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Convergence and refinement of the Wang–Landau algorithm
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Abstract

Recently, Wang and Landau proposed a new random walk algorithm that can be very efficiently applied to many problems. Subsequently, there
has been numerous studies on the algorithm itself and many proposals for improvements were put forward. However, fundamental questions such
as what determines the rate of convergence has not been answered. To understand the mechanism behind the Wang–Landau method, we did an
error analysis and found that a steady state is reached where the fluctuations in the accumulated energy histogram saturate at values proportional
to [log(f )]−1/2. This value is closely related to the error corrections to the Wang–Landau method. We also study the rate of convergence using
different “tuning” parameters in the algorithm.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Computational methods have been used extensively for solv-
ing complex problems in the past few decades. In particular, in
statistical physics equilibrium quantities of a system with many
degrees of freedom are measured. The framework of statistical
physics is formalized such that all equilibrium quantities can be
derived from the partition function,

(1)Z(T ) =
∑
{σ }

e−E(σ)/kBT ,

σ is the state of the system, E is the energy corresponding to
σ , kB is the Boltzmann constant and T is the temperature. The
summation is over all possible states and the number of possible
states is a colossal number which cannot be enumerated. Nev-
ertheless, computational methods such as Monte Carlo tech-
niques [1] are used to sample the partition function; in par-
ticular, Metropolis importance sampling [2] has achieved con-
siderable success. However, new techniques are emerging and
are replacing the Metropolis importance sampling, especially
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near phase transition boundaries where the Metropolis impor-
tance sampling becomes inefficient. A class of new techniques,
called generalized ensemble methods, such as the multicanon-
ical method [3,4], the broad histogram method [5] and the flat
histogram method [6,7], were developed based on re-writing
the partition function as a sum over energies

(2)Z(T ) =
∑
{σ }

e−E(σ)/kBT =
∑
E

g(E)[e−E(σ)/kBT ],

where the partition function is reduced from a sum over all
states to a sum over ∼N energy levels. The partition function
would be tractable if the energy density of states g(E) could be
calculated.

Recently, a systematic, iterative, random walk method [8–
10] has been proposed as one of the generalized ensemble meth-
ods. Now generally known as the Wang–Landau algorithm, it
has received much attention in literature and has been applied
to a wide range of problems [11–14]. There have also been nu-
merous proposed improvements and studies of the efficiency of
this method [15–23]; however, there are still many unanswered
questions, e.g., what determines the rate of convergence to the
true density of states and is there any universality behavior re-
lated to this algorithm? In this paper, we attempt to quantify
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the mechanism behind the Wang–Landau method and study the
effects of using different “tuning” parameters.

The Wang–Landau algorithm [8–10] is an iterative process
in which the density of states g(E) is modified by a fac-
tor fk > 1, and the refinement of the density of states is as-
sured with monotonically decreasing modification factors, e.g.,
fk+1 = √

fk . For each time the energy level E is visited, g(E)

is multiplied by fk > 1, and a histogram of energy is accu-
mulated concurrently. It was proposed that the modification
factor be decreased when the accumulated histogram satisfies
a certain flatness condition which we call the stopping condi-
tion. In this paper we study the effects of different modification
factors and stopping conditions, and derive an expression for
the error term in the Wang–Landau method based on gener-
alizations of the modification factors and stopping conditions.
We shall consider arbitrary sequences of modification factors,
f1 > · · ·fk > fk+1 · · · > 1 and arbitrary sequences of corre-
sponding stopping conditions λ1, λ2, . . . . The stopping condi-
tions λ1, λ2, . . . may or may not be the histogram flatness con-
dition; other stopping conditions could be used, for example,
stopping after some predetermined maximum number of Monte
Carlo steps, or stopping after some number of times the random
walker reaches the minimum energy state. This generalization
is needed for theoretical error analysis in the next section.

2. Theoretical error analysis

In the Wang–Landau algorithm, for each visit to an energy
level E, the density of states at that energy level increases by
a factor fk > 1, and the corresponding histogram increases by
one. Assume that initially the unknown density of states were
set to 1, i.e. g0(E) = 1 ∀E. The density of states at the end of
the nth iteration is given by

(3)loggn(E) =
n∑

k=1

Hk(E) log(fk),

where Hk(E) is the accumulated histogram and fk is the modi-
fication factor for the kth iteration. At this point, it is important
to realize that the relative values of g(E) are sufficient for cal-
culating thermodynamics quantities. Hence, a constant factor
can be extracted from gn(E), without losing any information,
by a change of variable on the histograms,

Hk(E) → Hk(E) − min
E

{
Hk(E)

} = H̃k(E)

(4)for k = 1,2, . . . , n,

where minE{Hk(E)} is the minimum value of the accumulated
histogram for the kth iteration. Then Eq. (3) becomes

(5)loggn(E) =
n∑

k=1

H̃k(E) log(fk) + constant of energy.

The second term in Eq. (5) is independent of energy, and from
here onwards we shall refer to g̃n(E) as the density of states
without the second term in Eq. (5), i.e.

(6)log g̃n(E) =
n∑

H̃k(E) log(fk).
k=1
To lay the foundation for deriving an expression for the er-
ror of the Wang–Landau method, we use the conjecture that
the method converges to the true density of states with proper
choice of parameters.

Conjecture 1. Let the Wang–Landau algorithm be carried
out with a sequence of modification factors, · · ·fk > fk+1 >

· · ·f∞ = 1. There exists a sequence of stopping conditions
λ1, λ2, . . . , λ∞ such that,

(7)lim
n→∞ g̃n(E) = g̃∞(E) = g∗(E) × constant,

where g̃n(E) is the density of states calculated up to the nth
iteration and g∗(E) is the true density of states.

This conjecture does not give any error bounds on the den-
sity of states; it only says that, in the limit of an infinite number
of iterations the Wang–Landau estimate converges to the true
density of states. In addition, no constraint is imposed on the
stopping conditions in the conjecture. The error term up to the
nth iteration can be defined as

(8)
∑
E

[
log g̃∞(E) − log g̃n(E)

] =
∑
E

∞∑
k=n+1

H̃k(E) log(fk).

An intuitive view of Eq. (8) is that, if an infinite number of
iterations were performed, the exact answer would be obtained.
When n iterations were done instead, the error of g̃n(E) will be
the sum of all the rest of the iterations that were not carried out
explicitly. Define

(9)�Hk =
∑
E

H̃k(E),

where �Hk is a measure of fluctuations in H̃k(E). By the as-
sumption of convergence series (implied by Conjecture 1), the
order of summations in Eq. (8) can be rearranged. Then, Eq. (8)
becomes

(10)ηn =
∑
E

[
log g̃∞(E) − log g̃n(E)

] =
∞∑

k=n+1

�Hk log(fk).

Eq. (10) shows that, assuming appropriate stopping conditions,
ηn depends only on the fluctuation in the histogram and the se-
quence of modification factors fk . When the values of fk are
predetermined (e.g., fk+1 = √

fk), �Hk becomes the only de-
termining factor for ηn.

3. Results

We investigate the Monte Carlo time dependence of �Hk for
each iteration with the Wang–Landau method, where the sub-
script k denotes the kth iteration. Simulations were performed
on the ferromagnetic Ising model and on the fully frustrated
Ising model with various system sizes. The Hamiltonian is

(11)H = −
∑
〈ij〉

Jijσiσj ,
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Fig. 1. �Hk versus Monte Carlo steps per site for 16 × 16 ferromagnetic Ising model for various log(f ) values. From left to right, top to bottom, log(f ) values are
10−2, 10−3, 10−4 and 10−5.
where the sum is over nearest neighbors on a two-dimensional
square grid and σi takes the values ±1. Jij = 1 for the ferro-
magnetic Ising model, and for the fully frustrated Ising model,
Jij takes the value −1 for every alternate horizontal nearest
neighbors bonds and +1 otherwise.

Fig. 1 shows the time dependence of �Hk for several values
of log(f ); log(f ) = 10−2,10−3,10−4 and 10−5 from left to
right, top to bottom, respectively. We used the sequence of cor-
rection factors log(fk+1) = log(fk)/1.78 with log(f1) = 0.1,
this sequence is chosen so that log(fk+4) = log(fk)/10. These
graphs were generated by performing the Wang–Landau algo-
rithm on a 16 × 16 ferromagnetic Ising model with numerical
values averaged over 128 independent simulations. The Monte
Carlo steps per spin, the horizontal axis of Fig. 1, are measured
from the time when we decrease log(f ). �Hk increases ini-
tially and eventually saturates, and for smaller log(f ) values,
saturation values are greater and number of Monte Carlo steps
required to reach saturation are larger. Because the error term
given by Eq. (10) depends only on �Hk , any computational ef-
fort after �Hk become saturated does not improve the accuracy
of the final density of states gn(E). On the other hand, stopping
the random walk before �Hk becomes saturated would make
the simulation less efficient because insufficient statistics are
accumulated in the kth iteration and much more statistics would
have to be accumulated with smaller log(f ) values for subse-
quent iterations. An optimal algorithm is to stop the simulation
as soon as �Hk becomes saturated. The Wang–Landau algo-
rithm in the original paper [8] suggested using the histogram
flatness condition as a stopping condition, but this does not
guarantee optimal efficiency.

It is difficult to predict the saturation value of �Hk for
k = 1, . . . . As shown in Fig. 1, we performed a set of simu-
lations with more Monte Carlo steps than required for �Hk to
reach saturation. In this way, we could measure the saturation
values accurately. Fig. 2 shows a plot of saturation values versus
log(f ) for ferromagnetic Ising model (FMIM) and fully frus-
trated Ising model (FFIM). In double log scale, the data points
Fig. 2. Plots of saturation �Hk versus log(f ) for 8 × 8 ferromagnetic Ising
model (filled circles), 8×8 fully frustrated Ising model (empty circles), 16×16
ferromagnetic Ising model (filled triangles) and 16 × 16 fully frustrated Ising
model (empty triangles). 128 independent simulations were performed for each
data point and error bars were smaller than the size of the symbols.

fall on a straight line with the values of the slopes equal to
−0.491 ± 0.004 for 8 × 8 FMIM, −0.501 ± 0.004 for 8 × 8
FFIM, −0.496 ± 0.006 for 16 × 16 FMIM and −0.502 ± 0.008
for 16 × 16 FFIM. To within error bars, the slopes seem to have
an universal behavior

(12)max{�Hk} ∝ log(fk)
−1/2

as predicted by Zhou and Bhatt [19]. Our results suggest that the
values of the slope is generic to the Wang–Landau algorithm
and does not depend on system sizes and models. Certainly
many more simulations on different models are needed to con-
firm the universality of the slope.

4. Effects of modification factors

We also looked at how the Wang–Landau algorithm per-
forms with different sequences of modification factors. In the
extreme case, we studied the effects of taking the limit of f = 1
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Fig. 3. Comparison of accuracy of the Wang–Landau method with two modifi-
cation sequences. Data points were generated with the sequence fk+1 = √

fk

(empty circles) and with the sequence where the limiting value of f = 1 is used
after 14 iterations (filled squares). Lattice size is 32 × 32 with energy range
E/NE ∈ [−1.55,−1.35].

only after a few iterations. Assuming n iterations were per-
formed with large modification factors, and on the (n + 1)th
iteration, the modification factor is set to 1. The background
for implementation is as follows: Eq. (2) uses the Boltzmann
weights (B(E,T ) = exp(−E/kBT )) and the resulting energy
distribution is,

(13)P(E) = g∗(E)B(E,T )/Z = g∗(E) exp(−E/kBT )/Z,

where g∗(E) is the true density of states. In general other
weights can be used in summing the partition function. If one
chooses B(E,T ) = 1/gn(E), then the probability distribution
of E for the (n + 1)th iteration Pn+1(E) will be given by,

(14)Pn+1(E) = g∗(E)/gn(E)Z,

where gn(E) is the density of states calculated by the nth iter-
ation. Z is an undetermined normalization constant. The true
density of states can then be estimated by the accumulated his-
togram of the (n + 1)th iteration.

(15)gn+1(E) = Hn+1(E)gn(E) × constant.

This is analogous to the iteration process employed in Lee’s
entropic sampling [4], but we used the fast diffusion of the
Wang–Landau algorithm in the early stage. Fig. 3 compares
the accuracy of the Wang–Landau method with two different
modification sequences for the 32 × 32 ferromagnetic Ising
model. The energy range was E/NE ∈ [−1.55,−1.35] where
NE = 1024 is the total number of lattice sites. The vertical axis
is the error of density of states defined by,

(16)� = 1

m

m∑
E

[
1 − gn+1(E)

g∗(E)

]2

,

where g∗(E) is the exact density of states calculated from a
MATHEMATICA program provided by Beale [24]. gn+1(E)

is the calculated density of states and m is the total number
of energy levels in the summation over this energy range. We
plot � for different sequences of modification factors. Empty
circles were generated with modification factors fk+1 = √
fk

(with f0 = exp(1)) and stopping when the condition (Hmax −
Hmin)/(Hmax +Hmin) � 0.1 is satisfied. Where Hmax and Hmin
are the maximum and minimum histogram counts respectively.
Filled squares were obtained with a sequence of modification
factors where the limiting value of f = 1 was used after 14
iterations. The arrow indicates the location which the modifica-
tion factor was set to 1. We measure the errors (filled squares)
at several Monte Carlo steps per site after we set f = 1. Er-
ror bars were obtained by averaging over several independent
simulations. Accuracy increases rapidly immediately after set-
ting f = 1, but in the long run, the limiting case becomes only
about twice as accurate as the other sequence.

5. Conclusion

We derived an expression for the error term of the Wang–
Landau algorithm. With this, we showed that the fluctuation of
the accumulated histogram �Hk plays a central role in the ac-
curacy of the Wang–Landau method. We have also proposed
that stopping each iteration as soon as �Hk becomes saturated
would be optimal. The dependence of the saturation values on
the modification factor was also investigated and it was found
that for the ferromagnetic Ising model and fully frustrated Ising
model, max{�Hk} ∝ log(fk)

−1/2. With this equation, the sat-
uration values of �Hk for small modification factors can be
predicted from values obtained with larger modification fac-
tors. Perhaps, a more efficient algorithm can be developed. We
also studied the effects of using different sequences of modifi-
cation factors (refinement), in which we presented the limiting
case where the modification factor is set to 1 after 14 iterations.
There are significant improvements of efficiency for short sim-
ulations and improvements become less for longer runs.
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