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Abstract

The statistical physics approach to the number partioning problem, a classical NP-hard prob-
lem, is both simple and rewarding. Very basic notions and methods from statistical mechanics
are enough to obtain analytical results for the phase boundary that separates the “easy-to-solve”
from the “hard-to-solve” phase of the NPP as well as for the probability distributions of the
optimal and sub-optimal solutions. In addition, it can be shown that solving a number partioning
problem of size N to some extent corresponds to locating the minimum in an unsorted list of
O(2N ) numbers. Considering this correspondence it is not surprising that known heuristics for the
partitioning problem are not signi4cantly better than simple random search. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Recent years have witnessed an increasing interaction among the disciplines of dis-
crete mathematics, computer science, and statistical physics. These 4elds are linked by
the fact that models from statistical physics can be formalized as combinatorial opti-
mization problems and vice versa [28, 31]. The connection between optimization and
statistical physics has lead to practical algorithms like simulated annealing [19] and to
new theoretical results, some of which can be found in this special issue.

In most cases, where a statistical physics analysis of an optimization or decision
problem yields signi4cant new results, this analysis is rather complicated technically
as well as conceptionally. This complexity may easily deter computer science people
from learning the tricks and tools, even if they value the results. To promote interdisci-
plinarity beyond the mutual appreciation of results, it may help to consider a physicists
approach to an optimization problem, which on the one hand requires only very basic
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notions and methods from statistical mechanics, but on the other hand yields non-trivial
results. In fact there exists a problem with this nice property: the number partitioning
problem. It is de4ned as follows: Given a list a1; a2; : : : ; aN of positive numbers, 4nd
a partition, i.e. a subset A ⊂ {1; : : : ; N} such that the partition di4erence

E(A) =
∣∣∣∣∑
i∈A

ai −
∑
i =∈A

ai

∣∣∣∣ (1)

is minimized. In the constrained partition problem, the cardinality diDerence between
A and its complement,

M = |A| − (N − |A|) = 2|A| − N (2)

is 4xed. A special case is the balanced partitioning problem with the constraint |M |61.
Partitioning is of both theoretical and practical importance. It is one of Garey and

Johnson’s six basic NP-complete problems that lie at the heart of the theory of NP-
completeness [10]. Among the many practical applications one 4nds multiprocessor
scheduling and the minimization of VLSI circuit size and delay [3, 33].

In this paper, we present a statistical mechanics approach to the NPP. We start,
however, with a brief discussion of some known facts about the NPP. We will learn
that there is a phase transition in the computational complexity of the NPP, and that
there are no real good heuristics for this problem. Both facts will be discussed within
the framework of statistical mechanics in the following sections. Section 3 starts with
an introduction into the very basic notions and methods of statistical mechanics. We
formulate the NPP as a spin glass, i.e. as a model to describe magnetic alloys, and
calculate its free energy and entropy. The entropy in turn yields a simple analytic
expression for the phase boundary that separates the “easy-to-solve” from the “hard-to-
solve” phase in the NPP. In addition, we get an expression for the average optimum
partition diDerence. The statistical mechanics analysis reveals another phase transition
in the constrained NPP: if M exceeds a critical value, the NPP becomes overconstrained
and its solution trivial. In Section 4 we map the balanced and the unconstrained NPP
to another physical model, the random energy model. This signi4es that solving the
NPP with N random numbers aj corresponds to locating the minimum in an unsorted
list of O(2N ) random numbers. This correspondence provides us with an explanation
of the bad performance of heuristic algorithms for the NPP and in addition allows
us to derive analytical expressions for the probability distribution of the optimal and
sub-optimal costs.

2. Some facts about number partitioning

The computational complexity of the number partitioning problem depends on the
type of input numbers {a1; a2; : : : ; aN}. Consider the case that the aj’s are positive
integers bound by a constant A. Then the cost E can take on at most NA diDerent
values, i.e. the size of the search space is O(NA) instead of O(2N ) and it is very easy
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to devise an algorithm that explores this reduced search space in time polynomial in
NA. Unfortunately, such an algorithm does not prove P =NP since a concise encoding
of an instance requires O(N logA) bits, and A is not bounded by any polynomial of
logA. This feature of the NPP is called “pseudo polynomiality”. The NP-hardness of
the NPP requires input numbers of arbitrary size or, after division by the maximal
input number, of unlimited precision.

To study typical properties of the NPP, the input numbers are usually taken to be
independently and identically distributed (i.i.d.) random numbers, drawn from “well
behaved” distributions. Under this probabilistic assumption, the minimal partition dif-
ference E1 is a stochastic variable. For real valued input numbers (in4nite precision, see
above), Karmarkar et al. [18] have proven that the median value of E1 is O(

√
N · 2−N )

for the unconstrained and O(N · 2−N ) for the balanced NPP. Lueker [23] showed re-
cently, that the same results hold for the average value of E1. Numerical simulations
[7] indicate, that the relative width of the distribution of E1, de4ned as

r :=

√
〈E2

1〉 − 〈E1〉2

〈E1〉 ; (3)

where 〈·〉 denotes the average over the aj’s, tends to 1 in the limit N →∞, for both
the unconstrained and the balanced partitioning problem. This means, that the typical
Kuctuations of E1 are of the same size than the value itself. In Section 4, we will
calculate the complete probability distribution of E1 and rederive all these results.

Another surprising feature of the NPP is the poor performance of heuristic algo-
rithms [16, 32]. In Section 4 we show that the bad eLciency of heuristics approaches
can be understood by the observation that number partitioning is essentially equivalent
to locating the minimum in an unsorted list of O(2N ) random numbers [27]. Here we
will describe some of the heuristics.

The key ingredient to the most powerful partition heuristics is the diDerencing op-
eration [17]: select two elements ai and aj and replace them by the element |ai − aj|.
Replacing ai and aj by |ai − aj| is equivalent to making the decision that they will go
into opposite subsets. Applying diDerencing operations N − 1 times produces in eDect
a partition of the set {a1; : : : ; aN}. The value of its partition diDerence is equal to the
single element left in the list. Various partitions can be obtained by choosing diDerent
methods for selecting the pairs of elements to operate on. In the paired di4erencing
method (PDM), the elements are ordered. The 4rst �N=2 operations are performed on
the largest two elements, the third and the fourth largest, etc. After these operations,
the left-over �N=2� elements are ordered and the procedure is iterated until there is
only one element left. Another example is the Karmarkar–Karp (KK) or largest dif-
ferencing method [17]. Again the elements are ordered. The largest two elements are
picked for diDerencing. The resulting set is ordered and the algorithm is iterated until
there is only one element left. The time complexity of PDM and KK is O(N logN ),
the space-complexity is O(N ).

The Karmarkar–Karp diDerencing is the best known heuristics for the partioning
problem, but it 4nds an approximate solution only, far away from the true optimum.
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Fig. 1. Tree generated by the CKK algorithm on the list 8; 7; 6; 5; 4. Left branch: Replace the two largest
numbers by their diDerence. Right branch: Replace the two largest numbers by their sum. The dashed parts
of the tree are pruned by the algorithm. Thanks to the pruning rules, only 9 of 31 nodes have to be explored.

KK yields unconstrained partitions with expected diDerence O(N−a log N ), which has to
be compared to O(

√
N · 2−N ) for the true optimum. Korf [21] showed, how the KK

diDerencing can be extended to a complete anytime algorithm, i.e. an algorithm that
4nds better and better solutions the longer it is allowed to run, until it 4nally 4nds and
proves the optimum solution: At each iteration, the KK heuristic commits to placing
the two largest numbers in diDerent subsets, by replacing them with their diDerence.
The only other option is to place them in the same subset, replacing them by their
sum. This results in a binary tree, where each node replaces the two largest remaining
numbers, a1 ¿ a2: the left branch replaces them by their diDerence, while the right
branch replaces them by their sum:

a1; a2; a3; : : : �→
{

|a1 − a2|; a3; : : : left branch;

a1 + a2; a3; : : : right branch:
(4)

Iterating both operations N − 1 times generates a tree with 2N−1 terminal nodes. The
terminal nodes are single element lists, whose elements are the valid partition diDer-
ences. Korf’s complete Karmarkar–Karp diDerencing algorithm (CKK) searches this
tree depth-4rst and from left to right. The algorithm 4rst returns the KK-heuristic solu-
tion, then continues to 4nd better solutions as time allows. See Fig. 1 for the example
of a tree generated by the CKK.

There are two ways to prune the tree: At any node, where the diDerence between
the largest element in the list and the sum of all other elements is larger than the
current minimum partition diDerence, the node’s oDspring can be ignored. For integer
valued aj, a partition with E61 is called perfect. If one reaches a terminal node with a
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Fig. 2. Number of nodes generated by the complete BLDM algorithm to optimally partition random 25-bit
integers. The complete BLDM algorithm is a variant of Korf ’s complete diDerencing method, modi4ed to
solve the balanced NPP [26].

perfect partition, the entire search can be terminated since no improvement is possible.
The dashed nodes in Fig. 1 are pruned by these rules.

A variant of Korf’s complete diDerencing method to solve the balanced NPP is called
the complete balanced largest diDerencing method, BLDM [26]. It works very similar to
the Korf-algorithm but generates only balanced partitions. To measure the performance
of this algorithm as an exact solver, we count the number of nodes generated until the
optimum solution has been found and proven. The result for 25-bit integers is shown
in Fig. 2. Each data point represents the average of 100 random problem instances.
The horizontal axis shows the number of integers to be partitioned, the vertical axis
shows the number of nodes generated (left) and the fraction of instances that have
a perfect partition (right). Note that we counted all nodes of the tree, not just the
terminal nodes. We observe three distinct regimes: for N¡30; the number of nodes
grows exponentially with N , for N¿30; it decreases with increasing N , reaching a
minimum for N ≈ 130 and starting to grow like N for larger values of N .

The region of exponential growth is characterized by the lack of perfect partitions.
In this regime, the algorithm has to search the whole tree in order to 4nd and prove
the optimum partition. For N¿30 it 4nds a perfect partition and stops the search
prematurely. The number of perfect partitions seems to increase with increasing N ,
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making it easier to 4nd one of them. This would explain the decrease of search costs.
For N� 30, the KK partition already is perfect: The construction of this 4rst partition
always requires N nodes (N − 1 internal nodes and one leaf ).

Numerical simulations show that this is a general scenario in the NPP. For i.i.d.
random b-bit numbers aj, the solution time grows exponentially with N for N. b and
polynomially for N� b [12, 20, 21]. Problems with N ∼ b require the longest solution
time. The transition from the “hard” to the computational “easy” phase has some fea-
tures of a phase transition in physical systems. Phase transitions of this kind have been
observed in numerous NP-complete problems [2, 11, 29], and can often be analyzed
quantitatively in the framework of statistical mechanics. Compared to other problems,
this analysis is surprisingly simple for the number partitioning problem [25]. This is
what we will do in the next section.

3. Phase transitions

The observed transition from a computationally “hard” to an “easy” regime in the
NPP can well be analyzed within the framework of statistical mechanics. We start
with a very brief and super4cial sketch of statistical mechanics and how it can be
used to study combinatorial optimization, introducing the basic quantities free energy
and entropy and rewriting the NPP as a physical model system, a spin glass. Then
we calculate the free energy and the entropy of the unconstrained NPP, learning some
tools from the physicists toolbox like the �-function and the Laplace method to evaluate
integrals. The entropy allows us to de4ne a precise expression for the control parameter
that 4xes whether the NPP is “hard” or “easy”. After that we try the same calculation
for the constrained NPP, which is a bit more cumbersome. It turns out that a complete
solution of the general constrained NPP requires some numerics, but the balanced NPP
can be solved analytically. Again we 4nd the control parameter and its critical value.
The numerical solution of the general constrained NPP reveals the existence of another
phase transition from a computational hard to computational easy phase. The control
parameter for this phase transition is M , the imposed cardinality diDerence. This phase
transition is discussed in the last section.

3.1. Statistical mechanics, optimization and spin glasses

The aim of statistical mechanics is to predict the properties of systems composed of
very large numbers of particles in terms of the mechanical properties of the individual
particles and of the forces between them. How large is “very large”? A few grams of
matter consists of about 1023 atoms. The state of a system is speci4ed by the position,
velocity, magnetization, : : : of each of these atoms. The equations that describe the
evolution of this microstate in time are known in principle, but it is completely hopeless
to solve them for 1023 particles. From everyday experience we know, however, that the
temperature and the pressure of a gas in a vessel do not change in time, although the
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microstate, i.e. the positions and velocities of all the gas atoms, keeps changing all the
time. Hence the macroscopic properties of a system are not sensitive to its particular
microscopic state. This physical variant of the law of large numbers constitutes the
starting point of statistical mechanics: Instead of determining the exact value of a
macroscopic quantity in a single system, its average value is computed, taken over a
suitable ensemble of similarly prepared systems. The ensemble average value is usually
much easier to compute than the exact value. Note that this works because of the large
number N of particles. The results of statistical mechanics are valid only in the N →∞,
the so-called thermodynamic limit. The use of a capital letter N shall remind you of
this.

Consider a system with possible microstates s∈S. For a gas, s contains the positions
and velocities of all atoms. If the system is kept at a temperature T , according to
statistical mechanics macroscopic quantities (like the pressure) can be calculated as
averages over the canonical ensemble, in which each microstate has a probability

p(s) =
1
Z

e−H (s)=T : (5)

H (s) is termed the Hamiltonian of the system. It is a real valued function that yields
the energy of the microstate s. The normalization factor

Z =
∑
s∈S

e−H (s)=T (6)

is called the partition function, not to be mixed up with the partition in the NPP. The
thermal average of a quantity A is given by

〈A〉T =
1
Z
∑
s∈S

A(s)e−H (s)=T : (7)

The thermal average no longer depends on a particular microstate, but only on macro-
scopic parameters like the temperature T , reKecting precisely the experimental obser-
vations.

The central quantity that is calculated in statistical mechanics, is the free energy F ,

F(T ) = −T ln Z: (8)

Once F is known as a function of the temperature T and other relevant parameters like
volume or magnetic 4eld, most properties of the system can easily be calculated. At
least this is what they tell you in textbooks on statistical physics. The thermal average
of the energy for example is given by

〈H 〉T =
1
Z
∑
s∈S

H (s)e−H (s)=T = T 2 @
@T

ln Z = F(T ) − T
@F(I)
@T

: (9)

What has all this got to do with combinatorial optimization? Well, we can formally
de4ne a free energy for any optimization problem: S is the set of all feasible solutions,
and H (s) is the cost function that has to be minimized. This free energy comprises
some useful information about the optimization problem. Let E1¡E2¡E3¡ · · · be the
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sorted list of possible values of the cost function and n(Ek) be the number of feasible
solutions that yield E =Ek . Then the free energy is

F(T ) = −T ln Z

= −T ln
∑
k=1

n(Ek)e−Ek =T

= −T ln
[
n(E1)e−E1=T

(
1 +

n(E2)
n(E1)

e−(E2−E1)=T + · · ·
)]

= E1 − T ln n(E1) − ln
(

1 +
n(E2)
n(E1)

e−(E2−E1)=T + · · ·
)

:

From that we get the value of the optimum solution

lim
T→0

F(T ) = E1

as well as the logarithm of the number of optimum solutions

lim
T→0

− @
@T

F(T ) = lim
T→0

S(T ) = ln n(E1):

In physics jargon, S(T ) is the entropy, E1 the ground state energy. By adding addi-
tional terms to the cost function and recalculating the free energy, more information
can be obtained, for instance on the structure of the optimum solution. If you do not
like all the physics jargon you might consider the free energy as a kind of generating
function that encodes properties of your combinatorial optimization problem.

A class of models that have been intensely investigated in physics are spin glasses
[28]. In its simplest form, the microstate of a spin glass is a set of N binary variables,
sj =±1, j = 1; : : : ; N , called Ising spins. With spin glass models, physicists try to capture
the properties of magnetic alloys. An Ising spin is the magnetic moment of an atom
that can only be oriented along a given axis in space, either “up” (sj = +1) or “down”
(sj =−1). In an alloy these moments interact, giving rise to a total energy

H ({sj}) = −
N∑

i; j=1
Jijsisj: (10)

The Jij are numbers that describe the interaction strength between spins si and sj. The
calculation of the interactions Jij (as well as the justi4cation for the whole model) is
a subject of quantum mechanics and will not be discussed here.

Minimizing the spin glass hamiltonian for given interactions, Jij is a combinato-
rial optimization problem. If all the Jij are positive (physics jargon: ferromagnetic),
this problem is trivial: H is minimized when all spins point in the same direction,
i.e. are all +1 or all −1. If some (or all) of the Jij are negative (physics jargon:
anti-ferromagnetic), this problem is much harder. In fact it can be proven that it is
NP-hard [1].
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A partition A in the number partitioning problem can be encoded by Ising spins:
sj = +1 if j∈A, sj =−1 otherwise. The cost function then reads as

E =

∣∣∣∣∣
N∑

j=1
ajsj

∣∣∣∣∣ ; (11)

and the minimum partition is equivalent to the ground state of the Hamiltonian

H = E2 =
N∑

i; j=1
siaiajsj: (12)

This is an in4nite range Ising spin glass with antiferromagnetic couplings Jij =−aiaj
¡0. The statistical mechanics of this model has been investigated in physics at least
three times [8, 7, 25]. It turns out that due to the multiplicative character of the cou-
plings, the calculation of the free energy is comparatively simple, and yields quantitative
results on the phase transition in computational complexity [25].

Of course we are not interested in a particular instance but in the typical properties
of number partitioning. Hence we will average our results over a suitable ensemble
of instances, not to be mixed up with the thermodynamic ensemble of microstates
resp. feasible solutions. Throughout this paper we will assume that the input numbers
aj are independent, identically distributed (i.i.d.) random numbers. In our statistical
mechanics framework, random input numbers correspond to random spin interactions
Jij. In fact this is part of the de4nition of spin glass models—the term “glass” refers
to the irregularity of the interactions in alloys as opposed to regular interactions in
crystals. In spin glass theory, it is the free energy that has to be averaged over the
random couplings to yield the correct typical properties of the system. In general,
the computation of the average free energy is not simple and requires a sophisticated
approach called the replica method. The free energy of the number partitioning problem
is so simple though, that we get its average for free.

3.2. Statistical mechanics of the unconstrained NPP

We start with the statistical mechanics of the unconstrained NPP. This analysis has
been published elsewhere [25], but the presentation here is more comprehensive. The
partition function of the unconstrained NPP reads as

Z =
∑
{sj}

e−1=T |∑j ajsj|: (13)

Without the absolute value in the exponent, this sum can easily be calculated:

∑
{sj}

e−1=T
∑

j ajsj =
∑
{sj}

N∏
j=1

e−1=Tajsj

=
∑

s1=±1
e−1=Ta1s1 · ∑

s2=±1
e−1=Ta2s2 · · · · · ∑

sN =±1
e−1=TaN sN



88 S. Mertens / Theoretical Computer Science 265 (2001) 79–108

= 2 cosh
a1

T
· 2 cosh

a2

T
· · · · · 2 cosh

aN

T

= 2N
N∏

j=1
cosh

aj

T
: (14)

The question is, how can we get rid of the absolute value in the exponent? A standard
trick in statistical mechanics to remove nasty nonlinearities like this is the creative use
of the �-function. Introduced by P.A.M. Dirac on an intuitive base in connection with
quantum mechanics, it is now embedded in an exact mathematical framework [22].
Here we stick to the more intuitive picture and de4ne the �-function via its Fourier
integral,

�(x) =
1

2�

∫ ∞

−∞
dx̂ eixx̂: (15)

�(x) is 0 for x �= 0 and ∞ for x = 0, and the peak at x = 0 is perfectly calibrated to
give ∫ ∞

−∞
dx f(x)�(x − c) = f(c) (16)

for any reasonably well behaved function f. The �-function helps us to separate the
absolute value from the summation variables sj:

Z =
∑
{sj}

∫ ∞

−∞
dx e−|x|�

(
x − 1

T

N∑
j=1

ajsj

)

=
∫ ∞

−∞
dx e−|x| 1

2�

∫ ∞

−∞
dx̂ eixx̂ ∑

{sj}
e−ix̂=T

∑
j ajsj :

Now we can carry out the summation over the {sj} as in Eq. (14):

Z = 2N
∫ ∞

−∞

dx̂
2�

N∏
j=1

cos
(aj

T
x̂
)∫ ∞

−∞
dx e−|x|+ix̂x: (17)

Note that cosh(ix) = cos(x). Doing the x-integral,∫ ∞

−∞
dx e−|x|+ix̂x =

2

1 + x̂2 ; (18)

and substituting y = arctan x̂ 4nally leads us to

Z = 2N
∫ �=2

−�=2

dy
�

eNG(y) (19)

with

G(y) =
1
N

N∑
j=1

ln cos
(aj

T
tan(y)

)
: (20)
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For large values of N , the statistical independence of the aj allows us to apply the law
of large numbers, i.e. to replace the sum by the average over a:

G(y) ≈
〈

ln cos
( a
T

tan(y)
)〉

: (21)

This replacement is the main reason why spin glasses with couplings that factorize,
Jij =−aiaj, are comparatively easy to solve [30]. It relieves us from averaging ln Z ,
which can be very diLcult in other spin glass models.

The integral in Eq. (17) can be evaluated asymptotically for large N using the
Laplace method: The general idea is, that the integral is dominated by the contributions
from the maxima of G(y). If G(y) has a maximum at y =y0,

∫
eNG(y)dx ≈ eNG(y0)

∫
e−N=2G′′(y0)(y−y0)2

dy = eNG(y0)

√
2�

NG′′(y0)
(22)

for large N . A general discussion of the Laplace method for the asymptotic expansion
of integrals can be found in various text books [4, 24].

To 4nd the maxima of G(y), we will assume that a can only take on values that
are integer multiples of a 4xed number Ta. For integer distributions Ta= 1, and for
Koating point distributions Ta is the smallest number that can be represented with
the available number of bits. This is a reasonable assumption since we know, that
the properties of the NPP depend on the resolution in a. With this assumption, the
solutions of

G′(y) =
〈 a
T

tan
( a
T

tan y
)
· (1 + tan2 y) = 0 (23)

are given by

yk = arctan
(

�T
Ta

k
)

; k = 0;±1;±2; : : : : (24)

Note that tan(a=T tan yk) = 0 for all values a= n ·Ta. Of course, we have to consider
the contributions of all saddle points when evaluating the integral in Eq. (17):

Z ≈ 2N ∑
k

∫ ∞

−∞

dy
�

e−N=2G′′(yk )y2
= 2N

√
2√
�N

∑
k

1√
G′′(yk)

: (25)

With

G′′(yk) =
〈a2〉
T 2

[
1 +

(
�T
Ta

)2

k2

]2

; (26)

and the useful identity

∑
k=0;±1;:::

1
1 + (xk)2 =

�
x
· coth

�
x
; (27)
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we 4nally get

Z = 2N · Ta√
�=2N 〈a2〉 · coth

Ta
T

: (28)

The partition function Z immediately yields the free energy

F(T ) = −TN ln 2 +
T
2

ln
�N 〈a2〉
2Ta2 − T ln coth

Ta
T

; (29)

and the thermal average of the energy

〈E〉T =
Ta

sinh Ta=T cosh Ta=T
: (30)

Let Ta¿0 be 4xed. Then limT→0 〈E〉T = 0, i.e. the ground states are perfect partitions.
How many perfect partitions can we expect? The answer is given by the entropy S,
which according to Eqs. (28) and (8) can be written as

S = N (#c − #) ln 2 + S̃
(

Ta
2T

)
; (31)

with

#c = 1 − ln(�=6N )
N2 ln 2

; (32)

# =
ln 3=Ta2〈a2〉

N2 ln 2
; (33)

and the thermal contribution to the entropy is

S̃
(

Ta
T

)
= ln coth

Ta
T

+
Ta
T

coth2 Ta=T − 1
coth Ta=T

: (34)

For 4nite Ta, S̃ vanishes at zero temperature and increases monotonically with T .
In this case, the zero temperature entropy is given by N (#c − #) ln 2. If #¡#c, we
have an extensive entropy resp. an exponential number of perfect partitions. N · # is
a measure for the number of bits needed to encode the aj’s. Let the aj be i.i.d. b-bit
integer numbers. Then Ta= 1 and

# =
b
N

+
1

2N
ln2

(
1 − 3

2
2−b +

1
2

2−2b
)

=
b
N

+
1
N

· O(2−b): (35)

In this case, the condition #¡#c translates into

b ¡ N − 1
2

ln2

(�
6
N
)
: (36)

This inequality must be ful4lled in order to have perfect partitions. The 4rst term
on the right hand side can be explained within a simple approximation [12]: let the
N numbers ai each be represented by b bits. Now consider the partition diDerence
E bitwise. About half of all partitions will set the most signi4cant bit of E to zero.
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Among those partitions, about one half will set the second most signi4cant bit to zero,
too. Repeating this procedure we can set at most N bits to zero until running out of
available partitions. To get a perfect partition with all b bits being zero, N must be
larger than b. This consideration ignores the carry bits, which lead to the logarithmic
corrections in Eq. (36).

What happens if N¡b resp. #¿#c? According to the approximative consideration
above we expect the optimum partition diDerence to be exponentially small, O(2−N ),
but larger than zero. It looks as if the zero temperature entropy is negative in this
case. This is de4nitely wrong because the zero temperature entropy is by de4nition
the logarithm of the number of ground states, which in any case is at least ln 2. It
turns out that we have to be more careful with the limit T → 0 to get the correct zero
temperature entropy. In terms of Ta the condition #¿#c means

2−N ¿ Ta

√
2

�N 〈a2〉 ; (37)

i.e. essentially Ta=O(2−N ). In this regime the contributions of S̃ are O(N ) for any
4nite T ,

S̃
(

Ta
T

)
= ln

(
T

Ta

)
+ 1 + O

(
Ta2

T 2

)
; (38)

hence cannot be neglected. Technically, we deal with this contribution by introducing
an eDective “zero” temperature T0 below which the system cannot be “cooled”. T0

guarantees that the contribution of S̃ remains O(N ). Its value can be calculated from
the lower bound of S:

ln 2 = N (#c − #) ln 2 + S̃
(

Ta
T0

)
≈ N (#c − #) ln 2 + ln

(
T0

Ta

)
:

From that we get

T0 = 2Ta2N (#−#c) =
√

2�N 〈a2〉2−N : (39)

In this regime the average ground state energy 〈E1〉 is no longer 0 but

〈E1〉 = T0 =
√

2�N 〈a2〉2−N : (40)

This equation completes the previously known result that the average value of E1 is
O(

√
N2−N ) for real valued input numbers [18, 23] by specifying the prefactor to be√

2�〈a2〉.
To check Eq. (40) we consider the continuous variant of number partitioning, where

the ai are real numbers, uniformly distributed in the interval [0; 1). In our formal-
ism this means Ta→ 0 and

∑
ja

2
j =N=3. We are in the #¿#c regime and Eq. (40)
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Fig. 3. Average solution of the number partitioning problem with input numbers aj being i.i.d. uniform on
[0; 1] compared to the analytical result Eq. (40) (straight line). Each data point is the average over 104

random samples.

becomes

E0 =

√
2
3
�N2−N = 1:447

√
N2−N : (41)

In Fig. 3, Eq. (41) is compared to numerical data. The agreement is convincing.
To check whether #(N ) is a control parameter with a phase transition at #c(N ), we

did numerical simulations. For 4xed N and # we calculated the fraction of instances
that have at least one perfect partition. In accordance with Gent and Walsh [12] we
4nd that this fraction is 1 for small # and 0 for larger #. The transition from 1 to 0 is
sharp. Fig. 4 shows the numerically found transition points for 106N628 compared
to #c(N ) from Eq. (32). Again the agreement is convincing. Note that #c(N →∞) = 1.
The asymptotic estimate 0.96 given by Gent and Walsh is probably due to the inKuence
of the O(1=N logN ) term in Eq. (32) which cannot be neglected for system sizes
accessible for simulations (N630).

Before we turn to the constrained NPP, let us summarize what we have found so far:
The statistical mechanics analysis of the NPP reveals two diDerent phases, distinguished
by the value of a parameter #, Eq. (33), which corresponds to the number of signi4cant
bits in the encoding of the input numbers aj divided by N . For #¡#c, we have an
exponential number of perfect partition, hence an exponential number of solutions to
the NPP. For #¿#c, we only have two solutions with a partition diDerence given by
Eq. (40).
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Fig. 4. Phase diagram of the random number partitioning problem. N# is essentially the number of signi4cant
bits to encode the input numbers, see Eq. (33). The squares denote the phase boundary found numerically.
The solid line is given by #c from Eq. (32). For #¡#c, the zero temperature entropy is extensive and a
search algorithm typically 4nds quickly one of the O(2N ) perfect partitions. For #¿#c, no perfect partitions
exist, and the optimization problem has a hard to 4nd, unique solution.

3.3. Statistical mechanics of the constrained NPP

The partition function of the constrained NPP is

Z =
∑
{sj}

′ e−|∑j ajsj|=T ; (42)

where the primed sum denotes summation over all spin con4gurations with
∑

jsj =mN .
By now we know how to separate the absolute value on the exponent from the sum-
mation variables, but here additionally we have to get rid of the constraint

∑
jsj =mN

to do the summation. The discrete version of the Dirac � function, the Kronecker �
symbol

�n; m =
∫ �

−�

dm̂
2�

eim̂(n−m) =

{
1 if m = n;

0 if m �= n
(43)

for integer m, n can be used to achieve this:

Z =
∑
{sj}

�∑
j sj ; mN e−1=T |∑j ajsj| =

∫ �

−�

dm̂
2�

e−im̂mN ∑
{sj}

eim̂
∑

j sj−|∑j ajsj|=T :
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The remaining sum can now be done exactly as in the preceeding section. The result
is

Z = 2N
∫ �=2

−�=2

dy
�

∫ �

−�

dm̂
2�

eNG(y; m̂) (44)

with

G(y; m̂) = im̂m +
1
N

N∑
j=1

ln cos
(aj

T
tan y + m̂

)

≈ im̂m +
〈

ln cos
( a
T

tan(y) + m̂
)〉

: (45)

Compared to the unconstrained case we are left with a twofold integral and a complex
valued integrand. The generalization of the Laplace method to complex integrands is the
saddle point method [4, 24]: let the real part of G(y; m̂) have a maximum at (y0; m̂0).
Then ∫

eNG(y; m̂) dy dm̂≈ eNG(y0 ; m̂0)
∫

dy dm̂ e−N=2(y; m̂)G(y; m̂)T

= eNG(y0 ;m̂0) 2�

N
√

detG
(46)

for large N . G is the 2× 2 Hesse matrix

G =




@2G(y; m̂)
@2y

@2G(y; m̂)
@y@m̂

@2G(y; m̂)
@m̂@y

@2G(y; m̂)
@2y


 ; (47)

where the derivatives are taken at the saddle point (y0; m̂0). In our case the saddle
point equations are

0 =
@G(y; m̂)

@y
=
〈 a
T

tan
( a
T

tan y + m̂
)〉

(1 + tan2 y); (48)

0 =
@G(y; m̂)

@m̂
=
〈

tan
( a
T

tan y + m̂
)〉

+ im: (49)

As in the unconstrained case, we will assume that a can only take on values that are
integer multiples of a 4xed number Ta. With this assumption and the ansatz

tan yk = k�
T

Ta
+ iTx; k = 0;±1;±2; : : : ; (50)

m̃ = −im̂; (51)
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the saddle point equations simplify to

〈a tanh(ax + m̃)〉 = 0; (52)

〈tanh(ax + m̃)〉 = m: (53)

For given value of m, the saddle point equations yield a solution (x; m̃), which in turn
gives rise to an in4nite number of saddle points (Eq. (50)). The contribution from
all these saddle points have to be summed up to give Z , the groundstate energy E1

and the entropy S. Unfortunately, for m¿0 we can solve the saddle point equations
only numerically. Therefore, we will for the time being concentrate on the balanced
NPP, m= 0. In this case, the solution is trivial, x = m̃= 0, the determinant of the Hesse
matrix is

detG =
〈a2〉 − 〈a〉2

T 2 ·
(

1 +
�2T 2

Ta2 k2
)2

; k = 0;±1;±2; : : : : (54)

With the help of Eq. (27) it is straightforward to sum up the contributions from all
saddle points. The result is

Z = 2N · Ta

N�
√〈a2〉 − 〈a〉2

coth
Ta
T

: (55)

The partition function for the balanced NPP is very similar to the one of the un-
constrained NPP, Eq. (28). Only the denominator changes from

√
�=2N 〈a2〉 in the

unconstrained to �N
√〈a2〉 − 〈a〉2 in the balanced case. The discussion of entropy and

groundstate energy is very similar, too. The entropy can be written as

S = N (#c − #) ln 2 + S̃(Ta=T ); (56)

where S̃ is the same as for the unconstrained NPP (Eq. (34)) and the order parameter
# and its critical value #c are

#c = 1 − 1
N

ln2

(
�√
12

N
)

; (57)

# =
1
N

ln2

(√
12

Ta

√
〈a2〉 − 〈a〉2

)
: (58)

The condition for the existence of perfect partitions, #¡#c, translates into

b ¡ N − ln2

(
�√
12

N
)

: (59)

for input numbers aj being i.i.d. b-bit integers (cf. Eq. (36)). From Fig. 2 one can tell,
that for b= 25 N must be larger than 30 for perfect partitions to exist. Eq. (59) yields
N¿29:75.
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Fig. 5. Average minimum residue of the balanced number partitioning problem with real numbers 06ai¡1
compared to the analytical result Eq. (60) (straight line). Each data point is the average over 104 random
samples.

For #¿#c, the optimum partition diDerence E1 reads as

〈E1〉 = �
√
〈a2〉 − 〈a〉2 · N · 2−N (60)

for the balanced NPP. Again this result 4ts very well with the numerics, see Fig. 5.

3.4. Overconstrained NPP

For m¿0 we solve the saddle-point equations (52) and (53) numerically. Fig. 6
displays the solution for input numbers a that are i.i.d. uniform over [0; 1].

The solution diverges if m approaches a critical value mc = 0:41 : : : . For larger
values of m, the saddle-point equations have no solution. This is no surprise: tanh() is
a monotonic function with −16 tanh()61. Eq. (52) requires that tanh(ax+m̃) changes
sign within the integration range. Therefore the right-hand side of Eq. (53) has to be
smaller than 1. For input numbers distributed uniformly over [0; 1] the saddle-point
equations are∫ 1

0
da a tanh(ay + m̃) = 0; (61)

∫ 1

0
da tanh(ay + m̃) = m: (62)

and it is easy to show that |m| has to be smaller than mc =
√

2 − 1 = 0:41 : : : for a
solution to exist.
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Fig. 6. Solution of the saddle point equations (52) and (53) for input numbers a that are i.i.d. uniform over
[0; 1].

In statistical mechanics, a diverging solution often indicates that the properties of
the system change drastically—a phase transition. What kind of phase transition is
related to a critical value of the “magnetization” m? If m is close to 1, the NPP is
overconstrained, i.e. we cannot expect to 4nd a perfect partition. Instead, the optimum
partition is the one that collects the 1

2 (1 − m)·N largest numbers aj in the smaller
subset. Let a′ be the 1

2 (1 + m) percentile of a,

1
2

(1 + m) =
∫ a′

0
%(a) da: (63)

The partition diDerence Es of this sorted partition then reads as

Es=N =
∫ a′

0
a%(a) da−

∫ ∞

a′
a%(a) da: (64)

As long as Es¿0 holds, the sorted partition is optimal. Es is positive if m is greater
than a critical value mc that depends on the distribution %. For the uniform distribution
on [0; 1], a′ = 1

2 (1 + m) and

Es=N =
1
4

(1 + m)2 − 1
2
; (65)

which is positive provided

m ¿ mc =
√

2 − 1: (66)

A more complicated derivation of Eqs. (65) and (66) using the statistical mechanics
approach can be found in [7].

Note that the computational complexity of the overconstrained NPP (m¿mc) equals
that of sorting N numbers, i.e. O(N ln N ), so we have another phase transition from a
computationally hard to a computationally easy regime in the NPP.
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4. The random cost problem

The preceeding section has shown that the statistical mechanics of the NPP can be
analyzed rather easily. This is a remarkable exception. In general, spin glass models are
much harder to deal with, and physicists have considered various simpli4cations. One
of these simpli4ed models was Derrida’s random energy model, REM [5, 6]. A cost
function or Hamiltonian like Eq. (10) maps the random numbers Jij onto 2N random
numbers Ek , distributed according to a probability density p(E). Derrida’s idea was
to forget about the con4gurations {sj} and to consider directly the energies Ek as
independent random numbers, drawn from the probablity density p(E). The essential
simpli4cation, which leads to the analytic tractability of the model, is the assumption
of statistical independence.

The usefulness of the REM in spin glass theory has been discussed elsewhere [14].
Here we will concentrate on its counter part in combinatorial optimization, the random
cost problem: Given are M random numbers Ek , independently drawn from a density
p(E). Find the minimum of these numbers. Since every number has to be considered
at least once, the computational complexity of the random cost problem is O(M). The
statistical independence of the numbers prevents an eLcient heuristic: Any heuristic
algorithm that considers only K�M numbers is no better than simple sequential search
through an arbitrary K-element subset of the list.

The motivation to study random cost problems stems from the fact that every com-
binatorial optimization problem with random inputs can be approximated by a random
cost problem. If the original optimization problem has M feasible solutions and the
costs of these solutions are distributed with density p(E), in the corresponding ran-
dom cost problem we shall simply assume, that the M costs are drawn independently
from p(E). For the NPP the approximation by a random cost problem gives apparently
correct results at least for the statistics of the low cost con4gurations [27].

4.1. Distribution of costs

To 4nd a random cost problem that corresponds to the NPP, we 4rst have to calculate
the probablity density of the costs. For the constrained NPP, p(E) reads as

p(E) =

(
N

N+

)−1 ∑
{sj}

′
〈
�

(
E −

∣∣∣∣∣∑j ajsj

∣∣∣∣∣
)〉

: (67)

where the primed sum runs over all con4gurations with N+ =N 1
2 (1+m) spins sj = +1.

Since the numbers aj are drawn independently from an identical distribution, the av-
erage in Eq. (67) depends only on N+, and not on the particular spin con4guration.
Ignoring the absolute value in the cost function for a moment, we may write〈

�

(
E −∑

j
ajsj

)〉
=
∫

dy gN−N+(y)gN+(E + y); (68)
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where gK is the probablity density of the sum
∑K

j=1aj. The central limit theorem tells
us that for large K

gK (y) =
1√

2�(2K
exp

(
− (y − K〈a〉)2

2(2K

)
; (69)

where (2 = 〈a2〉 − 〈a〉2 is the variance of a. Hence〈
�

(
E −∑

j
ajsj

)〉
=

1√
2�(2N

exp
(
− (E − [2N+ − N ]〈a〉)2

2(2N

)
: (70)

With 2N+ − N =mN and taking the absolute value of the cost function into account
we 4nally get

pm(E) =
)(E)√
2�(2N

(e−(E−m〈a〉N )2=2(2N + e−(E+m〈a〉N )2=2(2N ) (71)

as the probability density for the costs in the random, constrained NPP. )(x) is the
step function, )(x) = 1 for x ¿ 0, )(x) = 0 for x¡0.

To get the density of the costs for the unconstrained NPP, we have to sum up all
values N+,

p(E) = 2−N
N∑

N+=0

(
N

N+

)
pm=2N+=N−1(E):

For large N , the sum is dominated by terms with N+ = N (1 + m)=2, m = O(1), and
we may apply the asymptotic expansion(

N

N 1+m
2

)
≈ 2N√

1
2 (1 − m2)�N

e−Ns(m) (72)

with

s(m) =
1 + m

2
ln(1 + m) +

1 − m
2

ln(1 − m); (73)

and we may replace the sum over N+ by an integral over m,

p(E) =

√
N√
2�

∫ 1

−1
dm e−Ns(m)pm(E):

s(m) has a maximum at m= 0. Applying the Laplace method to evaluate the m-integral
for large N we 4nally get

p(E) =
2)(E)√
2�〈a2〉N e−E2=2〈a2〉N (74)

as the probability density in the random unconstrained NPP.
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4.2. Statistics of the optimum

We may now specify the random cost problem that corresponds to the NPP: Given
are M random numbers Ei, independently drawn from the density p(E), Eq. (71) resp.
Eq. (74). Find the minimum of these numbers. To connect to the NPP, M is chosen
to be

M =
1
2

(
N

N (1 + m)=2

)
≈ 2N−1√

�=2N (1 − m2)
e−Ns(m) (75)

for the constrained NPP and M = 2N−1 for the unconstrained NPP. Our claim is that
the NPP is very well approximated by this random cost problem.

Let Ek denote the kth lowest cost of an instance of our random cost problem. The
probability density %1 of the minimum E1 can easily be calculated:

%1(E1) = M · P(E1) ·
(

1 −
∫ E1

0
P(E′) dE′

)M−1

; (76)

E1 must be small to get a 4nite right-hand side in the large M limit. Hence we may
write

%1(E1) ≈M · P(0) · (1 − E1P(0))M−1

≈M · P(0) · e−MP(0)E1 :

This means that the probability density of the scaled minimal cost,

*1 = M · P(0) · E1 (77)

for large M converges to a simple exponential distribution,

%1(*) = e−* ·)(*): (78)

Note that a rigorous derivation from Eq. (76) to (78) can be found in text books on
extreme order statistics [9]. Along similar lines one can show that the density %k of
the kth lowest scaled cost is

%k(*) =
*k−1

(k − 1)!
· e−* ·)(*) k = 2; 3; : : : : (79)

Let us compare Eqs. (78) and (79) with known analytical and numerical results for
the NPP. From the moments of the exponential distribution Eq. (78), 〈*n〉= n!, we get

r =

√
〈E2

1〉 − 〈E1〉2

〈E1〉 = 1 (80)

for the relative width of the distribution, in perfect agreement with the numerical
4ndings for the NPP [7]. The average minimal cost is 〈E1〉= 1=(M ·P(0)), which
gives

〈E1〉 = � · ( · N · 2−N · eN (〈a〉2m2=2(2+s(m)) (81)
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Fig. 7. Distribution of the scaled optimum for the balanced number partioning problem. The solid line is
given by Eq. (78); the symbols are averages over 104 random samples.

for the constrained and

〈E1〉 =
√

2�〈a2〉 ·
√
N · 2−N (82)

for the unconstrained case. Again this is in very good agreement with numerical sim-
ulations for the NPP [7] and is in perfect agreement with our analytical results from
the preceeding section, Eqs. (40) and (60). For the constrained case with m¿0, the
minimal cost increases with increasing m. This is reasonable, but nevertheless Eq. (81)
must be wrong for |m|¿0. For input numbers a drawn uniformely from [0; 1] Eq. (81)
predicts that 〈E1〉 is exponentially small as long as |m|¡0:583 : : : ; but we know from
the preceeding section that for m¿mc =

√
2−1 = 0:414 : : : the NPP is overconstrained,

hence has 〈E1〉=O(N ).
To check that the random cost approximation does not only give the correct 4rst and

second moment of the optimum of the balanced NPP, we calculated the distribution of
E1 and higher energies numerically. Figs. 7 and 8 display the results for the balanced
NPP. Equivalent plots for the unconstrained NPP look similar. The agreement between
the numerical data and Eqs. (78) and (79) is convincing.

How can the random cost problem be so similar to the NPP? The answer is, that
there is in fact a certain degree of statistical independence among the costs in the
NPP. In the appendix we show that the joint probability p(E; E′) factorizes, i.e.
p(E; E′) =p(E)p(E′) for the unconstrained and the balanced NPP, but not for the
constrained NPP with |m|¿0. This is a necessary, but not suLcient condition for
independence, but the approach can be probably extended to a complete proof of



102 S. Mertens / Theoretical Computer Science 265 (2001) 79–108

Fig. 8. Distribution of scaled kth lowest energy for the balanced number partioning problem. The solid lines
are given by Eq. (79); the symbols are averages over 105 random samples of size N = 24.

independence. Here we adopt a physicists’ attitude and consider the random cost prob-
lem to be a very good approximation to the NPP.

4.3. Poor performance of heuristic algorithms

The correspondence between the NPP and the random cost problem not only pro-
vides analytic results on the NPP but also has some consequences for the dynamics of
algorithms: Any heuristic that exploits a fraction of the domain, generating and evalu-
ating a series of feasible con4gurations, cannot be signi4cantly better than the random
search. The best solution found by random search is distributed according to Eq. (76),
i.e. the average heuristic solution should approach the true optimum no faster than
O(1=M); M being the number of con4gurations generated. Note that the best known
heuristic, Korf’s CKK [21, 26] converges slowly, namely, like O(1=M+) with +¡1 to
the true optimum. Other heuristics, like simulated annealing, are even worse [16].

The random cost analogy means that there is hardly any correlation between a par-
tition and its cost. Partitions that are similar to each other may have very diDerent
costs and vice versa. One might argue that this picture depends on the encoding of
a partition, especially on the precise de4nition of “similarity”. Throughout this paper
we used the obvious encoding of a partition as a set of binary variables and one can
show that indeed partitions with similar costs are completely dissimilar in terms of a
vanishing overlap, 1=N

∑
jsjs

′
j = 0 (see the appendix).

Maybe there is a better problem representation for the NPP, an encoding that centers
the good solution around a known position in search space. In fact it has been found
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Fig. 9. Distribution of optima in the search tree spanned by the CKK algorithm. The number of right
branches, the discrepancy, is a measure of distance to the heuristic Karmarkar–Karp solution. The NPP
solved was unconstrained, with input numbers drawn uniformely from [0; 1]. The number of instances is 104

for N 6 20 and 103 otherwise.

that the choice of encoding is more important than the choice of search technique in
determining search eLcacy [32]. None of the proposed encodings and search techniques
is more eLcient than Korf’s CKK, however.

An ansatz to concentrate good solutions in a small part in search space was proposed
by Korf [21]. In the tree spanned by the CKK, a left branch follows the Karmarkar–
Karp diDerencing heuristic, a right branch does the opposite. Instead of searching the
tree depth 4rst like in the CKK one might as well search the paths of the tree in
increasing order of the number of right branches, or discrepancies, from the heuristic
recommendations. The hope behind this limited discrepancy search [15] is of course
that good solutions are “close” to the Karmarkar–Karp heuristic solution.

To check whether the discrepancy is a good measure to search the optimum, we cal-
culated the discrepancy of the optimum partition numerically. Figs. 9 and 10 show that
for large N , the discrepance of the optimum is a Gaussian distributed random variable
with mean ∝N and variance ∝√

N . Hence a search guided by small discrepancies is
not signi4cantly better than simple random search and our random cost analogy per-
sists in discrepancy space. Note, however that there are some correlations between the
optimum and its discrepancy. For true random discrepancies we would get an average
of 1

2N , but from Fig. 10 we get a smaller value of about 3
10N . This is no surprise: the

partition with the highest discrepance N − 1 has maximum cost, and partitions with
high discrepancy are never optimal. Hence the relevant range of discrepancies is not
N but a fraction xN; x¡1. The best a heuristic search can do is to avoid the very
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Fig. 10. Discrepancy of the optimum partition: Mean (left) and standard deviation (right) vs. N from the
data of Fig. 9. The 4t of

√
N − 4 for the standard deviation takes into account that the actual search tree

is only explored to the depth N − 4, since for N 6 4 the Karmarkar–Karp solution is always optimal [13].

large discrepancies. Note that our independent cost assumption does not hold for costs
O(N ) (see the appendix).

5. Summary and conclusions

The main contribution of this paper is the application of methods and ideas from
statistical mechanics to the number partitioning problem. The typical computational
complexity of the NPP undergoes a sudden change if the system size and=or the num-
ber of bits in the input numbers is varied across a critical value. The standard statistical
mechanics approach yields a quantitative, analytic theory of this phase transition. Fur-
thermore, it reveals the second phase transition in the constrained NPP, controlled by
the imposed cardinality diDerence m.

The idea of a random energy model, born in spin glass theory, can be reformulated
as random cost problem in combinatorial optimization. Numerical as well as analytical
results support our claim, that the balanced and the unconstrained NPP are extremely
well approximated by a random cost problem, at least if one excludes the very high
costs. On the one hand this correspondence is responsible for the bad performance of
heuristic search algorithms but on the other hand allows to derive new anayltic results
like the probability density of optimal and suboptimal costs.

What contributions does this work make beyond the speci4c problem of number
partitioning? First, it provides an example of the applicability of statistical mechanics
to combinatorial optimization that is exceptionally simple. It may well serve as a
pedagogical introduction into this interdisciplinary 4eld. Second, the idea of the random
cost problem may have applications beyond number partitioning. The dynamics of
heuristic algorithms for other combinatorial optimization problems can be checked for
a signature of a corresponding random cost problem, possibly with a diDering p(E).
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Appendix A. Evidence for the independent cost assumption

Let p(E; E′) denote the joint probability density of having costs E and E′ in the
same instance of an NPP,

p(E; E′)=

(
N

N+

)−2 ∑
{sj}

′ ∑
{s′j}

′
〈
�

(
E−

∣∣∣∣∣∑j ajsj

∣∣∣∣∣
)

·�
(
E′−

∣∣∣∣∣∑j ajs′j

∣∣∣∣∣
)〉

: (A.1)

If the costs were independent, this probability density should factorize, p(E; E′) =p(E)
·p(E′). This is what we are going to check in this section. Our line of reasoning is
similar to the proof of Theorem 4:9 in [4].

Consider the quantity

p̃N++
(E; E′) :=

〈
�

(
E −∑

j
ajsj

)
· �
(
E′ −∑

j
ajs′j

)〉
: (A.2)

All indices j are treated equally in the average over the aj, hence p̃ can depend on
{sj} and {s′j} only through the number N++ of spins sj = s′j = + 1. Hence we can write

p(E; E′) = )(E))(E′)

(
N

N+

)−1
N+∑

N++=0

(
N+

N++

)(
N − N+

N+ − N++

)

×(p̃N++
(E; E′) + p̃N++

(−E; E′) + p̃N++
(E;−E′) + p̃N++

(−E;−E′)):

(A.3)

The four p̃ terms and the )-functions take into account the absolute value of the cost-
function which we have omitted in the de4nition of p̃. There are

( N
N+

)
possible ways

to choose the +1 spins in {sj}. This factor cancels one of the normalization factors in
Eq. (A.1). Among the N+ + 1 spins in {sj} we can choose N++ spins that are +1 in
{s′j}, too. The remaining N+ −N++ +1 spins in {s′j} can be chosen among the N −N+

spins that are −1 in {sj}. This yields the two binomial factors in Eq. (A.3). Let

A = { j: sj = +1}; WA = { j: sj = −1};
A′ = { j: s′j = +1}; A′ = { j: s′j = −1}

be the partitions corresponding to both spin sequences. With

V1 :=
∑

j∈A∩A′
aj −

∑
j∈ WA∩A′

aj; (A.4)

V2 :=
∑

j∈A∩A′
aj −

∑
j∈ WA∩A′

aj; (A.5)

we can write

N∑
j=1

ajsj = V1 + V2

N∑
j=1

ajs′j = V1 − V2: (A.6)
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Now the nice thing about V1 and V2 is that they depend on two disjoint subsets of the
numbers aj, hence are statistically independent. Let %1 and %2 denote the probability
density of V1 resp. V2. We may write

p̃N++
=

1
2
· %1

(
1
2

[E + E′]
)
· %2

(
1
2

[E − E′]
)

: (A.7)

V1 and V2 are composed of sums of independent random numbers. The 4rst sum in V1

runs over all elements that have sj = s′j = + 1, the second over those with sj = s′j =− 1.
Counting the number of elements in these sets,

|A ∩A′| = N++;

|A ∩A′| = N+ − N++ =: N+−;

| WA ∩A′| = N+ − N++ =: N−+;

| WA ∩A′| = N − 2N+ + N++ =: N−−;

we can write

%1(V1) =
∫

dz gN++(z + V1)gN−−(z); (A.8)

%2(V2) =
∫

dz gN+−(z + V2)gN−+(z); (A.9)

where gk is the probability density of the sum of k numbers aj. As argued above,
p̃N++

(E; E′) depends on the spin sequences only through N++,

p̃N++
(E; E′) =

1
2

∫
dz gN++

(
z +

1
2

[E + E′]
)

gN−−(z)

×
∫

dz gN+−

(
z +

1
2

[E − E′]
)

gN−+(z): (A.10)

Now we consider the large N limit. We are interested in the case m=O(1), hence
N++ =O(N ) and the sum over N++ in Eq. (A.3) is dominated by contributions with
N++ =O(N ). It is convenient to express N++; N−−; N−+ and N+− in terms of the
overlap parameter

q :=
1
N

N∑
j=1

sjs′j; (A.11)

which is O(1) in this scaling regime:

N++ =
N
2

(1 + m) − N
4

(1 − q);

N−− =
N
2

(1 + m) − N
4

(1 − q);

N−+ = N+− =
N
4

(1 − q):
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Approximating all distributions g in Eq. (A.10) by their asymptotic expansions,
Eq. (69), we get

p̃N++
(E; E′) =

1

2�(2N
√

1 − q2
exp

(
− (E − 〈a〉mN )2

2(2N (1 − q2)
− (E′ − 〈a〉mN )2

2(2N (1 − q2)

)

× exp
(
−q

(E + E′)〈a〉mN − EE′ − 〈a〉2m2N 2

(2N (1 − q2)

)
: (A.12)

Note that p̃N++
(E; E′) factorizes only for q= 0.

In the scaling regime m=O(1); q=O(1) and N large, we can replace the binomials
in Eq. (A.3) by their asymptotic expansions according to Eq. (72) and the sum over
N++ by an integral over q. This integral in turn can be calculated asymptotically using
the Laplace method. As a matter of fact the product of the binomials,

(
N+

N++

)
·
(

N − N+

N+ − N++

)
=




N
2

(1 − m)

N
4

(1 − q)


 ·




N
2

(1 + m)

N
4

(1 − q)


 (A.13)

has a maximum at q=m2, hence we expect the factorization only for m= 0, the bal-
anced NPP. In fact, in this case we get(

N

N=2

)
N=2∑

N++=0

(
N=2

N=2 − N++

)2

· · · =

√
N√
2�

∫
dq

1 − q2 e−Ns(q) · · · (A.14)

with s(q) from Eq. (73), which has a maximum at q= 0. This proves that p(E; E′)
factorizes asymptotically for the balanced NPP. Note, however, that even for m= 0 the
saddlepoint is not at q= 0 if E; E′ =O(N ). Costs this large are not independent.

For the unconstrained NPP the calculation of p(E; E′) is a bit more cumbersome, but
similar. Here, we have two additional integrals over m= 1=N

∑
jsj and m′ = 1=N

∑
js

′
j ,

but in the limit N →∞ the major contributions come from the saddle point at m=m′

= 0. Hence we observe the asymptotic factorization for the unconstrained NPP, too.
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