.2 REMovAL OF EDGES 

Now consider the case of a network in which edges can be removed. To keep 
things simple let us first consider the case where edges can be removed at any 
time but are only added at the initial creation of a vertex, as in the standard 
Barabasi-Albert model. (In a moment we will consider the general case of 
addition and removal at any time.) 

There are many ways in which edges could be removed from a network, 
but let us consider the most basic case in which they are simply deleted uni
formly at random. What then is the probability that a particular vertex i loses 
an edge when a single edge is removed from the network? When an edge 
is deleted both of its two ends vanish. Given that the deletion is uniformly 
random, the probability that one of those two ends is attached to vertex i is 
simply proportional to the total number of ends attached to i, which is equal to 
the degree k;. Properly normalized, the probability that vertex i loses an edge 
is thus 2k; / L; k;, the factor of two coming from the two ends of the edge. In 
other words, the random deletion of edges is like a type of preferential attach
ment in reverse: the higher the degree of the vertex, the more likely it is to lose 
an edge. 

So consider the undirected network model in which vertices with degree c 
are added to the network following the normal preferential attachment scheme 
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and an average of v edges are deleted at random for each vertex added. (As 
with the model of Section 14.4.1 the actual number of edges deleted can fluc
tuate about the mean and v can take a non-integer value if we wish.) In order 
that the number of edges in the network grow, rather than shrinking to zero 
and vanishing, we require that the net number of edges added per vertex c - v 
be positive, i.e., v < c. Then when the network has n vertices the number of 
edges will be n(c - v). 

In writing down a master equation for this model there are several pro
cesses we need to consider. As before, the number of vertices with degree k 
increases whenever a vertex of degree k - 1 gains a new edge and decreases 
when a vertex of degree k gains a new edge. By an argument analogous to the 
one leading to Eq. (14.76), the number of vertices of degree k gaining an edge 
per vertex added to the network is 

k 
npk(l1)xCX ( ) 2n c - v 

(14.83) 

But we also now have a new process in which a vertex can lose an edge, which 
means that the number of vertices of degree k also increases when a vertex of 
degree k + 1 loses an edge and decreases when a vertex of degree k loses an 
edge. The number of vertices of degree k losing an edge per vertex added is 
given by 

k v 
npk(n) x 2v x ( ) = -- kpk(n), 

2nc-v c-v 
(14.84) 

with the factor of 2v reflecting the fact that each of the v edges removed has 
two ends. 

Another important thing to notice is that, by contrast with the original 
Barabasi-Albert model, vertices can now have any degree k 2: O-vertices 
can lose any or all of their edges, right down to the last one, so there is no 
restriction lc :> c on the degree as before. 

Our master equation now takes the form 

c 
(n+l)Pk(n+l)=npk(n)+ ( )(k-l)Pk_l(n) 2c-v 

v c+2v 
+ c _ v (k + I)Pk+l (n) - 2(c _ v) kpk(n) (14.85) 

for k of c and 

C 
(11 + l)p,(11 + 1) = np,(I1) + 1 + 2(c _ v) (c -1)p,_.l(n) 

v c + 2v 
+ --(c + l)p'+l(n) - 2( ) cp,(n) (14.86) c-v c-v 
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for k = c. These two equations can conveniently be combined by writing 

(n + I)Pk(11 + 1) = I1Pk(l1) + Ok, + 2(c ~ v) (k -1)Pk-I(I1) 

2v c + 2v 
+ _·······_·(k+l)pk+l(n) - kpk(I1), 

2(c-v) 2(c-v) 
(14.87) 

where Ok, is the Kronecker delta, which is 1 if k = c and 0 otherwise. 
The only exception to this master equation is for the case k = 0, where the 

term proportional to k - 1 vanishes because there are no vertices of degree -1. 
A simple way of enforcing this exception is to define p-I(n) = 0 for all n, in 
which case Eq. (14.87) then applies for all k :" O. We will adopt this convention 
henceforth. 

The model as we have described it so far incorporates the processes of ver
tex addition and edge removal, but, given Eq. (14.87), it is only a small extra 
step to incorporate the edge addition process of Section 14.4.1 as well. If as 
before we add w extra edges per vertex added, then c + w - v edges are added 
net per vertex, and our master equation becomes 

. c +2w 
(11 + 1) Pk (11 + 1) = n Pk (n) + Ok, + 2( ) (k - 1) Pk-l (11) c+w-v 

V c +2w+2v 
+ (k+ I)Pk+l(n) - ( /Pk(I1). c+w-v 2 c+w-v 

(14.88) 

The equation for edge removal only, Eq. (14.87), can then be considered a spe
cial case of this equation with w = O. As before, we require that the net number 
of edges added per vertex be positive, or v < c + w. 

Now taking the limit as 11 --+ co and writing Pk = Pk( co) we find that 

c+2w 
Pk=Ok,+ ( )(k-l)Pk-l 2 c+w-v 

v (k 1) c + 2w + 2v ! 
+ c+w-v + Pk+l- 2(c+w-v) 'Pk' (14.89) 

This equation differs in a crucial way from the master equations we have 
encountered previously, such as Eq. (14.7), because the right-hand side con
tains terms for vertices of three different degrees (k - 1, k, and k + 1) rather 
than just two. This makes the equation substantially more difficult to solve. 
We can no longer simply rearrange to derive an expression for Pk in terms of 
Pk-l and then apply that expression repeatedly to itself. A solution is still pos-
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sible, but it's not simple. Here we give just an outline of the method. The gory 
details, for those interested in them, are spelled out by Moore et al. [226]16 

The basic strategy for solving Eq. (14.89) is to use a generating function of 
the kind we introduced in Section 13.1. We define 

00 

g(z) = L PkZ'

k=O 

Substituting for Pk from Eq. (14.89) we get 

~ - k c+2w ~ k 
g(z) = L." Ok,Z + 2( ) L.,,(k -1)Pk-IZ 

k=O c+w-v k=O 

(14.90) 

2v 00 k C + 2w + 2v 00 k 
+ 2( ) L(k + I)Pk+l Z - 2( ) L kpkZ . (14.91) 

c+w-v k=O C+W-V k=O 

The first term on the right is simple-it is equal to z'. The others require a little 
more care. Consider the second term, for example. Note that the first term 
in the SUfi, the term for k = 0, is necessarily zero because, as we have said, 

P-l = O. Hence we can write 

where in the first line we have made the substitution k - 1 --; k and in the 
second line we have made use of the fact that the k = 0 term is again zero 
(because of the factor of Ie). 

For the third and fourth terms in (14.91) we can similarly write 

(14.93) 

and 

(14.94) 

16In fact, Moore et al. give a solution for a model in which vertices rather than edges are deleted, 
but the two can be treated by virtually the same means. The calculation given here is adapted from 
their work with only minor changes. 
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Combining Eqs. (14.91) to (14.94) and rearranging, we then get 

(c+2w)z-2v(l_z)dg + (z) =z". 
2(c+w-v) dz g 

(14.95) 

This is a first-order linear differential equation and is solvable by standard-if 
tedious-methods. To cut a long story short, one can find an integrating factor 
for the left-hand side and hence express the solution in terms of an integral 
that, provided v < ~c + w, can be reduced by repeated integration by parts to 
give 

_ Ak-" (k (1- X/k)k "-2 
Pk - ./0 (1 _ Ix/k)k x dx, 

for Ie 2: c, where A is a k-independent constant and 

v - IV 
",=2+-~-~ 

c+2w - 2v' 
2v 

1=--' 
C+21O 

(14.96) 

(14.97) 

(14.98) 

The remaining integral can be written in terms of hypergeometric functions, 
but we can find the asymptotic behavior of the degree distribution for large Ie 
more directly by noticing that as k becomes large 

(14.99) 

so that 

(14.100) 

Thus we once again find that our degree distribution has a power-law tail, 
with an exponent given this time by Eq. (14.97). Note that this exponent can 
take values both greater than and less than two. What's more for the case 
where v = !c + w it actually becomes infinite. Moore et al. [226] show that 
at this point we lose the power-law behavior and the distribution becomes 
instead a stretched exponential. Up until this point, however, the distribution 
still follows a power law, albeit with a very large exponent as v grows larger. 
For values of v > !c + W, the solution becom,es nonsensical, with a negative 
value of It, and one must return to the original differential equation (14.95) to 
find the solution for this case. We leave the developments, however, as an 
exercise for the especially avid reader. 

Before we leave this topic, however, let us point out that the methods used 
to solve Eq. (14.89) can also be used to calculate what happens when we re
move not edges but vertices from our network. Loss of vertices does occur in 
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some networks, such as the World Wide Web, so it is potentially of interest to 
ask what effect it has on the degree distribution. In fact, the solution for this 
case is very similar to the solution for loss of edges, with a power-law distri
bution and an exponent that depends on the vertex loss rate, diverging as the 
rate of loss approaches the rate at which vertices are added. The details can be 
found in [226]. 

14.4.3 NON-LINEAR PREFERENTIAL ATTACHMENT 

In the models we have considered so far, the probability that a new edge at
taches to a vertex is linear in the degree of the vertex. Although this is a reason
able first guess about the way things might be, it's certainly also possible that 
attachment processes might not be linear. Indeed, there is some empirical evi
dence that this is the case. For instance, Jeong et al. [165] looked at the growth of 
several real-world networks, measuring the rate at which nodes acquired new 
edges. To avoid problems associated with the fact that the rate can depend not 
only on degree but also on the total size 11 of the network (see Eq. (14.1)), they 
restricted their observations to relatively short intervals of time. The measured 
rates, plotted as a function of vertex degree, showed that for some networks 
there was a roughly linear preferential attachment effect, but for others attach
ment appeared to be non-linear, going as some power I of the degree with I 
being significantly different from 1. (The values they observed were around 

1=0.8.) 
What effect would non-linear preferential attachment have on the degree 

distribution of our network? Should we still expect to see power-law behavior 
in the non-linear case? The answers to these questions depend on the par
ticular functional form of the attachment probability and there are an infinite 
variety of functional forms. We will look at some specific examples shortly, but 
for the moment let us keep the discussion completely general. Following an 
approach introduced by Krapivsky et al. [189], we define an attachment kernel, 
denoted a" which specifies the functional form of the attachment probability. 
For the model of Barabasi and Albert, where attachment is simply proportional 
to degree, the attachment kernel would be ak = k. For the non-linear attach
ment observed by Jeong et al. and discussed above, it would be ak = P. Note 
that the attachment kernel is not a probability, merely a functional form. The 
correctly normalized probability that a newly added edge attaches to a specific 
vertex i having degree ki is ad I.:i ak,· 

So consider again a growing undirected network of the type discussed in 
previous sections and let Pk(n) be the fraction of vertices with degree k when 
the network has n vertices. As before, an average of c new edges are added 

521 



MODELS OF NETWORK FORMATION 

522 

to the network with each new vertex, but preferential attachment is now non
linear, governed by the attachment kernel ak, which means that, by analogy 
with Eq. (14.2), the expected number of vertices of degree Ie receiving a new 
connection when a single new vertex is added to the network is 

(14.101) 

where 

(14.102) 

Now the master equation for Pk(n) is 

c 
(n + 1 )p,,(n + 1) = npk(n) + -(-) [ak-1Pk-1 (n) - akPk(n)]. 

I' n 
(14.103) 

As before the term in Pk-l (n) represents new vertices of degree k created when 
vertices of degree k - 1 receive new edges and the last term in Pk (n) represents 
vertices of degree Ie lost when they gain new edges to become vertices of degree 
k+ 1. 

The only exception to this equation is for vertices of degree e, for which 

(14.104) 

(And there are no vertices of degree less than e, since all vertices are created 
with degree e initially and edges are never removed.) 

Taking the limit as n ---+ co and writing Pic = Pk( co) and I' = 1'( co), these 
equations become 

(14.105) 

fork>eand 
ea, 

P, = 1 - ~p,. (14.106) 
I' 

Note that I' depends via Eq. (14.102) on the degree distribution, which we don't 
yet know. For now, however, it will be enough that I' is independent of k; we 
will derive an expression for its exact value in a moment. 

Equations (14.105) and (14.106) can be rearranged to give 

and 

1'1 e 
P, = a, +'ftl c (14.107) 

(14.108) 
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Applying the latter repeatedly we get 

Pk = (ak + I'le) ... (0,+1 + }lIe) P, 
fl ak···Gc 

ea" (ak + I'le) ... (a, + r'le) 

=L fI[l+L]-l 
cak ! =c ea) 

(14.109) 

All we need to complete our solution is the value of II. Taking Eq. (14.102) 
and letting n ---+ co, we get 

00 I'Nk[ r']' I' = L akpk = - L TI 1 + ~ 
k=c C k=c f=C car 

(14.110) 

Canceling I' from both sides we arrive at the equation 

(14.111) 

In principle we should be able to solve this equation for /' and substitute the 
result into Eq. (14.109) to get the complete degree distribution. In practice, 
unfortunately, the equation is not solvable in closed form for most choices of 
the attachment kernel ak, although an approximate value for }l can usually be 
calculated numerically on a computer. Even without knowing fi, however, we 
can still find the overall functional form of pk, which is enough to answer many 
of the questions we are interested in. 

As an example, consider a network of the type observed by Jeong et aZ. [165] 
and discussed above in which attachment goes as kt for some positive con
stant ,)" and let us assume that (as found by Jeong et aZ.) we have')' < 1. The so
lution for this particular choice was given by Krapivsky et al. [189] and shows 
a number of interesting features. 

Putting ak = Jet in Eq. (14.109) gives 

" = L TIk [1 + L]-l 
P ck'Y r=c cr'Y . 

(14.112) 

This degree distribution turns out not have a power-law tail, by contrast with 
the case of linear preferential attachment. In other words the power-law form 
is sensitive to the precise shape of the attachment kernel. We can see this by 
writing 

fI[1+~]-l =exp[-L.k." In(1+~)] 
r=c cr r-'c cr 

(14.113) 
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and then expanding the logarithm as a Taylor series in It/ cr': 

(14.114) 

The sum over r cannot be expressed in closed form, but we can approximate it 
using the trapezoidal rule,17 which says that for any function f(r): 

,~f(r) = t f(r)dr+ HI(a) + feb)] +O(f'(b) - /,(a)). (14.115) 

(For those not familiar with it, the derivation of the trapezoidal rule is illus
trated in Fig. 14.7.18) 

In our case f (r) = r-'" and Eq. (14.115) gives 

k k1-," L: r-'" = A, + -1-- + ~k'" + O(k- I'?+I)), 
r=c - 81' 

(14.116) 

where A, is a constant depending on s (and on c) but not on Ie. 
Consider now what happens when Ie becomes large. Since'Y > 0, the term 

in k-'? and all subsequent terms vanish as k -4 00 and Eq. (14.114) becomes 

k ( It ) 00 (-1)' (It)' k1
-," L: In 1 + - '" A - L: -- - --, 

f=C cr1' s= 1 5 C 1 - s, (14.117) 

where A is a Ie-independent constant equal to 1:::1 A,( -It/ c)' / s. 
This expression can be simplified still further by noting that, in the limit 

Ie -4 00, all terms in le1-" where 1 - s'Y < ° also vanish. Thus for any given 
value of 'Y we need keep terms in Ie up to only a certain value of s. The simplest 
case is when ~ < 'Y < 1. In this case only the term for 5 = 1 grows as Ie 
increases, all others vanishing, and 

as k -----t 00. 

k ( It ) 'tle1
-? L:ln 1 + - '" A + -'--

,.~, cr? c(l - 'Y) 

17 Also called the trapezium rule in British English. 

(14.118) 

18Explicit expressions are known for the correction terms (the terms in I'(n) and f'(b))-they 
are given in terms of the Bernoulli numbers by the so-called Euler-Maclaurin formula [2]-but 
they're not necessary in our application because the correction terms vanish anyway. 
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f(r) 

a a+1 a+2 b 

r 

Figure 14.7: The trapezoidal rule. The trapezoidal rule approximates a sum by an 
integral (or vice versa). The sum of the function f(r) from r = a to r = b (dotted 
lines) is equal to the sum of the areas of the rectangular bars, which is also equal to 
the area shaded in gray. This shaded area can be approximated by the integral of f(r) 
between a and b (smooth curve) plus the two extra rectangular sections at either end 
(hatched), which have area 1/(a) and !/(b) respectively. Add everything up and we 
get Eq. (14.115). The error in the approximation is equal to the sum of the relatively 
small regions between the curve and the shaded area. 

Now, combining Eqs. (14.112), (14.113), and (14.118), we find that the asymp

totic form of Pk is 

(14.119) 

for~<'Y<L 
Distributions of this general form, in which the dominant contribution to 

the probability falls off as the exponential of a power of Ie, are called stretched 
exponentials. Since the exponent 1 - 'Y is less than one, the distribution falls 
off more slowly than an ordinary exponential in k, which is why we called it 
"stretched."19 On the other hand, the distribution still falls off a good deal 

19 Although, confusingly, people often still call it a stretched exponential even when the expo-
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faster than the power law that we found in the case of linear preferential at
tachment, and this is really the important point here. This calculation reveals 
that the power-law distribution in the BaraMsi-Albert model is a special fea
ture of the linear attachment process assumed by that model. (Note that this 
observation is valid even though we haven't calculated the value of the con
stant ,I. The general functional form of the degree distribution doesn't depend 
on the value of the constant.) 

For other values of r the calculation is similar but involves more terms in 
Eq. (14.117). For instance, if ~ < [ < ~ then the terms in Ie' -" for 5 = 1 and 2 
both grow as k becomes large while all others vanish, and we find that 

t In (1 + _'_' ) '" A + -",--'k_'-_'~ 
"~ko+1 cr7 c(I-[) 

which gives 

ff2fcl-.2/ 

2c2(1-2[)' 
(14.120) 

(14.121) 

In between the solutions (14.119) and (14.121) there is a special case solution 
when [ is exactly equal to ~. For [ = ~ and s = 2 the integral in Eq. (14.115) 
gives rise not to a power of Ie but to a log and Eq. (14.114) becomes 

(14.122) 

all other terms vanishing in the limit of large k. Substituting this expression 
into Eq. (14.113), we then arrive at 

f - 1 
Of')' - 2' 

(14.123) 

We can continue in this vein ad infinitum. There are distinct solution forms 
for ~ < [ < ~ and ~ < [ < ~ and so forth, as well as special case solutions 
for [ = ~, ~, ~,and so forth. Figure 14.8 shows the degree distribution for the 
case [ = 0.8, along with the asymptotic form (14.119). Note the convex form of 
the curve on the semilogarithmic scales, which indicates a function decaying 
slower than an exponential. 

One can also calculate the degree distribution for superlinear preferential 
attachment, i.e., for values of r greater than one, This case also shows some 

nent is greater than one. This case should really be called a "squeezed exponential." 
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Figure 14.8: Degree distribution for sublinear 
preferential attachment. This plot shows the 
fraction Pk of vertices with degree k in a growing 
netw'ork with attachment kernel kI as described 
in the text. In this case "( = 0.8 and c = 3. 

The points are results from computer simula
tions, averaged over 100 networks of (final) size 
107 vertices each. The solid line is the exact so
lution, Eq. (14.112), evaluated numerically. The 
dashed line is the asymptotic form, Eq. (14.119), 
with the overall constant of proportionality cho
sen to coincide with the exact solution for large 
values of k. 

interesting behaviors: it turns out that for [ > 1 the typical behavior is for one 
vertex to emerge as a "leader" in the network, gaining a non-zero fraction of all 
edges, with the rest of the vertices having small degree (almost all having de
gree less than some fixed constant). Readers interested in these developments 
can find them described in detail in Ref. [189]. 

14.4.4 VERTICES OF VARYING QUALITY OR ATTRACTIVENESS 

The models of growing networks we have examined so far assume that all ver
tices of a given degree are equally likely to gain a new edge. In these models, 
for example, all papers that have never been cited before are equally likely to 
get new citations. All websites that no one has linked to yet are equally likely 
to receive links. 

In the real world, of course, nothing could be farther from the truth. There 
are huge differences in the perceived importance and quality of scientific pa
pers or websites that mean some are far more likely to gain edges than others. 
A website, for instance, that provides a useful service, such as a directory or 
an encyclopedia, will almost certainly receive new links at a higher rate than 
most people's personal home pages. Indeed, search engines use the numbers 
of links web pages receive precisely as a measure of which pages people find 
most useful. Similarly, people look at the numbers of citations a paper receives 
to try to gauge how influential that paper has been. These approaches would 

See Sections 7.4 and 19.1 for 
a discussion of the opera
tion of search engines. 
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not work unless there were some correlation between the degree and the per
ceived quality of a vertex. 

If one allows for variations in the intrinsic quality or attractiveness of ver
tices, then, presumably it will have an effect on the degree distribution. It 
seems entirely possible that, with such effects at work, the power laws gener
ated by preferential attachment models might completely disappear, leaving 
us at a loss to explain how power laws might arise in real-world networks. In 
this section we study a model of the growth of a network proposed by Bianconi 
and Barabasi [42,43] that includes effects of varying node quality-or fitness as 
they call it. As we will see, the power-law behavior of traditional models dis
appears once vertex fitness enters the picture, although the distribution for 
vertices of a given fitness still follows a power law. 

The model of Bianconi and Barabasi is defined as follows. Vertices are 
added one by one with each attaching by undirected edges to c prior vertices, 
just as before. Now, however, each vertex i has a fitness lJi that is assigned 
at the moment of the vertex's creation and never changed thereafter. The fit
nesses are real numbers with values drawn from some distribution p(IJ), so 
that the probability of a value falling between'7 and '7 + d'7 is p(ry) dry. Each 
of the c new edges added with each new vertex attaches to a previously ex
isting vertex with probability proportional to an attachment kernel ak ('7) that 
depends now on both the degree k of the target vertex and its fitness '7. (In fact, 
Bianconi and Barabasi examined only the special case ak( '7) = '7k. The general 
model considered here was proposed and solved subsequently by Krapivsky 
and Redner [188].) 

This model can be solved by the same method as the model of Section 14.4.3. 
We define Pk ('7, n) d'7 to be the fraction of vertices with degree k and fitness in 
the interval'7 to'7 + dry when the network has n vertices. Writing down a mas
ter equation as before and taking the limit n -----+ co we arrive at equations that 
read 

(14.124) 

fork>cand 

(14.125) 

where Pk(ry) = Pk(ry, OO) and ,I is again the appropriate normalizing factor 

(14.126) 

(See Eq. (14.110).) Note that the +1 of Eq. (14.106) has been replaced by p('l) 
in Eq. (14.125), because the average number of new vertices of degree c added 

14.4 EXTENSIONS OF PREFERENTIAL ATTACHMENT MODELS 

to the network with fitness in the interval '7 to '7 + d'7 is not 1 but p( '7). 
Following the same steps that led to Eq. (14.109), we can solve the master 

equation to show that 

Pk('7) = p('1) ca~0 8[1+ ca~'7Jl, (14.127) 

and the value of ,I can be determined by substituting this result back into 
Eq. (14.126) (although usually an analytic solution is not possible and the equa

tions must be solved numerically). 
As an example consider the case where the attachment kernel is linear in 

the degree, ak('7) = '7k, which was studied by Bianconi and Barabasi
20 

Since 
ak ('7) is (proportional to) a probability it cannot be negative, so we must restrict 
'7 to non-negative values. Then the product in Eq. (14.127) becomes 

8[1+ C~kr = 8 k+ ~'/C'7 
r(k+1)r(C+II/C'7) 

= rcc)r(k+1+,I/CIJ) 

C'7k B(k, 1 + lI/c'1) 
It B(c,,'/c'7) , 

(14.128) 

where we have made use of Eq. (14.17) and B(x, y) is Euler's beta function, 

Eq. (14.19), again. Substituting into Eq. (14.127), we then find that 

(14.129) 

We showed previously that the beta function goes as a power law B(x, y) ~ 
x-Y for large values olits first argument (Eq. (14.25» so Eq. (14.129) implies that 
the distribution of the degrees of vertices with a particular value of the fitness '7 
has a power-law tail with exponent 

a('7) = 1 +~. 
c'7 

(14.130) 

However, the overall degree distribution for the entire network mayor may 
not have a power-law tail, depending on the distribution p( '7). It is clear that it 
is a power law for some choices of p ('7 )-for example the trivial choice where 

20The most general form of linear kernel would bc ak(IJ) = /(17) k whcre /(/1) is an increasing 
function of 11. However, this form can be turned into the one above by a simple change of variables 
to Il' = /(1/), so in fact we are not losing any generality by assuming ak(ll) = Ifk. 
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all vertices have the same ry, which just reduces to the original BaraMsi-Albert 
model. If ry is broadly distributed, however, the degree distribution will be a 
sum over power laws with a wide range of different exponents, which will not 
in general yield another power law. 

The solution above does not tell the whole story. There are some interesting 
features of this model that are missing from Eq. (14.129). To see this, let us 
calculate the average degree of a vertex in our network. This might seem like 
a pointless exercise-the average degree ,must take the value 2c since exactly c 
edges are added for every vertex-but in fact the calculation is quite revealing. 
The average degree is given by 

00 j'oo 00 loW B(k 1 + Ic ) 
(Ie) = L: lepk(ry)dIJ = L: kp(ry) ( I' )ry dry 

k~, 0 k~, 0 B c, 1'1 cry 

lo
w p(ry) ~ 

= B( I ) L.,kB(Ie,1 + I'lcry) dry. 
o C, fl c1] k=c 

(14.131) 

The sum can be performed by making use of the integral form of the beta 
function, Eq. (14.33), and gives21 

00 c 
L:kB(k,I+l'lcry) = 1 I B(c'l'lery). 
k~, - cry I' 

(14.132) 

An important point to notice, however, is that this result only works if ry < 
,'Ic. If ry 2: I'le the sum diverges making the average degree in the network 
infinite, which cannot be the case since, as we have said, the average degree is 
always 2c. To avoid the divergence we will impose the restriction that p( ry) = 0 
for all ry 2: ryo, where ryo is a constant in the range 0 <:; '10 < 1'1 c. (The interesting 
question of what happens to the network if we choose a p (ry) that violates this 
condition is dealt with below.) 

Combining Eqs. (14.131) and (14.132), we then find that 

(Ie) = c ('IO p(ry)d'1 . 
io l-cryll' 

And since (k) = 2c this immediately implies that 

('I" -,-p-,-( ry,-,-) _d ryf- - 2 
io l-ciJl" - . 

(14.133) 

(14.134) 

We haven't yet calculated a value for the constant 1', but even without it 
this equation tells us something interesting. The integral is a monotonically 

2IThe calculation is essentially the same as the one leading to Eq. (14.34). 

14.4 EXTENSIONS OF PREFERENTIAL ATTACHMENT MODELS 

decreasing function of 1': it takes its smallest value of 1 when " --; 00, and its 
largest value when I' --; cryo· (Recall that ryo < 1,1 c so " can get no smaller 
than cryo.) But if this largest value is still less than two then there is no way to 
satisfy Eq. (14.134) and no value of I' such that Eq. (14.133) gives the correct 
answer for (Ie). In the limit " --; ciJo the denominator of the integrand equals 
1 - 17 I '70, which tends to zero at the upper limit of the integral, but provided 
p(IJ) also tends to zero in this limit the integral can take a finite value and, as 
we will see in a moment, this value can certainly be less than two for some 
choices of p('1). 

How can it be that our solution does not give the correct value for the 
average degree? Have we made a mistake somewhere? More importantly, 
what does the network actually do in this regime? 

The answer to this conundrum tUrns out to be a subtle and interesting one, 
The important point is that there are some behaviors of the vertex degrees in 
a growing network that cannot be captured by a simple probability distribu
tion Pk. In particular, if there are a fixed, finite number of vertices in the net
work with degrees that scale in proportion to the size n of the entire network, 
those vertices do not appear in the degree distribution: because there are only 
a fixed number of them they constitute a fraction 1 I n of the network and hence 
contribute zero to the degree distribution as n --; 00. Nonetheless, they make 
a non-zero contribution to the average degree of the network in the limit of 
large n and hence must be taken into account in the calculation of (k). 

Bianconi and BaraMsi referred to the appearance of such vertices in the 
network as "condensation" by analogy with similar behaviors seen in low
temperature physics,22 and to the vertices themselves as a condensate. For some 
choices of p(lJ) this kind of condensation does indeed occur and a condensate 
of "superhubs" with very high degree forms in the network. 

Suppose we are in such a regime and let us write the sum of the degrees 
of the vertices in the condensate as K. Then the full expression for the average 
degree, including the condensate, becomes 

K 00 1000 K j'le ()d (k) = - + L: kpk(ry)diJ = - +c pry IIJ. 
n k~c 0 n 0 1 - cry II 

(14.135) 

Clearly, no matter what the value of the integral, it is now always possible to 

22Bianconi and Barabas!, who are physicists, solved their model initially by showing that it can 
be mapped onto the standard physics problem of "Bose-Einstein condensation" in an ensemble 
of non-interacting bosons. For a physicist already familiar with Bose-Einstein condensation, this 
provides a quick and elegant way of deriving a solution. For non-physicists, on the other hand, 
the mapping is probably not very illuminating. 
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achieve (k) = 2c by making K sufficiently large. The appropriate value of K is 
given by setting (k) = 2c and rearranging thus: 

K=nc[2- ['10 p(ry)dll]. 
.fo l-cll/I' 

(14.l36) 

Again, the largest value of the integral is achieved when II --> cryo, which means 
that 

K > nc [2 - ['10 p(I71 dry ]. 
.fo l-II/'Jo 

(14.l37) 

So if the value of this integral is less than two, then in order to get the correct 
value for thc average degree we require that K scales with the size n of the 
network just as we hypothesized. 

As an example, suppose the distribution of fitnesses takes the form P('I) = 
A (ryo - ry) T, where T is a positive exponent and A is a normalization constant 
whose value is easily shown to be A = (T + 1)/ry,j+l Then the integral in 
Eq. (14.137) is 

and 

['10 P(II) dry =_T_~_1 [""(lJo-ryrldry=I+~, 
.fo l-IJ/ryo 1J0.f0 T 

K>nc(l-n 

(14.138) 

(14.139) 

If T < 1 then this result tells us only that K ?- 0, which is trivially true. But if 
T > 1 then the sum of the degrees in the condensate must vary in proportion 
to the network size n. 

Thus, depending on our choice for the distribution of fitnesses, the network 
can show two different behaviors. In one case, the distributions of the degrees 
of vertices with any given fitness follow a power law with a fitness-dependent 
exponent, but no vertices in the network are speCial or distinguished by any 
particular behavior. In the other case, a condensate forms consisting of one 
or more "superhubs," which connect to a non-zero fraction of all other ver
tices. None of the remaining non-condensate vertices show any special behav
ior, however; they still have power-law degree distributions for each value of 
fitness, with the same exponents as before. Some authors have likened the con
densation phase of the model to the monopolistic dominance of a market by 
a single vendor or a small number of vendors~once one vertex (vendor) gets 
a non-zero fraction of all edges (business), preferential attachment guarantees 
that it will go on doing so thereafter. 

We still do not have a complete solution of the model, because we are miss
ing the value of I' which is required to evaluate Eq. (14.l36). Unfortunately, to 
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calculate I' we need to know the exact form of the condensate. In most discus
sions of the model in the literature it is assumed that the condensate consists of 
just a single vertex of degree K at or close to the maximum fitness '10, in which 
case we can evaluate I' using Eq. (14.126). Including the contribution from the 
condensate vertex, this equation becomes 

(14.140) 

and, setting ak(ry) = ryk again and making use of Eqs. (14.129) and (14.l32), we 

then find 
ryoK + ["0 P(II) dll = 1. 
nl' .fo 1,/clJ- 1 

(14.141) 

Equations (14.l36) and (14.141) together now give us two equations in the two 
unknowns K and 1', which we can, at least in theory, solve for both given p( IJ), 
although in practice closed-form solutions are rare because the integrals are 

non-trivial. 
There is, however, no reason why the condensate must consist of just a sin

gle vertex. It could in principle consist of more than one. It could even consist 
not of a fixed number of vertices but of a growing number provided the num
ber grows slower than linearly with the size of the network, so that again the 
condensate makes no contribution to the degree distribution Pk in the limit of 
large n. In the latter case, the superhubs that make up the condensate would 
have degrees that themselves scaled sublinearly with system size, but would 
still become arbitrarily large as n --> 00. To the best of the author's knowl
edge, it is not known how to predict which of these behaviors will happen for 
a given choice of p(ry). Indeed, an exact prediction may not even be possible: 
computer simulations of the model appear to indicate that the exact nature of 
the condensate-how many vertices it contains and how their degrees grow 
with system size-is not deterministic but depends on the details of fluctua
tions taking place in the early growth of the network. If one performs repeated 
computer simulations with the same choice of p(IJ), the macroscopic behavior 
of the condensate varies from one run of the program to another.23 

23The model is, in this respect, reminiscent of the much Simpler and older model of a growing 
system called P6fya's urn. In this model an urn (i.e., a large pot) initially contains two balls, one 
green and one red. Repeatedly we draw one ball at random from the urn and replace it with two 
of the same color. In the limit where the number of balls becomes large, the fraction of green (or 
red) balls tends to a constant, but the value of that constant is entirely unpredictable-it depends 
on the details of the fluctuations in the numbers of balls at the early stages of the growth process 
and all values of the constant are equally likely in the n --) 00 limit. 
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We have also assumed in our discussion that the distribution of the fitness 
is bounded, that there is a maximum value 1)0 that the fitness can take. What 
happens if this assumption is violated? In this case there will of course still be a 
fittest vertex in the network and the network cannot "tell" whether the fitness 
distribution is bounded above that point or extends to 1) = 00, and hence the 
behavior of the model will be the essentially the same as in the bounded case. 
The main difference from the bounded case is that the value of the highest 
fitness may change from time to time, which also changes the value of fl via 
Eq. (14.126). However, the changes in the highest fitness become rarer and 
rarer as time goes by24 so that asymptotically the behavior of the system is the 
same in the bounded and unbounded cases for arbitrarily long periods of time. 

Many other extensions and variations of preferential attachment models 
have been studied in addition to the ones described in this chapter. If you're 
interested in learning more, there are a number of review articles that go into 
the subject in some detail-see Refs. [12], [46], and [98]. The rest of this chapter 
is devoted to the discussion of other models of network formation and growth 
that don't rely on preferential attachment. 

14.5 VERTEX COPYING MODELS 

Preferential attachment models offer a plausible, if simplified, explanation for 
power-law degree distributions in networks such as citation networks and 
the World Wide Web. Preferential attachment, however, is by no means the 
only mechanism by which a network can grow, nor even the only mechanism 
known to generate power laws. In the remainder of this chapter we look at a 
number of other models and mechanisms for the formation of networks, start
ing in this section with models based on vertex copying. 

In Section 14.1 we introduced the preferential attachment mechanism and 
suggested a possible explanation of its origin in citation networks, that a reader 
perusing the literature in a given academic field would encounter citations to 
frequently cited papers more often than citations to less cited ones, and hence 
would be more likely to cite those frequently cited papers themselves. Another 
way of saying this is that, in effect, researchers are copying citations from the 

24The statistics of these leader changes are themselves non-trivial. They obey a so-called record 
dynamics, an interesting non-stationary process that has been studied in its own right, for example 
by 5ibani and Littlewood [296]. 
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bibliographies of papers they read25 

Kleinberg et al. [180] have proposed an alternative mechanism for network 
formation that takes this idea one step further. What if people simply copied 
the entire bibliography of a single paper to create the new bibliography of their 
own paper? This would then create a new vertex in the network with the same 
pattern of outgoing edges as the vertex they copied from. 

As we will see, this process, with slight modifications, can give rise to a 
power-law degree distribution. First, however, we note that the process as 
stated has some problems. To begin with, it's clearly rather far-fetched. Au
thors of papers do take note of who other authors have cited, but it seems un
likely that an author would copy the entire bibliography from someone else's 
paper. Moreover, if they did just copy the entire bibliography then previously 
cited papers would get new citations as a result, but there would be no way 
for papers to receive citations if they had never been cited before. 

Both of these problems can be solved by changing the model a little. Instead 
of assuming that the bibliography of the new paper is copied wholesale from 
the bibliography of an older one, let us assume that only some fraction of the 
entries in the old bibliography are copied. Then the remainder of the new 
bibliography is filled out with references to other papers. These other papers 
could be selected in a variety of way, but a simple choice would be to select 
them uniformly at random from the entire network. 

These modifications insure that bibliographies are now no longer copied 
in their entirety and papers with no previous citations have a chance of being 
cited. The model is, however, still not a very plausible model of a real cita
tion network. But, like Price's preferential attachment model (which is also 
not very realistic), it can be regarded as a simplified and tractable version of 
the vertex copying mechanism that allows us to investigate quantitatively the 
consequences of that mechanism.26 The precise definition of the model is as 

25We use the word "copying" figuratively here, but in fact there is evidence to suggest that 
some people really do just copy citations from other papers, pOSSibly without even looking at the 
cited paper. Simkin and Roychowdhury [297,298] have noted that there is a statistically surprising 
regularity to the typographical errors people make in citing papers. For instance, many different 
authors will use the same wrong page number in citing a particular paper, which suggests that 
rather than copying the citation from the paper itself, they have copied it from an erroneous entry 
in another bibliography. This does not prove that they did not read the paper in question, but it 
makes it more likely-if they had actually looked up the paper, there is a good chance they would 
have noticed that they had the page number wrong. 

26Kleinberg et al. themselves proposed a different model of the copying process in their paper, 
but their model is quite complex and doesn't lend itself easily to analysis. The model described 
here is a simplified realization that possesses the important features of the process while remaining 
relatively tractable. We note also that Kleinberg et al. were not in fact concerned with citation 
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follows. 
Let us suppose for simplicity that each new vertex added to our network 

has the same out-degree c. In the language of citations, the bibliographies are 
all the same size. For each vertex added we choose uniformly at random a 
previous vertex and go one by one through the c entries in the bibliography of 
that previous vertex. For each entry we either (a) with probability '1' < 1 copy 
that entry to the bibliography of the new vertex or (b) with probability 1 - '1' 
add to the bibliography of the new vertex a citation to another vertex chosen 
uniformly at random from the entire network. The end result is a bibliography 
for the new vertex in whichf on average, 'YC of the entries are copied from the 
old vertex and the remainder are chosen at random. In effect, we have made 
an imperfect copy of the old vertex in which the destinations of some fraction 
of the outgoing edges have been randomly reassigned. 

We also need to specify the starting state of the network, but, as with our 
preferential attachment models, it turns out that the asymptotic properties of 
the network do not depend on the state we choose. Thus the choice is not 
particularly important, but we could, for instance, specify a starting network 
consisting of some number no > c vertices in which each points randomly to c 
of the others. 

We can solve for the degree distribution of the network generated by this 
model as follows. Let us ask what the probability is that vertex i receives a 
new incoming edge upon the addition of a new vertex to our network. For i 
to receive a new edge, one of two things has to happen. Either the newly 
added vertex happens to copy connections from a vertex that already points 
to vertex i, in which case with probability '1' the connection to i will itself get 
copied, or i could be one of the vertices chosen at random to receive a new 
edge. Let us treat these two processes separately. 

Suppose that a particular existing vertex happens to have a link to our ver
tex i. The probability that a newly added vertex will choose to copy its own 
links from this existing vertex is simply 1/ n, since the source for the copies 
is chosen uniformly at random from the whole network. Thus if i has in
degree qi, the chance that anyone of the qi vertices that point to it gets chosen 
is q;/n. And the chance that the link from that vertex to i gets copied is '1', for 
a total probability of 'Yq;/ n. 

The average number of random links that a newly added vertex makes
ones not copied from a previous vertex-is 1 - '1' for each of its c outgoing 

networks in their paper. Their focus was the World Wide Web. We use the language of citation 
networks here to emphasize the parallels with Price's model, but the discussion could equally 
have been framed in the language of the Web. 
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edges, or (1 - 'Y)c overall. And the probability that our vertex i happens to 
be the target of one of these random links is l/n, for an overall probability of 
(1- 'Y)c/n. 

Putting everything together, the total probability that vertex i gets a new 
link is27 

'Yqi + (1- 'Y)c = 'Yqi + (1- 'Y)c. 
n n n 

(14.142) 

Defining pq(n) as before to be the fraction of vertices with in-degree q when 
the network has n vertices, the total expected number of vertices of in-degree q 
receiving a new edge is 

(14.143) 

But now we notice a remarkable fact. If we define a new constant a by 

then 
c 

'1'=
c+a 

and Eq. (14.143) becomes 

l'l'q + (1- 'Y)c] pq(n) = c(q + a) pq(n), 
c+a 

(14.144) 

(14.145) 

(14.146) 

which is exactly the same as the probability (14.2) for the equivalent quantity 
in Price's model. 

We can now use this probability to write down a master equation for the 
evolution of the degree distribution Pq, which will be precisely the same as the 
master equation (14.5) for Price's model and all subsequent developments fol
low through just as in Section 14.1. The end result is that our vertex copying 
model behaves precisely as the Price model does, but with a value of a spec
ified now in terms of the parameter '1' by Eq. (14.144). Thus, for example, the 
degree distribution in the limit of large n will obey Eq. (14.21) and hence will 
asymptotically follow a power law with exponent iX given by Eq. (14.27) to be 

a 1 
iX=2+-=1+-

c '1' 
(14.147) 

27In simply adding together our probabilities we are technically writing down an expression 
for the expected number of new edges the vertex receives, rather than the probability of receiving 
a new edge. However, in the limit of large n the two become the same. 
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This gives exponents in the range from 2 to 00, with the value depending on 
how faithfully vertices are copied. Faithful copies (I' close to one) give expo
nents close to two, while sloppy copies give exponents that can be arbitrarily 
large. Other properties of Price's model carryover as well, such as the distri
bution of in-degree as a function of age given in Eq. (14.57). 

This is not to say, however, that vertex copying generates networks iden
tical in every respect to preferential attachment. With vertex copying, for in
stance, many of the links that a newly appearing vertex makes are typically 
copied from the same other vertex and hence most vertices in the network will 
have connections that are similar to those of at least one other vertex. In pref
erential attachment models, on the other hand, there is no such correlation be
tween the connections of different vertices-each link is chosen independently 
from the available possibilities at the time it is created and not copied from 
anywhere else. The two networks therefore, while they may have the same 
degree distribution, are different in the details of their structure. 

In addition to being interesting in its own right, the vertex copying model 
serves as a useful cautionary tale concerning the mechanisms of network for
mation. We have seen that many real networks have degree distributions that 
follow a power law, at least approximately, and that preferential attachment 
models can generate such degree distributions. A natural conclusion is that 
real networks are the product of preferential attachment processes, and this 
may indeed be correct. We should be careful, however, not to jump immedi
ately to conclusions because, as we have now seen, there exists at least one 
other mechanism-vertex copying-that produces precisely the same degree 
distribution. Without further information we have no way of telling which of 
these mechanisms is the correct one, or whether some other third mechanism 
that we have not yet thought of is at work. 

One could in principle examine details of the structure of specific real
world networks in an attempt to tell which, if either, of our two mechanisms is 
the better model for their creation. For instance, one might examine a network 
to see if there appear to be pairs of vertices whose outgoing connections are 
approximate copies of one another. In fact in real citation networks it turns 
out that there are many such pairs, an observation that appears to lend weight 
to the vertex copying scenario. However, we must remember that both of our 
models are much simplified and it's likely that neither of them is an accurate 
representation of the way real networks are created. A simple explanation for 
vertices in citation networks with similar patterns of links is that they corre
spond to papers on similar topics and so tend to cite the same literature; there 
is no need to assume that one of them copied from the other. As a result, it 
may not be possible to distinguish firmly between preferential attachment and 
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Figure 14.9: Distribution of in-degrees in the metabolic networks of various organisms. Jeong et al. [166] examined 
the degree distributions of the known portions of the metabolic networks of 43 organisms, finding some of the~ to 
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(b) the bacterium E. coli, (c) the worm C. elegans (a eukaryote), and (d) the aggregated in-degree distribution for a1143 

organisms. After Jeong et al. [166]. 

vertex copying in many cases. 
There are, however, some cases where preferential attachment appears to 

be an implausible candidate to explain the structure of a network, and in some 
of these cases vertex copying is the most promising remaining option. A good 
example comes from the realm of biology, where vertex copying is consid
ered a strong candidate for explaining the structure of metabolic networks and 
protein-protein interaction networks. As discussed in Chapter 5, these are 
networks of chemical and physical interactions between molecules in the cell 
and, although our knowledge of their structure is currently quite incomplete, 
there is at least tentative evidence to suggest that they have power-law degree 
distributions-see Fig. 14.9 and Refs. [164] and [166]. It seems unlikely, how
ever, that preferential attachment is the cause of these power laws: there is no 
obvious mechanism by which preferential attachment could take place in this 
context. Vertex copying, on the other hand, may be a reasonable candidate. 

Consider for example a protein interaction network. As described in Sec
tion 5.1.3, proteins in the cell are created by the processes of molecular tran
scription and translation from codes stored in the cell's DNA. The section of 
code that defines a single protein is called a gene and it turns out that genes 
are sometimes inadvertently copied when cells reproduce. 

When a cell splits in two to reproduce, its DNA is copied so that each half 
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of the split cell will have a complete copy. The cellular machinery responsible 
for the copying is highly reliable, but not perfect. Very occasionally, a section 
of DNA will be copied twice, giving rise to a repeated section, which can mean 
that the new cell has two copies of a certain gene or genes where the old cell 
had only one. Many examples of such repeated sections are known in the 
human genome and the genomes of other animals and plants. 

Another common type of copying error is the point mutation, whereby indi
vidual nucleotides-letters in the DNA code-are copied incorrectly. Over the 
course of many cell divisions, point mutations can accumulate, and as a result 
two initially identical versions of the same gene can become no longer identi
cal, with some fraction of their bases changed to new and (roughly speaking) 
random values. These processes typically happen slowly over the course of 
evolutionary time, taking thousands or even millions of years. The end result, 
however, is that a gene is copied and then mutated to be slightly different from 
the original. 

And these processes are reflected in the network of protein interactions. 
Typically both copies of a duplicated gene in a genome can generate the corre
sponding protein; the subsequent mutation of one or both copies can result in 
the two producing similar but slightly different versions of the protein, differ
ent enough in some cases to also have slightly different sets of interactions in 
the network. Some interactions may be common to both proteins but, just as 
in our vertex copying model, some may also be different. 

This picture is made more plausible by the fact that changes in genes are 
not purely random but are subject to Darwinian selection under which some 
gene mutations are more advantageous than others. A cell with two copies of 
a particular protein may gain a selective advantage if those copies do slightly 
different things, rather than needlessly duplicating functionality that a single 
copy alone could achieve. Thus it seems possible that nature may actually 
favor duplicated proteins that have slightly different functions and hence dif
ferent sets of network connections. Moreover an examination of the data for 
real-world protein-protein interaction networks turns up many examples of 
pairs of proteins that are similar but not identical in their patterns of inter
actions, and gene duplication is widely. if not universally, believed to be the 
cause. 

Several models of vertex copying and mutation in biological networks have 
been proposed and studied. The model proposed by Sale et al. [302], for exam
ple, is very similar to the model described above, the main difference being 
that it is a model of an undirected network rather than a directed one. Another 
model, put forward by Vazquez et al. [317], is also similar but includes a mech
anism whereby the connections of the copied vertex can be changed as well as 
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those of the copying vertex. Although the latter mechanism would make lit
tle sense in a model of a citation network (the bibliography of a paper never 
changes after publication), it is appropriate in the biological context, where all 
genes are potentially mutating all the time. 

14.6 NETWORK OPTIMIZATION MODELS 

In the models we've looked at so far in this chapter, network structure is de
termined by the way in which the network grows-how newly added vertices 
connect to others, where newly added edges get placed, and so forth. Further
more, the structure of these networks is for the most part a result of a succes
sion of random processes, often decentralized and quite blind to the large-scale 
structure they are creating. 

An alternative network formation mechanism, important in certain types 
of network, is structural optimization. In some cases, such as transportation 
networks (Section 2.4) or distribution networks (Section 2.5), a network has 
been specifically designed to achieve a particular goal or goals, such as the de
livery of mail or packages around the country or the transportation of airline 
passengers to their destinations, and the structure of the network can heavily 
influence the efficiency with which that goal is accomplished. Networks of air
line routes, for example, are typically based on a hub-and-spoke arrangement 
with a small number of busy airport hubs and a large number of minor destina
tions.28 (Package delivery companies also use a similar scheme.) The reason is 
that it makes little sense to fly airplanes directly between minor destinations
there will typically be very few passengers interested in the service and the 
planes will be half empty. By ensuring that the only flights in and out of minor 
destinations are to and from major hubs, one concentrates the passengers on 
those routes, ensuring fuller planes while still giving the passengers a reason
ably short journey. 

In other words, the hub-and-spoke design of the airline networks optimizes 
the network, making it more efficient, and hence more profitable, for the air
line. In such cases, the structure of the network is explained not by a growth 
mechanism but by the fact that the network has been designed to optimize cer
tain characteristics. In this section we look briefly at some models of network 
optimization. 

28This is a relatively recent development, at least in the United States, where industry regu
lations made the hub-and-spoke system impractical until 1978. After regulations were lifted the 
hub-and-spoke system was rapidly adopted by most of the major airlines. Hub-and-spoke systems 
were also adopted by the package delivery industry around the same time. 
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14.6.1 TRADE-OFFS BETWEEN TRAVEL TIME AND COST 

The example given above of an airline network is a good place for us to start. 
Airline networks are, in fact, highly optimized: the airline industry operates 
on very small (sometimes even negative) profit margins, and optimization of 
operations to trim even a tiny percentage off their enormous costs can make 
a substantial difference to the bottom line. Airlines employ large staffs of re
searchers whose sale task is to find new ways to optimize aspects of their busi
ness, including particularly their network of routes. At the same time, airlines 
need to keep their customers happy if they are to avoid losing market share 
to their competitors. This means, for instance, that they need to provide short, 
qUick routes between as many pairs of destinations as possible-travelers are 
strongly averse to long journeys that wear them out or waste their time. The 
twin goals of cost-efficient operation and short routes are to some extent at 
odds with one another. The quickest way to get passengers from any place 
to any other, for example, would be to fly separate planes between every pair 
of airports in the country, but this would be immensely costly. The observed 
structure of real airline networks is a compromise response to the conflicting 
needs of the company and its passengers. 

The optimization problems faced by real airlines are, inevitably, hugely 
complex, involving as they do organizations with thousands of employees, 
billions of dollars worth of material resources, and rapidly changing parame
ters such as fuel costs, consumer demand, and the nature of the competition. 
Nonetheless, there is insight to be gained by creating and studying simplified 
models of the optimization process in the same way that simple models of, for 
example, citation networks can grant us insight despite the many features of 
real citation processes that they omit. 

One of the simplest models of network optimization is that proposed by 
Ferrer i Cancho and Sale [117], which balances two elements of exactly the 
types discussed above. In this model the cost of maintaining and operating the 
network is represented by the number of edges m in the network. This would 
be equivalent to saying that the cost of running an airline is proportional to 
the number of routes it operates. Obviously this is a vast simplification of the 
real situation, but let us accept it for the moment and see where it leads. The 
customer satisfaction half of the equation is represented by the mean geodesic 
distance £ between vertex pairs. In our airline example £ would be the average 
number of legs required to journey from one point to another, which is cer
tainly one element of customer satisfaction, though not the only one. Techni
cally, £ is a dissatisfaction measure, since large values correspond to disgruntled 
customers. 
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We would like to design a network that minimizes both m and £ but this 
is in general not possible: the minimum value of £ is achieved by placing an 
edge between every pair of vertices, but this maximizes the value of m. Thus 
our two goals are, as discussed above, at odds with one another and the best 
we can hope for is a reasonable compromise between them. In search of such 
a compromise, Ferrer i Cancho and Sale studied the quality function 

E(m,£) = Am+ (l-A)£, (14.148) 

where A is a parameter in the range 0 ::; A ::; 1. For any given network and 
a given value of A we can calculate E(m,£); the value of £ for instance can 
be computed using the breadth-first search algorithm of Section 10.3. Ferrer i 
Cancho and Sale considered networks of a given number of vertices n and then 
asked what happens when we try to minimize E(m,£) by varying the position 
of the edges in that network to find the smaUest value possible. If A = 1, then 
E = m and this process is equivalent to just minimizing the number of edges 
without regard for path lengths. If A = 0 then E = £ and we are minimizing 
only average path length without regard for m. For values in between, we are 
striking a balance between number of edges and path length, with the precise 
weight of each term controlled by our choice of A. 

At some level, this model is a trivial one. Observe that the value of £ be
comes formally infinite if there is any pair of vertices in the network that is not 
connected by a path-i.e., if the network has more than one component-since 
the distance between such pairs is by convention considered infinite (see Sec
tion 6.10.1). Thus the minimum value of E must be for a connected network a , 
network with just one component. Observe also that the minimum value of m 
for a connected network is m = n - 1, where n is the number of edges. This is 
the value for a tree, which is the connected network with the smallest number 
of edges (see Section 6.7). 

Provided A is reasonably large, so that we place a moderate amount of 
weight on minimizing m, the network with the best value of E(m, £) is then 
found by giving m its minimum value of n - 1, which constrains the network 
to be a tree, and searching through the set of possible trees to find the one that 
minimizes £. In fact, the latter task has a simple, known solution: the mini
mum value of £ among trees with n vertices is obtained by the star graph, the 
network in which there is a single central hub connected by a single edge to 
each of the n - 1 remaining vertices. By definition there are always exactly m 

pairs of vertices with geodesic distance one in any network-the pairs that are 
directly connected by an edge-which means that in a tree there are n - 1 such 
pairs. Among the set of aU trees, therefore, the value of the mean distance £ 
is governed by the numbers of pairs with distances of two or more, since the 

A star graph of 25 vertices. 
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number with distance one is fixed. But in the star graph all other pairs have 
distance exactly two-the shortest (indeed only) path from any (non-hub) ver
tex to any other is the path of length two via the hub. Thus there can be no 
other tree with a smaller value of f. 

Thus, for sufficiently large A, the optimum network under the quality func
tion (14.148) is always the star graph. This is satisfying to some extent: it offers 
a simple explanation of why the hub-and-spoke system is so efficient. It offers 
short journeys while still being economic in terms of the number of different 
routes the airline has to operate. But it is alsO f as we have said, somewhat triv
ial. The model shows essentially only the one behavior. For smaller values of A 
other behaviors are possible, but it turns out that the value of A has to be really 
small: non-star-graph solutions only appear when'9 

2 
A < n2 +2' (14.149) 

Since the expression on the right-hand side dwindles rapidly as n becomes 

29The derivation of this result is as follows. If A is sufficiently large then, as we have shown, 
the optimal network is the star graph. 1£ we now reduce i\ slowly then at some point we enter a 
regime in which the cost of adding an edge is sufficiently offset by the corresponding reduction in 
the mean geodesic distance that it becomes worthwhile to add edges between the "spoke" vertices 
in the star graph. To calculate the point at which such additions become beneficial let us take 
our star graph and add to it some number r of extra edges. Necessarily these edges fall between 
the spoke vertices, since there is nowhere else for them fall, and in doing so they form paths of 
length one between pairs of vertices whose previous shortest path was of length two. The shortest 
paths between no other vertices are affected by the addition. Thus the total number of vertex pairs 
connected by paths of length 1 is n - 1 + r and aU the rest have paths of length two. Then the mean 
geodesic distance, as defined in Eq. (7.31) is 

_ I ,,_ (n -1+ 1') + 2[ln(~n,-~I)_~(I1_-_I_+_r~)1 _ 2 (n _I)' - I' 
£ -~ """2 l....Jd;J - 2 .... ··2 -}"/2 . 

It if 11 

(The leading factor of two comes from the fact that the sum over i, j counts each pair of vertices 
twice.) 

Substituting this expression, along with III = n -1 + r, into Eq. (14.148) then gives 

(n-I)2- r [2(A-l)] 
E = A(1t -1 + r) + 2(1··- A) n2 = constant + A + -n-'- r. 

This will decrease with growing r only if the quantity in square brackets [ ... J is negative, i.e., if 

2 
A<--. 

/1 2 +2 

If this condition is satisfied then it becomes advantageous to add edges between the spoke vertices, 
and to keep on doing so until the network becomes a complete graph, with every vertex connected 
to every other. Thus there is a discontinuous transition between two behaviors-the star graph and 
the complete graph-at the point A = 2/(112 + 2). Real distribution and transportation networks 
appear to be in the star-graph regime. 
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large, the optimal network is the star graph for almost all values of A, even for 
networks of quite modest size. 

In their paper, however, Ferrer i Cancho and Sole did not perform precisely 
the calculation we have done here. Instead, they took a different and interest
ing approach, in which they looked for local minima of E(m,£), rather than the 
global minimum. They did this numerically, starting with a random network, 
repeatedly choosing a pair of vertices at random, and either connecting them 
by an edge if they were not already connected or deleting the edge between 
them if they were. Then they compared the value of E before and after the 
change. If E decreased or stayed the same, they kept the change. If not, they 
reverted back to the state of the network before the change. The whole pro
cedure was then repeated until the value of E stopped improving, meaning 
in practice that a long string of attempted changes were rejected because they 
increased E. 

An algorithm of this kind is called a random hill climber or greedy algorithm. 
The networks it finds are networks for which the value of E cannot be reduced 
any further by the addition or removal of any single edge. This does not mean, 
however, that no lower values of E exist: there may be states of the network 
that differ by more than one edge-the addition and deletion of whole regions 
of the network-that have better values of E. But if so, the algorithm will not 
find them. It comes to a halt at a local minimum where no single-edge change 
will improve the value of E. 

When studied in this way, the model shows an interesting behavior. For 
large values of A, where the addition of an edge costs a great deal in terms of 
the value of E, the algorithm rapidly runs into trouble and cannot find a way to 
improve the network, long before it gets anywhere close to the optimum hub
and-spoke arrangement. When A is small, on the other hand, the algorithm 
typically manages to find the star graph solution. The result is a spectrum of 
networks that range from a random-looking tree to a star-graph, as shown in 
Fig. 14.10. 

What's more, Ferrer i Cancho and Sole found that the degree distributions 
of their networks show interesting behavior, passing from an exponential dis
tribution for large A, though a transition point with a power-law degree distri
bution, to approximately star-like graphs for small A in which one vertex gets 
a finite fraction of all the edges and the remaining vertices have low degree. 
This spectrum is reminiscent of the behavior of continuous phase transitions 
such as the transition at which a giant component appears in a random graph 
(see Section 12.5), in which an initially exponential distribution of component 
sizes passes through a transition to a regime in which one component gets a 
finite fraction of all vertices and the rest are smalL 
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Sadly, this observation does not go any further than an intriguing hint. The 
work of Ferrer i Cancho and Sale is entirely numerical and they do not give 
any analytic treatment of the model. In addition there are some other prob
lems with the model. In particular, it is not clear why one should look at local 
minima of E rather than global ones: the researchers who work for real airlines 
are certainly capable of realizing when they are stuck in a local optimum and 
better profits are available by changing the network in some substantial way 
that moves them to a different and better optimum. It seems likely therefore 
that, to the extent that real networks show interesting structural behavior of 
the type observed here, it is not a result of getting stuck in local minima and 
hence that a model with a different approach is needed. 

One such model, proposed by Castner and Newman [137], generalizes that 
of Ferrer i Cancho and Sale by considering not only number of legs in a journey 
but also the geographic distance traveled. Suppose that airline travelers are 
principally concerned not with the number of legs in their journey but with 
the total time it takes them to travel from origin to destination. Number of legs 
can be regarded as a simple proxy for travel time, but a better proxy would be 
to take the length of those legs into account as well as their number. The travel 
time contributed to a journey by one leg is composed of the time spent in the 
airport (checking in, waiting, embarking, taxiing, disembarking, etc.) plus the 
time spent in the air. A simple formula would be to assume that the former 
is roughly constant, regardless of the distance being traveled, while the latter 
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is roughly proportional to the distance traveled. Thus, the time taken by a leg 
from vertex i to vertex j in our network would be 

where l' and v are constants and r'j is the distance flown from i to j. By varying 
the values of fI- and v, we can place more or less emphasis on the fixed" airport" 
time cost versus the time spent in the air . 

Castner and Newman used this expression for travel time in place of the 
simple hop-count of the model of Ferrer i Cancho and Sale, redefining C to be 
the average shortest-path distance between pairs of vertices when distances 
are measured in terms of travel time. The quality function E is defined just as 
before, Eq. (14.148), but using this new definition of C. 

Despite the superficial similarity between this model and that of Ferrer i 
Cancho and Sole there is a crucial difference between the two: the model of 
Castner and Newman depends on actual spatial distances between airports 
and hence requires that the vertices of the network be placed at some set of po
sitions on a map. The model of Ferrer i Cancho and Sole by contrast depends 
only on the network topology and has no spatial element. There are various 
ways in which the vertices can be positioned on the map. Castner and New
man, for instance, specifically considered the map of the United States and 
took the real US population distribution into account, placing vertices with 
greater density in areas with greater populations. While this adds a level of 
realism to the calculations, the interesting behavior of their model can be seen 
without going so far. In the examples given here we consider a fictional map in 
which vertices are just placed uniformly at random in a square with periodic 
boundary conditions. 

Another important difference between the two models is that Castner and 
Newman considered the global optimum of the quality function rather than 
local optima as Ferrer i Cancho and Sole did. In practice, unfortunately, the 
global optimum is hard to find, so one often has to make do with approxi
mate optima. Castner and Newman used the numerical optimization tech
nique called simulated annealing to find good approximations to the global 
optimum, but we should bear in mind that they are only approximations. 

Figure 14.11 shows optimal or approximately optimal networks for various 
values of the parameters l' and v. The leftmost frames of the figure correspond 
to smailI' and large v, meaning that the cost to the traveler of a trip is roughly 
proportional to the total mileage traveled and the number of legs has little 
effect. In this case, the best networks are ones that allow travelers to travel in 
roughly straight lines from any origin to any destination. As the figure shows, 
the networks are roughly planar in appearance. They look reminiscent of road 
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Figure 14.11: Networks generated by the spatial network model of Gastner and Newman. The four frames show 
networks that optimize or nearly optimize the quality function, Eq. (14.148), with £ defined according to the prescription 
of Castner and Newman [137] in which the lengths of edges in the netvvork are chosen to represent the approximate 
traveJ time to traverse the edge. Travel time has two components, a fixed cost per edge and a cost that increases with the 
Euclidean length of an edge. The frames show the resulting networks as the relative weight of these two components 
is varied behveen the extremes represented by the network on the left, for which all of the weight is all. the Euclidean 
length, and by the network on the right, for which cost is the same for all edges. The resulting structures range from 
road-like in the former case, to airline-like in the latter. Adapted from Castner [135}. 
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networks, rather than airline routes, and this is no coincidence. Travel times 
for road travelers are indeed dominated by total mileage: there is almost no 
"per leg" cost associated with road travel, since it takes only a few seconds to 
turn from one road onto another. It is satisfying to see therefore that the simple 
model of Castner and Newman generates networks that look rather like real 
road maps in this limit. 

The rightmost frames in the figure show optimal networks for large I' and 
small v-the case where it is mostly the number of legs that matters and the 
length of those legs is relatively unimportant. As we saw for the model of 
Ferrer i Cancho and Sale, the best networks in this case are star-like hub-and
spoke networks, and this is what we see in the present model too. 

Thus this model interpolates between road-like and airline-like networks 
as the parameters are varied from one extreme to the other. Note that the 
parameter A governing the cost of building or maintaining the network is held 
constant in Fig. 14.11. In principle, we could vary this parameter too, which 
would affect the total number of edges in the network. For higher A sparser 
networks with fewer edges would be favored, while for lower A we would see 
denser networks. 

The work of Castner and Newman still suffers from the drawback that the 
results are numerical only. More recently, however, some results for the model 
have been derived analytically by Aldous [15]. The interested reader is encour
aged to consult his paper. 

PROBLEMS 

14.1 Consider the growing network model of Price, as described in Section 14.1. 

a) From the results given in this chapter write down an expression in terms of the pa
rameters a and c for the expected in-degree of the ith vertex added to the network 
just before the jth vertex is added, where i < j. 

b) Hence show that the average probability of a directed edge from j to i in a network 
with n vertices, where n 2': j, is 

P .. _ ~ '-r/(c+a) (. _l)-a/(c+a) 
I} - I J . 

c+a 

14.2 Consider Price's model as a model of a citation network, applied to publications 
in a single field, a field that is currently, say, ten years old. 

a) Suppose that you are the author of the tenth paper published in the field. How 
long will it be from now before the expected number of citations your paper has 
within the field is equal to the expected number that the first paper published 
currently has? 

b) Derive an expression for the average number of citations per paper to papers pub
lished between times Tl and T2, where time is defined as in Eq. (1.4.44). 

c) Reasonable values of the model parameters for real citation networks are c = 20 
and a = 5. For these parameter choices, what is the average number of citations 
to a paper in the first 10% of those published? And what is the average number 
for a paper in the last 10%? 

These perhaps surprising numbers are examples of the first-mover advantage discussed 
in Section 14.3.1-the substantial bias of citation numbers in favor of the first papers 
published in a field. 

14.3 Consider a model of a growing directed network similar to Price's model de
scribed in Section 14.1, but without preferential attachment. That is, vertices are added 
one by one to the growing network and each has c outgoing edges, but those edges 
now attach to existing vertices uniformly at random, without regard for degrees or any 
other vertex properties. 

a) Derive master equations, the equivalent of Eqs. (14.7) and (14.8), that govern the 
distribution of in-degrees q in the limit of large network size. 

b) Hence show that in the limit of large size the in-degrees have an exponential dis-
tribution Pq = Ce- Aq , where C is a normalization constant and i\ = In(1. + 1/ c). 

14.4 Consider a model network similar to the model of Barabasi and Albert described 
in Section 14.2, in which undirected edges are added between vertices according to a 
preferential attachment rule, but suppose now that the network does not grow-it starts 
off with a given number n of vertices and neither gains nor loses any vertices thereafter. 
In this model, starting with an initial network of n vertices and some specified arrange
ment of edges, we add at each step one undirected edge between two vertices, both of 
which are chosen at random in direct proportion to degree k. Let Pk( m) be the fraction 
of vertices with degree k when the network has m edges in total. 

PROBLEMS 
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a) Show that when the network has m edges, the probability that vertex i will get a 
new edge upon the addition of the next edge is ki /111. 

b) Write down a master equation giving Pk(m + 1) in terms of Pk-1 (m) and Pk(m). 
Be sure to give the equation for the special case of k = 0 also. 

e) Eliminate 111 from the master equation in favor of the mean degree c = 2rn/n 
and take the limit n --7 00 with c held constant to show that Pk (c) satisfies the 
differential equation 

dpk eTc = (k ~ 1)Pk-1 ~ kpk. 

d) Define a generating function g(c,z) = Er-,o pdc) zk and show that it satisfies the 
partial differential equation 

cdg +z(l ~z)ilg = O. 
de ilz 

e) Show that g(c,z) = f(e ~ e/z) is a solution of this differential equation, where 
f(x) is any differentiable function of x. 

f) The particular choice of f depends on the initial conditions on the network. Sup
pose the network starts off in a state where every vertex has degree one, which 
means c = 1 and g(l,z) = z. Find the function f that corresponds to this initial 
condition and hence find g(c, z) for all values of c and z. 

g) Show that, for this solution, the degree distribution as a function of c takes the 

form 
(e~l)k-l 

Pk(C) = ek 

except for k = 0, for which po(e) = 0 for all c. 

Note that this distribution decays exponentially in k, implying that preferential attach
ment does not, in general, generate a power-law degree distribution if the network is 
not also growing. 

14.5 Consider a model of a growing network similar to Price's model described in Sec
tion 14.1, but in which the parameter a, which governs the rate at which vertices receive 
new incommg links when their current in-degree is zero, varies from vertex to vertex. 
That is the probability of a new edge attaching to vertex i is proportional to qi + ai, 
where qi is the current in-degree and aj is a specified parameter. In the context of cita
tion networks, for example, ai could be considered a measure of the intrinsic merit of a 
paper, controlling as it does the rate at which the paper gets citations immediately after 
first publication, when qi = O. (This differs from the model discussed in Section 14.4.4, 
where the preferential attachment term was multiplied by a varying factor to represent 
variations in the merit or fitness of vertices.) 

a) Suppose that aj is drawn at random from some stationary distribution with a well
defined mean. Show that, in the limit of large n, the probability that the (n + 1 )th 
vertex added to the network attaches to a previous vertex i with in-degree qi is 

C(qi + ai) /11(C + fi), where a is the average value of ai· 

b) Hence show that the in-degree distribution of the network satisfies the same mas
ter equations, (14.7) and (14.8), as Price's model, but with a replaced by li. 

(It immediately follows that the degree distribution of the network is also the same as 
for Price's model with the same substitution.) 

14.6 Consider the following simple model of a growing network. Vertices are added 
to a network at a rate of one per unit time. Edges are added at a mean rate of f3 per unit 
time, where f3 can be anywhere between zero and 00. (That is, in any small interval bt 

of time, the probability of an edge being added is f3 M.) Edges are placed uniformly at 
random between any pair of vertices that exist at that time. They are never moved after 
they are first placed. 

We are interested in the component structure of this model, which we will tackle 
using a master equation method. Let ak(l1) be the fraction of vertices that belong to 
components of size k when there are n vertices in the network. Equivalently, if we 
choose a vertex at random from the n vertices currently in the network, ak(n) is the 
probability the vertex will belong to a component of size k. 

a) What is the probability that a newly appearing edge will fall between a compo
nent of size r and another of size s? (You can assume that n is large and the proba
bility of both ends of an edge falling in the same component is small.) Hence, what 
is the probability that a newly appearing edge will join together two pre-existing 
components to form a new one of size k? 

b) What is the probability that a newly appearing edge joins a component of size k 
to a component of any other size, thereby creating a new component of size larger 
than k? 

c) Thus write down a master equation that gives the fraction of vertices ak( n + 1) in 
components of size k when there are n + 1 vertices in totaL 

d) The only exception to the previous result is that components of size 1 appear at a 
rate of one per unit time. Write a separate master equation for at (n + 1). 

e) If a steady-state solution exists for the component size distribution, show that it 
satisfies the equations 

(1 + 2(3)a1 = 1, 
k-1 

(1 + 2(3k)ak = (3k I: aJak-J' 
j=l 

f) Multiply by Zk and sum over k from 1. to 00 and hence show that the generating 
function g(z) = Lk akzk satisfies the ordinary differential equation 

2(3 dg = 1 ~ g/2 
dz 1 ~g 

Unforttmately, the solution to this equation is not known, so for the moment at least we 
do not have a complete solution for the component sizes in the modeL 

PROBLEMS 
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CHAPTER 15 

OTHER NETWORK MODELS 

A brief introduction to two specialized network models, 
the small-world model and the exponential random graph 

THE RANDOM graph and preferential attachment models of previous chap
ters are the most widely studied of network models, but they are not the 

only ones. Many other models have been proposed, either as a way of shed
ding light on specific observed features of networks or as tools to help in the 
analysis of network data. In this chapter we describe briefly two of the best
known additional types of network models, the small-world model and expo
nential random graphs. 

15.1 THE SMALL-WORLD MODEL 

One of the least well-understood features of real-world networks is transitiv
ity, the propensity for two neighbors of a vertex also to be neighbors of one 
another. (See Section 7.9 for an introduction to the phenomenon of transitiv
ity.) Neither the random graph models of Chapters 12 and 13 nor the models 
of network growth discussed in Chapter 14 generate networks with any signif
icant level of transitivity, as quantified by the clustering coefficient, Eq. (7.41). 
The Poisson random graph of Chapter 12, for instance, has a clustering coeffi
cient c/(n -1), where c is the mean degree of a vertex (see Eq. (12.11». Thus 
the clustering coefficient vanishes as n becomes large for constant c. In prac
tice, as discussed in Section 7.9, this often results in values of the clustering 
coefficient that are orders of magnitude smaller than those observed in real 
networks. 

It is not that difficult to come up with a network model that does have a 
high clustering coefficient. For example, a simple triangular lattice, as shown 
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in Fig. 15.1, has significant transitivity. 
There are twice as many triangles in such a lattice as there are 

vertices, for a total of 2n triangles in a network of n vertices. At the 
same time there are (;) = 15 connected triples for each vertex, so, 
following Eq. (7.41), the clustering coefficient is 

C = (number of triangles) x 3 = 2n x 3 = ~ = 0 4 
(number of connected triples) 15n 5 .. (15.1) 

A value of 0.4 is comparable with the clustering coefficients mea
sured for many social networks (see Section 7.9 again). Moreover, 
this value does not depend on the size of the network, as the value 
for the random graph (and many other models) does, so it remains 
large even as the network size diverges. 

Another simple model network with high transitivity is depicted 
in Fig. 15.2a. Unlike the triangular lattice, this model allows the 
value of the clustering coefficient to be varied. In this model the 
vertices are arranged on a one-dimensional line, and each vertex is 
connected by an edge to the c vertices nearest to it, where for con
sistency c should be an even number. To make analytic treatment 
easier, we can apply periodic boundary conditions to the line, effec
tively bending it around into a circle, as in Fig. 15.2b. 

Figure 15.1: A triangular lattice. Any 
vertex in a triangular lattice, such as the 
one highlighted here, has six neighbors 
and hence (~) = 15 pairs of neighbors, 
of which six are connected by edges, 
giving a clustering coefficient of -fs = 

0.4 for the whole network, regardless of 
size. 

To calculate the number of triangles in such a network, we observe that a 
trip around any triangle must consist of two steps in the same direction around 

(a) (b) 

Figure 15.2: A simple one-dimensional network model. (a) Vertices are arranged on 
a line and each is connected to its c nearest neighbors, where c = 6 in this example. 
(b) The same network with periodic boundary conditions applied, making the line into 
a circle. 
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Traversing a "triangle" in 
our circle model means 
taking two steps forward 
around the circle and one 
step back. 
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the circle-say clockwise-followed by one step back to close the triangle. The 
number of triangles per vertex in the whole network is then equal to the num
ber of such triangles that start from any given point. 

Note, however, that the third and final step in the triangle can go at most ~c 
units or lattice spacings around the circle, since this is the length of the longest 
link in the network. And the number of ways to choose the two steps forward 
is simply the number of distinct ways of choosing the target vertices for those 
steps from the ~c possibilities, which is ('i2) = ~c(~c - 1). Thus the total 
number of triangles is ~nc(~c -1). 

The number of connected triples centered on each vertex is just (~) = ~c( c-
1) and hence the total number of connected triples is ~nc(c -1). 

Putting these results together, the clustering coefficient for the complete 
network is 

c= ~nc(!c-l) x3 = 3(c- 21 
!nc(c-l) 4(c-lr 

(15.2) 

As c is varied, this clustering coefficient ranges from zero for c 2 up to a 
maximum of ~ when C -----t 00. And, as with the triangular lattice, the value 
does not fall off with increasing network size, since Eq. (15.2) is independent 
of n. 

While this simple "circle model" and the triangular lattice both give large 
values of the clustering coefficient, they are clearly unsatisfactory in other re
spects as models of networks. One obvious problem is the degree distribution. 
The circle model, for instance, gives all vertices the same degree c. In the lan
guage of graph theory the model generates a regular graph, which is entirely 
unlike most real-world networks with their broad distributions of vertex de
gree. This problem however could quite easily be solved by making a circle of 
vertices with varying degrees instead of constant ones. 

A more serious problem with models of this type is that they are "large 
worlds" -they don't display the small-world effect characteristic of essentially 
every observed network in the real world and discussed previously in Sec
tions 3.6 and 8.2. The small-world effect is the observation that the geodesic or 
shortest-path distance between most pairs of vertices in a network is small
typically just a few steps even in networks with billions of vertices such as the 
acquaintance network of the entire world population. 

The shortest distance between two vertices in the circle model above is 
straightforward to calculate: the farthest one can move around the ring in a 
single step is ~ c lattice spacings, so two vertices m lattice spacings apart are 
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connected by a shortest path of 2m I c stepsI Averaging over the complete 
range of m from 0 to !n then gives a mean shortest path of nl2c. In a network 
such as the acquaintance network of the world, with n = 0(109

) people each 
acquainted with, say, c = 0(103 ) others, this expression yields an average 
shortest path length on the order of a million steps, which is wildly off the 
mark-a more realistic figure would be six or maybe ten, but not a million. 

By contrast, the random graph studied in Chapter 12 does capture the small
world effect rather well (as indeed do most of the other network models dis
cussed in previous chapters). As shown in Section 12.7, the typical shortest 
path between connected vertices in a random graph has length about In n I In c 
which has a value on the order of ~ = 3 for the acquaintance network above. 
On the other hand, as we have said, the random graph has an unrealistically 
low clustering coefficient. 

Thus we have two models, our simple circle model and the random graph, 
that between them each capture one property of real networks-high transi
tivity and short path lengths-but neither captures both. This leads us to ask 
whether it is possible to create a hybrid of the two that, like real-world net
works, displays both high transitivity and short path lengths simultaneously. 
The small-world model, proposed in 1998 by Watts and Strogatz [323], does ex
actly this. 

The small-world model, in its original form, interpolates between our circle 
model and the random graph by moving or rewiring edges from the circle to 
random positions. The detailed structure of the model is shown in Fig. 15.3a. 
Starting with a circle model of n vertices in which every vertex has degree c, we 
go through each of the edges in turn and with some probability p we remove 
that edge and replace it with one that joins two vertices chosen uniformly at 
random.' The randomly placed edges are commonly referred to as shortcuts 

because, as shown in Fig. 15.3a, they create shortcuts from one part of the circle 
to another. 

lStrictly it's 12111/ C 1, where I x 1 is the smallest integer not less than x. 

2In fact, in the original small-world model, as defined by Watts and Strogatz, only one end 
of each edge-say the more clockwise end-was rewired and the other left where it was. This, 
however, results in a model that never becomes a true random graph even when all edges are 
rewired, as one can easily see, since each vertex is still attached to half of its original edges and 
hence would have degree at least !c. In a true random graph there is no such constraint on degrees; 
vertices can have degrees of any value between zero and n - 1. The original model also imposed 
some other constraints, such as the constraint that no two edges may cormect the same vertex pair. 
This constraint could be imposed in the version we discuss here, although it makes little difference 
in practice, since the number of such multiedges is of order 1/ n in the limit of large n and therefore 
the multiedges make a small contribution to any results if the network is large. 
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(a) (b) 

Figure 15.3: Two versions of the small-world model. (a) In the original version of the 
sman-world model, edges arc with independent probability p removed from the circle 
and placed between two vertices chosen uniformly at random, creating shortcuts across 
the circle as shown. In this example n = 24, C = 6, and p = 0.07, so that 5 out of 72 
edges are "rewired" in this fashion. (b) In the second version of the model only the 
shortcuts are added and no edges are removed from the circle. 

The parameter p in the small-world model controls the interpolation be
tween the circle model and the random graph. When p = 0 no edges are 
rewired and we retain the original circle. When p = 1 all edges are rewired 
to random positions and we have a random graph. For intermediate values 
of p we generate networks that lie somewhere in between. Thus for p = 0 
the small-world model shows clustering (so long as c > 2-see Eq. (15.2)) but 
no small-world effect. For p = 1 it does the reverse. The crucial point about 
the model is that as p is increased from zero the clustering is maintained up to 
quite large values of p while the small-world behavior, meaning short average 
path lengths, already appears for quite modest values of p. As a result there 
is a substantial range of intermediate values for which the model shows both 
effects simultaneously, thereby demonstrating that the two are in fact entirely 
compatible and not exclusive at all. 

Unfortunately, it is hard to demonstrate this result rigorously because the 
small-world model as defined above is difficult to treat by analytic means. For 
this reason we will in this chapter study a slight variant of the model, which is 
easier to treat [254]. In this variant, shown in Fig. 15.3b, edges are added be
tween randomly chosen vertex pairs just as before, but no edges are removed 
from the original circle. This leaves the circle intact, which makes our calcu
lations much simpler. For ease of comparison with the original small-world 
model, the definition of the parameter p is kept the same: for every edge in the 
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circle we add with independent probability p an additional shortcut between 
two vertices chosen uniformly at random.3 

A downside of this version of the model is that it no longer becomes a 
random graph in the limit p = 1. Instead it becomes a random graph plus the 
original circle. This, however, turns out not to be a significant problem, since 
most of the interest in the model lies in the regime where p is small and in this 
regime the two models differ hardly at all; the only difference is the presence in 
the second variant of a small number of edges around the circle that would be 
absent in the first, having been rewired. Henceforth, we will study the variant 
model in which no edges are removed and we will refer to it, as others have, 
as the small-world model, although the reader should bear in mind that there 
are two slightly different models that carry this name. 

15.l.1 DEGREE DISTRIBUTION 

In the circle model described in the last section every vertex has the same de
gree c-the network is a regular graph. Once we add shortcuts to the circle 
to make the small-world model, the degree of a vertex is c plus the number of 
shortcut edges attached to it. The definition of the small-world model says that 
for each of the non-shortcut edges around the circle, of which there are ~nc, we 
add a shortcut with probability p at a random location, so that there are ~nep 
shortcuts on average and ncp ends of shortcuts. This means that cp shortcuts 
on average end at any particular vertex. And the specific number s of shortcuts 
attached to anyone vertex is Poisson distributed with mean ep thus: 

p, = e-cp (e~);. (15.3) 
s. 

The total degree of a vertex is k = s + c. Putting s = k - e into Eq. (15.3) then 
gives us the degree distribution of the small-world model: 

Pk = e-cp (Cp)k-c (15.4) 
(k - e)! 

for k ::> c and Pk = 0 if k < c. 
Figure 15.4 shows the form of this distribution for c = 6, P = ~. As we can 

see, the distribution has an unusual peaked shape with a lower cut-off, quite 
unlike the degree distributions we saw for real networks in Section 8.3. In this 
respect, therefore, the small-world model does not mimic well the structure of 

3Equivalently, one could just say that the number of shortcuts added is drawn from a Poisson 
distribution with mean incp. 
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Figure 15.4: The degree distribution of the small
world model. The frequency distribution of vertex 
degrees in a small-world model with parameters 
c = 6andp = i. 
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networks in the real world. On the other hand, the model was never intended 
to mimic real-world degree distributions. What it does do well is mimic the 
clustering and short path lengths seen in real networks. 

15.l.2 CLUSTERING COEFFICIENT 

The clustering coefficient C is defined by Eq. (7.41), which we reproduce here: 

C = (number of triangles) x 3 
(number of connected triples) . 

(15.5) 

To evaluate C for the small-world model we need to calculate the numbers of 
triangles and connected triples in the network. Let us start with the former. 

Since the underlying circle in the model is unchanged by the addition of 
shortcuts, every triangle in that circle, of which there are, as before, ~nc(~c-
1), is still present. Some new triangles are also introduced by the shortcuts. 
For example, vertex pairs ~ c + 1 to c steps apart on the circle are connected by 
one or more paths of length two, and if the same vertices are also connected by 
a shortcut those paths are turned into triangles. 

The number of such paths of length two is clearly proportional to n-if we 
double the length of the circle we double the number of paths. The average 
number of shortcuts in the small-world model is, as we have said, ~ncp and 
there are G) places they can fall, meaning that any particular pair of vertices is 
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connected with probability 

~ncp 
~n(n-l) 

cp 
= n -1' 

(15.6) 

or just cp / n in the limit of large n. The number of paths of length two that are 
completed by shortcuts to form triangles is thus proportional to n x cp / n = cp, 
which is a constant. This means that in the limit of large network size we can 
safely ignore these triangles, because they will be negligible compared to the 
O( n) triangles in the main circle. 

Triangles can also be formed from two or three shortcuts, but these also 
turn out to be negligible in number. Thus, to leading order in n, the number of 
triangles in the small-world model is simply equal to the number in the circle, 

which is ~nc(~c-l). 
And what about the number of connected triples? Once again, all con

nected triples in the circle model are still present in the small-world model. As 
shown in Section 15.1, there are ~nc(c - 1) such triples. There are, however, 
also triples created by a shortcut combining with an edge in the circle. There 
are ~ncp shortcuts and c edges that they can form a triple with at each of their 
two ends, for a total of ~ncp x c x 2 = nc2 p connected triples. 

There are also triples created by pairs of shortcuts. If a vertex is connected 
to m shortcuts then there are C;) triples made of two shortcuts centered on that 
vertex and, averaging over the Poisson distribution of m, with mean cp, the 
expected number of connected triples centered at a vertex is iC2p2, for a total 
of ~nc2p2 triples over all vertices. 

Thus the expected total number of connected triples of all types in the 
whole network is ~nc(c - 1) + nc2p + ~nc2p2 Substituting the numbers of 
triangles and triples into Eq. (15.5), we then find that 

lnc(lc - 1) x 3 
C - 4 2 

- ~nc(c -1) + nc2p + ~nc'p' 
_ 3(c - 2) 
- 4(c-l)+8cp+4cp'· 

(15.7) 

Note that this becomes the same as Eq. (15.2), as it should, when p = O. And as 
p grows it becomes smaller, with a minimum value of C = ~(c - 2) / (4c - 1) 
when p = 1. For instance when c = 6, the minimum value of the clustering 
coefficient is ~ = 0.130 ... (This behavior contrasts with that of the original 
Watts-Strogatz version of the small-world model in which edges are removed 
from the circle. In that version the clustering coefficient tends to zero as n --+ 00 

when p = 1, since the network becomes a random graph at p = 1.) 
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See Section 6.10.1 for a 
discussion of geodesic dis
tances in networks. 
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Figure 15.5: Clustering coefficient and average path length in the small-world model 
The solid line shows the clustering coefficient, Eq. (1S.7L for a sman-world model with 
c = 6 and n = 600, as a fraction of its maximum value Cmax = ~ (c - 2) / (c - 1) = 0.6, 
plotted as a function of the parameter p. The dashed line shows the average geodesic 
distance between vertices for the same model as a fraction of its maximum value Cmax = 

11/2c = 50, calculated from the mean-field solution, Eq. (15.14). Note that the horizontal 
axis is logarithmic. 

Figure 15.5 shows a plot of the clustering coefficient as a function of p for a 
small-world network with c = 6. 

15.1.3 AVERAGE PATH LENGTHS 

Calculating the average path length in the small-world model, i.e., the mean 
geodesic or shortest-path distance between pairs of vertices, is harder than 
calculating the degree distribution or clustering coefficient. Indeed, no exact 
expression for mean distance has yet been found, though some approximate 
expressions are known and have been found in simulations of the model to be 
reasonably accurate. 

One thing that is known about path lengths in the model is how they scale 
with the model parameters. Consider the simple case of a small-world model 
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with c = 2, so that around the circle each vertex is connected only to its imme
diate neighbors, and consider the following dimensional argument. We define 
a length measure in our network by saying that the distance covered by an 
edge in the network is one length unit~a meter say, or a foot.4 Then we can 
ask what other quantities in the model have the dimensions of length. One 
candidate is the distance around the whole circle, which is just n. 

But there is another length in the model also, which is the mean distance 
between the ends of shortcuts around the circle. Suppose there are s shortcuts 
in our network, which means there 2s ends of shortcuts. (We know in fact that 
s = ~ncp, but the point of this argument will be clearer if we stick with the 
simple notation s for the moment.) Then the average distance i: between ends 
around the circle is 

i: = "-
2s 

(15.8) 

Once we specify the two distances n and~, we have specified the entire model, 
because once we have n the value of ~ fixes s, which fixes p, which is the only 
free parameter in the model given that c = 2. 

Now consider the ratio of the length of the average shortest path in the 
network, which we will denote C, to the length of the path around the entire 
circle, which is n. This ratio can, by definition, be written as a function of n 
and G, since nand i: specify the entire model. However, it is also the ratio of 
two distances, meaning that it is dimensionless, and hence can be a function 
of only of dimensionless combinations of nand i:. But there is only one such 
dimensionless combination, the ratio n/ G. Thus it must be the case that 

C 
- = F(n/G) = F(2s), 
n 

(15.9) 

where F(x) is some function that doesn't depend on any of the parameters, a 
universal function in the language of scaling theory. 

In other words, the mean geodesic distance C between vertices in the small
world model with c = 2 is simply equal to the number of vertices n times some 
function of the number of shortcuts: 

£=nF(2s). (15.10) 

And what happens for larger values of c? When we increase c the lengths of 
the shortest paths between vertices decrease. If we keep everything the same 

4We consider all edges, induding the shortcuts, to be the same length, even though the short
cuts are drawn as being longer in figures like Fig. 15.3. We are regarding the network as a purely 
topological object, not a spatial one. 
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in our model-number of vertices, number of shortcuts-but increase c from 
two to four, then we will roughly halve the shortest path between any pair of 
vertices. This is because we now have edges connecting next-nearest neigh
bor vertices around the circle as well as nearest neighbors, which means that 
we can traverse a given distance around the circle in half as many hops as we 
could previously. If the path incorporates any shortcuts then that part of the 
distance doesn't change-the shortcuts are as long as they ever were, How
ever, if the density of shortcuts is low then most of the hops in most paths will 
be around the circle rather than along shortcuts and to a good approximation 
we can say that the length of the paths has simply halved, Similarly, for gen
eral values of c the length of the paths is decreased by a factor of ~c over its 
value for the c = 2 case, 

Thus, provided the density of shortcuts is low, the equation corresponding 
to Eq, (15,10) for general values of cis: 

2n 
C = -F(2s), 

c 
(15,11) 

We can derive an alternative form by making use of the fact that the number 
of shortcuts is s = ~ncp, which gives us C = 2(nlc)F(ncp), In fact, conven
tionally we absorb the leading factor of two into the definition of F, defining a 
new universal functionf(x) = 2F(x), so that 

n 
C = - f(ncp), 

c 
(15,12) 

This scaling form, first proposed by Barthelemy and Amaral [31], tells us how 
the average path length in the small-world model depends on the model pa
rameters n, c, and p when the density of shortcuts is low, 

The catch is that we don't know the form of the function f(x), We can, 
however, get an idea of its shape by numerical simulation of the model. We can 
generate random small-world networks and measure the mean distance C be
tween their vertices using breadth-first search (Section 103), Equation (15,12) 
tells us that if we perform such measurements for many different networks 
with many different values of the parameters we should find that the combi
nation din is equal to the same function of ncp in all of them: 

cC 
- = f(ncp), 
n 

(15,13) 

Figure 15,6 shows the results of such simulations for many different networks, 
and indeed we see that all of the points in the figure follow, roughly speaking, 
a single curve, This is the curve of f (x), 
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Figure 15.6: Scaling function for the small-world model. The points show numerical 
results for eel n as a function of ncp for the small-world model with a range of parame
ter values n = 128 to 32 768 and p = 1 X 10~6 to 3 X 10--2, and two different values of c 
as marked. Each point is averaged over 1000 networks with the same parameter val~ 
ues. The points collapse, to a reasonable approximation, onto a single scaling function 
f(ncp) in agreement with Eq, (15,13), The dashed curve is the mean-field approxima
tion to the scaling function given in Eq. (15.14). 

Another approach is to try to calculate f (x) approximately in some fashion, 
Various approaches have been tried, including series approximations, distribu
tional approximations, and mean-field methods, A mean-field approximation, 
for example, gives the result [251] 

f( x) = 2 tanh~l J x . 
yx2 +4x x+4 

(15,14) 

The methods used to derive this form become exact in the limit of either very 
small or very large numbers of shortcuts in the network,5 but in between 
around x = 1 they are only approximate, The form of Eq, (15,14) is shown 
as the dashed line in Fig, 15,6 and indeed we see that it agrees well with the 

5Note that the number of shortcuts can be large even when the density of shortcuts remains 
small, as it must for the scaling form (15.12) to be valid at all. 
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numerical results at the ends of the range but less well in the middle. 
This, however, is enough for us to prove that the small-world model is 

indeed a "small world." Consider Eq. (15.14) for large values of x. Making use 
of the standard identity 

we can write f(x) as 

-1 1 1 + u tanh u = 21n--, 
l-u 

f(x) = 
1 In Vi + 4/ x + 1 

vx2 +4x Vl+4/x-l' 

and then taking the limit of large x we find 

f(X) = Inx 
x 

for X» 1. Substituting this into Eq. (15.12), we then have 

£ = In(ncp~ 
c2 p 

(15.15) 

(15.16) 

(15.17) 

(15.18) 

for ncp » 1. Recalling that ncp is simply twice the number of shortcuts in the 
network, this implies that, provided the number of shortcuts in the network is 
significantly greater than 1, the average distance between vertices will increase 
logarithmically with n, i.e., very slowly, for fixed c and p. Thus the number of 
vertices in the network can become very large and the value of £ will remain 
small, which is precisely the phenomenon we call the small-world effect. 

Moreover, since only the number of shortcuts, and not the number per ver
tex, has to be large, the model tells us that the addition of only a small density 
of random shortcuts to a large network can produce small-world behavior. 
This helps explain why most real-world networks show the small-world ef
fect. Most networks contain long-range connections and have at least some 
randomness in them-very few are perfectly regular or have only short-range 
connections-so we should not be surprised to see small-world behavior in 
almost all cases. 

It is important to notice that the small-world model not only shows the 
small-world effect, but that it does so at the same time as displaying cluster
ing. Since the number of shortcuts in the network is ~ncp, we can always 
make it much larger than one simply by increasing the size n of the network, 
while keeping c and p constant. At the same time, the clustering coefficient, 
Eq. (15.7), is independent of n and hence retains its (non-zero) value as n -> co. 
In this limit, therefore, we simultaneously have non-zero clustering and the 
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small-world effect, demonstrating conclusively that the two are not at odds 
with one another-it is perfectly possible to have both in the same network at 
the same time. 

Figure 15.5 shows a plot of the approximate value of £ as a function of p 
from Eqs. (15.12) and (15.14) for a small-world model with n = 600 vertices 
and c = 6, along with the curve for the clustering coefficient of the same model 
that we plotted earlier and, as we can see, there is a substantial range of values 
of p in which the value of e is low while the value of C is high. 

Many other properties and quantities can be calculated for the small-world 
modet either analytically or numerically. For a short review of results con
cerning the model see Ref. [232]. 

15.2 EXPONENTIAL RANDOM GRAPHS 

Many of the networks we observe in the real world exist in only one instanti
ation, one example that we can study. There's only one Internet, for instance, 
and only one World Wide Web. But is the precise structure of such a network
the precise pattern of connections in the Internet, say-the only possible struc
ture the network could have? Common sense suggests that it is not. For a start, 
the Internet evolves in time, so we see different structures if we look at differ
ent times and all of them are by definition plausible structures for the network. 
More importantly, it's clear that, had circumstances been slightly different, the 
Internet could easily have evolved to have a different topology, but one that in 
practical terms would probably have worked about as well as the present one. 

On the other hand, we can say that the structure of such an alternate In
ternet would probably have been "similar" to the real Internet, in some sense. 
That is, all reasonable choices for the structure of the Internet have some basic 
features in common, even if they differ in smaller details. Similar considera
tions also apply to other types of network, including social networks, biologi
cal networks, and information networks. 

In some cases the questions we want to answer about a networked system 
can be tackled by studying the structure of only a single observed example
the real Internet for instance. But there are other cases where we would like to 
know about the entire set of possible networks that could represent a system. If 
we are studying some social process in a social network, for instance, such as 
opinion formation or the spread of a disease, we can measure a social network 
and then calculate or simulate the effects of the process of interest on that net
work. More often, however, we would like to know how the process behaves 
on social networks generally, rather than on the one particular network we 
have measured. 
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Considerations of this kind lead us to consider ensemble models of net
works, an ensemble, in this context, meaning a set of possible networks plus a 
probability distribution over them. We have seen some examples of ensemble 
models in previous chapters, such as the random graphs of Chapters 12 and 13. 
In this section we introduce a beautiful and general formalism for ensemble 
network models called the exponential random graph, which includes random 
graphs as special cases but also extends to many other network ensembles that 
describe all sorts of network phenomena6 

Elegant though this formalism is, however, it also has some serious draw
backs. For reasons that are still not entirely understood, exponential random 
graphs fail as models of some common network phenomena such as transi
tivity (see Section 7.9). We will examine the nature of some of these failures 
towards the end of the chapter. 

15.2.1 DEFINITION OF THE EXPONENTIAL RANDOM GRAPH 

Suppose we want to create an ensemble of networks with a given set of prop
erties, such as a given number of edges or a given value of the clustering co
efficient. We can do that, as ordinary random graph models do, by fixing ab
solutely the values of the quantity or quantities of interest and then drawing 
uniformly from the set of all networks with the desired values. For instance, 
if we draw uniformly from the set of all graphs with a given number of edges 
we have the G (n, m) random graph model of Section 12.1. 

In many cases, however, this approach is not exactly what we want. If we 
observe that a social network, for example, has a given number of edges, it 
does not necessarily mean that every possible social network for the given 
community would have exactly that many edges. Had the world evolved 
slightly differently, the number of edges might well have turned out differ
ently as well. 

Often, therefore, a better approach is to fix the average value of the prop
erty or properties of interest. We might fix the average number of edges, for 
instance, so that some networks in our ensemble have more than the average 
and some have less, but over the whole ensemble we get the right average 
value. Moreover, we can arrange that networks with numbers of edges close 
to the desired value have higher probabilities in the ensemble than networks 
further away, so that the ensemble is dominated by networks with properties 
close to the desired ones. The exponential random graph provides an elegant 

61n the SOciology literature exponential random graphs are also called p-star models (sometimes 
written ilp~II). 
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way of achieving these goals. 
Suppose, therefore, that we have some set of network measures whose nu

merical values we want to fix. Examples might include number of edges or 
mean degree of a vertex, degrees of individual vertices, number of triangles or 
clustering coefficient, and so forth. Let us denote these measures by X" X" . .. 

Now consider the set f§ of all simple graphs? with n vertices and let us 
define an ensemble by giving each graph G in the set a probability P(G), nor
malized so that 

L: P(G) = 1. (15.19) 
Ge§ 

The mean or expectation value (Xi) of a newark measure Xi within this ensem
ble is given by 

(Xi) = L: P(G) Xi(G), (15.20) 
GE~ 

where Xi(G) is the value of Xi measured on the graph G (e.g., number of edges 
in graph G, number of triangles, etc.). 

Now, following the prescription outlined above, let us fix the mean value 
of each of our measures within our ensemble. If we do this, then Eq. (15.20) is 
turned around and becomes a constraint on the probability distribution over 
graphs: 

L: P(G) Xi(G) = (Xi), (15.21) 
Ge§ 

where (Xi) is now a specified number. We have one such constraint for each 
network measure. 

The number of measures, however, is typically quite small-maybe only 
one or two, maybe hundreds or even thousands, but usually nowhere near the 
number of graphs in our ensemble. The number of simple graphs of n ver
tices is 211 (11-1)/2, which becomes very large even for relatively modest values 
of n. This means that the constraints in Eqs. (15.19) and (15.21) do not spec
ify the probability distribution P( G) completely. Indeed, they leave an enor
mous amount of flexibility about the values of P(G). There are many more 
unknowns P( G) than there are constraints in our equations and hence a wide 
range of choices of P( G) that will satisfy the constraints. How do we choose 
between them? 

This question, of making the best choice of a probability distribution given 
only a relatively small number of constraints on that distribution, is one that 

lOne can also define exponential random graphs models for sets that include non-simple 
graphs, but the case considered here of simple graphs is the most commonly studied one. 

Recall that a simple graph 
is a graph with no multi
edges and no self-edges
see Section 6.1. 
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is familiar to physicists and statisticians, having been studied for over a hun
dred years since the pioneering work of Willard Gibbs in the latter part of the 
nineteenth century. The solution is remarkably simple, although deriving it is 
not. It can be shown that the best choice of probability distribution is the one 
that maximizes the Gibbs entropy 

5 = ~ L P(G) InP(G), (15.22) 
gE'Il 

subject to the known constraints. 
One may well ask what we mean by "best choice" in this context. The 

maximum entropy choice is best in the sense that it makes the minimum as
sumptions about the distribution other than those imposed upon us by the con
straints. There are choices of distribution we could make that would satisfy the 
constraints but would effectively make additional assumptions. For instance, 
some choices might make a particular graph or graphs highly probable while 
other graphs, only slightly different, are given far lower probabilities. These 
would be considered "bad" choices in the sense that they assume things about 
the ensemble for which we have no supporting evidence. The Gibbs entropy 
is precisely a measure of the amount of /I assumption" that goes into a partic
ular choice of distribution P(G), or more precisely it is the amount of "anti
assumption" or ignorance, and by maximizing it we minimize unjustified as
sumptions as much as possible. The derivation of the formula, Eq. (15.22), 
would take us some way away from our central topic of networks, so we will 
not go through it here, but the interested reader is encouraged to look for ex
ample at the books by Grandy [142] and Cover and Thomas [82]. 

The maximization of the entropy, subject to the constraints of Eqs. (15.19) 
and (15.21), can be achieved by the method of Lagrange multipliers. The opti
mum is the set of values of the P( G) that maximizes the quantity 

~ LP(G) Inp(G) ~"[1~ LP(G)] ~ Lf3i[(Xi) ~ LP(G)Xi(G)], 
Ge§ GE0' i ce§ 

(15.23) 
where " and f3i are Lagrange multipliers whose values will be determined 
shortly. Differentiating with respect to the probability P(G) of a particular 
graph G and setting the result to zero, we then find that 

~ lnP(G) ~ 1 +" + Lf3iXi(G) = 0, (15.24) 

which implies 

P(G) = exr[" ~ 1 + Lf3iXi(G)], (15.25) 
, 
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or 
eH(G) 

P(G) = ----z.-' 
where Z = e' - a is called the partition function and 

H(G) = Lf3iXi(G) 

is the graph Hamiltonian.' 

(15.26) 

(15.27) 

It remains to fix the values of Z and f3i (for all i). Z is fixed by the normal
ization condition, Eq. (15.19), which requires that 

L P(G) = 2. L eH(G) = 1, 
CE'Il Z GE'Il 

(15.28) 

and hence 
(15.29) 

There is no equivalent general formula for the values of the f3i. They are calcu
lated by substituting Eq. (15.26) into Eq. (15.21) and solving the resulting set of 
non-linear simultaneous equations, but the particular solution depends on the 
form of the Hamiltonian. We will see some examples of the process shortly. 

There are some cases in which we are interested in an exponential random 
graph only as a class of models. That is, we are concerned not as much with 
the model's properties for a particular set of values {f3i} as with the behavior 
of the model in general. In such cases we can regard the f3i as free parame
ters controlling the structure of the network, much as the edge probability p 
controls the structure of the network in a Poisson random graph. 

15.2.2 EXPECTATION VALUES 

Once we have determined the probability distribution P( G) over graphs, we 
can use it to calculate estimates of quantities of interest within the ensemble. 
The most common objects of interest are expectation values (i.e., averages) of 
quantities, the expectation value of a quantity y in the ensemble being given 
by 

1 
(y) = L P( G) y( G) = ~ L eH(G) y(G). 

GE0' Z GE0' 

(15.30) 

8Sometimes the graph Hamiltonian is defined to be minus this quantity and a corresponding 
minus sign is introduced in Eq. (15.26). This is by analogy with similar quantities in statistical 
phYSiCS, where the Hamiltonian is an energy function and lower energies correspond to higher 
probabilities. In studies of networks, however, the definitions are most commonly as given here. 
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In effect, this calculation gives us a "best estimate" of the value of y. That is, 
given a certain set of observations or constraints on our network, embodied in 
Eq. (15.21), but no other information about the network structure, we can cal
culate a best-guess ensemble of networks subject to those constraints and then 
use that ensemble to calculate the expectation value of the quantity y, giving 
us a best guess at the value of that quantity given only the constraints. Thus 
the exponential random graph model enables us to answer questions of the 
type, "If I know certain things, A, B, and C, about a network, what is my best 
estimate of some other thing D?" For instance, if I know the average degree of 
a vertex in a network, what is my best estimate of the degree distribution? Or 
the clustering coefficient? The exponential random graph gives a rigorous and 
principled answer to questions of this kind. 

An interesting special case arises when the quantity y that we want to es
timate is itself one of the set of network measures Xi that we used to specify 
our ensemble in the first place. You might ask why we would want to do 
this, given that, by hypothesis, we already know the expectation values of 
these quantities-they are precisely the quantities that we used as inputs to 
our model in the first place. The answer is that we still need to fix the param
eters f3i and we do this by calculating the expectation values (Xi) for given f3i 
and then varying the f3i until the (Xi) take the desired values. 

The value of (Xi) within the ensemble is given by 

lid (Xi) = - L er:,~,x,(G) Xi(G) = -- L er:,~,x,(G) 
Z Gce' Z df3i CEq 

1 ilZ illnZ 

Zilf3i ~' 
(15.31) 

where we have made use of Eq. (15.29). The quantity 

F = lnZ (15.32) 

is called the free energy of the ensemble and Eq. (15.31) can be written simply 
as 

dF 
(Xi) = ilf3i' (15.33) 

To calculate (Xi), therefore, all we need to do is calculate the partition func
tion Z, from it evaluate the free energy, and then differentiate. 

Calculating expectation values for other quantities is harder, and indeed 
this is one of the main practical problems with exponential random graphs: 
the actual calculations of quantities of interest can be very difficult and in many 
cases can only be performed using numerical methods. If we are clever, how
ever, we can still use the machinery embodied in Eq. (15.33) in some cases. The 
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trick is to introduce an extra term involving y into our Hamiltonian thus: 

H(G) = Lf3iXi(G) +Jly(G). (15.34) 

If we set the parameter I' to zero, then the answers we get out of our calcula
tions will be unchanged from before and hence will still be correct. However, 
we can now differentiate with respect to I' (at the point I' = 0) to calculate the 
expectation value of y: 

(y) = ~F I . 

fl 11=0 

(15.35) 

This allows us again to calculate just the one sum, the partition function Z, 
and from it calculate the free energy and thus the average (y). The catch is 
that we have to calculate Z for general (non-zero) values of I' so that we can 
perform the derivative-we only set I' to zero at the end of the calculation. In 
many cases it can be quite difficult to calculate Z in this way, which makes the 
exponential random graph, though elegant, technically tricky. 

15.2.3 SIMPLE EXAMPLES 

Probably the simplest example of an exponential random graph model is the 
model in which we fix the expected number of edges in an undirected net
work and nothing else. Following the formalism above, this gives us a graph 
Hamiltonian, Eq. (15.27), of H = 13m, where m is the number of edges. Then 
individual graphs appear in the ensemble with probability 

epm 
P(G) = z' (15.36) 

where 
z = L: ef3 m

. (15.37) 
G 

Thus higher values of 13 in this model correspond to denser networks, those 
with more edges. 

To make further progress with this model we need a way to perform the 
sum over graphs G in Eq. (15.37). The standard way to achieve this is to sum 
over possible values of the elements Ai; of the adjacency matrix. In this case 
we are considering undirected graphs, so we need to specify only the matrix 
elements above the diagonal or those below it, but not both, since the matrix 
is symmetric. And since we are restricting ourselves to simple graphs the only 
allowed values of Ai; are 0 and 1 if i of j and Aii = O. 
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We can write the number of edges m in terms of the adjacency matrix thus: 

(15.38) 

and hence the partition function is 

Z = L exp(!3LAii) 
{Ai]} i<j 

= L IT ellA" = IT L e~A., = IT (1+ e~) 
{Aid i<j i<j A'j=O,l i<j 

(15.39) 

where the notation {Aii} indicates summation over all allowed values of the 
adjacency matrix. 

From this expression we can calculate the free energy:' 

(15.40) 

and thus, using Eq. (15.33), the average number of edges in the model is 

aF (n) ] 
(m)=a!3= 2 l+e~' (15.41) 

If we have a particular desired value that (m) should take, we can now achieve 
it by rearranging this expression to find the appropriate value for the Lagrange 

multiplier !3 thus: 
(m) 

!3 = In G) - (m) . (15.42) 

We can also calculate, for example, the probability p"'" that there will be an 
edge between a particular pair of vertices v, w, which is given by the average 
of the corresponding element A,," of the adjacency matrix. From Eq. (15.30) we 

9Those familiar with free energy in its original thermodynamic context may find this expres
sion odd because it varies with network size as n2 to leading order. In thermodynamic systems, by 
contrast, free energy is always directly proportional to system size. However the degrees of free
dom or "particles" in our network are really the edges (or absence of edges) between vertex pairs, 
not the vertices themselves, and there are G) vertex pairs, which is why Eq. (15.40) is proportional 
to G). 
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have 

1 

1 +e P 
(m) 

Gr' 

LA"w=O,l Avwet)A
p
", 

LAvw =O,1 eflA "", 

(15.43) 

Thus the probability of an edge between a given pair of vertices is the same 
in this model for every pair. In other words, this model is just the ordinary 
Poisson random graph of Chapter 12 with p = (m) / (;). The random graph 
can thus be regarded as a special case of the more general exponential random 
graph model. 

The random graph, as we saw in Chapter 12, is in many respects a poor 
model of real-world networks. In particular, its degree distribution is Poisson
ian and hence very different from the highly right-skewed degree distributions 
in most observed networks. It is natural to ask, therefore, whether we can 
make an exponential random graph model that has a more realistic degree dis
tribution. There are a number of ways of doing this, but one of the simplest 
is to create a model in which we specify the expected degree of each vertex 
within the ensemble. That is, we create an exponential random graph model 
with the graph Hamiltonian 

H = L!3iki, (15.44) 

where ki is the degree of vertex i. Note that we do not also need a term that fixes 
the average number of edges in this model, since fixing the average degree of 
each vertex already fixes the average number of edges (see Eq. (6.20)). 

We can write the degrees in terms of the adjacency matrix as 

and hence write the Hamiltonian as 

H = L!3iAii 
ij 

i<j i>j 

= D!3i + !3i)A;j, 
i<j 

i<j i<j 

(15.45) 

(15.46) 

where in the second line we have interchanged the dummy variables i and 
j and in the third line we have made use of Aji = Aii' We have also again 
assumed that there are no self-edges, so that Aii = 0 for all i. 
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Now we can write the partition function as 

Z = L: exp(L:(,6i+~i)A;j) = n L: e(~,+Pi)A" 
{A'i} 1<] 1<] A'i',,,,O,l 

= n[1 +ePPij, 
'<J 

(15.47) 

and the probability of an edge between vertices u and v is 

(15.48) 

Thus edges in this model now have different probabilities. Of particular inter
est is the case of a sparse network, one in which the probability of any indi
vidual edge is small, pvw « 1. (As we have seen throughout this book, most 
real-world networks are very sparse.) To achieve this, we need e-(P,+~ ... ) » 1 
in Eq. (15.48), which means that 

(15.49) 

In other words, in a sparse network the probability of an edge is simply a 
product of two terms, one for each of the vertices at either end of the edge. 
Moreover, it turns out that these terms are simply related to the expected de
grees of the vertices. The expected degree of vertex v, for instance, is just the 
sum of the expected number pvw of edges between it and every other vertex: 

(15.50) 
w w 

so that 
(15.51) 

where C = 1/ Lw e~"'. 
Thus pvw = C2 (kv) (Jew) in this model, and since we require that Lmv pvw = 

Lv(kv) = 2(/11) (see Eqs. (6.19) and (6.20)), it's then straightforward to show 
that 

pvw = 
(kv) (kw) 

2(/11) . 
(15.52) 
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Once again, this is a model we have seen before. It is the random graph 
model that we studied in Section 13.2.2 in which we specify the expected de
grees of vertices (rather than their exact degrees, as in the more common con
figuration model). 

We can also create exponential random graph models of directed networks. 
For instance, we can make a model in which the constrained. quantities are the 
expected values of the in- and out-degrees of a directed network by using a 
Hamiltonian of the form 

H = '\' gipki:n + '\' R9utk9t1t 
Lf-'I I '-'~J } . 

. j 

Writing Jei' = Li(i'i) Ail and Jej"t = Li(i'iI A ii , we have 

H = D~r + Nut) Aij . 
ifcj 

(15.53) 

(15.54) 

The ensemble is now a distribution over (simple) directed graphs, which 
means that the adjacency matrix is in general asymmetric and each element 
Aii can take its own value. Thus the partition function is 

= n[l+eM'+Pi"'j, 
i-jj 

(15.55) 

and the probability of an edge from w to v is 

LA -0 1 e(,B\~+,B~~t)A"", 
vw- , 

1 
(15.56) 

In the case of a sparse network this becomes 

'" {3~n f3g~t _ (k~) (k~vut) 
pvw - e e - (/11) , (15.57) 

by an argument similar to the one leading to Eq. (15.52). This expression is 
similar to that for the corresponding quantity in the directed version of the 
configuration model (see page 475), and indeed the model above is the equiva
lent for the directed case of the random graph in which we specify the expected 
degrees of the vertices rather than the exact degrees. 
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15.2.4 RECIPROCITY MODEL 

We now turn to some more complex examples of exponential random graphs, 
ones that are not equivalent to models we have already seen. The first ex
ample we look at is the "reciprocity model" proposed by Holland and Lein
hardt [157]. 

As discussed in Section 7.10, many directed networks exhibit the phenom
enon of reciprocity, whereby edges between vertices tend to be reciprocated. 
If I say that you are my friend, for example, then it is likely that you will also 
say that I am your friend. We can create an exponential random graph model 
of reciprocity by fixing the expected number of reciprocated edges in the net
work. The number of reciprocated edges, m, is given by m,- = L,if'i AilAli , so 
we need to introduce a term proportional to this into our graph Hamiltonian. 
We can also introduce other terms, such as terms to fix the expected degrees of 
vertices as in the previous section. Here let liS look the simple case where we 
fix only the number of edges as we did with the Poisson random graph. The 
number of edges in a simple directed network is given by m = L,i¥oj Aij and 
hence our Hamiltonian takes the form 

H = f3 L:Aij + 1" L:AjAji 
i-lj i-#j 

= L:[f3(Aij + Aji) + 21"AjAjij, (15.58) 
i<j 

where f3 and 1" are free parameters that can be varied to create the desired 
numbers of edges and reciprocated edges. This is actually a simplified version 
of the model proposed by Holland and Leinhardt, but it will serve our purpose 
nicely, and it is easy to solve. 

The partition function for this model is 

Z = L: exp (L: [f3 (Aij + Aji) + 21"AjAj;]) 
{Aid i<j 

= n L: L: ePIA'i,-Ai,I+2tA"Aj, = n[I+2ef +e2(f+11] 
I<J 111)=0,1 Aji=O,l 1<; 

(") 
= [1 + 2eP + e2(f+tl] , . (15.59) 

The free energy for the network is then 

F = G) In(1 + 2ef + e2(P+11), (15.60) 
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and, applying Eq. (15.33), we find that the expected numbers of edges and 
reciprocated edges are 

aF ef + e2(1117) 
(m) ~ - ~ n(n -1)-~ - af3 - 1 + 2ef + e2(P+11' 

aF e2(f+o) 
(m,) = -a =n(n-l) '2(' I' 

1" 1+2e"+e vH 
(15.61) 

In Section 7.10 we defined the reciprocity r of a directed network to be the 
fraction of edges that are reciprocated, which in our model is given by the 
ratio 

(m,) 1 
r = -(m-) = "'"1-+-e---OI"P;c;"""1)' (15.62) 

Thus we can control both the number of edges and the level of reciprocity in 
the network by suitable choices of f3 and 1". 

15.2.5 TWO-STAR MODEL 

After ordinary random graphs, probably the simplest undirected exponential 
random graph is the so-called two-star model. In this model one specifies the 
expected number (m) of edges in the network and the expected number (m2) 
of two-stars, meaning a vertex connected by edges to two others (which we 
called a "connected triple" in other circumstances-see Eq. (7.41) on page 200). 
Varying the number of two-stars allows us to control the extent to which edges 
in the network "stick together," meaning they share common vertices. If we 
fix only the number of edges in a network, then those edges may stick together 
or they may not, but if we also give the network a lot of two-stars, then the 
edges have to stick together to make the required number of two-stars. Thus 
the two-star model allows us to control the" dumpiness" of the network, the 
extent to which the edges gather together in dumps or are distributed more 
randomly. 

The number of two-stars in a network is 

m2 = L: L: L: AiAk = ~ L:Ail L: (Aid A j,), (15.63) 
i I(",il k(#il i¥oj k(#j) 

and the number of edges is, as before, m = L,i<) Aij = ~ L,ii'j Aj. Thus the 
Hamiltonian is 

H = ~f3 L:Aj + h L:Aj L: (Aid Ajk ) 
i-fj ih k( -li,j) 

= ~ L:Ai) [f3 + 1" L: (Aid Alk ) l' 
''''I k("".il 

(15.64) 

v 
A two-star is a vertex con
nected by edges to two 
other vertices. 
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We encountered mean-field 
theory briefly earlier in 
the chapter, in our study 
of the small-world model, 
though we did not elab
orate on it there. See 
Eq. (15.14) and the associ
ated discussion. 
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where f3 and 1 are our two parameters. 
We can solve this model using mean-field theory, a technique borrowed from 

statistical physics. We note that the term Lkl "i.j) Aik is simply the number of 
edges attached to vertex i, excluding any edge between i and j. All vertex 
pairs are equivalent in this model-vertices have no individual properties to 
distinguish them-so the mean probability (Aij) of an edge between any pair 
is the same. If we denote this probability by p then the expected value of the 
term above is just 

(15.65) 

But, assuming that the network is large, this is, to a good approximation, 
just np, which is the mean degree of a vertex. 

The mean-field approach consists of replacing the actual term in the Hamil
tonian with the expected value np. We also make the same replacement for 
the term Lkl#j) A jk . These replacements are a good approximation so long 
as np » 1 since for large values of np the statistical variation from vertex to 
vertex around the expected value becomes negligible. If the value of p is kept 
fixed as we make our network larger then np will always be large in the limit 
n -+ co. Thus, in the limit of large network size, this mean-field approximation 
is a good one. 

In this large-n regime, making the replacement described above, we have 

H = Hf3 + 2lnp) I.;Aj = (f3 + 2Inp)m, 
ifj 

where m is the number of edges as before. 

(15.66) 

Now, however, this is the same as the Hamiltonian for the ordinary Poisson 
random graph in Section 15.2.3, except for the replacement f3 -+ f3 + 2l np, so 
we can immediately write down the partition function and other quantities us
ing the results of that section. In particular, Eq. (15.41) tells us that the average 
number of edges in the network will be 

(15.67) 

But the average number of edges is related to the mean probability of an edge 
by (m) = G)p and hence 

(m) 1 
p = G) = 1 + e-I~+21nl') = ~ [tanh(~f3 + Inp) + 1]. (15.68) 

, 
'''I 

15.2 EXPONENTIAL RANDOM GRAPHS 

This gives us a self-consistent equation that we can solve to find p as a func
tion of the parameters f3 and I, and once we have p we can solve for other 
properties of the network by treating it as a normal Poisson random graph. 

For convenience in solving for p, let us define B = ~f3 and C = ~In so that 
Eq. (15.68) becomes 

p = Htanh(B + 2Cp) + I]. (15.69) 

There is no known closed-form solution for this equation in general, but we 
can visualize the solution easily enough using a graphical method. If we make 
plots of the lines y = p and y = Htanh(B + 2Cp) + I] as functions of p on the 
same axes, they will intersect at the solution (or solutions) of Eq. (15.69). Three 
such plots are shown in Fig. 15.7 for different choices of the parameters. 

Consider first panel (a), which shows the curve of y = 1 [tanh ( B + 2Cp) + I] 
for C = 1 and three different values of B (solid lines). Varying B merely 
shifts the entire curve horizontally without changing its overall shape. For 
each curve there is a single point of intersection with the line y = p, indicated 
by a small circle. As B is varied this intersection point moves smoothly be
tween high and low values of p. Thus in this regime we can tune the density of 
the network to any desired value by varying the parameter B (or equivalently 
the parameter f3 = 2B). 

Now take a look at the last panel in Fig. 15.7, panel (c), which shows curves 
for C = ~ and again three difference values of B. Again varying B shifts the 
curve horizontally, but now there is an important difference. Because of the 
higher value of C, the shape of the curve has changed. It is steeper in the mid
dle than it was previously and as a result it is now possible at suitable values 
of B for the curve to intersect with the line y = p not just in one place but in 
three different places. In this regime there are three different possible solutions 
for p for the same values of the parameters. In fact it turns out that the middle 
solution is unphysical and only the two outer solutions are realized in prac
tice. These two, however, correspond to very different networks. One has very 
high density with many edges while the other is very sparse with few edges. 
Yet both solutions are real. If one were to simulate the two-star model on a 
computer, generating networks at random according to the model prescrip
tion, one would in this regime sometimes find a high-density network and 
sometimes a low-density one for the same parameter values, and one would 
not be able to predict in advance which would occur. 

This peculiar behavior is called spontaneous symmetry breaking. It is a behav
ior well known to physicists, who study it in condensed matter physics, where 
it gives rise to the phenomenon of ferromagnetism, and in particle physics, 
where it gives rise to the phenomenon of particle mass. In network models, 
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Figure 15.7: Graphical solutions of the properties of the two-star model. Curves for 
y = ~ [tanh(B + 2Cp) + 11 for varying values of B and (a) C = ~, (b) C = 1, and 
(c) C = ~. The points where the curves intersect the line y = p (dotted line in each 
panel) are solutions of Eq. (15.69). 
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Figure 15.8: Edge probability in the two-star model. Plot of solutions of Eq. (15.69) for 
the edge probability p as a function of B for the same three values of C as were used 
in the three panels of Fig. 15.7. Note that there are two possible solutions within the 
coexistence region for the case C = ~, and more importantly that for this case there is 
no value of B that gives any intermediate value of p. For C = ~ the only possible values 
of p lie either above about 0.8 or below about 0.2. 

however, it is primarily an annoyance, and sometimes a grave weakness. A 
model that can produce two radically different classes of network for the same 
values of the model parameters is, at the least, troubling. But worse, for values 
of C as in Fig. 15.7c there some values of p that are simply impossible to reach. 

Figure 15.8 shows the values of the solutions for p for the cases depicted in 
Fig. 15.7 as a function of B and, as we have said, p is a smooth function of B 
for the C = ~ case, so that any value of p is reachable. For the case of C = ~, 
however, there are only very high and very low values of p. There is no value 
of B that produces intermediate values of p and hence no way in this model 
to generate graphs with such intermediate values if C = ~. If we wanted to 
generate a graph with p = ~, for instance, there is simply no way to do it in 
the two-star model when C = ~. 

This is a fundamental problem with the two-star model and with many 

581 



OTHER NETWORK MODELS 

582 

other exponential random graphs. We will see in the following section an ex
ample of an exponential random graph where this kind of behavior renders 
the model essentially useless as a model of a network. 

Panel (b) of Fig. 15.7 shows the borderline case that falls between panels (a) 
and (c). When the parameter C is such that the curve of y = Htanh(B + 
2Cp) + 11 has gradient exactly one at its steepest point then we are right on 
the boundary between the two different types of behavior. In the present case, 
this happens at C = 1. If C is increased any further beyond this point, sponta
neous symmetry breaking occurs. Below it, there is no symmetry breaking. In 
the physics jargon this transition is called a continuous phase transition and the 
point at which it occurs is called a critical pointlO 

Note that, even when the value of C is greater than 1 and we are above 
the critical point, spontaneous symmetry breaking still only occurs within a 
certain range of values of B, as Fig. 15.7c shows. If B is either too small or 
too large then there is only one solution to Eq. (15.69) (the two outer curves 
in Fig. 15.7c). The portion of parameter space where there are two solutions 
is called the coexistence region. The boundaries of the coexistence region corre
spond to the values of B such that the curve is tangent to the line y = p, as 
shown in Fig. 15.9. Put another way, we are on the boundary when the point 
at which the curve has gradient one falls on the line y = p. The gradient of 
y = Htanh(B + 2Cp) + 11 is given by 

~~ = Csech'(B+2Cp), (15.70) 

and setting this equal to one and making use of sech2 x = 1 - tanh' x, we have 

1 
1 - tanh'(B + 2Cp) = C. (15.71) 

But P is also a solution of Eq. (15.69), so tanh(B + 2Cp) = 2p - 1 and Eq. (15.71) 
becomes 1 - (2p _1)2 = lie, or 

2 1 
P - p+ 4C = 0, (15.72) 

lOWe encountered continuous phase transitions previously in Chapters 12 and 13-the point 
at which the giant component first appears in a random graph is a continuous phase transition, 
although admittedly it is not obvious that there is a connection between the behavior of the giant 
component and that seen in Fig. 15.7. The study of phase transitions is an intriguing and beautiful 
branch of physics that has important implications in areas as diverse as superconductivity, elemen
tary particles, and the origin of the universe. Readers interested in learning more are encouraged 
to consult, for example, the book by Yeomans [331]. 

15.2 EXPONENTIAL RANDOM GRAPHS 
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Figure 15.9: The boundaries of the coexistence region in the two-star model. The 
ends of the coexistence region for a given value of C correspond to those values of B 
that place the curve y ~ ![tanh(B + 2CP) + 11 precisely tangentto the line y ~ p. 

which has solutions 

p = Hl± vI-lie]. (15.73) 

Rearranging Eq. (15.69) for B and substituting for p we then find that 

B = tanh- 1(2p -1) - 2Cp 

= ±tanh-1 Vl-l/C - c[1 ± Vl-l/C], (15.74) 

where we either take both the plus signs or both the minus signs. 
Figure 15.10 shows a plot of this result in the form of a phase diagram of the 

two-star model showing the different regimes or "phases" of the model as a 
function of its two parameters. The two lines corresponding to the solutions 
in Eq. (15.74) form the boundaries of the coexistence region. Inside this region 
there are values of p than cannot be reached for any choice of parameters. 
Outside it, we can generate networks with any value of p. 

15.2.6 STRAUSS'S MODEL OF TRANSITIVE NETWORKS 

As our last example in this chapter, we look at another exponential random 
graph model that shows spontaneous symmetry breaking, the transitive net
work model of Strauss [306]. Where the two-star model is something of a toy 
model-useful for demonstrating the mathematics, but not especially impor
tant in practice-the model of this section is one of some importance, and the 
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Figure 15.10: Phase diagram of the two-star model. The phases of the two-star model 
as a function of the parameters Band C. Density generally increases as B becomes morc 
negative and for C > 1 there is a coexistence region at intermediate values of B in which 
spontaneous symmetry breaking occurs. Notice that the scales are logarithmic and that 
B < o. (There are no other phases for positive B or negative C, so these values are 
not shown.) Adapted from Park and Newman [260]. Original figure Copyright 2009 
American Physical Society. Reproduced with permission. 

fact that it shows pathological behavior with the variation of its parameters is 
a puzzle and a significant hindrance to progress, one that has not, at least at 
the time of writing, been fully resolved. 

Strauss's model is a model of a simple undirected network that shows 
clustering or transitivity, the propensity for triangles to form in the network, 
which, as discussed in Section 7.9, is a common phenomenon, particularly in 
social networks. In this model one specifies the expected number of edges (m) 
in the network and also the expected number of triangles (m3). The number of 
triangles can be expressed in terms of the elements of the adjacency matrix as 

m3 = % L AijAjkAkif 
ijk 

(15.75) 

15.2 EXPONENTIAL RANDOM GRAPHS 

where the factor of ~ accounts for the fact that each triangle in the network 
appears three times in the sum. The number of edges is just m = ~ L,;j A;j. 

(For simplicity of notation we have included the diagonal terms in these sums. 
They are zero since the network is simple, so it makes no difference whether 
we include them or not.) Thus the graph Hamiltonian is 

H= }f3LA;] + hLA;AkAk;. (15.76) 
ij ijk 

This model, like the two-star model, can be solved exactly in the limit of 
large network size using a mean-field technique. The details of the calculation 
are more complicated than for the two-star model. As well as replacing sums 
of the form L,k A;k by their average value, we also make a similar replacement 
for sums of the form L,k AjkAk;, and the values of these two quantities are ex
pressed self-consistently in terms of each other. We will not go into the details 
of the calculation here-the interested reader is invited to consult Ref. [261]. 
The end result, however, is similar to that for the two-star model: there is a 
phase transition in the model beyond which the system develops a coexistence 
region where there are two distinct solutions to the equations, both of which 
are realized in simulations of the model. One solution corresponds to a net
work of high density and the other a network of low density but, as in the 
two-star case, there is in this regime no choice of model parameters that will 
give networks of medium density and as a result there is a wide range of net
works that simply cannot be generated by this model. If one were to observe a 
network in the real world whose properties fell within this unattainable range, 
then Strauss's model could not be used to mimic its properties. 

This is a fundamental problem with Strauss's model and with many simi
lar exponential random graphs. The entire point of a model such as this one 
is to create model networks with properties similar to those seen in real net
works. Moreover, this model in particular and exponential random graphs in 
general seem at first sight to be a very logical approach to the creation of such 
networks: from a statistical point of view the construction of the model us
ing a maximum entropy ensemble is natural and should, one might imagine, 
give sensible answers. The fact that it does not is a disturbing finding that is 
still not properly understood. That there are ranges of network properties that 
simply cannot be created using the model. while at the same time real-world 
networks can and do display properties in these ranges, indicates that there is 
a fundamental flaw or gap in our reasoning, or perhaps in our understand of 
the nature of networks themselves. Strauss himself was already aware of these 
issues when he proposed his model in the 1980s, and the fact that they are still 
unresolved indicates that there are some difficult issues here. 
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PROBLEMS 

15.1 Consider the following variation on the small-world model. Again we have a 
ring of n vertices in which each is connected to its c nearest neighbors, where c is even. 
And again a shortcut is added to the network with probability p for each edge aroWld 
the ring, but now instead of connecting random vertex pairs, each shortcut connects a 
random vertex to the same single hub vertex in the center of the network: 

This model could be, for example, a model of a (one-dimensional) world connected 
together by a bus or train (the central vertex) whose stops are represented by the short
cuts. 

Show that the mean distance between two vertices in this network in the limit of 
large n is £ ~ 2(c'p + l)/c'p (which is a constant, independent of n). 

15.2 One of the difficulties with the original small-world model depicted in Fig. 15.3a 
is that vertices can become disconnected from the rest of the network by the rewiring 
process. For instance, a single vertex can become disconnected if all of its incident edges 
around the ring are rewired and it has no shortcuts. 

a) Show that the probability of this happening to any given vertex is [pe-pi'. 
b) Hence, how large must the network be before we expect that one vertex will be 

disconnected, if c = 6 and p = 0.01? 

15.3 Consider an undirected exponential random graph model in which the Hamilto
nian takes the form H = Li<j GijAij, where the G ij are parameters we control. 

a) Derive an expression for the free energy. 

b) Hence show that the probability of an edge between vertices i and j is 1/ (eeii + 1). 

15.4 Consider the mean-field solution of the two-star model, as described in Sec
tion 15.2.5 for the case f3 ~ -'In, or equivalently B ~ -C in the notation of Eq. (15.69). 
Let us define an order parameter x = 2p - 1. 

a) Show that the order parameter obeys the equation x = tanh Cx. 

b) Sketch the solutions to this equation as a function of C. Argue that the order 
parameter must be zero on one side of the phase transition at C = 1 but takes 
non-zero values on the other. 

PROBLEMS 
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CHAPTER 16 

PERCOLATION AND NETWORK RESILIENCE 

A discussion of one of the simplest oj processes taking 
place on networks, percolation, and its use as a model of 
network resilience 

THE ULTIMATE goal in studying networks is to better understand the be
havior of the systems networks represent. For instance, we study the 

structure of the Internet to understand better how Internet traffic flows or why 
communications protocols function the way they do or how we could change 
or rearrange the network to make it perform better. We study biochemical 
networks like metabolic networks because we hope they will lead to an under
standing of the complex chemical processes taking place in the cell or perhaps 
to algorithmic tools that can help us extract biological insights from the large 
volumes of data generated by modern laboratory techniques. 

Studies of the structure of networks, such as those discussed in the previous 
chapters of this book, are only one step towards this kind of understanding. 
Another important step is to make the connection between network structure 
and function: once we have measured and quantified the structure of a net
work, how do we turn the results into predictions or conclusions about how 
the overall system will behave? Unfortunately, progress in this area has been 
far slower than progress on characterizing structure, which is why a major
ity of this book is devoted to the discussion of structure. Nonetheless, there 
are some areas in which substantial progress has been made and illuminating 
theories and models developed. Among these are studies of network failure 
and resilience, of dynamical systems on networks, and of epidemic and other 
spreading processes. The remaining chapters of this book are devoted to a 
description of our current understanding of these and similar network pro
cesses. We begin in this chapter with a study of one of the simplest of network 
processes, percolation, which leads to an elegant theory of the robustness of 
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networked systems to the failure of their components. 

16.1 PERCOLATION 

Imagine taking a network and removing some fraction of its vertices, along 
with the edges connected to those vertices-see Fig. 16.1. This process is called 
percolation (or, more precisely, site percolation-see below), and can be used as a 
model of a variety of real-world phenomena. The failure of routers on the In
ternet, for instance, can be formally represented by removing the correspond
ing vertices and their attached edges from a network representation of the In
ternet. In fact, about 3% of the routers on the Internet are non-functional for 
one reason or another at anyone time, and it is a question of some practical in
terest what effect this will have on the performance of the network. The theory 
of percolation processes can help us answer this question, 

Another example of a percolation phenomenon is the vaccination or immu
nization of individuals against the spread of disease. As discussed in Chap
ter 1, and at greater length in Chapter 17, diseases spread through populations 
over the networks of contacts between individuals. But if an individual is vac
cinated against a disease and therefore cannot catch it, then that individual 
does not contribute to the spread of the disease. Of course, the individual is 
still present in the network, but, from the point of view of the spread of the 
disease, might as well be absent, and hence the vaccination process can again 
be formally represented by removing vertices. 

One can see immediately that percolation processes can give rise to some 
interesting behaviors. The vaccination of an individual in a population, for 
example, not only prevents that individual from becoming infected but also 
prevents them from infecting others, and so has a "knock-on" effect in which 
the benefit of vaccinating one individual is felt by more than one. As we will 
show, this knock-on effect means that in some cases the vaccination of a rel
atively small fraction of the population can effectively prevent the spread of 
disease to anyone, an outcome known as herd immunity. 

Similar effects crop up in our Internet example, although in that case they 
are usually undesirable. The removal or failure of a single router on the Inter
net prevents that router from receiving data, but also prevents data from reach
ing others via the failed one, forcing traffic to take another route-possibly 
longer or more congested-or even cutting off some portions of the network 
altogether. One of the goals of percolation theory on networks is to understand 
how the knock-on effects of vertex removal or failure affect the network as a 
whole. 

Sometimes it is not the vertices in the network that fail but the edges. For 

(a) '" ~ 1 (b) <P ~ 0.7 

(c) <P ~ 0.3 

Figure 16.1: Percolation. A depiction of the site percolation process on a small network 
for various values of the occupation probability rp. Gray denotes vertices that have 
been removed, along with their associated edges, and black denotes those that are still 
present. The networks in panels (a) and (b) are above the percolation threshold while 
those in panels (c) and (d) are below it. 

instance, communication lines on the Internet can fail, disconnecting routers 
from one another, even though the routers themselves are still functioning per
fectly. Phenomena like this can be modeled using a slightly different percola
tion process in which edges rather than vertices are removed from the appro
priate network. If we need to distinguish between the two types of percolation 
process we could refer to them as vertex percolation on the one hand and edge 
percolation on the other, but in fact they are more commonly called site percola
tion and bond percolation, a nomenclature that derives from studies of percola-

16.1 PERCOLATION 
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tion on low-dimensional lattices in physics and mathematics 1 In this chapter 
we will focus principally on site percolation (i.e., removal of vertices) but bond 
percolation (removal of edges) will become important in Chapter 17 when we 
look at epidemic processes. 

There is more than one way in which vertices can be removed from a net
work. In the simplest case they could be removed purely at random: we could 
for example take away some specified fraction of the vertices chosen uniformly 
at random from the entire network. This is the most commonly studied form 
of site percolation, and indeed for many people the word "percolation" refers 
specifically to this particular process. But there are many other ways in which 
vertices could be removed and "percolation" as used in this chapter is con
sidered to include all of them. One popular alternative removal scheme is 
to remove vertices according to their degree in some fashion. For instance, 
we could remove vertices in order of degree from highest to lowest, an ap
proach that turns out to make an effective vaccination strategy for the control 
of disease. Other approaches have also been considered occasionally, such as 
removing vertices with high betweenness centrality. Let us begin, however, by 
examining the simplest case of uniformly random removal. 

16.2 UNIFORM RANDOM REMOVAL OF VERTICES 

Consider a network in which some fraction of the vertices, selected uniformly 
at random, are removed. As discussed above, in many real-world situations 
"removal" does not imply actual physical removal of the vertices, but only that 
they are non-functional in some way, such as routers that have failed on the 
Internet, or vaccinated individuals in a network of disease-causing contacts. 

Traditionally the percolation process is parametrized by a probability <p, 
which is probability that a vertex is present or functioning in the network. 
In the parlance of percolation theory, one says that the functional vertices are 
occupied and <p is called the occupation probability. Thus <p = 1 indicates that 
all vertices in the network are occupied (i.e., no vertices have been removed) 
and <p = 0 indicates that no vertices are occupied (i.e., all of them have been 
removed).' 

1 If you're interested in the study of percolation in physics the book by Stauffer and 
Aharony [304] contains a lot of interesting material on the subject, although most of it is not di
rectly relevant to percolation on networks. 

2ln most of the physics literature on percolation the occupation probability is denoted P, but 
we use 4J because the letter p is used for many other things in the theory of networks and could 
cause confusion. 

16.2 UNIFORM RANDOM REMOVAL OF VERTICES 

Now look again at Fig. 16.1 and consider panel (a), in which <p = 1, all 
vertices are present or occupied, and all vertices are connected together into 
a single component. (The network could have more the one component, but 
in this example it has only one.) Now look at the other panels. In panel (b) a 
few vertices have been removed, but those that remain are all still connected 
together by the remaining edges. In panel (c) still more vertices have been 
removed, and now so many are gone that the remaining vertices are no longer 
all connected together, having split into two small components. In the final 
panel, panel (d), all vertices have been removed and there is no network left at 
all. 

The behavior we see in this small example is typical of percolation pro
cesses. When l' is large the vertices tend to be connected together, forming a 
giant component that fills most of the network (although there may be small 
components also). But as <p is decreased there comes a point where the giant 
component breaks apart and we are left only with small components. Con
versely, if we increase cp from zero we first form small components, which then 
grow in size and eventually coalesce to form a giant component that fills a 
large fraction the network. 

The formation or dissolution of a giant component in this fashion is called 
a percolation transition. When the network contains a giant component we say 
that it percolates and the point at which the percolation transition occurs is 
called the percolation threshold. 

The percolation transition is similar in many ways to the phase transition in 
the Poisson random graph at which a giant component forms (see Section 12.5). 
In the random graph we vary not the fraction of occupied vertices but the 
probability of connection between those vertices. In both cases, however, when 
enough of the network is removed the giant component is destroyed and we 
are left with only small components. 

In studies of percolation the "components" that remain after vertices have 
been removed are in fact usually called clusters, another term inherited from 
the physics and mathematics literature and one that we will use here-it will 
be useful to distinguish between the" components" of the underlying network 
and the "clusters" of the percolation process. That is, we will use" component" 
to refer to connected groups of vertices on the original network before any 
vertices have been removed and "cluster" to refer to those after removal. The 
giant component of the percolation process, if there is one, is thus properly 
called the giant cluster.3 

3In most of the literature on percolation theory, the giant cluster is called the spanning cluster. 
The reason is that most work on percolation has considered low-dimensional lattices such as the 

595 



PERCOLATION AND NETWORK RESILIENCE 

596 

The percolation transition plays a central role in our interpretation of per
colation phenomena. In a network like the Internet, for example, there has to 
be a giant cluster if the network is to perform its intended function as a com
munications network. If the network has only small clusters, as in Fig. 16.1c, 
then every vertex has a connection to, at most, a handful of others and is cut off 
from everyone else. If there is a giant cluster, on the other hand, then the mem
bers of that giant cluster, who are a finite fraction of all vertices in the network, 
are connected and can communicate with one anotherf although the remainder 
of the network is still cut off. Thus the presence of a giant cluster is an indicator 
of a network that is at least partly performing its intended function, while the 
size of the giant cluster tells us exactly how much of the network is working. 

16.2.1 UNIFORM REMOVAL IN THE CONFIGURATION MODEL 

To gain some understanding of the percolation transition and the giant cluster, 
let us consider the behavior of the site percolation process on networks gener
ated using the configuration model of Chapter 13, a simple but useful model 
of a network with a specified degree distribution. We can calculate the prop
erties of the giant percolation cluster in the configuration model by a method 
similar to the one we used for the giant component of configuration model in 
Section 13.8. 

Consider a configuration model network with degree distribution Pk and a 
percolation process on that network in which vertices are present or occupied 
with occupation probability <p as above. Now consider one of the vertices that 
is present in the network (i.e., one that has not been removed). If that vertex 
is to belong to the giant cluster it must be connected to it via at least one of 
its neighbors. Equivalently, it is not a member of the giant cluster if and only 
if it is not connected to the giant cluster via any of its neighbors. Following 
the notation of Section 13.8, let us define u to be the average probability that a 
vertex is not connected to the giant cluster via a particular neighbor. Then if 
the vertex in question has degree k, the total probability of its not belonging to 
the giant cluster is uk. And if we then average over the probability distribution 
Pk of the degree we find that the average probability of not being in the giant 

square lattice. On such lattices the giant cluster is distinguished by being the only cluster that 
spans the lattice from one side to the other in the limit of large n. There is no equivalent phe
nomenon for percolation on general networks, however, since networks don't have "sides," so the 
concept of spanning is not a useful one. 
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cluster is Lk PkUk = go(u), where 
00 

go(z) = L:Pkzk (16.1) 
k=O 

is the generating function for the degree distribution, as defined previously in 
Eq. (13.48). Then the average probability that a vertex does belong to the giant 
cluster is 1 - go(u). 

Bear in mind, however, that this is for a vertex that is itself assumed not 
to have been removed from the network. Vertices that have been removed are 
obviously not members of the giant cluster either. Thus out of all the original 
vertices in the network the total fraction 5 that are in the giant cluster is equal 
to the fraction <p that have not been removed times the probability 1 - go (u) 
that they are in the giant cluster: 

5 = <p[1 - go(u)]. (16.2) 

We still need to calculate the value of u, which is the average probability 
that a vertex is not connected to the giant cluster via a particular neighbor
ing vertex. There are two ways to not be connected to the giant cluster via a 
neighbor: either the neighbor in question~let us call it vertex A~has been re
moved, which happens with probability 1 - <p, or it is present (probability <P) 
but it is not itself a member of the giant cluster. The latter happens if A is not 
connected to the giant cluster via any of its other neighbors. Suppose there 
are Ie of these. Then the probability that none of them connects us to the giant 
cluster is uk Adding everything together, the total probability that we are not 
connected to the giant cluster via A is 1 - <p + <puk

• 

Since A is reached by following an edge, the value of k in this case is dis
tributed according to the excess degree distribution 

(k+ l)Pk+l 
qk = (k) , (16.3) 

(see Section 13.3) where (k) is the average degree in the network. Averaging 
over this distribution, we then arrive at an expression for the average proba
bility u thus: 

where 

00 00 

u = L: qk(l - <p + <puk) = 1 - <p + <p L: qkuk 
k=O k=O 

= l-<P+<Pg,(U), 

00 

g, (z) = L: qkzk 
k=O 

(16.4) 

(16.5) 
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is the generating function for the excess degree distribution, defined previ
ously in Eq. (13.49), and we have made use of the normalization condition 

LkQk=1. 
Equations (16.2) and (16.4) give us a complete solution for the size of the gi

ant cluster in our network4 In practice it is often not possible to solve Eq. (16.4) 
in closed form, but there is an elegant graphical representation of the solution 
as follows. 

Consider Fig. 16.2a, which gives a sketch of the form of the function gl (u). 
The exact form of the curve will depend on the degree distribution, but we 
know the general shape: gl is a polynomial with all coefficients non-negative 
(because they are probabilities), so it must have a non-negative value and all 
derivatives non-negative for u ~ O. Thus in general it is an increasing function 
of u and curves upward as shown in the figure. 

To get the function 1 - <p + <Pg, (u) that appears on the right-hand side of 
Eq. (16.4) we first multiply gl (u) by <p then add 1 - <p. Graphically that is 
equivalent to compressing the unit square of Fig. 16.2a (along with the curve it 
contains) until it has height <p and then shifting it upward a distance 1 - <p as 
shown in Fig. 16.2b. The point or points at which the resulting curve crosses 
the line y = u (dotted line in Fig. 16.2b) are then the solutions to Eq. (16.4). 

In Fig. 16.2b there are two such solutions. One is a trivial solution at u = l. 
This solution always exists because gl (1) = 1 for any correctly normalized 
excess degree distribution qk. But there is also a non-trivial solution with u < 1, 
indicated by the dot in the figure. Only if we have such a non-trivial solution 
can there be a giant cluster in the network and the value of u for this solution 
gives us the size of the giant cluster via Eq. (16.2). (The u = 1 solution gives 
5 = 0 in Eq. (16.2) and so doesn't give us a giant cluster.) 

Now consider Fig. 16.2d, which shows the equivalent graphical solution of 
Eq. (16.4) for a smaller value of <p. Now the curve of the generating function 
has been compressed more and the result is that the non-trivial solution for u 
has vanished. Only the trivial solution at u = 1 remains and so in this regime 
there can be no giant cluster. 

Figure 16.2c shows the borderline case between cases (b) and (d). The non
trivial solution for u vanishes at the point shown, where the curve just meets 
the dotted line. Mathematically this is the point at which the curve is tangent 

4This solution of the percolation problem has a history stretching back some years. In 1961, 
Fisher and Essam [120] derived a solution for percolation on regular trees (called Cayley trees or 
Bethe lattices in physics), which is equivalent to the solution given here for the case where every 
vertex has the same degree. The developments for general degree distributions, however, were 
not given till some decades later [62,74]. 

? 
~ 0.5 

0.5 1 

u 

Figure 16.2: Graphical solution of Eq. (16.4). The 
generating function gl (u) for the excess degree 
distribution, panel (a), is compressed by a factor 
of cp and shifted upward to give the functional 
form y = 1 - <p + <Pgl (tI). The resulting curve 
is shown for three different values of cp in pan
els (b), (c), and (d). In panel (b) <p is sufficiently 
large that there is a nontrivial solution where the 
curve crosses the dotted line y = u. In panel (d) 
cp is smaller and there is only a trivial solution at 
u = 1. Panel (c) shows the borderline case where 
the curve is tangent to the dotted line at u = 1. 
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to the dotted line at u = 1, i.e., the point where its gradient at u = 1 is 1. In 
other words the percolation threshold occurs when 

[ ~(I-1'+1'gl(U))l = 1. (16.6) 
du 11=1 

Performing the derivative we then find that the value of l' at the transition, 
which we call the crilical value, denoted 1'" is 

1 
1', = g; (1)" (16.7) 

We can express the critical value more directly in terms of the degree dis
tribution by making use of the definitions of the generating function gl and 
the excess degree distribution, Eqs. (16.3) and (16.5). Substituting one into the 
other and differentiating, we find that 

1 co 1 00 

g;(1) = (k) t;,k(k+l)Pk+! = (k) t;,k(k-l)Pk 

(k2 ) - (k) 
(k) 

(16.8) 

and hence the critical occupation probability 1', is given by 

(k) 
1', = (k2) _ (k)' (16.9) 

an expression first given by Cohen el a1. [74]. 
This equation tells us the minimum fraction of vertices that must be present 

or occupied in our configuration model network for a giant cluster to exist. 
Thus, for instance, if we were to consider the configuration model as a simple 
model of the Internet, we would want to make 1', low, so that the network will 
have a giant cluster even when some fraction of vertices are non-functional, 
and hence go on functioning as a communication network. We can arrange this 
by making sure that (k2 ) » (k) for the network. If, for instance, the network 
had a Poisson degree distribution, 

ck -, 
Pk = e k!' 

where c is the mean degree, then (Ie) = c and (k') = c(c + 1), so 

1 
1', = -. 

c 

(16.10) 

(16.11) 

16.2 UNIFORM RANDOM REMOVAL OF VERTICES 

Then if we can make c large we will have a network that can withstand the 
loss of many of its vertices. For c = 4, for example, we would have 1', = ~, 
meaning that ~ of the vertices would have to fail before the giant cluster is 
destroyed. A network that can tolerate the loss of a large fraction of its vertices 
in this way is said to be robusl against random failure. 

The degree distribution of the Internet, however, is not Poissonian. In fact, 
as discussed in Section 8.4, the Internet's degree distribution appears roughly 
to follow a power law with an exponent '" ~ 2.5 (see Table 8.1). As we showed 
in Section 8.4.2, power laws with exponents in the range 2 < '" < 3, which 
includes most real-world examples, have a finite mean (Ie), but their second 
moment (k2 ) diverges. In this case Eq. (16.9) implies that 1', = O. In other 
words, no matter how many vertices we remove from the network there will 
always be a giant cluster. Scale-free networks-those with power-law degree 
distributions-are thus highly robust networks that can survive the failure 
of any number of their vertices, a point first highlighted in the work of Al
bertelal. [14]. 

In practice, as discussed in Section 8.4.2, the second moment of the degree 
distribution is never actually infinite in any finite network. Even for finite n 
though it can still become very large, which can result in non-zero but very 
small values of 1'" so that the network is still highly robust. 

The structure of the real Internet is not the same as that of a configuration 
model with the same degree distribution. It has all sorts of layers and levels of 
structure engineered into it, as discussed in Section 2.1. Nonetheless, it does 
appear to be quite robust to random removal of its vertices. For instance, Al
bert et a1. [14] simulated the behavior of the Internet as vertices were randomly 
removed from its structure and found that performance is hardly affected at 
all by the removal of even a significant fraction of vertices. (Performance is 
of course completely destroyed for the vertices that are themselves removed, 
but for the remaining ones the effects are relatively minor.) These and related 
results are discussed further in Section 16.3. 

Network robustness also plays an important role in the vaccination exam
ple mentioned at the start of the chapter. A disease spreading over a contact 
network between individuals can only reach a significant fraction of the pop
ulation if there is a giant cluster in the network. If the network contains only 
small clusters then an outbreak of the disease will be hemmed in by vacci
nated individuals and unable to spread further than the small cluster in which 
it starts. Thus one does not have to vaccinate the entire population to prevent 
disease spread. One need only vaccinate enough of them to bring the network 
below its percolation threshold. This is the herd immunity effect mentioned 
earlier. 
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In this example, network robustness is a bad thing. The fewer individuals 
we have to vaccinate to destroy the giant cluster the better. Thus small values 
of <pc are bad in this case and large values are good. Unforttmately, we usually 
don't have much control over the degree distributions of contact networks, so 
we may be stuck with a low value of <P, whether we like it or not. In particu
lar, if the network in question has a power-law (or approximately power-law) 
degree distribution, then <pc may be very small, implying that almost all ver
tices have to be vaccinated to wipe out the disease. Some contact networks do 
indeed appear to have roughly power-law degree distributions [167,197,198] 
and it may be very difficult to eradicate some diseases as a result [264]. 

0.5 

u 

It is interesting to ask how the special behavior 
of power-law networks shows up in the graphical 
solution of Fig. 16.2. The answer is that, since g; (1) 
is infinite in the power-law case (because (!c2 ) di
verges in Eq. (16.8) while (k) remains finite), the 
curve of gl (u) has infinite slope at u = l. Thus 
gl (u) must look something like Fig. 16.3. Because 
of the infinite slope, it makes no difference how 
much we compress the function (as in Fig. 16.2)
the curve will always drop below the line of y = u 
before corning back up again and crossing it to give 
a non-trivial solution for u. 

The position of the percolation threshold is not 

Figure 16.3: Generating function for the excess degree 
distribution in a scale-free network. The generating 
function gl (u) for a netvvork with a power-law degree 
distribution has a derivative that diverges as u -----+ 1, 
though the value of the generating function remains fi
nite and tends to 1 in this limit. Thus the function looks 

the only quantity important in assessing the robust
ness of a network. The size of the giant cluster 
also plays a role because it tells us what fraction of 
the network will be connected and functional. To 
find the size of the giant cluster we need to solve 
Eq. (16.4) for u and then substitnte the result back 
into Eq. (16.2). In many cases, as we have said, we 
cannot solve for u exactly, but in some cases we can. 
Consider, for example, a network with an exponen
tial degree distribution given by 

(16.12) 
generically like the curve sketched here. 

where A > 0 and the leading factor of 1 - e-'\ in

sures that the distribution is properly normalized. Then, as shown in Sec

tion l3.9.2, we have 
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eA -1 
go(z) = -A-' 

e - z (
' 1)2 gl (z) = e A - , 

e - z 
(16.13) 
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and Eq. (16.4) becomes 

u(e' - u)' - (1 - <p)(e\ - u)2 - <p(e'\ _1)2 = o. (16.14) 

This is a cubic equation, which is ugly (though not impossible) to solve. In 
this case, however, we don't have to solve it directly. We observe instead that 
u = 1 is always a solution of Eq. (16.4) and hence that our cubic equation must 
contain a factor of u - 1. A few moments work reveals that indeed this is the 
case. Equation (16.14) factorizes as 

(u -1) [u' + (<p - 2e')u + <p - 2<pe' + e"] = O. (16.15) 

Thus the two other solutions for u satisfy the quadratic equation 

u2 + (<p - 2e')u + <p - 2<pe' + e2
,\ = O. (16.16) 

Of these two solutions one is greater than one for A > 0 and so cannot be our 
probability u. The other is 

u = e' - ~<p - J~<p' + <p(eA -1). (16.17) 

Now we can plug this value back into Eq. (16.2) to get an expression for the 
size of the giant cluster as a fraction of the whole network: 

s- [1- 2(e"-1) 1 
- <p <p + V<P' + 4<p(e' -1) 

~~~~~ 

- <p [1 - 2( e'l _ 1) <p - V <p2 + 4<P( e
A 

- 1) 1 
- <p'-«P'+4<p(e\-1» 

= ~<p- J~<p'+<p(e' -1). (16.18) 

Notice that the solution for u, Eq. (16.17), can become greater than 1 for 
sufficiently small <p, which is unphysical. In this regime the only acceptable 
solution is the trivial u = 1 solution, which gives S = 0 and so there is no 
giant cluster when this happens. This gives us an alternative way to derive the 
position of the percolation transition. The transition takes place at the point 
where Eq. (16.17) equals one, i.e., when 

e' -1- ~<p = J~<p' + <p(eA -1). (16.19) 

Squaring both sides and rearranging for <p we find that the percolation thresh
old falls at 

<pc = ~(eA -1). (16.20) 
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It is left as an exercise to demonstrate that this is the same result we get if we 
apply the general formula, Eq. (16.7). 

Note also that if A becomes sufficiently large then the value of <p, given by 
Eq. (16.20) can become greater than one. For values of A this large there is no 
percolation transition and the system never percolates because f/J can never be 
greater than <p,. The value of A at which we enter this regime is the value at 
which ~ (e" - 1) = 1, which gives A = In 3. Upon closer inspection, it turns 
out that this is precisely the point at which the network itself loses its giant 
component,S which explains why percolation is not possible beyond this point. 
For A > In 3 the network has no giant component, and hence it is not possible 
to have a giant cluster even if every vertex in the network is present. (A similar 
result of course applies to all networks-a giant percolation cluster is never 
possible in a network without a giant component.) 

Figure 16.4 shows a plot of the value of 5 for our exponential network with 
A = ~ as a function of <p. For small <p there is a region in which there are 
only small clusters and no giant cluster. When we pass through the percola
tion transition, marked by the dotted line in the figure, a giant cluster appears 
and grows smoothly from zero as <p increases. This is an example of what a 
physicist would call a continuous phase transition6 We saw other examples in 
Sections l3.9 and 15.2.5. 

The overall behavior shown in Fig. 16.4 is typical of percolation in net
works. For most degree distributions we expect 5 to take a similar form with 
a continuous phase transition, as we can demonstrate by the following argu
ment. Suppose the generating function gl (u) is well-behaved near u = 1, 
having all its derivatives finite,? then we can expand it about this point as 

gJ(U) = gJ(l) + (u -l)g;(l) + ~(u -l)'g~(l) +O(u _1)3 

U -1 2 3 
= 1 + -- + Hu -1) g~(1) + O(u -1) , (16.21) 

<p, 

where we have made use of gJ(l) = 1 (see Eq. (l3.20» and Eq. (16.7). Substi-

SProm Eg. (13.101) we know that a configuration model network has a giant component if and 
only if g~ (1) > I, and thus loses its giant component at the point where g~ (1) = 1. Substituting 
from Eq. (16.13), our network loses its giant component when 2/ (e'\ ~ 1) = I, Le., when i\. = ln3. 
See also Problem 13.3 on page 484 for another derivation of this result. 

6 A phase transition is continuous if the quantity of interest, also called the order parameter (S in 
this case), is zero on one side of the transition and non-zero on the other, but its value is contin
uous at the transition itself. The alternative to a continuous phase transition is a first-order phase 
transition, in which the order parameter jumps discontinuously as it crosses the transition point. 

7This excludes the power-law case shown in Fig. 16.3, which is discussed separately below. 
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Occupation probability ¢ 

Figure 16.4: Size of the giant cluster for site percolation in the configuration model. 
The curve indicates the size of the giant cluster for a configuration model with an expo
nential degree distribution of the form (16.12) with A = ~,as given by Eq. (16.18). The 
dotted line indicates the position of the percolation transition, Eq. (16.20). 

tuting into Eq. (16.4), we then find that 

or 

U = 1 + "'-(u -1) + ~<P(u -l)'g;'(l) +O(u -1)' 
<P, 

2 <P, - <p ( )' 
U-1=g~(1)~+Ou-1 . 

We can similarly expand go (u) as 

ga(U) = go(1) + (u -l)gb(l) + O(u _1)2 

= 1+ 2(k) <P, - <p + 0('" _ '" )' 
g~(l) <p,<p 'I' '1" , 

(16.22) 

(16.23) 

(16.24) 

where we have used go(l) = 1 and Eqs. (13.22) and (16.23). Substituting into 

Eq. (16.2) then gives us 

(16.25) 
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In other words,S varies linearly with 'I' - 1', just above the percolation tran
sition, going to zero continuously as we approach the transition from above. 
Thus we would expect the percolation transition for essentially all degree dis
tributions to look generically like the curve in Fig. 16.4, with a continuous 
phase transition as we pass the percolation threshold.' 

This result is important, because it implies that the giant cluster becomes 
very small as we approach the percolation transition from above. In other 
words, the network may be "functional" in the sense of having a giant cluster, 
but the functional portion of the network is vanishingly small. If the network 
is a communication network, for example, then a finite fraction of all the ver
tices in the newark can communicate with one another so long as there is a 
giant cluster, but that fraction becomes very small as we approach the perco
lation threshold, meaning that in practice most vertices are cut off. Thus one 
could argue that it is misleading to interpret the percolation threshold as the 
point where the network stops functioning: in effect most of it has stopped 
functioning before we reach this point. To fully describe the functional state of 
the network one should specify not only whether it contains a giant cluster but 
also what the size of that cluster is. 

It is also important to note that the sharp percolation transition of Fig. 16.4 
is only truly seen in an infinite network. For networks of finite size-which 
is all real networks, of course-the transition gets rounded off. To see this, 
consider the behavior of the giant cluster in a finite-sized network. Technically, 
in fact, there is no giant cluster for an individual finite network. The proper 
definition of the giant cluster, like the giant component in a random graph, 
is as a cluster whose size scales in proportion to the size of the netw-ark (see 
Section 12.5). But it makes no sense to talk about the scaling of a cluster with 
network size when the size of the network is fixed. In practice, therefore, we 
normally consider instead the largest cluster, which is a reasonable proxy for 
the giant cluster in a finite-size network. Its size as a fraction of the size of the 
network should be a reasonable approximation to the size of the giant cluster 
given by our theory when we are above the percolation transition. 

Below the transition the largest cluster will be small in size, but not zero, 
and hence fills a small but non-zero fraction of the network, in rough but not 
perfect agreement with the theoretical prediction 5 = O. Furthermore, this 
non-zero value grows as we approach the transition point because small clus
ters in general, including the largest one, grow as the occupation probability 'I' 
increases. The net result is a slight rounding of the sharp transition predicted 

8To be more precise, the transition is a second-order transition-one where the order parameter 
is continuous at the transition but its derivative is not. 
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by the theory, which is often visible, for example, in computer simulations of 
percolation on smaller networks. Effects such as this that show up only in 
finite-sized systems are known as finite size effects. 

Even in the limit of large network size there are exceptions to the behav
ior of Fig. 16.4 and Eq. (16.25). Consider a network with a power-law degree 
distribution with exponent 2 < a < 3, as discussed above. In this case our 
assumption that the derivatives of gl are finite does not hold (see Fig. 16.3 
and the accompanying discussion), so the argument above breaks down. Not 
only does the percolation threshold fall at 1', = 0 for power-law networks, but 
the giant cluster does not grow linearly as l' increases. In general it will grow 
slower than linearly, the exact functional form depending on the shape of gl (u) 
near u = 1. For example, a typical form is 

(16.26) 

near u = 1 with c and [3 positive constants. Provided [3 < 1 this makes the gra
dient of gl (u) (and all higher derivatives) infinite at u = 1 while still ensuring 
that gl(l) = 1. With this form for gl(U), Eq. (16.4) implies 

(16.27) 

Then9 

go(u) "" go(l) + gb(l)(u -1) = 1 + (k)(u -1), (16.28) 

close to u = 1, with (k) finite so long as the power-law exponent IX > 2, and 
hence the giant cluster has size 

5 = 1'[1- go(u)] "" CP(k)(I- u) ~ cp(2- f )/(H), (16.29) 

which goes to zero faster than linearly10 as 'I' --+ 0 since (2 - (3) / (1 - (3) > 1 if 
[3 < 1. 

9If we want to be more careful and keep track of the correction terms we can make use of 
Eq. (13.51) and integrate Eq. (16.26) to show that ge( u) ~ 1 - (k) (1 - u) + ,(1 - u ),+1 / (P + 1). 
The last term vanishes faster than those before it as u -;. 1 because f3 > 0 and hence go (u) ~ 
1 ~ (kj(l - u). This is at first slightly surprising-one would imagine that the correction term 
ought to be 0(1 - u )2-but this type of behavior is corrunon with power-law distributions. 

tOTo the extent that one can regard a power-law network as having a percolation transition 
at <P = a it is interesting to ask what the order of this transition is. The answer is unclear since 
Eq. (16.29) doesn't perfectly fit the standard forms for continuous phase transitions. If we define a 
transition to be second~order if the order parameter is continuous at the transition and third-order 
if its derivative is continuous, then the transition is third~order in this case. But one could also 
argue that the transition is of fractional order between two and three since it varies from zero as a 
fractional power of the occupation probability cpo 

s 
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The phase transition at 
which the giant cluster ap~ 
pears is only sharp in an in~ 
finite system (solid line). In 
a finite sized system it gets 
rounded off (dashed line). 
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Figure 16.5: Size of the giant cluster for a network with power-law degree distribu
tion. The size of the giant cluster for a scale-free configuration model network with 
exponent a: = 2.5, a typical value for real-world networks. Note the non-linear form of 
the curve near <p = 0, which means that S, while technically non-zero, becomes very 
small in this regime. Contrast this figure with Fig. 16.4 for the giant cluster size in a 
nemark with an exponential degree distribution. 

Thus we expect the giant cluster to become very small as </' ~ O. Figure 16.5 

shows the equivalent of Fig. 16.4 for a scale-free network with exponent IX = 

2.5, derived from numerical solutions of Eqs. (16.2) and (16.4) and the non
linear form of 5 close to </' = 0 is clear. 

This result mitigates somewhat our earlier statement that scale-free net
works are highly robust because </'c = O. It is true that the percolation threshold 
is zero in these networks and hence that there is a giant cluster for any posi
tive </', but that giant cluster can become exceedingly small. A communication 
network with a power-law degree distribution, for instance, might be formally 
functional for very small values of </', but in practice the fraction of vertices 
that could communicate with one another would be so small that the network 
would probably not be of much use. 

16.3 NON-UNIFORM REMOVAL OF VERTICES 

16.3 NON-UNIFORM REMOVAL OF VERTICES 

In the first part of this chapter we have considered percolation phenomena 
in the case where vertices are removed from a network uniformly at random. 
This is the classical form of percolation long studied by physicists and mathe
maticians. When discussing networksf howeverf it is interesting also to con
sider other ways in which vertices might be removed. In Section 16.1, for 
example, we mentioned the possibility of removing vertices in order of their 
degrees, starting with the highest degrees and working down. This might be 
effective, for example, as a vaccination strategy for preventing the spread of 
disease: should they become infected, the high degree vertices in the network 
clearly present a disease risk to their many neighbors, so perhaps vaccinating 
them first would be a sensible approach. 

Let us consider a generalization of our percolation process in which the 
occupation probability of a vertex can now depend on its degree. We define 
</'k to be the probability that a vertex with degree k is present or occupied in 
our network. If </'k is a constant, independent of k, then we recover the uniform 
scenario of previous sections. On the other hand, if </'k = 1 for all vertices with 
degree k < ko for some constant ko, and </'k = 0 for all vertices with k ;:> ko, then 
we effectively remove from the network all vertices with degree ko or greater. 
A host of other choices are also possible, resulting in more complex removal 
patterns. 

Let us again look at percolation on configuration model networks and as 
before define u to be the average probability a vertex is not connected to the 
giant cluster via one of its neighbors. If the vertex has degree k then the prob
ability that it is not connected to the giant cluster via any of its neighbors is uk 
and the probability that it is connected to the giant cluster is 1 - uk. But in or
der to belong to the giant cluster, the vertex itself must also be present, which 
happens with probability </'" so the probability of it being a member of the 
giant cluster is </'k(1 - uk). 

Now we average over the probability distribution Pk of the degree to find 
the average probability of being in the giant cluster and get 

00 00 00 

5 = L Pk</'k(1 - Uk) = L Pk</'k - L Pk</'k Uk 
k=O k=O k=O 

= /0(1) - /o(u), (16.30) 

where 
00 

/o(z) = LPk</'kZ'- (16.31) 
k'"""O 
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Notice that this new generating function is not normalized in the conventional 
fashion-the value /0(1) that appears in Eq. (16.30) is not in general equal to 
one. Instead it is given by 

00 

fo(1) = L: Pk</'k = 15, (16.32) 
k=O 

which is the average probability that a vertex is occupied. 
We can calculate the value of u using an approach similar to that for the 

uniform percolation scenario. The value of u is the probability that you are 
not connected to the giant cluster via your neighbor, which happens if either 
the neighbor is not occupied or if it is occupied but it is not connected to the 
giant cluster via any of its other neighbors. Let k now be the excess degree of 
the neighboring vertex. Then the probability that the neighbor is not occupied 
is 1 - </'k+l. Notice that the index is k + 1 because </'k is defined in terms of 
the total degree of a vertex, which is one greater than the excess degree (see 
Section 13.3). The probability that the neighbor is occupied but is itself not 
connected to the giant cluster is </'k+ 1 Uk Adding up the terms and averaging 
over the distribution qk of the excess degree, we then find that 

where 

00 

u = L: qk(1- </'k+l + </'k+1Uk) = 1 - /1(1) + /I(u), 
k=O 

00 

/I(z) = L:Qk</'k+1Zk 
k=O 

and we have used Lk qk = 1. 

(16.33) 

(16.34) 

Like fo(z), the function /I(z) is not normalized to unity. The definition of 
/I (z) looks slightly odd because of the subscript k + 1. If we prefer we can 
write it using the full expression for the excess degree distribution, Eq. (16.3), 
which gives 

which has a more symmetric look about it. Note also that 

f~(z) 
/I(z) = gb(l)' 

(16.35) 

(16.36) 

16.3 NON-UNIFORM REMOVAL OF VERTICES 

where go (z) is defined as before. This expression can be useful for calculating 
/I (z) once fo (z) has been found. 

Equations (16.30) and (16.33), which were first given by Callaway et al. [62], 
give us a complete solution for the size of the giant cluster for our generalized 
percolation process. 

As an example of their use, consider again a network with exponential de
gree distribution given by Eq. (16.12) and suppose we remove all vertices that 
have degree ko or greater. That is, we choose 

Then we have 

and 

f (z) = f~(z) 
1 gb(l) 

if Ie < ko, 
otherwise. 

(16.37) 

(16.38) 

(16.39) 

For this choice Eq. (16.33) becomes a polynomial equation of order ko and 
unfortunately such equations are not solvable exactly for their roots (unless 
/co :S 4). It is, however, fairly easy to find the roots numerically, especially 
given that we know that the root of interest in this case lies in the range be
tween zero and one, and then we can calculate the size of the giant cluster 
from (16.30). 

Figure 16.6a shows the results of such a calculation, plotted as a function 
of ko. Looking at this figure, consider what happens as we lower ko from an 
initial high value, effectively removing more and more of the high-degree ver
tices in our network. As the figure shows, the size of the giant cluster decreases 
only slowly at first. This is because there are not many vertices of very high 
degree in the network, so very few have been removed. Once ko passes a value 
around 10, however, our attack on the network starts to become evident in a 
shrinking of the giant cluster, which becomes progressively more rapid until 
the size of the cluster reaches zero around ko = 5. 

One might be forgiven for thinking that Fig. 16.6a portrays a network quite 
resilient to the removal of even its highest-degree vertices: it appears that we 
have to remove vertices all the way down to degree five in order to break up 
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Figure 16.6: Size of the giant percolation cluster as the highest degree vertices in a 
network are removed. (a) The size of the giant cluster in a network with an exponential 

degree distribution Pk t'-.J e-Ak with A = i as vertices are removed in order of degree, 
starting from those with the highest degree. The curve is shown as a function of the 
degree ko of the highest-degree vertex remaining in the network. Technically, since ko 
must be an integer, the plot is only valid at the integer points marked by the circles; the 
curves are just an aid to the eye. (b) The same data plotted now as a function of the 
fraction cp of vertices remaining in the network. 

the giant cluster. This impression is misleading, however, because it fails to 
take account of the fact that the vast majority of vertices in the network are of 
very low degree, so that even when we have removed all vertices with degree 
greater than five, we have still removed only a small fraction of all vertices. 

Perhaps a more useful representation of the solution is to plot it as a func
tion of the fraction ;p of occupied vertices in the network, which is 

(16.40) 

Figure 16.6b shows the result replotted in this way and reveals that the gi~ 
ant cluster in fact disappears completely when only about 8% of the highest
degree vertices in the network have been removed. By contrast, when we re
moved vertices uniformly at random, as shown in Fig. 16.4, we had to remove 
nearly 70% of the vertices to destroy the giant cluster. Though the difference 
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Figure 16.7: Removal of the highest-degree vertices in a scale-free network. (a) The size of the giant cluster in a 
configuration model network with a power-law degree distribution as vertices are removed in order of their degree, 
starting with the highest-degree vertices. Only a small fraction of the vertices need be removed to destroy the giant 
cluster completely. (b) The fraction of vertices that must be removed to destroy the giant cluster as a function of the 
exponent It of the power-law distribution. For no value of It does the fraction required exceed 3%. 

is startling, however, it is also intuitively reasonable. The high-degree vertices 
have a lot of connections, all of which are lost if we remove those vertices. 

These results suggest, for example, that were we able to find the highest 
degree vertices in a netvvork of disease-causing contacts and vaccinate them to 
effectively remove them from the network, it would be a much more efficient 
strategy for disease control than simply vaccinating at random. 

A particularly striking example of the effect described here arises in net
works with power-law degree distributions. In these networks, as we have 
seen, uniform removal of vertices never destroys the giant cluster, provided the 
exponent of the power-law lies between two and three. By contrast, removal 
of the highest-degree vertices in these networks has a devastating effect. Once 
again we cannot solve for S in closed form in the power-law case but it is rea
sonably straightforward to perform a numerical solution. Figure 16.7a shows 
the equivalent of Fig. 16.6b for the power-law case, and as we can see the gi
ant cluster disappears extraordinarily rapidly as the high-degree vertices are 
removed. Only a few percent of the vertices need be removed to completely 
destroy the giant cluster, the exact value depending on the exponent of the 
power law. 
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Indeed, if we want to calculate only the fraction that need be removed to 
destroy the giant cluster, we can do so by observing once again that the phase 
transition at which the giant cluster appears or disappears falls at the point 
where the non-trivial solution of Eq. (16.33) appears or disappears, which is 
the point at which the right-hand side of the equation is tangent to the line 
y = u at u = 1. That is, the general criterion for the transition point is 

1{(I)=1. (16.41) 

(Alternatively, we could say that the giant cluster exists if and only if Ii (1) > 
1.) Again, exact solutions are often not possible but we can solve numerically. 
Doing this for the power-law case we find the results shown in Figure 16.7b, 
which plots the fraction of vertices that need be removed to destroy the giant 
cluster as a function of the exponent IX. As we can see, the curve peaks around 
IX = 2.2 at a value just below 3%. Thus in no case need we remove more than 
3% to destroy the connectivity in the network. 

Scale-free networks are thus paradoxically both robust and fragile, a point 
first emphasized by Albert et aZ. [14]. On the one hand, they are remarkably ro
bust to the random failure of their vertices, with the giant cluster persisting no 
matter how many vertices we remove. (Although one should bear in mind the 
proviso of Section 16.2.1 that the size of the giant cluster matters also, and this 
becomes very small when the fraction l' of occupied vertices tends to zero.) On 
the other hand, scale-free networks are very fragile to attacks targeted specifi
cally at their highest-degree vertices. We need remove only the tiniest fraction 
of the high-degree hubs in such a network to entirely destroy the giant cluster. 

The fragility of scale-free network to such targeted attack is both bad news 
and good news. Some networks we wish to defend against possible attack. The 
Internet is an example: a communication network that can easily be brought 
down by a malicious adversary targeting just a few of its most crucial vertices 
may be a disaster waiting to happen. 

On the other hand, results like these could also be exploited to help erad
icate or reduce disease by targeting vaccination efforts at network hubs. It is 
worth noting, however, that it's not necessarily easy to find the hubs in a net
work, so that implementation of a targeted vaccination strategy may be diffi
cult. In most cases one does not know the entire network and so cannot simply 
pick out the high-degree vertices from a list. 

One intriguing way of getting around this problem has been put forward 
by Cohen et a1. [76], who suggest that we make use of the structure of the 
network itself to find the high-degree vertices. In their scheme, which they 
call "acquaintance immunization," they propose that one choose members of 
the population at random and then get each of them to nominate an acquain-

16.4 PERCOLATION IN REAL-WORLD NETWORKS 

tance. Then that acquaintance receives a vaccination against the disease under 
consideration. The acquaintance in this scenario is a "vertex at the end of an 
edge," so in the configuration model it would have degree distributed accord
ing to the excess degree distribution, Eq. (13.46), rather than the original degree 
distribution of the network. But the excess degree distribution, as discussed in 
Section 13.3, is biased towards high-degree vertices since there are more edges 
that end at a high-degree vertex than at a low-degree one. Thus the selection of 
individuals in the scheme of Cohen et al. is also biased towards those with high 
degree. The selected individuals are not guaranteed to be the highest-degree 
vertices in the network, but we are a lot more likely to find the hubs this way 
than if we just choose vertices at random and in simulations the acquaintance 
immunization scheme appears to work quite well. 

The acquaintance immunization scheme does have some drawbacks. First, 
contact networks in the real world are of course not configuration models and 
it is unclear how accurately the theoretical results describe real situations. Sec
ond, real contact networks mostly don't have power-law degree distributions, 
instead having somewhat shorter tails than the typical power law, which will 
reduce the effectiveness of the scheme, or indeed of any scheme based on tar
geting the highly connected vertices. Another issue is that, in asking people to 
name their acquaintances, the acquaintance immunization scheme necessar
ily probes the network of who is acquainted with whom, which is in general 
not the same as the nework of disease transmission, since people who are ac
quainted don't necessarily have regular physical contact of the type necessary 
to spread disease and because diseases can be and often are transmitted be
tween people who don't know one another. We can do our best to make the 
networks similar, asking participants to name only acquaintances whom they 
have seen recently and in person, rather than those they might not have seen 
for a while or might only have to talked to on the phone. Still, the differences 
between the two networks means that the scheme might end up focusing vac
cination efforts on the wrong set of people. 

16.4 PERCOLATION IN REAL-WORLD NETWORKS 

Having seen how percolation plays out in model networks, let us now take 
a look at some real ones. If we have data on the structure of a network then 
we can simulate the percolation process on a computer, removing vertices one 
by one and examining the resulting clusters. Although this is straightforward 
in theory, it requires some care to get good results in practice. The main is
sue is that the percolation process is normally a random one: the vertices are 
removed in random order, which means that the cluster sizes can vary de-
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pending on the precise order we choose. Even in the case where vertices are 
removed in decreasing order of their degree the process is still random to some 
extent since there can be many vertices with a given degree, among which we 
must choose somehow. To avoid possible biases, we usually choose among 
them at random. 

This randomness can easily be simulated on a computer using standard 
random number generators, but the results of the simulation will then vary 
from one run of our simulation to another depending on the output of the gen
erator. To get a reliable picture of how percolation affects a network we must 
perform the entire calculation many times, removing the vertices in different 
random orders each time, so that we can see what the typical behavior is, as 
well as the range of variation around that typical behavior. And this in turn 
means that we need to be able to perform the percolation calculation quickly. 
In a typical situation we might want to repeat the percolation calculation a 
thousand times with different random orders of removal and even if each cal
culation took just one minute of computer time, all thousand runs would still 
take a day. 

If we are crafty, however, we can do much better than this and get an an
swer in just a few seconds for networks of the typical sizes we have been con
sidering in this book. 

16.5 COMPUTER ALGORITHMS FOR PERCOLATION 

The simplest way to simulate the percolation process on a computer is to make 
use of the breadth-first search algorithm of Section 10.3.4, which can find all 
components in a network in time 0(111 + /1), where 111 is the total number of 
edges in the network and /1 is the total number of vertices, or just O( n) for a 
sparse network in which 111 ex 11. If we remove a certain randomly chosen set 
of vertices from a network, along with the edges attached to them, then the 
resulting percolation clusters are by definition the components of the network 
that remains, and hence we can use the component-finding algorithm to find 
the clusters. Then we can, for example, look through those clusters until we 
find the largest one. 

In the case of uniformly random removal of vertices, for instance, we would 
go through each vertex in turn, removing it (and its edges) from the network 
with probability 1 - cp, finding the clusters, and (say) measuring the size of the 
largest one. Then we repeat the entire calculation, starting with the complete 
network again, removing a different set of vertices, and finding the clusters. 
Repeating the calculation a large number of times, we can calculate a mean 
value S(cp) for the size of the largest component when vertices are present or 
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functioning with probability cpo 
If we are interested in only a single value of cp, this is, in fact, the best algo

rithm to use and the fastest known way of getting an answer. Usually, how
ever, we are interested, as in previous sections, in the behavior of the system 
over the whole range of cp from zero to one, or at least some portion of that 
range. In that case, we would have to repeat the whole calculation above for 
many values of cp in the range of interest and this process is time-consuming 
and is not the best way to approach the problem. 

Consider instead the following alternative approach, which appears at first 
to be only a slight variation on the previous one, but leads, as we will see, to 
much more efficient algorithms. Instead of making each vertex in the network 
occupied with independent probability cp, let us make a fixed number r of ver
tices occupied, repeating the calculation many times for a given value of rand 
averaging to get a figure 5,. for the size of the largest component (or any other 
quantity of interest) as a function of r. 

The calculation doesn't directly give us the result we want: 5,. is not the 
same as 5 (cp) and it is the latter we are interested in. If, however, we know the 
value of Sr for every allowed value of the integer 1', i.e., from 0 to 11, then we 
can calculate 5 (cp) as follows. If each vertex in the network is occupied with 
probability cp, then the probability that there are exactly r vertices occupied is 
given by the binomial distribution 

(16.42) 

Averaging over this distribution, the average size of the largest component as 
a function of cp is then 

" " ( ) S(cp) = ,~P'S, =,~ ; cp'(I- CP)''-'S,. (16.43) 

At first sight, this appears to be a less promising approach for calculat
ing S(cp) than the previous approach. To make use of Eq. (16.43) we need to 
know 5,. for all r and it takes time 0(111 + /1) to calculate 5, for one value of r 
using breadth-first search, so it is going to take O( n (111 + n)) to calculate for all 
/1 values, or 0(/12 ) on a sparse network. Given that we also need to perform 
each calculation of Sf many times to average over the randomness, the entire 
process could take a very long time to complete. 

There is however a faster way to calculate 5,. for all r, inspired by the simple 
observation that if we have already found all the clusters in a network with r 
vertices present, then we can find the clusters with r + 1 vertices simply by 
adding one more vertex. Most of the clusters do not change very much when 
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Figure 16.8: Percolation algorithm. In the percolation algorithm described in the text we add vertices to our network 
one by onc, rather than taking them away. Each addition consists of several steps. (a) We add the vertex itself but none 
of its accompanying edges yet. At this stage the vertex constitutes a new cluster in its own right. (b) We start adding 
the accompanying edges (if any) in any order we like. Only edges that connect to other vertices already present in the 
network arc added. The first edge added (if any are added) will thus, by definition, always join the new vertex to one 
of the previously existing clusters. Or to put it another way, it will join two clusters together, one of the old dusters 
and the new cluster that consists of just the single added vertex. (c) In this example the next edge added also joins two 
clusters together. (d) The final edge added joins two vertices that are already members of the same cluster, so the cluster 
structure of the network does not change. 
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we add just one vertex, and if we can find only the clusters that change upon 
adding a vertex, then we can save ourselves the work of performing an entire 
new breadth-first search, and hence save ourselves a lot of computer time. A 
simple algorithm for doing this works as follows. 

Rather than removing vertices from the complete network, our algorithm 
works by building the network up from an initial state in which no vertices 
are occupied and switching on vertices one by one until we recover the entire 
network. As we add each vertex to the network we also add the accompanying 
edges that join it to other vertices. Only connections to other vertices that are 
already present need be added. 

For the purposes of our algorithm, let us break down this process as shown 
in Fig. 16.8. Each new vertex is first added with, initially, no accompanying 
edges (panel (a) in the figure). In this state it forms a cluster all on its own. 
Then, one by one, we add its edges, those that connect it to other vertices al
ready present. If there are no edges attached to the vertex or none connect to 
vertices already present, then our new vertex remains a cluster on its own. If 
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Figure 16.9: Using labels to keep track of clusters. In the al
gorithm described in the text, each vertex is given a label, typ
ically an integer, to denote which cluster it belongs to. In this 
example there are initially two clusters, labeled 1 and 2. Then 
a new vertex is added betvveen them. (a) The new vertex is 
added initially without its accompanying edges and is labeled 
as a new cluster, cluster 3. (b) An edge is added that connects 
cluster 3 to cluster 1, so we relabel one cluster to give it the 
same label as the other. In the algorithm described in the text 
we always relabel the smaller of the two clusters, which is clus
ter 3 in this case. (c) The next edge added joins clusters 1 and 2 
and we relabel duster 2 since it is smaller. 

there are edges, however, then the first edge we add joins our vertex to an ad
jacent cluster-see Fig. 16.8b. Subsequent edges are more complicated. They 
can do one of two things. An edge can connect our vertex to another, different 
cluster, in which case in the process it joins two clusters together making them 
into a single cluster-see Fig. 16.8c. Alternatively, it could join our vertex to 
another member of the same cluster that it already belongs to, as in Fig. 16.8d. 
In this case, no clusters are joined together, and in terms of the size and identity 
of the clusters the added edge has no effect. 

To keep track of the clusters in the network, therefore, our algorithm needs 
to do two things. First, when an edge is added it needs to identify the clusters 
to which the vertices at either end belong. Second, if the clusters are different, 
it needs to join them together into a single cluster. (If they are the same nothing 
need be done.) 

There are various ways of achieving this but a simple one is just to put 
a label, such as an integer, on each vertex denoting the cluster to which it 
belongs-see Fig. 16.9a. Then it is a simple matter to determine if two vertices 
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belong to the same cluster (they do if their labels are the same), and joining 
two clusters together is just a matter of relabeling all the vertices in one of the 
clusters to match the label of the other cluster. This process is illustrated in 
Fig. 16.9. 

Then our algorithm is as follows: 
1. Start with an empty network with no occupied vertices. Let c = 0 be the 

number of clusters in the network initially. Choose at random an order 
in which the vertices will be added to the network. 

2. Add the next vertex in the chosen order, initially with no edges. This 
vertex is a cluster in its own right, so increase c by one and label the 
vertex with label c to indicate which cluster it belongs to. Also make a 
note that cluster c has size 1. 

3. Go through the edges attached to this vertex one by one. For each edge 
determine whether the vertex at the other end has already been added to 
the network. If it has, add the edge to the network. 

4. As each edge is added, examine the cluster labels of the vertices at either 
end. If they are the same, do nothing. If they are different, choose one of 
the clusters and relabel all its vertices to have the same label as the other 
cluster. Update the record of the size of the cluster to be equal to the sum 
of the sizes of the two clusters from which it was formed. 

5. Repeat from step 2 until all vertices have been added. 
At the end of this process, we have gone from an entirely empty network to 
the complete final network with all vertices and edges present and in between 
we have passed through a state with every possible intermediate number r of 
vertices. Moreover, in each of those states we had a complete record of the 
identities and sizes of all the clusters which we can use, for instance, to find 
the size 5,. of the largest cluster. Then we can feed the results into Eq. (16.43) 

to get 5 (<p) for any <p. As before, we will typically want to average the results 
over many runs of the algorithm to allow for random variations from one run 
to another, which arise from variations in the order in which the vertices are 
added. This, however, is no longer a serious impediment to finishing the cal
culation because, if implemented appropriately. the algorithm can be made to 
run very quickly. 

The most time-consuming part of the algorithm is the relabeling of clusters 
when they are joined together. Note however that when an edge joins two dif
ferent clusters we are free to choose which of the two we relabel. It turns out 
that the speed of the algorithm can be improved greatly if we choose always to 
relabel the smaller one. (If the two clusters have the same size, it does not mat
ter which we choose to relabel.) To see this, consider the following argument. 

16.5 COMPUTER ALGORITHMS FOR PERCOLATION 

If we always relabel the smaller of two clusters, then the relabeled cluster 
must have been joined with one at least as large as itself and hence it is now a 
part of a cluster at least twice its size. Thus every time a vertex is relabeled the 
cluster it belongs to at least doubles in size. Given that each vertex starts off 
as a cluster in its own right of size 1, the size of the cluster to which it belongs 
after k relabelings is thus at least 2k Since no vertex can belong to a cluster 
of size greater than the size n of the whole network, the maximum number 
of relabelings a vertex can experience during the entire algorithm is given by 
2k = n or k = log2 n, and the maximum number of relabeling operations on 
all 11 vertices is thus 11 log2 n. Thus the total time to perform the relabeling part 
of the algorithm is 0(11 log 11). 

The other parts of the algorithm are typically faster than this. The adding 
of the vertices takes 0(11) time and the adding of the edges takes O(m) time, 
which is the same as O(n) on a sparse network with m c< n. So the overall 
running time of the algorithm to leading order is O( 111 + 11 log 11), or O( 11 log 11) 
on a sparse network, which is much better than our first estimate of 0(11(111 + 
11)) above. 

Essentially the same algorithm can also be used when vertices are added or 
removed with probabilities other than the uniformly random ones considered 
here, For instance, if vertices are to be removed in decreasing order of their 
degrees we simply reverse that process and add vertices to an initially empty 
network in increasing order of degrees. The details of the algorithm itself are 
unchanged-only the order of the vertices changes. 

This algorithm works well in practice for almost all calculations. It is not, 
however, the very fastest algorithm for the percolation problem. There exists 
an even faster one, which runs in O(m + 11) time (or 0(11) for a sparse network) 
and is also considerably simpler to program, although its outward simplicity 
hides some subtleties. The reader interested in learning more about this ap
proach is encouraged to look at Ref. [255]. 

16.5.1 RESULTS 

Figure 16.10 shows results for four different networks as a function of the frac
tion of occupied vertices. In this case, the occupied vertices are chosen uni
formly at random. The figure shows in each case the size 5 of the largest 
cluster as a fraction of system size, plotted as a function of <p. As described 
in Section 16.2.1, the largest cluster acts as a proxy for the giant cluster in nu
merical calculations on fixed networks for which the idea of a giant cluster, as 
a cluster that scales with system size, is meaningless. 

The top two networks in the figure, a power grid and a road network, are 
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Figure 16.10: Size of the largest percolation cluster as a function of occupation prob
ability for four networks. The four frames of this figure show the size of the largest 
cluster, measured as a fraction of network size, for random removal of vertices from 
four real-world networks: the western United States power grid, the network formed 
by the US Interstate highways, the Internet at the level of autonomous systems, and a 
social network of professional collaborations between physicists. Each curve is aver
aged over 1000 random repetitions of the calculation, which is why the curves appear 
smooth. 

both networks with non-power-Iaw degree distributions-the power grid has 
a roughly exponential distribution while the road network has only vertices 
of degree one to four and nothing else. For these cases, we expect to see be
havior of the generic type described in Section 16.2.1: a continuous percolation 
transition at a non-zero value of ¢ from a regime in which S ':::::::' 0 to a regime 
of non-zero S. Because the networks are relatively small, however (4941 ver
tices for the power grid, 935 for the road network), we also expect to see some 
rounding of the transition (see Section 16.2.1). 

And this is in fact what we do see. In each of these two cases 5 is close to 
zero below a certain value of rp, then grows rapidly but with a certain amount 
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of rounding near the transition. Overall, other than the rounding, the shape 
of the curves is qualitatively similar to that of Fig. 16.4. One could even ten
tatively make an estimate of the percolation transition, which appears to fall 
around rp = 0.6 or 0.7 in both networks. 

The bottom two frames in the figure tell a different story. These show re
sults for percolation on the Internet and a social network. Both of these net
works have approximately power-law degree distributions and thus, based on 
the insights of Section 16.2.1, might be expected to show no percolation transi
tion (or a transition at rp = 0 if you prefer) and non-linear growth of the largest 
cluster with growing rp. Again our expectations seem to be borne out, at least 
qualitatively, by the numerical results. In both networks the value of 5 appears 
to take non-zero values for all rp > 0 and the initial growth for small rp shows 
some curvature, indicating non-linear behavior. 

Thus our percolation theory for random graphs seems in this case to pro
vide a good general guide to the robustness of networks. The power-law net
works are robust against random removal of vertices, in the sense that a frac
tion of the vertices that haven't been removed remain connected in a large 
cluster even when most vertices have been removed. The non-power-Iaw net
works, by contrast, become essentially disconnected after relatively few ver
tices have been removed-just about 40% in this case. 

Figure 16.11 shows results for the same four networks when vertices are re
moved in order of degree, highest degrees first. As we can see, this" attack" on 
the network is more effective at reducing the size of the largest component than 
is random removal for all four networks. However, the difference between 
Figs. 16.10 and 16.11 is not so great for the first two networks, the power grid 
and the road network. The giant component in both of these networks survives 
nearly as long under the targeted attack as under random removal. This is as 
we would expect, since neither has a significant number of very high-degree 
vertices (the road network, with maximum degree four, has none at all), so that 
removal of the highest-degree vertices is not so very different from the removal 
of vertices of average degree. 

For the second two networks, however, the Internet and the collaboration 
network, which both have roughly power-law degree distributions, the effect 
is far larger. Where these networks were more resilient to random removal 
than they others, they are clearly less resilient, at least by this measure, to tar
geted attack. The Internet in particular has a largest cluster size that falls es
sentially to zero when only about 5% of its highest-degree vertices have been 
removed, a behavior similar again to our theoretical calculations (see Fig. 16.7 
on page 613). Thus the real Internet appears to show the mix of robust and 
fragile behavior that we saw in our calculations for the configuration model, 
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Figure 16.11: Size of the largest percolation cluster as a function of occupation prob
ability for targeted attacks on four networks. The four frames in this figure show the 
size of the largest cluster, measured as a fraction of network size, for the same four 
networks as Fig. 16.10, when vertices are removed in degree order, highest-degree ver
tices first. Since this is mostly a deterministic process and not a random one (except for 
random choices between vertices of the same degree) the curves cannot be averaged as 
in Fig. 16.10 and so are relatively jagged. 

being remarkably resilient to the random removal of vertices but far more sus
ceptible to targeted attacks. 

Overall, therefore, the percolation theory seems to be successful as a quali
tative guide to the resilience of networks. Certainly it does not perfectly predict 
the exact behavior of individual networks, but it gives a good feel for the be
havior we expect of networks as vertices fail or are removed, as a function of 
their degree distribution. 

In the next chapter we will see another application of percolation, to the 
spread of diseases in networks. 

PROBLEMS 

16.1 Consider the problem of bond percolation on a square lattice and consider the 
following construction: 

Here we have taken a bond percolation system (in black) and constructed another one 
interlocking it (in gray), such that the bonds of the new system are occupied if and only 
if the intersecting bond on the old system was not. Such an interlocking system is called 

a dual lattice. 

a) If the fraction of occupied bonds on the original lattice is cp, what is the fraction of 
occupied bonds on the dual lattice? 

b) Show that there is a path from top to bottom of the dual lattice if and only if there 
is no path from side to side of the original lattice. 

c) Hence show that the percolation transition for the square lattice occurs at cp = ~. 

16.2 Consider the site percolation problem with occupation probability cp on a Poisson 
random graph with mean degree c. Let ITs be the probability that a vertex belongs to 
an non-giant percolation cluster of 5 vertices and define a generating function h(z) 
L~O 7Tszs. 

a) Show that 11(2) ~ 1 - 4> + 4>ze,[I'lol I] 

b) Hence show that the mean size of a small cluster in the non-percolating regime 

(no giant cluster) is 

(s) " -"'-. 1- c4> 

c) Define J(z) ~ [11(2) -1 + 4>]1 4>. Using the Lagrange inversion formula, Eq. (12.49), 
solve for the coefficients in the series expansion of 1(z) and hence show that 

if 5 0, 

if 5 > O. 

16.3 Consider a configuration model network that has vertices of degree 1, 2, and 3 

only, in fractions PL P2, and P3, respectively. 

PROBLEMS 
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a) Find the value of the critical vertex occupation probability ¢c at which site perco
lation takes place on the network. 

b) Show that there is no giant cluster for any value of the occupation probability cp if 
PI > 3p3. Why does this result not depend on P2? 

c) Find the size of the giant cluster as a function of cpo (Hint: you may find it useful 
to remember that u = 1 is always a solution of the equation u = 1 - <p + CPgl (u).) 

16.4 In Section 16.3 we examined what happens when the highest-degree vertices are 
removed from a configuration model network with a power-law degree distribution 
Pk ~ k-' /~(a) for k 2: 1 and po ~ O. 

a) Show that in this case the phase transition at which the giant cluster disappears 
occurs when all vertices with degree k > ko have been removed, where the cut-off 
parameter ko satisfies 

k" 
L(k'12 - k-'+l) ~ s(a -1). 
k=l 

b) Using the fact that E~u k- x + L~+l k-x = s(x), and making use of the trapezoidal 
rule (Eq. (14.115) on page 524) for large values of k, show that 

k" (k + 1)-x+1 
Lk' co ~(x) -l(ko+W' _ u . 
1 x-1 

c) Keeping leading-order terms in ko only, show that the giant cluster disappears 
approximately when 

d) Find the approximate value of ko at the point where the giant cluster disappears 
for 0: = 2.5. 

16.5 Consider the computer algorithm for percolation described in Section 16.5, but 
suppose that upon the addition of an edge between two clusters we relabel not the 
smaller of the two clusters but one or the other chosen at random. Show by an argument 
analogous to the one in Section 16.5 that the worst-case rmming time of this algorithm 
is 0(n2 ), which is substantially worse than the O(n log n) of the algorithm that always 
relabels the smaller cluster. 

CHAPTER 17 

EPIDEMICS ON NETWORKS 

An introduction to the theory of the epidemic processes 
by which diseases spread over networks of contact 
between humans, animals, plants, and even computers 

ONE OF the reasons for the large investment the scientific community has 
made in the study of social networks IS theu connectIon WIth the spread 

of disease. Diseases spread over networks of contacts between individuals: 
airborne diseases like influenza or tuberculosis are communicated when tvvo 
people breathe the air in the same room; contagious diseases and parasites can 
be communicated when people touch; HIV and other sexually transmitted dis
eases are communicated when people have sex. The patterns of such contacts 
can be represented as networks and a good deal of effort has been devoted 
to empirical studies of these networks' structure. We have already discussed 
some network aspects of epidemiology in the previous chapter when we con
sidered site percolation as a model for the effects of vaccination. In this chapter 
we look in more detail at the connections between network structure and dis
ease dynamics and at mathematical theories that allow us to understand and 
predict the outcomes of epidemics. 

On a related topic, recent years have seen the emergence of a new type of in
fection, the computer virus, a self-reproducing computer program that spreads 
from computer to computer in a manner similar to the spread of pathogenic in
fections between humans or animals. Many of the ideas described in this chap
ter can be applied not only to human diseases but also to computer viruses. 

17.1 MODELS OF THE SPREAD OF DISEASE 

The biology of what happens when an individual (a "host" in the epidemi
ology jargon) catches an infection is complicated. The pathogen responsible 
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for the infection typically multiplies in the body while the immune system 
attempts to beat it back, often causing symptoms in the process. One or the 
other usually wins in the end, though sometimes neither, with the final result 
being the individual's recovery, their death, or a chronic disease state of perma
nent infection. In theory if we want to understand fully how diseases spread 
through populations we need to take all of this biology into account, but in 
practice that's usually a dauntingly large job and it is rarely, if ever, attempted. 
Luckily there are more tractable approaches based on simplified models of dis
ease spread that give a good guide to disease behavior in many cases and it is 
on these that we focus in this chapter. 

17.2 THE SI MODEL 

In the typical mathematical representation of an epidemic the within-host dy
namics of the disease is reduced to changes between a few basic disease states. 
In the simplest version there are just two states, susceptible and infected. An 
individual in the susceptible state is someone who does not have the disease 
yet but could catch it if they come into contact with someone who does. An 
individual in the infected state is someone who has the disease and can, po
tentially, pass it on if they come into contact with a susceptible individual. ' 
Although this two-state classification sweeps a lot of biological details under 
the rug, it captures some of the gross features of disease dynamics and is a 
useful simplification in the case where, as here, we are focused more on what's 
happening at the level of networks and populations than on what's happening 
within the bodies of the individual population members. 

Mathematical modeling of epidemics predates the study of networks by 
many years, stretching back at least as far as the pioneering work of Anderson 
McKendrick, a doctor and amateur mathematician who made foundational 
contributions to the field early in the twentieth century. The theories that he 
and others developed form the core of traditional mathematical epidemiology, 
which is an extensive and heavily researched field. Classic introductions to the 

I If you look at the epidemiology litera hIre you will sometimes see the infected state referred 
to as "infective." There's no difference between the two terms; they are synonymous. You may 
also see the word "infectious" used, but this may mean something slightly different. As discussed 
later in the chapter, more sophisticated models of disease distinguish between a state in which an 
individual has a disease but it has not yet developed to the point where the individual can pass 
it on, and a state where they can pass it on. This latter stage is sometimes called the "infectious" 
stage, a name chosen to emphasize that the disease can be communicated. (The former state is 
usually called the "exposed" state.) In the present simple two-state model, however, there is no 
difference between infected and infectious; all individuals who are one are also the other. 

subject include the highly theoretical 1975 book by Bailey [25] and the more 
recent and practically oriented book by Anderson and May [17]. The review 
article by Hethcote is also a good resource [156]. 

The traditional approach avoids discussing contact networks at all by mak
ing use of a fully mixed or mass-action approximation, in which it is assumed that 
every individual has an equal chance, per unit time, of coming into contact 
with every other-people mingle and meet completely at random in this ap
proach. This is, of course, not a realistic representation of the way the world is. 
In the real world, people have contact with only a small fraction of the popula
tion of the world, and that fraction is not chosen at random, which is precisely 
why networks play an important role in the spread of disease. Nonetheless, 
a familiarity with the traditional approaches will be useful to us in our study 
of network epidemiology, so we will spend a little time looking at its basic 

principles. 
Consider a disease spreading through a population of individuals. Let 5 (t) 

be the number of individuals who are susceptible at time t and let X(t) be the 
number who are infected.' Technically, since the disease-spreading process 
is a random one, these numbers are not uniquely determined-if the disease 
were to spread through the same population more than once, even under very 
similar conditions, the numbers would probably be different each time. To get 
around this problem let us define 5 and X more carefully to be the average 
or expected numbers of susceptible and infected individuals, i.e., the numbers 
we would get if we ran the process many times under identical conditions and 
then averaged the results3 

The number of infected individuals goes up when susceptible individuals 
contract the disease from infected ones. Suppose that people meet and make 
contacts sufficient to result in the spread of disease entirely at random with a 
per-individual rate (3, meaning that each individual has, on average, (3 contacts 
with randomly chosen others per unit time. 

The disease is transmitted only when an infected person has contact with a 
susceptible one. If the total population consists of n people, then the average 
probability of a person you meet at random being susceptible is 5/ n, and hence 
an infected person has contact with an average of (35/ n susceptible people per 
unit time. Since there are on average X infected individuals in total that means 
the overall average rate of new infections will be (3SX/n and we can write a 

2It might be more logical to use J( t) for the number infected, and many authors do so, but we 
use X instead to avoid later confusion with the index i used to label vertices. 

3For convenience we will usually drop the explicit t-dependence of S(t) and X( t) and, as here, 
just write Sand X. 

17.2 THE SI MODEL 

The allowed transitions be

tween states can be repre

sented by flow charts like 

this simple one for the SI 

model. 
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differential equation for the rate of change of X thus: 

dX = f3 SX (17.1) 
dt n . 

At the same time the number of susceptible individuals goes down at the same 
rate: 

ds = _f3SX 
ill n 07~ 

This simple mathematical model for the spread of a disease is called the fully 
mixed susceptible-infected madel, or 51 model for short. 

It is often convenient to define variables representing the fractions of sus
ceptible and infected individuals thus: 

5 
S =-, 

n 

X 
X= -

n' 

in terms of which Eqs. (17.1) and (17.2) can be written 

ds 
dt = -f3sx, 

dx 
dt = f3sx. 

(17.3) 

(17.4a) 

(17.4b) 

In fact, we don't really need both of these equations, since it is also true that 
5 + X = n or equivalently s + x = 1 because every individual must be either 
susceptible or infected. With this condition it is easy to show that Eqs. (17.1) 
and (17.2) are really the same equation. Alternatively, we can eliminate s from 
the equations altogether by writing s = 1 - x, which gives 

dx dt = f3(1 - x)x. (17.5) 

This equation, which occurs in many places in biology, physics, and elsewhere, 
is called the logistic growth equation. It can be solved using standard methods 
to give 

xoef3 t 
x(t) = -~"----~ 

1- Xo + xoe fit 
(17.6) 

where Xo is the value of x at t = O. Generically this produces an S-shaped 
"logistic growth curve" for the fraction of infected individuals, as shown in 
Fig. 17.1. The curve increases exponentially for short time, corresponding to 
the initial phase of the disease in which most of the population is susceptible, 
and then saturates as the number of susceptibles dwindles and the disease has 
a harder and harder time finding new victims.4 

4There aren't many diseases that really saturate their population like this. Most real diseases 
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Figure 17.1: The classic logistic growth curve of the 51 epidemic model. A small 
initial number of infected individuals in an 51 model (1% in this example) will at first 
grow exponentially as they infect others, but growth eventually saturates as the supply 
of susceptible individuals is exhausted, and the curve levels off at x = 1. 

17.3 THE SIR MODEL 

The SI model is the simplest possible model of infection. There are many ways 
in which it can be extended to make it more realistic or more appropriate as a 
model of specific diseases. One common extension deals with recovery from 

disease. 
In the SI model individuals, once infected, are infected (and infectious) for

ever. For many real diseases, however, people recover from infection after a 
certain time because their immune system fights off the agent causing the dis
ease. Furthermore, people often retain their immunity to the disease after such 
a recovery so that they cannot catch it again. To represent this behavior in our 

that don't kill their victims are eventually defeated by the immune system. In addition, for many 
diseases some fraction of the population has a natural immunity that prevents them from being 
infected (meaning that when exposed to the pathogen their immune system sees it off so quickly 
that they never become infectious). And some diseases spread so slowly that a large fraction of the 
population never catches them because they die of other causes first. None of these phenomena is 
represented in this model. 

THE SIR MODEL 
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model we need a new third disease state, usually denoted R for recovered. The 
corresponding three-state model is called the susceptible-infected-recovered or 
SIR model. 

With some other diseases people do not recoverf but instead die after some 
interval. Although this is the complete opposite of recovery in human terms, 
it is essentially the same thing in epidemiological terms: it makes little dif
ference to the disease whether a person is immune or dead-either way they 
are effectively removed from the pool of potential hosts for the disease.' Both 
recovery and death can be represented by the R state in our model. Diseases 
with mixed outcomes where people sometimes recover and sometimes die can 
also be modeled in this way-from a mathematical point of view we don't care 
whether the individuals in the R state are recovered or dead. For this reason 
some people say that the R stands for rernoved rather than recovered, so as to 
encompass both possibilities, and they refer to the corresponding model as the 
susceptible-infected-removed model. 

The dynamics of the fully mixed SIR model has two stages. In the first 
stage, susceptible individuals become infected when they have contact with 
infected individuals. Contacts between individuals are assumed to happen at 
an average rate f3 per person as before. In the second stage, infected individu
als recover (or die) at some constant average rate 'Y. 

Given the value of coy we can calculate the length of time T that an infected 
individual is likely to remain infected before they recover. The probability of 
recovering in any time interval OT is coy JT and the probability of not doing so 
is 1 - coy JT. Thus the probability that the individual is still infected after a total 
time T is given by 

lim (1- coyJTr/6T = e-1T, 
ST----,O 

(17.7) 

and the probability p(T) dT that the individual remains infected this long and 
then recovers in the interval between T and T + dT is this quantity times coy dT: 

(17.8) 

SThis is only approXimately true. If people really do have a certain average number of con
tacts per unit time and assuming those contacts are with living people, then the presence of living 
but recovered people in the population reduces the number of contacts between infected and sus
ceptible individuals. If, all. the other hand, people die rather than recover from the disease then 
only susceptible and infected individuals are alive and the number of contacts between them will 
be correspondingly greater. In effect, a person whose acquaintance dies from the disease will (on 
average) gain one new acquaintance from among the living to replace them, and that new acquain
tance might be infected, or might become infected, thereby increasing the chance of transmission 
of the disease. This effect can easily be incorporated into the model, but we don't do so here. 

which is a standard exponential distribution, Thus an infected person is most 
likely to recover just after becoming infected, but might in theory remain in 
the infected state for quite a long time-many times the mean infectious time 
(which is just Ih). 

Neither of these behaviors is very realistic for most real diseases. With real 
diseases, most victims remain jnfected for about the same length of time, such 
as a week, say, or a month. Few stay in the infected state for much longer or 
shorter than the average (see figure). Nonetheless, we will for the moment 
stick with this model because it makes the mathematics simple. This is one 
thing that will improve when we come to look at network models 01 epidemics. 

In terms of the fractions s, x, and r of individuals in the three states, the 
equations for the SIR model are 

ds 
dt = -f3sx, (17.9a) 

dx 
cit = f3sx - coyx, (17.9b) 

d,. 
dt = coyx, (17.9c) 

and in addition the three variables necessarily satisfy 

s+x+r = 1. (17.10) 

To solve these equations we eliminate x between Eqs. (17.9a) and (17.9c), 
giving 

1 ds 

s dt 

and then integrate both sides with respect to t to get: 

S = 50e'-- f3r /[, 

(17.11) 

(17.12) 

where 50 is the value of s at t = 0 and we have chosen the constant of inte
gration so that there are no individuals in the recovered state at t = O. (Other 
choices are possible but we'll use this one for now.) 

Now we put x = 1 - s - ,. in Eq. (17.9c) and use Eq. (17.12) to get 

~; = coy(1 - ,. - soe-r'h). (17.13) 

If we can solve this equation for r then we can find s from Eq. (17.12) and x 
from Eq. (17.10). 

T11e solution is easy to write down in principle. It is given by 

1 r du 
t = ~.fo 1 - u - soe f3/1/[ . 

(17.14) 

17.3 THE SIR MODEL 

The distribution of times 
for which an individual re
mains infected is typically 
narrowly peaked around 
some average value for 
real diseases, quite unlike 
the exponential distribu
tion assumed by the SIR 
modeL 
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Figure 17.2: Time evolution of the SIR model. The three curves in this figure show 
the fractions of the population in the susceptible, infected, and recovered states as a 
function of time. The parameters are f3 = 1, 'Y = 0.4, So = 0.99, Xo = 0.01, and ro = O. 

Unfortunately, in practice we can't evaluate the integral in closed form. We can 
however evaluate it numerically. An example is shown in Fig. 17.2. 

There are a number of notable things about this figure. The fraction of 
susceptibles in the population decreases monotonically as susceptibles are in
fected and the fraction of recovered individuals increases monotonically. The 
fraction infected, however, goes up at first as people get infected, then down 
again as they recover, and eventually goes to zero as t -----t 00, 

Note however that the number of susceptibles does not go to zero; a close 
inspection shows that the curve for s (t) ends a little above the axis. This is be
cause when x --> ° there are no infected individuals left to infect the remaining 
susceptibles. Any individuals who survive to late enough times without being 
infected will probably never get the disease at all. They are the lucky ones who 
made it through the outbreak and out the other side. Similarly the fraction of 
recovered individuals does not quite reach one as t -----t 00. 

The asymptotic value of r has an important practical interpretation: it is 
the total number of individuals who ever catch the disease during the entire 
course of the epidemic-the total size of the outbreak. It can be calculated from 
Eq. (17.l3) as the value at which dr Idt = 0, which gives r = 1 - soe-f'h. 

, 
The initial conditions for the model can be chosen in a variety of ways, 

but the most common is to assume that the disease starts with either a single 
infected individual or a small number c of individuals and everyone else in 
the susceptible state. In other words, the initial values of the variables are 
So = 1 - cln, Xo = cln, and ro = 0. In the limit of large population size 
n -} 00, we can then write So ~ 1, and our final value of r satisfies 

(17.15) 

Interestingly, this is the same as the equation we derived in Section 12.5 for the 
size 5 of the giant component of a Poisson random graph, Eq. (12.15), provided 
we equate f31'Y with the mean degree of the random graph, and this correspon
dence allows us immediately to say several useful things. First, we know what 
the size of the epidemic must look like (in the limit of large n) as a function 
of the parameters f3 and T it will look like the plot of giant component size 
shown in the right-hand panel of Fig. 12.1 on page 406, with c = f3h. Second, 
it tells us that the size of the epidemic goes continuously to zero as f31'Y ap
proaches one from above and for f3 I "I -<: 1, or equivalently f3 -<: "I, there is no 
epidemic at all. The simple explanation for this result is that if f3 -<: "I then in
fected individuals recover faster than susceptible individuals become infected, 
so the disease cannot get a toehold in the population. The number of infected 
individuals, which starts small, goes down, not up, and the disease dies out 
instead of spreading. 

The transition between the epidemic and non-epidemic regimes happens 
at the point f3 = "I and is called the epidemic transition. Note that there was no 
epidemic transition in the simpler 51 model: in that model the disease always 
spreads because individuals once infected never recover and hence the number 
of infected individuals cannot decrease. (One can think of the 51 model as the 
special case olthe SIR model in which "I = 0, so that f3 can never be less than "I.) 

An important quantity in the study of epidemics is the basic reproduction 
number, denoted Ro, which is defined as follows. Consider the spread of a dis
ease when it is just starting out, when there are only a few cases of the disease 
and the rest of the population is susceptible-what is called a naive population in 
the epidemiology jargon-and consider a susceptible who catches the disease 
in this early stage of the outbreak. The basic reproduction number is defined 
to be the average number of additional people that such a person passes the 
disease onto before they recover. For instance, if each person catching the dis
ease passes it onto two others on average, then Ro = 2. If half of them pass it 
on to just one person and the rest to none at all, then Ro = ~, and so forth. 

If we had Ro = 2 then each person catching the disease would pass it on 
to two others on average, each of them would pass it on to two more, and so 

17.3 THE SIR MODEL 
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forth, so that the number of new cases of the disease would double at each 
round, thus growing exponentially. Conversely if Ro = ~ the disease would 
die out exponentially. The point Ro = 1 separates the growing and shrinking 
behaviors and thus marks the epidemic threshold between regimes in which the 

disease either multiplies or dies out. 
We can calculate Ro straightforwardly for our model. If an individual re

mains infectious for a time T then the expected number of others they will 
have contact with during that time is f3T. The definition of Ro is specifically for 
a naive population, and in a naive population all of the people with whom one 
has contact will be susceptible, and hence f3T is also the total number of people 
our infected individual will infect. Then we average over the distribution of T, 

Eq. (17.8), to get the average number Ro: 

(17.16) 

This gives us an alternative way of deriving the epidemic threshold in the 
SIR: the epidemic threshold falls at Ro = 1, which corresponds in this model 
to the point f3 = ,,(, the same result as we found above by considering the 

long-time behavior6 

17.4 THE SIS MODEL 

A different extension of the SI model is one that allows for reinfection, i.e., for 
diseases that don't confer immunity on their victims after recovery, or confer 
only limited immunity, so that individuals can be infected more than once. 
The simplest such model is the SIS model, in which there are just two states, 
susceptible and infected, and infected individuals move back into the suscep
tible state upon recovery. The differential equations for this model are 

ds 
dt = "(x - f3sx, (17.17a) 

dx 
dt = f3sx - "(x, (17.17b) 

with 
s + x = 1. (17.18) 

6Note that when l' = 0, as in the 51 model, Eq. (17.16) implies that Ro ---+ 00, This is because an 
infected individual remains infected indefinitely in the 51 model and hence can infect an arbitrary 
number of others, so that Ro is formally infinite. In any population of finite size, however, the 

empirical value of Ro will be finite. 

Putting s = 1 - x in Eq. (17.17b) gives 

dx cit = (f3 - "( - f3x)x, 

which has the solution 
Celf-1it 

x(t) = (1 - "( / f3) 1 + Celf-1it' 

where the integration constant C is fixed by the initial value of x to be 

C = f3x() . 
f3 - "( - f3 xo 

17.5 

(17.19) 

(17.20) 

(17.21) 

In the case of a large population and a small number of initial carriers of the 
disease we have Xo --'> 0 and C = f3xo/ (f3 - "(), which gives us the simpler 

solution 
(17.22) 

If f3 > "( this produces a logistic growth curve similar to that of the ba
sic SI model-see Fig. 17.3-but differing in one important respect: we never 
have the whole population infected with the disease. In the limit of long time 
the system finds a stable state where the rates at which individuals are in
fected and recover from infection are exactly equal and a steady fraction of the 
population-but not all of them-is always infected with the disease. (Which 
particular individuals are infected changes over time, however, as some re
cover and others are infected.) The fraction of infected individuals can be 
found from Eq. (17.22), or more directly from Eq. (17.19) by setting dx/dt = 0 
to give x = (f3 - "() /~. In the epidemiology jargon the steady state is called an 

endemic disease state. 
Note that the fraction infected in the endemic state goes to zero as f3 ap

proaches ,,(, and if f3 < l' then Eq. (17.22) predicts that the disease will die out 
exponentially. Thus, as in the SIR model, the point f3 = "( marks an epidemic 
transition between a state in which the disease spreads and one in which it 
doesn't. As before, we can calculate a basic reproduction number Ro, which 
again takes the value Ro = f3/"(, giving us an alternative derivation of the 
position of the transition as the point at which Ro = 1. 

17.5 THE SIRS MODEL 

We will look at one more epidemic model before we turn to the properties 
of these models on networks. This is the SIRS model, another model incorpo
rating reinfection. In this model individuals recover from infection and gain 

THE SIRS MODEL 
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Figure 17.3: Fraction of infected individuals in the SIS model. The fraction of in
fected individuals in the SIS model grows with time following a logistic curve, as in 
the 51 modeL Unlike the 51 model, however, the fraction infected never reaches lmity, 
tending instead to an intermediate value at which the rates of infection and recovery 
are balanced. (Compare this figure with Fig. 17.1 for the 51 modeL) 

immunity as in the SIR model, but that immunity is only temporary, and after 
a certain period of time individuals lose it and become susceptible again. We 
introduce a new parameter 5 to represent the average rate at which individuals 
lose immunity. Then the equations for this model are 

ds 
- =!ir - f3sx (17.23a) 
dt ' 
dx 
dt = f3sx - '{x, (17.23b) 

dr 
dt = '{x - !ir, (17.23c) 

and 
s+x+r = 1. (17.24) 

The SIRS model cannot be solved analytically, although it can be treated 
using linear stability analysis and other tricks from the non-linear dynamics 
toolbox. A more straightforward approach is numerical integration of the dif-

'!l!I' 
':i 
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ferential equations, which reveals that the SIRS model has a rich palette of be
haviors depending on the values of the three parameters, including behaviors 
where the disease persists in an endemic state, where it dies out, and where it 
oscillates between outbreaks and periods of remission. We will not delve into 
the behavior of the SIRS model further in this chapter; the interested reader 
can find more details in Ref. [156]. 

Many other epidemic models have also been proposed to model the spread 
of particular types of diseases. Extra states can be introduced such as an "ex
posed" state that represents people who have caught a disease but whose in
fection has not yet developed to the point where they can pass it on to others; or 
an initial immune state coming before the susceptible state, often used to rep
resent the maternally derived immunity that newborn babies possess. There 
are also models that allow for new individuals to enter the population, by be
ing born or immigrating, and models that distinguish between people who 
recover fully from disease and those who recover but remain carriers who can 
pass the disease to others. Those interested in pursuing the subject further are 
encouraged to take a look at the references given at the beginning of the chap
ter. For our purposes, however, the models we have seen so far will be enough. 
Let's look at how these models behave when we include network structure in 
our calculations. 

17.6 EPIDEMIC MODELS ON NETWORKS 

As discussed in Section 17.2, the standard approach to epidemic modeling de
scribed in the first part of this chapter assumes" full mixing" of the popula
tion, meaning that each individual can potentially have contact with any other, 
those contacts being realized, at a level sufficient to transmit the disease, with 
probability f3 per unit time. 

In the real world, however, it is not a good assumption to say that any 
two people could potentially have contact with one another. The chance of 
a meeting between two people chosen at random from the population of the 
entire world is probably small enough to be negligible. Most people have a set 
of regular acquaintances, neighbors, coworkers, and so forth whom they meet 
with some regularity and most other members of the world population can 
safely be ignored. The set of a person's potential contacts can be represented 
as a network and the structure of that network can have a strong effect on the 
way a disease spreads through the population. 

Network models of disease typically work in the same way as the fully 
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mixed models we have already seen but make use of this network of potential 
contacts instead of assuming that contact is possible with the entire popula
tion. Let us define the transmission rate or infection rate for our network disease 
process to be the probability per unit time that infection will be transmitted 
betvveen two individuals, one susceptible and one infected, who are connected 
by an edge in the appropriate network. Alternatively it is the rate at which 
contact sufficient to spread the disease occurs between any two individuals 
connected by an edge. The transmission rate is commonly denoted ~ by anal
ogy with the quantity appearing in the fully mixed models, and we will adopt 
that notation here, although you should note that the two parameters are not 
exactly equivalent since ~ in the fully mixed case is the rate of contacts between 
an infected individual and all others in the population, whereas in the network 
case it is the rate of contacts with just one other. 

The transmission rate is a property of the disease. Some diseases are trans
mitted more easily than others and so have higher transmission rates. But 
transmission rate is also a property of the social and behavioral parameters of 
the population. In some countries, for example, it is common etiquette for peo
ple with minor respiratory infections such as colds to wear surgical face masks 
to prevent the spread of disease. Such conventions are absent in other coun
tries, and the difference in conventions could produce a difference in transmis
sion rate. 

17.7 LATE-TIME PROPERTIES OF EPIDEMICS ON NETWORKS 

Given a value for the transmission rate one can define models for the spread 
of disease over a network. Each of the models introduced in the first part of 
the chapter can be generalized to the network case. Consider the 51 model, 
for instance. In the network version of this model we have n individuals rep
resented by the vertices of our network, with most of them in the susceptible 
state at time t = 0 and just a small fraction Xu, or maybe even just a single 
vertex, in the infected state. With probability ~ per unit time, infected nodes 
spread the disease to their susceptible neighbors and over time the disease 
spreads across the nework. 

It is difficult to solve a model such as this for a general network, and in 
many cases the best we can do is to simulate it on a computer. There is, how
ever, one respect in which the model is straightforward, and that is its late-time 
properties. It is clear that as t -; 00 in this model every individual who can be 
infected by the disease is infected: since infected individuals remain infectious 
forever, their susceptible neighbors will always, in the end, also become in
fected, no matter how small the transmission rate, so long as it is not zero. The 
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only condition for being infected therefore is that a vertex must be connected 
to at least one infected individual by at least one path through the network, so 
that the disease can reach them. 

Thus in the limit of long times the disease will spread from every initial 
carrier to infect all reachable vertices, meaning all vertices in the component 
to which the carrier belongs. In the simplest case, where the disease starts out 
with a single infected carrier, just one component will be infected. 

As we have seen, however, most networks have a one large component that 
contains a significant fraction of all vertices in the network, plus, typically, a 
selection of smaller components. If we have this kind of structure then an in
teresting behavior emerges. If we start with a single infected individual, and 
if that individual turns out to belong to the large component, then the disease 
will infect the large component and we will have a large outbreak. If the in
dividual belongs to one of the small components, however, the disease will 
only infect the few members of that small component and then die out. If 
the initial carrier of the disease is chosen uniformly at random from the net
work, the probability that it will fall in the large component and we will have 
a large outbreak is simply equal to 5, the fraction of the network occupied by 
the large component, and the size of the outbreak as a fraction of the network 
will also be S. Conversely, with probability 1 - 5 the initial carrier will fall 
in one of the small components and the outbreak will be small. In the latter 
case the size of the outbreak will be given by the size of the appropriate small 
component. If we can calculate the distribution of sizes of the small compo
nents, either analytically or numerically, for the network of interest, then we 
also know the distribution of possible sizes of these small outbreaks, although 
unless we know exactly which component the disease will start in we cannot 
predict its size exactly. 

This constitutes a new type of behavior not seen in fully mixed models. In 
fully mixed models the possible behaviors are also either a run-away epidemic 
that affects a large fraction of the population, or an outbreak that affects only a 
few then dies out. But the choice between these outcomes was uniquely deter
mined by the choice of model and the model parameters. For a given model 
and parameter values the disease always either did one thing or the other. In 
our network model, however, the behavior depends on the network structure 
and on the position in the network of the first infected individual. Thus there 
is a new stochastic element in the process: with identical model parameters 
and an identical network the disease sometimes takes off and sometimes dies 
out. 

An outbreak starting with 
a single infected individ
ual (circled) will eventu
ally affect all those in the 
same component of the net
work, but leave other com
ponents untouched. 
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17.8 LATE-TIME PROPERTIES OF THE SIR MODEL 

The situation becomes more interesting still when we look at the SIR model. 
In the SIR model individuals remain infectious for only a finite amount of time 
and then they recover, so it is in general no longer true (as in the SI model) that 
the susceptible neighbor of an infected individual will always get infected in 
the end. If they are lucky, such neighbors may never catch the disease. The 
probability of this happening can be calculated in a manner similar to the cal
culation of Eq. (17.7), and is equal to e-~T, where f3 is again the transmission 
rate and T is the amount of time for which the infected individual remains 
infected. Thus the probability that the disease is transmitted is 

(17.25) 

For simplicity, let us suppose that every infected individual remains infec
tious for the same length of time. This differs from the fully mixed version of 
the model, where T was distributed according to an exponential distribution 
(see Eq. (17.8)), but in many cases is actually more realistic. As mentioned in 
Section 17.3, observed values of T for many diseases are narrowly concentrated 
about a mean value, and their distribution is far from being exponential. 

With this assumption, the probability of transmission cp is a constant across 
the whole network. Every susceptible individual has equal probability cp of 
catching the disease from their infected neighbor. (Of course, if they have more 
than one infected neighbor the total probability is higher.) 

Now here is a nice trick, developed originally by Mollison [223] and Grass
berger [144]. Let us take our network and "color in" or "occupy" each edge 
with probability cp, or not with probability 1 - cpo This is just the ordinary 
bond percolation process introduced in Section 16.1, where a fraction cp of 
edges are occupied uniformly at random. The occupied edges represent those 
along which disease will be transmitted if it reaches either of the vertices at 
the ends of the edge. That is, the occupied edges represent contacts sufficient 
to spread the disease, but not necessarily actual disease transmission: if the 
disease doesn't reach either end of an occupied edge then disease will not be 
transmitted along that edge, so edge occupation only represents the potential 
for transmission if the disease reaches an edge, 

With this in mind consider now the spread of a disease that starts at a ran
domly chosen vertex. We can immediately see that the set of vertices to which 
the disease will ultimately spread is precisely the set connected to the initial 
vertex by any path of occupied edges-the disease simply passes from one 
vertex to another by traversing occupied edges until all reachable vertices have 
been infected. The end result is that the disease infects all members of the bond 
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Figure 17.4: Bond percolation. In bond percolation, a fraction cp of the edges in a network are filled in or "occupied" at 
random to create cormected clusters of vertices. (a) For small occupation probability cp the clusters are small. (b) Above 
the percolation threshold a large cluster forms, though there are usually still some small clusters as well. (c) When cp = 1 
all edges are occupied but the large cluster may still not fill the whole network: at <P = 1 the largest cluster corresponds 
to the largest component of the network, which is often just a subset of the whole network. 

percolation cluster to which the initial carrier belongs. 
It is important to appreciate that, as with our treatment of the network 51 

model in the previous section, this process does not give us any information 
about the temporal evolution of the disease outbreak. Individual infection 
events are stochastic and a calculation of the curve of infections as a function of 
time requires a more complicated analysis that takes their randomness into ac
count. However, if we want to know only about long-time behavior, about the 
overall total number of individuals infected by the disease, then all we need 
do is count the vertices in the appropriate percolation cluster. 

Bond percolation is in many ways similar to the site percolation processes 
we studied in Chapter 16. Consider Fig. 17.4. For low edge occupation prob
ability cp there are just a few occupied bonds which group into small discon
nected clusters. But as cp increases there comes a point, the percolation transi
tion, where the disconnected clusters grow large enough to join together and 
form a giant cluster, although usually there exist other small clusters as well 
that are not joined to the giant cluster. As cp increases still further, the giant 
cluster grows, reaching its maximum size when cp = 1. Notice, however, that 
this maximum size is not generally equal to the size of the whole network. 
Even when every edge in the network is occupied, the size of the largest clus
ter is still limited to the size of the largest component on the network, which is 
usually smaller than the whole network. 

Translating these ideas into the language of epidemiology, we see that for 
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small values of cp the cluster to which the initial carrier of a disease belongs 
must be small, since all clusters are small. Thus in this regime we will have 
only a small disease outbreak and most members of the population will be un
infected. Once we reach the percolation transition, however, and a giant cluster 
forms, then a large outbreak of the disease-an epidemic-becomes possible, 
although not guaranteed. If the giant cluster of the percolation process occu
pIes a frachon 5 of the entire network, then our randomly chosen initial vertex 
will fall within it with probability 5, and if it does then the disease will spread 
to mfect the whole giant cluster, creating an epidemic reaching a fraction of 
the population also equal to S. With probability 1 - 5, on the other hand, the 
initial vertex will fall in one of the small clusters and we will have only a small 
outbreak of the disease. As cp increases,S also increases and hence both the 
probability and the size of an epidemic increase with cp. 

Thus the percolation transition for bond percolation on our network corre
sponds precisely to the epidemic threshold for a disease on the same network 
where the edge occupation probability cp is given in terms of the transmissio~ 
rate f3 and recovery time T for the disease by Eq. (17.25), and the sizes of out
breaks are given by the sizes of the bond percolation clusters. This mapping 
between percolation and epidemics is a powerful one that allows us to make a 
whole range of calculations of the effects of network structure on the spread of 
disease. 

It is important to note that even when cp is above the epidemic threshold 
we are not guaranteed that there will be an epidemic. This is similar to the 
situation we saw in the simpler SI model, but different from the situation in the 
fully mixed SIR model of Section 17.3, where an epidemic always takes place 
If we are above the epidemic threshold. In many ways the behavior of our 
network .model is more realistic than that of the fully mixed model. For many 
d,seases It IS true that outbreaks do not always result in epidemics. Sometimes 
a disease dies out because, just by chance, its earliest victims happen not to 
pass the disease on to others. Our theory tells us that the probability of this 
happening is 1 - 5, where 5 is the size of the giant cluster, which is also the 
size of the epidemic if it does happen. The value of 1 - 5 is usually small 
when we are well above the epidemic threshold, but can be quite large if we 
are only a little above threshold, meaning that the probability of the disease 
dying out can be quite large in this regime. 

It is also important to bear in mind that percolation is a stochastic process. 
We occupy edges at random on our network to represent the random nature of 
the contacts that result in transmission of the disease. Two outbreaks happen
Ing under the same conditions on the same networks would not necessarily 
travel along the same edges and the shapes of the percolation clusters would 
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not necessarily be the same. Thus a vertex that happens to belong to the gi
ant cluster on one occasion might not belong to it on another and our theory 
cannot make exact predictions about disease outcomes, The best we can do is 
calculate probabilities or average behaviors. We could for instance calculate 
the expected number of people who would be affected by an outbreak, but we 
cannot predict the exact number for any given outbreak. 

17.8.1 SIR MODEL AND THE CONFIGURATION MODEL 

In Section 16.2.1 we showed that it is possible to calculate exactly the average 
behavior of a site percolation process on configuration model networks, With 
only slight modification the same approach can also be used for bond perco
lation and hence we can make predictions about the size distribution of epi
demics and the position of the epidemic threshold in such networks. 

Consider an SIR epidemic process of the kind discussed in the previous 
section, taking place on a configuration model network with degree distribu
tion Pk. Let u be the average probability that a vertex is not connected to the 
giant cluster via a specific one of its edges. There are two ways this can hap
pen: either the edge in question can be unoccupied (with probability 1 - CP), or 
it is occupied (probability CP) but the vertex at the other end of the edge is itself 
not a member of the giant cluster. The latter happens only if that vertex is not 
connected to the giant cluster via any of its other edges, which happens with 
probability Uk if there are Ie such edges. Thus the total probability is 1 - cp + cpuk. 

The value of Ie is distributed according to the excess degree distribution 

(k+l)Pk+l 
qk = (Ie) (17.26) 

(see Eq. (16.3»). Averaging over Ie we then arrive at a self-consistent expression 
for u thus: 

00 

u = 1 - cp + cp L qkuk = 1- cp + CPgl (u), (17.27) 
k=O 

where g, is the probability generating function for the excess degree distribu
tion, defined in Eq. (13.49). Equation (17.27) is the same as the corresponding 
equation for the site percolation case, Eq. (16.4), and has the same solutions. 

The probability that a vertex of total degree Ie does not belong to the giant 
cluster is now simply Uk, and the average such probability over the whole net
work, which is equal to 1 - 5, is calculated by averaging uk over the degree 
distribution Pk giving 

00 

5 = 1- LPkUk = l-go(u). 
k=O 

(17.28) 
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This equation differs from the corresponding equation in the site percolation 
case, Eq. (16.2), by an overall factor of cp, but is otherwise the same. Thus the 
shape of the curve for 5 as a function of cp will be different from the site perco
lation case, but the position cp, of the percolation transition, which is dictated 
by the solution of Eq. (17.27), will be the same. The solution of Eq. (17.27) was 
shown graphically in Fig. 16.2 and the position of the transition is given by 
Eq. (16.7) to be 

1 (Ie) 
cp, = g; (1) = (k') - (Ie)· (17.29) 

This equation thus also gives us the position of the epidemic threshold in terms 
of the probability cpo If we prefer our solution in terms of the more fundamental 
parameters fJ and T we can rearrange Eq. (17.25) to give 

(Ie') - (Ie) 
fJT = -In(1 - cp,) = In (Ie') _ 2(1e) . (17.30) 

If fJT exceeds this value then there is the possibility of an epidemic, though 
not the certainty, since the initial carrier or carriers of the disease could by 
chance fall outside the giant cluster. If fJT is smaller than this value then an 
epidemic is impossible, no matter where the initial carrier falls. The probability 
of the epidemic, if one is pOSSible, is given by S, Eq. (17.28), as is the size of the 
epidemic if and when one occurs. 

Since the epidemic behavior of the model is controlled by the combination 
of parameters f3T, the epidemic transition can be driven either by an increase in 
the infectiousness time T, which is a property of the particular disease under 
Shldy, or by an increase in the transmission rate fJ, which is a property both 
of the disease and of the behavior of members of the population. At the same 
time, the precise position of the transition in terms of these variables, as well as 
the probability and size of any epidemic that occurs, depend on the structure 
of the network via the moments (Ie) and (Ie') of the degree distribution. This 
contrasts with the fully mixed model of Section 17.3, which incorporated no 
network effects. 

Because of the close similarity between the site and bond percolation prob
lems, we can easily translate a number of the results of Section 16.2.1 into the 
language of epidemics. For instance, a random graph with a Poisson degree 
distribution with mean c, which has go(z) = g,(Z) = e*-l), has an epidemiC 
threshold falls at cp, = 1/ c (Eq. (16.11)), or 

C fJT = In--, 
c-l 

(17.31) 
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and the size of the epidemic, when there is one, is given by the solution to the 
equations 

5 = 1 ~ ec(u-l). (17.32) 

The first of these equations can be rearranged to read 1- u = CP(1 - e,(u--l)) = 

cpS and substituting into the second then gives 

(17.33) 

which has no simple closed-form solution,' but can easily be solved numeri
cally by making an initial guess at the solution (5 = ~ seems to work well) and 
then iterating the equation to convergence. 

Note that this equation is similar to Eq. (17.15) for the fully mixed model, 
but with different parameters. The similarity is not coincidental. In the fully 
mixed model an infected individual infects others chosen uniformly at random 
from the population, and in the Poisson random graph the network neighbors 
of any individual are also chosen uniformly at random. It is possible to show 
that there is a direct correspondence between the traditional fully mixed model 
and the network model on a random graph [30]8 

Another important case is the scale-free network with its power-law degree 
distribution. As we saw in Section 16.2.1, if the exponent" of the power law 
in such a network lies in the usual range 2 < " < 3 then cp, = 0, because 
(Ie') diverges while (k) remains constant and hence Eq. (17.29) goes to zero. 
Thus in the power-law case there is always an epidemic, no matter how small 
the probability of transmission of the disease, at least in the limit of infinite 
network size. (For finite networks, (k') is not infinite, but very large, and cp, is 
correspondingly very small, but not precisely zero.) 

7The solution can be written in dosed form using the Lambert W1unction, which is defined to 
be the solution of the equation W(z)eW(zJ = z. In terms of this function, the size of the epidemic is 
given by 

W( -<pee-") 
S ~ 1+ . 

<pe 
Alternatively, we can rearrange Eq. (17.33) to give cp as a function of S rather than the other way 
around: 

In(l - S) 
eS 

This expression can be useful for making plots of S. 

8The differences in parameters arise because we are considering a slightly different disease 
process (one in which each individual is infectious for the same amount of time, rather than the 
exponential distribution used in the fully mixed model), and also because in the network model J3 
is the transmission rate per edge, rather than the rate for the whole network-this is what gives us 
the factor of c in the exponent of Eq. (17.33). 
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This statement is, however, slightly misleading since, as we saw in the pre

vious chapter, the size of the giant cluster in a scale-free network becomes very 
small as we approach <p = 0; it generally decays faster than linearly with <p. 
Thus although technically there may be an epidemic for all positive values of <p, 
it can be very small in practice, affecting only the tiniest fraction of the popu

lation. (On the other hand, the difference between non-epidemic behavior and 
epidemic behavior, even with a tiny value of 5, will become very important 
when we look at models such as the SIS model that incorporate reinfection. In 
such models the epidemic threshold separates the regime in which the disease 

persists and the regime in which it becomes extinct, an important distinction 
even if the number of individuals infected is small.) 

17.9 TIME-DEPENDENT PROPERTIES OF EPIDEMICS ON NETWORKS 

The techniques of the previous section can tell us about the late-time proper

ties of epidemics on networks, such as how many people will eventually be 
affected in an outbreak of a disease. If we want to koow about the detailed 

progression of an outbreak as a function of time, however, then we need an
other approach that takes dynamics into account. Moreover, the techniques 

we have used so far cannot tell us about even the late-time behavior of models 
with reinfeetion, such as the SIS and SIRS models of Sections 17.4 and 17.5. 

For these models the equivalence between epidemics and percolation that we 

used above does not hold, and to understand their behavior, including at long 
times, we need to address the dynamics of the epidemic. 

A number of approaches have been proposed for tackling the dynamics of 
epidemics on networks, some exact and some approximate. Of course, given a 

specific network, one can always perform computer simulations of epidemics 
and get numerical answers for typical disease outbreaks. Analytic approaches, 

however, offer more insight and some results are known, as discussed below, 
but they are mostly confined to specific classes of model network, such as 

random graphs and their generalizations. In the following sections we will 

look at some of the most straightforward and general approaches to epidemic 
dynamics on networks, starting with the simple SI model and progressing to 
the more complex (and interesting) models in later sections. 

17.10 TIME-DEPENDENT PROPERTIES OF THE 51 MODEL 

The analytic treatment of the time-dependent properties of epidemic models 
revolves around the time evolution of the probabilities for vertices to be in spe

cific disease states. One can imagine having repeated outbreaks of the same 

~ , 
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disease on the same network, starting from the same initial conditions, and 

calculating for example the average probabilities s;(t) and x;(t) that vertex i is 
susceptible or infective at time t. Given the adjacency matrix of a network one 
can write down equations for the evolution of such quantities in a straightfor

ward manner. Consider for instance the SI model. 
An SI outbreak starting with a single randomly chosen vertex somewhere 

eventually spreads, as we have seen, to all members of the component con
taining that vertex. Our main interest is in epidemics occurring in the giant 

component of the network, since all other outbreaks will only affect a small 

component and then die out, so let us focus on the giant component case. 
Consider a vertex i. If the vertex is not a member of the giant component 

then by hypothesis s; = 0 at all times, since we are assuming the epidemic 
to take place in the giant component. For i in the giant component we can 
write down a differential equation for S; by considering the probability that i 
becomes infected between times I and 1+ dl. To become infected an individ

ual must catch the disease from a neighboring individual j, meaning j must 
already be infected, which happens with probability x] = 1 - Sj, and must 

transmit the disease during the given time interval, which happens with prob
ability (3 dt. In addition we also require that i be susceptible in the first place, 

which happens with probability S;. Multiplying these probabilities and then 
summing over all neighbors of i, the total probability of i becoming infected is 

(35; Li AijX], where AU is an element of the adjacency matrix. Thus S; obeys the 
coupled set of 11 non-linear differential equations: 

ds; = -(3s; I.;A;]x] = -(3s; I.;A;j(1 - silo 
dt j ] 

(17.34) 

Note the leading minus sign on the right-hand side-the probability of being 

susceptible goes down when vertices become infected. 

Similarly we can write an equation for Xi thus: 

dx; 
- = (3Si I.; A;]x] = (3(1 - x;) I.; A;ixi' 
dl j i 

(17.35) 

although the two equations are really the same equation, related to one another 

by S; + Xi = 1. 
We will use the same initial conditions as we did in the fully mixed case, 

assuming that the disease starts with either a single infected vertex or a small 
number c of vertices, chosen uniformly at random, so that Xi = c / nand 5i = 
1 - cj n for all i. In the limit of large system size n, these become X; = 0, S; = 1, 
and we will use this large-nlimit to simplify some of the expression derived in 

this and the following sections. 

649 



EPIDEMICS ON NETWORKS 

650 

Equation (17.34) is not solvable in closed form for general Aii but we can 
calculate some features of its behavior by considering suitable limits. Consider 
for example the behavior of the system at early times. For large n, and assum
ing initial conditions as above, Xi will be small in this regime. Working with 
Eq. (17.35) and ignoring terms of quadratic order in small quantities, we have 

(17.36) 

or in rna trix form 
dx 
dt = f3 Ax, (17.37) 

where x is the vector with elem,ents Xi. 

Now let us write x as a linear combination of the eigenvectors of the adja
cency matrix: 

" x(t) = L: a,(t)v" (17.38) 
r=1 

where Vr is the eigenvector with eigenvalue Kr . Then 

dx 11 dar 11 11 

ill = L: dtV, = f3A L: a,(t)v, = 13 L: K,a,(t)v,. 
r=1 r=1 r=l 

(17.39) 

Then, comparing terms in V rf we get 

da, cit = f3 K,.a,., (17.40) 

which has the solution 

a,(t) = a,(O) ef "'. (17.41) 

Substituting this expression back into Eq. (17.38), we then have 

" x(t) = L:a,(O) ef '" v,. (17.42) 
r=1 

The fastest growing term in this expression is the term corresponding to the 
largest eigenvalue K,. Assuming this term dominates over the others we will 
get 

(17.43) 

So we expect the number of infected individuals to grow exponentially, just as 
it does in the fully mixed version of the SI model, but now with an exponential 
constant that depends not just on 13 but also on the leading eigenvalue of the 
adjacency matrix. 

17.10 TIME-DEPENDENT PROPERTIES OF THE 5I MODEL 

Moreover, the probability of infection in this early period varies from vertex 
to vertex roughly as the corresponding element of the leading eigenvector v,. 
The elements of the leading eigenvector of the adjacency matrix are the same 
quantities that in other circumstances we called the eigenvector centrality~see 
Section 7.2. Thus eigenvector centrality is a crude measure of the probability 
of early infection of a vertex in an SI epidemic. 

At long times in the SI model the probability of infection of a vertex in 
the giant component tends to one (again assuming the epidemic takes place 
in the giant component). Thus overall we expect the SI epidemic to have a 
similar form to that seen in the fully mixed version of the model, producing 
curves qualitatively like that in Fig. 17.1 but with vertices of higher eigenvector 
centrality becoming infected faster than those of lower. 

Reasonable though this approach appears to be, it is not precisely cor
rect, as we can see by integrating Eq. (17.35) numerically. Figure 17.5a shows 
the results of such a numerical integration (the curve labeled "first-order") 
on a network generated using the configuration model (Section 13.2), com
pared against an average over a large number of simulated epidemics with the 
same 13 spreading on the same network (the circular dots). As the figure shows, 
the agreement between the two is good, but definitely not perfect. 

The reason for this disagreement is an interesting one. Equation (17.34) 
may appear to be a straightforward generalization of the equivalent equation 
for the fully mixed SI model, Eq. (17.4), but there are some subtleties involved. 
The right-hand side of the equation contains two average quantities, Si and Xi' 
and in multiplying these quantities we are implicitly assuming that the prod
uct of the averages is equal to the average of their product. In the fully mixed 
model this is true (for large n) because of the mixing itself, but in the present 
case it is, in general, not, because the probabilities are not independent. The 
quantity Si measures a vertex's probability of being susceptible and Xi mea
sures the probability of its neighbor being infected. It should come as no sur
prise that in general these quantities will be correlated between neighboring 
vertices. Correlations of this type can be incorporated into our calculations, at 
least approximately, by using a so-called pair approximation or moment clo
sure method, as described in the following section. 

17.10.1 PAIR APPROXIMATIONS 

Correlations between the disease states of different vertices can be handled 
by augmenting our theory to take account of the joint probabilities for pairs 
of vertices to have given pairs of states. To handle such joint probabilities 
we will need to make our notation a little more sophisticated. Let us denote 
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Figure 17.5: Comparison of theory and simu
lation for the S1 model on two different net
works. (a) The fraction of infected individuals 
as a function of time on the giant component 
of a network with low transitivity (i.e., low 
clustering coefficient), calculated by numeri~ 
cal solution of the differential equations for the 
first- and second-order moment closure meth
ods, and by direct simulation. (b) The same 
comparison for a network with high transitiv
ity. The networks have one million vertices 
each and the transmission rate is ~ = 1 in all 
cases. Simulation results were averaged over 
500 runs. 
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by (Si) the average probability that vertex i is susceptible. This is the same 
quantity that we previously called Si, but, as we will see, it will be useful to 
indicate the average explicitly with the angle brackets ( ... ). If you like, you 
can think of Si(t) as now being a variable with value one if i is susceptible at 
time t and zero otherwise and (Si) as being the average of this quantity over 
many different instances of disease outbreaks on the same network. Similarly 
(Xi) will be the average probability that i is infected. And (SiXI) indicates the 
average probability that i is susceptible and j is infected at the same time. 
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In this notation it is now straightforward to write down a truly exact ver
sion of Eq. (17.34), taking correlations into account. It is 

(17.44) 

Equation (17.34) is an approximation to this true equation in which we assume 
that (SiXj) CO' (Si) (Xj). 

17,10 TIME-DEPENDENT PROPERTIES OF THE 51 MODEL 

The trouble with Eq. (17.44) is that we cannot solve it directly because it 
contains the unknown quantity (SiXj) on the right-hand side. To find this quan
tity, we need another equation for (SiXj), which we can deduce as follows. To 
reach the state in which i is susceptible and j is infected in an SI model it must 
be the case that both i and j are susceptible to begin with and then j becomes 
infected. Even though i and j are neighbors j cannot be infected by i, since i is 
not infected, so j must be infected by some other neighboring vertex k, which 
itself must therefore be infected. In our new notation, the probability for the 
configuration in which i and j are susceptible and k is infected is (SiSjXk). If we 
have this configuration, then j will become infected via k with rate (3. Summing 
over all neighbors k except for i, the total rate at which j becomes infected is 

then (3 Lk(,eil Ajk(SiSjXk). 
Unfortunately, this is not the end of the story because (SiXj) can also de

crease-it decreases if i becomes infected. This can happen in two different 
ways. Either i can be infected by its infected neighbor j, which happens with 
rate (3(SiXj), or it can be infected by another neighbor I i' j that happens to 
be infected, which happens with rate (3(X1SiXj). Summing the latter expression 
over all neighbors I other than j gives a total rate of (3 Ll(,eil Ail (X1SiXI)· 

Putting all of these terms together, with minus signs for those that decrease 
the probability, we get a final equation for (SixI) thus: 

(17.45) 

In theory this equation will now allow us to calculate (SiXj). In practice, how
ever, it involves yet more terms that we don't know on the right-hand side, 
the three-variable averages (Sislxk) and (X1SiXj). We can write down further 
equations for these averages but, as you can no doubt guess, those equations 
involve still higher-order (four-variable) terms, and so forth. The succession of 
equations will never end-in the jargon of mathematics, it doesn't close-and 
so looks as though it will be of no use to us9 

In fact, however, we can still make progress by approximating our three
variable averages with appropriate combinations of one- and two-variable av
erages, which allows us to close the equations and get a set we can actually 
solve. This process is called moment closure and the method described in this 
section is called a moment closure method. The moment closure method at the 

90n a finite network with n vertices the equations will in fact close once we get all the way up 
to combinations of n variables, but this limit is not useful in practice as the equations will become 
unmanageably numerous and complicated long before we reach it. 

653 



EPIDEMICS ON NETWORKS 

654 

level of two-variable averages that we discuss here is also called a pair approxi
mation method. 

In fact, our first attempt at writing equations for the 51 model on a network, 
Eq. (17.34), was itself a simple moment-closure method. We approximated the 
true equation, Eq. (17.44), by writing (sixI) "" (Si) (XI)' closing the equations at 
the level of one-variable averages. By going a step further and closing at the 
pair approximation level of two-variable averages, we can make our equations 
more precise because we will be taking two-variable correlations into account. 
In fact, as we will see, this "second-order" moment closure approach is exact 
for some networks, although only approximate for others. Even in the latter 
case, however, the method gives a remarkably good approximation. The ap
proximation can be further improved by going to third order, but the equations 
rapidly become complicated and researchers have rarely used moment closure 
methods beyond the second-order, pair approximation level. 

The pair approximation is relatively straightforward however. Starting 
with Eq. (17.45) our goal is to approximate the three-variable averages on the 
right-hand side with lower-order ones. We do this by making use of Bayes 
theorem for probabilities thus: 

(SiSIXk) = P(i,j E S,k E T) = P(i,j E S)P(k E Ili,j E 5), (17.46) 

where P(i E 5) means the probability that vertex i is in the set 5 of susceptible 
vertices. We know that i and j are neighbors in the network and that j and k 
are neighbors, and our approximation involves assuming that the disease state 
of k doesn't depend on the disease state of i. This is a good approximation
indeed not an approximation at all-if the only path in the network from i to 
k is through j. In that case, given that we know j to be susceptible, there is no 
way that the disease state of i can affect that of k because there is no other path 
by which the disease could spread from i to k. On the other hand, if there is 
another path from i to k that avoids vertex j then the disease can spread along 
that path, which will introduce correlations between i and k and in that case 
our approximation is just that-an approximation-although as we will see it 
may be a very good one. 

Assuming the state of k to be independent of the state of i, we have 

P(k II·· 5) = P(k II· 5) = P(j E 5, k E T) = (SIXk) (17.47) 
E I, J E E ] E P(j E 5) (sl) , 

where we have used Bayes theorem again in the second equality. Putting 
Eqs. (17.46) and (17.47) together, we then have 

(sisl) (SIXk) 
(sislxk) = () (17.48) 
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We can write a similar expression for the other three-variable average appear
ing in Eq. (17.45): 

( 
.. ) _ (X,Si)(SiXI) 

x's,x; - (Si) , (17.49) 

and, substituting both into Eq. (17.45), we then get the pair approximation 
equation 

d(SiXi) (sisi) (sixi) 
-d - = f3-( -.) L Alk(slxk) - f3-(-.)- L Ail(Si X,) - f3( sixi)· 

t s; k(toi) s, '(toil 
(17.50) 

This equation now contains only averages over two variables at a time. It does 
also contain a new average (SiS;) that we have not encountered before, but 
this can easily be rewritten as (sisi) (si(1 - x;» = (Si) - (sixI) and so our 
equation becomes 

d(sx) (s) - (sx) (sx) 
-' _I = f3 ' ()' I L Ajk(sjXk) - f3-(' .); L Ail (SiX,) - f3(SiXI). (17.51) 

dt SI k(fi) s, '(1';) 

This equation is more complex than Eq. (17.34) but it can be simplified by 
rewriting it as follows. We define Pij to be the conditional probability that j is 
infected given that i is not: 

( 
... ) P(iES,jEI) 

Pil = P JEll' E 5 = P(i E 5) (17.52) 

Then the time evolution of Pii is given by 

dpil _ d ((SiXI») 
Tt- dt W 

1 d(SiXj) (sixI) d(Si) 
(SJ --;Jl- - (Si)2 dt 

= f3 (1 - (Si Xi ») L A k (SIXk) - f3 (sixI) L Ail (SiXI) 
(5,) k(toi) I (51) (Si) '(toil (Si) 

_ f3 (SiXj) + f3 (SiXi) LAiJ (SiX,) 
(5i) (S,) , (Si) 

= f3(1 - Pii) L AlkPlk - f3Pi; L AilPil - f3Pil + f3Pij LAilPil, (17.53) 
k(ii) '(fil I 

where we have used Eqs. (17.44) and (17.51) in the third line. All but one of 
the terms in the two sums over 1 now cancel out, leaving us with the relatively 

simple equation 

(17.54) 
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where we have used the fact that A;) = 1 (since i and j are neighbors). We can 
also rewrite Eq. (17.44) in terms of P;j thus: 

which has the solution 

(8;(t)) = (5;(0)) exp ( -f3 LA;) l p;)(t') dt} 
) 

(17.55) 

(17.56) 

Between them, Eqs. (17.54) and (17.56) now give us our solution for the evolu
tion of the epidemic. Note that there are two equations of the form (17.54) for 
each edge in the network, since Pij is not symmetric in i and j. 

Figure 17.5a shows results from a numerical solution of these equations (the 
curve marked "second-order"), again on a configuration model network and, 
as the figure shows, the calculation now agrees very well with the simulation 
results represented by the dots in the figure. By accounting for correlations 
between adjacent vertices we have created a much more accurate theory. 

This near-perfect agreement, however, is something of a special case. Con
figuration model networks are locally tree-like, meaning they have no short 
loops, and, as discussed above, our second-order moment closure approxima
tion is exact when non-adjacent vertices i and k have only a single path be
tween them through some intermediate j. When there are no short loops in 
our network this is true to an excellent approximation-the only other way to 
get from i to k in such a network is by going around a long loop and the length 
of such loops dilutes any resulting correlations between the states of i and k, 
often to the point where they can be ignored. The network used in the simula
tions for Fig. 17.5a was sufficiently large (a million vertices) and the resulting 
loops sufficiently long that the pair approximation equations are an excellent 
approximation, which is why the agreement is so good in the figure. 

Unfortunately, as we saw in Section 7.9, most real social networks have a 
lot of short loops, which raises the question of how well our method does on 
such networks. Figure 17.5b shows a comparison between the predictions of 
our equations and direct simulations for a network with many short loops}O 
for both the simple first-order moment closure, Eq. (17.34), and for our more 
sophisticated second-order approach. As the plot shows, the first-order calcu
lation agrees quite poorly with the simulations, its predictions being inaccurate 
enough to be of little use in this case. The second-order equations, however, 

lOThe network was generated using the clustered network model of Ref. [240]. 
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still do remarkably well. Their predictions are not in perfect agreement with 
the simulations, but they are close. 

Thus the pair approximation method offers a significant improvement on 
networks both with and without short loops, providing a usefully accurate 
approximation in the former case and being essentially exact in the latter. 

17.10.2 DEGREE-BASED APPROXIMATION FOR THE SI MODEL 

The analysis of the previous section gives exact equations for the dynamics 
of the SI model on a network with few short loops and an excellent approx
imation in other cases. Unfortunately those equations cannot in general be 
solved analytically, even for simple networks such as those of the configura
tion model. The solutions presented in Fig. 17.5 were derived by integrating 
the equations numerically. 

In this section we describe an alternative approximate approach that gives 
good, though not perfect, results in practice and produces equations that can 
be solved analytically. Moreover, the method can, as we will see, be gener
alized to other epidemic models such as the SIR model. The method was 
pioneered by Pastor-Satorras and coworkers [32,33,263,264], though it has 
precursors in earlier work by May and others [199,212]. It takes its simplest 
form when applied to networks drawn from the configuration model and so it 
is on this model that we focus here, although in principle the method can be 
extended to other networks. 

Consider a disease propagating on a configuration model network, I.e., a 
random graph with a given degree distribution Pb as discussed in Chapter 13. 
As before we focus on outbreaks taking place in the giant component of the 
network, this being the case of most interest-outbreaks in small components 
by definition die out quickly and do not give rise to epidemics. 

An important point to notice is that the degree distribution of vertices in 
the giant component of a configuration model network is not the same as the 
degree distribution of vertices in the network as a whole. As shown in Sec
tion 13.8, the probability of a vertex of degree k belonging to the giant com
ponent goes up with vertex degree. This means that the degree distribution of 
vertices in the giant component is skewed towards higher degrees. (For a start, 
notice that there are trivially no vertices of degree zero in the giant component, 
since by definition such vertices are not attached to any others.) We will, as be
fore, denote the degree distribution and the excess degree distribution in our 
calculations by Pk and qb but bear in mind that these are for vertices in the 
giant component, which means they are not the same as the distributions for 
the network as a whole. 
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The approximation introduced by Pastor-Satorras et aZ. was to assume that 
all vertices of the same degree have the same probability of infection at any 
given time. Certainly this is an approximation. The probability of infection of a 
vertex of degree, say, five situated in the middle of the dense core of a network 
will presumably be larger than the probability for a vertex of degree five that 
is out on the periphery. Nonetheless, if the distribution of probabilities for 
vertices of given degree is relatively narrow it may be a good approximation 
to set them all equal to the same value, And in practice, as we have said, the 
approximation appears to work very well. 

Returning, for the sake of simplicity, to our earlier notation style, let us de
fine Sk(t) and Xk(t) to be the probabilities that a vertex with degree k is suscep
tible or infected, respectively, at time t. Now consider a susceptible vertex A. 
To become infected, A has to contract the infection from one of its network 
neighbors. The probability that a particular neighbor B is infected depends 
on the neighbor's degree, but we must be careful. By hypothesis vertex A is 
not infected and so B cannot have caught the disease from A. If B is infected 
it must have caught the disease from one of its remaining neighbors. In effect 
this reduces the degree of B by one-B will have the same probability of being 
infected at the current time as the average vertex with degree one less. To put 
that another way, B's probability of infection depends upon its excess degree, 
the number of edges it has other than the edge we followed from A to reach it. 
B's probability of infection is thus Xb but where lc indicates the excess degree, 
not the total degree. 

The advantage of the degree-based approach now becomes clear: the prob
ability of B being infected depends, in this approach, only on B's excess degree 
and not on A's degree. By contrast, the conditional probability Pij in our earlier 
formalism was a function of two indices, making the equations more compli
cated. To derive the equations for the degree-based approximation, consider 
the probability that vertex A becomes infected between times t and t + dl. To 
become infected it must catch the disease from one of its neighbors, meaning 
that neighbor must be infected. The probability of a neighbor being infected is 
Xk where k is the excess degree of the neighbor, and the excess degree is dis
tributed according to the distribution qk of Eq. (13.46), which means that the 
average probability that the neighbor is infected is 

00 

v(l) = L: qkXk(I). 
k=O 

(17.57) 

If the neighbor is infected then the probability that the disease will be trans
mitted to vertex A in the given time interval is (3 dl. Then the total probability 
of transmission from a single neighbor during the time interval is (3v(l) dl and 
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the probability of transmission from any neighbor is (3kv(l) dl, where k is now 
the number of A's neighbors. In addition we also require that A itself be sus
ceptible, which happens with probability Sk (I), so our final probability that A 
becomes infected is (3kVSk dl. Thus the rate of change of Sk is given by 

(17.58) 

This equation can be solved exactly. We can formally integrate it thus: 

(17.59) 

where we have fixed the integration constant so that all vertices have proba
bility So of being susceptible at I = O. Although we don't yet know the form of 
the function v( I) this expression tells us that Sk depends on k as a simple power 
of some universal k-independent function u (I): 

(17.60) 

where in this case 

u(l) = exp ( -(3 fu' V(I')dl} (17.61) 

Writing Xk = 1 - Sk and substituting into Eq. (17.57) we then get 

00 00 

v(l) = L: qk(l - Sk) = L: qk(l - souk) = 1 - sog! (u), (17.62) 
k=O k~O 

where g! (u) is the generating function for qk and we have made use of Lk qk = 

1. Substituting Eq. (17.60) into Eq. (17.58) then gives us 

du dt = -(3uv = -(3u [1 - sog! (u)]. (17.63) 

This is a straightforward linear differential equation for u that, given the degree 
distribution, can be solved by direct integration. 

Finally, to calculate the total fraction x(l) of infected individuals in the net
work we average over k thus: 

00 00 

x(l) = L: PkXk(t) = L: Pk(l- souk) = 1 - sogo(u). (17.64) 
k=l k=l 

Notice that the sums here start at Ie = 1 because there are no vertices of degree 
zero in the giant component. 
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Equations (17.63) and (17.64) between them give us an approximate solu
tion for the SI model on the giant component of a configuration model network 
with any degree distribution. 

Although the solution is elegant in principle, in most practical cases we 
cannot integrate Eq. (17.63) in closed form. Even without completing the inte
gral, however, we can already see the basic form of the solution. First of all, 
at time 1 = 0 we have U = 1 by Eq. (17.61). Since V(I) is, by definition, pos
itive and non-decreasing with time, the same equation also implies that U(I) 
always decreases and tends to zero as 1 ~ co. This implies that at long times 
Eq. (17.63) becomes 

du 
cit = -~u[l-sogJ(O)] = -~u(l-sopJi(k)), (17.65) 

and hence U(I) decays exponentially as e-fil 'ol'd(k))'. Assuming the infection 
starts with only one or a handful of cases, so that So = 1 - cln for some con
stant C, we have So ~ 1 in the limit of large nand 

(17.66) 

Note that the long-time behavior is dictated by the fraction PI of vertices with 
total degree one. This is because these are the last vertices to be infected
individuals with only one contact are best protected from infection, although 
even they are guaranteed to become infected in the end. In networks where 
the fraction pJ is zero or very small we have u(l) ~ e-~I and the functional 
form of the long-time behavior depends only on the infection rate and not on 
the network structure. 

At short times we can write U = 1 - £ and to leading order in £ Eq. (17.63) 
becomes 

~~ = ~[xo + (g; (1) -1)£], (17.67) 

where Xo = 1 - So is the initial value of Xk. This has solution 

£(1) = ~xo [eI1(g;(1)-I)1 -1] 
g;(I)-1 ' 

(17.68) 

where we have made use of the initial condition £ = O. Equivalently we can 

u(t) = 1- c = 1 - ~xo [e~(g;(1)-I)t -1] 
g;(I)-1 . (17.69) 

llThis equation will diverge if g~ (1) = 1. However, since we are performing the calculation on 
the giant component of the network, and since the giant component only exists if g~ (1) > I-see 
Section 13.8-we can safely rule out this possibility. 

17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL 

Given the short- and long-time behavior and the 
fact that U (I) is monotonically decreasing, we can now 
guess that u(l) has a form something like Fig. 17.6. 
Then, since go is a monotonically increasing function of 
its argument, X(I) in Eq. (17.64) has a similar shape but 
turned upside down, so that it looks qualitatively simi
lar to the curve for the fully mixed version of the model 
shown in Fig. 17.1, although quantitatively it may be 
different. 

The initial growth of x(l) can be calculated by 
putting u = 1 - £ in Eq. (17.64) to give go(1 - c) 
1 - g~(I)c and 

u(t) 

0.5 

0--··- _ --===:c-. =~_ 
Time t 

x(l) = 1 - So + sog~(I)£ 

= x [1 + ~gb(1) [eflg;(I)-J)1 -1]] (17.70) 
o g;(I)-1 ' 

Figure 17.6: The function u (t) in the solution of the 
51 model. Generically we expect u(t) to have the form 
sketched here: it is monotonically decreasing from an 

where we have again set So = 1. Thus, as we would 
expect, the initial growth of infection is roughly expo
nential. 

initial value of 1 and has an exponential tail at long 
times. 

The appearance of g; (1) in Eq. (17.70) is of interest. 
As we saw in Eq. (13.68), g; (1) is equal to the ratio C2/ C1 ofthe average num
ber of second neighbors to first neighbors of a vertex and hence is a measure 
of how fast the network branches as we move away from the vertex where the 
disease first starts. It should be not surprising therefore (though it's still sat
isfying) to see that this same quantity-along with the transmission rate ~
controls the rate at which the disease spreads in our SI model. 

Another interesting feature of the model is the behavior of the quantities 
sk(l) that measure the probability that a vertex of a given degree is susceptible. 
Since these quantities are all proportional to powers of u(t)-see Eq. (17.60)
they form a family of curves as shown in Fig. 17.7. Thus, as we might expect, 
the vertices with highest degree are the ones that become infected first, on 
average, while those with low degree hold out longer. 

17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL 

It is relatively straightforward to extend the techniques of Section 17.10 to the 
more complex (and interesting) SIR model. Again we concentrate on outbreaks 
taking place in the giant component of the network and we define 5;, x;, and r; 
to be the probabilities that vertex i is susceptible, infected, or recovered respec
tively. The evolution of 5; is (approximately) governed by the same equation 
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Figure 17.7: Fractions of susceptible and infected vertices of various degrees in the SI 
model. The various curves show the fraction of vertices of degree k that are susceptible 
(gray) and infected (black) as a function of time for k ~ 1,2,4,8, and 16. The highest 
values of k give the fastest changing (leftmost) curves and the lowest values the slowest 
changing. The curves were calculated by integrating Eq. (17.63) numerically with f3 = 1 
and a Poisson degree distribution with mean degree four. 

as before: 

(17.71) 

while Xi and ri obey 

(17.72) 

dri 
cit = "(Xi, (17.73) 

where, as previously, "( is the recovery rate, i.e., the probability per unit time 
that an infected individual will recover.12 

12This contrasts with the approach we took in Section 17.8 where all vertices remained infected 
for the same amount of time and then recovered. Thus the model studied in this section is not 
exactly the same as that of Section 17.8, being more similar to the traditional SIR model of Sec~ 
hon 17.3. We will see some minor consequences of this difference shortly. 

17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL 

We can choose the initial conditions in various ways, but let us here make 
the same assumption as we did for the SI model, that at t = 0 we have a 
small number c of infected individuals and everyone else is susceptible, so 

that Si(O) = 1 - cln, Xi(O) = cln, and ri(O) = O. 
As with the SI model we cannot solve these equations exactly, but we can 

extract some useful results by examining their behavior at early times. In the 
limit t --7 0, Xi is small and Si = 1 - cln, which tends to 1 as n becomes large, 
so Eq. (17.72) can be approximated as 

dXi 
-d = ~ L: AijXj - "(Xi = L:(~Aij - "(6ij )Xj, 
t. . 

) J 

where 6ij is the Kronecker delta. This can be written in matrix form as 

dx 
dt = ~Mx, 

where M is the n x n symmetric matrix 

"( 
M=A-,aI. 

(17.74) 

(17.75) 

(17.76) 

As before we can write x as a linear combination of eigenvectors, though they 
are now eigenvectors of M rather than of the simple adjacency matrix as in the 
case of the SI model. But now we notice a useful thing: since M differs from 
the adjacency matrix only by a multiple of the identity matrix, it has the same 
eigenvectors v r as the adjacency matrix: 

Mv,=Av,-jrv,= (K-j)V'. (17.77) 

Only the eigenvalue has been shifted downward by "( I~. 
The equivalent of Eq. (17.42) is now 

" x(t) = L: a,(0)v,e(PK,-1j" (17.78) 
r"",l 

Note that the exponential constant now depends on ~K, - "( and so is a function 
not only of the adjacency matrix and the infection rate but also of the recovery 
rate, as we would expect-the faster people recover from infection the less 
chance they have to spread the disease and the slower it will spread. 

Again the fastest growing term is that corresponding to the most posi
tive eigenvalue Kj of the adjacency matrix and individuals having the highest 
eigenvector centrality get infected first. Note, however, that it is now possi
ble for "( to be sufficiently large that the exponential constant in the leading 
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term becomes negative, meaning that the term decays exponentially rather 
than grows. And if the leading term decays, so necessarily do all other terms, 
and so the total number of infected individuals will decay over time and the 
disease will die out without causing an epidemic. 

The point at which this happens is the epidemic threshold for our model 
and it occurs at flKl - j' = 0, or equivalently 

fl 
j' 

1 
(17.79) 

Thus the position of the epidemic threshold depends on the leading eigenvalue 
of the adjacency matrix. If the leading eigenvalue is small, then the probability 
of infection fl must be large, or the recovery rate j' small, for the disease to 
spread. In other words a small value of Kl makes it harder for the disease to 
spread and a large value easier. This makes intuitive sense, since large values 
of K1 correspond to denser adjacency matrices and smaller values to sparser 
ones. 

As in the case of the SI model, Eqs. (17.71-17.73) are only approximate, 
because they neglect correlations between the states of adjacent vertices. And 
as before we can allow for these correlations by using a pair approximation, 
but here we take a different approach and consider instead the equivalent of 
the methods of Section 17.10.2 for the SIR mode!.13 

17.11.1 DEGREE-BASED APPROXIMATION FOR THE SIR MODEL 

As with the 51 model, let us make the approximation that all vertices with the 
same degree behave in the same way. Again we concentrate on the example of 
the configuration model [229] and on outbreaks taking place in the giant com
ponent of the network. We define Sk(t), Xk(t), and rk(t) to be the probabilities 
that a vertex with degree k is susceptible, infected, or recovered, respectively, 
at time t. Then we consider the state of a vertex B that is the neighbor of a 
susceptible vertex A. For such a vertex to be infected it must have contracted 
the disease from one of its neighbors other than A, since A is susceptible. That 
means, as before, that B's probability of being infected is given by x" but with 
k equal to the excess degree, which is one less than the total degree. And the 

13We can see that the approach of this section cannot be exactly correct from the behavior of 
Eq. (17.79) on very sparse networks. On a vanishingly sparse network, with only a very few 
edges and no giant component, 1(1 becomes very small, though still non-zero. On such a network 
Eq. (17.79) implies that we could, nonetheless, have an epidemic if f3 is very large or l' very small. 
Clearly this is nonsense-there can be no epidemic in a nehvork with no giant component. Thus 
the equation cannot be exactly correct. 

17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL 

probability that B is recovered depends only on the probability that it was pre
viously infected, which is given by rk where k is the excess degree, and the 
probability Sk of being susceptible can be derived from Sk + Xk + rk = 1. 

Armed with these observations, we can now write down an appropriate 
set of equations for the epidemic. The rate at which the probability of being 
susceptible decreases is given by the same equation as before, Eq. (17.58): 

dSk cit = -flkvs" (17.80) 

where v(t) is the average probability that a neighbor is infected: 

v(t) = L qkXk(t), (17.81) 
k=O 

and the equations for Xk and rk are 

dXk 
cit = flkvSk - j'x" (17.82) 

drk 
cit = j'Xk· (17.83) 

We can solve these equations exactly by a combination of the methods of Sec
tions 17.3 and 17.10. We define the average probability that a neighbor is re-
covered thus: 

ro 

w(t) = L qkrk(t). 
k=O 

Then, using Eqs. (17.81) and (17.83), we find 

which we use to eliminate v from Eq. (17.80), giving 

dSk = _£kdws;. 
dt j' dt ' 

This equation can be integrated to give 

(17.84) 

(17.85) 

(17.86) 

(17.87) 

where we have fixed the constant of integration so that at t 0 all vertices 
have the same probability So of being susceptible and there are no recovered 
vertices (w = 0). 
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Equation (17.87) implies that Sk is again proportional to a power of a uni
versal function: 

(17.88) 

where in this case 

(17.89) 

Then, using Eq. (17.87), we find 

v(t) = LqkXk = Lqk(1 - rk - Sk) = 1 - w(t) - Sa Lqkuk 
k k k 

= 1 + ;lnu - sag,(U), (17.90) 

and Eq. (17.85) becomes 

~~ = -/lu [1 + ;lnu - sag,(u)j. (17.91) 

This is the equivalent for the SIR model of Eq. (17.63), and indeed differs from 
that equation only by the new term in In u on the right-hand side. 

As before, Eq. (17.91) is a first-order linear differential equation in u and 
hence can, in principle, be solved by direct integration, although for any given 
degree distribution the integral may not have a closed-form solution. Once we 
have u(t) the probability Sk of a vertex being susceptible is given by Eq. (17.88), 
or we can write the total fraction of susceptibles as 

s(t) = LPkSk = SOLPkUk = sago(u). (17.92) 
k k 

Solving for Xk and rk requires a little further work but with perseverance it 
can be achieved. 14 Figure 17.8 shows the equivalent of Fig. 17.7 for vertices of 
a range of degrees. As we can see, the solution has the expected form, with the 
number of infected individuals rising, peaking, then dropping off as the sys
tem evolves to a final state in which some fraction of the population is recov
ered from the disease and some fraction has never caught it (and never will). 
Among vertices of different degrees the number infected goes up sharply with 
degree, as we would expect. 

Even in cases where the integral in Eq. (17.91) cannot be performed, our 
solution can still shed light on features of the epidemic. Consider for example 

14We observe that 

~(elfXk) =ell(dX~ +iXk) =eilf3kvsk dt dt' , 

where we've used Eg. (17.82) in the second equality. Integrating and using Egs. (17.81) and (17.88), 

17.11 TIME-DEPENDENT PROPERTIES OF THE SIR MODEL 

:E 
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Figure 17.8: Fractions of susceptible, infected, and recovered vertices of various de
grees in the 51 model. The fraction of vertices of degree k that arc susceptible (light 
gray), infected (darker gray), and recovered (black) as a function of time for k = 1,2, 
4 and f3 = '/ = Ion a network with an exponential degree distribution (Eq. (13.129)) 
with A = 0.2. The highest values of k give the fastest growing numbers of infected and 
recovered vertices and the lowest values the slowest growing. 

the long-time behavior. In the limit of long time we expect that the number 
of infected individuals will vanish leaving some individuals recovered and 
some who have never caught the disease. At t = 00 the total fraction r(t) of 
recovered individuals measures the overall size of the outbreak of the disease 

and is given by 
r(oo) = 1- s(oo) = 1- go(u(oo)). (17.93) 

where we have set So = 1 as before on the assumption that the system is large 
and the number of initially infected individuals small. 

We can find the stationary value of u by setting du/dt = 0 in Eq. (17.91) to 

we then have 

x,(t) ~ e-" [xu + fkSO.fo' e''"[u(t')]' (1 + 'i Inu(t') .- SUgj(U(t'))) dt'j, 
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give , 
1 + j3 In u - gl (u) = O. (17.94) 

In the special case where the outbreak is small, so that the final value of u 
is close to 1, we can expand In u = !nIl + (u - 1)1 u - 1 and Eq. (17.94) 
becomes 

(17.95) 

Equations (17.93) and (17.95) are similar in form to Eqs. (17.27) and (17.28) 
which give the final size of the outbreak in our treatment of the SIR model 
using percolation theory. The reason why Eq. (17.95) is only approximate in 
the present case where Eq. (17.28) was exact is that the model treated in this 
section is slightly different from the one treated earlier, having (as discussed 
in footnote 12 on page 662) a constant probability, per unit time of recovery 
from disease for each infected individual as opposed to a fixed infection time 
for the model of Section 17.8.1. 

We can also examine the early-time behavior of the outbreak by looking at 
the behavior of Eq. (17.91) close to u = l. Writing u = 1 - t and keeping terms 
to leading order in " we get 

dt 
dt 

[M (1) -I]'"~ 

assuming 50 = 1 again, which means that 

(17.96) 

(17.97) 

This is similar to Eq. (17.69) for the SI model, except for the inclusion of the 
term in " The fraction of susceptible degree-k vertices is given by 

(17.98) 

and total cases of the disease, infected and recovered, which is just 1 - Ski 

grows exponentially as ek[M (1)-1['. 

The epidemic threshold for the model is the line that separates an initially 
growing number of cases of the disease from an initially decreasing one and is 
given in this case by the point at which the exponential constant in Eq. (17.98) 
equals zero, which gives 

Ii , 1 

g; (1)' 
(17.99) 

17.12 TIME-DEPENDENT PROPERTIES OF THE SIS MODEL 

This result is similar in form to Eq. (17.79) for the epidemic threshold on a gen
eral network,15 but with the leading eigenvalue of the adjacency matrix "I re
placed with g; (1). It also looks similar to Eq. (17.29) for the percolation thresh
old for bond percolation, but this similarity is somewhat deceptive. In fact, 
the result most nearly corresponding to this one in the percolation treatment 
is Eq. (17.30). If we equate our recovery rate, with the reciprocal of the infec
tiousness time T in that previous treatment, then the two are roughly equiva
lent when the epidemic threshold is low, meaning either that f3 is small or that 
, is large. If the threshold is higher then the match between the two models is 
poorer, which is again a result of the fact that the models are defined in slightly 
different ways. 

17.12 TIME-DEPENDENT PROPERTIES OF THE SIS MODEL 

It is straightforward to extend our methods to the SIS model also. By analogy 
with Eqs. (17.71-17.73) we have 

dS i 
-d = -f3Si LAijXj + ,Xi, 

I j 
(17.100a) 

dXi " --d = f3 Si L., A;jxj - ,Xi 
t j 

(17.100b) 

for the SIS model. Caveats similar to those for previous models apply here: 
these equations ignore correlations between the states of adjacent vertices and 
hence are only an approximation. 

Equations (17.100a) and (17.100b) are not independent since Si + Xi = 1, so 
only one is needed to form a solution. Taking the second and eliminating Si we 

get 
dXi 
cit = f3(1- Xi) 1 AiJxJ - IXi· (17.lO1) 

At early times, assuming as before that Xi(O) = Xo = 1 - cln for all i and 
constant c, we can drop terms at quadratic order in small quantities to get 

dXi 
-d = f3 L AijXj - ,Xi, 

I j 
(17.102) 

which is identical to Eq. (17.74) for the SIR model at early times. Hence we can 
immediately conclude that the early-time behavior of the model is the same, 

15 And like Eq. (17.79) it is also clearly wrong on sparse networks for the same reasons-see 
footnote 13 on page 664. 
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with initially exponential growth and an epidemic threshold given by 

£ 1 
I' KJ 

(17.103) 

(See Eq. (17.79).) Also as in the SIR model the probability of infection of a given 
vertex at early times will be proportional to the vertex's eigenvector centrality. 

At late times we expect the probability of infection to settle to a constant 
endemic level, which we can calculate by setting dx;/dt = 0 in Eq. (17.101) 
and rearranging, to give 

(17.104) 

Typically we cannot derive a closed-form solution for Xi from this expression, 
but we can solve it numerically by iteration starting from a random initial 
guess. We can also see the general form the solution will take by considering 
limiting cases. If f31'Y is large, meaning that we are well above the epidemic 
threshold given in Eq. (17.103), then we can ignore the term 1'1 f3 in the de
nominator and Xi '" 1 for all i, meaning that essentially all vertices will be 
infected all the time. This makes good sense since if f3 I I' is large then the rate 
of infection is very high while the rate of recovery is negligible. 

Conversely, if f3 h is only just above the epidemic threshold level set by 
Eq. (17.103) then Xi will be small-the disease only just manages to stay alive
and we can ignore the sum in the denominator of Eq. (17.104) so that 

(17.105) 

or 

K1Xi ~ LAijXj, (17.106) 
i 

where we have used Eq. (17.103). This implies that Xi is proportional to the 
leading eigenvector of the adjacency matrix or, equivalently, proportional to 
the eigenvector centrality. (Note that this is at late times so this result is distinct 
from the finding above that Xi is proportional to eigenvector centrality at early 
times.) 

Thus the long-time endemic disease behavior of the SIS model varies from 
a regime just above the epidemic threshold in which the probability of a vertex 
being infected is proportional to its eigenvector centrality, to a regime well 
above the threshold in which essentially every vertex is infected at all times. 

17.12 TIME-DEPENDENT PROPERTIES OF THE SIS MODEL 

17.12.1 DEGREE-BASED APPROXIMATION FOR THE SIS MODEL 

We can also write down approximate equations for the evolution of the SIS 
model in which, as in Sections 17.10.2 and 17.11.1, we assume that the proba
bility of infection is the same for all vertices with a given degree. Focusing once 
again on configuration model networks, the equivalent of Eqs. (17.80-17.82) is 

dSk 
dt = -f3kVS k + 'Yx" (17.107a) 

dXk 
cit = f3 kVSk - 'Yx" (17.107b) 

where the variables Sk and Xk are as before, and again 

00 

v(t) = L: qkXk(t). (17.108) 
k=O 

As before Eqs. (17.107a) and (17.107b) are not independent and only one is 
need to form a solution. Let us take the second and rewrite it using Sk = 1 - Xk 
to give 

dXk 
-- = f3kv(1 - x,J - 'YXk· 
dt 

(17.109) 

Unfortunately, there is no known complete solution to this equation but we 
can once again find its behavior at early and late times. 

Assuming, as previously, that our epidemic starts off with only a single case 
or a small number of cases, the probability Xk of being infected at early times 
is c I n for constant c and hence small in the limit of large n. Dropping terms of 
second order in small quantities then gives us the linear equation 

dXk 
cit = f3kv - 'Yx" 

which can be rewritten using an integrating factor to read 

~(e"'xk) = e"dxk + 'Ye"Xk = f3ke"v 
dt' dt ' 

and hence integrated to give 

Thus Xk (t) for short times takes the form 

Xk = kurt), 

(17.110) 

(17.111) 

(17.112) 

(17.113) 
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where u(t) is some universal, Ie-independent function. Substituting into Eqs. 
(17.108) and (17.110), we then have 

v(t) = u(t) L: kqk = g; (l)u(t), (17.114) 
k=O 

and 

(17.115) 

Thus we have exponential growth or decay of the epidemic at early times, with 
the epidemic threshold separating the two falling at the point where flg; (1)
I' = 0, or 

fl 
I' 

1 

g; (1)' 

just as for the SIR model (see Eq. (17.99». 

(17.116) 

At late times the disease to settles down into an endemic state in which 
some constant fraction of the population is infected. We can solve for this 
endemic state by setting dxc/dt = 0 for all Ie in Eq. (17.109) to give 

!CV 
Xk = lev + 1'1 fl . (17.117) 

Substituting this expression into Eq. (17.108), we then find that 

(17.118) 

In general there is no closed-form solution to this implicit equation for v, al
though it can typically be solved numerically for any given q" and given the 
value we can then get Xk from Eq. (17.117). 

What we can tell from Eq. (17.118) is that, given the degree distribution, 
v at late times is a function solely of fl I I' (or 1'1 fl if you prefer) and hence Xk is 
solely a function of fl I I' and k. Moreover, in order for Eq. (17.118) to be satisfied 
v must be an increasing function of fl I I'-as fl gets larger or I' smaller, v must 
increase in order to keep the sum in the equation equal to one. This means that 
Xk will also be an increasing function of flil'. (Equation (17.117) implies that it 
is an increasing function of Ie as well.) Thus the equations give us a qualitative 
picture of the behavior of the SIS model, although quantitative details require 
a numerical solution. 

We have in this chapter only brushed the surface of what is possible in the 
modeling of epidemics spreading across networks. We can extend our studies 

to more complicated network structures, such as networks with degree corre
lations, networks with transitivity, networks with community structure, and 
even epidemics on empirically observed networks. More complicated mod
els of the spread of infection are also possible, such as the SIRS model men
tioned in Section 17.5, as well as models that incorporate birth, death, or ge
ographic movement of individuals [17,156]. In recent years, scientists have 
developed extremely sophisticated computer models of disease spread using 
complex simulations of the behavior patterns of human populations, including 
models of entire cities down to the level of individual people, cars, and build
ings [110], and models of the international spread of disease that incorporate 
detailed data on the flight patterns and timetables of international airlines [79]. 
These developments, however, are beyond the scope of our necessarily brief 
treatment in this chapter. 

PROBLEMS 

17.1 Consider an SIR epidemic on a configuration model netvvork with exponential 
degree distribution Pk = (1- e"'\)e---I\k, 

a) Using the results of Section 16.2.1 write down an expression for the probability u 
appearing in Eq. (17.27) in terms of <{I and A. 

b) Hence find an expression for the probability that a vertex is infected by the disease 

if it has degree k. 

c) Evaluate this probability for the case i\ = 1 and <p = 0.91 for k = 0/ 11 and 10. 

17.2 Consider the spread of an SIR-type disease on a network in which some fraction 
of the individuals have been vaccinated against the disease. We can model this situation 
using a joint site/bond percolation model in which a fraction <ps of the vertices are 
occupied, to represent the vertices not vaccinated, and a fraction <Pb of the edges are 
occupied to represent the edges along which contact takes place. 

a) Show that the fraction 5 of individuals infected in the limit of long time is given 
by the solution of the equations 

S = <{I,[l- gO(lI)], 

where go(z) and gl (z) are the generating functions for the degree distribution and 
excess degree distribution, as usual. 

b) Show that for a given probability of contact <Pb the fraction of individuals that 
need to be vaccinated to prevent spread of the disease i.s 1 - 1/ [<Pbg~ (1)]. 

PROBLEMS 
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17.3 We have been concerned in this chapter primarily with epidemic disease out
breaks, meaning outbreaks that affect a finite fraction of all individuals in a network. 
Consider, by contrast, a small SIR outbreak-an outbreak that corresponds to one of 
the non-giant percolation clusters in the bond percolation approach of Section 17.8-
occurring on a configuration model network with degree distribution Pk. 

a) What is the probability of such an outbreak occurring if the disease starts at a 
vertex chosen uniformly at random from the whole network (including vertices 
both within and outside the giant component)? 

b) Show that if the probability of transmission along an edge is cp then the generating 
function 110(z) for the probability 1[5 that the outbreak has size s is given by the 
equations 

where go(z) and gl (z) are the generating functions for the degree distribution and 
excess degree distribution respectively. 

c) What is the mean size of such an outbreak? 

17.4 Consider an 51-type epidemic spreading on the giant component of a k-regular 
random graph, i.e., a configuration model nemork in which an vertices have the same 
degree k. Assume that some number c of vertices, chosen at random, are infected at 
time t = O. 

a) Show using the results of Section 17.10 that the probability of infection of every 
vertex increases at short times as ef3kf . 

b) Show that within the first-order moment closure approximation of Eq. (17.35) the 
average probability of infection x of every vertex is the same and give the differ
ential equation it satisfies. 

c) Hence show that 
cef3kf 

x (t) ~ --'-'--~= 
n-c+cef3kf ' 

d) Find the time at which the "inflection point" of the epidemic occurs, the point 
at which the rate of appearance of new disease cases stops increasing and starts 
decreasing. 

17.5 Consider a configuration model nemork containing vertices of degrees 1, 2, and 3 
only, such that the fractions of vertices of each degree in the giant component are PI = 

0.3, P2 ~ 0.3, and P3 ~ 0.4. 

a) Find an expression for the excess-degree generating function gl (z) appearing in 
Eq. (17.63). 

b) Hence, by solving Eq. (17.63), find an expression for t as a function of u for an SI 
epidemic on the giant component of the nemork, assuming that So c:::: 1, and with 
initial condition u(O) = 1- t, where E is small. 

c) Show that in the limit of long times the number of susceptibles fans off in propor
tion to e-21f31 /2. 

17.6 Consider the spread of an SIR-type disease in a nemork in which some fraction of 
the individuals have been vaccinated against the disease. We can model this situation 
using a joint site/bond percolation model in which a fraction cps of the vertices are 
occupied, to represent the vertices not vaccinated, and a fraction CPb of the edges are 
occupied to represent the edges along which contact takes place.' 

a) Show that the fraction S of individuals infected in the limit of long time is given 
by the solution of the equations 

where go(z) and gl (z) are the generating functions for the degree distribution and 
excess degree distribution, as usual. 

b) Show that for a given probability of contact CPb the fraction of individuals that 
need to be vaccinated to prevent spread of the disease is 1 - 1/ [CPbg~ (1 )]. 

PROBLEMS 
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CHAPTER 18 

DYNAMICAL SYSTEMS ON NETWORKS 

A discussion of dynamical syste!11S 011 networks, a 
subject area that is in its infancy but about which we 
nonetheless have some interesting results 

THE epidemic models of Chapter 17 are a particular example of the more 
general concept of dynamical systems on networks. A dynamical system 

is any system whose state, as represented by some set of quantitative vari
ables, changes over time according to some given rules or equations. Dynam
ical systems come in continuous- and discrete-time varieties and can be either 
deterministic or stochastic. The epidemic models we looked at, for instance, 
were continuous-time dynamical systems because their equations described 
the continuous-time variation of the variables. They were also deterministic 
because the equations we wrote down exactly determine the values of all vari
ables for all time: there was no random or external element affecting the evo
lution whose value was not known in advance. On the other hand, an explicit 
computer simulation of, say, an 51 epidemic model on a network would be 
a stochastic dynamical system and might use either continuous- or discrete
time. The stochastic element in this case corresponds to the chance infection of 
a susceptible individual by an infectious neighbor. And time might be repre
sented in discrete time-steps, although it might not, depending on the decision 
of the researcher. 

Many other real-world processes-or simplified models of real-world pro
cesses-<:an be represented as dynamical systems on networks. The spread 
of news or information between friends, the movement of money through an 
economy, the flow of traffic on roads, data over the Internet, or electricity over 
the grid, the evolution of populations in an ecosystem, the changing concen
trations of metabolites in a cell, and many other systems of scientific interest 
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are best thought of as dynamical processes of one kind or another taking place 
on an appropriate network. 

In other, non-network contexts, the theory of dynamical systems is a well
developed branch of mathematics and physics. (See, for example, the book by 
Strogatz [307].) In this chapter we delve into some of this theory and show 
how it can be applied to dynamical systems on networks. Necessarily our 
introduction only skims the surface of what could be said; dynamical systems 
is a topic of entire books in its own right. But the material covered here gives a 
flavor of the kinds of calculation that are possible. 

18.1 DYNAMICAL SYSTEMS 

Our discussion in this chapter will concentrate principally on deterministic 
systems of continuous real-valued variables evolving in continuous time t. We 
begin by introducing some of the basic ideas in a non-network context, then 
we extend these ideas to networks. 

A simple (non-network) example of a continuous dynamical system is a 
system described by a single real variable x(t) that evolves according to a first
order differential equation 

dx 
dt = f(x), (18.1) 

where f (x) is some specified function of x. Typically we will also give an initial 
condition that specifies the value Xo taken by x at some initial time to· 

The fully-mixed 51 model of Section 17.2 is an example of a dynamical sys
tem of this kind, having a single variable x representing the fraction of infected 
individuals in the system, obeying the equation 

dx ( ) dt = f3x 1 - x . 

(See Eq. (17.5).) Thus in this case we have f(x) = f3x(l - x). 
One can also have dynamical systems of two variables: 

dx 
dt = f(x,y), 

dy 
dt = g(x, y), 

(18.2) 

(18.3) 

and the approach can be extended to larger numbers of variables as welL 
"When we come to consider systems on networks we will put separate vari

ables on each vertex of the network. 
One could also imagine making the functions on the right-hand sides of 

our equations depend explicitly on time t: 

dx () dt = f x, t . (18.4) 

DYNAMICAL SYSTEMS 
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This, however, can be regarded as merely a special case of Eq. (18.3). If we 
write 

dx 
dt = f(x,y), 

dy 
dt = 1, (18.5) 

with initial condition yeO) = 0, then we have y = t for all times and dx/dt = 
f(x, t) as required. By this trick it is always possible to turn equations with 
explicit dependence on t into equations without explicit dependence on t but 
with one extra variable. For this reason we will confine ourselves in this chap
ter to systems with no explicit dependence on t. 

Another possible generalization would be to consider systems governed 
by equations containing higher derivatives, such as second derivatives. But 
these can also be reduced to simpler cases by introducing extra variables. For 
instance the equation 

d2x (dX) 2 dx 
dt2 + dt - dt = f(x), (18.6) 

can be transformed by introducing a new variable y = dx / dt so that we have 

dx 
dt = y, 

dy 
dt =f(x)-l+y, (18.7) 

which is a special case of Eq. (18.3) again. 
Thus the study of systems of equations like (18.1) and (18.3) covers a broad 

range of situations of scientific interest. Let us look at some of the techniques 
used to analyze such equations. 

18.1.1 FIXED POINTS AND LINEARIZATION 

Equation (18.1), which involves only the one variable x, can, at least in princi
ple, always be solved by simply rearranging and integrating: 

f" dx' 
Jxo f(x') = t - to, (18.8) 

although in practice the integral may not be known in closed form. For cases 
with two or more variables, on the other hand, it is not in general possible to 
find a solution. And for the network examples that we will be studying shortly 
the number of variables is typically very large, so that, unless we are lucky (as 
we were with some of the epidemiological models of the previous chapter), 
full analytic solutions are unlikely to be forthcoming. 

We can of course integrate the equations numerically and in some cases this 
can give useful insight. But let's not give up on analytic approaches yet. There 

18.1 

is in fact a well-developed set of techniques for understanding how dynami
cal systems work without first solving their equations exactly. Most of those 
techniques focus on the properties of fixed points. 

A fixed point is a steady state of the system-any value of the variable or 
variables for which the system is stationary and doesn't change over time. In 
the one-variable system, Eq. (18.1), for example, a fixed point is any point x = 

x' for which the function on the right-hand side of the equation is zero 

f(x') = 0, (18.9) 

so that dx/ dt = 0 and x doesn't move. If, in the evolution of the system, 
x ever reaches a fixed point then it will remain there forever. The fixed points 
of a one-variable system can be found simply by solving Eq. (18.9) for x. 

In a two-variable system like Eq. (18.3) a fixed point is a pair of values 
(x', y') such that f(x', y') = 0 and g(x', y') = 0, making dx/ dt = dy/dt = 0 
so that both variables stand still at this point. 

Consider the 51 model of Eq. (18.2). Putting f(x) = 0 in this model gives us 
/lx(1 - x) = 0, which has solutions x = 1 and x = 0 for the fixed points. We 
can see immediately what these fixed points mean in epidemiological terms. 
The first at x = 1 represents the steady state in which everyone in the system 
is infected. Clearly once everyone is infected the system doesn't change any 
more, because there is no one else to infect and because in the SI model no one 
recovers either. The second fixed point x = 0 corresponds to the state of the 
system where no one is infected. In this state no one will ever become infected, 
since there is no one to catch the disease from, so again we have a steady state. 

The importance of fixed points in the shldy of dynamical systems derives 
from two key features of these points: first, they are relatively easy to find, and 
second, it is straightforward to determine the dynamics of the system when it 
is close to, but not exactly at, a fixed point. The dynamics close to a fixed point 
is found by expanding about the point as follows. 

Consider first a simple one-variable system obeying Eq. (18.1). We repre
sent the value of x close to a fixed point at x' by writing x = x' + € where €, 

which represents our distance from the fixed point, is small. Then 

dx d£ , 
dt = dt = f(x +£). (18.10) 

Now we perform a Taylor expansion of the right-hand side about the point 
x = x* to get 

d£ 2 
dt = f(x') + £f'(x') + 0(£ ), (18.11) 

where f' represents the derivative of f with respect to its argument. Neglecting 
terms of order £2 and smaller and noting that f(x') = 0 (see Eq. (18.9)), we then 
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have 

~~ = c!,(x'). (18.12) 

This is a linear first-order differential equation with solution 

£(t) = £(0) e", (18.13) 

where 
A = f'(x'). (18.14) 

Note that A is just a simple number, which we can calculate provided we know 

the position x' of the fixed point and the function f (x). Depending on the sign 
of A, Eq. (18.13) tells us that our distance c from the fixed point will either 

grow or decay exponentially in time. Thus this analysis allows us to classify 
our fixed points into two types. An attracting fixed point is one with A < 0, for 

which points close by are attracted towards the fixed point and eventually flow 

into it. A repelling fixed point is one with A > 0, for which points close by are 

repelled away. In between these two types there is a special case when A = ° 
exactly. Fixed points with A = ° are usually still either attracting or repelling,1 
but one cannot tell which is which from the analysis here; one must retain 

some of the higher-order terms that we dropped in Eq. (18.11) to determine 
what happens. 

Analysis of the kind represented by Eq. (18.12) is known as linear stability 
analysis. It can be applied to systems with two or more variables as well. Con

sider, for instance, a dynamical system governed by equations of the form of 
Eq. (18.3), with a fixed point at (x',y'), meaning that 

f(x',y') = 0, g(x', y') = 0. (18.15) 

We represent a point close to the fixed point in the two-dimensional x, y space 

by x = x'" + Ex and y = y* + tYf where ex and ty are both assumed small. 
As before we expand about the fixed point, performing now a double Taylor 

expansion: 

dx dex (' , ) cit=di=f x +£x,y +£'1 

-f(' ')+ f lx )(" ')+ f l,)(' ')+ - x,y Ex X,}! Elf' X,Y "'f (18.16) 

11l1CfC arc also a couple of other rarer possibilities. A fixed point with i\ = 0 can be neutral, 
meaning it neither attracts nor repels. Points near a neutral fixed point stay exactly where they 
arc, meaning that they are fixed points too. For example, the choice f(x) = 0 for all x has a neutral 
fixed point at every value of x. Another less trivial possibility is that a fixed point with A = 0 
may be of mixed type, meaning that it attracts on one side and repels on the other. An example is 
f(x) = x2 which has a fixed point at x = 0 that is attracting for x < 0 and repelling for x > O. 

18.1 

where fiX) and fly) indicate the derivatives of f with respect to x and y. Making 

use of Eq. (18.15) and neglecting all higher-order terms in the expansion, we 
can simplify this expression to 

(18.17) 

Similarly 

(18.18) 

We can combine Eqs. (18.17) and (18.18) and write them in matrix form as 

dE 
dt = JE, (18.19) 

where E is the tvvo-component vector (Ex, Ey) and J is the Jacobian matrix 

= (~~ ~~l J ag dg , 
- -ax ay 

(18.20) 

where the derivatives are all evaluated at the fixed point. 
For systems of three or more variables we an employ the same approach 

and again arrive at Eq. (18.19), but with the rank of the vectors and matrices 

increasing with increasing number of variables. 
Equation (18.19) is again a linear first-order differential equation but its so

lution is more complicated than for the one-variable equivalent. Let us begin 
with a particular simple case, the case where the Jacobian matrix is diagonal: 

(18.21) 

where ;\1 and ;\2 are real numbers. In this case, the equations for Ex and Ey 

separate from one another thus: 

(18.22) 

and we can solve them separately to get 

£ (t) = £ .(0) e,\,t x x , (18.23) 
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or equivalently 

x(t) = x' + Ex(O) eA
", y(t) = y' + Ey(O) e"", (18.24) 

so that x and y are independently either attracted or repelled from the fixed 
point over time, depending on the signs of the two quantities 

A, = --( af ) 
ax x=x" 

y-y' 

(18.25) 

These results give rise to a variety of possible behaviors of the system near 
the fixed point, as shown in Fig. 18.1. If A, and A2 are both negative, for in
stance, then the fixed point will be attracting, while if they are both positive it 
will be repelling. If they are of opposite signs then we have a new type of point 
called a saddle point that attracts along one axis and repels along the other. In 
some respects a saddle point is perhaps best thought of as a form of repelling 
fixed point, since a system that starts near a saddle point will not stay near it, 
the dynamics being repelled along the unstable direction. 

Unless we are very lucky, however, the Jacobian matrix is unlikely to be 
diagonal. In the general case it will have off-diagonal as well as diagonal el
ements and the solution above will not be correct. With a little more work, 
however, we can make progress in this case too. The trick is to find combi
nations of the variables x and y that move independently as x and y alone do 
above. 

Consider the combinations of variables 

(18.26) 

In matrix form we can write these as 

(~1) = (a b) (EX), 
~2 C d Ey 

(18.27) 

or simply 
I; = Qc, (18.28) 

where Q is the matrix of the coefficients a, b, c, d. 
The time evolution of I; close to the fixed point is given by 

(18.29) 

where we have used Eqs. (18.19) and (18.28). If ~, and ~2 are to evolve inde
pendently, then we require that the matrix Q J Q-l be diagonal, just as J itself 

(a) illl il2 < 0, 

Al < il2 

(d) A"A, > 0, 

Al < "-2 

(b) A"A, < 0, 
Ar = il2 

(e) All "-2 > 0, 
Al = "-2 

(c) A1!;\2 < 0, 
,11 > '\2 

(f)A"A, > 0, 

ill > '\2 

(h) A, < 0 < AJ 

18,1 

Figure 18.1: Flows in the vicinity of different types of fixed points. The flows around 
a fixed point in a two-variable dynamical system with a diagonal Jacobian matrix, as 
described in the text, can take a variety of different forms as shown. (a), (b), and (c) 
are all attracting fixed points, (d), (e), and (I) are repelling, and (g) and (h) are saddle 
points. 
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was in the simple case we studied above. Linear algebra then tells us that Q 
must be the matrix of eigenvectors of J. More specifically, since J is in general 
asymmetric, Q is the matrix whose rows are the left eigenvectors of J and Q-I 
is the inverse of that matrix, which is the matrix whose columns are the right 
eigenvectors of J (since the left and right eigenvectors of a matrix are mutually 
orthogonal). 

Thus, provided we can find the eigenvectors of J we can also find the com
binations ~I and ~2 that move independently of one another near the fixed 
point. These combinations satisfy the equations 

(lS.30) 

where Al and A, are the elements of our diagonal matrix, which are also the 
eigenvalues of J corresponding to the two eigenvectors. Equation (18.30) has 
the obvious solution 

(lS.31) 

The lines ~I = 0 and ~, = 0 play the role of the axes in Fig. IS.I-they 
are lines along which we move either directly away from or directly towards 
the fixed point-and Eq. (lS.31) indicates that our distance from the fixed point 
along these lines will either grow or decay exponentially according to the signs 
of the two eigenvalues. Since the eigenvectors of an asymmetric matrix are not 
in general orthogonal to one another, these lines are not in general at right an
gles, so the flows around the fixed point wiJ1100k similar to those of Fig. IS. 1 
but squashed, as shown in Fig. 18.2. Nonetheless, we can still classify our fixed 
points as attracting, repelling, or saddle points as shown in the figure. Similar 
analyses can be performed for systems with larger numbers of variables and 
the basic results are the same: by finding the eigenvectors of the Jacobian ma
trix we can determine the combinations of variables that move independently 
and hence solve the evolution of the system in the vicinity of the fixed point. 

There is another subtlety that arises for systems of two or more variables 
that is not found in the one-variable case. The eigenvalues of an asymmetric 
matrix need not be real. Even if the elements of the matrix itself are real, the 
eigenvalues can be imaginary or complex. What does it mean if the eigen
values of the Jacobian matrix in our derivation are complex? Putting such 
eigenvalues into Eq. (18.31) gives us a solution that oscillates around the fixed 
point, rather than simply growing or decaying. Indeed, the substitution ac
tually gives us a value for ~I and ~, that itself is complex, which looks like it 
might be a problem, since the coordinates are supposed to be real. However, 

18.1 DYNAMICAL SYSTEMS 

) 

(a) Attracting (b) Repelling (c) Saddle point 

Figure 18.2: Examples of flows around general fixed points. When the Jacobian m~trix 
is not diagonal the flows around a fixed point look like squashed or stretched verSlQns 

of those in Fig. 18.1. 

our equations are linear, so the real part of that solution is also a solution, as is 
the imaginary part, or any combination of the two. 

lf Al = ,,+ iw, for example, where" and w are real numbers, then the 

general real solution for ~I is 

~I(t) = Re[Cela+iwjtj =eat(Acoswt+Bsinwt), (18.32) 

where A and B are real constants and C is a complex constant. Thus the so
lution is the product of a part that oscillates and a part that either grows or 
decays exponentially. For the case of two variables, it turns out that the eigen
values are always either both real or both complex, and if both are complex 
then they are complex conjugates of one another. In the latter case, both ~I and 
1;, then have this combined behavior of oscillation with exponential growth or 
decay, with the same frequency w of oscillation and the same rate of growth 
or decay. The net result is a trajectory that describes a spiral around the fixed 
point. Depending on whether" is positive or negative the spiral either moves 
outward from the fixed point or inward. lf it moves inward, i.e., if" < O. then 
the fixed point is a stable one; otherwise, of " > 0, it is unstable. Thus stability 
is in this case determined solely by the real part of the eigenvalues. (In the 
special case where" = 0 we must, as before, look at higher-order terms in the 
expansion around the fixed point to determine the nature of the pomt.) 

When there are more than two variables, the eigenvalues must eIther be real 
or they appear in complex conjugate pairs. Thus again we have eigendirections 
that simply grow or decay, or that spiral in or out. 

We are, however, not done yet. There is a further interesting behavior aris-

The flows aroWld a fixed 
point whose Jacobian ma
trix has complex eigen
values describe a spiral. 
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ing in systems with two or more variables that will be important when we 
Come to study networked systems. In addition to fixed points, one also finds 
in some systems limit cycles. A limit cycle is a closed loop in the dynamics 
such that a system finding itself on such a loop remains there indefinitely, cir
culating around and returning repeatedly to its starting point. Limit cycles can 
be treated in many ways rather like fixed points: we can study the dynamics 
close to the limit cycle by expanding in a small displacement coordinate. Like 
fixed points, limit cycles tend to be either attracting or repelling, meaning that 
points close to them either spiral inwards toward the limit cycle or outwards 
away from it. 

Physically, limit cycles represent stable oscillatory behaviors in systems. 
We mentioned one such behavior in Section 17.5 in our brief discussion of the 
SIRS model. In certain parameter regimes, the SIRS model can show "waves" 
of infection-oscillatory behaviors under which a disease infects a large frac
tion of the population, who then recover and gain immunity, reducing sub
stantially the number of victims available to the disease and therefore causing 
the number of cases to drop dramatically. When the first wave of individuals 
later loses their immunity they move back into the susceptible state, become 
infected again, and another wave starts. Another example of oscillation in 
a dynamical system is the oscillation of the numbers of predators and prey 
in a two-species ecosystem represented, for example, by the Latka-Volterra 
predator-prey equations [307]. Such oscillations have been famously impli
cated in the mysterious periodic variation in the popUlations of hares and lynx 
recorded by the Hudson Bay Company in Canada during the nineteenth cen
tury. A further discussion of this and other aspects of limit cycles can be found 
in Ref. [307]. 

18.2 DYNAMICS ON NETWORKS 

Let us now apply some of the ideas of the previous section to dynamical sys
tems on networks. First, we need to be clear what we mean by such systems. 
Typically. we mean that we have independent dynamical variables Xi, Yi, . .. on 
each vertex i of our network and that they are coupled together only along the 
edges of the network. That is, when we write our equation for the time evo
lution of a variable Xi, the individual terms appearing in that equation each 
involve only Xi, other variables on vertex i, or one or more variables on a ver
tex adjacent to i in the network. There are no terms involving variables on 
non-adjacent vertices and no terms involving variables on more than one ad
jacent vertex, 

An example of a dy.namical system of this type is our equation (17.35) for 

18.2 DYNAMICS ON NETWORKS 

the probability of infection of a vertex in the network version of the SI epidemic 
model: 

(18.33) 

This equation only has terms involving pairs of variables that are connected 
by edges since these are the only pairs for which Aij is non-zero. 

For a system with a single variable on each vertex we can write a general 
first-order equation 

dXi dt = Ji(X;) + [;Aijgij(xi,Xj), (18.34) 
} 

where we have separated terms that involve variables on adjacent vertices 
from those that do not. You can think of Ji as specifying the intrinsic dynamics 
of a vertex-it specifies how the variable Xi would evolve in the absence of any 
connections between vertices, i.e., if Aj = 0 for all i, j. Conversely, gij describes 
the contribution from the connections themselves; it represents the coupling 
between variables on different vertices. 

Notice that we have specified different functions Ji and gij for each vertex 
or pair of vertices, so the dynamics obeyed by each vertex can be different. In 
many cases, however, when each of the vertices represents a similar thing
such as a person in the case of an epidemic model-the dynamics for each 
vertex may be the same, or at least similar enough that we can ignore any dif
ferences. In such cases, the functions in Eq. (18.34) are the same for all vertices 
and the equation becomes 

dXi 
-d = J(Xi) + [;Aijg(xi,Xj). 

t j 
(18.35) 

In the examples in this chapter we will assume that this is the case. We will 
also assume that the netvvork is undirected so that Aij is symmetric-if Xi is 
affected by Xj then Xj is similarly affected by Xi. (Note, however, that we do not 
assume that the function g is symmetric in its arguments: g(u, v) Ie g(v, u).) 
Again, the 51 model of Eq. (18.33) is an example of a system of this kind, one 
in which J(x) = 0 and g(Xi' Xj) = f3(1 - Xi)Xj. 

18.2.1 LINEAR STABILITY ANALYSIS 

Let us try applying the tools of linear stability analysis to Eq. (18.35). Suppose 
we are able to find a fixed point {xi} of Eq. (18.35) by solving the simultaneous 
equations 

(18.36) 
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for all i. Note that finding a fixed point in this case means finding a value 
Xi = Xi for every vertex i-the fixed point is the complete set {xi}. Note also 
that in general the position of the fixed point depends both on the particular 
dynamIcal process taking place on the network (via the functions f and g) and 
on the structure of the network (via the adjacency matrix). If either is changed 
then the position of the fixed point will also change. 

Now we can linearize about this fixed point in the usual way by writing 
Xi = xi + £if performing a multiple Taylor expansion in all variables simulta
neously, and dropping terms at second order in small quantities and higher: 

dXi dEi * dt = dt = f(xi +6i) + LAijg(xi +6i,Xj +6j) 
j 

= f(xj) + <t Ix~x, + ~A;jg(xi,xn 
+ €i \' Aidg(u, v) I + \' Acdg(u, v) I 

L., I au L., 'I] a + ... 
j 11=1'; ,v=xj j v u=x/ ,v=xt 

=€dfl +€\'Adg(U,V)1 +\'A .. dg(u,v) I 
1 dx X= • 1 ~ 1) au _ ,i _ ., ~ lJ£; (JV + ... , 

• Xi J II-Xi '~'=.\i J U=Xi ,v=x; 

(18.37) 

where we have used Eq. (18.36). 
If we know the position of the fixed point, then the derivatives in these 

expressions are simply numbers. For convenience, let liS write 

(18.38a) 

f3 .. = ag(u,v) I 
lJ a ' u II=X'V=X" 

!' i 

(IS.3Sb) 

ag(u,v) I 
"Iij = a . 

V lI:"'X~ V,,"-"X~ 
" , 

(IS.38c) 

Then 

~€; = [IXi + L f3ijA;] 1 €i + L "IijA;j€j, 
] ] 

(18.39) 

which we can write in matrix form as 

dE 
dt = ME, (18.40) 

18.2 DYNAMICS ON NETWORKS 

where M is the matrix with elements 

Mil = Oij [IXi + ~ f3ikAik 1 + "IijAij, (18.41) 

and Oij is the Kronecker delta. 
We can solve Eq. (18.40) by writing E as a linear combination of the eigen

vectors of M, specifically the right eigenvectors, since M is in general not sym-

metric: 
E(t) = Lc,(t)v" 

so that Eq. (1S.40) becomes 

L dc,. v,. = M Lc,.(t)v, = Lf1,C,.(t)v,., 
r dt r r 

where Fr is the eigenvalue corresponding to the eigenvector VI" 

terms in each eigenvector we then have 

which implies that 
c,(t) = c,(O) e/"'. 

(18.42) 

(IS.43) 

Comparing 

(IS.44) 

(IS.45) 

Immediately we see that if the real parts of all of the eigenvalues fI,' are 

negative, then c,.(t)-and hence €-is decaying in time for all r and our fixed 
point will be attracting. If the real parts are all positive the fixed point will 
be repelling. And if some are positive and some are negative then the fixed 
point is a saddle, although, as before, this is perhaps best looked at as a form 
of repelling fixed point: the flows near a saddle have at least one repelling 
direction, which means that a system starting in the vicinity of such a point 
will not in general stay near it, regardless of whether the other directions are 

attracting or not. 

18.2.2 SPECIAL CASES 

Let us look at some cornman special cases of the general formalism above. 
A particularly simple case is when the fixed point is symmetric, meaning that 
xi has the same value for every i: xi = x'. This occurs in the SI model for 

instance-there is a fixed point at xi = 1 for all i. 
For a symmetric fixed point, the fixed point equation, Eq. (18.36), becomes 

f(X') + LA;jg(x',x') = f(x') +kig(x',x') = 0, (1S.46) 
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where lei is the degree of vertex i and we have made use of lei = I.:j Aij (see 
Eq. (6.19)). Given the appearance of lei here, there are only two ways this equa
tion can be satisfied for all i: either all vertices must have the same degree or 
g( x', x') = 0. Since the former is not really realistic-few networks of interest 
have all degrees the same-let us concentrate on the latter and assume that 

g(x',x') = 0. (IS.47) 

Again the SI model provides an example of this type of behavior. The coupling 
function g is of the form ,Bx(1 ~ x) in that model, which is zero at the two fixed 
points at x = 0,1. 

Equations (1S.46) and (IS.47) together imply also that f(x') = ° and hence 
the fixed point x' is the same in this case as the fixed point for the "intrin
sic" dynamics of a vertex: it falls at the same place as it would if there were 
no connections between vertices at all. The position of the fixed point is also 
independent of the network structure in this case, a point that will shortly be 
important. 

For a symmetric fixed point, the quantities lXi, ,Bij' and "Iij defined in Eq. 
(IS.3S) become 

(IS.4Sa) 

(IS.4Sb) 

(IS.4Sc) 

Then Eq. (1S.39) becomes 

d£j -d = (IX + ,Blei)Ei + "I I: AijEj. 
t j 

(IS.49) 

The situation simplifies further if the coupling function g(Xi,Xj) depends 
only on Xj and not on Xi, i.e., if Xi obeys an equation of the form dXi / dt 
f(Xi) + I.:j Aijg(xj). Then,B = ° and 

(IS.50) 

which we can write in matrix form as 

(IS.51) 

l 
I 18.2 DYNAMICS ON NETWORKS 

As in the general case, the fixed point will be stable if and only if all of the 
eigenvalues of the matrix IXI + "IA are negative. Let v,. be the eigenvector of 
the adjacency matrix with eigenvalue K,. Then 

(IXI + "IA)y,. = lXIv, + "IAv, = lXV, + "IK,.V, = (IX + "IK,.)y, .. (IS.52) 

Hence y, is also an eigenvector of IXI + "lA, but with eigenvalue IX + "IK,. Now 
if all eigenvalues are to be negative, we require that 

(IS.53) 

for all r and from this we can deduce a number of things. First of all it im
plies that IX < ~"IK, for all r. The adjacency matrix always has both positive 
and negative eigenvalues (a result that we will prove in Section IS.3.2), which 
means that for this inequality to be satisfied for all r we must have IX < 0. If 
IX > ° then the fixed point is never stable. 

Second, we can rearrange Eq. (IS.53) to give 

K, < ~IX/"I 
K,. > ~IX/"I 

if"( > 0, 

if "I < 0, 

(IS.54a) 

(IS.54b) 

for all r. Note, however, that if Eq. (IS.54a) is satisfied for the largest (most 
positive) eigenvalue Kj of the adjacency matrix, then it is necessarily satisfied 
by all the other eigenvalues as well. Similarly if Eq. (IS.54b) is satisfied for 
the most negative eigenvalue K" then it is satisfied by all others. Thus the 
conditions above can be simplified to a single condition each: 

if"( > 0, 

if"«O. 

(IS.55a) 

(18.55b) 

Alternatively, we can take reciprocals of these conditions and combine them 

into a single statement: 
1 'Y 1 
~- < ~~ < -. 
Kn IX Kl 

If we want we can fill in the explicit values of IX and "I thus: 

-<~- - <-1 [dg/dfj 1 
KI1 dx dx x=x' 7(1' 

(IS.56) 

(1S.57) 

where we have written g as a function of a Single variable since, by hypothesis, 

it only depends on one argument in this case. 
Equation (18.57) is sometimes called a master stability condition. It has a 

special form: note that Kj and K" depend only on the structure of the network 
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and not on anything about the dynamics, while ff and 'Y depend only the nature 
of the dynamics and not on the network structure. Thus Eq. (18.57) effectively 
gives us a single condition that must be satisfied by any type of dynamics and 
its associated fixed point if that dynamics is to be stable on our network. Or 
conversely, it gives a condition on the network structure, via the largest and 
smallest eigenvalues, that guarantees stability of a given fixed point for a given 
type of dynamics. 

Another case where we can derive a master stability condition is the case 
in which the coupling function g depends on its two arguments according to 
g(Xi,XI) = g(Xi) - g(Xj). A physicist might think of this as a "spring-like" 
interaction-if g(x) were a simple linear function of its argument then Xi and 
XI would act upon one another like two masses coupled by a spring, exerting 
forces that depend on the difference of their positions. More generally, g(x) is 
non-linear and we have a non-linear spring. 

For this choice of coupling, and still assuming a symmetric fixed point, we 
have g(x',x') = 0 as before and hence also f(x') = 0, and the quantities 
defined in Eq. (18.38) become 

Then Eq. (18.39) becomes 

ai=a= dfi ' 
dx x=x' 

~ij = ~ = ~~ ix~x.' 
'Yij = -~. 

dE! 
dt = (a + ~ki)£i - ~ [,Aij£j 

or in rna trix form 

I 

= a£i + ~ [,(kiJij - A;j)€j, 
j 

dE 
dt = (aI + ~L)E, 

where L is the matrix with elements 

(18.58a) 

(18.58b) 

(18.58c) 

(18.59) 

(18.60) 

(18.61) 

We have encountered this matrix before. It is the graph Laplacian-see Eq. (6.43). 
Equation (18.60) is of the same form as Eq. (18.51), with the adjacency ma

trix replaced by the graph Laplacian. Thus we can immediately see that the 
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fixed point will be stable if and only if the eigenvalues A,. of the Laplacian 
satisfy 

a + ~A,. < 0 (18.62) 

for all r. 
As shown in Section 6.13.2, the smallest eigenvalue of the Laplacian matrix 

is always zero, and hence Eq. (18.62), when applied to the smallest eigenvalue, 
implies again that a < 0 is a necessary (but not sufficient) condition for the 
fixed point to be stable, or equivalently 

(18.63) 

Assuming this condition is satisfied then, since all eigenvalues of the Laplacian 
are non-negative it follows that II A,. > -~/a for stability, regardless of the 
sign of ~. Furthermore, if this condition is true for the largest eigenvalue, tra
ditionally denoted A", then it is true for all smaller eigenvalues as well, so the 
requirement for stability can be reduced to the requirement that 1 I A" > - ~ I a, 
or 

;" > -[~~/~~Lx: (18.64) 

along with the condition in Eq. (18.63). 
Again, Eq. (18.64) neatly separates questions of dynamics from questions 

of network structure. The structure appears only on the left of the inequality, 
via the eigenvalues of the graph Laplacian, and the dynamics appears only on 
the right, via derivatives of the functions f and g. 

Apart from establishing a condition for the stability of a fixed point, the 
master stability condition is of particular interest in the study of bifurcations
situations in which a fixed point loses stability as the parameters of a system 
change. If we vary parameters appearing in the definitions of f and g, for 
example, then we can cause a fixed point that initially satisfies a condition 
like (18.64) to stop satisfying it and so become unstable. In practice, this means 
that the system will suddenly change its behavior as it passes through the point 
where II A" = -~/a. At one moment it will be sitting happily at its stable 
fixed point, going nowhere, and at the next, as that point becomes unstable, 
it will start moving, gathering speed exponentially, and quite likely wind up 
in some completely different state far from where it started, as it falls into the 
basin of attraction of a different stable fixed point or limit cycle. We will see 
some examples of behavior of this kind shortly. 
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18.2.3 AN EXAMPLE 

As an example, consider the following simple model of "gossip," or diffusion 
of an idea or fad across a social network Suppose some new idea is circulating 
through a community and Xi represents the amount person i is talking about 
it, which will be governed by an equation of the form (18.35). We will put 

I(X) = a(l- x) (18.65) 

with a > 0, which means that the intrinsic dynamics of a single vertex has a 
stable fixed point at x' = I-each person has an intrinsic tendency to talk this 
much about the latest craze, regardless of whether their friends want to hear 
about it or not. For the interaction term we will assume that people tend to 
copy their friends: they increase the amount they are talking about whatever 
it is if their friends are talking about it more than they are, and decrease if 
their friends are talking about it less. We represent this by putting g(Xi' xi) = 

g(xJ) - g(Xi) with 
bx 

g(x) = l+x (18.66) 

and b > O. This is an increasing function of its argument, as it should be, but 
saturates when x » I-beyond some point, it makes no difference if your 
friends shout louder. 

Now we can apply the general formalism developed above. The symmetric 
fixed point for the model is at Xi = 1 for all i. At this point everyone is talking 
about the topic du jour with equal enthusiasm. This fixed point, however, is 
stable only provided Eqs. (18.63) and (18.64) are satisfied. Equation (18.63) is 
always satisfied, given that a > O. Equation 18.64 implies that 1/ A" > b / 40, or 
equivalently 

4a 
A" < T. (18.67) 

Thus we can make the fixed point unstable, for example, by increasing b to 
the point where the right-hand side of this inequality falls below the largest 
eigenvalue A" of the Laplacian for the particular network we are looking at. 
Increasing b in this case corresponds to increasing the amount of influence 
your friends have on you. 

And what happens when the fixed point becomes unstable? There are no 
other symmetric fixed points for this particular system, since there are no other 
values that give I(x) = 0 (which is a requirement for our symmetric fixed 
point). So the system cannot switch to another symmetric fixed point. One 
possibility is that the variables might diverge to ±oo, and this happens in some 
systems, but not in this one, where the form of I (x) prevents it. Another possi
bility is that the system might begin to oscillate, or even enter a chaotic regime 
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in which it meanders around in pseudorandom fashion indefinitely. In the 
present case, however, it does something simpler. It moves to a non-symmetric 

fixed point, one in which the fixed-point values of the variables Xi are not all 
equal. This is an interesting and perhaps unexpected behavior. Our calcula
tions are telling us when the influence between neighboring individuals in the 
network becomes very strong that instead of driving everyone to behave in the 
same way, as one might expect, it actually causes behaviors to differ. People 
spontaneously develop idiosyncrasies and start doing things their own way. 

18.3 DYNAMICS WITH MORE THAN ONE VARIABLE PER VERTEX 

Our developments so far have assumed that there is only a single variable Xi 

on each vertex i of the network. Many systems, however, have more than one 
variable per vertex. The epidemiological examples of Chapter 17, mostly have 
several-s, XI r, and so forth. 

Consider a system with an arbitrary number of variables xi, x~, . . . on each 
vertex i, but let us assume that we have the same number of variables on 
each vertex and that, as before, they obey equations of the same form. For 
convenience let us write the set of variables on a single vertex as a vector 
xi = (xL Xl' ... ) and then write the equations governing their time evolution as 

dx
i 

_ f( i) "A .. (i i) d - x + L.... 'Ig X,X . 
t j 

(18.68) 

Note that the functions I and g, representing the intrinsic dynamics and the 
coupling, have now become vector functions f and g of vector arguments, with 
the same rank as x. 

Following the same line of reasoning as before, we can study the stability 
of a symmetric fixed point Xi = x' by writing xi = x' + Ei and performing a 
Taylor expansion. The resulting linearized equation for the evolution of the 
11th component of Ei is then 

where I" and gF represent the 11th components of f and g. 

(18.69) 
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As before, the derivatives in this expression are simply constants, and for 
convenience let us define 

so that 

dE;! .. 
ill = I](",,, +ki,B,,,)£~ + EAirr,,,£~] 

[I j 

= E [Jij ("I" + lci,B,,,.) + Aj'l',,,],,( 
jl' 

where Jij is the Kronecker delta again. 
We can write this equation in the matrix form 

(18.70a) 

(18.70b) 

(18.70c) 

(18.71) 

(18.72) 

where M is a matrix whose rows (and columns) are labeled by a double pair 
of indices (i, fl) and whose elements are 

(18.73) 

In principle, we can now determine whether the fixed point is stable by examin
mg the eIgenvalues of this new matrix. If the real parts of the eigenvalues are 
all negattve then the fixed point is stable, otherwise it is not. In practice this 
can be a difficult thing to do in general but, as before, there are some com
mon special cases where the calculation simplifies, yielding a master stability 
condition. 

18.3.1 SPEClAL CASES 

As before we consider the case where g(xi,xj) depends only on its second ar
gument and not on its first. In this case ,B,,, = 0 for all fl, v and Eq. (18.71) 
becomes 

(18.74) 
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Now let v;. be the ith component of the eigenvector v,. of the adjacency matrix 
corresponding to eigenvalue Kr. Let us write 

,,:,(t) = Ec;,(t)v: (18.75) 

This equation expresses the vector of elements 6;1 as a linear combination of 
eigenvectors in the usual way, but with a separate set of coefficients C~I for each 
dynamical variable II. Substituting into Eq. (18.74), we get 

(18.76) 
rv 

Equating terms in the individual eigenvectors on both sides of the equation, 
we thus conclude that 

(18.77) 

We can think of this as itself a matrix equation for a vector c' = (c;, c2, ... ) 
thus: 

~c; = In + 1C,I']C'(t), (18.78) 

where Q and I are matrices with elements iX!IV and fJllif respectively. 
This equation expresses the dynamics of the system close to the fixed point 

as a decoupled set of n separate systems, one for each eigenvalue Kr of the 
adjacency matrix. If the fixed point of the system as a whole is to be stable, 
then each of these individual systems also needs to be stable, meaning that 
their eigenvalues need to be negative, or, more simply, the largest (i.e., most 
positive) eigenvalue of a + K,I' needs to be negative for every r. 

Let us define the function <T(K) to be equal to the most positive eigenvalue 
of the matrix n + KI', or the most positive real part in the case where the eigen
values are complex. Typically this is an easy function to evaluate numerically. 
Notice that a + K, has only as many rows and columns as there are variables 
on each vertex of the netw-ork. If we have three variables on each vertex, for 
instance, the matrix has size 3 x 3, which is easily diagonalized. 

The function <T(K) is called a master stability function. If our system is to be 
stable, the master stability function evaluated at the eigenvalue K,. should be 
negative for all r: 

<T(K,) < o. (18.79) 
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One possible form for the master stability function 
is shown in Fig. IS.3-it becomes large and positive for 
K sufficiently small or sufficiently big, but is negative 
in some intermediate range Kmin < K < Kmax. In that 
case, the system is stable provided all eigenvalues Kr 

of the adjacency matrix fall in this range. Again this 
gives us a master stability condition that separates net
work structure from dynamics. The eigenvalues Kr are 
properties solely of the structure, being derived from 
the adjacency matrix alone, while the limits Kmin and 
"mex are properties solely of the dynamics, being de
rived from the matrices 0:': and r, which are determined 
by the derivatives of the functions f and g. 

Figure 18.3: A sketch of a master stability func
tion. One possible form for the master stability func
tion o-(K) might be as shown here (solid curve), with 
positive values for large and small K but negative val
ues in the intermediate range between Kmin and Kmax. 

If all the eigenvalues of the adjacency matrix (rep
resented by the dots) faU in this intermediate range, 
then the system is stable. 

We can similarly write down the generalization 
of Eq. (IS.5S) to the case of many variables per ver
tex. If the interaction between vertices takes the form 
g(xi,xi) = g(xi) - g(xl),then'l'/w = -(3/w and 

(IS.S0) 

where Lij = bi! - Ai! is an element of the Laplacian. 
Then the equivalent of Eq. (IS.78) is 
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dc' 
cit = [0: + A,i3JC'(t), (18.S1) 

where A, is an eigenvalue of the Laplacian and 13 is the matrix with ele
ments (3/w. Again we can define a master stability function <7(A) equal to the 
most positive eigenvalue of 0: + Ai3 (or the most positive real part for com
plex eigenvalues) and for overall stability of the system this function must be 
negative when A = A, for all r: 

<7(A,) < O. (IS.82) 

And once again, for suitable forms of the master stability function, this allows 
us to develop a stability criterion that separates structure from dynamics. 

IS.3.2 SPECTRA OF COMPLEX NETWORKS 

The formalism of the previous section turns questions about the stability of 
dynamical systems on networks into questions about the eigenvalue spectra 
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of matrices. Given the definition of the dynamics taking place on the vertices 
of a network we calculate the master stability function and then the stability or 
not of the system depends on whether the master stability function is negative 
when evaluated at each of the eigenvalues of the appropriate matrix, such as 
the adjacency matrix or graph Laplacian. In particular, when the master sta
bility function takes a relatively simple form like that sketched in Fig. 18.3, so 
that stability requires only that the eigenvalues fall in some specified range, 
then it is enough to know the smallest (most negative) and largest (most pos
itive) eigenvalues of the matrix to insure stability-if the smallest and largest 
fall in the given range then necessarily all the others do too. 

A number of results are known about the spectra of networks, and in par
ticular about the smallest and largest eigenvalues, which allow us to make 
quite general theoretical statements about stability. For the adjacency matrix, 
for example, we can derive limits on the eigenvalues as follows. 

Let x be an arbitrary real vector of 11 elements, which we will write as a 
linear combination of the eigenvectors v,. of the adjacency matrix A thus: 

Then 

xTAx 

x"x 
Ls csvI A 1:r Crv,. 

l:s Cs vi Lr C,.Vr 

L:rs cscrKrvI vI' 

L,.s c"crvi Vr 

(IS.S3) 

[;1' C~Kr [;r C;Kl 
= --,- < --,- = KI, Lr cr - Lr cr 

(18.S4) 
where, as before, Kj is the largest eigenvalue and we have made use of the fact 
that vI v r = 5rs · This inequality is correct for any choice of x. Thus, for instance, 
ifx = 1 = (1,1,1, ... ) then 

(IS.S5) 

So the largest eigenvalue of the adjacency matrix is never less than the average 
degree of the network. 

Alternatively, suppose that vertex v is the highest-degree vertex in the net
work, with degree kmex , and let us choose the elements of x thus: 

{ 

Vkmox 
Xi = 1 

o 
Then 

if i = v, 
if Aiv = 1, 
otherwise. 

ifi=v } 
if Aiv = 1 = Vkmilx Xi . 

otherwise 

(1S.86) 

(18.S7) 
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(This result is non-trivial and you may find it helpful to work through each of 
the three cases to convince yourself that it is indeed correct.) 

Multiplying both sides of Eq. (18.87) by Xi and summing over i we now get 
xT Ax 2': v'km,x x T x or, using Eq. (18.84), 

xTAx 
Kj 2': --T 2': r,c-x x V f\.max· (18.88) 

Thus the largest eigenvalue of the adjacency matrix is never less than the square 
root of the largest degree. 

Equations (18.85) and (18.88) imply that if we increase either the average 
or the maximum degree in our network, we will eventually increase the max
imum eigenvalue also. In a system with a master stability function like that 
depicted in Fig. 18.3, this will in the end cause the system to become unstable. 

We can also derive similar results for the lowest (most negative) eigen
value K" of the adjacency matrix. We have 

xT Ax _ L:I' C~Kr > Lr C~Kn 
xTx -~~_~=1C1l 

L../ r wr r 
(18.89) 

for any real vector x. So, for instance, if vertex v is again the highest-degree 
vertex in the network and we make the choice 

{ 

v'km" 
Xi = -1 

o 

if i = V, 

if Aiv = 1, 
otherwise, 

then, following the same approach as before, we find that 

(18.90) 

(18.91) 

Thus increasing the highest degree in the network can also make the system 
unstable by the alternative route of decreasing the lowest eigenvalue. Which
ever eigenvalue passes out of the region of stability first will be the one that 
makes the system unstable. 

(We note in passing that Eqs. (18.88) and (18.91) together also tell us that 
the adjacency matrix of an undirected network always has both positive and 
negative eigenvalues, unless the network has no edges in it at all, in which case 
all eigenvalues are zero. We used this result previously in Section 18.2.2.) 

Other results for the eigenvalues of the adjacency matrix can be derived for 
specific models of networks. For example, Chung et al. [68] have shown for the 
configuration model that the expected value of the largest eigenvalue in the 
limit of large network size is 

(le2) 
Kj = (Ie)· (18.92) 

18.4 

In many cases this gives values of Kj considerably above the limits set by 
Eqs. (18.85) and (18.88). On configuration model networks with power-law 
degree distributions, for instance, where (le2

) formally diverges in the limit of 
large n, we expect that Kj will similarly diverge. 

One can also derive results for eigenvalues of the Laplacian. The smallest 
eigenvalue of the Laplacian is simple-it is always zero. For large networks 
the largest eigenvalue A" can be shown to lie in the range [18] 

(18.93) 

which appears to be a relatively large range but in fact tells us a lot, ensuring 
again that the largest eigenvalue is guaranteed to increase if the highest degree 
in the network increases sufficiently. 

18.4 SYNCHRONIZATION 

A topic closely related to the study of dynamical stability is the study of syn
chronization. Many systems of scientific interest can be modeled as oscillators 
of one sort or another. The flashing of fireflies, the ticking of clocks, the syn
chronized clapping of a large audience, and the pathologically synchronized 
firing of brain cells during an epileptic attack can all be modeled as networks 
of oscillators coupled in such a way that the coupling causes the oscillators to 
synchronize. 

The periodic, synchronized oscillations of such an oscillator network cor
respond, in dynamical systems terms, to a limit cycle of the overall dynamics 
(see Section 18.1.1). Like fixed points, limit cycles can be stable or unstable, 
attracting or repelling, depending on whether small perturbations away from 
the periodic behavior tend to grow or decay over time. The mathematics of 
whether synchronized states are stable is very similar to that for fixed points. 
Again one starts with a system of equations of the form of Eq. (18.68) but now 
assumes a periodic limit-cycle solution, Xi(t) = s(t) for all i. Perturbing around 
this solution one can linearize the equations and, depending on the particular 
form of the interaction between vertices, expand the linearized solution as a 
combination of the eigenvectors of an appropriate matrix, such as the adja
cency matrix or Laplacian. The result is a set of n decoupled systems, each 
oscillating independently and each of which must be stable if the system as a 
whole is to be stable. One can define a master stability function cr(A) again, 
corresponding to the growth rate of perturbations away from the periodic so
lution, which in this context is known as a Lyapunov exponent, although it plays 
exactly the same role as the leading eigenvector in our earlier analysis. Once 
again this master stability function must be negative when evaluated at each 

SYNCHRONIZATION 
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of the eigenvalues A of the appropriate matrix and this gives us a condition for 
stability of the synchronized state. 

Many details of the network synchronization process and many special 
cases have been studied. For a comprehensive discussion, the interested reader 
is encouraged to consult the review by Arenas et al. [23]. 

PROBLEMS 

18.1 Consider a dynamical system on a k-regular network (i.e., one in which every 
vertex has the same degree Ie) satisfying 

dXi ill ~ f(Xi) + [;Ai;g(Xi,Xj), 
; 

and in which the initial condition is uniform over vertices, so that Xi(O) = Xu for all i. 

a) Show that xi(l) ~ x(t) for all i where 

dx 
dt ~ f(x) +kg(x, x), 

and hence that ODe has to solve only one equation to solve the dynamics. 

b) Show that for stability around a fixed point at Xi = x* for all i we require that 

18.2 Consider a dynamical system on an undirected network, with one variable per 
vertex obeying 

~~i ~ f(Xi) + [;Aij[g(Xi) - g(x;)], 
; 

as in Section 18.2.2. Suppose that the system has a symmetric fixed point at Xi = x* for 
all i. 

a) Show, using results given in this chapter, that the fixed point is always stable if 
the largest degree kmilx in the network satisfies 

_1 > _2[dg /df j 
kmax dx dx X=.H· 

b) Suppose that f(x) ~ rx(l - x) and g(x) ~ ax'- Show that there are two symmet
ric fixed points for this system, but that one if them is always unstable. 

c) Give a condition on the maximum degree in the network that will ensure the 
stability of the other fixed point. 

• 
18.3 The dynamical systems we have considered in this chapter have all been on un
directed networks, but systems on directed networks are possible too. Consider a dy
namical system on a directed network in which the sign of the interaction along an edge 
attached to a vertex depends on the direction of the edge, ingoing edges having posi
tive sign and outgoing edges having negative sign. An example of such a system is a 
food web of predator-prey interactions, in which an ingoing edge indicates in-flow of 
energy to a predator from its prey and an outgoing edge indicates out-flow from a prey 
to its predator. Such a system can be represented by a dynamics of the form 

where g is a symmetric function of its arguments: g(u, v) = g(v, u). 

a) Consider a system of this form in which the in- and out-degrees of every vertex 
are equal to the same constant k. Show that such a system has a symmetric fixed 
point xi = x* for all i satisfying f(x*) = O. 

b) Writing Xi = x* + E; linearize around this fixed point to show that in the vicinity 

of the fixed point the vector € = (tll €2, ... ) satisfies 

dE 
dl ~ (aI + I'M)E, 

where M = A - AT. Determine the values of the constants a and [3. 

c) Show that the matrix M has the property MT = - M. Matrices with this property 
are called skew-symmetric matrices. 

d) If v is a right eigenvector of a skew-symmetric matrix M with eigenvalue ti, show 
that v T is a left eigenvector with eigenvalue -tl. Hence by considering the equal

ity 
V*TtIV v*TMv 

? ~ v,T
V 
~ V,T

V 

show that the complex conjugate of the eigenvalue is tt* = - tt and hence that all 
eigenvalues of a skew-symmetric matrix are imaginary. 

e) Show that the dynamical system is stable if Re( a + f3llr) < 0 for all eigenvalues Fr 
of the matrix M, and hence that the condition for stability is simply a < O. 

The last result means that if the individual vertices are stable in the absence of interac
tion with other vertices, then the coupled dynamical system is also stable at the sym

metric fixed point. 

18.4 Following the arguments of Section 18.2.2 the stability of a fixed point in certain 
dynamical systems on netvvorks depends on the spectrum of eigenvalues of the adja
cency matrix. Suppose we have a dynamical system on a network that takes the form 
of an L x L square lattice with periodic (toroidal) boundary conditions along its edges, 
and suppose we label each vertex of the lattice by its position vector r = (i, j) where 
i, j = 1 ... L are the row and column indices of the vertex. 

PROBLEMS 
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a) Consider the vector v with one element for each vertex such that Vr = exp(ikT r). 
Show that this vector is an eigenvector of the adjacency matrix provided 

where 111 and 112 are integers. 

k~2n(l1j), 
L /12 

b) What range of values is permitted for the integers n 1 and 112? Hence find the 
largest and smallest eigenvalues. 

18.5 Consider a network with an oscillator on every vertex. The state of the oscillator 
on vertex i is represented by a phase angle Bj and the system is governed by dynamical 
equations of the form 

de, " ill ~ W + L..,A'jg(e, ~ ell, 
} 

where w is a constant and the function g(x) respects the rotational symmetry of the 
phases, meaning that g(x + 2n) ~ g(x) for all x. 

a) Show that the synchronized state f}i = tJ* = wt for all i is a solution of the dynam
ics. 

b) Consider a small perturbation away from the synchronized state ei = e~ + E; and 
show that the vector E = (El' E2, . .. ) satisfies 

dE '() dt ~ g 0 LE, 

where L is the graph Laplacian. 

c) Hence show that the synchronized state is stable against small perturbations if 
and only if g' (0) < O. 

CHAPTER 19 

NETWORK SEARCH 

A discussion of methods for searching networks for 
particular vertices or items, a process important for web 
search and peer-fa-peer networks, and for our 
understanding of the workings of social networks 

I
N CHAPTER 4 we saw a number of examples of networks that have infor
mation stored at their vertices: the World Wide Web, citation networks, 

peer-to-peer networks, and so forth. These networks can store large amounts 
of data but those data would be virtually useless without some way of search
ing through them for particular items. So important is it to be able to perform 
fast and accurate searches that the companies that provide the most popular 
search services are now some of the largest in their respective industries
Google, Thomson Reuters, LexisNexis-and constitute multibillion dollar in
ternational operations. In this chapter we examine some of the network issues 
involved in efficient searching and some implications of search ideas for the 

structure and behavior of networks. 

19.1 WEB SEARCH 

We have already discussed briefly some aspects of how web search engines 
work in Sections 4.1, 7.4, and 7.5. In this section we discuss the issue in more 

detail. 
Traditional, or offline, web search is a multistage process. It involves first 

"crawling" the Web to find web pages and recording their contents, then cre
ating an annotated index of those contents, including lists of words and esti
mates of the importance of pages based on a variety of criteria. And then there 
is the search process itself, in which a user submits a text query to a search 
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engine and the search engine extracts a list of pages matching that query from 
the index. 

The process of web crawling by which web pages are discovered is interest
ing in itself and exploits the network structure of the Web directly. The crawler 
follows hyper links between web pages in a manner similar to the breadth-first 
search algorithm for finding components described in Section 10.3. The ba
sic process is described in Section 4.1. Practical web crawlers for big search 
operations employ many elaborations of this process, including: 

o Searching in parallel at many locations on the Web simultaneously using 
many different computers, 

o Placing the computers at distributed locations around the world to speed 
access times to pages coming from different places, 

o Repeatedly crawling the same web pages at intervals of a few days or 
weeks to check for changes in page contents or pages that appear or dis
appear, 

o Checking on pages more often if their contents have historically changed 
more often, 

o Checking on pages more often if they are popular with users of the search 
engine, 

o Heuristics to spot dynamically generated pages that can lead a crawler 
into an infinite loop or tree of pages and waste time, 

o Targeted crawling that probes more promising avenues in the network 
first, and 

o Altered behavior depending on requests from owners of specific sites, 
who often allow only certain crawlers to crawl their pages, or allow 
crawlers to crawl only certain pages, in order to reduce the load on their 
servers. 

At their heart, however, most web crawlers are still dumb animals, following 
links and recording what they see for later processing. 

The processing of the raw crawler output also has interesting network
related elements. Early search engines simply compiled indexes of words or 
phrases occurring in web pages, so one could look up a word and get a list 
of pages containing it. Pages containing combinations of words could also be 
found by taking the sets of pages containing each individual word in the com
bination of interest and forming the intersection of those sets. Indexes can be 
extended by adding annotations indicating, for example, how often a word ap
pears on a page or whether it appears in the page title or in a section heading, 
which might indicate a stronger connection between that word and the subject 
matter of the page. Such annotations allow the search engine to make choices 

about which are the pages most relevant to a given query. Even so, search en
gines based solely on indexes and textual criteria of this sort do not return very 
good results and have been superseded by more sophisticated technology. 

Modern search engines do still use indexes in their search process, but only 
as a first step. A typical modern search engine will use an index to find a set 
of candidate pages that might be relevant to the given query and then narrow 
that set down using other criteria, some of which may be network-based. The 
initial set is usually chosen deliberately to be quite broad. It will typically 
include pages on which the words of the query appear, but also pages on which 
they don't appear but that link to, or are linked to by, pages that do contain 
the query words. The net result is a set of pages that probably includes most 
of those that might be of interest to the user submitting the query, but also 
many irrelevant pages as well. The strength of the search engine, its ability to 
produce useful results, therefore rests primarily on the criteria it uses to narrow 
the search within this broad set. 

The classic example of a criterion for narrowing web searches comes from 
the Google search engine, which makes use of the eigenvector centrality mea
sure known as PageRank, discussed in Section 7.4. PageRank accords pages a 
high score if they receive hyperlinks from many other pages, but does so in a 
way such that the credit received for a link is higher if it comes from a page that 
is itself highly ranked. PageRank, however, is only one of many elements that 
go into the formula Google uses to rank web pages. Others include traditional 
measures such as frequency of occurrence of query words in the page text and 
position of occurrence (near the top or bottom, in titles and headings, etc.), as 
well as occurrence of query words in "anchor text" (the highlighted text that 
denotes a hyperlink in a referring page) and previous user interest in a partic
ular page (whether people selected this page from the list of search results on 
other occasions when the same text query, or a similar one, was entered). 

Google gives each web page in the initial set a score that is a weighted 
combination of these elements and others. The particular formula used is a 
closely guarded secret and is moreover constantly changing, partly just to try 
and improve results, but also to confound the efforts of web page creators, who 
try to increase their pages' ranking by working out what particular elements 
carry high weight in Google's formula and incorporating those elements into 
their pages. 

An important point to appreciate is that some parts of the score a page 
receives depend on the particular search query entered by the user-frequency 
of occurrence of query words, for instance-but others, such as PageRank, do 
not. This allows Google's computers (or their counterparts in other search 
companies) to calculate the latter parts "offline," meaning they are calculated 
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ahead of time and not at the time of the query itself. This has some advantages. 
PageRank, for instance, is computationally intensive to calculate and it saves 
a lot of time if you only have to calculate it once. But there are disadvantages 
too. PageRank measures the extent to which people link to a given web page, 
but people may link to a page for many reasons. Thus a page may have a 
high PageRank for a reason unrelated to the current search query. A page 
whose text makes mention of two or more different topics (and many do) may 
be a crucIal authonty on one topic but essentially irrelevant on another, and 
PageRank cannot distinguish between the two. 

One could imagine a version of PageRank that was specific to each individ
ual query. One could calculate a PageRank score within just the subnetwork 
formed by the set of pages initially selected from the index to match the query. 
But thIS would be computationally expensive and it's not what Google does. 
As a result it is not uncommon for a page to be ranked highly in a particu
lar search even though a casual human observer could quickly see that it was 
lfrelevant to the search topic. In fact, a large fraction of "bad" search results 
returned by search engines probably fall in this category: they are pages that 
are Important In some context, but not in the context of the specific search con
ducted. 

. The overall process behind searches on Google and similar large search en
gmes IS thus as follows [55]. First the Web is crawled to find web pages. The 
text of those web pages is processed to created an annotated index, and the link 
structure of the hyperlinks between them is used to calculate a centrality score 
or scores for each page, such as PageRank in Google's case or (presumably) 
some sImIlar measure for other search engines. When a user enters a query 
the search engine extracts a deliberately broad set of matching pages from the 
mdex, scores them according to various query-specific measures such as fre
quency of occurrence of the query words, then combines those scores with the 
pre-.computed centrality measure and possibly other pre-computed quantities, 
to gIve each page in the set an overall score. Then the pages are sorted in order 
of their scores and the ones with the highest scores are transmitted to the user. 
Typically only a small number of the highest-scoring pages are transmitted
say the first ten-but with an option to see lower-scoring pages if necessary. 
. DespIte the reservations mentioned above, this system works well in prac

bce, far better than early web search engines based on textual content alone, 
and provides useful search results for millions of computer users every day. 

19.2 SEARCHING DISTRIBUTED DATABASES 

19.2 SEARCHING DISTRIBUTED DATABASES 

Some information networks form distributed databases. A typical example 
is a peer-to-peer file-sharing network, in which individual computers in the 
network each store a subset of the data stored in the network as a whole. The 
form and function of peer-to-peer networks were described in Section 4.3.1. 

The "network" in a peer-to-peer network is typically a virtual one, in which 
individual computers maintain contacts with a subset of others, which are not 
necessarily those with which they have direct physical data connections. In 
this respect peer-to-peer networks are somewhat similar to the World Wide 
Web, in which the hyperlinks between websites are virtual links chosen by a 
page's creator and their topology need have nothing to do with the topology 
of the underlying physical Internet. Indeed, the World Wide Web is itself, in a 
sense, a distributed database, storing information in the pages at its vertices, 
but web search works in a fundamentally different way from search in other 
distributed databases, so we treat the two separately. 

Search is a fundamental problem in peer-to-peer networks and similar sys
tems: how do we find specific items among those stored at the many vertices 
of the network? One way would be to copy the web search approach of Sec
tion 19.1 and construct a comprehensive index of all items at some central 10-

cation and then search that index for items of interest. For a variety of reasons, 
however, most peer-to-peer networks don't go this route, but instead make use 
of distributed search techniques in which the search task is shared among the 
computers in the network via messages passed along network edges. Indeed 
the performance of such distributed searches is the primary reason for link
ing the vertices into a network in the first place and there are some interesting 
principles relating the structure of the network to the efficiency with which 
searches can be performed. 

Suppose that we have a peer-to-peer network composed of n individual 
computers and each computer is linked by virtual connections to a selection 
of the others, where "linked" in this context merely means that these others 
are the ones with which a computer has agreed to communicate directly in 
the course of performing searches. There is no reason in principle why a com
puter could not communicate with all others if it wanted to, but in practice 
this would demand too much effort or data bandwidth, and limiting the num
ber of network neighbors a computer has brings the resources required within 

reasonable bounds. 
The simplest form of distributed search, used in some of the earliest peer

to-peer networks, is a version of the breadth-first search algorithm described in 
Section 10.3 (where it was used for finding network components and shortest 
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paths). Under this approach, a user gives the computer a search term, such 
as the name of a computer file, and the computer sends a query to each of its 
neighbors in the peer-to-peer network, asking if they have the file in question. 
If they do, they send the file to the first computer and the search is complete. 
If they don't, then they send a further query to each of their neighbors asking 
for the file. Any neighbor that has seen the query before, such as the computer 
that originated it in the first place, ignores it. All others check to see if the have 
the requested file and send it back to the originating computer if they do. If 
not, they pass the query on to their neighbors, and so on. 

This simple strategy certainly works and it has some advantages. For in
stance, assuming that the network displays the small-world effect (Section 8.2), 

the number of steps we will have to take in our breadth-first search will be 
small even when the network is large (typically increasing only logarithmi
cally with l1-see Section 12.7). This means that most searches will take only a 
short amount of time to find the desired file. 

But there are some serious disadvantages with the approach as welL First, 
as we have described it the search doesn't actually stop when the target file 
is found. There is no mechanism to inform computers that the file has been 
found and that they don't need to pass the query on to anyone further. This 
problem can be fixed relatively easily, however, for example by requiring each 
computer receiving the query to check with the originating computer to see if 
the file has been found before they do anything else. 

A more serious problem is that the messages transmitted in the process of 
spreading a query across the network quickly add up to a huge amount of data 
and can easily overwhelm the capacity of the computers involved. Assuming 
a worst-case scenario in which a desired file exists on only a single computer 
in the network, we will, on average, have to pass our query to half of all com
puters before we find the file. That means the number of messages sent in the 
course of one query is 0(11). Suppose that users perform queries at some con
stant average rate r, so that the overall rate of queries is rn = 0(11). Then the 
total number of messages sent per unit time is 0(11) x 0(11) = 0(112) and the 
number of messages per computer per unit time is, on average, 0(112)/11 = 

O( 11), which goes up linearly with the size of the network. This means that, no 
matter how much bandwidth our computers have to send and receive data, it 
will in the end always become swamped if the network becomes large enough. 
And peer-to-peer networks can become extremely large. Some of the largest 
have millions of users. 

Luckily this worst-case scenario is not usually realized. It is in fact rarely 
the case that an item of interest exists on only one computer in a network. Most 
items in typical peer-to-peer networks exist in many places. Indeed, assuming 

1 
i 
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that some fraction of the user population likes or needs each item, it is more 
reasonable that any given item appears on some fixed fraction c of the vertices 
in the network, so that the total number of copies ell goes up as the size of the 
network increases. If this is the case, and assuming for the moment that the 
value of c is the same for every item, then one will have to search on average 
only 1/ e vertices before finding a copy of an item. This means that the total 
number of query messages sent over the network per unit time is O( 11 / e) and 
the number per computer per unit time is 0(1/ e), which is just a constant and 
does not increase with increasing network size. 

A more realistic calculation allows for the fact that some items are more 
popular than others. Suppose that the factors e, which are proportional to 
popularity, have a distribution p(e), meaning that the probability of falling in 
the interval e to e + de is p(e) de. Also important to note is that not all items 
are searched for with equal frequency. Indeed a more reasonable assumption 
is that they are searched for with frequency proportional to their popularity, 
i.e., that the probability of a search query asking for an item with popularity 
in the interval c to e + de is ep(e) de/ (e), where the factor of (c) = .r cp(e) de 
insures that the distribution is properly normalized. Then the average number 
of vertices we have to examine before we find the item corresponding to a 
typical query is 

!' ~ ep(e) de = ~ 
Jo e (c) (e)' 

(19.1) 

and hence the number of query messages sent or received per computer per 
unit time is 0(1/ (e), which is again a constant as network size becomes large. 

In principle, therefore, if a node can handle messages at the rate given by 
Eq. (19.1) then the network should go on functioning just fine as its size be
comes large. In practice, however, there are still problems. The main difficulty 
is that vertices in the network vary enormously in their bandwidth capabil
ities. Most vertices have relatively slow communications with the network, 
i.e., low bandwidth, while a few have much better, higher-bandwidth connec
tions. This means that even if bandwidth requirements per vertex are reduced 
to a constant as above, the network will still run at a speed dictated by the 
majority slow vertices, making queries slow and possibly overwhelming the 
capacity of some vertices. 

To get around this problem, most modern peer-to-peer networks make use 
of supemades (also called superpeers). Supernodes are high-bandwidth nodes 
chosen from the larger population in the network and connected to one an
other to form a supernode network over which searches can be performed 
quickly-see Fig. 19.1. 
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Figure 19.1: The structure of a peer-to-peer network with supemodes. Client nodes 
(filled circles) are connected to a network of supernodcs (open circles) that have above
average network bandwidth and hence can conduct searches quickly. 

A supernode acts a little like a local exchange in a telephone network (see 
Section 2.2). Each normal user, or client, in the network attaches to a super
node (or sometimes to more than one) that acts as their link to the rest of the 
network. Each supernode has a number of such clients and the clients com
municate to the supernode a list of the files or other data items they possess 
so that the supernode can respond appropriately to search queries from other 
supernodes. An individual client wanting to perform a search then sends their 
search query to the local supernode, which conducts a breadth-first search in
terrogation of the network of supernodes to find the desired item. Since the 
supernodes possess records of all the items that the clients have, the entire 
search can be performed on the network of supernodes alone and no client 
resources are used at all. And since the supernodes are deliberately selected 
to have fast network connections, the search runs at the speed of the quickest 
vertices in the network. 

In practice schemes like this work quite well-well enough to be in wide 
use in peer-ta-peer networks of millions of users. More sophisticated schemes 
have been devised that in theory could work better still-an example is the 
"Chord" system proposed by Stoica et al. [30S]-but such systems have yet 
to find widespread adoption since the more traditional supernode approach 
appears to work well enough for practical purposes. 

, 
19.3 

19.3 MESSAGE PASSlNG 

A different variation of the distributed search problem is the problem of getting 
a message to a particular node in a network. The classic example of this prob
lem is Stanley Milgram's "small-world" experiment, described in Section 3.6, 
In this experiment participants were asked to get a message to a specific target 
individual by passing it from acquaintance to acquaintance through the social 
network. Milgram famously found that messages that arrived at the destina
tion passed through only about six people on their way, which is the origin of 
the popular concept of the "six degrees of separation." As discussed in Sec
tion 3.6

f 
however

f 
there is another perhaps more surprising implication of the 

experiment, first pointed out by Kleinberg [177], which is that short paths not 
only exist in the network but that people are remarkably good at finding them. 
Of course if one knows the structure of an entire network then one can find 
short paths directly using, for example, the breadth-first search method of Sec
tion 10.3.5. Participants in Milgram's experiment, however, did not know the 
whole network and probably only knew a very small part of it, and yet they 
were still able to get a message rapidly to the desired target. 

This observation raises a number of interesting questions. How, in prac
tice, did people find these short paths to the target? Can we come up with an 
algorithm that will do the job efficiently? How does the performance of that 
algorithm depend on the structure of the network? In the following sections 
we consider two different models of the message passing process that address 
these questions. As we will see, these models suggest that social (or other) net
works must have a very particular type of structure if one wants to be able to 
find short paths easily without a global knowledge of the network. 

19.3.1 KLElNBERC'S MODEL 

The instructions to the participants in Milgram's experiment were that upon 
receiving the message (actually a small booklet or "passport" sent through 
the mail), they were to forward it to an acquaintance who they believed to be 
closer to the target than they were. The definition of "closer" was left vague, 
however, and one of the first things we need to do if we want to model the 
mechanics of the experiment is decide on a practical definition. 

An illuminating attempt at modeling Milgram'S experiment was made by 
Kleinberg [177,178], who employed a variant of the small-world model of Sec
tion 15.1, as shown in Fig. 19.2. As in the standard small-world model, it has 
a ring of vertices around the edge plus a number of "shortcut" edges that con
nect vertex pairs at random points around the ring. In Kleinberg's model all 
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Figure 19.2: The variant small-world model used to model message passing. In the 
variant of the small-world model used here, vertices are connected around a ring and 
shortcuts added between them as in the normal small-world model. However, the 
shortcuts are now biased so that there are more of them connecting nearby vertices 
than distant vertices. The strength of the bias is controlled by the parameter lx. In the 
proof given in the text, the vertices are divided into numbered classes, class 0 consisting 
of just the target vertex and higher classes radiating out from the target, each successive 
class containing twice as many vertices as the previous one. 

vertices are connected to their two immediate neighbors around the ring
e = 2 in the notation of Chapter IS-and Kleinberg made use of the connec
tions in the ring to define the" closeness" of vertices for the purposes of the 
message-passing experiment. He proposed that individuals in the network, 
represented by vertices, are aware of the distance around the ring to other in
dividuals, and hence can say when one of their acquaintances is U closer" to the 
target vertex than they are in this sense. 

In his calculations Kleinberg considered a greedy algorithm for message pass
ing in which each individual receiving a message passes it on to the one of 
their neighbors who is closest to the target in the sense above. This algorithm 
is guaranteed always to get the message to the target eventually. Every indi
vidual has at least one neighbor who is closer to the target in the Kleinberg 

19.3 

sense than they are-their neighbor around the ring in the direction towards 
the target. Thus on each step of the message passing process the message is 
guaranteed to get at least one step closer to the target around the ring and 
hence it must eventually get to the target. In the worst case individuals simply 
pass the message around the ring until it reaches its destination but generally 
we can expect to do better than this because of the shortcuts. The question 
is how much better. Kleinberg showed that it is possible for the greedy algo
rithm to find the target vertex in O(log' n) steps, but that it can do so only for 
particular choices of the arrangement of the shortcuts. 

Kleinberg considered a one-parameter family of models that generalizes 
the standard small-world model by allowing for different arrangements of the 
shortcuts.' Instead of assuming that shortcuts are placed uniformly at random, 
we assume (not unreasonably) that people have more acquaintances among 
those close to them (in the sense defined above) than among those far away. 
By analogy with the standard small-world model let us place shortcuts around 
the ring equal in number to p times the number of edges in the ring itself, 
which in this case is just n. Since each shortcut has two ends this means that 
the average number of shortcuts attached to each vertex will be 2p (and the ac
tual number will be Poisson distributed with mean 2p). Where we differ from 
the standard small-world model is in how these shortcuts are placed. Short
cuts are still placed at random, but they are chosen so that the probability of 
a particular shortcut covering a distance r around the ring is Ky-It f where rt 

is a non-negative constant and K is a normalizing constant. That is, for each 
shortcut we choose first its length r from this distribution, then we place the 
shortcut, spanning exactly r vertices, at a position around the ring chosen uni
formly at random. If IX = ° then we recover the standard small-world model 
of Section 15.1, but more generally, for IX > 0, the model has a preference for 
connections between nearby vertices. 

Note that the probability that a particular shortcut connects a specific pair 
of vertices a distance r apart is equal to Kr-" I n, which is the probability Kr- O 

that the shortcut has length r multiplied by the probability lin that out of the 
n possible choices it falls in the speCific position around the ring that connects 
the two vertices in question. Given that there are np shortcuts in the whole 
network, this means that the total probability of having a shortcut between 

lThe model we use is a somewhat simplified version of Kleinberg'S. His modcl, for instancc, 
used a two-dimensional lattice instead of a one-dimensional ring as the underlying struchtre on 
which the model was built. The calculations, however, work just as well in either case. Our model 
also places shortcuts at random, where Kleinberg's fixed the number attached to each vertex to be 
constant and also made them directed rather than undirected. 
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a given pair of vertices is np x Kr-" /n = pKr-". (More correctly, this is the 
expected number of such shortcuts, but so long as the number is small, the 
difference is negligible.) 

The normalizing constant K is fixed by the condition that every shortcut 
must have some length, and that all lengths lie between 1 and ~ (n - 1), so thae 

i (11-1) 

K L: r-a = l. (19.2) 
r=l 

We can approximate the sum by an integral using the trapezoidal rule of Eq. 
(14.115) thus: 

which gives 

{

(I - o:)(~n)""1 

K"" l/ln~n 
2(0: -1)/(0: + 1) 

as n becomes large.3 

for 0: < 1, 
for 0: = 1, 
for 0: > 1, 

(19.3) 

(19.4) 

We can now show that, for suitable choice of 0:, the greedy algorithm on this 
network can indeed find a given target vertex quickly. The proof is as follows. 
Suppose, without loss of generality, that the target vertex is at the top of the 
ring, as depicted in Fig. 19.2, and let us divide up the other vertices into classes 
according to their distance from the target. Class 0 consists of just the target 
itself. Class 1 consists of all vertices distance d = 1 from the target around the 
ring, of which there are two. Class 2 consists of vertices with distances in the 
range 2 <:; d < 4, class 3 of vertices 4 <:; d < 8, and so forth. Each class is double 
the size of the previous one. In general, class k consists of vertices at distances 
2k- 1 <:; d < 2k and contains nk = 2k vertices. (For simplicity, let us assume that 
the total number n of vertices is a power of two, minus one, so that everything 
works out neatly.) 

Now consider a message being passed through the network according to 
the greedy algorithm described above and suppose that at a particular step of 

2The maximum length of a shortcut is ! (n - 1) if n is odd and! n if n is even. We will assume 
that n is odd in this case, which avoids some small armoyances in the derivations. 

3Note that both the numerator and denominator of the fraction in Eq. (19.3) vanish at It = 1, 
so one must use l'Hopital's rule to extract the limiting value. The same goes for Eq. (19.8). 
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the process the message is at a vertex of class k. How many more steps will it 
take before the message leaves class k and passes into a lower class? The total 

number of vertices in lower classes is 

k .. " .. l k--l 

" " 2'" 2k 1 > 2k
-

1 w nm = w = - , (19.5) 
IJl=O 1Il='() 

and from Fig. 19.2 we can see that all of these are, at most, a distance 3 x 2k -

2 < 2H ' from the vertex in class k that currently holds the message. Thus the 
probability of the vertex with the message having a shortcut to a particular one 
of these vertices in lower classes is at least pK 2-(k+2)" and the probability of 
having a shortcut to any ofthem is at least pK2k- I -(kiZ)a. 

If our vertex has no shortcut that takes the message out of class k then, in 
the worst case, it simply passes the message to another vertex in class k that is 
closer to the target, either via a shortcut or by passing around the ring. Using 
the probability above, the expected number of such moves made before we 

find a shortcut that takes us out of class k is at most 

1 = .2.. 2,,+12(a-l)k. 
pK2k~I-(k+')" pK 

(19.6) 

Finally, again in the worst case, the message will pass through each of the 
classes before reaching the target. There are log, (n + 1) classes in total and 
summing over them we find that an upper bound on the expected number of 

steps £ needed to reach the target is 

1 !Og2(11+1) 1 2((1:-~'1)[1+1og2(Il+l)l -1 
£ < _ 22,+1 " 2("" I)k - - 2'Hl =---;o:c-c.--c;---

-pK L., -pK 2"1-1 
k=O 

= .2.. 2'HI [2(n + 1)]"-1 -1 
pK 2"-1 - 1 

(19.7) 

Making use of Eq. (19.4) for the constant K and taking the limit of large n we 

find that asymptotically 

ifo:<l, 
if 0: = 1, 
if a > 1, 

(19.8) 

where A, B, and C are constants depending on 0: and p, but not n, whose rather 
complicated values we can work out from Eqs. (19.4) and (19.7) if we want. 

Since Eq. (19.8) gives an upper bound on £, this result guarantees that for 
the particular case 0: = 1 we will be able to find the target vertex in a time 

MESSAGE PASSING 

717 



NETWORK SEARCH 

718 

that increases as log' n with the size of the network. This is not quite as good 
as log n, which is the actual length of the shortest path in a typical network, 
but it is still a slowly growing function of n and it would be fair to claim that 
the small-world experiment would succeed in finding short paths in a network 
that had" = 1. Thus it is possible, provided the network has the correct struc
ture, for a simple strategy like the greedy algorithm, in which vertices have 
knowledge only of their immediate network neighborhood, to produce results 
similar to those observed by Milgram in his experiment. 

On the other hand, if " '" 1 then Eq. (19.8) increases as a power of n, sug
gesting that it would take much longer in such networks to find the target 
vertex. In particular, for the original small-world model of Section 15.1, which 
corresponds to " = 0, Eq. (19.8) grows linearly with n, suggesting that the 
Milgram experiment could take millions of steps to find a target in a social net
work of millions of people. Equation (19.8) is only an upper bound on the time 
taken, so if one is lucky one may be able to find the target faster. For instance, 
if the message starts at a vertex that happens to have a shortcut directly to the 
target vertex then one can find the target in a single step. However, Klein
berg [178] was also able to prove that the average time it takes to find the target 
increases at least as fast as a power of n except in the special case a = I, so in 
general the greedy algorithm for " '" 1 will not work well'" 

These results tell us two things. First, they tell us that it is indeed possible 
for the small-world experiment to work as observed even if the participants 
don't know the details of the whole network. Second, they tell us that, at 
least within the context of the admittedly non-realistic model used here, the 
experiment only works for certain very special values of the parameters of the 
network. Thus the success of Milgram's experiment suggests not only that, as 
Milgram concluded, there are short paths in social networks, but also that they 
have a particular structure that makes path finding possible. 

19.3.2 A HIERARCHICAL MODEL OF MESSAGE PASSING 

While interesting, the results of the previous section are not wholly convincing 
because the model is clearly not a realistic one. People don't live around a 
circle with just a few shortcuts to others, and message passing doesn't work 
because people know where others live on the circle. 

41n fact, since Kleinberg was studying a two-dimensional version of the small-world modeIr 
his result was for t.Y = 2, not It = 1. In general, on a small-world network built on ad-dimensional 
lattice, the greedy algorithm succeeds in finding the target in time O(log2 11) only when It = d and 
for all other values takes time increasing at least as a power of n. 

, 
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So can we derive similar results for a more realistic network model? To 
answer this question let us first ask how message passing does work. We 
can get a hint from the "reverse small-world" experiments of Killworth and 
Bernard [39,174] discussed in Section 3.6. Recall that in these experiments re
searchers asked subjects to imagine that they were participating in Milgram's 
small-world experiment and then asked them what information they would 
want to know about the target in order to make a decision about who to pass 
their message on to. Killworth and Bernard found that three pieces of informa
tion were sought more often than any others, and by almost all subjects: the 
name, occupation, and geographic location of the target. 

The target's name is an obvious requirement in the small-world experi
ment, since it's needed to recognize the target when you find him or her. Be
yond that, however, it probably doesn't play much role in the message pass
ing, except perhaps in cultures where names can give a clue as to the location 
or social status of an individual. Occupation and geographic location, on the 
other hand, are of great use in deciding how to forward a message, and these 
appear to be the primary pieces of information participants in the experiment 

use. 
Take geographic location as an example. How would one use information 

on geography to route a message? Presumably, one would attempt to pass the 
message to someone closer geographically to the target than oneself. Suppose 
for instance that the target lives, as Milgram's did, in a suburb of the city of 
Boston, Massachusetts, in the United States. A participant in, say, England, 
attempting to get a message to this target, would perhaps first forward it to 
someone they knew in the US. That person might forward it in turn to someone 
they knew in the state of Massachusetts, who would forward it to someone in 
Boston, who would forward it to the target's specific suburb, and so forth. At 
each step in the process, the participants narrow down the search to a smaller 
and smaller geographic area until, with luck, the area is so small that someone 

there knows the target individual directly. 
In a sense, this is what happens in Kleinberg'S model. In Section 19.3.1 we 

divided Kleinberg's circle into zones or classes that get ever smaller as they 
close in on the target and showed that under suitable circumstances it takes 
only a small number of steps of the message-passing process to find a con
nection from one class to the next smaller one. Since the number of classes is 
logarithmic in the size of the network, this means that it also takes only a small 
number of steps overall to home in on the target. Kleinberg's network struc
ture was unrealistic, but the basic idea of progressively narrowing the field is 
a good one and we would like to find a more realistic network model to which 

the same type of argument can be applied. 
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Figure 19.3: The hierarchical model of Watts et al. Small groups of individuals (boxes) are divided up in a hierarchical 
structure represented by a binary tree, which might, for instance, correspond to the hierarchical division of geographic 
space into countries, regions, towns, and so forth. The hierarchy dictates which social connections (indicated by curves) 
are most likely. A vertex in group AI for instance, is most likely to be connected to others close to it in the tree (B, C) 
and less likely to be connected to those further away (D, E). 
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Such a model is the hierarchical model of Watts et aZ. [322], in which the in
terplay of social structure and geographic or other dimensions is represented 
by a tree or dendrogram.5 In the context of geography, for example, the world 
would be divided into countries, the countries into regions, states, or provinces, 
the regions into cities and towns, and so forth. The division ends when we 
reach units so small that it can reasonably be assumed that everyone knows 
everyone else-a single family, for instance. 

The divisions can be represented by a tree structure like that shown in 
Fig. 19.3. The tree depicted is a binary tree in this case. Each branch splits 
in two, then in two again, and so forth. In the real world branches might easily 
split into more than two parts. There are more than two countries in the world 
after all. However, the binary tree is the simplest case to study (and the one 
studied by Watts et al.), and the analysis given here for the binary case can be 
generalized to other cases quite easily. 

Let us also assume that the groups at the bottom of the tree all have the 

SA similar model was also proposed independently by Kleinberg [179]. 

19.3 

same size g. Again this is a simplification, but a useful one that does not have 
a major effect on the results. If the total number of individuals in the network 
is n then the number of groups is n / g, and the number of levels in the tree is 

log2(n/g). 
The model of Watts et aZ. makes two other important assumptions. First, 

it assumes that people measure distance to a target individual in terms of the 
tree, and more specifically in terms of the lowest common ancestor in the tree 
that they share with the target. That is, people are able to tell when someone 
lives in the same country as themselves, or the same region or town, but do 
not have any detailed information beyond that. This is a more conservative 
assumption than is made by Kleinberg's model. In Kleinberg'S model it is as
sumed that people know their exact geometric distance to the target, no matter 
where in the network the target falls. In the present model people have a much 
more coarse-grained impression of how close they are to the target. 

The second assumption in the model of Watts et aZ. is that the social network 
itself is correlated with the hierarchical tree structure so that people who are 
closer together in the tree, in the sense of sharing a lower common ancestor, are 
also more likely to be acquainted. Thus people are more likely to know others 
in their own country than in other countries, more likely to know others in 
their own town than in other towns, and so forth. A few sample acquaintances 
are represented by the curves at the bottom of the figure. 

Thus there are really two networks present in this model. There is the "real" 
network of actual acquaintances represented by the curves, and a "shadow" 
network, the hierarchical tree, which is not a network of actual acquaintances 
but which influences the acquaintance network and of which individuals are 
somewhat aware, in the sense that they know how close they are to others in 
the tree. 

An important point to note about this model is that although an individual 
is less likely to know others far away in the tree, there are also more such far
away individuals than there are ones close by, and the two effects cancel out 
to some extent so that it is quite possible for a given individual to know others 
who are both near and far. The people who live on your street, for instance, 
are close by, so you are likely to know some of them, but they are also few in 
number. By contrast, India maybe far away for you (depending on where you 
live) but there are a lot of people there, so even though you are not very likely 
to know any particular inhabitant, it is nonetheless quite likely that you know 
at least one out of the whole population. This behavior is crucial to making the 
message-passing experiment work on this network. 

Consider an individual in group A in Fig. 19.3. Let us suppose that, be
cause of the effect above, this individual has at least one acquaintance at every 
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"distance" in the tree, i.e., one acquaintance in every subtree of the hierarchy 
with which they share a common ancestor. That is, they know one of the indi
viduals in group B, the one group with which they share ancestor 1, and they 
also know (say) someone in group C, one of the two with whom they share 
ancestor 2, and so on through groups D and E as shown. And suppose that 
a similar pattern of acquaintances holds for every individual in the network: 
everyone knows at least one person in every subtree with whom they share a 
common ancestor. 

Now consider a greedy algorithm for message passing on this network. 
Suppose the message starts at a vertex in group A and, as before, the holder of 
the message at each step passes it to an acquaintance closer to the target than 
they are, distance now being measured in the sense of the hierarchical tree as 
described above. 

Suppose the target vertex is in group X, which shares a common ancestor 
with A only at the highest and coarsest level marked 4 in the figure. That 
is, the target is in the opposite subtree of ancestor 4 from A. By hypothesis, 
the individual holding the message knows this and hence knows that in order 
to get the message closer to the target they must pass it to someone in that 
opposite subtree. Luckily, under the assumption above they always have such 
an acquaintance, in this case in group E. So they pass the message to their 
friend in group E. The friend now notes that the target X is in the subtree with 
whom they share the common ancestor marked 5 and hence knows that they 
must pass the message to a neighbor in that subtree to get it closer to the target. 
Again, by definition, they have at least one such neighbor, to whom they pass 
the message. And so the process proceeds. At each step we narrow down our 
search to a smaller subtree of the overall network, or equivalently we move to 
a lower level in the hierarchy, pivoting about a lower common ancestor. But 
the total number of levels in the hierarchy is log, (n I g) and hence this is the 
maximum number of steps that the process will take to reach the target. In 
this model, therefore, the message always reaches its target in a logarithmiC 
number of steps. 

It's not, however, very realistic to assume that each individual in the net
work knows at least one person at each distance. Watts ef aZ. considered a more 
realistic probabilistic model in which there is a probability pm of two individ
uals knowing one another when their lowest common ancestor is at level m 
in the tree. The level is defined to be m = 0 for groups that are immediately 
adjacent, as A and B are in Fig. 19.3, and to increase by one for each higher 
level up to a maximum of m = log, (n I g) - 1 at the top olthe tree. 

19.3 

Watts ef al. considered the particular choice 

- C2-{3m pm - , (19.9) 

where C and (3 are constants6 So long as (3 is positive this choice gives, as 
desired, a lower probability of acquaintance with more dIstant mdIvIduals, 
the exact rate of variation being controlled by the value of (3. The parameter C 

controls the overall number of acquaintances that each individual has. 
The number of vertices with which any given vertex shares its ancestor at 

level m is just 2'" g and hence the expected number of such vertices that it will 

be connected to is 
2"'gp", = Cg2II- r1 '" (19.10) 

with the choice above for p",. Summing over all levels the total expected num
ber of acquaintances an individual has, their average degree in the network, 

is 

log2(ll/g)-1 2(1-{3l1og2(Il/g) -1 
(k) = Cg L.: 2IH)'" = Cg---::2'I"P-_1 

m=O 

Thus the constant C is given by 

(Ie) 2l-fl - 1 
C-- . 

- g (nl g)1 P-1 

In the limit of large n this simplifies to 

{ 

«lc)lg)(2H-1)(nlg)H 
C = «lc)lg)/log2(nlg) 

«k)lg)(1-2H ) 

= cg(nlg)H -1 (19.11) 
21-P - 1 

for (3 < 1, 
for(3=l, 
for (3 > 1. 

(19.12) 

(19.13) 

Now if a particular vertex receives a message and wa~ts to ,pass it to, a 
member of the opposite subtree at level m, it can do so proVIded It has a SUIt

able acquaintance. If (19.10) is small, however, then most likely It WIll not, III 
which case the best it can do is to pass the message to someone else m the sub
tree it is alread y in, who can then repeat the process. The expected number of 
times this will happen before one person does have a neighbor ill the OpposIte 
subtree is given by the reciprocal of (19.10), which is 21#-1)", ICg. Then, sum
ming this over all levels, the total expected number of steps to reach the target 

6Watts et al. actually wrote the expression as Ce" 13m 
I but the difference is only in the value of f3 

and we find the definition (19.9) more convenient. 
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is 

1 log2(I1/g)-1 
e = - L 2(~-1)'" = 

Cg 111=0 

1 (n/g)~-1-1 

Cg 2~~1 - i~ 

1 2(~-1)log,(,,/g) -1 

Cg 211-1 - 1 

(19~14) 

It is also possible that the vertex holding the message will not have a neighbor 
either in the opposite subtree or in its own subtree~ If this happens then the 
vertex has only neighbors further from the target than it is and none nearer~ In 
this case the Milgram experiment fails-recall that participants were asked to 
pass the message to someone closer to the target. This, however, is not neces
sarily unrealistic~ As Watts et al. pointed out, this presumably does happen in 
the real experiment sometimes, and moreover it is well documented that many 
messages, a majority in fact, get lost and never reach their target. For messages 
that do get through, however, Eq. (19.14) gives an estimate of the number of 
steps they take to arrive. 

Equation (19.14) is rather similar to the corresponding expression for the 
model of Kleinberg, Eq. (19.7), which is not a coincidence since the mechanisms 
by which the message-passing process proceeds are similar in the two cases. 
Taking the limit of large n and making use of Eq. (19.13), we find that 

{ 

D(n/g)H 
f = E log2(n/g) 

F(n/ g)~-l 

where 0, E, and F are constants. 

for f3 < 1, 
for f3 = 1, 
for f3 > 1, 

(19.15) 

These results have the same functional form as those of Eq. (19.8) for Klein
berg's model and tell us that it is indeed possible for Milgram's experiment 
to succeed in networks of this type, but only for the special parameter value 
f3 = 1. For all other values, the number of steps £ taken to reach the target 
increases as a power of n. 

Thus the model of Watts et al. confirms Kleinberg's results in the context 
of a more realistic network. The results are, however, somewhat mysterious 
in a way. The idea that the network must be tuned to a special point in order 
for the Milgram experiment to succeed is surprising. The Milgram experiment 
does appear to succeed when conducted on real-world social networks, but 
on the face of it there is no clear reason why real-world networks should fall 
at this special point. Is it really true that if the world happened to be a little 
different from the way it is, Milgram's experiment would fail? This is a point 
that is not yet fully understood. It is possible that our model misses some 

important feature of the network structure that makes message passing more 
robust in the real world and less dependent on the precise tuning of the net
work, or that people are using a different scheme for passing messages that 
works substantially better than our greedy algorithm. On the other hand, it 
is also possible that our model is basically correct but that the world is in fact 
only rather loosely tuned to the special point f3 = 1 at which message passing 
succeeds in finding short paths. For values of f3 close to 1 the power of n in 
Eq. (19.14) is small and hence £ still grows quite slowly. Indeed it is in general 
difficult to distinguish experimentally between low powers and logarithms, so 
any value of f3 in the rough vicinity of f3 = 1 could result in good apparent 

performance in the message passing experiment. 

PROBLEMS 

19.1 Suppose that we use a web crawler to crawl a small portion of the Web, starting 
from a randomly chosen web page somewhere in the large in~component. Let us model 
the crawl as a breadth~first search starting from the given vertex and proceeding for r 
"waves" of search, i.e., until it reaches vertices that are r steps away from the start. Let 

Si be the size of the large in-component. 

a) What is the probability that a given web page has been crawled at the "zeroth" 
wave of the algorithm, i.e., when only the one starting page has been crawled? 

b) Argue that the probability Pi that a page is first reached by the crawl on the rth 
wave is given approximately by p(r) ~ Ap(r -1), where p ~ (pl, pz,·· .). Why 

is this relation only approximate in general? 

c) Hence argue that the probability of a page being found in a small crawl is roughly 
proportional to the eigenvector centrality of the page. Recall that the eigenvector 
centrality is zero for vertices in the in-component that don't also belong to the 
strongly connected component (see Section 7.2). Explain why this makes sense in 

the present context. 

19.2 Suppose that a search is performed on a peer-to~peer nemork using the following 
algorithm. Each vertex on the nemork maintains a record of the items held by each 
of its neighbors. The vertex originating a search queries one of its neighbors, chosen 
uniformly at random, for a desired item and the neighbor responds either that it or one 
of its neighbors has the item, in which case the search ends, or that they do not. In 
the latter case, the neighboring vertex then passes the query on to one of its neighbors, 
chosen at random, and the process repeats until the item is found. Effectively, therefore, 

the search query makes a random walk on the network. 
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a) Argue that, in the limit of a large number of steps, the probability that the query 
encounters a vertex i on any particular step is ki/2m, where ki is the degree as 
usual and m is the total number of edges in the network. 

b) Upon arriving at a vertex of degree k, the search learns (at most) about the items 
held by all of that vertex's k neighbors except for the one the query is coming 
from, for a total of k - 1 vertices. Show that on average at each step the search 
learns about the contents of approximately (k2) / (k) - 1 vertices and hence that, 
for a target item that can be found at a fraction c of the vertices in the network, the 
expected number of copies of the item found on a given step is c( (k2 ) / (k) -1). 

c) Argue that the probability of not finding the target item on any particular step is 
approximately q ~ exp[c(1- (k2 ) / (k))1 and that average number of steps it takes 
to find a copy of the item is 1/(1- q). 

d) On a network with a power-law degree distribution with exponent less than 3, so 
that (k2

) ---+ co, this last result implies that in the limit of large network size the 
search should end after only one step. Is this really true? If not, explain why not. 

Although the random walk is not a realistic model for actual network search it is none
theless useful: presumably more intelligent search strategies will find results quicker 
than a mindless random walk and hence the random walk provides an upper bound 
on the length of search needed to find an item. In particular, if the random walk works 
well, as in the example above, then it suggests that more intelligent forms of search will 
also work well. 

19.3 The network navigation model of Kleinberg described in Section 19.3.1 is a one
dimensional version of what was, originally, a two-dimensional model. In Kleinberg's 
original version, the model was built on a two-dimensional square lattice with vertices 
connected by shortcuts with probability proportional to r-ct where r is the "Manhattan" 
distance between the vertices, i.e., the geodesic network distance in terms of number 
of edges traversed (rather than the Euclidean distance). Following the outline of Sec
tion 19.3.1, sketch an argument to show for this variant of the model that it is possible 
to find a target vertex in 0(log2 n) steps, but only if it = 2. 

19.4 Show that the ability to find short paths (of order log2 n) in the hierarchical model 
of Section 19.3.2 coincides with the state of the network in which a vertex has equal 
numbers of neighbors on average at each possible distance, where !I distance" is defined 
by the lowest common ancestor two vertices share. 
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170,173,345-350, 
691-692,698-701, 
703-704 

storing on a computer 
283-286,287,298-299 

strictly upper triangular 121 
undirected network 110-112, 

114-115,137-138,284 

upper triangular 120-121 
weighted network 112-113, 

283 
adjacency tree 290-291, 297-298 
affiliation network 38, 53-54, 123 

boards of directors 53-54, 123, 
237 

CEOs of companies 53 
coauthorship 54, 123, 237 
film actors 54, 123, 124, 237 
picture of 39 
Southern Women Study 38, 39, 

53 
affinity purification 88 
age 

assortative mixing by 221, 222, 
226-227,229 

effect on vertex degree 509-510 
of vertices 509-510 

agglomerative clustering 387 
airline network 32, 541-548 

edge lengths 113, 546-547 
hub-and-spoke structure 541, 

543-544,548 
models of 541-548 
optimization 541-548 
role in disease spread 673 

algebraic connectivity 157, 370 
algorithm for 350-353 
connected networks 157 
spectral partitioning 368, 370 

algorithm 275££, 308ff, 345ff 
acyclic network test 120 
algebraic connectivity 350-353 
Arnoldi algorithm 353 
augmenting path algorithm 

149-150,333-343 
average-linkage clustering 

388-390 
average shortest path 322 
Barabasi-Albert model 502 
betweenness centrality 

324-329,333 
breadth-first search 65-66, 143, 

279-280,315-329, 
334-335,337,616-617, 
709-710 

burning algorithm 315 
closeness centrality 322 
clustering coefficient 310-314 
community detection 371-391 
complete-linkage clustering 

388-389 
components 143, 317, 322 
computational complexity 

278-282 
connectivity 149-150, 333-343 
correlation coefficient 267, 310 
degree 308-309 
Dijkstra's algorithm 301, 

330-333 
edge cut set 340-341 
Edmonds-Karp algorithm 334 
eigenvalues 348, 350-354 
eigenvector centrality 345-350 
eigenvectors 345-354 
Ford-Fulkerson algorithm 

333-343 
genetic algorithm 381 
geodesic distance 315-322 
geodesic path 315, 322-324 
giant cluster 616-621 
greedy algorithm 381, 387, 545, 

714-715,716,722 
heuristic 360 
hierarchical clustering 386-391 
HITS algorithm 118, 179-181 
Householder algorithm 353 
hubs and authorities 118, 

179-181 
independent paths 339-340, 

341-343 
Katz centrality 174 
k-cores 195 
Kernighan-Lin algorithm 

360-364,369-370,373, 
374-375 

Lanczos algorithm 353-354, 
370 

maximum flow 333-343 
minimum cut 149-150, 

333-341 
modularity maximization 

372-382,385 

INDEX 

node-disjoint paths 341-343 
node-independent paths 

341-343 
percolation 616-621 
preflow-push algorithm 334 
proof of correctness 315 
QL algorithm 353-354 
REGE algorithm 217 
running time 278-282 
shortest augmenting path 

algorithm 334 
shortest distance 315-322, 

330-333 
shortest path 315, 322-324, 333 
single-linkage clustering 

388-390 
sparse graphs 135, 280, 

284-286,306,310,321, 
353-354 

vertex-disjoint paths 341-343 
vertex-independent paths 

341-343 
weighted shortest path 333 

allometric scaling 35 
Alta Vista 237, 238 
alter 44 
Amazon.com 75 
anabolic metabolism 78 
anchor text 707 
animal social network 47 
animosity 113, 206 
Antarctica, food web 99-102 
ants, social network 47 
archival records 38, 47-53 
Arnoldi algorithm 353 
Arts and Humanities Citation Index 

68 
AS numbers 26 
assortative mixing 45, 220-231, 

266-268,310,372 
and community structure 

267-268 
biological networks 237, 267 
by age 221, 222, 226-227, 229 
by degree 230-231, 266-268, 

310,313 
by educational level 221 
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by enumerative characteristics 
222-226,372 

by race 221, 357 
by scalar characteristics 

228-229 
by vector characteristics 229 
citation networks 222 
correlation coefficient 229 
disassortative mixing 222, 224, 

228-229,230-231, 
266-268, 473 

ego-centered networks 45 
friendship networks 220-222, 

226-227 
information networks 237, 267 
measures of 222-231, 266-268, 

310 
Pearson coefficient 229 
random graphs 423, 473-474 
social networks 45, 220-222, 

226-227,237,267-268 
statistics 237 
stratified netvvork 226 
technological netvvorks 237, 

267 
World Wide Web 222, 237 

assortativity coefficient 225, 229, 
230-231,237,267-268, 
310,313 

attachment kernel 521-523, 528-529 
attracting fixed point 680, 682, 684, 

689 
augmenting path 337-339 
augmenting path algorithm 

149-150,333-343 
breadth-first search 334 
computational complexity 337 
directed networks 334 
implementation 336-337 
minimum cut set 340-341 
proof of correctness 337-339 
running time 337 

authority centrality 179-181 
autonomous system 24, 25-27 

AS numbers 26 
geographical location 28 
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Internet representation 25-27, 
200,243,245,259, 
265-266,424,448,622,624 

average degree 134, 135-136 
and generating function 433, 

450 
Bianconi-Barabasi model 

530-532 
collaboration networks 237, 

448 
configuration model 446-448, 

450,456 
directed networks 135-136 
directed random graphs 476 
friendship networks 45-46 
G(Il,m) 399 
G(n, p) 401 
in-degree 135-136 
Internet 237, 448 
neighbors 446-448 
out-degree 135-136 
planar networks 166 
Poisson random graph 399, 

401 
Price model 491, 508 
random graphs 399, 401 
social networks 45-46, 237, 422 
statistics 237 
undirected networks 134 

average geodesic distance 181-185, 
237,241-243 

algorithm 322 
logarithmic scaling 10, 242, 

564,710,718 
scale-free network 242-243 
small-world model 560-565 
statistics 237 

average-linkage clustering 388-390 
average neighbor degree 446-448 

coauthorship network 448 
configuration model 446-448 
Internet 448 

average shortest distance, see 
average geodesic distance 

AVL tree 128, 297 

baboons, social network 47 
backbone, Internet 19-20, 197 

Bacon, Kevin 54 
bait protein 87 
balance 208-211 
balanced network 208-211 
balanced tree 293-294, 295-297 
Barabasi-Albert model 500-502 

addition of extra edges 
514-516 

algorithm 502 
degree distribution 501-502, 

526 
exponent 502 
extensions 514-534 
master equation 501 
non-linear 521-527 
power-law degree distribution 

502,526 
preferential attachment 

500-501 
relation to Price model SOl, 

502 
removal of edges 516-521 
simulation 502 

basic reproduction number 635-636 
SIR model 635-636 
SIS model 637 

Bianconi-Barabasi model 527-534 
average degree 530-532 
condensation 531-533 
degree distribution 529-532 
hubs 531-533 
master equation 528 
mean degree 530 

Bell numbers 455 
Bernoulli random graph 400 
beta function 493-494 

integral form 499, 530 
power-law tail 494, 507, 513, 

516,529 
Stirling's approximation 494 

Bethe lattice 128,268-269 
percolation on 598 

betweenness centrality 185-193 
algorithm 324-329, 333 
community detection 382-385 
computational complexity 

326-327,329 

cumulative distribution 
function 261-262 

directed networks 188 
distribution 261-262 
dynamic range 189-190, 261 
edge betweenness 382-383 
film actor network 189-190 
flow betweenness 191-192 
Internet 261-262 
normalization 190 
power-law distribution 261 
random-walk betweenness 

192-193 
star graph 189, 190 
structural holes 202-203 
trees 182, 233 
variants 190-193 
weighted networks 333 

BGP 20-21, 25-26, 73 
BGP table 25-26 
bibliographic coupling 70, 116-118 

difference from cocitation 
117-118 

legal citation networks 72 
matrix 117, 180-181 
network 70, 117, 181 
patent citation networks 72 
scientific citation networks 70 

bibliographic coupling matrix 117, 
180-181 

bibliographic coupling network 70, 
117,181 

bibliometrics 68 
bicomponent 196, 426 
bifurcation 693 
big-O notation 279 
big-8 notation 279 
binary heap 301-305, 332, 389 

and Dijkstra's algorithm 301, 
332 

and epidemic simulation 302 
and hierarchical clustering 

389-390 
binary tree 291 

binary heap 302 
data structure 291 
dendrogram 128, 383-384 

hierarchical network model 
720 

partially ordered 302-303 
binomial degree distribution 

401-402 
binomial distribution 401-402, 483, 

617 
biochemical network 7-8, 78££ 
biological network 6-8, 33-35, 78ff 

assortative 237, 267 
disassortative 267 
empirical measurement 78ff 
food webs 6-7, 99-103 
genetic regulatory networks 7, 

89-94 
metabolic networks 7, 78-84, 

539 
models of 426, 439-541 
neural networks 6, 94-98 
protein-protein interaction 

networks 7, 85-89, 
539-541 

vertex copying in 539-541 
biologist coauthorship network 237, 

448 
bipartite network 33, 38, 53-54, 

74-77,80-81,123-126 
boards of directors 53-54, 123, 

237 
CEOs of companies 53 
coauthorship 54, 123, 237 
directed 80, 126 
examples 33, 38, 53-54, 74-77, 

80,104,123 
film actors 54, 123-125,237 
incidence matrix 124, 126 
index 75-77 
keyword index 75-77 
metabolic network 80-81 
mutualistic network 104 
pictures of 39, 81, 122, 164 
protein-protein interaction 

network 85 
rail network 33 
recommender network 74-75 
singular value decomposition 

76 

INDEX 

social network 38, 53-54, 123 
Southern Women Study 38, 39, 

53 
weighted 126 

bisection 359-360 
community detection 371-380 
graph partitioning 359-360, 

362,364-365 
Kernighan-Lin algorithm 

360-364 
modularity maximization 

372-382 
problems with 379-380 
repeated bisection 359, 362, 

364-365,378-380 
spectral algorithm 364-370, 

375-380 
block diagonal matrix 

adjacency matrix 142-143 
Laplacian 156-157 

blog network 50 
blood vessel network 33-35 
boards of directors network 53-54, 

123,237 
bond 109 
bond percolation 593-594, 642-648 

and epidemiology 642-645, 
646,669 

and SIR model 642-648 
giant cluster 643-644, 645-648 
percolation threshold 643-644, 

646 
square lattice 625 

bootstrap percolation 195 
Bose-Einstein condensation 531 
bow tie diagram 240, 479 

World Wide Web 240 
brain cell 94-98 
branching polymers 456 
breadth-first search 315-329 

augmenting path algorithm 
334 

betweenness centrality 
324-329 

burning algorithm 315 
closeness centrality 322 
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computational complexity 
279-280,320-321 

dense networks 321 
Edmonds-Karp algorithm 334 
finding components 143, 317, 

322 
finding shortest paths 322-324 
implementation 317-321 
peer-to-peer networks 709-710 
percolation 616 
proof of correctness 316-317 
rmming time 279-280, 320-321 
shortest augmenting path 

algorithm 334 
shortest path tree 322-324 
sparse networks 280, 321 
variants 321-329 
web crawling 65-66 
web search 65,706 

bridge problem 140-141 
broker 189 
burning algorithm, see breadth-first 

search 
business relationships 6, 10-11, 

37-38,39-40,53-54, 
109-110 

Caenorhabditis elegal1s 
metabolic network 539 
neural network 98 

call graph 
software 28 
telephone 49, 237 

cargo network 32, 33 
cascade model 426 
cascading failure 31-32 
catabolic metabolism 78 
cavity method 411 
Cayley tree 128, 268-269 

percolation on 598 
C. eIegans 

metabolic network 539 
neural network 98 

centrality 9, 168ff 

744 

authority centrality 179-181 
betweenness centrality 

185-193,202,261-262, 
324-329,333 

closeness centrality 181-184, 
261,263,322 

degree centrality 168-169, 178 
distribution 261-262 
eigenvector centrality 59, 

169-172,178,261-262, 
345-350,651,663,670 

flow betweenness 191-]92 
hub centrality 179-181 
Katz centrality 172-175, 178, 

219,232 
PageRank 175-178, 707-708 
random-walk betweenness 

192-193 
regular graphs 231-232 

CEO network 53 
CERN 64 
chromatic number 130-131 
circle model 553-555, 557 
circuit 

electronic 28 
resistor networks 161-164 
statistics 237 

circuit switched network 18, 29, 31 
citation data 68-72 

Arts and Humanities Citation 
Index 68 

Citebase 68 
Citeseer 68 
Google Scholar 68 
legal opinions 72 
patents 71 
Science Citation Index 68{ 69 
Scopus 68 
Social Science Citation Index 

68 
web crawlers 68-69 

citation network 67-72, 487-499 
academic 67-70 
acyclic 69, 71, 72, 118-119 
assortative mixing 222 
bibliographic coupling 

networks 70, 117, 181 
cocitation networks 70, 116, 

180 
cumulative degree 

distribution 252-253 

data lor 68-72 
degree centrality 169 
degree distribution 68, 69, 248, 

252-253,430,487,494 
eigenvector centrality 261 
indirect citations 511 
legal citations 71-72 
loops in 69,71, 
models of 487-499, 534-539 
multiedges 489-490, 491 
patent citations 70-71 
power-law degree distribution 

68,69,248,252-253,430, 
487,494 

Price model 487-499 
scale-free network 68, 69 
Science Citation Index 68, 69 
scientific 67-70 
statistics 69, 237, 260 
strongly connected 

components 172, 241 
time ordering 69, 118 
vertex copying model 534-539 

Citebase 68 
Citeseer 68 
class A subnet 24 
class B subnet 24 
class C sub net 4, 24 

Internet representation 4, 24, 
26 

clique 193-194 
in one-mode projection 

124-125 
Ie-clique 195-196 
transitivity 198 

closeness centrality 181-184 
algorithm 322 
distribution 261, 263 
dynamic range 182-183 
film actor network 183 
problems with 182-184 
variants 184 

c1usterability theorem 208-211 
clusterable network 208, 210-211 
clustering 198-204, 262-266, 354, 

386-391 
agglomerative 387 

average-linkage 388-390 
c1usterable network 208, 

210-211 
clustering coefficient 199-204, 

262-266,310-314 
community detection 354 
complete-linkage 388-389 
directed network 201 
ego-centered networks 45 
hierarchical 386-391 
local 201-204 
partial 198-199 
perfect 198 
random graph 402-403, 423, 

426-427,474,552 
single-linkage 388-390 
small-world model 555-565 
social networks 200-201 
Strauss model 583-585 
transitivity 198-204, 262-266 

clustering coefficient 199-204, 
262-266 

algorithm 310-314 
alternative definition 203-204 
and community structure 265 
calculation of 199-200, 

201-202, 203-204, 
310-314 

coauthorship networks 
200-201,237,263 

configuration model 262-263, 
449-450 

directed networks 201, 311 
email networks 200-201, 237 
film actor network 200-201, 

237 
lood webs 237, 264 
Internet 200, 237, 264 
local clustering coefficient 

201-204,265-266 
observed values 237, 262-266 
Poisson random graph 

402-403,423,450,552 
power-law degree distribution 

264,450 
random graphs 200-201, 

262-263,402-403,423, 

425,449-450,552 
scale-free networks 264, 450 
small-world model 558-560, 

564-565 
social networks 45, 200-201, 

237,262-263 
statistics 237 
trees 199 
triangular lattice 552-553 
World Wide Web 237, 264 

clusters 10-11, 193ff, 208-211, 354fl, 
595ff, 643ff 

cliques 193ff 
clusterability 208-211 
community detection 10-11, 

3711£ 
graph partitioning 354ff 
percolation 595ft, 6431f 

coauthorship network 54, 354-355 
affiliation network 54,123,237 
average degree 237, 448 
average neighbor degree 448 
biologists 237, 448 
bipartite network 54, 123, 237 
clustering coefficient 200-201, 

237,263 
funneling effect 56, 57, 243 
mathematicians 237, 448 
mean degree 237, 448 
neighbor degree 448 
percolation 622 
physicists 263-264 
picture of 355 
statistics 237 
triadic closure 263-264 

cocitation 70,115-116 
and cosine similarity 212-213 
differences from bibliographic 

coupling 117-118 
legal citation network 72 
matrix 115-116, 180 
network 70, 116, 180 
patent citation network 72 
scientific citation network 70 

cocitation matrix 115-116, 180 
cocitation network 70, 116, 180 

self-edges 116 

INDEX 

weighted 70, 116 
coexistence region 

Strauss model 585 
two-star mode1581, 582-583 

co-immunoprecipitation 85-86, 87, 
88 

co-link 205 
collaboration network 54, 354-355 

affiliation network 54, 123, 237 
average degree 237, 448 
average neighbor degree 448 
biologists 237, 448 
bipartite network 54, 123, 237 
clustering coefficient 200-201, 

237,263 
funneling effect 56, 57, 243 
mathematicians 237, 448 
mean degree 237, 448 
neighbor degree 448 
percolation 622 
physicists 263-264 
picture of 355 
statistics 237 
triadic closure 263-264 

collaborative filtering 75 
coloring 

chromatic number 130-131 
four-color theorem 130-131 
structural balance 208-210 

community detection 354-355, 
357-358,371-391 

agglomerative clustering 387 
algorithms 371-391 
average-linkage clustering 

388-390 
betweenness algorithm 

382-385 
bisection 371-380 
clustering 354, 386-391 
complete-linkage clustering 

388-389 
genetic algorithm 381 
greedy algorithm 381-382, 387 
hierarchical clustering 386-391 
loop counting algorithm 

385-386 
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modularity maximization 
372-382 

more than two groups 378-380 
simulated annealing 381-382 
single-linkage clustering 

388-390 
spectral algorithm 375-379 
two commlmities 371-380 
using cosine similarity 387, 

390,392 
vertex moving algorithm 

373-375 
community food web 102 
commllllity structure lO-lt 193, 

354-355 
and assortativity 267-268 
and clustering coefficient 265 
detection 354-355, 357-358, 

371-391 
friendship networks 10, 357, 

373-374,390 
karate club network 373-374, 

377 
metabolic networks 357 
social netvvorks 10, 357, 

373-374,390 
World Wide Web 357 

company director network 53-54 
affiliation network 53-54, 123 
bipartite network 53-54, 123 
statistics 237 

compartmental model 628-639 
complete-linkage clustering 

388-389 
complexity, computational 278-282 
component 142-145, 196-198, 
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235-241 
algorithm for 143,317,322 
bicomponents 196, 426 
configuration model 456-470 
directed networks 66-67, 

143-145,239-241, 
477-483 

disease spread 641, 649, 657, 
674 

film actor network 236 
giant 235-239, 403-409, 456, 

460-465,466,471-473, 
477-482,657 

in-components 145, 239-240, 
478-479,510-513 

k-components 196-198, 426 
large 235-239 
out-components 144-145,172, 

239-240,478-479 
Poisson random graph 

403-419 
Price model 510-513 
random graphs 403-419, 

456-473,477-483 
real-world networks 235-241 
sizes 412-419, 456-470, 483, 

512 
small 128, 235, 238-241, 

408-419,456-460, 
465-470,482-483 

strongly connected 144-145, 
239-241,477-479, 
481-483,485 

tricomponents 196, 197 
undirected networks 142-143, 

235-239 
weakly connected 143, 236, 

239,479-480,482 
World Wide Web 66-67, 

143-145,238,239-240 
computational complexity 278-282 

adjacency list operations 
289-290,298,343 

adjacency matrix operations 
283-285,290,298,299, 
309,349-350 

augmenting path algorithm 
337 

betweenness centrality 
algorithm 326-327, 329 

breadth-first search 279-280, 
320-321 

Dijkstra's algorithm 332-333 
hierarchical clustering 389-390 
Kernighan-Lin algorithm 

362-364 
modularity maximization 

374-375,377-378,382 

on sparse networks 280, 284, 
306,321 

power method 348-350 
spectral partitioning 370 
worst-case 278-282 

computer algorithm, see algorithm 
computer virus 48-49, 627 
condensation, in Bianconi-Barabasi 

model 531-533 
configuration model 434ff 

average component size 
465-467,485 

average degree 446-448, 450, 
456 

average neighbor degree 
446-448 

bond percolation on 645-648 
clustering coefficient 262-263, 

449-450 
component sizes 456-470 
condition for giant component 

456,462-463,464-465, 
471-473,484,604 

continuous phase transition 
466 

definition 435 
degree sequence 435, 439 
density of multiedges 436, 

438-439,440 
density of self-edges 436, 441 
directed networks 473-483 
edge probability 439-442 
ensemble 435, 439, 484 
epidemics on 645-648, 651, 

656,657-661,664-669, 
671-672 

epidemic threshold 646-647, 
668-669,672 

examples 462, 470-473, 484, 
600-601, 602-604, 
611-614 

exponential degree 
distribution 469, 484, 
602-604, 611 

giant component 456, 460-465, 
466,471-473,484,604 

giant percolation cluster 
596-614,645-648 

graphical solution 463-465 
largest eigenvalue 700-701 
mean component size 465-467, 

485 
multiedges 436, 437-438, 440 
neighbor degree 446-447 
neighbors at a given distance 

451-456 
number of common neighbors 

441-442 
numerical solution 473-474 
pair approximation 656 
percolation on 596-615 
phase transition 466 
power-law degree distribution 

470-473 
scale-free network 470-473 
second moment of degree 

distribution 447, 450, 472 
second neighbors 451-456 
self-edges 436-438, 441 
51 model on 656, 657-661 
SIR model on 645-648, 664-669 
site percolation on 596-615 
small components 456-460, 

465-470 
third neighbors 454 

connectance 134 
connected network 142,157 
connectivity 145-150, 333-343 

algebraic connectivity 157, 
350-353,368,370 

algorithm 149-150, 333-343 
and network robustness 197, 

333 
augmenting path algorithm 

149-150,333-343 
directed networks 147, 149, 

334 
edge connectivity 146-147, 

148,149,333-341 
vertex connectivity 146-147, 

148,196-197,333, 
341-343 

consumer ISP 19, 20 

contact tracing 60 
continuous phase transition 582, 

604-606 
configuration model 466 
epidemic transition 644 
exponential random graph 

582,585 
percolation 595, 604 
random graph 404, 582 
second-order 606, 607 
Strauss model 585 
two-star model 582 

core/periphery structure 230-231 
correlation coefficient 

algorithm for 267, 310 
and assortative mixing 229, 

230-231 
and community detection 387 
calculation of 267, 310 
for degree 230-231, 237, 

267-268,310,313 
for rows of adjacency matrix 

214-215,387 
cosine similarity 212-214, 216 

and cocitation 212-213 
and community detection 387, 

390,392 
and hierarchical clustering 

387,390,392 
covariance 

assortative mixing 228-229 
degrees 230, 485 
rows of adjacency matrix 215 

crawler, see web crawler 
critical point, see phase transition 
cryptography 50-53 

asymmetric 51-52 
public key 50-53 
trust networks 53 

cumulative advantage 487 
cumulative degree distribution 

251-254 
calculation of 253-254, 309-310 
citation network 252-253 
disadvantages 254 
Internet 252 

INDEX 

power-law distribution 
251-252,257 

preferential attachment model 
498-500 

Price model 498-500 
scale-free network 251-252, 

257,498-500 
World Wide Web 252-253 

cumulative distribution function 
251-254 

betweenness centrality 
261-262 

calculation of 253-254, 309-310 
degree 251-254, 257, 309-310 
eigenvector centrality 261-262 
power-law distribution 

251-252,257 
rank/ frequency plot 253-254 

current law 162 
cutsetI47-150,333-334 

algorithm for 340-341 
and network robustness 197, 

333 
edge cut seI147-150, 196-197, 

333-334,340-341 
vertex cut set 147-150, 196, 333 

cut size 359, 361-370 
and community detection 

371-372 
and graph partitioning 359, 

361-370 
and Laplacian 365-370 

cycle 118-121, 137-139 
acyclic networks 69, 118-121 
limit cycles 686, 701 
number of a given length 121, 

137-139 
strongly connected 

components 144, 241 
cyclic network 118, 120, 121-122 
cypher 50-52 

asymmetric 51-52 

databases 
actors 183 
citations 68, 69, 72 
distributed 709-712 
films 183 
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food webs 103 
genetic regulatory netwurks 94 
legal citations 72 
metabolic pathways 84 
movies 183 
protein interactions 88 

data structures 282ff 
adjacency list 286-290, 298 
adjacency matrix 283-286, 287, 

298-299 
AVL tree 128, 297 
balanced h"ee 293-294, 295-297 
binary heap 301-305, 332, 389 
binary tree 291 
forest 291 
tree 290-298 

dating network 49, 237 
degree 9,133-136,168-169 

algorithm 308-309 
and adjacency list 309 

748 

and adjacency matrix 133-136, 
309 

and vertex age 509-510 
assortative mixing by 230-231, 

266-268,310,313 
average 45-46, 134, 135-136, 

237,446-448 
calculation 133, 135, 309 
correlations 230-231, 237, 

266-268,310,313,423 
covariance 230, 485 
cumulative distribution 

function 251-254, 257, 
309-310 

degree centrality 168-169, 178 
degree distribution 42, 68, 

243-260, 309-310, 
424-425,434ff 

degree sequence 244-245, 435, 
439,475 

directed networks 9, 135-136 
disassortative mixing by 

230-231,266-268 
friendship networks 9, 41-42, 

45-46,135,446 
out-degree 9, 135, 169 

Pearson correlation coefficient 
230-231,237,267-268, 
310,313 

sequence 244-245, 435, 439, 
475 

social networks 9, 41-42, 
45-46,135,446 

undirected networks 9, 133 
variance 447 

degree centrality 168-169, 178 
degree distribution 243-260 

Barabasi-Albert model 
501-502 

Bianconi-Barabasi model 
529-532 

binomial 401-402 
calculation of 309-310 
citation networks 68, 69, 248, 

252-253,430,487,494 
configuration model 435, 439, 

445-449,450-451, 
470-472 

cumulative 251-254 
definition 243-244 
directed networks 246-247, 

252-253,475-477 
excess degree distribution 

445-449,459,597,645 
exponential 430, 469, 484, 

602-604,611-613,622 
exponential random graphs 

573-575 
generating functions 450-451, 

462,469,472,597-600,607 
histograms 245-253, 309, 424, 

498-500,539,558 
in giant component 657 
Internet 24, 245-246, 247-248, 

250-251,252,255,424,601 
metabolic networks 539 
non-power-Iaw 249, 424-425, 

557-558 
plots of 245, 246, 248, 251, 252, 

253,424,500,527,539,558 
Poisson 401-402, 450-451 
Poisson random graph 

401-402,424,428 

power law 24, 68, 69, 74, 242, 
247-260,312,314, 
397-398,430,470-473, 
487,494-495,502,516, 
520,537-538,601, 
613-614,647-648 

random graphs 401-402, 424, 
428,434-435,442-445, 
445-446,450-451, 
475-477 

right skewed 246, 264, 314, 424 
second moment 257-259, 

312-314,433,440,450, 
472,483,601,646,647 

small-world model 557 
social networks 42, 45-46 
statistics 237 
tail of 245-246, 249-250, 

256-257,258,487,494,502 
undirected networks 243-246 
variance 447 
World Wide Web 246, 252-253, 

259 
degree sequence 244-245 

configuration model 435, 439 
directed networks 475 

delivery networks 33-35 
dendrogram 128, 383-384 

community detection 383-385, 
390 

hierarchical clustering 390, 392 
hierarchical network model 

720 
dense network 134-135, 286, 321 

adjacency matrix 286 
breadth-first search on 321 
food webs 135 

density 134-135 
deoxyribonuclease footprinting 

assay 92-93 
diameter 140, 242-243 

Poisson random graph 
420-422 

power-law degree 
distributions 242-243 

random graphs 399, 419-422 
scale-free networks 242-243 

scaling with network size 
242-243,420-422 

diffusion 152-154 
equation 153-154, 156 
of diseases 152 
of ideas 694 

digital signature 52-53 
digraph, see directed network 
Dijkstra's algorithm 330-333 

binary heap 301, 332 
proof of correctness 331-332 
running time 332-333 
shortest path tree 333 

DIMES project 22 
directed edge 5, 114-115, 204-205 
directed network 5, 114-122 

adjacency list 287-289 
adjacency matrix 112, 114-115, 

120-122,135,138-139, 
171,284 

augmenting path algorithm 
334 

average degree 135-136 
betweenness centrality 188 
bipartite 80, 126 
citation networks 67 
clustering coefficient 201, 311 
components 66-67, 143-145, 

239-241,477-483 
connectivity 147, 149, 334 
correlation of in- and 

out-degree 475 
cycles in 118-121, 138-139, 204 
degree 9, 135-136 
degree distribution 246-247, 

252-253,475-477 
degree sequence 475 
dynamical system on 703 
eigenvector centrality 171-172 
excess degree distribution 477 
exponential random graphs 

575-577 
food webs 99-101 
friendship networks 41, 50 
geodesic distance 242 
giant components 477-482 
in-components 145, 239-240 

in-degree 9, 135-136, 169 
in-degree distribution 246-247, 

475-477 
independent paths 334 
joint degree distribution 

246-247,475-477 
Katz centrality 174 
Laplacian 152 
loops 118-121, 138-139,204 
mapping to undirected 

network 115-118 
maximum flow 334 
mean degree 135-136 
metabolic networks 80-82 
multiedges 115 
out-components 144-145, 172, 

239-240,478-479 
out-degree 9, 135-136, 169 
out-degree distribution 

246-247,475-477 
path lengths 242 
paths 136, 188,242 
random graph model 473-483 
reciprocity 204-205, 576-577 
self-edges 115 
shortest distance 242 
social networks 41, 48-49, 50, 

53 
transitivity 201 
World Wide Web 5, 63-64, 

66-67,143 
directed random graph 473-483 

average degree 476 
edge probability 475 
ensemble 475 
excess degree distribution 477 
generating functions 474-477 
giant components 477-482 
giant in-component 478-482 
giant out-component 478-482 
in-components 478-479 
mean degree 476 
out-components 478-479 
phase transition 480-482 
small components 482-483 
strongly connected 

components 477-479, 485 

INDEX 

weakly connected components 
477,479-480,482 

disassortative mixing 222, 224, 
230-231,266-268 

and modularity 224, 228-229 
biological networks 267 
by degree 230-231, 266-268 
by gender 222, 224 
by scalar characteristics 

228-229 
by vector characteristics 229 
information networks 267 
random graphs 473 
simple graphs 267 
social networks 267-268 
technological networks 267 

disconnected network 142 
disease spread 627ff 

and bond percolation 642-648, 
669 

and components 641, 649, 657, 
674 

and diffusion 152 
and eigenvector centrality 651, 

663,670 
and percolation threshold 

643-644 
compartmental models 

628-639 
computer simulation 302 
contact tracing 60 
fully mixed approximation 

629-639 
herd immunity 592, 601 
immunity 592, 601, 631-632, 

636,638,639,686 
immunization 592, 601 
infected state 628 
infection rate 640 
infective state 628 
models 152, 627-639 
naive population 635 
on networks 639ff 
recovered state 631-632 
reinfection 636 
removed state 632 
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51 model 628-631, 640-641, 
648-661,677,689 

SIR model 631-636, 642-648, 
661-669 

SIRS model 637-639 
SIS model 636-637, 669-672 
small outbreaks 641, 644, 674 
susceptible state 628 

disjoint paths 145-150, 196-198, 
333,339-343 

distributed database 709-712 
peer-to-peer network 709-712 
World Wide Web 709 

distribution network 33-35 
gas pipelines 32, 33 
optimization of 541 
package delivery 33 
rivers 33, 35 
sewerage 33 
water supply 33 

divisive clustering 387 
DNA 79, 87, 89-94,539-540 

gene 91-94, 539-540 
repeat 539-540 

DNA computer 142 
DNA microarray 94 
dolphins, social network 47 
domain, Internet 24-25 
dominance hierarchy 47 
drug users 58-59 
dynamical system 676ff 
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and Laplacian 152-154, 
692-693, 698 

bifurcations 693 
continuous 676, 677 
deterministic 676, 677 
diffusion 152-154 
directed networks 703 
discrete 676 
explicit time dependence 

677-678 
fixed points 678-686, 687-690 
gossip model 694-695 
Jacobian matrix 681-685 
limit cycles 686, 701 
linearization 678-686, 688-689 

linear stability analysis 
680-686,687-689 

Lyapunov exponent 701 
more than one variable per 

vertex 695-698 
on a network 686f£ 
one variable 677, 679-680, 

687-689 
oscillation 684-686, 701-702, 

704 
oscillator networks 701, 704 
regular graphs 702 
second order 678 
SI model 677, 679, 687, 689, 690 
SIRS model 686 
stochastic 676 
synchronization 701-702, 704 
two variables 677-678, 679, 

680-686 
dynamic web pages 65, 66, 706 

E. coli 539 
ecological network 6~7, 99-104 

food web 6-7, 99-103 
host-parasite network 103 
mutualistic network 103-104 

ecosystem 99 
edge betweenness 382-383 
edge connectivity 146-147, 148, 149, 

333-341 
algorithm 333-341 

edge cut set 147-150,196-197, 
333-334,340-341 

algorithm 340-341 
edge-disjoint paths, see 

edge-independent paths 
edge incidence matrix 155 
edge-independent paths 145-150, 

196-197,333-341 
algorithm 339-340 

edge lengths 34, 113, 329 
airline networks 113,546-547 
and network optimization 

546-548 
and shortest paths 329-333 
formula for 34-35 
Internet 329 
road networks 34, 113, 329 

social networks 329 
edge list 111, 300-301 
edge percolation, see bond 

percolation 
edge probability 

configuration model 439-442 
directed random graphs 475 
exponential random graphs 

572-573,574-575, 
578-583 

random graphs 400 
two-star model 578-583 

edges 1, 109-110 
citation network 67 
directed 5, 114-115, 204-205 
examples of 110 
food webs 6-7, 99, 100-101 
friendship networks 6, 37, 

41-42,50 
hyperedges 122 
Internet 19£f 
lengths 34, 113, 329 
metabolic networks 80-81 
multiedges 110, 111, 113, 115 
negative weights 113, 206 
percolation on 593-594, 

642-648 
protein-protein interaction 

network 85 
reciprocated 204-205, 576-577 
self-edges 110, 111, 112, 115 
signed 206 
social networks 6, 37-38, 41, 

42,48-49,50,53 
valued 43, 112-113, 299-300, 

329 
variables on 112-114, 299-300 
weighted 43, 112-113, 299-300, 

329 
World Wide Web 5, 63-64, 143 

Edmonds-Karp algorithm 334 
ego 44 
ego-centered network 44-46 

assortative mixing 45 
clustering 45 

eigenvalues 

adjacency matrix 121-122, 
137-139,170,173, 
345-350, 691-692, 
698-701,703-704 

algorithms for 348, 350-354 
Jacobian matrix 684 
Laplacian 154-156, 350-353, 

368,370,693,698,701 
largest 173, 219, 346-347, 348, 

650-651,664, 693, 
699-701 

Perron-Frobenius theorem 
177,232,346-347 

power method 348 
eigenvector centrality 169-172, 178 

acyclic networks 172 
algorithm 345-350 
and probability of infection 

651,663,670 
and SIR model 663-664 
and SIS model 670 
and snowball sampling 59 
citation networks 261 
cumulative distribution 

function 261-262 
directed networks 171-172 
distribution 261-262 
Internet 261-262 
normalization 171 
PageRank 175-178, 707-708 
power-law distribution of 261 
problems with 171-172 
regular graphs 231-232 
undirected networks 171 

eigenvectors 
adjacency matrix 137-139, 

170-171,345-350, 
650-651,663,691, 
703-704 

algorithms 345-354 
eigenvector centrality 59, 

169-172,178,261-262, 
345-350,651,663,670 

Laplacian 154-156, 157, 
158-159,161,163, 
350-351,367-370,701 

leading 170, 171, 345-353, 651, 
663 

modularity matrix 377 
Perron-Frobenius theorem 

177,232,346-347 
power method 346-353 
sparse networks 353-354 

electric circuit 28, 161-164 
resistor network 161-164 
statistics 237 

electricity grid, see power grid 
electronic circuit 28 

resistor network 161-164 
statistics 237 

electrophoresis 92, 93 
electrophoretic mobility shift assay 

92 
email 48-49 

addresses 48-49 
logs 48 
messages 48 
networks 48-49 
small-world experiment 57 
viruses 48-49 

email network 48-49 
address book network 49, 205, 

237 
clustering coefficient 200-201, 

237 
message network 48-49, 200, 

237 
reciprocity 205 

endemic disease 637 
SIRS model 639 
SIS model 637, 670, 672 

ensemble 399, 400, 566-569 
configuration model 435, 439, 

484 
directed random graph 475 
exponential random graph 

566-569 
Poisson random graph 399, 

400,401 
random graph 399, 400, 401, 

435,439,475,484,566 
entropy 568 

maximum 568, 585 
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enzyme 79-80, 84 
enzyme inhibitor 84 
epidemic models 627£f 
epidemic threshold 636, 644 

and percolation threshold 
643-644 

configuration model 646-647, 
668-669,672 

Poisson random graph 646 
SIR model 636, 644, 646, 664, 

668-4569 
SIS model 637, 670, 672 

epidemics 627ff 
and diffusion 152 
and eigenvector centrality 651, 

663,670 
and percolation 642-648, 669 
compartmental models 

628-639 
computer simulation 302 
contact tracing 60 
fully mixed approximation 

629-639 
herd immunity 592, 601 
immunity 592, 601, 631-632, 

636,638,639,686 
immunization 592, 601 
infected state 628 
infection rate 640 
infective state 628 
models of 152, 627-639 
naive population 635 
on networks 639ff 
recovered state 631-632 
reinfection 636 
removed state 632 
51 model 628-631, 640-641, 

648-661,677,689 
SIR model 631-636, 642-648, 

661-669 
SIRS model 637-639 
SIS model 636-637, 669-672 
small outbreaks 641, 644, 674 
susceptible state 628 

equivalence, regular 211-212, 
217-220 

Erdos, Paul 400 
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Erd6s-Renyi model, see Poisson 
random graph 

Escherichia coli 539 
Euclidean distance 216, 387 
Euler beta function 493--494 

integral form 499, 530 
power-law tail 494, 507, 513, 

516,529 
Stirling's approximation 494 

Euler, Leonard 140 
Konigsberg bridge problem 

140-141 
Euler tour 297 
Eulerian path 140-142 

applications 141-142 
excess degree 448-449 
excess degree distribution 445-449, 

459,597,645 
directed netvvork 477 
directed random graph 477 
generating function 450-451, 

477,597-598,602 
undirected network 445-449, 

459, 597, 645 
expansion of a netw-ork 132-133 
exponent 248, 254-255 

Barabasi-Albert model 502 
biases 254 
citation networks 495, 237 
formula for 255 
Hill estimator 255 
Internet 237, 255, 601 
Lyapunov exponent 701 
maximum likelihood estimate 

255 
measurement 254-255 
preferential attachment 

models 494-495, 502, 516, 
520 

Price model 494-495 
statistical error on 255 
values 237 
vertex copying model 537-538 
World Wide Web 237, 259 

exponential degree distribution 469, 
602 
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and robustness 602-604, 
611-613 

configuration model 469, 484, 
602-604,611 

generating functions 430, 469, 
602 

network optimization 545 
percolation threshold 603 
power grid 622 
site percolation 602-604, 

611-613 
exponential distribution 430, 469 

generating function 430, 469, 
602 

Lorenz curve 269 
normalization 269, 430 
recovery times 632-633, 642 
stretched exponential 525-526 

exponential generating function 429 
exponential random graph 565ff 

continuous phase transition 
582,585 

degree distribution 573-575 
directed networks 575-577 
edge probability 572-573, 

574-575,578-583 
ensemble 566-569 
expectation values 569-571 
fixed degrees 573-575 
free energy 570, 572, 576-577 
graphical solution 579-580 
Hamiltonian 569, 571, 573, 575, 

577-578,585 
mean-field theory 578, 585 
partition function 569, 570, 

572,574,575,576 
phase transition 582, 585 
reciprocity model 576-577 
simple graphs 567 
sparse networks 574, 575 
Strauss model 583-585 
transitivity 583-585 

Facebook 6, 36, 49, 63 
Fibonacci heap 332 
filesharing network, see 

peer-to-peer network 
film actor database 183 

film actor network 54 
affiliation network 54, 123, 124 
betweenness centrality 

189-190 
bipartite representation 54, 

123-125 
closeness centrality 183 
clustering coefficient 200-201, 

237 
components 236 
largest component 236 
small-world effect in 54 
statistics 237 

finite size effect 607 
first-in/ first-out buffer 319 
first mover advantage 508-509 
first-order phase transition 604 
first passage time 159-161 
fixed choice survey 41-42 
fixed point 678-686, 687-690 

attracting 680, 682, 684, 689 
expansion around 679-686, 

687-688,695-696 
flows near 682-685 
linearization 678-686, 687-688, 

695-696 
mixed 680 
neutral 680 
non-symmetric 695 
repelling 680, 682, 684, 689 
saddle point 682, 684, 689 
51 model 679, 689, 690 
symmetric 689-690, 694-695 

Florentine families network 48 
flow betweenness 191-192 
food chain 99, 101 
food web 6-7, 99-103 

acyclic 101 
Antarctic species 99-102 
cascade model 426 
clustering coefficient 237, 264 
community food webs 102 
COlllectance 135 
databases 103 
density 135 
edges 6-7, 99, 100-101 
empirical measurements 102 

freshwater species 237 
Little Rock Lake 7 
marine species 237 
model of 426 
nodes 6, 99-100 
pictures of 7,100 
sink food webs 102 
source food webs 102 
statistics 237 
transitivity 264 
trophic levels 101-102, 166-167 
vertices 6, 99-100 
weighted networks 102-103, 

112-113 
Ford-Fulkerson algorithm 333-343 
forest, data structure 127, 291 
four-color theorem 130-131 
free choice survey 41, 45 
free energy 570, 572, 576-577 
freshwater food web 237 
friendship network 6, 36, 37, 39-46 

AddHealth study 43, 221 
animosity in 113, 206 
average degree 45-46 
community structure in 10, 

357,373-374,390 
degree 9, 41-42, 45-46,135,446 
directed networks 41, 50 
edges 6, 37, 41-42, 50 
geodesic distance 10, 54-58 
groups in 193-194, 221, 357, 

373-374 
in-degree 41-42 
karate club network 6, 47, 

373-374 
out-degree 41-42 
schoolchildren 37, 40-42, 

220-222,226-227,357 
sparse networks 135 

frustration 207 
FTP (File Transfer Protocol) 18 
fully mixed approximation 629-639 

51 model 630, 641, 651, 677 
SIR model 633, 642, 644, 646, 

647 
SIS model 636-637 

funneling effect 56, 243 

coauthorship networks 56, 57, 
243 

Internet 243 

gamma function 493 
integral form 493, 499 
Stirling's approximation 494 

gas pipeline network 31, 33-34 
picture of 34 

gel electrophoresis 92, 93 
gender, disassortative mixing by 

222,224 
gene duplication 539-540 
General Social Survey 45 
generating function 412-419, 

429-434 
and average degree 432-433, 

450,455,476 
average of distribution 

432-433 
component sizes 412-419, 

457-462,465-470,483 
degree distribution 450-451, 

462,469,472,597-600,607 
derivatives of 413-414, 

432-433,600 
directed networks 474-483 
directed random graphs 

474-477 
divergence 430 
examples 429-432 
excess degree distribution 

450-451,597-598,602 
exponential distribution 430, 

469,484,602 
exponential generating 

functions 429 
moments of distribution 

432-433 
normalization 432, 460 
Poisson distribution 430, 

450-451, 455 
Poisson random graph 

412-419,432,450-451 
power-law distribution 

430-432,451,472 
powers of 433-434, 453, 459 

INDEX 

preferential attachment model 
519 

properties of 432-434 
generative network models 486ff 
genes 91-94, 539-540 

duplication 539-540 
expression 91-92 
regulatory networks 7, 89-94 
transcription 91-92 
translation 91 

genetic algorithm 381 
genetic regulatory network 7, 89-94 

databases 94 
geodesic distance 9-10, 54-56, 

139-140,241-243 
algorithm 315-322 
and closeness centrality 

181-185,322 
average 181-185, 237, 241-243, 

322 
diameter 140 
directed networks 242 
friendship networks 10, 54-58 
infinite 139, 183-185 
Internet 241-242 
longest 140 
random graphs 420 
scale-free networks 242-243 
small-world model 560-565 
social networks 10, 54-58, 183, 

241-243 
geodesic path 139-140, 241-243 

absence of loops in 139 
algorithm 315, 322-324 
and betweenness centrality 

185-189 
diameter of network 140 
infinite 139, 183-185 
longest 140 
overlapping 187-188 
self-avoiding 136, 139 
uniqueness 140 
weighted networks 301, 329, 

333 
geography 27-28, 32 

autonomous systems 28 
Internet 27-28 
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network search 719-721 
power grid 31 
river network 33 
social networks 28, 229 r 

719-721 
telephone network 31 
transportation networks 32, 

546-548 
giant cluster 595ff, 643-648 

algorithm 616-621 
and epidemics 643-644, 

645-648 
bond percolation 643-644, 

645-648 
configuration model 596-614, 

645-648 
definition 595, 606 
near percolation threshold 

604-608 
non-uniform percolation 

609-613 
real-world netvvorks 621-624 
scale-free networks 607-608, 

613-614,648 
scaling with network size 606 
site percolation 595-608 
size 597-599, 603-614, 645-648 

giant component 235-239, 403-408, 
460-465 
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condition for 407-408, 456, 
462-463,464-465, 
471-473,484,604 

configuration model 456, 
460-465,466,471-473, 
484,604 

degree distribution in 657 
directed networks 477-482 
directed random graphs 

477-482 
exponential degree 

distribution 484, 604 
film actor network 236 
in-component 478-482 
morc than one 238, 409 
numerical calculation 473 
out-component 67, 478-479 

Poisson random graph 
404-408,409,635 

power-law degree distribution 
471-473 

random graphs 404-408, 409, 
456,460-465,471-473, 
477-482,635 

scale-free networks 471-473 
strongly connected 477-479 
uniqueness 238, 409 
weakly connected 477, 

479-480, 482 
giant in-component 478-482 
giant out-component 478-482 

directed random graphs 
478-482 

World Wide Web 67 
giant strongly connected 

component 477-479 
giant weakly connected component 

479-480,482 
Gibbs entropy 568 
Gibbs, Willard 568 
G(n, 111) 399 
G(n, p) 400 
Gnutella 73-74 
Google 5, 66, 67, 176-177, 707-708 
Google Scholar 68 
gossip 10 

model 694-695 
Gram~Schmidt orthogonalization 

352-353 
graph 109-110 
graph bisection 359-360 

community detection 371-380 
graph partitioning 359-360, 

362,364-365 
Kernighan-Lin algoritlun 

360-364 
modularity maximization 

372-382 
problems with 379-380 
repeated bisection 359, 362, 

364-365,378-380 
spectral algorithm 364-370, 

375-380 

graph Hamiltonian, see 
Hamiltonian 

graph Laplacian, see Laplacian 
graph partitioning 354-370 

and Laplacian 350-351, 
364-370 

applications 356-357 
bisection 359-360, 362, 364-365 
exhaustive search 359-360 
in parallel computing 356-357 
Kernighan-Lin algorithm 

360-364,369-370,373, 
374-375 

more than two groups 359, 362 
ratio cut partitioning 371~372 
repeated bisection 359, 362, 

364-365 
spectral partitioning 364-370 
two groups 359-360, 362, 

364-365 
graph theory 109 
Graphviz (software package) 277 
greedy algorithm 381, 387, 545, 

714-715, 716, 722 
community detection 381-382, 

387 
message passing 714-715, 716, 

722 
modularity maximization 381, 

387 
network optimization 545 
small-world experiment 

714-715, 716, 722 
GTL (software library) 277 
Guare, John 56 

Hamiltonian 569 
directed random graph 575 
random graph 571, 573, 578 
reciprocity model 576 
Strauss mode1585 
two-star model 577-578 

Hamiltonian path 140-142 
applications 141-142 
self-avoiding 136, 140 

Hamming distance 216, 387 
Harary, Frank 208 

Harary's clusterability theorem 
208-211 

heap data structure 301-305 
adding an element to 304-305 
binary heap 301-302 
Dijkstra's algorithm 301, 332 
epidemic simulation 302 
Fibonacci heap 332 
finding smallest value 305 
hierarchical clustering 389 
modified 389 
reducing a value in 305 
removing an element from 

305,389 
root element 305 
sifting 304-305, 389 

herd immunity 592, 601 
heuristic algorithm 360 
hidden population 58 
hierarchical clustering 386-391 

algorithm 388-390 
and cosine similarity 387, 390, 

392 
average-linkage clustering 

388-390 
complete-linkage clustering 

388-389 
computational complexity 

389-390 
example 390 
implementation 389 
karate club network 390 
problems with 390-391 
running time 389-390 
single-linkage clustering 

388-390 
hierarchical decomposition 385, 

386-391 
hierarchical structure 265-266, 385, 

386-391,718,720-725 
high-throughput method 86 
Hill estimator 255 
histogram 

degree distribution 245-253, 
309,424,498-500,539,558 

power-law distribution 
247-251 

HITS algorithm 118, 179-181 
homophily, see assortative mixing 
host-parasite network 103 
Householder algorithm 353 
HTML (Hypertext Markup 

Language) 64 
HTTP (Hypertext Transfer Protocol) 

18,64 
hub 9, 245-246 

airline networks 541 
and degree distribution 

245-246,424 
Bianconi-Barabasi model 

531-533 
hub-and-spoke networks 541, 

543-544,548 
hub centrality 178-181 
hubs and authorities 178-181 
Internet 245-246, 424 
removal 614-615 
superhub 531-533 

hub-and-spoke network 541, 
543-544,548 

hub centrality 178-181 
hubs and authorities algorithm 118, 

179-181 
hyperedge 122 
hypergraph 122-123 
hyperlinks 5, 63-64 

anchor text 707 
crawling 706-708 
distribution of 259-260 

igraph (software library) 277 
immune system 85-86, 628, 631 
immunity 592, 601, 631-632, 636 

epidemic models 631-632, 
637-638 

herd immunity 592, 60J 
infants 639 
SIR model 631-632 
SIRS model 637-638, 686 
SIS model 636 
temporary 638 

immunization 592, 601~602, 
614-615 

acquaintance immunization 
614-615 
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percolation theory 592, 
601-602,609,613, 
614-615,673 

scale-free network 602, 614 
targeted 609,613,614-615 
non-uniform 609, 613 

immunoprecipitation 85 
incidence matrix 124, 155 

bipartite network 124, 126 
edge incidence matrix 155 

in-component 145, 239-240 
directed random graph 

478-479 
giant 478-482 
overlapping 240 
Price model 510-5J3 
tree-like 511 
World Wide Web 240 

in-degree 9, 135-136 
average 135-136 
citation network 68, 69, 169, 

248,252-253 
correlation with out-degree 

475 
degree centrality 169 
distribution 246-247, 248, 

252-253,259,475-477 
social networks 41-42 
World Wide Web 9,246,248, 

252-253,259 
independent paths 145-150, 

339-343 
algorithm 339-343 
and robustness 197, 333 
directed networks 334 
edge-independent 145-150, 

196-197,333-341 
Menger's theorem 148--149 
vertex-independent 146-150, 

196-198,333,341-343 
INDEX experiment 57-58, 719 
infected state 628 
infection rate 640 
infective state 628 
inFlow (software package) 277 
information network 63ft 

assortative mixing 237, 267 
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citation networks 67-72 
disassortahve mixing 267 
empirical measurements 63ff 
keyword indexes 75-77 
peer-to-peer networks 72-74 
recommender networks 74-75 
statistics 237 
World Wide Web 63-67 

information science 68 
instant messaging 6, 49 
intermarriage network 48 
Internet 3, 18-28 
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autonomous system 
representation 25-27, 200, 
243, 245, 259, 265-266, 
424,448, 622, 624 

average degree 237, 448 
average neighbor degree 448 
backbone 19, 20,197 
betweenness centrality 

261-262 
class C subnet representation 

4,24,26-27 
clustering coefficient 200, 237, 

264 
cumulative degree 

distribution 252 
degree distribution 24, 

245-246,247-248, 
250-251,252,255,424,601 

DIMES project 22 
domain 24-25 
domain representation 24-25 
edges 19, 22-23, 24, 25, 26 
eigenvector centrality 261-262 
exponent 237, 601 
failure of routers 197, 592, 594 
funneling effect 243 
geodesic distances 241-242 
geography 27-28 
highest degree vertex 245 
Internet service providers 19, 

20 
IP addresses 18, 21-24 
largest component 238 
mean degree 237, 448 
neighbor degree 448 

network backbone providers 
19 

nodes 19, 20, 23-25, 26-27 
packet loss 18 
packets 3, 10, 18, 21, 25-26, 

243,329 
percolation on 621-624 
pictures of 4, 20, 27 
power-law degree distribution 

24,247-249,250-251,252, 
255,264,601 

protocols 3-5, 18-19 
robush1ess 197, 600, 623-624 
router representation 23-24 
routers 19, 23-24 
Routeviews project 26 
scale-free network 24, 247-249, 

264 
schematic picture of 20 
shortest paths 241-242 
site percolation on 600-601 
small-world effect 10 
sparse network 134-135 
statistics 237 
subnet representation 4, 24, 

26-27 
subnets 24 
transitivity 200, 264 
vertices 19, 20, 23-25, 26-27 

Internet Movie Database 183 
Internet Protocol (IP) 18 
interviews 38, 39-44 
inversion formula 417-419, 468 
IP address 18, 21-24 
ISP (Internet Service Provider) 19, 

20 
local 19, 20 
regional 19, 20 

Jacobian matrix 681-684 
diagonal 681-682 
dynamical system 681-685 
eigenvalues 684 

JAVA libraries 277 
JUNG (software library) 277 

kangaroos, social network 47 
karate club network 6, 373-374 

community structure 373-374, 
377,390 

hierarchical clustering 390 
pictures of 6, 374 
split in 373-374 

Katz centrality 172-175, 178 
calculation 174 
directed networks 174 
extensions 174-175 
parameter value 173-174 
regular graphs 232 
undirected networks 174 

Katz similarity 219 
k-clan 196 
k -clique 195-196 
k-club 196 

Ie-component 196-198 
and robustness 197 
bicomponent 196, 426 
contiguous 197-198 
non-contiguous 197-198 
random graph 426 
tricomponent 196, 197 

k-connected component, see 
k-component 

k-core 195 
Kernighan, Brian 360 
Kernighan-Lin algorithm 360-364 

community detection 373 
comparison with spectral 

partitioning 369-370 
computational complexity 

362-364,374-375 
example 362-363 
implementation 363-364 

key-signing network 53 
keyword index 75-77 
Kirchhoff current law 162 
Kleinberg small-world model 

713-718 
K6nigsberg Bridge Problem 

140-141 
Ie-plex 194 
k-regular graph 135 

circle model 554, 557 
dynamical system 702 
eigenvector centrality 231-232 

Katz centrality 232 
SI model 674 

Krichhoff's current law 162 
Kuratowski, Kazimierz 132 
Kuratowski's theorem 132-133 

Lagrange inversion formula 
417-419,468 

Lambert W-flmction 405, 422, 647 
Lanczos algoritmn 353-354, 370 
landline telephone network 29-30 
LAPACK (software library) 354 
Laplacian 152ff 

and algebraic connectivity 157, 
350-353,368,370 

and cut size 365-370 
block diagonal 156-157 
directed networks 152 
dynamical systems 692-693, 

698 
eigenvalues 154-156, 350-353, 

368,370,693,698,701 
eigenvectors 154-156, 157, 

158-159,161,163, 
350-351,367-370,701 

graph partitioning 350-351, 
364-370 

largest eigenvalue 693, 701 
random walks 157-161 
reduced 161, 163-164 
resistor networks 163-164 
second eigenvalue 157, 

350-353,368,370 
singular 156 
smallest eigenvalue 156, 693, 

701 
spectral gap 157 
spectral partitioning 364-370 
spectrum 154-156, 370, 701 
zero eigenvalue 156, 693, 701 

large component 
absence of 238-239, 403-404 
directed networks 239-241 
more than one 238, 409 
World Wide Web 237, 239-240 

largest component 235-239, 403-404 
film actor network 236 

giant component 235-236, 
403-408,460-465 

Internet 238 
random graph 403-404 
s ta tis tics 237 
strongly connected 239-241 
weakly connected 236, 239 
World Wide Web 239-240 

latent semantic indexing 76 
LEDA/ AGD (software library) 277 
Lee, Christopher 183, 190 
left eigenvector 171, 172 
legal citation network 71-72 
Lerch transcendent 432 
letter-passing experiment, see 

small-world experiment 
LexisN exis 72 
library science 68 
LimeWire 73 
limit cycle 686, 701 
linearization 678-686, 687-688, 

695-696 
linear stability analysis 680-686, 

687-689 
link 109 
Linkedln49 
Little Rock Lake food web 7 
LiveJournal50 
local clustering coefficient 201-204, 

265-266 
and global clustering 

coefficient 203 
and redundancy 203 
dependence on degree 265-266 

local ISP 19, 20 
logaritmnic binning 250 
logistic growth 630, 637 

SI model 630-631 
SIS model 637 

long-distance telephone network 
30-31 

longitudinal network studies 49-50 
loops 137-139 

absence in acyclic networks 69, 
71,118,490 

absence in citation networks 
69,71, 
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absence in geodesic paths 139 
absence in small components 

410,457,482 
absence in trees 127-129, 410, 

457,482 
in directed networks 118-121, 

138-139,204 
length three 199-200, 204, 262, 

263,584 
length two 204 
number of given length 

137-139,199 
self-loops 110 
structural balance 207-209 

Lorenz curve 259-260 
exponential distribution 269 
power law 259-260 
scale-free network 259-260 

Lorenz, Max 259 
Lotka-Volterra equations 686 
Lyapunov exponent 701 

Maple (software package) 277 
marine food web 237 
marriage network 48 
mass-action approximation 629 
master equation 491-492 

Barabasi-Albert model 501 
Bianconi-Barabasi model 528 
for component sizes 512 
generalized preferential 

attachment 515, 517-518 
non-linear preferential 

attachment 522 
preferential attachment 

491-492,501, 503-505, 
512-513,528 

Price model 491-492, 503-505, 
512-513 

vertex copying model 537 
master stability condition 691-693, 

698 
master stability function 697-698, 

699,700,701 
Mathematica (software package) 

277,354 
mathematics coauthorship network 

237,448 
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Matlab (software package) 277, 354 
matrix 

adjacency matrix 110-115, 
283-286 

bibliographic coupling matrix 
117,180-181 

cocitation matrix 115-116, 180 
edge incidence matrix 155 
incidence matrix 124, 155 
Jacobian 681-685 
Laplacian 152££, 350-351, 

364-370,692-695,698, 
701 

modularity matrix 224, 
376-377 

nilpotent 122 
Schur decomposition 138 
skew symmetric 703 
triangular 120-121 

max-flow / min-cut theorem 
149-151,333,336,341 

weighted network 150-151 
maximum entropy 568, 585 
maximum flow 148-151, 333-343 

algorithm 333-343 
and connectivity 149-150, 333 
and minimum cut 147-151 
augmenting path algorithm 

149-150,333-343 
directed networks 149, 334 
flow betweenness 191-192 
max-flow / min-cut theorem 

149-151,333,336,341 
preflow-push algorithm 334 
weighted networks 150-151 

maximum likelihood 255 
McKendrick, Anderson 628 
mean degree, see average degree 
mean-field theory 

exponential random graph 
578,585 

small-world model 563-564 
Strauss model 585 
two-star model 578-583 

medical doctor network 42 
Medici family 48 
Menger, Karl 148 
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Menger's theorem 148-149 
message passing 54-58, 241, 243, 

713 
greedy algorithm 714-715, 716, 

722 
hierarchical model 718, 

720-725 
Kleinberg model 713-718 
reverse small-world 

experiment 57-58, 719 
small-world experiment 54-58, 

241-243,713,718,719, 
724-725 

messenger RNA 91, 94 
metabolic network 7, 78-84 

bipartite representation 80-81 
C. elegans 539 
community structure 357 
databases 84 
degree distribution 539 
E. cali 539 

edges 80-81 
empirical measurements 82 
nodes 79 
picture of 83 
power-law degree distribution 

539 
scale-free network 539 
statistics 237 
tripartite representation 80 
vertex copying 539 
vertices 79 

metabolic pathway 78-79, 82-84 
databases 84 

metabolic reaction 78-84 
databases 84 
enzymes 79-80 
inhibition of 84 
products 79, 80 
substrates 79, 80 

metabolism 78-80 
anabolic 78 
catabolic 78 

metabolite 7, 79 
microarray 94 
Milgram small-world experiment, 

see small-world 

experiment 
Milgram, Stanley 54, 241, 713 
minimum cut 147-151, 333, 340-341 

algorithm 149-150, 333-341 
and connectivity 149-150, 333 
and maximum flow 147-151 
augmenting path algorithm 

149-150,340-341 
directed networks 149, 334 
max-flow /min-cut theorem 

149-151,333,336,341 
preflow-push algorithm 334 
weighted networks 150 

minimum spanning tree 128 
mixed fixed point 680 
model 397-398 

airline network 541-548 
biological networks 426, 

439-541 
cascade model 426 
circle model 553-555, 557 
citation network 487-499, 

534-539 
compartmental 628-639 
disease spread 152, 627-639 
epidemics 152, 627-639 
food web 426 
generative 486££ 
gossip 694-695 
growing network 487ft 
hierarchical model 718, 

720-725 
message passing 713-718, 

720-725 
network formation 486ff 
network optimization 541-548 
of Barabasi and Albert 500-502 
of Bianconi and Barabasi 

527-534 
of Erdos and Renyi 398ff 
of Ferrer i Cancho and Sole 

542-546,547 
of Castner and Newman 

546-548 
of Kleinberg 713-718 
of Price 487-500, 501, 503-513, 

537-538 

of Strauss 583-585 
of Watts and Strogatz 555-565 
preferential attachment 487££ 
protein-protein interaction 

network 539-541 
p-star models 566 
reciprocity model 576-577 
road network 547-548 
SI model 628-631, 640-641, 

648-661, 677, 689 
SIR model 631-636, 642-648, 

661-669 
SIRS model 637-639 
SIS model 636-637, 669-672 
small-world effect 554££, 

713-718,719-725 
small-world model 555-565 
two-star model 577-583, 584, 

586 
vertex copying 534-541 
World Wide Web 514-521 

modularity 224-226, 372-382 
alternative forms 225-226, 

375-376 
community detection 372-382 
matrix form 375-376 
maximization 372-382, 385 
normalization 225 
values of 224 

modularity matrix 224, 376-377 
eigenvectors 377 
generalized 379 
leading eigenvector 377 
sparseness 377 

modularity maximization 372-382, 
385 

algorithms 372-382, 385 
bisection 372-382 
computational complexity 

374-375,377-378,382 
genetic algorithm 381 
greedy algorithm 381, 387 
simulated annealing 381 
spectral algorithm 375-379 
vertex moving algorithm 

373-375 

Molloy-Reed criterion 456, 464--465, 
471 

moment closure 653-657 
configuration model 656 
51 model 653-657 

moments 
and generating function 

432--433 
divergence 257-258, 312, 314, 

440,472,601,647 
first 257, 312, 314, 472 
power-law distribution 

257-259,312,314,440, 
472,601,647 

second 257-259, 312-314, 433, 
440,450,472,483,601, 
646,647 

monkeys, social network 47 
Moreno, Jacob 36, 44 
motifs 264-265 
movie database 183 
multiedges 110, 111, 113 

and adjacency list 287 
and adjacency matrix 112, 113, 

115,438 
citation networks 489-490, 491 
configuration model 436, 

437--438,440 
directed networks 115 
preferential attachment model 

489--490,491 
Price model 489--490, 491 
scale-free networks 440 
small-world model 555 

multigraph 110, 113 
adjacency matrix for 112, 113, 

115,283 
connection to weighted 

networks 113 
mutualistic network 103-104 
MySpace 36 

naive population 635 
name generator 40-42, 220 
Napster 73 
National Longitudinal Study of 

Adolescent Health 43, 221 
neighbor degree 446-448 
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average 446--448 
coauthorship network 448 
configuration model 446--447 
Internet 448 

neighbors 
at given distance 451--456 
average degree of 446--448 
second neighbors 451--456 

Netminer (software package) 277 
network 1ff 
network backbone provider 19 
network optimization 541-548 

airline networks 541-548 
distribution networks 541 
greedy algorithm 545 
model of Ferrer i Cancho and 

Sole 542-546, 547 
model of Castner and 

Newman 546-548 
road networks 547-548 
simulated annealing 547 
transportation networks 541 

network visualization 8 
Network Workbench (software 

package) 277 
NetworkX (software package) 277 
neural network 6, 94-98 

C. e/egans 98 
empirical measurements 97 
picture of 98 
s ta tis tics 237 

neuron 94-98 
neutral fixed point 680 
news spreading 10 
nilpotent matrix 122 
node 1, 109 

average degree 134, 135-136 
centrality 9, 168££ 
citation network 67 
degree 9, 133-136, 168-169 
examples of 110, 123 
food web 6, 99-100 
groups of 193-198, 354ff 
high degree 9, 245-246, 424, 

614-615 
highest degree 245, 253, 

259-260,278-279, 
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306-307,609,611-614, 
623-624,626,699-701 

importance 9, 168ff 
Internet 19, 20, 23-25, 26-27 
metabolic network 79 
pm,vcr grid TI 
removal 514, 592££ 
social network 36 
values on 113-114, 282-283 
World Wide Web 5, 63 

node-disjoint paths, see 
node-independent paths 

node-independent paths 146-150, 
196-198,333,341-343 

algorithm for 341-343 
non-linear preferential attachment 

514,521-527 
degree distribution 522-527 
empirical measurements 521 

non-symmetric fixed point 695 
NP (complexity class) 360 

occupation probability 594-595 
oil pipeline network 33 
one-mode projection 33, 124-126 

film actor network 124 
rail networks 33 
weighted networks 125-126 

online network 6, 48-50 
blogs 50 
Facebook 6, 36, 49, 63 
instant messaging 6, 49 
LinkedIn 49 
LiveJourna150 
MySpace36 
social networks 6, 36, 49-50 
Usenet 39,50 
weblogs 50 

o notation 279 
Opte project 4 
optimization 
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airline networks 541-548 
distribution networks 541 
genetic algorithms 381 
greedy algorithms 381, 387, 

545 
model of Ferrer i Cancho and 

Sole 542-546, 547 

model of Castner and 
Newman 546-548 

modularity 372-382, 385 
relaxation method 366-369, 

376-377 
road networks 547-548 
simulated annealing 381-382, 

547 
transportation networks 541 

orthogonalization 352-353 
Gram-Schmidt 352-353 
spectral partitioning 370 

oscillation 684-686, 701 
dynamical systems 684-686, 

701,704 
predator-prey dynamics 686 
SIRS model 638, 686 
synchronization 701-702, 704 

oscillator network 701, 704 
out~component 144-145, 239-240 

and eigenvector centrality 172, 
174, 178 

directed r,lOdolll graphs 
478-479 

giant 67, 478-479 
overlapping 240 
World Wide Web 67 

out~degree 9,135 
average 135-136 
correlation with in~degree 475 
degree centrality 169 
distribution 246--247, 475-477 
friendship network 41-42 
social network 41-42 
World Wide Web 9, 246, 248, 

252-253 

package delivery network 33, 541 
packet, Internet 3, 10, 18, 21, 25-26, 

243,329 
packet switched network 18 

Tnternet 18 
telephone network 31 

PageRank 175-178, 707-708 
extensions of 177-178 
Google 176-177, 707-708 
offline calculation 708 
parameter value 176-177 

pair approximation 651-657 
Pajek (software package) 277 
papers 67-70 

citation 67~ .. 70 
coauthorship 54 

partition function 569, 570, 572, 57L1, 
575,57(, 

patent citation network 70-71, 72 
path lengths 136-140, 181~-185, 

241-243 
algorithms 315-322, 330-333 
diameter 140, 242~-243, '120~422 
directed networks 242 

random graphs 419-423, 555 
shortest 139-140, 181-185, 

241-243,315-322, 
330-333 

paths 136-142 
augmenting 337-339 
directed networks 136, 188, 

242 
disjoint 145-150, 196-198, 333, 

339-343 
edge-disjoint 145-150, 

196-197,333-341 
edge-independent 145-150, 

196-197,333-341 
EuJerianl40-142 
geodesic 136, 139-140, 

181-189,241, 322-324 
Hamiltonian 136, 140-142 
independent paths 145-150, 

339-343 
in trees 128 
lengths 136-140, 181-185, 

241-243,315-333 
loops 137-139 
number of given length 

136-139 
random walks 61, 157-161, 

192,725-726 
se1f~avoiding "136 
shortest 136, 139-140, 181-189, 

241,322-324,330-333 
vertex-disjoint 146-150, 

196-198,333,341-343 

vertex~independent 146-150, 
196-198,333,341-343 

weighted networks 301, 329, 
333 

P (compIcxity class) 360 
Pearson coefficient 

algorithm for 267, 310 
and assortative mixing 229, 

230-231 
and community detection 387 
for degree 230-231, 237, 

267-268,310,313 
for rows of adjacency matrix 

214-215,387 
calculation of 267, 310 

peer~to~peer network 72-74, 
709-712 

bandwidth usage 74, 710-712 
breadth~first search 709-710 
client nodes 712 
Gnutella 73-74 
LimeWire 73 
Napster 73 
search 73-74, 709-712 
statistics 237 
supernodes 74, 711-712 

percolation 592ff 
algorithm 616-621 
and epidemics 642-648 
and robush1ess 592, 601-602, 

606,608,611-614, 
623-624 

Bethc lattice 598 
bootstrap percolation 195 
breadth~first search 616 
by degree 594, 609, 611-615, 

623-624 
clusters 595fl, 643ff 
coauthorship network 621--624 
configuration model 596-615 
continuous phase transition 

595,604 
giant cluster 595££, 643-648 
immw1ization 592, 601--602, 

609,613,673 
Internet 621-624 
joint site/bond percolation 673 

non~uniform 594,609-615, 
623-624 

occupation probability 
594-595 

phase transition 595, 604 
Poisson random graph 

600-601 
power grid 621-624 
power-law degree distribution 

601,602,614,623 
random graphs 596-615 
random removal of vertices 

594-608,621-623 
real~world networks 615-624 
relabeling algorithm 618-621 
road networks 621-624 
scale-free networks 601, 602, 

614,623 
social network 621-624 
spanning cluster 595-596 
targeted attacks 594, 609-615, 

623-624 
threshold 595-596, 600-607, 

614, 621-~623, 643-644, 
646 

uniform removal of vertices 
594-608,621-623 

vaccination 592, 601-602, 609, 
613,673 

percolation threshold 595-596 
and epidemics 643-644 
bond percolation 643-644, 646 
configuration model 600-606, 

614 
Poisson random graph 

600-601 
real-world networks 621-623 
sharpness 606-607, 622-623 
site percolation 595-596, 

600-606,614 
periphery 230-231 
Perron-Frobenius theorem 177, 232, 

346-347 
personal network 44--46 
PCP (software package) 53 
phase diagram 583 
phase transition 404 
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configuration model 466 
continuous 582, 604-606, 607 
directed random graph 

480-482 
exponential random graphs 

582,585 
first-order 604 
percolation 595, 604 
Poisson random graph 404, 

406,414 
random graphs 404, 406-407, 

414,466-467,481,582 
second~order 606, 607 
Strauss model 585 
third~order 607 
two~star model 582 

physicist coauthorship network 
263-264 

percolation on 622 
statistics 237 

pipeline network 31, 33-34 
planar network 129-133 

approximately planar 130 
average degree 166 
countries 130-"131 
detection 131-133 
Kuratowski's theorem '132-133 
measures of planarity 133 
river networks 129 
road networks 129-130, 547 
trees 129 

plant root network 33 
point mutation 540 
Poisson degree distribution 

401-402,450-451 
generating functions 450-451, 

455 
random graph 402, 424, 428, 

450-451 
small~world model 557 

Poisson distribution 402 
generating function 430, 

450-451,455 
Poisson random graph 400, 402 

and exponential random 
graph 573,578 
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average component size 
413-416 

average degree 399, 401 
clustering coefficient 402-403, 

423,450,552 
community structure 424 
components 403-419 
degree distribution 401-402, 

424,428 
diameter 399, 419-422 
divergence of component sizes 

414-415,416 
ensemble 399, 400 
epidemic transition on 646 
extensive components 

403-404,408-409 
fixed number of edges 398-399 
generating functions 412-419, 

450-451 
giant component 404-408, 409, 

635 
G(/1, In) 399 
G(/1, p) 400 
graphical solution 405-407 
large size limit 399/402, 403, 

405,409,422,423 
largest component 403-404 
number of edges 398-399, 

400-401 
path lengths 419-423, 555 
percolation on 600-601 
phase transition 404, 406, 414 
problems with 423-425 
robustness 601 
simple graph 398-399, 400 
SIR model 635, 646-647 
small components 128, 408££ 
small-world effect 419-420, 

422-423,555 
transitivity 402-403, 423, 552 
tree-like components 128, 410 

P61ya's urn 533 
polylogarithm function 431, 451 
polymers 456 
power failures 31-32 
power grid 31-32 

degree distribution 622 
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percolation on 621-624 
power failures 31-32 
statistics 237 

power-law degree distribution 24, 
68,247-260 

and giant component 471-473 
and multiedges 440 
and percolation 601, 602, 614, 

623 
and robustness 601, 608, 

613-614 
Barabasi-Albert model 502, 

526 
citation networks 68, 69, 248, 

252-253,430,487,494 
clustering coefficient 264, 450 
configuration model 470-473 
cumulative distribution 

251-252,257 
detection 249-255 
diverging second moment 31.2, 

314 
exponent 237, 248, 252, 

254-255,259,472, 
494-495,502,516,520, 
537-538,601,613-614, 
647 

generating functions 451 
immunization 602 
Internet 24, 247-249, 250-251, 

252,255,264,601 
Lorenz curves 259-260 
metabolic networks 539 
non-power-Iaw distributions 

249,424-425,557-558 
peer-to-peer network 74 
preferential attachment 

models 494-495, 500, 502, 
520,526 

Price model 494-495, 498-499, 
507-508 

robustness of networks 601, 
613-614 

site percolation 601-602, 
607-608,613-614,623 

vaccination 602 
vertex copying model 537-538 

visualization 245-254 
World Wide Web 248, 252-253, 

259,430,487,490,503, 
514,516 

power-law distribution 247-260, 
430-432 

beta function 494, 507, 513, 
516,529 

betweenness centrality 261 
centrality measures 261 
cumulative distribution 

251-252,257 

cut off 258 
degrees 24, 68, 247-260, 

494-495,500,502 
detection 249-255 
diverging second moment 258, 

312,314,440,472,601,647 
eigenvector centrality 261 
exponent 237, 248, 252, 

254-255,259,472, 
494-495,502,513,516, 
520,537-538,601, 
613-614,647 

first moment 257, 312, 314, 472 
generating functions 430-432, 

451,472 
Hill estimator 255 
histograms 247-251 
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extensions 514ff 
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498-499,507-508 
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503-510 
drawbacks 488, 495, 514 
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477-483 
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705-708 
search engine 705-708 

AltaVista 237, 238 
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Google 176-177, 707-708 
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second neighbors 451-456 
second-order phase transition 606, 

607 
self-avoiding path 136 

geodesic path 139 
Hamiltonian path 140 
random walk 158 
shortest path 139 

self-avoiding walk 158 
self-edge 110, 111, 115 

acyclic network 118, 121 
and adjacency list 287 
and adjacency matrix 112, 115, 

121, 133, 284 
cocitation networks 116 
computer representation 287 
configuration model 436-438, 

441 
directed networks 115 
random graphs 398, 399, 

436--438,441 
self-loop, see self-edge 
sewerage netvvork 33 
sexual contact netvvork 42, 237 
sexually transmitted disease 42 
shortcut 555-556, 713-715 
shortest augmenting path 

algorithm 334 
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distance 
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241-243 
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Dijkstra's algorithm 301, 329, 

333 
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small-world effect 241-243 
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329-333 
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breadth-first search 322-324 
Dijkstra's algorithm 333 
weighted networks 333 
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similarity 211-220 

and community detection 
387-389,390 
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cosine similarity 212-214, 216, 

387, 390, 392 
Euclidean distance 216, 387 
Katz similarity 219 
non-network measures 211 
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387 
regular equivalence 211-212, 

217-220 
structural equivalence 211-216 

similarity transformation 138 
SI model 628-631, 640-641, 648--661, 

677,689 
and configuration model 656, 

657-661 
as a dynamical system 677, 

679,687,689,690 
degree-based approximation 

657-661 
early-time behavior 650-651, 

660-661 
equations 630 
fixed points 679, 689, 690 
fully mixed 630, 641, 651, 677 

initial conditions 630, 641, 649 
late-time behavior 640-641, 

651, 660-661 
logistic growth 630-631 
moment closure method 

653--657 
on a regular graph 674 
short-time behavior 650-651, 

660-661 
solution 630-631, 640-641, 650, 

658-661 
symmetric fixed point 689 
time-dependent properties 

630-631,648-661 
Simon, Herbert 487 
simple graph 110 

disassortative mixing 267 
exponential random graph 

model 567 
maximum number of edges 

134 
Poisson random graph 

398-399,400 
random graph 398-399, 400 
with power-law degree 

distribution 258 
simple network, see simple graph 
simulated annealing 381-382 

community detection 381-382 
modularity maximization 381 
nehvork optimization 547 

single-linkage clustering 388-390 
implementation 390 

singular value decomposition 76 
sink food web 102 
SIR model 631-636, 642-648, 

661-669 
and bond percolation 642-648 
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645-648,664-669 
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663-664 
basic reproduction number 

635-636 
degree-based approximation 

664--669 

early-time behavior 663-664, 
668 

epidemic outbreaks 635-636, 
644,647,664 

epidemic threshold 636, 644, 
646,664,668-669 

fully mixed 633-634, 642, 644, 
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initial conditions 635, 663 
late-time behavior 642-648, 

667-668 
Poisson random graph 635, 

646-647 
power-law nehvorks 647 
random graphs 635, 645-648, 

664-669 
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short-time behavior 663-664, 

668 
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643-645,645-648,667 
small outbreaks 674 
time-dependent properties 

633--635,661-669 
transmission probability 642 

SIRS model 637-639 
and endemic disease 639 
as a dynamical system 686 
equations 638 
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SIS model 636-637, 669-672 
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and endemic disease 637, 670, 

672 
basic reproduction number 

637 
degree-based approximation 

671-672 
early-time behavior 671-672 
endemic state 637, 670, 672 
epidemic threshold 637, 670, 

672 
fully mixed 636-637 
initial conditions 637, 671 
late-time behavior 648, 670, 

672 
logistic growth 637 

short-time behavior 671~672 
solution 637, 671 
time-dependent properties 

636--637,669-672 
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606,608,611-614, 
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breadth-first search 616 
by degree 594, 609, 611-615, 

623-624 
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coauthorship network 621~624 
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exponential degree 

distribution 602-604, 
611-613 

giant cluster 595, 596-608 
graphical solution 598-599 
immunization 592, 601-602, 

609,613,673 
internet 600-601, 621-624 
joint site/bond percolation 673 
non-uniform 594, 609-615, 

623-624 
occupation probability 

594-595 
percolation threshold 595-596, 

600--606,614 
phase transition 595, 604 
Poisson random graph 

600-601 
power grid 621-624 
power-law degree distribution 

601-602,607-608, 
613-614,623 

random graphs 596-615 
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594-608,621-623 
real-world networks 615-624 
relabeling algorithm 618-621 
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607-608,613-614,623 
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spanning cluster 595-596 
targeted attacks 594, 609-615, 

623--624 
uniform removal of vertices 

594-608,621-623 
vaccination 592, 601-602, 609, 
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Six Degrees of Kevin Bacon 54 
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skew-symmetric matrix 703 
small components 128, 235, 

238-241,408--419, 
456--460,465--470, 
482--483 

absence of loops in 410, 457, 
482 

average size 413--416, 465--467 
configuration model 456-460, 

465--470 
directed random graph 

482--483 
Poisson random graph 128, 

408ff 
random graph 128, 408ff, 

456--460,465--470 
strongly connected 239-240, 

482 
tree-like 128, 410, 457 
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adjacency matrix 700 
Laplacian 156, 693, 701 

small-world effect 9-10,54-58, 
241-243 

Internet 10 
message passing experiments 

54-58,241-243,713,718, 
719,724-725 

models of 554ft, 713-718, 
719-725 

Poisson random graph 
419-420,422-423,555 
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small-world model 564-565 
small-world experiment 54-58, 

241-243 

767 



INDEX 
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biases 56, 57 
email version 57 
failure of 724-725 
greedy algorithm 714-715, 716, 

722 
models of 713-718,719-725 
response rate 55, 57 
reverse small-world 

experiment 57-58, 719 
small-world model 555-565 

average path length 560-565 
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564-565 
d-dimensional 718 
degree distribution 557 
geodesic distance 560-565 
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mean-field theory 563-564 
message passing model 

713-718 
multi edges 555 
numerical simulation 562 
Poisson degree distribution 

557 
scaling theory 560-564 
small-world effect 564-565 
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degree 9, 41-42, 45-46,135, 

237,446 
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50,53 
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disassortative mixing 267-268 
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601-602,614-615,627, 
639ff 
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50,53 

email network 48-491 2001 237 
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36ff 
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film actor network 54, 237 
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39-46 
geodesic distances 101 54-58, 
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groups in 193-194, 221, 357, 

373-374 
in-degree 41-42 
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373-374 
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medical doctors 42 
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origin of the term 37 
out-degree 41-42 
percolation on 621-624 
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61-62 
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schoolchildren 371 40-42, 
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241-243 
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sparse netvvorks 135 
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time-resolved 49-50 
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sociometry 37 
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.. 
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135, 280, 284-286, 306, 
310,321,353-354 
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World Wide Web 134-135 
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345-350, 691-692, 
698-701,703-704 

Laplacian 154-156, 370, 701 
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579-582 
stability analysis 680-686, 687-698 
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stability function 697-698, 699, 700, 

701 
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transportation network 543 

static web pages 64 1 66 
Stirling's approximation 494 
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Strauss model 583-585 
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240-241 
citation networks 172, 241 
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World Wide Web 143-145, 

239-240 
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surveys 39ff 

design of 40 
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General Social Survey 45 
name generators 40-421 220 
respondent-driven sampling 

61-62 
telephone surveys 401 59 

susceptible-infected modeIr see SI 
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susceptible-infected-recovered 
model, see SIR model 

susceptible-infected-susceptible 
model, see SIS model 

susceptible state 628 
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694-695 
symmetry breaking 579-582 
synchronization 701-702, 704 

tandem affinity purification 88 
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17ff 
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Internet 3, 18-28 
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rail netvvork 32-33 
road network 32,113,547-548, 

621-624 
statistics 237 
telephone netvvork 28--31 
transportation networks 

32-33,541-548 
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telephone exchange 
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long distance 30 

telephone network 28-31 
circuit switched 18, 29, 31 
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long-distance offices 30 
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telephone surveys 40, 59 
Teoma 181 
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third-order phase transition 607 
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time complexity 278-282 
time-resolved social network 49-50 
toll-switching office 30 
traceroute 21-23 
train network, see rail network 
transcription factor 86, 91 
transfer RNA 91 
transitivity 198-204 

cliques 198 
directed nehvorks 201 
exponential random graphs 

583-585 
food webs 264 
Internet 200, 264 
partial 198-199 
perfect 198 
Poisson random graph 

402-403,423,552 
random graphs 402-403, 423, 

426-427,474,552 
small-world model 558-560, 

564-565 
social networks 200-201 
Strauss model 583-585 
World Wide Web 264 

transmission probability 642 
transmission rate 640 
transportation network 32-33, 

541-548 
airline network 32, 113, 

541-544,548,673 
maintenance costs 542 
optimization 541 
rail network 32-33, 237 
road network 32, 113, 129-130, 

329,547-548,621-624 
star graph 543 
tradeoffs 542 

trapezium rule, see trapezoidal rule 
trapezoidal rule 524-525, 626, 716 
tree 127-129 
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absence of loops in 127-129, 
410,457,482 

adjacency tree 290-291, 
297-298 

and configuration model 457 
and random graph 128, 410 

A VL tree 128, 297 
Bethe lattice 128, 268-269, 598 
betweenness centrality 182, 

233 
Cayley tree 128, 268-269, 598 
clustering coefficient 199 
data structure 290-298 
dendrogram 128, 383-384, 720 
hierarchical network model 

720-721 
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leaf nodes 127, 326-327, 328 
minimum spanning tree 128 
number of edges 128-129 
percolation on 598 
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randomized 296 
river networks 33, 128 
rooted 127 
root node 127-128, 291 
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457 
tree data structure 290-298 
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AVL tree 128, 297 
balanced 293-294, 295-297 
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depth 293 
enumerating elements of 297 
Euler tour 297 
finding an element in 292-294 
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parent node 291 
pivot 297 
rebalancing 295-297 
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closed 199-200, 263-264 
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263-264 
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unstable 206-208 
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triangles 199-200, 262-265 
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199-200 

random graphs 425, 426-427 
small-world model 558-559 
Strauss model 584-585 
triangular lattice 553-554 

triangular lattice 552-553 
triangular matrix 120-121 
tricomponent 196, 197 

non-contiguous 197-198 
tripartite network 80-81 
trophic level 7, 101-102, 166-167 
trophic species 100 
trust network 53 
two-hybrid screen 86-88 
two-mode network 53, 123 
two-star 577 
two-star model 577-583, 584, 586 
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582-583 

continuous phase transition 
582 

edge probability 578-583 
Hamiltonian 577-578 
mean-field theory 578-583 
phase diagram 583, 584 
phase transition 582 
problems with 581-583 
spontaneous symmetry 

breaking 579-581 

Uc/NET (software package) 190, 
277,286 

UDP (User Datagram Protocol) 19 
undirected network 110-112 

adjacency list 286-287 
adjacency matrix 110-112, 

114-115,137-138,284 
average degree 134 
betweenness centrality 

186-188 
clustering coefficient 198-201 
components 142-143, 196-198, 

235-239 
connectivity 147-150 
degree 9, 133 
degree distribution 243-246 
degree sequence 244-245 

eigenvector centrality 171 
excess degree distribution 

445-449,459,597,645 
exponential random graph 

571-575 
friendship networks 41 
from directed network 115-118 
Katz centrality 174 
k-components 196-198 
loops in 137-138 
metabolic networks 80-81 
paths on 136-138, 139-142, 

145-150,196-197, 
241-242,322-324, 
334-336 

self-edges 112, 115 
sexual contact networks 42 
social networks 4t 42 
transitivity 198-201 

URL 65-66, 283 
Usenet 39,50 

vaccination 592, 601-602, 614-615 
acquaintance immunization 

614-615 
non-uniform 609,613 
percolation theory 592, 

601-602,609,613, 
614-615,673 

scale-free network 602, 
613-614 

targeted 609, 613, 614-615 
valued network, see weighted 

network 
vertex connectivity 147, 148, 

196-197,333,341-343 
vertex copying 534-541 

biological networks 539-541 
citation networks 534-539 
gene duplication 539-540 
metabolic networks 539 
model 534-541 
protein-protein interaction 

networks 539-540 
vertex copying model 534-541 

citation networks 534-539 
connection to Price model 

537-538 

exponent 537-538 
master equation 537 
power-law degree distribution 

537-538 
vertex cut set 147-150, 196, 333 
vertex-disjoint paths, see 

vertex-independent paths 
vertex-independent paths 146-150, 

196-198,333,341-343 
algorithm for 341-343 

vertex percolation, see site 
percolation 

vertices I, 109 
age of 509-510 
centrality 9, 168ff 
copying 534-541 
cut set 147-150, 196,333 
examples of 110, 123 
food webs 6, 99-100 
groups of 193-198, 354ff 
high degree 9, 245-246, 424, 

614-615 
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259-260,278-279, 
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623-624,626,699-701 
importance of 9, 168££ 
Internet 19, 20, 23-25, 26-27 
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percola tion on 592ff 
removal 514, 592ff 
similarity 388 
social networks 5, 36 
values on 113-114, 282-283 
World Wide Web 5, 63 

virus, computer 48-49, 627 
Visone (software package) 277 
visualization 8-9 

acyclic networks 120 
software 8, 277 

water supply network 33 
Watts-Strogatz model 555-565 
weakly connected component 143, 

239 
directed random graph 477, 

479-480,482 
giant 479-480, 482 
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web crawler 65-67, 705-706 

biases 66-67, 238 
breadth-first search 65-66 
for citations 68-69 
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software 67 
web search 67, 705-706 

web link, see hyperlink 
weblog network 50 
web pages 5, 63-67, 705-708 

dynamic 65, 66, 706 
indexes of 67, 76, 705-708 
ranking of 176-177, 179-181, 

705-708 
static 64, 66 

web search 5, 67, 176-177, 705-708 
anchor text 707 
Ask.com 181 
breadth-first search 65, 706 
Google 176-177, 707-708 
PageRank 176-177, 707, 708 
Teoma 181 
web crawlers 65-67, 705-706 

website 50, 64 
weighted edge 43, 112-113, 

299-300,329 
negative weights 113, 206 

weighted network 112-114 
adjacency matrix 112-113, 283 
betweenness centrality 333 
bibliographic coupling 

networks 117 
bipartite 126 
cocitation networks 116 
connection to multigraphs 113 
food webs 102-103, 112-113 
geodesic paths 301, 329, 333 
max-flow /min-cut theorem 

150-151 
maximum flow 150-151 
minimum cut 150 
one-mode projections 125-126 
recommender networks 75 
shortest paths on 301, 329-333 
shortest path trees 333 
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Westlaw 72 
W-function 405, 422, 647 
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word network 237 
World Wide Web 5, 63-67, 705-708 

as distributed database 709 
assortative mixing 222, 237 
Barabasi-Albert model 

772 

500-502 
blogs 50 
bow tie diagram 240 
clustering coefficient 237, 264 
co-links 205 
community structure 357 
components 66-67, 143-145, 

238,239-240 
cumulative degree 

distribution 252-253 
degree distribution 246, 

252-253,259 
directed network 5, 63-64, 

66-67,143 
disappearance of edges 514 
disappearance of vertices 514 
edges 5, 63-64, 143 

exponent 237, 259 
giant in-component 239-240 
giant out-component 67, 

239-240 
hyperlinks 5, 63-64, 143, 

259-260, 706-708 
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in-degree 9, 246, 252-253 
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models of 514-521 
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Price model 490, 514 
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scale-free network 248, 514 
search engine 5, 67, 176-177, 

705-708 
sparse network 134--135 
statistics 237 
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components 143-145, 
239-240 

transitivity 264 
vertices 5,63 
weblogs 50 
web search 5, 67, 176-177, 

705-708 

yeast protein-protein interaction 
network 88-89 
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yEd (software package) 277 
Yule process 487 
Yule, Udny 487 
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