
No Free Lunch Theorems for SearchSFI-TR-95-02-010David H. Wolpert (dhw@santafe.edu)William G. Macready (wgm@santafe.edu)The Santa Fe Institute1399 Hyde Park RoadSanta Fe, NM, 87501February 23, 1996AbstractWe show that all algorithms that search for an extremum of a cost function per-form exactly the same, according to any performance measure, when averaged over allpossible cost functions. In particular, if algorithm A outperforms algorithm B on somecost functions, then loosely speaking there must exist exactly as many other functionswhere B outperforms A. Starting from this we analyze a number of the other a prioricharacteristics of the search problem, like its geometry and its information-theoreticaspects. This analysis allows us to derive mathematical benchmarks for assessing aparticular search algorithm's performance. We also investigate minimax aspects ofthe search problem, the validity of using characteristics of a partial search over a costfunction to predict future behavior of the search algorithm on that cost function, andtime-varying cost functions. We conclude with some discussion of the justi�ability ofbiologically-inspired search methods.1 IntroductionMany problems can be cast as optimization over a \cost" or \�tness" function. In such aproblem, we are given such a function, f : X ! Y (F being the set of all such mappings).For that f we seek the set of x� 2 X which give rise to a particular y� 2 Y. Most often,we seek the x�'s which extremize f (this will often be implicitly assumed in this paper).Physical examples of such a problem include free energy minimization (Y = <) over spincon�gurations (X = f�1;+1gN), or over bond angles (X = f< � < � <gN), etc. Exam-ples also abound in combinatorial optimization, ranging from number partitioning to graphcoloring to scheduling [4]. 1



There are two common approaches to these optimization problems. The �rst is a sys-tematic construction of a good X value, x0, from good sub-solutions specifying part of x0.The most celebrated method of this type is the branch and bound algorithm [9]. For thissystematic and exhaustive approach to work in reasonable time, one must have an e�ectiveheuristic, h(n), representing the quality of sub-solutions n. There is extensive theoreticalwork [11] linking the cost function to the properties a heuristic must have in order to searche�ciently.A second approach to optimization begins with a population of one or more completesolutions x 2 X and the associated Y values, and (tries to) iteratively improves upon those Xvalues. There are many algorithms of this type, including hill-climbing, simulated annealing[7], and genetic algorithms [5].Intuitively, one would expect that for this class of algorithms to work e�ectively, thebiases in how they try to improve the population (i.e., the biases in how they search X )must \match" those implicit in the cost function they are optimizing. However almost alwaysthese algorithms are directly applied, with little or no modi�cation, to any cost function in awide class of cost functions. The particulars of the cost functions at hand are almost alwaysignored. As we will demonstrate though, the \matching" intuition is true; the particulars ofthe cost function are crucial, and blind faith in an algorithm to search e�ectively across abroad class of problems is rarely justi�ed.Indeed, one might expect that there are pairs of search algorithms A and B such thatA performs better than B on average, even if B sometimes outperforms A. As an example,one might expect that hill-climbing usually outperforms hill-descending if one's goal is to�nd a maximum of the cost function. One might also expect it would outperform a randomsearch. In point of fact though, as our central result demonstrates, this is not the case. Ifwe do not take into account any particular biases or properties of our cost function, then theexpected performance of all algorithms on that function are exactly the same (regardless ofthe performance measure used).In short, there are no \free lunches" for e�ective optimization; any algorithm performsonly as well as the knowledge concerning the cost function put into the cost algorithm. Forthis reason (and to emphasize the parallel with similar supervised learning results [16, 17]),we have dubbed our central result a \no free lunch" (NFL) theorem.To prove the NFL theorem a framework has to be developed which addresses the coreaspects of search. This framework constitutes the \skeleton" of the optimization problem; itis what can be said concerning search before explicit details of a particular real-world searchproblem are considered. The construction of such a skeleton provides a language to ask andanswer formal questions about search, some of which have never before even been asked,never mind answered. (We pose and answer a number of such questions in this paper.) Inaddition, such a skeleton indicates where the real \meat" of optimization lies. It clari�eswhat the core issues are that underly the e�ectiveness of the search process.The paper is organized as follows. We begin in section 2 by presenting our frameworkand using it to prove the NFL theorem. We prove the theorem for both deterministic andstochastic search algorithms. Section 3 gives a geometric interpretation of the NFL theorem.In particular, in that section we provide a geometric meaning of what it means for an2



algorithm to be well \matched" to a cost function.The rest of the paper goes beyond the NFL theorem. It consists of a preliminary inves-tigation of the statistical nature of the search problem, using the framework developed insection 2.In some circumstances the average behavior of algorithms is not an interesting quantityby which to compare algorithms. Alternatively, averages may be interesting, but it isn't clearwhat distribution over cost functions to use to do the averaging. We address such scenariosin section 4 by investigating minimax distinctions between algorithms. Such distinctionshold for any distribution over cost functions.Section 5 begins the exploration of some of the questions raised in section 2. Some of theanswers lead naturally into results concerning the information theoretic aspects of search. (Inthat those results are derived from the NFL theorem, they illustrate the central importanceof the NFL theorem in analyzing optimization.) A myriad of other properties of search maybe investigated using techniques similar to those developed in this section. We list a sampleof these in Section 9.2.In Section 6 we turn to the important problem of assessing the performance of partic-ular search algorithms. We derive several benchmarks against which to compare such analgorithm's performance. We can not conceive of any valid demonstration of the \absolute"(rather than relative) e�cacy of an algorithm on some search problem that doesn't use these(or similar) benchmarks.Not all search problems are static; in some cases the cost function changes over time.Section 7 extends our analysis to the case of such time dependent cost functions.In section 8 we provide some theorems valid for any single �xed cost function, andtherefore for any distribution over cost functions. These theorems state that one can not usea search algorithm's behavior so far on a particular cost function to predict its future behavioron that function. When choosing between algorithms based on their observed performanceit does not su�ce to make an assumption about the cost function; some (currently poorlyunderstood) assumptions are' also being made about how the algorithms in question arerelated to each other and to the cost function.Finally, we conclude in Section 9 with a general discussion of the implications of ourresults, and then of future directions for work.The paper can be read in stages. A �rst reading might highlight the NFL theorem and itsbroad implications. Such a reading should start with Section 2 for an understanding of theNFL theorem, Eq. (1). Section 3 then provides a geometric understanding of the theorem.Section 4, which considers minimax distinctions between algorithms, addresses limitationsof the NFL theorem. Finally, Section 9.1 discusses broad implications of the NFL result.A second reading might explore the potential richness of the framework developed inSections 2 and 3. Such a reading should include section 5, which uses our framework todemonstrate some of the information theoretic aspects of search. It would then move onto Section 6 which uses the framework to provide useful benchmarks against which otheralgorithms may be compared.A �nal reading would include subjects that may constitute fruitful extensions of the3



framework developed in Sections 2 and 3. Such a reading would include section 7, whichextends the NFL results to a class of time-dependent cost functions. It would also includesection 8, which probes what may be learned from a limited amount of search over a single,speci�c, cost function. This reading would conclude with Section 9.2 where we list manydirections for future extensions.We should emphasize that our comparing algorithms based on their having the samenumber of distinct evaluations of the cost function is simply our choice. Although we considerit quite reasonable, we do not claim to be able to \prove" that one should use it, in anysense. If someone wishes to compare algorithms on some other basis, we wish them luck.However as an aside on one such comparison scheme, we note that comparing based ontotal evaluations|including repeats|is fraught with di�culties, and results in all kindsof irrelevant a priori distinctions between algorithms. (For example, it says that a globalrandom guesser is better than a hill-climber, averaged over all cost functions, simply becausethe random guesser will retrace less.)There are a number of other formal approaches to the issues investigated in this paper,in particular, the �eld of computational complexity. Unlike the approach taken in this pa-per, computational complexity ignores the statistical nature of search for the most part, andconcentrates instead on computational issues. Much (though by no means all) of computa-tional complexity is concerned with physically unrealizable computational devices (Turingmachines) and the worst case amount of resources they require to �nd optimal solutions.In contrast, the analysis in this paper does not concern itself with the computational en-gine used by the search algorithm, but rather concentrates exclusively on the underlyingstatistical nature of the search problem.Future work would involve combining our concern for the statistical nature of search with(realistic) concerns for computational resources.2 No Free Lunch Theorem for SearchAll oracle-based search algorithms rely on extrapolating from an existing set of m points andassociated cost values, (x; y)m 2 (X �Y)m, to a new point x0 2 X that hopefully has low cost(high cost if we're searching for a maximum rather than a minimum). The extrapolation maybe either deterministic or stochastic. The analysis of such extrapolations can be formalizedas follows.For simplicity take X and Y to be �nite. De�ne dm � fdm(i)g � fdxm(i); dym(i)g fori = 1 : : :m to be a set of m distinct search points (i.e. cost evaluations) and associated costvalues ordered in some way (usually according to the time at which they are generated) withthe ordering index given by i. Let us call this a population of size m. We denote the set ofall populations of size m by Dm.As above, let f indicate a single-valued function from X to Y: f 2 YX . Note that thereare a �nite number of f if jX j and jYj are �nite. At each stage of a search algorithm, a newpoint x 2 X is chosen based on the members of the current population d; the pair fx0; f(x0)gis added to d; and the procedure repeats. 4



Any search algorithm of the \second approach" discussed in the introduction is a (per-haps probabilistic) mapping taking any population to a new point in the search space. Forsimplicity of the presentation, we assume that the new search point has not already beenvisited. (As discussed below, relaxing this assumption does not a�ect our results.) So inparticular a deterministic search algorithm is a mapping a : d 2 D ! fx j x 62 dxg, whereD � [mDm, and in particular contains the empty set. For clarity of the exposition, inthis paper we will only explicitly consider such deterministic search algorithms. However asdiscussed below, all our results also apply to stochastic algorithms.Note that the population contains all points sampled so far. In particular, in a con-ventional hill-climber that works by moving from x to that neighbor of x with the highest�tness, it is necessary to evaluate the �tnesses of all the neighbors of x. All those evaluatedpoints are contained in the population, not only x and the neighbor of x with highest �tness.We are interested in the histogram, ~c, of cost values that an algorithm, a, obtains on aparticular cost function, f , given m distinct cost evaluations. Note that ~c is given by the yvalues of the population, dym, and is a vector of length jYj whose ith component is the numberof members in the population dm having cost fi. Once we have ~c we can use it to assess thequality of the search in any way we choose. (For example if we are searching for minima wemight take the lowest occupied bin in ~c as our performance measure.) Consequently, we areinterested in the conditional probability that histogram ~c will be obtained under m iterationsof algorithm a on f . This quantity is given by the conditional probability P (~c j f;m; a).A natural question concerning this scenario is how F1, the set of f for which somealgorithm a1 outperforms another algorithm a2, compares to F2, the set of f for which thereverse is true. To perform the comparison, we use the trick of comparing the sum overall f of P (~c j f;m; a1) to the sum over all f of P (~c j f;m; a1). This comparison provides amajor result of this paper: P (~c j f;m; a) is independent of a when we average over all costfunctions. In other words, as is proven below,Theorem: For any pair of algorithms a1 and a2,Xf P (~c j f;m; a1) =Xf P (~c j f;m; a2): (1)An immediate corollary is that for any performance measure �(~c), the average over all fof P (�(~c) j f;m; a) is independent of a. So the precise way that the histogram is mappedto a performance measure is irrelevant.Note that the no free lunch result implies that if we know nothing about f , thenP (~c jm; a), which is the probability we obtain histogram c after m distinct cost evaluationsof algorithm a, is independent of a. This follows fromP (~c jm; a) =Xf P (~c j f;m; a)P (f jm; a) =Xf P (~c j f;m; a)P (f)(in the last step we have relied on the fact that the cost function doesn't depend on eitherm or a). If we know nothing about f then all f are equally likely, which means that forall f , P (f) = 1=jYjjX j. (More generally, P (f) re
ects our \prior knowledge" concerning f .)5



Accordingly, for this \no knowledge" scenario, P (~c jm; a) = jYj�jX jPf P (c j f;m; a), whichis independent of a by the no free lunch theorem.Similarly, you can derive an NFL result for averaging over all priors. (More formally,the result concerns averaging over all � the quantity P (~cjm;�), where � indexes the set ofpossible P (f).) In this, the uniform P (f) case is not some \pathological case", on the edgeof the space. Rather it is the typical case.Another immediate consequence of the NFL result is that the expected histogramE(~c j f;m; a) =P~c~c P (~c j f;m; a) is, on average, the same for all algorithms. More generally, for any twoalgorithms, at the point in their search where they have both created a population of size m,if algorithm a1 has better performance than algorithm a2 over some subset � � F of func-tions, then a2 must perform better on the set of remaining functions F n�. So for example ifsimulated annealing outperforms genetic algorithms on some set �, genetic algorithms mustoutperform simulated annealing on F n�. As another example, even if one's goal is to �nd amaximum of the cost function, hill-climbing and hill-descending are equivalent, on average.A particularly striking example of this last point is the case where a2 is the algorithmof random search. The NFL result says that there are as many f (appropriately weighted)for which the random algorithm outperforms your favorite search algorithm as vice-versa.There are as many f for which your algorithm's guesses for where to search are worse thanrandom as for which they are better. The risk you take in choosing an algorithm is not thatit may perform randomly on the f at hand, but that it may very well perform even worse.Often in the real world one has some a priori knowledge concerning f . However onlyvery rarely is that knowledge explicitly used to help set the algorithm. The unreasonablenessof this is demonstrated by the NFL theorem, which illustrates that even if we do knowsomething about f (perhaps speci�ed through P (f)), if we fail to explicitly incorporate thatknowledge into a then we have no assurances the a will be e�ective; we are simply relyingon a fortuitous matching between f and a. This point is formally established in sections 3and 8, which make no assumptions whatsoever concerning P (f).Many would readily agree that a must match P (f) | that statement borders on theobvious. Similarly, it may seem obvious that if one uniformly averages over all f , then allalgorithms are equal. (The only reason it takes a whole subsection to establish this formallyis because there are a large number of \obvious" things that must be mathematicized.) Yetthe implications of the statement are not so obvious; it is extremely easy to contradict themwithout realizing you are doing so. This is why, for example, it can be surprising that hill-climbing and hill-descending are equivalent on average, or that \smart" choosing proceduresperform no better than \dumb" ones (see section 8). In addition, the geometric nature ofthe matching illustrates some interesting aspects of the search problem (see below).We emphasize that taking uniform averages over f 's is simply a tool for investigatingsearch. It is the only starting point we could think of for investigating the \skeleton" of thesearch problem, before (assumptions for) the actual distributions in the real world are putin. It should be obvious that we are not claiming that all f 's are equally likely in the realworld, and the signi�cance of the NFL theorem in no way depends on the validity of such aclaim.Results for non-uniform P (f) are discussed below, after the proof of the NFL theorem.6



2.1 Proof for deterministic searchWe now show that Pf P (~c j f;m; a) has no dependence on a. Conceptually, the proof isquite simple; the only reason it takes so long is because there is some book-keeping involved.In addition, because many of our readers may not be conversant with the techniques ofprobability theory we supply all the details, lengthening it considerably.The intuition is simple: by summing over all f the past performance of an algorithmhas no bearing on its future performance so that all algorithms perform equally. The proofinvolves the following steps: First, we reduce the distribution over ~c values to one over dymvalues. Then we use induction to establish the a-independence of the distribution over dym.The inductive step starts by rearranging the distributions in question. Then f is brokenup into two independent parts, one for x 2 dxm and one for x 62 dxm. These are evaluatedseparately, giving the desired result.Expanding over all possible y components of a population of size m, dym, we seeXf P (~c j f;m; a) = Xf;dym P (~c; dym j f;m; a)Now P (~c; dym j f;m) = P (~c j dym; f;m; a)P (dym j f;m; a). Moreover, the probability of obtain-ing a histogram ~c given f , d, m and a, P (~c j dym; f;m), depends only on the y values ofpopulation dm. ThereforeXf P (~c j f;m; a) = Xf;dym P (~c j dym)P (dym j f;m; a)= Xdym P (~c j dym)Xf P (dym j f;m; a) (2)To prove that the expression in Eq. (2) is independent of a it su�ces to show that forall m and dym, Pf P (dym j f;m; a) is independent of a, since P (~c j dym) is independent of a. Wewill prove this by induction on m.For m = 1 we write the population as d1 = fdx1; f(dx1)g where dx1 is set by a. The onlypossible value for dy1 is f(dx1), so we have :Xf P (dy1 j f;m = 1; a) =Xf �(dy1; f(dx1))where � is the Kronecker delta function.Now when we sum over all possible cost functions �(dy1; f(dx1)) is 1 only for those functionswhich have cost dy1 at point dx1. Therefore that sum equals jYjjX j�1, independent of dx1 :Xf P (dy1 j f;m = 1; a) = jYjjX j�1which is independent of a. This bases the induction.We now establish the inductive step, that if Pf P (dym j f;m; a) is independent of a for alldym, then so also is Pf P (dym+1 j f;m+ 1; a). This will complete the proof of the NFL result.7



We start by writingP (dym+1 j f;m+ 1; a) = P (fdym+1(1); : : : ; dym+1(m)g; dym+1(m + 1) j f;m+ 1; a)= P (dym; dym+1(m+ 1) j f;m+ 1; a)= P (dym+1(m+ 1) j dm; f;m+ 1; a)P (dym j f;m+ 1; a)so we haveXf P (dym+1 j f;m+ 1; a) =Xf P (dym+1(m + 1) j dym; f;m + 1; a)P (dym j f;m+ 1; a):The new y value, dym+1(m + 1), will depend on the new x value, f and nothing else. Sowe expand over these possible x values, gettingXf P (dym+1 j f;m+1; a) = Xf;x P (dym+1(m + 1) j f; x)P (x j dym; f;m+1; a)�P (dym j f;m+ 1; a)= Xf;x �(dym+1(m+ 1); f(x))P (x j dym; f;m+1; a)�P (dym j f;m+ 1; a):Next note that since x = a(dxm; dym), it does not depend directly on f . Consequently weexpand in dxm to remove the f dependence in P (x j dym; f;m+1; a):Xf P (dym+1 j f;m+1; a) =Xf;x;dxm�(dym+1(m+ 1); f(x))P (x j dm; a)P (dxm j dym; f;m+ 1; a)�P (dym j f;m+ 1; a)=Xf;dxm �(dym+1(m + 1); f(a(dm))) � P (dm j f;m; a)where use was made of the fact that P (x j dm; a) = �(x; a(dm)) and the fact that P (dm j f;m+1; a) = P (dm j f;m; a).We do the sum over cost functions f �rst. The cost function is de�ned both over thosepoints restricted to dxm and those points outside of dxm. P (dm j f;m; a) will depend on the fvalues de�ned over points inside dxm while �(dym+1(m + 1); f(a(dm))) depends only on the fvalues de�ned over points outside dxm. (Recall that a(dxm) 62 dxm.) So we haveXf P (dym+1 j f;m+1; a) = Xdxm Xf(x2dxm)P (dm j f;m; a)� Xf(x62dxm)�(dym+1(m+1); f(a(dm))): (3)The sum Pf(x62dxm) contributes a constant, jYjjX j�m�1, equal to the number of functionsde�ned over points not in dxm passing through (dxm+1(m + 1); f(a(dm))). SoXf P (dym+1 j f;m+1; a) = jYjjX j�m�1 Xf(x2dxm);dxmP (dm j f;m; a)8



= 1jYj Xf;dxm P (dm j f;m; a)= 1jYjXf P (dym j f;m; a)By hypothesis the right hand side of this equation is independent of a, so the left hand sidemust also be. This completes the proof of the NFL result.We note in passing that the proof of the NFL theorem can be used to derive a strongerresult. Since the sum Pf P (dym j f;m; a) is independent of a, it follows that the histogramsof cost values after m steps must also be independent of a. However, it also follows thatthe distribution over time ordered populations (the dym) are also identical for all a. So whenthe ordering of cost values is important (e.g when you would like to get to low cost quickly)there is still no way to distinguish between algorithms when we average over all f .2.2 More general kinds of searchThere are two restrictions on the de�nition of search algorithms used so far that one might�nd objectionable. These are: i) the banning of algorithms that might revisit the same pointsin X after placing them in dx; and ii) the banning of algorithms that work stochasticallyrather than deterministically. Fortunately, the NFL result can easily be extended to includeeither algorithms that revisit points and/or are algorithms that are stochastic. So there isno loss of generality in our de�nition of a \search algorithm".To see this, say we have a deterministic algorithm a : d 2 D ! fx j x 2 Xg, so thatgiven some (perhaps empty) d, the algorithm might produce a point x 2 dx. Call such analgorithm \potentially retracing". Given a potentially retracing algorithm a, produce a newalgorithm a0 by \skipping over all duplications" in the sequence of fx; yg pairs producedby the potentially retracing algorithm. Formally, for any d, a0(d) is de�ned as the �rst xvalue from the sequence fa(;); a(d); a(a(d)); : : :g that is not contained in dx. So long as theoriginal algorithm a can not get stuck forever in some subset of d, we can always producesuch an a0 from a. (We can �nd no reason to design one's algorithm to not have an \escapemechanism" that ensures that it can not get stuck forever in some subset of d.) We will saythat a0 is a \compacted" version of a.Now any two compacted algorithms are \search algorithms" in the sense the term is usedin the previous subsection. Therefore they obey the NFL result of that subsection. So theNFL result in Eq. (1) holds even for potentially retracing algorithms, if we rede�ne `m' inthat equation to be the number of distinct points in the dx's produced by the algorithms, inquestion, and if we rede�ne `~c' to be the histogram corresponding to those m distinct points.Moreover, our real-world cost in using an algorithm is usually set by the number ofdistinct evaluations of f(x). So it makes sense to compare potentially retracing algorithmsnot by looking at the d's they produce after being run the same number of times, but ratherby looking at the d's they produce after sampling f(x) the same number of times. This isconsistent with using our rede�ned m and ~c. 9



Note that the x at which a potentially retracing algorithm breaks out of a cycle mightbe stochastic (e.g simulated annealing). In this case the compacted version of the algorithmis still well-de�ned. Only rather than being deterministic, that compacted algorithm isstochastic. This brings us to the general issue of how to adapt our analysis to addressstochastic search algorithms.Let � be a stochastic non-potentially retracting algorithm. Formally, this means that � isa mapping taking any d to a (d-dependent) distribution over X that equals zero for all x 2 dx.So � can be viewed as a \hyper-parameter", specifying the function P (dxm+1(m+ 1) j dm; �)for all m and d.Given this de�nition of �, we can follow along with the derivation of the NFL resultfor deterministic algorithms, just with a replaced by � throughout. Doing so, everythingstill holds. So that NFL result holds even for stochastic search algorithms. Therefore,by the same reasoning used to establish the no-free-lunch result for potentially retracingdeterministic algorithms, the no-free-lunch result holds for potentially retracing stochasticalgorithms.3 A geometric interpretationIntuitively, the NFL theorem illustrates that even if we know something about f (perhapsspeci�ed through P (f)) but don't incorporate that knowledge into a, then we have no as-surances that a will be e�ective; we are simply relying on a fortuitous matching betweenf and a. This point is formally established by viewing the NFL theorem from a geometricperspective.Consider the space of possible cost functions. As mentioned before, the probability ofobtaining some histogram, ~c, given m distinct cost evaluations using algorithm a isP (~c jm; a) =Xf P (~c jm; a; f)P (f):where P (f) is the prior probability that the optimization problem at hand has cost functionf . We can view the right-hand side of this equality as an inner product in F :Theorem: De�ne the F -space vectors ~vc;a;m and ~p by ~vc;a;m(f) � P (~c jm; a; f) and ~p(f) �P (f). Then P (~c jm; a) = ~vc;a;m � ~p (4)This is an important equation. Any global knowledge you have about the properties ofyour cost function goes into the prior, ~p, over cost functions. ~c can be viewed as �xed tothe histogram you want to obtain (usually one with a low cost value), and m is given bythe constraints on the time we have to run our optimization algorithm. Thus the optimalalgorithm is that which has the largest projection onto ~p. Alternatively, we can dispense10



with ~c by averaging over it, to see that E(~c j m; a) is an inner product between ~p(f) andE(~c j m; a; f). (Similarly for any \performance measure" �(~c). In either case, we see thatP (f) must \match" a.Of course, exploiting this in practice is a di�cult exercise. Even writing down a reasonableP (f) can be di�cult. Consider, for example, doing TSP problems with N cities. So we'reonly considering cost functions that correspond to such a problem. Now to the degreethat any practitioner would attack all N-city TSP cost functions with the same algorithm,that practitioner implicitly ignores distinctions between such cost functions. In this, thatpractitioner has implicitly agreed that the problem is one of how their �xed algorithm doesacross the set of N-city TSP cost functions, rather than of how well their algorithm does forsome particular N-city TSP problem they have at hand. In other words, they are acting asthough the cost function were not �xed, but is instead described by a P (f) that equals 0 forall cost functions other than N-city TSP cost functions. However the details of P (f), beyondthe fact that it is restricted to N-city TSP problems, may be very di�cult to disentangle.Taking the geometric view, the no free lunch result that Pf P (~c j f;m; a) is independentof a has the simple interpretation that for a particular ~c and m, all algorithms a have thesame projection onto the diagonal, that is vc;a;m �~1 = cst(~c;m). For deterministic algorithmsthe components of vc;a;m (i.e., the probabilities that algorithm a gives histogram ~c on costfunction f after m distinct cost evaluations) are all either 0 or 1 so the no free lunch resultalso impliesPf P 2(~c jm; a; f) = cst(~c;m). Geometrically, this means that the length of ~vc;a;mis independent of a.Thus all vectors ~vc;a;m have the same length and lie on a cone with constant projectiononto ~1. Because the components of ~vc;a;m are binary we might also view ~vc;a;m as lying onthe subset of the boolean hypercube having the same hamming distance from ~0.Now restrict attention to the set of algorithms that have the same probability of someparticular ~c. The algorithms in this set must lie in the intersection of 2 cones|one aboutthe diagonal, set by the no-free-lunch theorem, and one by having the same probability for~c. This is in general an jFj � 2 dimensional manifold (where we recall that jFj � jYjjX j isthe number of possible cost functions). If we require equality of probability on yet more ~c,we get yet more constraints.In Section 5 we calculate two quantities concerning the distribution of ~vc;a;m across verticesof this hypercube.4 Minimax distinctions between algorithmsThe NFL theorem does not address minimax properties of search. For example, say we'reconsidering two deterministic algorithms, a1 and a2. It may very well be that there existcost functions f such that a1's histogram is much better (according to some appropriatequality measure) than a2's, but no cost functions for which the reverse is true. For theNFL theorem to be obeyed in such a scenario, it would have to be true that there are manymore f for which a2's histogram is better than a1's than vice-versa, but it is only slightlybetter for all those f . For such a scenario, in a certain sense a1 has better \head-to-head"11



minimax behavior than a2; there are f for which a1 beats a2 badly, but none for which a1does substantially worse than a2.Formally, we say that there exists head-to-head minimax distinctions between two al-gorithms a1 and a2 i� there exists a k such that for at least one f E(~c j f;m; a1) � E(~c jf;m; a2) = k, but there is no f such that E(~c j f;m; a2) � E(~c j f;m; a1) = k. (A similarde�nition can be used if one is instead interested in �(~c) or dym rather than ~c.)It appears that analyzing head-to-head minimax properties of algorithms is substantiallymore di�cult than analyzing average behavior (like in the NFL theorem). Presently, verylittle is known about minimax behavior involving stochastic algorithms. In particular, it isnot known if in some sense a stochastic version of a deterministic algorithm has better/worseminimax behavior than that deterministic algorithm. In fact, even if we stick completelyto deterministic algorithms, only an extremely preliminary understanding of minimax issueshas been reached.What we do know is the following. Consider the quantityXf Pdym;1;dym;2(z; z0 j f;m; a1; a2);for deterministic algorithms a1 and a2 (By PA(a) is meant the distribution of a randomvariable A evaluated at A = a). For deterministic algorithms, this quantity is just thenumber of f such that it is both true that a1 produces a population with Y components zand that a2 produces a population with Y components z0.In appendix B, it is proven by example that this quantity need not be symmetric underinterchange of z and z0:Theorem: In general,Xf Pdym;1;dym;2(z; z0 j f;m; a1; a2) 6=Xf Pdym;1;dym;2(z0; z j f;m; a1; a2): (5)This means that under certain circumstances, even knowing only the Y components of thepopulations produced by two algorithms run on the same (unknown) f , we can infer some-thing concerning what algorithm produced each population.Now consider the quantityXf PC1;C2(z; z0 j f;m; a1; a2);again for deterministic algorithms a1 and a2. This quantity is just the number of f such thatit is both true that a1 produces a histogram z and that a2 produces a histogram z0. It tooneed not be symmetric under interchange of z and z0 (see appendix B). This is a strongerstatement then the asymmetry of dy's statement, since any particular histogram correspondsto multiple populations.It would seem that neither of these two results directly implies that there are algorithmsa1 and a2 such that for some f a1's histogram is much better than a2's, but for no f 's is thereverse is true. To investigate this problem involves looking over all pairs of histograms (one12



for each f) such that there is the same relative \quality" between both histograms. Simplyhaving an inequality between the sums presented above does not seem to directly imply thatthe relative quality between the associated pair of histograms is asymmetric. (To formallyestablish this would involve creating scenarios in which there is an inequality between thesums, but no head-to-head minimax distinctions. Such an analysis is beyond the scope ofthis paper.)On the other hand, having the sums equal does carry obvious implications for whetherthere are head-to-head minimax distinctions. For example, if both algorithms are determinis-tic, then for any particular f Pdym;1;dym;2(z1; z2 j f;m; a1; a2) equals 1 for one (z1; z2) pair, and 0for all others. In such a case, Pf Pdym;1;dym;2(z1; z2 j f;m; a1; a2) is just the number of f that re-sult in the pair (z1; z2). So Pf Pdym;1;dym;2(z; z0 j f;m; a1; a2) = Pf Pdym;1 ;dym;2(z0; z j f;m; a1; a2)implies that there are no head-to-head minimax distinctions between a1 and a2. The conversedoes not appear to hold however.1As a preliminary analysis of whether there can be head-to-head minimax distinctions, wecan exploit the result in appendix B, which concerns the case where jX j = jYj = 3. First,de�ne the following measure of the \quality" over two-element populations, Q(dy2):i) Q(y2; y3) = Q(y3; y2) = 2.ii) Q(y1; y2) = Q(y2; y1) = 0.iii) Q of any other argument = 1.In appendix B we show that for this scenario there exist pairs of algorithms a1 and a2 suchthat for one f a1 generates the histogram fy1; y2g and a2 generates the histogram fy2; y3g,but there is no f for which the reverse occurs (i.e., there is no f such that a1 generates thehistogram fy2; y3g and a2 generates fy1; y2g).So in this scenario, with our de�ned measure of \quality", there are minimax distinctionsbetween a1 and a2. For one f the quality of algorithms a1 and a2 are respectively 0 and 2.The di�erence in the Q values for the two algorithms is 2 for that f . However there are noother f for which the di�erence is -2. For this Q then, algorithm a2 is minimax superior toalgorithm a1.It is not currently known what restrictions on Q(dym) are needed for there to be minimaxdistinctions between the algorithms. As an example, it may well be that for Q(dym) =maxifdym(i)g there are no minimax distinctions between algorithms.More generally, at present nothing is known about \how big a problem" these kinds ofasymmetries are. All of the examples of the asymmetries arise when the set of X values a11Consider the grid of all (z; z0) pairs. Assign to each grid point the number of f that result in that gridpoint's (z; z0) pair. Then our constraints are i) by the hypothesis that there are no head-to-head minimaxdistinctions, if grid point (z1; z2) is assigned a non-zero number, then so is (z2; z1); and ii) by the no-free-lunch theorem, the sum of all numbers in row z equals the sum of all numbers in column z. These twoconstraints do not appear to imply that the distribution of numbers is symmetric under interchange of rowsand columns. Although again, like before, to formally establish this point would involve explicitly creatingsearch scenarios in which it holds. 13



has visited overlaps with those that a2 has visited. Given such overlap, and certain propertiesof how the algorithms generated the overlap, asymmetry arises. A precise speci�cation ofthose \certain properties" is not yet in hand. Nor is it known how generic they are, i.e., forwhat percentage of pairs of algorithms they arise. Although such issues are easy to state(see appendix B), it is not at all clear how best to answer them.However consider the case where we are assured that inm steps two particular algorithmsdo not overlap. Such assurances hold, for example, if we are comparing two hill-climbingalgorithms that start far apart (on the scale of m) in X . It turns out that given suchassurances, there are no asymmetries between the two algorithms form-element populations.To see this formally, go through the argument used to prove the NFL theorem, but applythose arguments to the quantity Pf Pdym;1;dym;2(z; z0 j f;m; a1; a2) rather than P (~c j f;m; a).Doing this establishes the following:Theorem: If there is no overlap between dxm;1 and dxm;2, thenXf Pdym;1;dym;2(z; z0 j f;m; a1; a2) =Xf Pdym;1;dym;2(z0; z j f;m; a1; a2): (6)An immediate consequence of this theorem is that under the no-overlap conditions,Pf PC1;C2(z; z0 jf;m; a1; a2) is symmetric under interchange of z and z0, as are all distributions determinedfrom this one over C1 and C2 (e.g., the distribution over the di�erence between those C'sextrema).Note that with stochastic algorithms, if they give non-zero probability to all dxm, thereis always overlap to consider. So there is always the possibility of asymmetry betweenalgorithms if one of them is stochastic.5 Information theoretic aspects of searchWe �rst calculate the fraction of cost functions which give rise to a speci�c histogram ~c usingalgorithm a with m distinct cost points. This calculation allows us, for example, to answerthe following question:\What fraction of cost functions will give a particular distribution of cost values after mdistinct cost evaluations chosen by using a genetic algorithm?"This may seem an intractable question, but the NFL result allows us to answer it. It doesthis because it means that the fraction is independent of the algorithm! So we can answerthe question by using an algorithm for which the calculation is particularly easy.The algorithm we will use is one which visits points in X in some canonical order, sayx1; x2; : : : ; xm. Recall that the histogram ~c is speci�ed by giving the frequencies of occurrence,across the x1; x2; : : : ; xm, for each of the jYj possible cost values.Now the number of f 's giving the desired histogram under our speci�ed algorithm isjust the multinomial giving the number of ways of distributing the cost values in ~c. At theremaining jX j �m points in X the cost can assume any of the jYj f values.14



It will be convenient to de�ne ~� � 1m~c. Note that this is invariant if the contents of allbins in ~c are scaled by the same amount. By the argument of the preceding paragraph, thefraction we are interested in, �f (~�), is given by the following:Theorem: For any algorithm, the fraction of cost functions that result in the histogram~c = m~� is given by �f (~�) = � mc1 c2 ��� cjYj�jYjjX j�mjYjjX j = � mc1 c2 ��� cjYj�jYjm : (7)Accordingly, �f (~�) can be related to the entropy of ~c in the standard way by usingStirling's approximation to order O(1=m), which is valid when all of the ci are large:ln mc1 c2 � � � cjYj! �= m lnm� jYjXi=1 ci ln ci + 12hlnm� jYjXi=1 ln cii�= mS(~�) + 12h(1� jYj) lnm� jYjXi=1 ln�iiwhere S(~�) = �PjYji=1 �i ln�i is the entropy of the histogram ~c. Thus for large enough m,the fraction of cost functions is given by the following formula:Corollary: �f(~�) �= C(m; jYj) emS(~�)QjYji=1 �1=2i : (8)where C(m; jYj) is a constant depending only on m and jYj.If some of the ~�i are 0, Eq. (8) still holds, only with Y rede�ned to exclude the y'scorresponding to the zero-valued ~�i. However Y is de�ned, the normalization constant ofEq. (8) can be found by summing over all ~� lying on the unit simplex. The details of sucha calculation can be found in [15].We next turn to a related question:\On a given vertex of f -space (i.e., for a given cost function), what is the fraction of allalgorithms that give rise to a particular ~c?"For this question, the only salient feature of f is its histogram (formed by looking acrossall X ) of cost values. Specify this histogram by ~�; there are Ni = �i jX j points in X forwhich f(x) has the i'th Y value.Call the fraction we are interested in �alg(~�; ~�). It turns out that �alg(~�; ~�) depends toleading order on the Kullback-Liebler \distance" [3] between ~� and ~�. To see this, we startwith the following intuitively reasonable result, formally proven in appendix A:15



Theorem: For a given f with histogram ~N = jX j~�, the fraction of algorithms that give riseto a histogram ~c = m~� is given by�alg(~�; ~�) = QjYji=1 �Nici ��jX jm � : (9)The normalization factor in the denominator is simply the number of ways of selecting mcost values from X .2The product of binomials can be approximated via Stirling's equation when both Ni andci are large:ln jYjYi=1 Nici ! �= jYjXi=1�12 ln 2� +Ni lnNi � ci ln ci � (Ni � ci) ln(Ni � ci) +12(lnNi � ln(Ni � ci)� ln ci):We assume ci=Ni � 1, which is reasonable whenm� jX j. So using the expansion ln(1�z) =�z � z2=2� : : :, to second order in ci=Ni we haveln jYjYi=1 Nici ! �= jYjXi=1 ci ln(Nici )� 12 ln ci + ci � 12 ln 2�� ci2Ni �ci � 1 + � � ��In terms of ~� and ~� we �nally obtain (using m=jX j � 1)ln jYjYi=1 Nici ! �= �mDKL(~�; ~�) +m�m ln( mjX j)� jYj2 ln 2�� jYjXi=1 12 ln(�im) + m2jX j(�i�i )(1� �im+ � � �);where DKL(~�; ~�) � Pi �i ln(�i=�i) is the Kullback-Liebler distance between the distributions~� and ~�.Thus the fraction of algorithms is given by the following:Corollary: �alg(~�; ~�) �= C(m; jX j; jYj) e�mDKL(~�;~�)QjYji=1 �1=2i : (10)where the constant C depends only on m, jX j, and jYj.As before, C can be calculated by summing ~� over the unit simplex.2It can also be determined from the identity P~c �(Pi ci;m)Qi �Nici � = �Pi Nim �.16



6 Measures of algorithm performanceIn this section we calculate certain \benchmark" performance measures that allow us toassess the e�cacy of any search algorithm.Consider the case where low cost is preferable to high cost. Then in general we areinterested in P (min(~c) > � j f;m; a), which is the probability that the minimum cost analgorithm a �nds in m distinct evaluations is larger than �, given that the cost function isf . We consider three quantities that are related to this conditional probability that can beused to gauge an algorithm's performance:i) The �rst quantity is the average of this probability over all cost functions.ii) The second is the form this conditional probability takes for the random algorithm,whose behavior is uncorrelated with the cost function.iii) The third is the fraction of algorithms which, for a particular f and m, result in a ~cwhose minimum exceeds �.These measures give us benchmarks which all truly \intelligent" algorithms should surpasswhen used in the real world; any algorithm that doesn't surpass them is doing a very poorjob.Recall that there are jYj distinct cost values. With no loss of generality assume the i'thcost values equals i. So cost values run from a minimum of 1 to a maximum of jYj in integerincrements.The �rst of our benchmark measures isPf P (min(~c) > � j f;m; a)Pf 1 = Pdym;f P (min(dym) > � j dym)P (dym j f;m; a)jYjjX j (11)where in the last line we have marginalized over y values of populations of size m and notedthat min(c) = min(dym).Now consider Pf P (dym j f;m; a). The summand equals 0 or 1 for all f and deterministica. In particular, it equals 1 if the following conditions are meti) f(dxm(1)) = dym(1)ii) f(a[dm(1)]) = dym(2)iii) f(a[dm(1); dm(2)]) = dym(3): : :These restrictions will always �x the value of f(x) at exactly m points. f is completely freeat all other points. ThereforeXf P (dym j f;m; a) = jYjjX j�m:17



Using this result in Eq. (11) we �ndXf P (min(~c) > � j f;m) = 1jYjm Xdym P ((min(dym) > � j dym)= 1jYjm Xdym3min(dym)>� 1= 1jYjm (jYj � �)m:This establishes the following:Theorem: Xf P (min(~c) > � j f;m) = !m(�): (12)where !(�) � 1� �=jYj is the fraction of cost lying above �.An immediate corrolary is the following:Corollary: In the limit of jYj ! 1,Pf E(min(~c) j f;m)jYj = 1m + 1 : (13)Proof sketch: Write Pf E(min(~c) j f;m) = PjYj�=1 � [!m(� � 1)� !m(�)] and substitute in for!(). Then replace � throughout with � + 1. This turns our sum into PjYj�1�=0 [� + 1] [(1 ��!Yj)m � (1 � �+1!Yj )m]. Next, write jYj = b=� for some b. Multiply and divide our summandby �. To take the limit of �! 0, apply L'hopital's rule to the ratio in the summand. Nextuse the fact that � is going to 0 to cancel terms in the summand. Carrying through thealgebra, and dividing by b=�, we get a Riemann sum of the form mb2 R b0 dx x(1 � x=b)m�1.Evaluating the integral gives the result claimed. QED.In a real world scenario, unless one's algorithm has its best-cost-so-far drop faster thanthe drop associated with these results, one might argue that that algorithm is not searchingvery well. After all, the algorithm is doing no better than one would expect it to for arandomly chosen cost function. (Benchmarks that take account of the actual cost functionat hand are presented below.)Next we calculate the expected minimum of the cost values in the population as a functionof m for the random algorithm, ~a, which picks points in X completely randomly, using noinformation from the current population. Marginalizing over histograms ~c, the performanceof ~a is P (min(~c) � � j f;m; ~a) =X~c P (min(~c) � � j~c)P (~c j f;m; ~a)18



Now P (~c j f;m; ~a) is the probability of obtaining histogram ~c inm random draws from thehistogram ~N of the function f . (This can be viewed as the de�nition of ~a.) This probabilityhas been calculated previously as QjYji=1 (Nici )(jXjm )) . SoP (min(~c) � � j f;m; ~a) = 1�jX jm � mXc1=0 � � � mXcjYj=0 �( jYjXi=1 ci; m)P (min(~c) � � j~c)� jYjYi=1 Nici != 1�jX jm � mXc�=0 � � � mXcjYj=0 �( jYjXi=� ci; m) jYjYi=� Nici != �PjYji=�Nim ��jX jm � (see footnote one)� �
(�)jX jm ��jX jm � (14)This establishes the following:Theorem: For the random algorithm ~a,P (min(~c) � � j f;m; ~a) = m�1Yi=0 
(�)� i=jX j1� i=jX j : (15)where 
(�) � PjYji=�Ni=jX j is the fraction of points in X for which f(x) � �.To �rst order in 1=jX j this theorem gives the following result:Corollary:P (min(c) > � j f;m; ~a) = 
m(�)�1� m(m� 1)(1� 
(�))2
(�) 1jX j + : : :�: (16)Note that these results allow us to calculate other quantities of interest, likeE (min(~c) j f;m; ~a) =jYjX�=1 � [P (min(~c) � � j f;m; ~a) � P (min(~c) � � + 1 j f;m; ~a)]:These results also provide a useful benchmark against which any algorithmmay be compared.Note in particular that for many cost functions cost values are distributed Gaussianly. For19



such a case, if the mean and variance of the Gaussian are � and � respectively, then 
(�) =erfc((�� �)=p2�)=2, where erfc is the complimentary error function.To calculate the third performance measure, note that for �xed f and m, for any (deter-ministic) algorithm a, P (~c > � j f;m; a) is either 1 or 0. Therefore the fraction of algorithmswhich result in a ~c whose minimum exceeds � is given byPa P (min(~c) > � j f;m; a)Pa 1 :Expanding in terms of ~c, we can rewrite the numerator of this ratio as P~c P (min(~c) >� j ~c) Pa P (~c j f;m; a). However the ratio of this quantity to Pa 1 is exactly what wecalculated when we evaluated measure ii) (see the beginning of the argument deriving Eq.(15)). This establishes the following:Theorem: For �xed f and m, the fraction of algorithms which result in a ~c whose minimumexceeds � is given by the quantity on the right-hand sides of Eqs. (15) and (16).So in particular, consider the scenario where, when evaluated for � equal to the minimumof the ~c produced in a particular run of your algorithm, the quantity given in Eq. (16) is lessthan 1/2. For such a scenario, your algorithm has done worse than over half of all searchalgorithms, for the f and m at hand.Finally, we present a measure explicitly designed to \track" an algorithm's performanceas m increases. Here we are interested in whether, as m grows, there is any change in howwell the algorithm's performance compares to that of the random algorithm.Say the population generated by the algorithm a after m steps is d, and de�ne y0 �min(~c(d)). Let k be the number of additional steps it takes the algorithm to �nd an x suchthat f(x) < y0. Now we can estimate the number of steps it would have taken the randomsearch algorithm to search X � dX and �nd a point whose y was less than y0. The expectedvalue of this number of steps is 1z(d) � 1, where z(d) is the fraction of X � dX for whichf(x) < y0. Therefore k + 1� 1=z(d) is how much worse a did than would have the randomalgorithm, on average.So now imagine letting a run for many steps over some �tness function f . We wish tomake a plot of how well a did in comparison to the random algorithm on that run, as mincreased. Consider the step where a �nds its n'th new value of min(~c). For that step,there is an associated k (the number of steps until the next min(~c)) and z(d). Accordingly,indicate that step on our plot as the point (n; k+ 1� 1=z(d)). Put down as many points onour plot as there are successive values of min(~c(d)) in the run of a over f .If throughout the run a is always a better \match" to f than is the random searchalgorithm, then all the points in the plot will have their ordinate values lie below 0. If therandom algorithm won for any of the comparisons though, that would mean a point lyingabove 0. In general, even if the points all lie to one side of 0, one would expect that asthe search progresses there is corresponding (perhaps systematic) variation in how far away20



from 0 the points lie. That variation tells one when the algorithm is entering harder or easierparts of the search.Note that even for a �xed f , by using di�erent starting points for the algorithm one couldgenerate many of these plots and then superimpose them. This would allow you to plot themean value of k+1�1=z(d) as a function of n along with an associated error bar. (Similarly,one could replace the single number z(d) characterizing the random algorithm with a fulldistribution over the number of required steps to �nd a new minimum.)7 Time-dependent cost functionsHere we establish a set of no free lunch results for a certain class of time-dependent costfunctions. The time-dependent functions we are concerned with start with an initial costfunction that is present when we sample the �rst x value. Then just before the beginningof each subsequent iteration of the search algorithm, the cost function is deformed to a newfunction, as speci�ed by the mapping T : F � N ! F .3 We write the function presentduring the sampling of the ith point as fi+1 = Ti(fi). We assume that at each step i, Ti isa bijection between F and F . (Note the mapping induced by T from F to F can vary withthe iteration number.) If this weren't the case, the evolution of cost functions could narrowin on a region of f 's for which some algorithm, \by luck" as it were, happens to sample xvalues that lie near the extremizing x.One di�culty with analyzing time-dependent cost functions is how to assess the qual-ity of the search algorithm. In general there are two histogram-based schemes, involvingtwo di�erent populations of y values. As before, the population dym is an ordered set of yvalues corresponding to the x values in dxm. The particular y value in dym matching a par-ticular x value in dxm is given by the cost function that was present when x was sampled.In contrast, the population Dym is de�ned to be the y values from the present cost functionfor each of the x values in dxm. Formally if dxm = fdxm(1); � � � ; dxm(m)g then we have dym =ff1(dxm(1)); � � � ; Tm�1(fm�1)(dxm(m))g. Similarly, we haveDym = fTm�1(fm�1)(dxm(1)); � � � ; Tm�1(fm�1)(dxm(m))g.In some situations it may be that the members of the population \live" for a long time, onthe time scale of the evolution of the cost function. In such situations it may be appropriateto judge the quality of the search algorithm with the histogram induced by Dym; all thoseprevious elements of the population are still alive, and therefore their (current) �tness is ofinterest. On the other hand, if members of the population live for only a short time on thetime scale of evolution of the cost function, one may instead be concerned with things likehow well the living member(s) of the population track the changing cost function. In thatkind of situation, it may make more sense to judge the quality of the search algorithm withthe histogram induced by dym.Here we derive NFL results for both criteria. In analogy with the NFL theorem, we wishto average over all possible ways a cost function may be time-dependent, i.e., we wish toavenge over all T (rather than over all f , as in the NFL theorem). So consider the sum3An obvious restriction would be to require that T doesn't vary with time, so that it is a mapping simplyfrom F to F . An analysis for T 's limited this way is beyond the scope of this paper however.21



PT P (~c j; f1; T;m; a) where f1 is the initial cost function. Note �rst that since T only kicksin for m > 1, and since f1 is �xed, there are a priori distinctions between algorithms as faras the �rst member of the population is concerned. So consider only histograms constructedfrom those elements of the population beyond the �rst. We will prove the following:Theorem: For all ~c, m > 1, algorithms a1 and a2, and initial cost functions f1,XT P (~c j f1; T;m; a1) =XT P (~c j f1; T;m; a2): (17)We will show that this results holds whether ~c is constructed from dym or fromDym. In anal-ogy with the proof of the NFL theorem, we will do this by establishing the a-independenceof PT P (~c j f; T;m; a).We will begin by replacing each T in the sum with a set of cost functions, fi, one foreach iteration of the algorithm. To do this, we start with the following:XT P (~c j f; T;m; a) = XT Xdxm Xf2���fm P (~c j ~f; dxm; T;m; a)�P (f2 � � � fm; dxm j f1; T;m; a)= Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j ~f;m; a)�XT P (f2 � � � fm j f1; T;m; a);where we have indicated the sequence of cost functions, fi, by the vector ~f = (f1; � � � ; fm).Next we decompose the sum over all possible T into a series of sums. Each sum inthe series is over the values T can take for one particular iteration of the algorithm. Moreformally, using fi+1 = Ti(fi), we writeXT P (~c j f; T;m ; a) =Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j ~f;m; a)�XT1 �(f2; T1(f1)) � � �XTm�1 �(fm; Tm�1(Tm�2(� � �T1(f1)))):(Note thatPT P (~c j f; T;m; a) is independent of the values of Ti>m�1, so we can absorb thosevalues into an overall a-independent proportionality constant.)Now look at the innermost sum, over Tm�1, for some �xed values of the outer sumindices T1 : : : Tm�2. Now for �xed values of the outer sum indices Tm�1(Tm�2(� � �T1(f1)))is just some �xed cost function. Accordingly the innermost sum over Tm�1 is simply thenumber of bijections of F that map that �xed cost function to fm. This is just a constant,(jFj � 1)!. 22



So we can do the Tm�1 sum, and arrive atXT P (~c j f; T;m ; a1) /Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j ~f;m; a)�XT1 �(f2; T1(f1)) � � �XTm�2 �(fm�1; Tm�2(Tm�3(� � �T1(f1)))):Now we can do the sum over Tm�2, in the exact same manner we just did the sum overTm�1. In fact, all the sums over all Ti can be done, leaving us withXT P (~c j f; T;m; a1) /Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j ~f;m; a)= Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j f1 � � � fm�1; m; a): (18)(In the last step we have exploited the statistical independence of dxm and fm.)To proceed further we must decide if we are interested in histograms formed from Dym ordym. We begin with analysis of the Dym case. For this case P (~c j ~f; dxm) = P (~c j fm; dxm), sinceDym only re
ects cost values from the last cost function, fm. Plugging this in we getXT P (~c j f; T;m; a1) / Xdxm Xf2���fm�1 P (dxm j f1 � � � fm�1; m; a)Xfm P (~c j fm; dxm)The �nal sum over fm is a constant equal to the number of ways of generating thehistogram c from cost values drawn from fm. This constant will involve the multinomialcoe�cient � mc1���cm� and some other factors. The important point is that it is independent ofthe particular dxm. Because of this we can evaluate the sum over dxm and thereby eliminatethe a dependence.XT P (~c j f; T;m; a) / Xf2���fm�1Xdxm P (dxm j f1 � � � fm�1; m; a) / 1This completes the proof of Eq. (17) for the case where ~c is constructed from Dym.Next we turn the case where we are interested not in Dym but in dym. This case isconsiderably more di�cult since we can not simplify P (~c j ~f; dxm) and thus can not decouplethe sums over fi. Nevertheless, the NFL result still holds. To see this we begin by expandingEq. (18) over possible dym values.XT P (~c j f; T;m; a) / Xdxm Xf2���fmXdym P (~c j dym)P (dym j ~f; dxm)�P (dxm j f1 � � � fm�1; m; a)= Xdym P (~c j dym)Xdxm Xf2���fm P (dxm j f1 � � � fm�1; m; a)� mYi=1 �(dym(i); fi(dxm(i))) (19)23



The sum over the inner-most cost function, fm, only has an e�ect on the �(dym(i); fi(dxm(i)))term. So it contributes Pfm �(dym(m); fm(dxm(m))). This is a constant, equal to jYjjX j�1. Weare left withXT P (~c j f; T;m; a) / Xdym P (~c j dym)Xdxm Xf2���fm�1 P (dxm j f1 � � � fm�1; m; a)�m�1Yi=1 �(dym(i); fi(dxm(i))):The sum over dxm(m) is now trivial, so we haveXT P (~c j f; T;m; a)/ Xdym P (~c j dym) Xdxm(1)� � � Xdxm(m�1) Xf2���fm�1 P (dxm�1 j f1 � � � fm�2; m; a)�m�1Yi=1 �(dym(i); fi(dxm(i))):Now note that the above equation is of the exact same form as Eq. (19), only with aremaining population of size m � 1 rather than m. Consequently, in an exactly analogousmanner to the scheme we used to evaluate the sums over fm and dxm(m) that existed inEq. (19), we can evaluate our sums over fm�1 and dxm(m � 1). Doing so simply generatesmore a-independent proportionality constants. Continuing in this manner, we evaluate allthe sums over the fi and arrive atXT P (~c j f; T;m; a1) / Xdym P (~c j dym) Xdxm(1)P (dxm(1) j m; a) �(dym(1); f1(dxm(1))):Now there is still algorithm-dependence in this result. However it is a trivial dependence;as previously discussed, it arises completely from how the algorithm selects the �rst x pointin its population, dxm(1). Since we consider only those points in the population that aregenerated subsequent to the �rst, our result says that there is no distinctions between algo-rithms. (Alternatively, we could consider all points in the population, even the �rst, andstill get an NFL result, if in addition to summing over all T we sum over all f1.) So evenin the case where we are interested in dym the NFL result stills hold, subject to the minorcaveats delineated above.There are others way of assessing the quality of the search algorithm besides histogramsbased on Dym or dym. For example, one may wish to not consider histograms at all; one mayjudge the quality of the search by the �tness of the most recent member of the population.Similarly, there are other sums one could look at besides those over T . For example,one may wish to characterize what the aspects are of the relationship between a and T thatdetermine Pf P (~c j f; T;m; a). In fact, in general there can be a priori distinctions betweenalgorithms as far as this quantity is concerned.24



As an example of such distinctions, say that for all iterations of the search algorithm, T isthe shift operator, replacing f(x) by f(x� 1) for all x (with min(x)� 1 � max(x), and withX implicitly taken to be a contiguous set of integers). For this T , if a is the algorithm that�rst samples f at x1, next at x1+1, etc., regardless of the values in the population, then forany f , the histogram induced by dym is always made up of identical Y values. Accordingly,Pf P (~c j f; T;m; a) = 0 for any ~c containing counts in more than one Y value bin. For othersearch algorithms, even for the same shift T , there is not this restriction on the set of allowed~c. So Pf P (~c j f; T;m; a) is not independent of a in general.Indeed, consider the same shift T , but used with a di�erent algorithm, â. This newalgorithm looks at the Y value of the its �rst sample point x1, and if that value is low, itsamples at x1 + 1, exactly like algorithm a. On the other hand, if that value is high, itsamples some point other than x1 + 1. In general, if one's goal is to �nd minimal Y values,â can be expected to outperform a, even when one averages over all f .8 Fixed cost function resultsOne obvious di�culty with the NFL results discussed above is that one can always argue \oh,well in the real world P (f) is not uniform, so the NFL results do not apply, and thereforeI'm okay in using my favorite search algorithm". Of course, the premise does not follow fromthe proposition. Uniform P (f) is a typical P (f). (The uniform average of all P (f) is theuniform P (f).) So the actual P (f) might just as easily be one for which your algorithm ispoorly suited as one for which it is well suited. Simply assuming P (f) is not uniform cannot justify an algorithm. In essence, you must instead make the much bigger assumptionthat P (f) doesn't fall into the half of the space of all P (f) in which your algorithm performsworse than the uniform P (f).Ultimately, the only way to justify one's search algorithm is to argue in favor of a partic-ular P (f), and then argue that your algorithm is well suited to that P (f). This is the only(!) legitimate way of defending a particular search algorithm against the implications of theNFL theorems.Nonetheless, it is clearly of interest to derive NFL-type results that are independent ofP (f). Certain such results apply to ways of choosing between search algorithms, and involveaveraging over those search algorithms while keeping the cost function �xed. Although lesssweeping than the NFL results, these results hold no matter what the real world's distributionover cost functions is.Let a and a0 be two search algorithms. De�ne a \choosing procedure" as one thatexamines two populations d and d0, produced by a and a0 respectively, and based on thosepopulations, decides to use either a or a0 for the subsequent part of the search. As an example,one choosing procedure is to choose a if and only the least cost element in d has lower costthan the least cost element in d0. As another example, a \stupid" choosing procedure wouldchoose a if and only the least cost element in d has higher cost than the least cost elementin d0.At the point that you use a choosing procedure, you will have sampled the cost function25



at all the points in d[ � d[d0. Accordingly, if d>m refers to the samples of the cost functionthat come after using the choosing algorithm, then the histogram the user is interested in isthe histogram c>m which is the histogram formed from d>m. In addition, for all the usualreasons, we can assume that the search algorithm chosen by the choosing procedure doesnot return to any points in d[, without loss of generality4.The following theorem, proven in appendix C, tells us we have no a priori justi�cationfor using any particular choosing algorithm. Loosely speaking, no matter what the costfunction, observing how well an algorithm has done so far tells us nothing about how well itwould do if we continue to use it on the same cost function. (For simplicity, we only considerdeterministic algorithms.)Theorem: Let d and d0 be two �xed populations both of size m, that are generated whenthe algorithms a and a0 respectively are run on the cost function. Let A and B be twodi�erent choosing procedures. Let k be the number of elements in c>m. ThenXa;a0 P (c>m j f; d; d0; k; a; a0; A) =Xa;a0 P (c>m j f; d; d0; k; a; a0; B): (20)(It is implicit in this theorem that the sum excludes those algorithms a and a0 that do notresult in d and d0 respectively when run on f .)One might think that the preceding theorem is misleading, since it treats all populationsequally, when for any given f some populations will be more likely than others. However evenif one weights populations according to their probability of occurrence, it is still true that,on average, the choosing procedure one uses has no e�ect on likely c>m. This is establishedby the following corollary.Corrolary: Under the conditions given in the preceding theorem,Xa;a0 P (c>m j f;m; k; a; a0; A) =Xa;a0 P (c>m j; f;m; k; a; a0; B): (21)Proof: Let \proc" refer to our choosing procedure. We are interested inXa;a0 P (c>m j f;m; k; a; a0; proc) = Xa;a0;d;d0 P (c>m j f; d; d0; k; a; a0; proc)�P (d; d0 j f; k;m; a; a0; proc):4a can know to avoid the elements it has seen before. However a priori, a has no way to avoid the elementsit hasn't seen yet but that a0 has (and vice-versa). Rather than have the de�nition of a somehow dependon the elements in d0 � d (and similarly for a0), we deal with this problem by de�ning c>m to be set only bythose elements in d>m that lie outside of d[. (This is similar to the procedure we developed above to dealwith potentially retracing algorithms.) Formally, this means that the random variable c>m is a function ofd[ as well as of d>m. It also means there may be fewer elements in the histogram c>m than there are in thepopulation d>m. 26



Pull the sum over d and d0 outside the sum over a and a0. Consider any term in that sum(i.e., any particular pair of values of d and d0). For that term, P (d; d0 j f; k;m; a; a0; proc)is just 1 for those a and a0 that result in d and d0 respectively when run on f , and 0otherwise. (Recall that we are assuming that a and a0 are deterministic.) This means thatthe P (d; d0 j f; k;m; a; a0; proc) factor simply restricts our sum over a and a0 to the a and a0considered in our theorem. Accordingly, our theorem tell us that the summand of the sumover d and d0 is the same for choosing procedures A and B. Therefore the full sum is thesame for both procedures. QED.These results tell us that there is no assumption for P (f) that, by itself, justi�es usingsome choosing procedure as far as subsequent search is concerned. To have an intelligentchoosing procedure, one must take into account not only P (f) but also the search algorithmsone will be choosing among.These results also have interesting implications if one considers the \degenerate" choosingprocedures A � falwaysusealgorithmag, and B � falwaysusealgorithma0g. This case meansthat for �xed f1 and f2, if f1 does better (on average) with the algorithms in some setA, then f2 does better (on average) with the algorithms in the set of all other algorithms.In particular, if for some favorite algorithms a certain \well-behaved" f results in betterperformance than does the random f , then that well-behaved f gives worse than randombehavior on the set all remaining algorithms.In fact, things may very well be worse than this. In supervised learning, there is a resultrelated to the theorem above [16]. Translated into the current context that result suggeststhat if one restricts the sums to only be over those algorithms that are a good match toP (f), then stupid choosing procedures { like choosing the algorithm with the less desirable ~c{ outperform \smart" ones (which are the ones everyone uses in practice). An investigationof what exactly the set of algorithms summed over must be for a smart choosing procedureto be superior to a dumb one is beyond the scope of this paper. But clearly there are manysubtle issues to disentangle.9 Discussion and Future Work9.1 DiscussionIn this paper we present a framework for investigating search. This framework serves as a\skeleton" for the search problem; it tells us what we can know about search before \
eshingin" the details of a particular real world search problem. Phrased di�erently, it provides alanguage in which to describe search algorithms, and in which to ask (and answer) questionsabout them.Ultimately, of course, the only important question is, \How do I �nd good solutionsfor my given cost function f?" The proper answer to this question is to start with thegiven f , determine certain salient features of it, and then construct a search algorithm, a,speci�cally tailored to match those features. The inverse procedure | far more popularin some communities | is to investigate how speci�c algorithms perform on di�erent f 's.27



This inverse procedure is only of interest to the degree that it helps us with our primaryprocedure, of going from (features concerning) f to an appropriate a.Note that often the \salient features" concerning f can be stated in terms of a distributionP (f). To understand this, �rst note that we do in fact know f exactly. But at the sametime, there is much about f that we need to know that is e�ectively unknown to us (e.g.,f 's extrema). In this, it is as though f is partially unknown. The very nature of the searchprocess is to admit that you don't \know" f in full. As a result, it makes sense to (implicitlyor otherwise) replace f with a distribution P (f). In this, the search problem reduces to�nding a good a for a particular P (f) - exactly the issue addressed in Section 3 of thispaper.As an example of all this, it is well known that generic methods (like simulated annealingand genetic algorithms) are unable to compete with carefully hand-crafted solutions forspeci�c search problems. The Traveling Salesman Problem (TSP) is an excellent exampleof such a situation; the best search algorithms for the TSP problem are hand-tailored for it[12]. Linear programming problems are another example; the simplex algorithm is a searchalgorithm speci�cally designed to solve cost functions of a particular type. In both of thesesituations, the procedure followed by the researcher is to: identify salient aspects of f (e.g.,it is a TSP problem, or it is a linear programming problem); throw away all other knowledgeconcerning f and thereby e�ectively replace f with a P (f); and then use a search algorithmexplicitly known to work well for that P (f).In other words, one admits that in a certain sense f is not completely known (for example,its extrema aren't known), and therefore one replaces it with a P (f). For example, if onehas a particular Traveling Salesman Problem (TSP) problem at hand, one would insteadpretend that one simply has a general TSP problem | particulars unknown | and use analgorithm well-suited to TSP problems in general.In our investigation of the search problem from this match-a-to-f perspective, the �rstquestion we addressed was whether it may be that some algorithm A performs better thanB, on average. Our answer to this question, given by the NFL theorem is that this isimpossible. An important implication of this result is the \conservation" nature of search,illustrated by the following example. If a genetic algorithm outperforms simulated annealingover some class of cost functions �, then over the remaining cost functions F n�, simulatedannealing must outperform the genetic algorithm. It should be noted that this conservationapplies even if one considers \adaptive" search algorithms [6, 18] which modify their searchstrategy based on properties of the population of (X �Y) pairs observed so far in the search,and which perform this \adaptation" without regard to any knowledge concerning salientfeatures of f .It is important to bear in mind exactly what all of this does (not) imply about therelationship between natural selection in the biological world and optimization (i.e. geneticalgorithms). To this end, consider the extremely simpli�ed view in which natural selectionis viewed as optimization over a cost or \�tness" function. We further simplify matters byassuming the �tness function is static over time.In this paper we measure an algorithm's performance based on all X values it has sampledsince it began, and therefore we don't allow an algorithm to resample points it had already28



visited. Our NFL theorem states that all algorithms are equivalent by this measure. Howeverone might consider di�erent measures. In particular, we may be primarily interested in theevolution through time of \generations" consisting of temporally contiguous subsets of ourpopulation, generations that are updated by our search algorithm.In such a scenario, it does make sense to resample points already visited. Moreover, ourNFL theorem does not apply to this alternative kind of performance measure. For example,according to this alternative performance measure, an algorithm that resamples old pointsin X that are �t and adds them to the current generation will always do better than onethat resamples old points that are not �t.Now when we examine the biological world around us, we are implicitly using this secondkind of measure; we only see the organisms from the current generation. In addition, naturalselection means that only (essential characteristics of) good points in X are kept around fromone generation to the next. Accordingly, using this second kind of performance measure,one expects that the average �tness across a generation improves with time. (Or would ifthe environment - i.e., cost function - didn't change in time, etc.) This is nothing more thanthe tautology that natural selection improves the �tness of the members of a generation.However the evidence garnered from examining the world around us that natural selectionperforms well according to this generation-based measure does notmean anything concerningits performance according to the ~c-based measure used in this paper. In particular, it doesnot mean that if we wish to do a search, and are able to keep around all points sampled sofar, that we have any reason to believe that natural selection is an e�ective search strategy.Yet it is precisely this situation that is of interest in the engineering world.In short, the empirical evidence of the biological world does not indicate in any sensethat natural selection is an e�ective search strategy. It does not even indicate that naturalselection is an e�ective search strategy in the biological world. We simply have not had achance to observe the behavior of alternative strategies. According to the NFL theorem, forall we know, the strategy of breeding only the least �t members of the population may havedone a better job at �nding the extrema of the cost function faced by biological organisms.(This is exactly analogous to the fact that hill-descending can beat hill-climbing at �nding�tness maxima.) The breed-the-worst strategy will in general result in worse recent genera-tions, but simply the fact that you are using that strategy implies nothing about the qualityof the populations over the long term.In this regard, note that to fairly compare the breed-the-worst strategy with naturalselection, one would have to allow the breed-the-worst strategy to exploit the same massiveamount of parallelism exploited by natural selection in the real world, where there are ahuge number of genomes evolving in parallel. It may well be that the \blind watchmaker"has managed to produce such an amazing biome simply by relying on massive parallelismrather than breed-the-best. Nobody knows; nobody has tried to measure \how well" naturalselection works in the biological world before. Indeed, presumably the e�cacy of naturalselection vs. breed-the-worst varies from ecosystem to ecosystem|it may well be that whenthe measurements are �nally done we will �nd that natural selection wins in some ecosystemsbut breed-the-worst wins in others.On the other hand, if we relax the unrealistic assumption that the �tness function is con-29



stant over time, then it is possible that there may be advantages to using natural selectionrather than a breed-the-worst strategy, regardless of the ecosystem. (Such advantages couldarise from the fact that the cost function is being determined in part by the population, sothat the \matching" of search algorithm and cost function required by the inner productformula may somehow be automatic.) Similarly, that strategy may have minimax disad-vantages relative to natural selection's breed-the-best strategy. Alternatively, it may turnout that breed-the-worst has advantages over natural selection for varying �tness functionsand/or minimax concerns. These are issues for future research.To summarize, by the NFL theorem, any generation-based scheme that keeps only theworst members of the population for the next generation is equivalent to one that keeps thebest members, on average. However, the �tness of the members of the generations will di�erbetween the two search algorithms. This raises some obvious questions for future research:Averaged over all f , how big would one expect the di�erence to be? For a �xed f , and twoidentical random search algorithms that are \directed" di�erently in who they classify asbeing in the current generation, how big would one expect the di�erence to be? How doesthis last calculation compare with the calculation made above of what the best member ofthe population will (likely) be for a random algorithm as m grows?9.2 Future workIt is perhaps �tting for a paper about e�ective search that we conclude with a brief listingof other (research) directions we believe warrant further investigation.The most important continuation of this work is to turn our framework into a practicaltool to solve real problems. This would involve two steps. First we need a method ofincorporating broad kinds of knowledge concerning f into the analysis. In this paper wehave used P (f) to do this, but perhaps there are other ways that we should also consider.For example, it is not yet clear how to (or even whether one should) encapsulate in a P (f)the knowledge concerning the cost function that is implicit in the heuristics of Branch andBound strategies. How do we incorporate how the cost of a complete solution (f) is accruedthrough the assemblage of sub-solutions?The second step in this suggested program is to determine how best to convert knowledgeconcerning f into an optimal a. The goal in its broadest sense is to design a system that cantake in such knowledge concerning f and then solve for the optimal a given that knowledge.(For example, if the knowledge were in the form of P (f), one would \invert" the innerproduct formula somehow.) One would then use that a to search the f .In its fullest sense, this program may well involve many years of work. Nonetheless,there are many important questions related to this program that should be analyzable usingonly the tools developed in this paper. Many of them were presented in the text. Others,particularly well-suited to help us understand the connection between P (f) and an optimala, are: How fast does the cost histogram ~c associated with a particular algorithm convergeto the histogram of the cost values f takes on across all of X ? As P (f) changes fromthe diagonal in f space (i.e., from being uniform over all f), how will certain a's be hurtand certain a's helped? Could the average over all a's improve? For what P (f)'s besides30



the diagonal are all algorithms equal? Given two particular algorithms (rather than allalgorithms), for what P (f) is the performance of the algorithms equal? In particular, ifP (f) is uniform over some subset � � F and zero outside �,5 what are the equivalenceclasses of search algorithms with identical expected behavior?As a preliminary step in this program, it would make sense to explore the e�cacy ofcurrently popular search algorithms in terms of the performance benchmarks we presentabove. For any algorithm, as the search progresses, the �tness of the best member of thepopulation can only improve. So all previous studies showing that �tness does improvein time for some algorithm a really don't prove anything. What's important is how muchbetter the improvement is than you would expect it to be solely due to the \�ttest can onlyimprove" e�ect. That's what our measures are designed to assess.Given the recent experience in the supervised learning community [8, 13, 10], it seemsquite likely that on a signi�cant fraction of the problems in the standard test suites, one ormore of the currently popular search algorithms will fail to perform well, at least for somerange of population sizes. Things should be even worse if one randomly samples from thespace of real-world search problems. This is because there are \selection e�ects" ensuringthat the most commonly studied search problems (i.e., those in the suites) are those whichpeople consider \reasonable"; in practice, \reasonable" often simply means \a good matchto the algorithms I'm familiar with".Another interesting series of questions concerns di�erences between stochastic and deter-ministic algorithms. Are there potential advantages to stochastic algorithms? In particular,does it make sense to \expand" any stochastic algorithm � in terms of deterministic al-gorithms a? I.e., can one write P (c j f;m; �) = Pa ka;�P (c j f;m; a) for some expansioncoe�cients ka;�? If so, it suggests that as P (f) moves from the diagonal the performanceof �'s will neither improve nor degrade as much as that of a's. So it may be that stochasticalgorithms have certain minimax advantages over deterministic ones.There are many other issues that remain to be investigated concerning head-to-headminimax distinctions between algorithms. Perhaps the simplest is to characterize when suchdistinctions occur in \cycles", in which algorithm A is (head-to-head minimax) superiorto B, and B to C, but then C is also superior to A. Arguments for choosing betweenalgorithms based on head-to-head minimax distinctions are more persuasive in the absenceof such cycles. However it should be noted that even if there are such cycles, if (to carry onwith the example) for some reason algorithm C can be ruled out as a candidate algorithm(e.g., it takes too long to compute, or is di�cult to deal with, or simply is not in vogue), thenthe fact that we have a cycle does not preclude choosing algorithm A based on head-to-headminimax distinctions.Other issues to be explored involve the relation between the statistical view of searchadopted in this paper and conventional statistics. In particular the �eld of optimal ex-perimental design [1] and more precisely active learning [2] is concerned with the followingquestion: There is some unknown probabilistic relationship between X and Y. I have a set ofpairs of X -Y values formed by sampling that relationship (the \training set"). At what next5As an example, � might be the set of correlated cost functions as in [14].31



X value should I sample the relationship to \best" help me infer the full X -Y relationship?This question of how best to conduct active learning is obviously very closely related to thesearch problem; future work involves seeing what results in the �eld of active learning canbe fruitfully applied to search.Consider again Eq. (4). The left-hand side is what we are interested in (or more generally,what we want to know is set by it). The �rst term on the right-hand side is set by one'salgorithm. Accordingly, this equation provides several ways to measure how \close" twoalgorithms are to one another. As an example of such a measure, one could simply say thathow close two algorithms are is given by how close their vectors ~vc;a;m are. Alternatively,one could measure the closeness of two algorithms for a speci�c P (f), by seeing how closethe (~c-indexed) vectors P (~c j m; a) are for those two algorithms, for that P (f). (One couldimagine that for some P (f) two algorithms will be close, while for others they will be farapart.) As a �nal example, given an algorithm, one could solve for the P (f) that optimizesP (~c j m; a) in some non-trivial sense. One could then see how close the optimal P (f)'s arefor two algorithms, and use this to measure the closeness of the algorithms themselves.With these kinds of measures, one could say things like \this algorithm is very close tosimulated annealing, even though its internal workings are completely di�erent". One couldalso investigate hypotheses like \all algorithms that humans consider 'reasonable' are close toone another". Future work involves exploring these measures of the closeness of algorithms.Other future work involves exploring the importance of the \encoding" scheme one usesduring search. Normally one talks of how the cost function is encoded, and possible changesto that encoding. However in the context of this paper, changing the encoding meanschanging the search algorithm. The cost function doesn't change when we re-encode |rather how we (the algorithm) view the function changes.Nonetheless, one can imagine several ways to couple re-encoding of algorithms with \re-encodings" of cost functions. For example, if �(a) is a re-encoding of algorithm a, thenone might say that a cost function f becomes �(f) under that same re-encoding i� P (~c jf;m; a) = P (~c j �(f); m; �(a)) for all ~c. (Alternatively, one might say that �(a) is a legalre-encoding scheme for algorithms i� there is an associated �(f) for which the foregoing istrue.) Future work here involves seeing how changing the encoding scheme interacts withP (f) to determine the e�cacy of the search process.Uniform P (f) can be rewritten as P (f) = �xP 0(f(x)), where P 0(y) is uniform over ally 2 Y. An interesting question for future research is to see which of the results of this papermust be modi�ed (and how) if we still have P (f) = �xP 0(f(x)) but no longer have uniformP 0(y). (Intuitively, for such a P (f), f(x) is being set after you pick x as the next point tovisit, and this is being done without any regard for points you've already seen. Hence, onewould expect NFL-results to hold.) Related questions are: what is the most general P (f)for which all algorithms are equal? what is the most general P (f) for which a particular pairof algorithms are equal? and what happens if rather than equal �xP 0(f(x)), P (f) involvessome nearest neighbor coupling?In relation to the �rst and last of these questions, it seems plausible that there are P (f)'sthat not can be written as �xP 0(f(x)) but for which it is still true that all algorithms areequal. For example, say jYj > jX j and let P (f) be i) uniform over all f such that for no32



x1; x2 2 X does f(x1) = f(x2); and ii) zero for all f that don't obey this condition. ThisP (f) has extremely strong coupling between the elements of the population, in contrast toP (f)'s that can be written as �xP 0(f(x)). Yet it seems likely that these P (f)'s also resultin NFL-type results, since the points you have seen so far tell you nothing about where youshould search next.In this paper the choice of P (f) (uniform) was motivated by theoeretical rather thanpractical concerns. Yet these broader classes of P (f)'s for which NFL-type results mighthold raise an intriguing question: just how far can one push from the uniform P (f) to amore \real-world" P (f) and still have NFL-type results?Finally, there are many other NFL-type results, for uniform P (f), that we have nothad time to explicate here. For example, consider algorithms that keep running until somestopping condition, a function of all populations up to the present, is met. Then intuitively,by NFL, one would expect that averaged over all f , the probability that your algorithm stopafter m samples of f is independent of the algorithm being used. The formal proof of these(and similar) results is the subject of future work.AcknowledgmentsWe would like to thank Raja Das, Tal Grossman, Paul Helman, and Unamay O'Reilly forhelpful conversation, and the SFI for funding. DHW would also like to thank TXN Inc. forfunding.References[1] J.O. Berger, Statistical Decison Theory and Bayesian Analysis, Springer-Verlag (1985).[2] D. Cohn, Neural Network Exploration Using Optimal Experimental Design, MIT AIMemo. 1491.[3] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, (1991).[4] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman (1979).[5] J. Holland, Adaptation in Natural and Arti�cial Systems, University of Michigan Press,Ann Arbor, (1975).[6] L. Ingber, Adaptive Simulated Annealing, Software package documentation,ftp.alumni.caltech.edu:/pub/ingber/asa.tar.gz.[7] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Science, 220, 671, (1983).[8] R. Kohavi, personal communication. Also see A Study of Cross-Validation and Boot-strap for Accuracy Estimation and Model Selection, to be presented at IJCAI 1995.[9] E.L. Lawler, D.E. Wood, Operations Research, 14(4), 699-719, (1966).33



[10] P. Murphy, M. Pazzani, Journal of Arti�cial Intelligence Research, 1, 257-275 (1994).[11] J. Pearl, Heuristics, intelligent search strategies for computer problem solving, Addison-Wesley, (1984).[12] Gerhard Reinelt, The Traveling Salesman, computational solutions for TSP applica-tions, Springer Verlag Berlin Heidelberg (1994).[13] C. Scha�er, Conservation of Generalization: A Case Study.[14] P.F. Stadler, Europhys. Lett. 20, pp479-482, (1992).[15] C.E.M. Strauss, D.H. Wolpert, D.R. Wolf. Alpha, Evidence, and the Entropic Priorin Maximum Entropy and Bayesian Methods, ed. Ali Mohammed-Djafari, pp113-120,(1992).[16] D H. Wolpert, O�-training set error and a priori distinctions between learning algo-rithms, Technical Report SFI-TR-95-01-003, Santa Fe Institute, 1995.[17] D H. Wolpert, On Over�tting Avoidance as Bias, Technical Report SFI-TR-92-03-5001,Santa Fe Institute, 1992.[18] D. Yuret, M. de la Maza, Dynamic Hill-Climbing: Overcoming the limitations of op-timization techniques in The Second Turkish Symposium on Arti�cial Intelligence andNeural Networks, pp208-212, (1993).A Proof related to information theoretic aspects ofsearchWe want to calculate the proportion of all algorithms that give a particular ~c for a particularf . We proceed in several steps.1) Since X is �nite, populations are �nite. Therefore any (deterministic) a is a huge -but �nite - list. That list is indexed by all possible d's (aside from those that extend overthe entire input space). Each entry in the list is the x the a in question outputs for thatd-index.2) Consider any particular unordered set of m x�y pairs where no two of the pairs sharethe same x value. Such a set is an \unordered path" �. (Without loss of generality, fromnow on we implicitly restrict the discussion to unordered paths of length m.) A particular� is \in" or \from" a particular f if there is a unordered set of m (x; f(x)) pairs identicalto �. The numerator on the right-hand side of Eq. (9) is the number of unordered paths inthe given f that give the desired ~c.3) Claim: The number of unordered paths in f that give the desired ~c - the numeratoron the right-hand side of Eq. (9) - is proportional to the number of a's that give the desired34



~c for f . (The proof of this claim will constitute a proof of Eq. (9).) Furthermore, theproportionality constant is independent of f and ~c.4) Proof: We will construct a mapping � : a! �. � takes in an a that gives the desired~c for f , and from it produces a � that is in f and gives the desired ~c. We will then showthat for any � the number of algorithms a such that �(a) = � is a constant, independentof �; f , and ~c. The proof will then be completed by showing that � is single-valued, i.e., byshowing that there is no a who has as image under mapping � more than one �.5) Any unordered path � gives a set of m! di�erent ordered paths in the obvious manner.(Note that every x value in an unordered path is distinct.) Each such ordered path �ordin turn provides a set of m successive d's (if one includes the null d) and a following x.Indicate by d(�ord) this set of the �rst m d's provided by �ord. (Note that any �ord is itselfa population, but to avoid confusion we avoid referring to it as such.)6) For any ordered path �ord we can construct a \partial algorithm". This consists ofthe list of an a, but with only the m d(�ord) entries in the list �lled in; the remaining entriesare blank. (We say that m is the \length" of the partial algorithm.) Since there are m!distinct partial a's for each � (one for each ordered path corresponding to �), we have m!such partially �lled-in lists for each �.7) In the obvious manner we can talk about whether a particular partial algorithm is\consistent" with a particular full algorithm. This allows us to de�ne (the inverse of) �: forany � that is in f and gives ~c, ��1(�) � (the set of all a that are consistent with at leastone partial algorithm generated from � and that give ~c when run on f).8) To complete the �rst part of our proof we must show that for all � that are in f andgive ~c, ��1(�) contains the same number of elements, regardless of �, f , or c. To that end,�rst generate all ordered paths induced by � and then associate each such ordered path witha distinct m-element partial algorithm. Our question is how many full algorithms lists areconsistent with at least one of these partial algorithm partial lists. (How this question isanswered is the core of this appendix.)9) To answer this question, reorder the entries in each of the partial algorithm lists bypermuting the indices d of all the lists. Obviously such a reordering won't change the answerto our question.9) We will perform the permuting by interchanging pairs of d indices. First, interchangeany d index of the form ((dX(1); dY (1)); : : : ; (dX(i � m); dY (i � m))) whose entry is �lled inin any of our partial algorithm lists with d0(d) � ((dX(1); z); : : : ; (dX(i); z)), where z is somearbitrary constant Y value and xj refers to the j'th element of X . Next, create some arbitrarybut �xed ordering of all x 2 X : (x1; : : : ; xjX j). Then interchange any d0 index of the form((dX(1); z; : : : ; (dX(i � m); z) whose entry is �lled in in any of our (new) partial algorithmlists with d00(d0) � ((x1; z); : : : ; (xm; z)). (Recall that all the dX(i) must be distinct.)10) By construction, the resultant partial algorithm lists are independent of �, ~c and f ,as is the number of such lists (it's m!). Therefore the number of algorithms consistent withat least one partial algorithm list in ��1(�) is independent of �, c and f . This completesthe �rst part of the proof.11) For the second part, �rst choose any 2 unordered paths that di�er from one another,A and B. There is no ordered path Aord constructed from A that equals an ordered path35



Bord constructed from B. So choose any such Aord and any such Bord. If they disagree forthe null d, then we know that there is no (deterministic) a that agrees with both of them. Ifthey agree for the null d, then since they are sampled from the same f , they have the samesingle-element d. If they disagree for that d, then there is no a that agrees with both ofthem. If they agree for that d, then they have the same double-element d. Continue in thismanner all the up to the (m � 1)-element d. Since the two ordered paths di�er, they musthave disagreed at some point by now, and therefore there is no a that agrees with both ofthem.12) Since this is true for any Aord from A and any Bord from B, we see that there is noa in ��1(A) that is also in ��1(B). This completes the proof.B Proof related to minimax distinctions between algo-rithmsThe proof is by example.Consider three points in X , x1; x2, and x3, and three points in Y , y1; y2, and y3.1) Let the �rst point a1 visits be x1, and the �rst point a2 visits be x2.2) If at its �rst point a1 sees a y1 or a y2, it jumps to x2. Otherwise it jumps to x3.3) If at its �rst point a2 sees a y1, it jumps to x1. If it sees a y2, it jumps to x3.Consider the cost function that has as the Y values for the three X values fy1; y2; y3g,respectively.For m = 2, a1 will produce a population (y1; y2) for this function, and a2 will produce(y2; y3).The proof is completed if we show that there is no cost function so that a1 produces apopulation containing y2 and y3 and such that a2 produces a population containing y1 andy2. There are four possible pairs of populations to consider:i) [(y2; y3); (y1; y2)];ii) [(y2; y3); (y2; y1)];iii) [(y3; y2); (y1; y2)];iv) [(y3; y2); (y2; y1)].Since if its �rst point is a y2 a1 jumps to x2 which is where a2 starts, when a1's �rst point isa y2 its second point must equal a2's �rst point. This rules out possibilities i) and ii).For possibilities iii) and iv), by a1's population we know that f must be of the formfy3; s; y2g, for some variable s. For case iii), s would need to equal y1, due to the �rst point36



in a2's population. However for that case, the second point a2 sees would be the value at x1,which is y3, contrary to hypothesis.For case iv), we know that the s would have to equal y2, due to the �rst point in a2'spopulation. However that would mean that a2 jumps to x3 for its second point, and wouldtherefore see a y2, contrary to hypothesis.Accordingly, none of the four cases is possible. This is a case both where there is nosymmetry under exchange of dy's between a1 and a2, and no symmetry under exchange ofhistograms. QED.C Proof related to NFL results for �xed cost functionsSince any (deterministic) search algorithm is a mapping from d � D to x � X , any searchalgorithm is a vector in the space XD. The components of such a vector are indexed by thepossible populations, and the value for each component is the x that the algorithm producesgiven the associated population.Consider now a particular population d of size m. Given d, we can say whether anyother population of size greater than m has the (ordered) elements of d as its �rst m (or-dered) elements. The set of those populations that do start with d this way de�nes a set ofcomponents of any algorithm vector a. Those components will be indicated by a�d.The remaining components of a are of two types. The �rst is given by those populationsthat are equivalent to the �rst M < m elements in d for some M . The values of thosecomponents for the vector algorithm a will be indicated by a�d. The second type consists ofthose components corresponding to all remaining populations. Intuitively, these are popu-lations that are not compatible with d. Some examples of such populations are populationsthat contain as one of their �rst m elements an element not found in d, and populations thatre-order the elements found in d. The values of a for components of this second type will beindicated by a?d.Let proc be either A or B. We are interested inXa;a0 P (c>m j f; d1; d2;k; a; a0; proc)=Xa?d;a0?d0 Xa�d;a0�d0 Xa�d;a0�d0 P (c>m j f; d; d0; k; a; a0; proc):The summand is independent of the values of a?d and a0?d for either of our two d's.In addition, the number of such values is a constant. (It is given by the product, over allpopulations not consistent with d, of the number of possible x each such population couldbe mapped to.) Therefore, up to an overall constant independent of d, d0, f , and proc, oursum equals Xa�d;a0�d0 Xa�d;a0�d0 P (c>m j f; d; d0; a�d; a0�d0; a�d; a0�d0 ; proc):37



By de�nition, we are implicitly restricting the sum to those a and a0 so that our summandis de�ned. This means that we actually only allow one value for each component in a�d(namely, the value that gives the next x element in d), and similarly for a0�d0 . Therefore oursum reduces to Xa�d;a0�d0 P (c>m j f; d; d0; a�d; a0�d0 ; proc):Note that no component of a�d lies in dx[. The same is true of a0�d0 . So our sum over a�dis over the same components of a as the sum over a0�d0 is of a0. Now for �xed d and d0, proc'schoice of a or a0 is �xed. Accordingly, without loss of generality, we can rewrite our sum asXa�d P (c>m j f; d; d0; a�d);with the implicit assumption that c>m is set by a�d. This sum is independent of proc. QED.
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