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There has been recent progress on inferring the structure of interactions in complex networks
when they are in stationary states satisfying detailed bala nce, but little has been done for non-
equilibrium systems. Here we introduce an approach to this p roblem, considering, as an example,
the question of recovering the interactions in an asymmetri cally-coupled, synchronously-updated
Sherrington-Kirkpatrick model. We derive an exact iterati ve inversion algorithm and develop e�-
cient approximations based on dynamical mean-�eld and Thou less-Anderson-Palmer equations that
express the interactions in terms of equal-time and one time step-delayed correlation functions.
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Introduction. | Finding the connectivity in complex
networks is crucial for understanding how they oper-
ate. Gene and multi-electrode microarrays have recently
made the type of data required for this purpose available.
What is needed now is appropriate theoretical tools for
analyzing these data and extracting the connectivity.

In much recent work on this subject [1{3], the prob-
lem has been posed as that of inferring the parameters
of a stationary Gibbs distribution modeling the system.
While satis�ed in many applications, the assumption of
Gibbs equilibrium is unlikely to hold for many biological
systems since they are usually driven by time-dependent
external �elds, their interactions may not satisfy detailed
balance, or they may only be observed while the tran-
sients dominate the dynamics. Applying the equilibrium
approach to such cases usually yields e�ective interac-
tions that do not bear an obvious relationship to the real
ones [3]. Kinetic and nonequilibrium models provide a
much richer platform for studying such systems [4{6].

Whereas for equilibrium models the development of
systematic mean �eld inference methods [7] has led to
great practical and conceptual advancements, a mean
�eld theory for nonequilibrium network reconstruction
is still lacking. In this paper, we show how a mean �eld
theory for inference can also be developed for a nonequi-
librium system. We consider this problem for a particular
simple nonequilibrium model: a kinetic Ising model with
random asymmetric interactions (J ji independent ofJ ij ),
in an external �eld which may be time-dependent. This is
a discrete-time, synchronously updated model composed
of N spins si = � 1 with transition probability

Pr(s(t + 1) js(t)) =
Y

i

exp[si (t + 1) � i (t)]
2 cosh(� i (t))

(1)

where � i (t) = hi (t) +
P

j J ij sj (t). The couplings J ij

are independent Gaussian variables with varianceg2=N.
This model can be readily applied to time-binned neu-
ral data, where t labels the bins, andsi (t) = � 1 repre-
sents a spike or no spike by neuroni in bin t [1]. The
temperature has been set equal to 1, since any e�ects of

changing the temperature can be realized by changing the
coupling parameter g and the �eld strengths. Even for
time-independent �eld and in a steady state, this system
is not in a Gibbs equilibrium [10]. However, we show
that, like its equilibrium counterpart, the nonequilib-
rium inverse problem for this model can be solved using
a gradient descent method and also via systematic ap-
proximate inferences derived using dynamical versions of
naive mean-�eld (nMF) and Thouless-Anderson-Palmer
(TAP) equations. We show that for both the stationary
and nonstationary systems these methods provide e�-
cient reconstruction of interactions. We also analytically
quantify their errors.

Exact, nMF and TAP learning rules. | Sup-
pose that we have observedR realizations of duration
L time steps of the process in (1). We denote the ob-
served state of the system at timet of realization r by
sr (t) = f sr

1(t); � � � ; sr
N (t)g. To �nd the couplings and ex-

ternal �elds, we maximize the likelihood of the observed
states under the model (1). This maximization can be
done using an iterative algorithm, analogous to Boltz-
mann learning for the equilibrium model: starting from
an initial set of couplings and �elds, one adjusts them it-
eratively by steps of sizes�h i = � h

@L
@hi

and �J ij = � J
@L

@Jij
,

L being the log-likelihood. The learning steps thus are

�h i (t) = � h
�

hsi (t + 1) i r � h tanh[� i (t))] i r ]
	

(2a)

�J ij = � J
�

hsi (t + 1) sj (t)i � h tanh[� i (t)]sj (t)i
	

(2b)

where � h and � J are learning rates. Here and in what
follows h� � � i r , h� � � i represent averaging over repeats, and
both repeats and time, respectively. An overline, instead,
will indicate averaging over the spins. One can think of
Eq. (2b) as performing a logistic regression to explain
one-step separated correlations. This is similar to what
is proposed in [13] as an approximation for inferring the
connectivity in an equilibrium Ising model.

Since performing the steps in this algorithm does not
require Monte Carlo runs, it is faster than the equilibrium
Boltzmann learning. However, two factors still make this
algorithm slow for large systems and/or data sets, war-
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ranting the development of fast approximations. First,
(2) is still an iterative algorithm which could take a long
time to converge if not provided with a good initial condi-
tion and learning rates. Second, at each step the averages
on the right hand side of (2) should be calculated from
the data de novo, given the adjusted parameters.

Two fast approximations, nMF and TAP learning
rules, are derived and studied below. To implement them
in the stationary case, one �rst uses the data to calcu-
late the one-step delayed and equal time correlations,
D ij = h�s i (t + 1) �s j (t)i and Cij = h�s i (t)�s j (t)i , where
mi = hsi i and �s i = si � mi . The approximations are

JnMF =TAP = AnMF=TAP � 1
DC� 1 (3)

whereAnMF
ij = (1 � m2

i )� ij , ATAP
ij = AnMF

ij (1 � Fi ) and Fi

is the root of the cubic equation (6) below. In the non-
stationary case too, similar learning rules can be derived
as shown later in the paper.

Derivation of nMF and TAP inversion. | For
simplicity, we consider �rst the stationary case, for which
the sequence indexr is superuous, as averaging over
time and repeats would be equivalent. We start with
the maximum likelihood conditions, i.e. �h i = �J ij = 0
in (2). Using the nMF equations mi = tanh( hi +P

j J nMF
ik mk ), and writing the si in (2) as mi + �s i , we

expand the tanh in the �s i . The �rst nonzero term gives

h�s i (t +1) �s j (t)i = (1 � m2
i )

X

k

J nMF
ik h�s k (t)�s j (t)i : (4)

which can be written as (3) for the nMF case.
To get the TAP inversion formula, we start instead

by assuming that the mi satisfy the TAP equations
mi = tanh[ hi +

P
k J TAP

ik mk � mi
P

k (J TAP )2
ik (1 � m2

k )],
which take into account the Onsager reaction term. Kap-
pen and Spanjers [8] proved that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
�ed that they are also valid in our synchronously-updated
model [9]. We again write si = mi + �s i , expand-
ing the tanh to third order in powers of

P
k J TAP

ik �s k +
mi

P
k (J TAP )2

ik (1 � m2
k ). Keeping terms up to order g3

leads to D = ATAP JTAP C , where

ATAP
ij = AnMF

ij [1 � (1 � m2
i )

X

l

(J TAP )2
il (1 � m2

l )]: (5)

These equations cannot be solved directly as in the nMF
case becauseATAP depends on JTAP . However, one
can derive a cubic equation for the quantities Fi =
(1 � m2

i )
P

l (J
TAP )2

il (1 � m2
l ):

Fi (1 � Fi )2 = (1 � m2
i )

X

j

(J nMF )2
ij (1 � m2

j ): (6)

This determines ATAP
ij = AnMF (1 � Fi ), yielding (3) for

the TAP case. The relevant root of (6) is the smallest one

(the one approaching zero asg ! 0). This root cannot
exceed 1=3, restricting this technique to weak couplings.

For both nMF and TAP reconstruction, the external
�elds hi can also be found by solving the respective mag-
netization equations after the J ij have been obtained,
just as in the equilibrium problem [7].

Performance of the algorithms. | We have veri-
�ed that the algorithm (2) recovers the couplings of an
asymmetric SK model exactly in the limit of L ! 1 , for
a wide range of coupling strengthsg, external �elds and
system sizes. The mean square error,� exact , is in gen-
eral proportional to 1=L, and in the weak-coupling limit
a quadratic expansion of log-likelihood yields

� exact = �J 2
ij � (J ij � J true

ij )2 =
1

(1 � m2
i )L

; (7)

where J ij (J true
ij ) are the inferred (true) couplings.

We �nd that the nMF algorithm leads to an error, � MF ,
of the form � exact + � 1

nMF , where � 1
nMF is independent of

L and proportional to 1=N. Thus, for data sets of length
L � L � = 1 =�1

nMF / N , nMF does almost as well as the
exact algorithm. Furthermore, the larger the network,
the better nMF does. The errors for the exact and nMF
algorithms vs L are shown in Fig. 1a.

1E4 1E6 1E8 1E10
1E-9

1E-7

1E-5

L

• nM
F

g=0.1
g=0.12
g=0.14
g=0.16

a)

• TA
P

1E-9

1E-7

1E-5

1E4 1E6 1E8 1E10L
g=0.1
g=0.12
g=0.14
g=0.16

b)

FIG. 1. (Color online) Performance of the algorithms. Exact
and nMF (a). and the TAP (b) erros are shown vs data length
L for g = 0 :1 (blue stars), 0:12 (magenta crosses), 0:14 (red
circles) and 0:16 (black x), all for N = 20 and zero external
�eld. Theoretical predictions are the solid lines.

For weak coupling, we can calculate the asymptotic
nMF error, � 1

nMF , analytically as follows. We present the
zero-�eld case here for simplicity. We expand the tanh
in the max-likelihood equation to third order, giving

D in =
X

k

J ik hsk sn i � 1
3

X

klm

J ik J il J im hsk sl sm sn i + � � � :

(8)
Correlations here are at equal times, except forD in . The
dominant contributions in the sum over k; l; m are those
with k = l , l = m and m = k. Multiplying on the right by
(C � 1)nj , summing overn and using (3) for nMF, yields

J nMF
ij = J ij �

X

k

J 2
ik J ij ; (9)

with corrections of relative order 1=N. Eq. (9) also yields
the TAP-approximation couplings found above, showing
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that the TAP reconstruction indeed corrects the leading
MF errors. To leading order the sum onk is just g2, and
the asymptotic mean square MF error is

� 1
nMF = (J ij � J nMF

ij )2 =
g6

N
: (10)

The solid curves in Fig. 1a are 1=L + g6=N; the �t is
evidently good. As shown in Fig. S1 [11], nMF exhibits
a systematic error by underestimating the magnitude of
the couplings. The factor 1� Fi in TAP formula cor-
rects for this to relative order g2. Thus, when one is in-
terested only in the presence or absence of connections,
there would be little di�erence between nMF and TAP.

The error for the TAP reconstruction is much lower
than that of the nMF one and reaches its minimum at
much larger L : for N = 20 and the coupling strengths
we studied, we had to go toL � 109 to see the error at-
ten (Fig. 1b). To calculate the asymptotic reconstruction
error for TAP, we expand the tanh to 5th order and pro-
ceed to evaluate the averages as we did for nMF. The
nMF error terms analyzed above are compensated for by
the TAP equations, as N ! 1 , leading to an asymp-
totic � 1

TAP = 4 g10=N. For N � 1=g2 this is the leading
term in the asymptotic TAP error. Outside this regime,
a �nite-size e�ect should also be taken into account. This
is because in making that TAP correction, the term in (8)
with k = l = m has been counted three times in obtaining
(9) instead of once. The mean square error that results
from this overcounting is (2=3)2J 6

ij = (20 g6)=(3N 3) and
should be added to the 4g10=N term.

Non-stationary case. | The magnetizations,
mi (t) = hsr

i (t)i r , are now time-dependent and, for nMF,
solve

mi (t + 1) = tanh[ hi (t) +
X

j

J nMF
ij mj (t)]: (11)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi (t + 1) = tanh[ hi (t) +
X

j

J TAP
ij mj (t)

� mi (t + 1)
X

j

(J TAP )2
ij (1 � m2

j (t))] : (12)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by de�ning time-dependent correlation ma-
trices D ij (t) � h �s r

i (t + 1) �s r
j (t)i r and Cij (t) �

h�s r
i (t)�s r

j (t)i r . For nMF, using the same procedure that
lead to (4), we �nd

hD ij (t)i t =
X

k

J nMF
ik h(1 � m2

i (t + 1)) Ckj (t)i t : (13)

One can still solve forJ by simple matrix algebra:

J nMF
ij =

X

k

hD ik (t)i t [(B( i ) )� 1]kj ; (14)

where B ( i )
kj = h(1 � m2

i (t + 1)) Ckj (t)i t . The problem is
more complex than the stationary one only because one
has to invert a di�erent matrix B( i ) for each i .

For TAP, analogously to the stationary case, the B( i )

acquire an extra factor inside the time average:

B ( i )
kj = h(1 � m2

i (t + 1))(1 � Fi (t))Ckj (t)i t ; (15a)

Fi (t) = (1 � m2
i (t + 1))

X

l

(J TAP )2
il (1 � m2

l (t)) : (15b)

Exact TAP inversion requires iterative solution of (14),
with J TAP

ij instead of J nMF
ij , together with (15). We have

found, however, that e�ective reconstruction is still pos-
sible under the simplifying approximation that Fi (t) in
Eq. (15a) can be represented by its temporal mean. In
this case,Fi � h Fi (t)i t solves the cubic equation

Fi (1 � Fi )2 =
X

j

(J nMF )2
ij h(1 � m2

i (t + 1))(1 � m2
j (t)) i t :

Solving it and using it in Eq. (15a), one can calculate
J TAP

ij = J nMF
ij =(1 � Fi ). Similar to the stationary case,

after inferring the couplings, one can use the forward dy-
namical nMF and TAP equations Eqns. (11) and (12)
to infer the time-varying external �eld. The result of
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FIG. 2. (Color online) Inference in the nonstationary case.
(a) Couplings of a network of N = 20 driven by a sinusoidal
external �eld inferred using the nonstationary nMF, and (b)
the stationary nMF. (c) Two periods of the external �eld (thi n
blue full curve) and its reconstruction using the nonstatio nary
nMF couplings (red dashed curve) and stationary nMF (thick
black full curve).

reconstructing the couplings of a network driven by a
common sinusoidal external �eld to all spins is shown in
Fig. 2. Fig. 2a shows how well the couplings are inferred
by nonstationary MF using L = 105 and R = 100. Non-
stationary TAP couplings (not shown) have a lower mean
squared error: 6:7 � 10� 7 versus 10� 6 for nMF. In Fig.
2b, we also plot the couplings inferred usingstationary
nMF inversion for each of the 100 repeats and averaging
over them. Not surprisingly, the stationary nMF per-
forms poorly on this nonstationary data. Importantly,
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there is a systematic overestimation of the couplings in
this case, because the stationary method accounts for cor-
relations induced by the common, time-varying external
�eld through adjusting the couplings. Correspondingly,
if one uses the couplings inferred by stationary nMF in
(11) to infer hi (t), the amplitude of this �eld is underes-
timated, while the use of nonstationary nMF couplings
yields a very good reconstruction ofhi (t); see Fig. 2c.

Discussion. | We have shown how to infer interac-
tions in a simple but nontrivial nonequilibrium system:
a kinetic Ising model with random and potentially asym-
metric interactions. The model is the maximum entropy
model for each time step, given mean magnetizations and
one step separated correlations. We have described both
an exact iterative algorithm and two approximate ones,
based on dynamical nMF and TAP equations, which are
correct up to corrections of order 1=N. We calculated
analytically the errors of these approximations for weak
coupling. The method shows particular promise when
applied to nonstationary states, where it separates true
interactions from the apparent ones found by applying a
stationary theory to a nonstationary state.
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FIG. 3. (Color online) Finding connections in a cortical net -
work model. (a) The histogram of the couplings inferred us-
ing the stationary nonequilibrium TAP for pairs of neurons
that were connected (blue full bars), and those that were not
(red empty bars). The separation between the histograms
shows that one can use the TAP approximation to separate
connected and disconnected pairs. (b) same as (a) for equi-
librium TAP.

A kinetic Ising model will show an intrinsic error when
applied to data from a di�erent kind of system. However,
even when applied to data from a realistic network, the
simple approximate learning rules developed here iden-
tify the connections much better than their equilibrium
counterparts. Fig. 3 shows the distribution of couplings
found by applying the nonequilibrium TAP learning to
data from a simulated model cortical column with in-
hibitory and excitatory neurons [12]. The connections
in the model were dilute with 10% probability of con-
nection. When there is no synapse from neuronj to i ,
the inferred J ij follows a zero mean distribution, while
if there is an excitatory/inhibitory synapse, it follows a
positive/negative mean distribution, well separated from
the �rst one. One can thus easily use the distribution of
inferred couplings to infer the presence, absence and sign
of the connections; see [11] and [14]. On the contrary, the

resulting distributions are completely overlapping when
and equilibrium TAP learning is used. When using a
model like (1) to infer connectivity in a system with a
di�erent dynamics, or when faced with data limitation,
including prior knowledge about the network could be
very bene�cial. In particular, taking into account spar-
sity of the connections via al-1 regularizer added to the
likelihood has been shown to be very useful [13]. It is
easy to show that adding anl-1 regularizer to the likeli-
hood of the data under (1) would modify (3) by adding a
term proportional to AnMF =TAP � 1

sgn(J)C� 1 to the right
hand side. How this improves inferring connections in
biological networks will be discussed elsewhere.

A simple extension of (1) is its continuous time version.
As shown in [15], for this model, too, a mean �eld theory
can be developed using the approach presented here. In
other recent kinetic approaches to problems like this, the
equilibrium maximum-entropy approach [1] is extended
to include non-equal-time correlations [5] and an approx-
imate scheme for �tting an integrate-and-�re network to
data was developed in [4]. There has also been work [6],
closely connected to (1), in whichsi (t+1) depends on lin-
ear combinations ofh(t0) and s(t0), for t0 � t . Given the
advantage of these nonequilibrium models over the equi-
librium ones for describing spike train statistics, a mean-
�eld theory for inferring their parameters would be of
great theoretical and practical bene�t. For such models,
we expect that it will be possible to use the techqniues in
[8] or [10, 16] to derive dynamical nMF and TAP equa-
tions. Employing the approach developed here one can
then build approximate mean �eld inversion techniques
based on these equations.
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