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We consider the analysis of sets of categorical sequences consisting of piecewise homogenous Markov
segments. The sequences are assumed to be governed by a common underlying process with segments
occurring in the same order for each sequence. Segments are defined by a set of unobserved changepoints
where the positions and number of changepoints can vary from sequence to sequence. We propose a
Bayesian framework for analyzing such data, placing priors on the locations of the changepoints and
on the transition matrices and using Markov chain Monte Carlo (MCMC) techniques to obtain posterior
samples given the data. Experimental results using simulated data illustrate how the methodology can
be used for inference of posterior distributions for parameters and changepoints, as well as the ability to
handle considerable variability in the locations of the changepoints across different sequences. We also
investigate the application of the approach to sequential data from an application involving monsoonal
rainfall patterns. Supplementary materials for this article are available online.

KEY WORDS: Changepoint model; Cross-validation; Hidden Markov model; Multiple sequences.

1. INTRODUCTION

Finite-state Markov chains are widely used to model sequen-
tial data in applications such as weather models (Gabriel and
Neumann 1962), speech recognition (Rabiner 1989), bioinfor-
matics (Durbin et al. 1998), and more (Guttorp 1995). A com-
mon assumption is that the chain is homogenous, often mo-
tivated by a desire to keep the number of model parameters
tractable. In practice, however, inhomogeneity in various forms
is often present.

In particular in this article, we investigate the problem of mod-
eling sets of categorical-valued sequences where each sequence
is assumed to be generated by an ordered set of segments, with
unobserved segment boundaries that can vary from sequence
to sequence. Each segment has its own Markov dynamics, rep-
resenting common “phases” for some underlying process. As a
specific example, consider the modeling of rainfall at a particular
location. Markov chains have a long history of use as stochastic
models of rainfall (Newnham 1916; Gold 1929; Cochran 1938;
Wilks and Wilby 1999; Chen, Brissette, and Leconte 2010).
Figure 1 is an illustration of annual daily rainfall sequences for
a weather station in northern India.

The appearance of the Indian monsoon in early summer
causes a visible phase-change in the sequence of daily rain-
fall for each year, motivating the type of segment-based model

that is the focus of this article. Being able to infer monsoon on-
set and withdrawal dates, and to effectively handle interannual
variability, is of considerable interest in agriculture modeling
and climate science (e.g., Joseph, Eischeid, and Pyle 1994).
Other examples of datasets characterized by multiple sequences
with common segmental structure include tree branching pat-
terns (Guédon et al. 2001), sequences of bird songs (Craig 1943;
Raftery and Tavaré 1994), wind-speed data (Berchtold 1999),
DNA sequences (Berchtold 2002; Fearnhead and Liu 2007), and
dialog transcripts (Levin and Pieraccini 2000).

In this article, we model a particular type of shared structure
where a categorical sequence is assumed to consist of K +
1 segments separated by K unobserved changepoints. Within
each segment the observed data are assumed to be generated by
a homogenous finite-state Markov chain. We will assume that
each of the K + 1 segments has its own Markov parameters,
resulting in K + 1 transition matrices. The location of each
changepoint is modeled by a discrete distribution conditioned
on the location of the previous changepoint. We will consider
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Figure 1. Thirty-one years of rainfall categorized into no/light rain-
fall (white), medium rainfall (gray), and heavy rainfall (black).

the case of a set of L observed sequences (of potentially varying
length) where the locations of the K changepoints can vary
across the sequences. The L sequences share information in that
the parameters of the Markov transition matrices are global, and
the order in which the segments appear in each sequence are
assumed to be the same, corresponding to common underlying
phases. Our framework allows any segment to be skipped in a
particular sequence, and thus, K is in effect the maximal number
of changepoints that can occur in any particular sequence.

There is a large amount of prior literature on changepoint
detection for sequential data, covering a variety of aspects of
this problem, including online/offline estimation, single versus
multiple sequences, Bayesian versus non-Bayesian inference,
and methods for inferring the number of changepoints. Much of
this prior work has focused on the case of independent obser-
vations and/or noncategorical data. An exception is the double-
Markov chain approach proposed by Berchtold (1999) using the
expectation-maximization (EM) algorithm for inference, and
which was further developed within a Bayesian framework by
Fitzpatrick and Marchev (2013). Because of the Markov as-
sumption at the segment-transition level, the model imposes an
implicit geometric distribution on segment lengths, which is not
always ideal in practice (we will follow-up on this point later in
the article). The geometric assumption can be relaxed by using a
hidden semi-Markov approach, for example (Guédon 2003), but
this imposes computational restrictions, namely, that the time
complexity of inference (e.g., via the forward-backward algo-
rithm, Rabiner 1989) can scale as O(T 2), where T is the length
of a sequence.

Polansky (2007) proposed a likelihood-based framework for
segmentation assuming a process that switches between differ-
ent Markov chains with unknown parameters, but for the case of
a single sequence rather than multiple sequences. A restricted
variant of the multiple sequence changepoint problem is the
case where sequences are required to be of the same length and
the changepoints are assumed to occur at the same location in
each sequence, which can also be viewed as a single multivari-
ate sequence (Lai and Xing 2011; Xing, Sun, and Chen 2012;
Fitzpatrick and Marchev 2013). Zhang and Siegmund (2012)
relaxed this approach to allow subsets of sequences (of equal
length and for the case of independent real-valued observations)

to share changepoints. In the approach proposed here, we allow
each sequence to have its own changepoint locations and se-
quences to have different lengths.

While most prior work has focused on likelihood-based in-
ference and point estimates of changepoints, here we use full
Bayesian inference for both changepoint locations and model
parameters. Our MCMC inference algorithm has a time com-
plexity per iteration that is linear in the length T of a sequence,
avoiding the O(T 2) time complexity incurred by Rigaill, Lebar-
bier, and Robin (2012). Fearnhead and Liu (2011) developed
a Bayesian changepoint detection that is linear in T in terms
of time complexity, but for the case of a single real-valued se-
quence.

Our focus on multiple sequences also provides a natural con-
text for using cross-validation (across sequences) for model se-
lection, providing a practical alternative to approaches such as
the Bayesian information criterion (BIC; Guédon 2003; Polan-
sky 2007; Fitzpatrick and Marchev 2013; Luong, Rozenholc,
and Nuel 2013), and related penalized likelihood approaches
(Zhang and Siegmund 2007; Rigaill, Lebarbier, and Robin 2012;
Cleynen and Lebarbier 2014), which are not always appropriate
or effective for changepoint problems (e.g., see the discussion
in Cleynen et al. 2014).

In Section 2, we introduce our proposed changepoint Markov
model, with results on model selection in Section 3. In Section
4.1, we present an example of simulated data to illustrate differ-
ent aspects of the proposed approach. Section 4.2 describes the
application of our approach to a dataset consisting of multiple
years of daily rainfall data in India. We conclude the article in
Section 5 with a brief discussion of the main results as well
as suggestions for future directions. Discussions on MCMC
sampling, how to handle missing data, additional simulated ex-
amples, and an application to a second real dataset are provided
in the supplementary materials.

2. A CHANGEPOINT MARKOV MODEL FOR
CATEGORICAL SEQUENCES

In this section, we define our Bayesian model for detection
of a fixed number of changepoints in multiple sequences. The
MCMC sampling algorithm we construct for sampling from the
resulting posterior distribution is given in Section S.1 in the
supplementary materials.

2.1 Homogenous Markov Chains

Given a sequence of discrete observations y = (y1, . . . , yT ),
such that yj ∈ {1, . . . , n} for all j = 1, . . . , T , y is a realization
from a finite-state Markov chain if the joint probability of y can
be written as

p(y) = p1(y1)
T∏

j=2

pj (yj |yj−1, . . . , y1) =
T∏

j=1

pj (yj |yj−1),

(1)
where the conditional distribution of yj given yj−1, . . . , y1 only
depends on the previous state yj−1, and we assume some
given initial state y0 such that p1(y1) = p1(y1|y0). If the transi-
tion distribution pj (yj |yj−1) = p(yj |yj−1) for all j = 1, . . . , T ,
we say that the Markov chain is homogenous. The transition
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probabilities can be organized into an n × n transition matrix
Q, where the rows indicate the value yj−1 and the columns rep-
resent the values of yj . We relax these assumptions below to
allow the Markov chain to be piecewise homogenous, allowing
inhomogeneity via local segmentation of the sequence y.

2.2 Modeling Local Segments

To define a piecewise homogenous Markov chain, we di-
vide the T observations into K + 1 segments by introduc-
ing K changepoints τ0 = 0 ≤ τ1 ≤ · · · ≤ τK ≤ T , and write
τ = (τ1, . . . , τK ) as the vector of changepoints. If τi−1 < τi then
we denote si = {τi−1 + 1, . . . , τi} to be the ith segment and if
τi−1 = τi (a segment of length zero) then si = ∅. Introducing
the notation ys = (yj |j ∈ s) for s ⊆ {1, . . . , T }, the ith segment
will include the data points ysi

. We assume the locations of the
K changepoints to be generated by a distribution of the form

p(τ |T , θ̄ ) = p(τ1, . . . , τK |T , θ̄ ) =
K∏

i=1

p(τi |τi−1, T , θ i), (2)

where p(τi |τi−1, T , θ i) is a discrete parametric distribution for
changepoint τi , with parameter vector θ i , and where we let θ̄ de-
note the collection of the parameter vectors θ i for i = 1, . . . , K .
In the remainder of the article, we assume the distribution for
τi to be the negative binomial distribution truncated to the in-
terval (τi−1, T ) (additional details in Section 2.4). The two-
parameter negative binomial distribution provides additional
flexibility in modeling segment lengths compared to a single
parameter distribution such as the geometric distribution. This
can lead to more accurate detection of changepoints, as we will
see later in the article.

2.3 The Piecewise Homogenous Markov Chain

We assume that within each segment the sequential obser-
vations in y evolve according to a fixed transition matrix, that
is, y is generated by a piecewise homogenous Markov chain
within each segment. With K changepoints, we have a total
of K + 1 transition matrices Q(1), . . . , Q(K+1), each having size
n × n. In what follows we present the case where the K + 1 tran-
sition matrices are modeled separately and independently, but it
is straightforward to constrain some of these matrices to be the
same (as in our rainfall example later in the article) and to reduce
the parameter count accordingly. Let Q̄ denote the collection of
these K + 1 transition matrices, and let Q(i)

k,l denote the element
at the kth row and the lth column of matrix i. Given an initial
state y0, the data likelihood is

p(y|τ , Q̄, y0) =
T∏

j=1

p(yj |yj−1, Q̄, τ ) =
K+1∏
i=1

∏
j∈si

Q(i)
yj−1,yj

. (3)

Assume for the moment that no segments are of length zero,
that is, no segments are skipped. If yj is the first data point in
segment si , i > 1, then we assume it to be distributed according
to the conditional distribution of yj given yj−1 (the last point in
segment si−1) using the transition matrix for segment si , Q(i).
The extension to segments of length zero is straightforward.

We adopt a fully Bayesian approach conditioned on fixed K
for our model. For priors for the transition matrices, we as-
sume each of the rows to be independently distributed accord-
ing to the Dirichlet distribution. In particular, Q(i)

k,· ∼ Dir(α(i)
k ),

where Q(i)
k,· is the kth row of the ith transition matrix and where

Dir(α(i)
k ) denotes the Dirichlet distribution with parameter vec-

tor α
(i)
k of appropriate length. We set all elements in α

(i)
k to be

equal to 1, for all i and k in our examples, rendering the prior
equivalent to having seen one transition from each category to
every other category including itself.

2.4 Modeling Multiple Sequences of Variable Length

To handle multiple sequences, consider L conditionally in-
dependent sequences of observations, y(l), l = 1, . . . , L, with
lengths T1, . . . , TL, where each sequence consists of K + 1 seg-
ments occurring in the same order as described above. Also let
y

(l)
0 denote the initial value for each of the l sequences. Assuming

the sequences to be conditionally independent, the likelihood for
multiple sequences is the product of the likelihoods for each in-
dividual sequence (as defined earlier). Segments are allowed to
be of zero length (i.e., skipped), effectively allowing the number
of changepoints per sequence to differ (see the simulation stud-
ies in Section S.3.1 and S.3.2 in the supplementary material for
examples of this property). Let τ (l) = (τ (l)

1 , . . . , τ
(l)
K ) denote the

changepoints in sequence l. There are a number of options for
modeling how the locations of the changepoints τ (l) are related
to the lengths of the sequences Tl . One could allow the change-
points to have distributions defined in absolute units (e.g., of
time) and treat the total length of the sequence as a random
quantity. The approach we take here is to assume that the distri-
bution on changepoints (or equivalently, on segment length) is
specified in terms of position relative to the total length of the
sequence, where we treat the observed total sequence lengths
Tl as fixed quantities and condition on them. In practice the
choice of parameterization will depend on the specific nature
of the application, and for the special case where the sequences
are all of the same length, the absolute and relative approaches
will be equivalent. In particular, we assume that the position of
the changepoints τ

(l)
i have a negative binomial distribution, with

parameters θ i = (ri, bi) ∈ (0, 1) × (0, 1), truncated to the range
(τ (l)

i−1, Tl). We write

p(τ (l)
i |τ (l)

i−1, Tl, θi ) ∝ �(τ (l)
i + γ (θ i , Tl))

τ
(l)
i ! �(γ (θ i , Tl))

b
γ (θ i ,Tl )
i (1 − bi)

τ
(l)
i ,

τ
(l)
i = τ

(l)
i−1, . . . , Tl, (4)

where γ (θ i , Tl) is defined via the expression riTl =
γ (θ i , Tl)(1 − bi)/bi , which corresponds to the expected value
of the negative binomial distribution without truncation. The
parameter ri will therefore be related to the expected position
of changepoint τ

(l)
i scaled by the length Tl of sequence l, while

bi will be related to variance of the distribution. This truncated
distribution can be efficiently computed as it does not include a
computationally demanding normalizing constant. We also as-
sume a priori that the θ i , i = 1, . . . , K are independent, and that
ri and bi are independent and uniformly distributed in the unit
interval, U (0, 1).
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3. MODEL SELECTION AND COMPARISON

Previous work on estimating the number of changepoints has
often used formulations such as BIC (Guédon 2003; Polan-
sky 2007; Fitzpatrick and Marchev 2013; Luong, Rozenholc,
and Nuel 2013). The BIC criterion, however, is not directly
applicable to changepoint problems (as for instance discussed
by Zhang and Siegmund 2007), leading to alternative penal-
ized likelihood formulations (Zhang and Siegmund 2007; Cley-
nen and Lebarbier 2014; Cleynen et al. 2014). More fully
Bayesian approaches have also been pursued, for example, by
Fearnhead and Liu (2011) and Rigaill, Lebarbier, and Robin
(2012) but for single-sequences with real or count-valued IID
observations.

For multiple sequences, Xing, Sun, and Chen (2012) in-
vestigated a Bayesian approach for inferring boundaries for
piecewise homogenous Markov chains with unobserved change-
points, similar to the problem we address in this article. How-
ever, their approach assumes that all sequences are the same
length and have changepoints in the same position, essen-
tially restricting the approach to the case of a single se-
quence with a multivariate distribution. For IID observations,
Zhang and Siegmund (2012) also considered the scenario
of multiple equi-length sequences with aligned changepoints
across sequences, using a modified BIC criterion for model
selection.

An alternative approach that could be pursued is that of trans-
dimensional MCMC algorithms based on a joint posterior dis-
tribution for the model and parameter space (Green 1995). Re-
versible jump MCMC (RJMCMC) algorithms (Green 1995)
could be used in this context, but we would anticipate slow con-
vergence and potential sensitivity issues when choosing pro-
posal distributions (particularly for the jump proposals). An-
other option is the Dirichlet process framework, although it
would not be straightforward to apply this approach given the
computational challenges that would result from the lack of
conjugacy (Neal 2000).

Given these various issues with Bayesian and information-
based criteria (at least in the context of our proposed model),
we instead use cross-validation with log-probability scores (e.g.,
see Vehtari and Lampinen 2002; Gneiting and Raftery 2007;
Gelman, Hwang, and Vehtari 2014; Li et al. 2014) for both
choosing the number of changepoints and for model selection
among alternative frameworks. We take advantage of the fact
that we are working with multiple sequences and use cross-
validation at the sequence level, using the log-probability of
held-out sequences as our scoring function. Our simulation re-
sults (next section) suggest that this approach is feasible even
with a relatively small number of sequences (e.g., 10). When
training our model, we hold out t of our L sequences, referred
to as the test set, and train our model using only L − t of the
available sequences, referred to as the training set. Denote the
L − t sequences in a training set by YD and the t sequences
in the test set by Y−D . To evaluate the quality of the model,
we estimate the logarithm of the probability of observing the
test set Y−D given the training set YD and the model. We aver-
age this log-probability for a number of different train/test set
pairs using cross-validation. The Monte Carlo estimate of the

log-probability of one of the sequences y(l) in the test set is

ln p( y(l)|YD) = 1

N

N∑
i=1

1

M

M∑
j=1

ln p( y(l)|τ (l)[j ], Q̄[i], y
(l)
0 ), (5)

where τ (l)[j ] ∼ p(τ (l)|Tl, θ̄
[i]

) for j = 1, . . . , M , and
(θ̄

[i]
, Q̄[i]) ∼ p(θ̄ , Q̄|YD) for i = 1, . . . , N , and where

we use superscript [·] to denote simulated samples. After
convergence of the algorithm and for N independent samples
of θ̄ and Q̄, we simulate M samples from p(τ (l)|Tl, θ̄ ). For each
of these M samples, we calculate the value of the logarithm
of the data likelihood in (3), and then compute the mean. For
the results in this article we used M = 1000 samples, although
sensitivity analysis (not shown) indicates that M = 100 is
sufficient to obtain consistent estimates of the log-probability
score. For N, which is the number of independent samples
from the MCMC algorithm, we used N = 1000 following
the discussion in Section S.1 in the supplementary materials
on burn-in period and thinning. For all of our results we use
10-fold cross-validation, that is, we partition our data into 10
test and training sets (unless otherwise stated).

The total log-probability score is defined to be the sum of
the individual scores divided by the sum of the length of the
sequences

S(Y−D|YD) =
∑t

l=1 ln p( y(l)|YD)∑t
l=1 Tl

, (6)

where y(1), . . . , y(t) are the sequences in the test set. Using the
equation above we can compare different models, either our pro-
posed model with different numbers of changepoints, or our pro-
posed model versus an alternative model. When calculating the
cross-validated log-probability scores for two models M1 and
M2, we use the same train/test sets and report the difference
between the scores for each train/test set, that is, we calculate
S(Y−D|YD,M1) − S(Y−D|YD,M2) for each train/test set.

4. ANALYSIS AND RESULTS

In this section, we analyze both a simulated and real dataset.
For the simulated data we generate the sequences and change-
points, allowing us to test our model and compare to alternative
methods. Additional simulated datasets are provided in the sup-
plementary material to further explore different aspects of our
model. We also analyze a real rainfall dataset in this section,
where we use our model to detect the changepoints of monsoon
onset and withdrawal. An additional real-world example, involv-
ing segmentation of branching patterns for trees, is described in
Section S.3.4 of the supplement.

In all of our analyses, we compare our method to three base-
line models. The first baseline SI (Segmental-Independence) is
the same as our proposed model but assumes the observations
y are independent within each segment. The second baseline is a
standard hidden Markov model (HMM) with a left-to-right tran-
sition matrix. The third baseline is the double hidden Markov
chain model (dHMM) from Berchtold (1999) with a left-to-right
transition matrix. These three baselines differ from our proposed
model in that the SI and HMM models assume independence
of the observations y (rather than Markov dependence), and
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BAYESIAN DETECTION OF CHANGEPOINTS IN FINITE-STATE MC FOR MULTIPLE SEQUENCES 209

Figure 2. Each boxplot shows the log-probability scores, across the validation sets, for a different model. The y-axis is defined as the
log-probability score for (a) other numbers of changepoints and (b) other baseline models, minus the log-probability score for the model with
one changepoint.

the HMM and dHMM models assume geometric distributions
on the changepoint locations (rather than a negative-binomial
distribution). For each of the three baselines we use a Bayesian
inference procedure similar to that described in Section S.1 in
the supplementary materials, and we report the results for the
models with the number of changepoints corresponding to the
highest log-probability score (which for all the baselines turned
out to be the same number of changepoints as in our preferred
model). In addition to comparing our model to these baseline
models, we also compare our results to those obtained with a
model where each sequence is analyzed independently. In par-
ticular, we use the single-sequence model of Fearnhead (2006)
for comparison, originally proposed for real-valued data with in-
dependence. See the supplementary materials for these results.

4.1 Synthetic Data Example: Scenario 1

We simulated L = 10 binary sequences, all of length 200,
from our proposed model. For each sequence l = 1, . . . , 10,
we simulated one changepoint τ

(l)
1 , and the position of the

changepoint was generated from the truncated negative bino-
mial distribution as explained in Section 2.4, using the param-
eters r1 = 0.5 and b1 = 0.8, such that each segment will have
length about 100. The transition matrices used to generate the
binary data in each segment had diagonal entries q1,i and q2,i ,
with i denoting the segment. We used q1,1 = q2,1 = 0.8 in the
first segment, and q1,2 = 0.5 and q2,2 = 0.4 in the second seg-
ment.

We used our cross-validation model selection procedure de-
scribed in Section 3 to determine the number of changepoints.
We defined 10 train/test sets by leaving out one of the 10 se-
quences in each fold, resulting in a “hold-one-sequence-out”
cross-validation test. The result of this model comparison is
shown in Figure 2(a).

It is clear from the figure that the model with a single change-
point (K = 1) is the preferred one. As the number of change-
points increases beyond a single changepoint the cross-validated
log-probability scores become slightly worse.

The cross-validated log-probability scores of the three base-
line models relative to our model are shown in Figure 2(b), and
as we can see our model performs the best. All models were fit
using the optimal changepoint number (K = 1).

We then trained our model with the correct number of change-
points (K = 1), using all 10 sequences. The estimated parameter
values with 95% credible intervals (CI) (corresponding to the
2.5% maximum and minimum percentiles of the posterior sam-
ples after convergence) are shown in Tables S1 and S2 in the
supplementary materials. All of the parameters are well esti-
mated, although there is considerable uncertainty concerning
the estimated value of b = b1. For a more detailed discussion
of the posterior analysis for b and r, see the supplementary
materials’ Section S.2.1.

Figure 3(a) shows, for each sequence, the estimated marginal
probability that each observation in that sequence belongs to
segment 2. The true changepoint is marked (with an ×) for
each sequence and, as we can see, the changepoints are well

Figure 3. The estimated marginal probabilities of (a) the classification of each observation to segment 2 (probability 1 is black) and (b)
a particular position being a changepoint, where the gray scale has been adjusted for each sequence so that the position with the maximum
probability is black and the position with the minimum probability is white. The true changepoint locations are marked with (×) in both plots.
Note that only positions 60 to 140 are shown in each sequence.
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Figure 4. Each boxplot shows the log-probability scores, across the validation sets, for a different model. The y-axis is defined as the
log-probability score for (a) other numbers of changepoints and (b) other baseline models, minus the log-probability score for the model with
two changepoints.

recovered. In Figure 3(b), we see the marginal probability plot
for the positions of the changepoints. It is worth commenting
on the fact that the marginal probabilities in Figure 3(b) do not
necessarily vary smoothly as a function of location. That is, there
are observations that are considered to be unlikely candidates for
a changepoint even though the previous and next observations
have a high probability of being a changepoint.

4.2 Real Data Analysis: Monsoon Rainfall

To illustrate the applicability of the model to a real-world
problem, we analyze the Indian monsoon data described earlier
in Section 1. The onset and withdrawal of the annual summer
monsoon is of critical importance in India since it directly im-
pacts agricultural production, water resource management, and
hydroelectricity production (Lima and Lall 2009). There is no
precise definition of the monsoon season, but there is a gen-
eral understanding that the onset is the time of consistent and
substantial increase in rainfall over a regional area and the with-
drawal is the time that marks the return to a dry period (Fasullo
and Webster 2003; Joseph, Sooraj, and Rajan 2006). In terms
of understanding the climatological variability of the monsoon
over time, a first step is to label the changepoints of the onset
and withdrawal in the historic record (Joseph, Sooraj, and Rajan
2006), enabling (e.g.) prediction of onset and withdrawal as a
function of exogenous variables such as large-scale atmospheric
quantities (Pai and Nair 2009). Our proposed model provides a
framework to not only detect but also to quantify our uncertainty
about the estimation of the onset and withdrawal dates and our
results can be viewed as an alternative to other approaches that
use non-Markov models for this purpose (e.g., Stern 1982; Lima
and Lall 2009).

Finite-state Markov models have long been used to charac-
terize daily rainfall occurrence in climatological applications
(Gabriel and Neumann 1962; Katz 1974). Rainfall occurrence
is typically defined as any amount more than 0.2 mm or 0.01 in.
A second cutoff can be used to distinguish light and heavy rain-
fall events (anything over 20 mm is considered a heavy rainfall
event). In our analysis below, the daily rainfall amount is as-
signed to one of three discrete categories: no/light rainfall with
0–0.2 mm (yj = 1), medium rainfall with 0.2–20 mm (yj = 2),
or heavy rainfall with >20 mm (yj = 3) (Katz 1977).

Our dataset consists of daily rainfall measurements over a
31 year period (1979–2010) from a weather station located at
latitude 24.65 and longitude 77.32 in the monsoon region of
India. (The data were obtained from the U.S. National Centers
for Environmental Prediction (NCEP) Climate Prediction Cen-
ter (CPC) Global Summary of the Day (GSOD) Observations,
http://rda.ucar.edu/datasets/ds512.0). The data are plotted in
Figure 1 with each year plotted as a sequence. Rainfall amounts
were categorized into three states as described above and the 153
missing observations (1.35% of the data) were imputed during
inference as described in Section S.1 in the supplementary ma-
terials. We denote each day of the year as j = 1, . . . , 365 (leap
days are removed). We assume that the first and last segments in
each year have the same Markov transition matrix, reflecting the
fact that the end of one sequence on December 31 is contiguous
in time with the start of the next sequence on January 1. This
constraint rules out the possibility of a single changepoint in the
model, and thus, the number of possible changepoints we can
consider is K = 0, 2, 3, 4, . . . .

To determine the optimal number of changepoints using
cross-validation, we randomly partitioned our sequences (or
years) into 10 training/test sets where nine of the test sets contain
three sequences and one has four sequences. Figure 4(a) com-
pares the cross-validated log probability scores of the model
with two changepoints, to models with zero, three, and four
changepoints. The models with two and three changepoints are
very close in performance and outperform models with zero or
four changepoints. We select the model with two changepoints
(K = 2) as our preferred model given that it is simpler and it
corresponds to our physical intuition about the monsoon phe-
nomenon (i.e., onset and withdrawal of the monsoon season).

Figure 4(b) compares the model with two changepoints with
the baseline models SI, HMM, and dHMM. As we can see, our
proposed model significantly outperforms the three baselines.

A comparison of the joint model and the approach based on
individual sequences is provided in Section S.2.2 in the supple-
mentary materials.

Figure 5(a) shows the estimates of the marginal probability of
each day belonging to the monsoon season, providing a visual
interpretation of the estimated interannual variability in the dates
of the Indian monsoon onset and withdrawal across 31 years.
The marginal distribution across all 31 years is shown at the top
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Figure 5. The estimated marginal probability distribution for (a) the classification of each day to the monsoon season (probability 1 is black)
and (b) a particular day being a changepoint, where the gray scale has been adjusted for each year so that the day with the maximum probability
is black and the day with the minimum probability is white.

of the figure with each of the years plotted per row below. Most
days in July and August, across all years, are highly probable
to be classified as monsoon days (black) and the days at the
beginning and end of the monsoon season have less certainty of
being in the monsoon (gray).

The probability of each individual day being a changepoint
(onset or withdrawal of the monsoon) can also be obtained from
the model. Figure 5(b) shows the probability of a particular day
being a changepoint in each of the 31 years. Days that are darker
gray are more likely to be the monsoon onset or withdrawal date.
The top line shows the marginal over all years. We see that the
highest probability of onset is in June and the highest probability
of withdrawal is in September.

The estimated transition matrices for our model with two
changepoints, the first for the dry (nonmonsoon) season and the
second for the monsoon season are as follows:

Q̂
dry =

⎡
⎣

0.916 0.026 0.002
0.742 0.232 0.027
0.423 0.367 0.210

⎤
⎦ ,

Q̂
monsoon =

⎡
⎣

0.720 0.216 0.069
0.439 0.436 0.125
0.258 0.489 0.253

⎤
⎦ ,

with rows/columns 1, 2, 3, corresponding to no rainfall, light
rainfall, and heavy rainfall categories, respectively. The mon-
soon and nonmonsoon seasons are distinctly different in terms
of their Markov transition probabilities, with transitions into
light and heavy rainfall categories being significantly higher
in the monsoon season compared to the dry season. The es-
timates for the changepoint parameters r1, b1, r2, and b2 are
0.446, 0.810, 0.703, and 0.885, respectively, with 95% credi-
ble intervals [0.431, 0.461], [0.550, 0.985], [0.687, 0.719], and
[0.693, 0.993], respectively.

Upon examining the model with three changepoints (K = 3),
we found it added an additional changepoint in the middle of the
monsoon season. However, the estimated transition matrices for
these two segments did not differ significantly from one another.

Table 1. Computational time per iteration in seconds for two of the
datasets discussed in the article, with code in Matlab on a computer

with 2.80 GHz CPU

Dataset K = 0 K = 1 K = 2 K = 3

Simulated data 1 0.002 0.015 0.065 0.138
Monsoon data 0.054 0.163 0.432 0.795

Our results are broadly consistent with other findings. For ex-
ample, Fasullo and Webster (2003) analyzed data from a station
further south in India, estimating that the monsoon onset dates
at this location range from May 19 to June 20 with the median
being June 6, and the withdrawal dates range from August 12 to
September 27 with the median being September 4. These dates
are consistent with our estimates at a more northerly location,
given that the monsoon approaches from the south in India,
and thus, we would expect our calculated onset and withdrawal
dates to be somewhat later than those of Fasullo and Webster
(2003). We obtain a mean estimate of June 13 for the monsoon
onset with 95% probability interval (PI) of [May 23, July 4]
and the mean date for the monsoon withdrawal is September
13 with an estimated 95% PI of [August 24, October 3]. These
estimates are based on the data shown at the top of Figure 5(b)
where the 95% PI is computed by summing up the estimated
marginal probabilities symmetrically around the mean until a
95% interval is reached.

5. DISCUSSION AND CONCLUSIONS

We introduced a piecewise homogenous Markov chain model
where changepoint positions are modeled by a discrete distri-
bution, in particular, a truncated version of the negative bino-
mial distribution. The model is constructed to handle multiple
sequences of variable length where each sequence moves be-
tween the underlying Markov chains in the same order. We show
that the changepoints are well recovered on synthetic data, re-
sulting in accurate estimates for the parameters used to define
our model. To illustrate the utility of the model on real-world
datasets, we applied the model to daily rainfall data collected
for 31 years in northern India. For this dataset, the model is
able to detect the onset and withdrawal of the monsoon season,
and produced inferences of parameters that were scientifically
interpretable. In addition, the model outperformed alternative
approaches such as hidden Markov and double Markov models.

Our Bayesian framework allows different sequences to draw
strength from each other both when finding the changepoints
and for parameter estimation. Estimates of uncertainty about
both parameters and latent variables, which arise naturally from
our MCMC inference algorithm, provide an appealing interpre-
tation of the uncertainty regarding position of the changepoints.
This is of particular interest, for example, in analyzing the on-
set and withdrawal of the Indian monsoon season. Uncertainty
quantification is an increasingly important component of cli-
mate data analysis, and the type of Bayesian approach used
in this article can provide a useful data-driven alternative to
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more traditional methods such as using threshold values (Lima
and Lall 2009) or relying entirely on definitions based on prior
knowledge (Fasullo and Webster 2003).

Comparisons of the computation times for two of the data
examples in the article are shown in Table 1, comparing the
times for the smallest dataset (the first simulated dataset) and
the largest dataset (the monsoon data). The numbers shown are
for one MCMC iteration when fitting the model to the full dataset
(we used parallelization for our cross-validation runs). We see
that as the number of changepoints increase the method is more
computationally expensive, but overall the method is relatively
fast even on the larger dataset. Additional speedups could be
obtained (e.g.) by parallelizing the analysis across sequences,
coding the algorithm in a more efficient language than Matlab,
and so on.

There are a number of additional extensions to the model
that may be potentially useful to explore. For example, a use-
ful direction would be the development of conditional models
p( y|x), where each sequence y = (y1, . . . , yT ) is accompanied
by a sequence x = (x1, . . . , xT ) of exogenous variables and
where each xt could be multivariate, t = 1 . . . , T . The exoge-
nous variables x could influence the y’s directly and/or the lo-
cations of the changepoints. Another direction would be models
for handling high-dimensional and/or real-valued observation
sequences, where one could assume the existence of a cate-
gorical latent sequence z = (z1, . . . , zT ) as a low-dimensional
representation of the observed sequence data y, extending the
general approach presented here to piecewise homogenous hid-
den Markov chains.

SUPPLEMENTARY MATERIALS

Additional supporting information: A document contain-
ing additional results, simulations, sensitivity analysis, etc. (pdf
file).

Software implementation of the changepoint Markov
model: The Matlab code for implementing the changepoint
Markov model and the simulated datasets used in the article
(GNU zipped tar file).
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