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Abstract. Common experience suggests that many networks might possess commu-
nity structure – division of vertices into groups, with a higher density of edges within
groups than between them. Here we describe a new computer algorithm that detects
structure of this kind. We apply the algorithm to a number of real-world networks and
show that they do indeed possess non-trivial community structure. We suggest a possi-
ble explanation for this structure in the mechanism of assortative mixing, which is the
preferential association of network vertices with others that are like them in some way.
We show by simulation that this mechanism can indeed account for community struc-
ture. We also look in detail at one particular example of assortative mixing, namely
mixing by vertex degree, in which vertices with similar degree prefer to be connected
to one another. We propose a measure for mixing of this type which we apply to a
variety of networks, and also discuss the implications for network structure and the
formation of a giant component in assortatively mixed networks.

5.1 Introduction

Much of the recent research on the structure of networks of various kinds has
looked at properties like path lengths, transitivity, degree distributions, and resi-
lience of networks to vertex deletion [42, 2, 15], all of which, while of exceptional
importance in many contexts, tend to focus our attention on the properties of
individual vertices or vertex pairs – how far apart they are, what their degrees
are, and so forth. However, in other contexts it may be equally important to ask
about the large-scale properties of the network as a whole. Numbers of compo-
nents and their distribution of sizes would be an example of such a property, one
which is relevant to issues of accessibility [10] and to epidemiology [18, 7, 31].
Searchability and the performance of search algorithms on networks would be
another [25, 1, 45]. A third is the existence and effects of large-scale inhomo-
geneity in networks – what we call “community structure”, the presence (or
absence) in the network of regions with high densities of connections between
vertices and other regions with low densities – and it is with a discussion of
this topic that we begin this paper. (In some circles, this phenomenon is cal-
led “clustering”, an unfortunate terminology which risks confusion with another
use of the word clustering introduced recently by Watts and Strogatz [46]. We
will use the word clustering only in reference to hierarchical clustering, which
is a standard technique for community detection; otherwise we will avoid it.)
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Our investigation of community structure will lead us to consideration of mixing
patterns in networks – which vertices connect to which others and why – as an
explanation for observed communities in networks of all kinds, and eventually to
consideration of more general classes of correlated networks including networks
with correlations between the degrees of adjacent vertices.

Much of the work reported in this article has appeared previously in various
papers, which the reader may like to consult for more detail than we can give
here [17, 35, 36].

5.2 Community Structure

The oldest studies by far of the large-scale statistical properties of networks are
the studies of social networks carried out within the sociological community,
which stretch back at least to the 1930s [44, 41]. Social networks are network
representations of relationships of some kind, generically called “ties”, between
people or groups of people, generically called “actors”. Actors might be individu-
als, organizations or companies, while ties might represent friendship, acquain-
tance, business relationships or financial transactions, amongst other things.

A long-standing goal among social network analysts has been to find ways
of analysing network data to reveal the structure of the underlying communities
that they represent. It is commonly supposed that the actors in most social
networks divide themselves naturally into groups of some kind, such that the
density of ties within groups is higher than the density of ties between them. A
sketch of a network with such community structure is shown in Fig. 5.1.

It is a matter of common experience that social networks do contain commu-
nities. We look around ourselves and see that we belong to this clique or that,
that we have a circle of close friends and others whom we know less well, that
there are groupings within our personal networks on the basis of interest, occu-

Fig. 5.1. A figurative sketch of a network possessing community structure of the type
discussed here
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pation, geographical location and so forth. This does not however guarantee that
a network contains community structure of type that we are considering here. It
would be perfectly possible for each person in a network to have a well-defined
set of close acquaintances, their own personal network neighbourhood, but for
the network neighbourhoods of different people to overlap only partially, so that
the network as a whole is quite homogeneous, with no clear communities emer-
ging from the pattern of vertices and edges. A network model showing precisely
this type of structure has been proposed and studied recently by Kleinberg [26].
Our purpose in this section will be to investigate methods for detecting whether
true community structure does exist in networks and for extracting the commu-
nities, and to apply those methods to particular networks. As we will see, the
early intuition of the sociologists was correct, and many of the networks studied,
including non-social networks, do possess large-scale inhomogeneity of precisely
the type that would indicate the presence of community divisions.

The problem then is to take a network, specified in the simplest case by a list
of n vertices joined in pairs bym edges, and from this structure to extract a set of
communities – non-overlapping subsets of vertices that are, in some sense, tightly
knit, having stronger within-group connections than between-group connections.
The traditional, and still most common, method for detecting structure of this
kind is the method of “hierarchical clustering” [44, 41]. In this method one defi-
nes a connection strength for each pair of vertices in the network, i.e., 1

2n(n− 1)
numbers that represent a distance or weight for the connection between each
pair. (In some versions of the method not all pairs are assigned a connection
strength, in which case those that are not can be assumed to have a connection
strength of zero.) Examples of possible definitions for the strengths include ge-
odesic (shortest path) distances between pairs, or their inverses if one wants a
measure that increases when pairs are more closely connected, counts of num-
bers of vertex- or edge-independent paths between pairs (“maxflow” methods)
or weighted counts of total numbers of paths between pairs (adjacency matrix
methods).

Then, starting with the n vertices but no edges between them, one joins
vertices together in order of the weights of vertex pairs, ignoring the edges of
the original network. One can pause at any stage in this process and observe
the pattern of components formed by the connections added so far, which are
taken to be the communities of the network at that stage. The heirarchical
clustering method thus defines not just a single decomposition of the network
into communities, but a nested hierarchy of possible decompositions, having
varying numbers of communities. This hierarchy can be represented as a tree
or “dendrogram”, an example of which is shown in Fig. 5.2. A horizontal cut
through the dendrogram at any given height, such as that denoted by the dotted
line in Fig. 5.2, splits the tree into the communities for the corresponding stage
in the hierarchical clustering process. By varying the height of the cut, one can
arrange for the number communities to take any desired value.

The construction of dendrograms is a popular technique for the analysis of
network data, particularly within the sociological community. Software packa-
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Fig. 5.2. An example of a dendrogram showing the hierarchical clustering of ten
vertices. A horizontal cut through the dendrogram, such as that denoted by the dotted
line, splits the vertices into a set of communities, five in this case

ges for network analysis, such as Pajek and UCInet, incorporate hierarchical
clustering as a standard feature: for any network one can calculate a huge va-
riety of vertex–vertex weights of different types and construct the corresponding
dendrogram for any of them. The method however has some problems. There
are many cases in which networks have rather obvious community structure, but
hierarchical clustering fails to find it. One particular pathology that is frequently
observed is that peripheral vertices tend to get disconnected from the bulk of
the network, rather than being associated with the groups or communities that
they are primarily attached to. For example, if a vertex is connected to the rest
of the network by only a single edge, then presumably, were one to assign it to
a community, it would be assigned to the community that the single edge leads
to. In many cases, however, the hierarchical clustering method will declare the
vertex instead to be a single-vertex community in its own right, in complete
disagreement with our intuitive ideas of community structure.

In a recent paper therefore [17] we have proposed an alternative method for
detecting community structure, based on calculations of so-called edge betweenn-
ess for vertex pairs. As we will see, this method detects the known community
structure in a number of networks with remarkable accuracy.

5.2.1 Edge Betweenness and Community Detection

Freeman [16] proposed a measure of centrality for the actors in a social network
which he called “betweenness”. The betweenness of an actor is defined to be the
number of shortest paths between pairs of vertices that pass through that actor.
In cases where the number p of shortest paths between a vertex pair is greater
than one, each path is given an equal weight of 1/p. Trivial algorithms for calcu-
lating betweenness take O(mn2) time to calculate betweenness for all vertices,
or O(n3) time on a sparse graph (i.e., one in which the number of edges per
vertex is constant in the limit of large graph size). This makes the calculation
prohibitively costly on large networks. Recently however, two new algorithms
have been proposed [33, 9] that both allow the same calculation to be performed
faster, in time O(mn), or O(n2) on a sparse graph, by eliminating needless re-
calculations of geodesic paths. The betweenness of a vertex gives an indication,
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as the name implies, of how much the vertex is “between” other vertices. If, for
example, information (or anything else) spreads through a network primarily by
following shortest paths, then betweenness scores will indicate through which
vertices most information will flow on average. The vertices with highest bet-
weenness are also those whose removal will result in an increase to the geodesic
distance between the largest number of other vertex pairs.

Here we consider an extension of Freeman’s betweenness to the edges in a
network. The betweenness of an edge is defined to be the number of shortest
paths between pairs of vertices that run along that edge, with paths again being
given weights 1/p when there are p > 1 between a given pair of vertices. In
fact, the concept of edge betweenness actually appears to predate Freeman’s
work on vertex betweenness, having appeared in an obscure technical report
by an Amsterdam mathematician some years earlier [4]. Edge betweenness has
received very little attention in other literature until recently, but it provides
us with an excellent measure of which edges in a network lie between different
communities. In a network with strong community structure – groups of vertices
with only a few inter-group edges joining them – at least some of the inter-
group edges will necessarily receive high edge betweenness scores, since they must
carry the geodesic paths between vertex pairs that lie in different communities.
This implies that eliminating edges with high edge betweenness from a graph
will remove the inter-group edges, and hence split the graph efficiently into its
different groups. This is the principle behind our method for the detection of
community structure. Our algorithm is as follows.

1. We calculate the edge betweenness of every edge in the network.
2. We remove the edge with the highest betweenness score, or randomly choose

one such if more than one edge ties for the honour.
3. We recalculate betweenness scores on the resulting network and repeat from

step 2 until no edges remain.

The recalculation in step 3 is crucial to the method’s success. When there is
more than one inter-group edge between two groups of vertices, there is no
guarantee that both will receive high betweenness scores; in some cases most
geodesic paths with flow along one edge and only that one will receive a high
score. Recalculation ensures that at some stage in the working of the algorithm
each inter-group edge receives a high score and thus gets removed.

The calculation of all edge betweennesses takes time O(mn), and its re-
petition for all m edges thus gives the algorithm a worst-case running time
of O(m2n), or O(n3) on a sparse graph. The results of the algorithm can be
represented as a dendrogram, just as in traditional hierarchical clustering, alt-
hough one should be aware that the construction of the tree is not logically
the same: the recalculation of the betweennesses after each edge removal means
that there is no single function that can be defined for each edge in the initial
graph such that the resulting dendrogram is the representation of a hierarchical
clustering construction carried out using that function.
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5.2.2 Examples

Here we give three examples of the application of our community structure fin-
ding algorithm to different networks. The first example is a set of computer
generated graphs, specifically created to test the algorithm. We created a large
number of graphs of 128 vertices each, divided into four groups of 32. Edges were
placed at random between vertices within the same group with probability pin
and between vertices in different groups with probability pout, with the values
of pin and pout chosen to make the average degree of a vertex equal to 16, and
pout ≤ pin. These graphs were then fed into our community structure algorithm,
and we measured what fraction of the vertices were correctly classified into their
communities as a function of the ratio of pin to pout, or equivalently the mean
number zout of edges from a vertex to vertices in other communities. The results
are shown in Fig. 5.3. As the figure shows, the algorithm performs almost per-
fectly for values of zout up to about 6. Beyond this point, as zout approaches the
value of 8 at which each vertex has as many inter-group edges as intra-group
ones, the fraction of successfully classified vertices falls off sharply.

On the same plot we also show the performance of a standard hierarchical
clustering algorithm based on edge-independent path counts (maxflow) on the
same set of random graphs. As the figure shows, the traditional method is far
inferior to our new algorithm in finding the known community structure.
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Fig. 5.3. The fraction of vertices correctly classified in applications of community
structure finding algorithms to the computer-generated graphs described in the text.
The circles are results for the method presented in this paper and the squares are for the
standard hierarchical clustering method, using a maximum-flow measure of connection
strength between vertex pairs. Each point is an average over 100 realizations of the
graphs
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Fig. 5.4. a The friendship network given by Zachary [49] for his karate club study.
Grey squares represent individuals who in the fission of the club sided with the club’s
instructor, while open circles represent individuals who sided with the club’s president.
b The dendrogram representing the community divisions found by our method for this
network, with the same colouring scheme for the vertices

For our second example, we move to real-world network data. In 1977, Wayne
Zachary published the results of an ethnographic study he had conducted of
social interactions between 34 members of a karate club at an American univer-
sity [49]. He recorded social contacts between members of the club over a two
year period and published his results in the form of social networks. Fortuitously
there arose, during the course of the study, a dispute between the two leaders
of the club, the karate teacher and the club’s president, over whether to raise
the club’s fees. Ultimately, the dispute resulted in the departure of the karate
teacher and his starting another club of his own, taking with him about a half of
the original club’s members. Here we analyse a network constructed by Zachary
of friendships between club members before the split occurred. We compare the
predictions of our community-finding algorithm applied to this network with the
known lines along which the club divided. Our results are shown in Fig. 5.4.

In panel (a) of the figure we show the original network, with the grey squares
representing the faction that ultimately sided with the teacher (who is vertex
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number 1), and the open circles the faction that sided with the club’s president
(vertex number 34). In panel (b) we show the dendrogram output by our algo-
rithm for this network. As the figure shows, the algorithm again performs nearly
perfectly, with only one vertex, vertex number 3, being misclassified. (Inspection
of panel (a) reveals that vertex 3 is in fact precisely caught in the middle of the
network between the two factions, and so it is not entirely surprising that this
vertex was misclassified.) Bear in mind that the network in this example was
recorded before the fission of the club, so that the results of panel (b) are in
some sense a prediction of events that were, at that time, yet to occur.

Finally, for our third example, we take a network for which we do not have
any strong presuppositions about a “correct” division into communities. This
example is a true experiment to see what information the algorithm can give
us about a network whose structure is not wholly understood. The network in
question is a food web, the web of trophic interactions (who eats whom) of
marine organisms living in the Chesapeake Bay. The network was assembled by
Baird and Ulanowicz [5] and contains 33 vertices representing the ecosystem’s
most prominent taxa. The edges in a food web are, technically, directed; they
can be thought of as pointing from prey to their predators, thus indicating the
direction of energy (or carbon) flow up the food chain. Here however we have
ignored the directed nature of the network, considering the edges merely to be
undirected indicators of trophic interaction between taxon pairs.

The dendrogram produced for this food web by our community structure
algorithm is shown in Fig. 5.5. As we can see, the algorithm splits the network
into two principle communities and a couple of smaller peripheral ones. We have
coloured the vertices in the dendrogram to show which taxa are surface dwellers
in the bay (pelagic species) and which bottom dwellers (benthic species). A few
species are of undetermined status. It is clear that our algorithm has in this
case primarily extracted from the network the distinction between pelagic and
benthic taxa. Thus our results appear to imply that the food web in question
can be split roughly into separate surface- and bottom-dwelling subsystems, with
relatively weak interaction between the two. A small number of benthic species
are found to belong more strongly to the pelagic community than to the benthic
one, perhaps indicating that a simple classification of species by where they live
is not telling the whole story for this system. The results of our analysis might
also be helpful in assigning a type to the undetermined species in the network.

5.3 Origins of Community Structure and Assortative
Mixing

There is certainly more than one possible explanation for the presence of com-
munity structure in a network, and different explanations may be appropriate
to different networks. In the case of a social network, for example, Jin et al. [24]
have shown that communities can arise as a result of growth dynamics of a net-
work. If an acquaintance network grows by the introduction of pairs of people
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Fig. 5.5. The dendrogram found by our method for Baird and Ulanowicz’s food web
of marine organisms in the Chesapeake Bay [5]

to one another by a mutual acquaintance, then an initial chance acquaintance
with a member of a certain community will lead to introductions to other mem-
bers of that community, so that one ultimately becomes linked to many of the
community’s members and so becomes a member oneself. Using a simple com-
puter model of this process, Jin et al. found that even networks with no initial
community structure quickly develop such structure over time. One can think of
this as a mechanism for the development of cliquishness in social networks.

This mechanism however is quite specific to social networks and could not be
easily applied, for example, to the food web studied in the last section. It also
completely ignores any personal attributes of the actors involved or affinities
between actor pairs. A more general and perhaps more convincing explanation
for community formation, which takes these things into account, is that of assor-
tative mixing,4 which is the tendency for nodes in a network to form connections
preferentially to others that are like them in some way.

An example of assortative mixing in social networks is mixing by race.
Table 5.1 shows data from the AMEN (AIDS in Multiethnic Neighborhoods)
study [11], on mixing by race among sexual partners in the city of San Fran-
cisco, California. This part of the study focused on heterosexual partnerships,

4 The name “assortative mixing” comes from the epidemiology community, where
this effect has been studied extensively. It is also sometimes called “assortative mat-
ching”, particularly by ecologists.
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Table 5.1. The mixing matrix eij and the values of ai and bi for sexual partnerships
in the San Francisco study described in the text. After Morris [32]

women
black hispanic white other ai

m
en

black 0.258 0.016 0.035 0.013 0.323
hispanic 0.012 0.157 0.058 0.019 0.247

white 0.013 0.023 0.306 0.035 0.377
other 0.005 0.007 0.024 0.016 0.053

bi 0.289 0.204 0.423 0.084

and the rows and columns of the matrix represent men and women in such part-
nerships, grouped by their (self-identified) race. Diagonal elements of the matrix
represent the fraction of survey respondents in partnerships with members of
their own group, and off-diagonal those in partnerships with members of other
groups. Inspection of the figures shows that the matrix has considerably more
weight along its diagonal than off it, indicating that assortative mixing does
take place in this network. One might well expect mixing of this type to result
in divisions within the community along lines of race, and we will show shortly
that, within the context of simulations of network formation, assortative mixing
can indeed give rise to such community structure.

The amount of assortative mixing in a network can be characterized by mea-
suring how much of the weight in the mixing matrix falls on the diagonal, and
how much off it. Let us define eij to be the fraction of all edges in a network
that join a vertex of type i to a vertex of type j. In the case of the matrix of Ta-
ble 5.1, where the ends of an edge always attach to one man and one woman, we
should also specify which index corresponds to which type of end, which makes
eij asymmetric. For example, we could specify that the first index i represents
the man and the second j the woman. For networks in which there is no corre-
sponding distinction, eij will be symmetric. The matrix should also satisfy the
sum rules

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj , (5.1)

where ai and bi are the fraction of each type of end of an edge that is attached
to vertices of type i. The values of ai and bi for the San Francisco study are also
shown in Table 5.1. On graphs where there is no distinction between the ends of
edges, we will have ai = bi.

Now we can define a quantitative measure r of the level of assortative mixing
in the network thus [36]:

r =
∑
i eii − ∑

i aibi
1 − ∑

i aibi
=

Tr e − || e2 ||
1 − || e2 || , (5.2)

where e is the matrix whose elements are the eij , and the notation ||x || indicates
the sum of the elements of the matrix x. We call the quantity r the “assortativity
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coefficient”. It takes the value 1 in a perfectly assortative network, since in that
case the entire weight of the matrix e lies along its diagonal and

∑
i eii = 1.

Conversely, if there is no assortative mixing at all, then eij = aibj for all i, j and
r = 0. Networks can also be disassortative: vertices may associate preferentially
with others of different types – the “opposites attract” phenomenon. In that
case, r will take a negative value.

One can certainly imagine that assortative mixing might apply in other types
of networks as well. For example, we saw in Sect. 5.2.2 that a food web of marine
organisms apparently divided into communities along lines of location – which
species were surface dwellers (pelagic) and which bottom dwellers (benthic). It
seems reasonable to hypothesize that the evolution of new predatory relations-
hips between species is biased by the location of those species’ living quarters,
and hence that the network structure would indeed reflect the pelagic/benthic
division as a result of assortative mixing by location.

We can test our hypothesis that assortative mixing could be responsible
for community formation in networks by computer simulation. Given a mixing
matrix of the type shown in Table 5.1, we can create a random network with
the corresponding mixing pattern and any desired degree distribution by the
following algorithm.

1. First we choose degree distributions p(i)
k for each vertex type i. The quantity

p
(i)
k here denotes the probability that a randomly chosen vertex of type i will

have degree k. We can also calculate the mean degree zi =
∑
k kp

(i)
k for each

vertex type.
2. Next we choose a size for our graph in terms of the number m of edges and

draw m edges from the desired distribution eij . We count the number of
ends of edges of each type i, to give the sums mi of the degrees of vertices in
each class, and we calculate the expected number ni of vertices of each type
from ni = mi/zi (rounded to the nearest integer).

3. We draw ni vertices from the desired degree distribution p
(i)
k for type i.

Normally the degrees of these vertices will not sum exactly to mi as we want
them to, in which case we choose one vertex at random, discard it, and draw
another from the distribution p(i)

k , repeating until the sum does equal mi.
4. We pair up the mi ends of edges of type i at random with the vertices

we have generated, so that each vertex has the number of attached edges
corresponding to its chosen degree.

5. We repeat from step 3 for each vertex type.

We have used this algorithm to generate example networks with desired levels
of assortative mixing. For example, Fig. 5.6 shows an undirected network of
n = 100 vertices of four different types, generated using the symmetric mixing
matrix
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Fig. 5.6. A network generated using the mixing matrix of (5.3) and a Poisson degree
distribution with mean z = 5. The four different shades of vertices represent the four
types, and the four shapes represent the communities discovered by the community-
finding algorithm of Sect. 5.2.1. The placement of the vertices has also been chosen
to accentuate the communites and show where the algorithm fails. As we can see,
the correspondence between vertex type and the detected community structure is very
close; only nine of the 100 vertices are misclassified

e =







0.18 0.02 0.01 0.03
0.02 0.20 0.03 0.02
0.01 0.03 0.16 0.01
0.03 0.02 0.01 0.22





 , (5.3)

which gives a value of r = 0.68 for the assortativity coefficient. A simple Poisson
degree distribution with mean z = 5 was used for all vertex types. The graph was
then fed into the community finding algorithm of Sect. 5.2.1 and a cut through
the resulting dendrogram performed at the four-community level. The communi-
ties found are shown by the four shapes of vertices in the figure and correspond
very closely to the real vertex type designations, which are represented by the
four different vertex shades. In other words, by introducing assortative mixing
by vertex type into this network, we have created vertex-type communities that
register in our community finding algorithm in exactly the same way as commu-
nities in naturally occurring networks. This strongly suggests that assortative
mixing could indeed be an explanation for the occurrence of such communi-
ties, although it is worth repeating once again that other explanations are also
possible.
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5.4 Other Types of Assortative Mixing

Assortative mixing can depend on vertex properties other than the simple enu-
merative properties discussed in the preceding section. For example, we can also
have assortative mixing by scalar characteristics, either discrete or continuous.
A classic example of such mixing, much studied in the sociological literature,
is acquaintance matching by age. In many contexts, people appear to prefer to
associate with others of approximately the same age as themselves. As an exam-
ple of such mixing, consider Fig. 5.7, which shows the ages at marriage of the
male and female members of 1141 married couples drawn from the US National
Survey of Family Growth [14]. Each point in the figure represents one couple, its
position along the horizontal and vertical axes corresponding to the ages of the
husband and wife respectively. The study was based on interviews with women,
and was limited to those of childbearing age, so the vertical axis cuts off aro-
und 40. Also only the first marriage for each woman interviewed is shown, even
if she married more than once. Despite these biases however, the figure reveals
a clear trend: people prefer to marry others of an age close to their own.

It is perhaps stretching a point a little to consider first marriage ties between
couples as forming a social network, since people have at most one first marriage
and hence would have a maximum degree of one within the network. Here,
however, we consider marriage age as a proxy for the ages of sexual partners in
general, and conjecture that a similar age preference will be seen in non-married
partners also, although we are not aware of any specific data to that effect.

Assortative mixing according to scalar characteristics can result in the forma-
tion of communities, just as in the case of discrete characteristics. One could have
separate communities formed of old and young people, for instance. However, it
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Fig. 5.7. Scatter plot of the ages at first marriage of 1141 women interviewed in the
1995 National Survey of Family Growth, and their spouses. Only women of up to 45
years of age were interview, so the vertical axis does not extend as far as the horizontal
one
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is also possible that we do not get well-defined communities, but instead get an
overlapping set of groups with no clear boundaries, ranging for example from
low age to high age. In the sociological literature such a continuous gradation of
one community into another is called “stratification” of the network.

As with assortative mixing on discrete characteristics, one can define an as-
sortativity coefficient to quantify the extent to which mixing is biased according
to scalar vertex properties. To do this, we define exy to be the fraction of ed-
ges in our network that connect a vertex of property x (e.g., age) to another of
property y. The matrix exy must satisfy sum rules as before, of the form

∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (5.4)

where ax and by are, respectively, the fraction of edges that start and end at
vertices with ages x and y. Then the appropriate definition for the assortativity
coefficient is

r =

∑
xy xy(exy − axby)

σaσb
, (5.5)

where σa and σb are the standard deviations of the distributions ax and by.
The reader will no doubt recognize this definition of r as the standard Pearson
correlation coefficient for the quantities x and y. It takes values in the range
−1 ≤ r ≤ 1 with r = 1 indicating perfect assortative mixing, r = 0 indicating
no correlation between x and y, and r = −1 indicating perfect disassortative
mixing, i.e., perfect anticorrelation between x and y.

If we take the marriage data from Fig. 5.7, for example, and feed it into (5.5),
we find that r = 0.57, indicating once again that mixing is strongly assortative
(as is in any case obvious from the figure).

Mixing could also depend on vector or even tensor characteristics of verti-
ces. One example would be mixing by geographical location, which could be
regarded as a two-vector. It seems highly likely that if one were to record both
acquaintance patterns and geographical location for actors in a social network,
one would discover that acquaintance is strongly dependent on geography, with
people being more likely to know others who live in the same part of the world
as themselves.

5.4.1 Mixing by Vertex Degree

We will spend the rest of this article examining one particular case of mixing
according to a scalar vertex property, that of mixing by vertex degree, which
has been studied for some time in the social networks literature and has recently
attracted attention in the mathematical and physical literature also. Krapivsky
and Redner [27] for instance found in studies of the preferential attachment
model of Barabási and Albert [6] that edges did not fall between vertices in-
dependent of their degrees. Instead there was a higher probability to find some
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degree combinations at the ends of edges than others. Pastor-Satorras et al. [40]
subsequently showed for data on the structure of the Internet at the level of
autonomous systems that the degrees of adjacent vertices were anticorrelated,
i.e., that high-degree vertices prefer to attach to low-degree vertices, rather than
other high-degree ones – the network is disassortative by degree. To demonstrate
this, they measured the mean degree degree 〈knn〉 of the nearest-neighbours of a
vertex, as a function of that vertex’s degree k. They found that 〈knn〉 decreases
with increasing k, approximately as k−1/2. That is, the mean degree of your
neighbours goes down as yours goes up. Maslov and Sneppen [29] have offered
an explanation of this result in terms of ensembles of graphs in which double
edges between vertices are forbidden. Maslov and Sneppen also showed in a se-
parate paper [30] that the protein interaction network of the yeast S. Cerevisiae
displays a similar sort of disassortative mixing.

An alternative way to quantify assortative mixing by degree in a network is to
use an assortativity coefficient of the type described in the previous section [35].
Let us define ejk to be the fraction of edges in a network that connect a vertex
of degree j to a vertex of degree k. (As before, if the ends of an edge connect
different types of vertices, then the matrix will be asymmetric, otherwise it will
be symmetric.) In fact, we define j and k to be the “excess degrees” of the two
vertices, i.e., the number of edges incident on them less the one edge that we
are looking at at present. In other words, j and k are one less than the total
degrees of the two vertices. This designation turns out to be mathematically
convenient for many developments. If the degree distribution of the network as
a whole is pk, then the distribution of the excess degree of the vertex at the end
of a randomly chosen edge is

qk =
(k + 1)pk+1

z
, (5.6)

where z =
∑
k kpk is the mean degree [37]. Then one can define the assortativity

coefficient to be

r =

∑
jk jk(ejk − qjqk)

σ2
q

, (5.7)

where σq is the standard deviation of the distribution qk. On a directed or similar
network, where the ends of an edge are not the same and ejk is asymmetric, this
generalizes to

r =

∑
jk jk(ejk − qaj q

b
k)

σaσb
, (5.8)

where σa and σb are the standard deviations of the distributions qak and qbk for
the two types of ends. (The measure introduced by Pastor-Satorras et al. [40]
can also be expressed simply in terms of the matrix ejk: it is 〈knn〉 =

∑
j jejk.

Maslov and Sneppen [30, 29] gave entire plots of the raw ejk, using colours to
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Table 5.2. Size n and degree assortativity coefficient r for a number real-world net-
works. Social networks: coauthorship networks of (a) physicists and biologists [34]
and (b) mathematicians [19]; (c) collaborations (co-starring relationships) of film ac-
tors [46, 39]; (d) directors of Fortune 1000 companies for 1999, in which two directors
are connected if they sit on the board of directors of the same company [13, 39];
(e) network of email address books of computer users [38]. Technological networks:
(f) network of direct peering relationships between autonomous systems on the Inter-
net, April 2001 [12]; (g) network of hyperlinks between pages in the World-Wide Web
domain nd.edu circa 1999 [3]; (h) network of dependencies between software packa-
ges in the GNU/Linux operating system [36]. Biological networks: (i) protein–protein
interaction network in the yeast S. Cerevisiae [22]; (j) metabolic network of the bacte-
rium E. Coli [23]; (k) neural network of the nematode worm C. Elegans [47, 46]; tropic
interactions between species in the food webs of (l) Ythan Estuary, Scotland [21] and
(m) Little Rock Lake, Wisconsin [28]. After Newman [36]

network type size n assortativity r ref.

so
ci

al

physics coauthorship undirected 52 909 0.363 a
biology coauthorship undirected 1 520 251 0.127 a
mathematics coauthorship undirected 253 339 0.120 b
film actor collaborations undirected 449 913 0.208 c
company directors undirected 7 673 0.276 d
email address books directed 16 881 0.092 e

te
ch

no
l.

Internet undirected 10 697 −0.189 f
World-Wide Web directed 269 504 −0.067 g
software dependencies directed 3 162 −0.016 h

bi
ol

og
ic

al

protein interactions undirected 2 115 −0.156 i
metabolic network undirected 765 −0.240 j
neural network directed 307 −0.226 k
marine food web directed 134 −0.263 l
freshwater food web directed 92 −0.326 m

code for different values. These plots are however rather difficult to interpret by
eye.)

In Table 5.2 we show values of r measured for a variety of different real-world
networks. The networks shown are divided into social, technological and biolo-
gical networks, and a particularly striking feature of the table is that the values
of r for the social networks are all positive, indicating assortative mixing by de-
gree, while those for the technological and biological networks are all negative,
indicating disassortative mixing. It is not clear at present why this should be,
although explanations for the observed mixing behaviours have been proposed
in some specific cases [29, 36].

As with the mixing by discrete enumerative characteristics discussed in
Sect. 5.3, we can also investigate the effects of assortative mixing by looking
at computer generated networks with particular types of mixing. Unfortuna-
tely, no simple algorithm exists for generating graphs mixed by vertex degree
analogous to that of Sect. 5.3 (see Dorogovtsev et al. in this volume and New-
man [36]) and one is forced to resort to Monte Carlo generation of graphs using
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Fig. 5.8. The giant component of two graphs generated using a Monte Carlo procedure
with edge distribution given by (5.9) with κ = 10 and a p = 0.5 and b p = 0.05

Metropolis–Hasting type algorithms of the sort widely used for graph genera-
tion in mathematics and quantitative sociology. Such algorithms however are
straightforward to implement. For the present case, we take the simple example
form

ejk = N e−(j+k)/κ
[(
j + k

j

)

pjqk +
(
j + k

k

)

pkqj
]

, (5.9)

where p + q = 1, κ > 0, and N = 1
2 (1 − e−1/κ) is a normalizing constant. This

means that the distribution of the sum j+k of the excess degrees at the ends of
an edge falls off as a simple exponential, while that sum is distributed between
the two ends binomially, the parameter p controlling the assortative mixing. For
values of p ranging from 0 to 1

2 we get various values of the assortativity r, both
positive and negative, passing through zero at p0 = 1

2 − 1
4

√
2 = 0.1464 . . .

As an example, we show in Fig. 5.8 the giant components of two graphs of this
type generated using the Monte Carlo method. One of them, graph (a), is assor-
tatively mixed by degree, while the other, graph (b), is disassortatively mixed.
The difference between the two is clear to the eye. In the first case, because the
high degree vertices prefer to attach to one another, there is a central “core” to
the network, composed of these high-degree vertices, and a straggling periphery
of low-degree vertices around it. In epidemiology a dense central portion of this
type is called a “core group” and is thought to be capable of acting as a reservoir
for disease, keeping diseases circulating even when the density of the network
as a whole is too low to maintain endemic infection. In social network analysis
one also talks of “core/periphery” distinctions in networks, another concept that
mirrors what we see here. In the second graph, which is disassortative, a con-
trasting picture is evident: the high-degree vertices prefer not to associate with
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Fig. 5.9. The size of the giant component as a function of graph size for graphs with
the edge distribution given in (5.9), for three different values of the parameter p, which
controls the assortativity. The points are simulation results for graphs of N = 100 000
vertices while the solid lines are the analytic solution for the same quantity given by
Newman [35]. Each point is an average over ten graphs; the resulting statistical errors
are smaller than the symbols. The values of p are 0.5 (circles), p0 = 0.146 . . . (squares),
and 0.05 (triangles)

one another, and are as a result scattered widely over the network, producing a
more uniform appearance.

To shed more light on the effects of assortativity, we show in Fig. 5.9 the
size of the largest component in networks of this type as the degree distribution
parameter κ is varied, for various values of p. For low values of κ the mean
degree of the network is small, and the resulting density of edges is too low
to produce percolation in the network, so there is no giant component. As κ
increases, however, there comes a point, clearly visible on the plot, at which
the edge density is great enough to form a giant component. Figure 5.9 reveals
two interesting features of this transition. First, the position of the transition,
the value of the parameter κ at which it takes place, is smaller in assortatively
mixed networks than in disassortative ones. In other words, it appears that the
presence of assortativity in the degree correlation pattern allows the network
to percolate more easily. This result is intuitively reasonable: the core group of
the assortative network seen in Fig. 5.8a has a higher density of edges than the
network as a whole and so one would expect percolation to take place in this
region before it would in a network with the same average density but no core
group.

Second, the figure shows that, even though the assortative network percolates
more easily than its disassortative counterpart, its largest component does not
grow as large as that of the disassortative network in the limit where κ becomes



84 M.E.J. Newman and M. Girvan

large. This too can be understood in simple terms: percolation occurs more easily
when there is a core group, but is also largely confined to that core group and so
does not spread to as large a portion of the network as it would in other cases.

In epidemiological terms, one could think of these two results as indicating
that assortative networks will support the spread and persistence of a disease
more easily than disassortative ones, because they possess a core group of connec-
ted high-degree vertices. But the disease is also restricted mostly to that core
group. In a disassortative network, although percolation and hence epidemic di-
sease requires a denser network to begin with, when it does happen it will affect
a larger fraction of the network, because it is not restricted to a core group.

5.5 Conclusions

In this article we have examined two related properties of networks: commu-
nity structure and assortative mixing. We have described a new algorithm for
finding groups of tightly-knit vertices within networks – communities in our no-
menclature – which is based on the calculation of an “edge betweenness” index
for network edges. The algorithm appears to be successful at detecting known
community structure in various example networks, and we have found that many
real-world networks do indeed possess community structure to a greater or lesser
degree.

Turning to possible explanations for this structure we have suggested that
assortative mixing, the preferential association of vertices in a network with
others that are like them in some way, is one possible mechanism for community
formation. We have defined a measure of the strength of assortative mixing and
applied it, for example, to data on mixing by race in social networks, showing
that there is strong assortativity in this case, at least for the survey data that
we have examined. We have also given a simple algorithm for creating networks
with assortative mixing according to discrete characteristics imposed upon the
vertices, and used it to generate example networks which, when fed into our
community detection algorithm, reveal strong community structure similar to
that seen in the real-world data. This lends some conviction to the theory that
assortative mixing could, at least in some cases, be a contributing factor in the
formation of communities within networks.

We have also looked at assortative mixing by scalar characteristics of verti-
ces, such as the age of individuals in a social network, and particularly vertex
degree. By measuring mixing of the latter type for a variety of different networks,
we have shown that social networks appear often to be assortatively mixed by
degree, while technological and biological networks appear normally to be disas-
sortative. Using computer generated model networks we have also shown that
assortativity by vertex degree makes networks percolate more easily – they de-
velop a giant component for a lower average edge density than a similar network
with neutral or disassortative mixing. Conversely, however, disassortative net-
works tend to have larger giant components when they do develop. These findings
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have implications for epidemiology, for example: they imply that a disease sprea-
ding on a network that is assortatively mixed, as most social networks appear
to be, would reach epidemic proportions more easily than on a disassortative
network, but that an epidemic might ultimately affect fewer people than in the
disassortative case.

Looking ahead, some obvious next steps in the studies presented here are
the application of community finding algorithms to other networks, the study of
mixing patterns in other networks, and theoretical investigations of the effects
of assortative mixing and other network correlations on network structure and
function, including for instance network resilience and network epidemiology. A
number of authors have already started work on these problems [20, 48, 8, 43,
35, 36].
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