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Abstract—Decelle et al. conjectured that community
detection in the symmetric stochastic block model has a
computational threshold given by the so-called Kesten-
Stigum (KS) threshold, and that information-theoretic
methods can cross this threshold for a large enough number
of communities (4 or 5 depending on the regime of the
parameters). This paper shows that at k = 5, it is possible
to cross the KS threshold in the disassortative regime with
a non-efficient algorithm that samples a clustering having
typical cluster volumes. Further, the gap between the KS
and information-theoretic threshold is shown to be large in
some cases. In the case where edges are drawn only across
clusters with an average degree of b, and denoting by k
the number of communities, the KS threshold reads b & k2

whereas our information-theoretic bound reads b & k ln(k).

I. INTRODUCTION

The stochastic block model (SBM) is a canonical
model of network with communities. The terminology
SBM comes from the machine learning and statistics
literature [1], while the model is typically called the
planted partition model in theoretical computer science
[2], [3], and the inhomogeneous random graphs model in
the mathematical literature [4]. Although the model was
defined as far back as the 80s, it resurged in the recent
years due in part to the following fascinating conjecture
established in [5] (and backed in [10]) from deep but
non-rigorous statistical physics arguments:

Conjecture 1. Let (X,G) be drawn from
SBM(n, k, a, b), i.e., X is uniformly drawn among
partitions of [n] into k balanced clusters, and G is a
random graph on the vertex set [n] where edges are
placed independently with probability a/n inside the
clusters and b/n across. Define SNR = (a−b)2

k(a+(k−1)b)
and say that an algorithm detects communities if it takes
G as input and outputs X̂ that is positively correlated
with X with high probability. Then,

(i) Irrespective of k, if SNR > 1, it is possible to
detect communities in polynomial time, i.e., the KS
threshold can be achieved efficiently;

(ii) If k ≥ 4 (k ≥ 5 in the assortative case),
it is possible to detect communities information-
theoretically for some SNR strictly below 1.

We have recently prove part (i) of this conjecture in [6],
and this paper shows that for k = 5, it is indeed possible
to cross the KS threshold using information theory in the
disassortative case. For part (i), i.e., achieving the KS
threshold efficiently, [6] relies on a linearized version of
BP that can handle cycles and runs in O(n log n) time.
This approach is related to spectral methods based on
non-backtracking operators [7].

To cross the KS threshold information-theoretically,
we rely on a non-efficient algorithm that samples a
typical clustering. Upon observing a graph drawn from
the SBM, the algorithm builds the set of all partitions
of the n nodes that have a typical fraction of edges
inside and across clusters, and then samples a partition
uniformly at random in that set. Our analysis of this
algorithm reveals two different regimes, that reflect two
layers of refinement in the bounds on the typical set’s
size. In a first regime, bad clusterings (i.e., partitions
of the nodes that agree in no more than close to 1/k
vertices) are with high probability not typical using
a union-bound, and the algorithm samples only good
clusterings with high probability. This allows to cross
the KS threshold at a = 0, and shows in this case
that detection is information-theoretically solvable if
b > ck ln k + ok(1), c ∈ [1, 2]. Thus the gap between
the information-theoretic and KS threshold can be large,
since the KS threshold reads b > k(k − 1). However,
the union bound does not allow to recover the correct
bound at b = 0. For b = 0, previous analysis leads
to a bound given by a > 2k, which is suboptimal.
In fact, as soon as a > k, each cluster in the SBM
graph has a giant component of linear size, and thus an
algorithm that simply separates these components and
randomly assigned the remaining vertices will detect the
communities. Of course, such an algorithm only applies
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to the strict case of b = 0. To obtain a tighter bound
in the general case, we next exploit the large number of
tree-like components that in the SBM graph, reaching
a regime where some bad clusterings are typical but
unlikely to be sampled. This shows that the algorithm
succeed with the right bound1 at b = 0, i.e., a > k.

A. Related literature

For the case of k = 2, it was proved in [8], [9] that the
KS threshold can be achieved efficiently. An alternative
proof was later given in [7]. For k = 2, no information-
computation gap takes places as shown with a tight
converse in [10]. It was also shown in [7] that for SBMs
with multiple slightly asymmetric communities, the KS
threshold can be achieved, but [7] does not resolve
Conjecture 1 for k ≥ 3. Note that the crossing the KS
threshold with information theory shows a gap between
the information-theoretic and computational thresholds
only under non-formal evidences [5]. Note also that stan-
dard clustering methods are not believed/known to detect
clusters down the KS threshold. This includes spectral
methods based on the adjacency matrix or Laplacians or
SDPs. For standard spectral methods, a first issue is that
the fluctuations in the node degrees produce high-degree
nodes that disrupt the eigenvectors from concentrating on
the clusters. One possibility is to trim such high-degree
nodes, throwing away some information, but this does
not suffice to achieve the KS threshold [11].

A few papers have studied information-theoretic
bounds in SBMs with a growing number of communities
[12], two unbalanced communities [13], and a single
community [14]. No results seemed so far known for
the symmetric SBM and part (ii) of Conjeture 1. Shortly
after this paper posting, [15] obtained in an independent
effort bounds on the information theoretic threshold that
cross the KS threshold at k = 5 (in the disassortaive
case), using moment methods. The bound in [15] does
however not approach to the correct threshold at b = 0.

II. RESULTS

The SBM can be defined with a uniform or Binomial
model for the communities. This means that for a prob-
ability vector p = (p1, . . . , pk), the communities may
be drawn uniformly at random among all partitions of
n having npi vertices in community i (with an arbitrary
rounding rule on npi to obtain integers adding up to
n), or each vertex may be assigned a label in [k] inde-
pendently with probability p. These are equivalent for

1Further improvements can be obtained from the second regime,
with a finer estimate on the typical set’s size that exploits also the
parts of the giant that are tree-like; see [6]

the purpose of this paper, due to standard concentration
argument. In the case where p = (1/k, . . . , 1/k), we say
that the communities are balanced.

Definition 1. (X,G) is drawn under SBM(n, k, a, b), if
X is a balanced n-dimensional vector with components
valued in [k] and G is a random graph on the vertex set
[n] where edge (i, j) ∈

(
[n]
2

)
is drawn with probability

1(Xi = Xj)a/n+1(Xi 6= Xj)b/n, independently of the
other edges.

Note that we often talk about G being drawn under
the SBM without specifying the community variables X .

Definition 2. Let x ∈ [k]n and ε > 0. We define the
set of bad clusterings with respect to x by Bε(x) =
{y ∈ [n]k : 1

nd∗(x, y) > 1 − 1
k − ε}, where d∗(x, y)

is the minimum Hamming distance between x and any
relabelling of y (i.e., any mapping of the components of
y with a fixed permutation of [k] ).

Relabellings need to be considered since only the
partition needs to be detected and not the actual labels.
It is simply convenient to work with labels.

Definition 3. An algorithm x̂ : 2([n]
2 ) → [k]n solves

detection (or weak recovery) in SBM(n, k, a, b) if for
some ε > 0, PX,G {x̂(G) ∈ Bε(X)} = on(1), where
(X,G) ∼ SBM(n, k, a, b). Detection is solvable effi-
ciently if the algorithm runs in polynomial time in n,
and information-theoretically otherwise.

Note that if X̂ is a randomized algorithm (i.e., it takes
the graph as an input and outputs various clusterings
with different probabilities), and if for some ε > 0,
PX,G,X̂

{
X̂(G) ∈ Bε(X)

}
= on(1), then detection is

solvable (information-theoretically).
We next present the algorithm used to detect below

the KS threshold.
Typicality Sampling Algorithm. Given an n-vertex

graph g and δ > 0, the algorithm draws x̂typ(g)
uniformly at random in

Tδ(g) = {x ∈ Balanced(n, k) :
k∑
i=1

|{gu,v : (u, v) ∈
(

[n]

2

)
s.t. xu = i, xv = i}|

≥ an

2k
(1− δ),∑

i,j∈[k],i<j

|{gu,v : (u, v) ∈
(

[n]

2

)
s.t. xu = i, xv = j}|

≤ bn(k − 1)

2k
(1 + δ)}
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if the SBM is assortative (i.e., a ≥ b), otherwise flip the
direction of the above two inequalities.

Theorem 1. Let d := a+(k−1)b
k , assume d > 1, and let

τ = τd be the unique solution in (0, 1) of τe−τ = de−d,
i.e., τ :=

∑+∞
j=1

jj−1

j! (de−d)j . The Typicality Sampling
Algorithm detects2 communities in SBM(n, k, a, b) if

1

2 ln k

(
a ln a+ (k − 1)b ln b

k
− d ln d

)
> 1− τ

d

(
1− τ

2

)
. (1)

Remark 1. Define d(τ, d) = 1 − τ
d

(
1− τ

2

)
. Note that

since d(τ, d) < 1 when d > 1 (which is needed for the
presence of the giant), detection is already solvable in
SBM(n, k, a, b) if

1

2 ln k

(
a ln a+ (k − 1)b ln b

k
− d ln d

)
> 1. (2)

The above corresponds to the regime where there is
not bad clustering that is typical with high probability.
However, the above bound is not tight in the extreme
regime of b = 0, since it reads a > 2k as opposed to
a > k (the presence of a giant).

Defining ak(b) as the solution in a of
1

2 ln k

(
a ln a+(k−1)b ln b

k − d ln d
)

= d(τ, d) and
expanding the bound in Theorem 1 gives the following.

Corollary 1. Detection is solvable

in SBM(n, k, 0, b) if b >
2k ln k

(k − 1) ln k
k−1

g(τ,
b(k − 1)

k
)

(3)
in SBM(n, k, a, b) if a > k + ∆k(b), (4)

where (3) is strictly stronger than the KS threshold at
k = 5, and where ∆k(b) := ak(b) − k is such that
∆k(0) = 0.

Remark 2. Note that (4) approaches the optimal bound
given by the presence of the giant at b = 0. Note also
that (3) improves significantly on the KS threshold given
by b > k(k − 1) at a = 0. By continuity arguments, we
can also cross the KS threshold for some positive values
of a at k = 5.

Remark 3. We further claim that the scaling in k of
our IT threshold is correct a = 0. To see this, consider
v ∈ G, b = (1 − ε)k ln(k), and assume that we know
the communities of all vertices more than r = ln(ln(n))

2Setting δ > 0 small enough gives the existence of ε > 0 for
detection.

edges away from v. For each vertex r edges away from
v, there will be approximately kε communities that it
has no neighbors in. Then vertices r − 1 edges away
from v have approximately kε ln(k) neighbors that are
potentially in each community, with approximately ln(k)
fewer neighbors suspected of being in its community
than in the average other community. At that point,
the noise has mostly drowned out the signal and our
confidence that we know anything about the vertices’
communities continues to degrade with each successive
step towards v. A different approach is developed in [15].

III. PROOF TECHNIQUE

A first question is to estimate the likelihood that
a bad clustering, i.e., one that has an overlap that is
close to 1/k, belongs to the typical set. This means the
probability that a clustering which splits each of the true
cluster into k groups belonging to each community still
manages to keep the right proportions of edges inside
and across the clusters. This is unlikely to take place, but
we care about the exponent of this rare event probability.

Fig. 1: A bad clustering roughly splits each community
equally among the k communities. Each pair of nodes
connects with probability a/n among vertices of same
communities (i.e., same color groups, plain line connec-
tions), and b/n across communities (i.e., different color
groups, dashed line connections). Only some connections
are displayed in the Figure to ease the visualization.

As illustrated in Figure 1, the number of edges that are
contained in the clusters of a bad clustering is roughly
distributed as the sum of two Binomial random variables,

Ein
·∼ Bin

(
n2

2k2
,
a

n

)
+ Bin

(
(k − 1)n2

2k2
,
b

n

)
,

where we use ·∼ to emphasize that this is an approxima-
tion. Note that the expectation of the above distribution is
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n
2k

a+(k−1)b
k . In contrast, the true clustering would have

a distribution given by Bin(n
2

2k ,
a
n ), which would give

an expectation of an
2k . In turn, the number of edges that

are crossing the clusters of a bad clustering is roughly
distributed as

Eout
·∼ Bin

(
n2(k − 1)

2k2
,
a

n

)
+ Bin

(
n2(k − 1)2

2k2
,
b

n

)
,

which has an expectation of n(k−1)2k
a+(k−1)b

k . In contrast,
the true clustering would have the above replaced by
Bin(n

2(k−1)
2k , bn ), and an expectation of bn(k−1)

2k .
Thus, we need to estimate the rare event that the

Binomial sum deviates from its expectations. While there
is a large list of bounds on Binomial tail events, the
number of trials here is quadratic in n and the success
bias decays linearly in n, which require particular care
to ensure tight bounds. We derive these in [6], obtaining
that for a bad clustering x,

P{x is typical} ≈ exp
(
−n
k
A
)

where

A :=

a+ b(k − 1)

2
ln

k

a+ (k − 1)b
+
a

2
ln a+

b(k − 1)

2
ln b.

One can then use a union bound, since there are at most
kn bad clusterings, to obtain a first regime where no
clustering is typical with high probability. This already
allows to cross the KS threshold in some regime of the
parameters when k ≥ 5. However, this does not inter-
polate the correct behavior of the information-theoretic
bound in the extreme regime of b = 0. In fact, for b = 0,
the union bound requires a > 2k to imply no bad typical
clustering with high probability, whereas as soon as
a > k, an algorithm that simply separates the two giants
in SBM(n, k, a, 0) and assigns communities uniformly
at random for the other vertices solves detection. Thus
when a ∈ (k, 2k], the union bound is loose. To remediate
to this, we next take into account the topology of the
SBM graph.

Since the algorithm samples a typical clustering, we
only need the number of bad and typical clusterings to
be small compared to the total number of typical cluster-
ings, in expectation. Thus, we seek to better estimate the
total number of typical clusterings. The main topological
property of the SBM graph that we exploit is the large
fraction of nodes that are in tree-like components outside
of the giant. Conditioned on being on a tree, the SBM
labels are distributed as in a broadcasting problem on a
(Galton-Watson) tree. Specifically, for a uniformly drawn

root node X , each edge in the tree acts as a k-ary
symmetric channel. Thus, labelling the nodes in the trees
according to the above distribution and freezing the giant
to the correct labels leads to a typical clustering with
high probability.

Fig. 2: Illustration of the topology of SBM(n, k, a, b)
for k = 2. A giant component covering the two com-
munities takes place when d = a+(k−1)b

k > 1; a linear
fraction of vertices belong to isolated trees (including
isolate vertices). To estimate the size of the typical set:
sample a bit uniformly at random in each isolated tree
(green vertices) and propagate the bit according to the
symmetric channel with flip probability b/(a+(k−1)b)
(plain edges do not flip whereas dashed edges flip).

We hence need to count the number of nodes T and
edges M that belong to such trees in the SBM graph.
This is done in a series of lemmas in our arxiv paper
[6], and requires combinatorial estimates similar to those
carried for the Erdős-Rényi case [16]. The fractions are
shown to concentrate around

T/n ≈ τ

d

(
1− τ

2

)
, (5)

M/n ≈ τ2

2d
, (6)

where τ is as in the theorem. This in turn gives a bound
on the typical set size (see Theorem 2 below). With this
bound, we can better estimate the probability of sampling
a good clustering, reaching the tight bound at b = 0.

Theorem 2. Let Tδ(G) denote the typical set for G
drawn under SBM(n, k, a, b). Then, for any ε > 0,

P{|Tδ(G)| < k(ψ−ε)n} = o(1),

where

ψ :=
τ

d

(
1− τ

2

)
+

τ2

2d ln k
H(ν),

ν :=

(
a

a+ (k − 1)b
,

b

a+ (k − 1)b
, . . . ,

b

a+ (k − 1)b

)
and H(·) is the entropy in nats.
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Proof sketch of Theorem 2: Let G ∼
SBM(n, k, a, b), and let T be the number of isolated
trees in G, M the number of edges in those trees, and
F the number edges in the planted trees of the largest
connected component of G (i.e., the giant). We now build
a typical assignment on these trees:

• Pick an arbitrary node in each isolated tree, denote
these by {v1, . . . , vT }, and denote the set of edges
contained in these trees by {E1, . . . , EM};

• Assign the labels UT1 := (Uv1 , . . . , UvT ) uniformly
at random in [k]. Then broadcast each of these
labels in their corresponding trees by forwarding
the labels on each edge with an independent k-
ary symmetric channel of flip probability b

a+(k−1)b .
This means that the variables Z1, . . . , ZM are
drawn i.i.d. from the distribution ν as above on
Fk := {0, 1, . . . , k − 1}, and that for each edge
e in the trees, the input bit is forwarded by adding
to it the Ze variable modulo k;

• Assign any other vertex (that is not contained in the
trees) to their true community assignments. Define
ZM1 := (Z1, . . . , ZM ), and denote by X̂(UT1 , Z

M
1 )

the previously defined assignment.

Note that the above gives the induced label-distribution
on trees in SBM(n, k, a, b), with possibly a global flip
for the isolated trees. Thus, with high probability on G,
as T and M grow (linearly) with n, this assignment is
typical with high probability on UT1 , Z

M
1 :

PUT
1 ,Z

R
1
{X̂(UT1 , Z

M
1 ) ∈ Tδ(G)} = 1− o(1). (7)

Denote by Aε,M (ν) the ε-typical set for sequences of
length M under the distribution η on [k] (as defined in
[17]). Define similarly Aε,T (η) for the uniform distribu-
tion η on k. By the AEP theorem, for any ε > 0,

P{UT1 ∈ Aε,T (η), ZM1 ∈ Aε,M (ν)} → 1.

Therefore,

PUT
1 ,Z

R
1
{X̂(UT1 , Z

M
1 ) ∈ Tδ(G)}

≤
∑

uT
1 ∈Aε,T (η),zR1 ∈Aε,M (ν)

1(X̂(uT1 , z
M
1 ) ∈ Tδ(G))k−T k−M(H(ν)−ε) + o(1).

Since the right hand side counts a subset of the typical
clusterings, we have with high probability on G,

|Tδ(G)| ≥ (1− o(1))kT+M(H(ν)−ε).

Further, from the topological lemmas derived in our arxiv

paper [6], for ε > 0, with high probability on G,

T ∈
[τ
d

(
1− τ

2

)
− ε, τ

d

(
1− τ

2

)
+ ε
]
,

M ∈
[
τ2

2d
− ε, τ

2

2d
+ ε

]
.

The claims follows from algebraic manipulations.
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