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Stochastic block model and exploratory analysis in signed networks

Jonathan Q. Jiang*

Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
(Received 2 January 2015; published 15 June 2015)

We propose a generalized stochastic block model to explore the mesoscopic structures in signed networks
by grouping vertices that exhibit similar positive and negative connection profiles into the same cluster. In
this model, the group memberships are viewed as hidden or unobserved quantities, and the connection patterns
between groups are explicitly characterized by two block matrices, one for positive links and the other for negative
links. By fitting the model to the observed network, we can not only extract various structural patterns existing
in the network without prior knowledge, but also recognize what specific structures we obtained. Furthermore,
the model parameters provide vital clues about the probabilities that each vertex belongs to different groups and
the centrality of each vertex in its corresponding group. This information sheds light on the discovery of the
networks’ overlapping structures and the identification of two types of important vertices, which serve as the
cores of each group and the bridges between different groups, respectively. Experiments on a series of synthetic
and real-life networks show the effectiveness as well as the superiority of our model.
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I. INTRODUCTION

The study of networks has received considerable attention
in recent literature [1–3]. This is mainly attributed to the fact
that a network provides a concise mathematical representation
for social [4,5], technological [6], biological [7–9], and other
complex systems [1–3] in the real world, which paves the way
for executing proper analysis of such systems’ organizations,
functions, and dynamics.

Many networks are found to possess a multitude of meso-
scopic structural patterns, which can be coarsely divided into
“assortative” or “community” structure and “disassortative” or
“bipartitie or multipartite” structure [10,11]. In addition, other
types of mesoscopic structures, such as the “core-periphery”
motif, have been observed in real-life networks as well.
Along with these discoveries, a large number of techniques
have been proposed for mesoscopic structure extraction, in
particular for community detection (see, e.g., [8,10–14] and
recent reviews [2,3,15]). Most, if not all, existing techniques
require us to know which specific structure we are looking for
before we study it. Unfortunately, we often know little about a
given network and have no idea what specific structures can be
expected and subsequently detected by what specific methods.
Biased results will be obtained if an inappropriate method
is chosen. Even if we know something beforehand, it is still
difficult for a method that is exclusively designed for a certain
type of mesoscopic structure to uncover the aforementioned
miscellaneous structures that may simultaneously coexist in a
network or may even overlap with each other [8,16–20].

To overcome these difficulties, a mixture model [11], a
stochastic block model [21], and their various extensions
and combinations [22–27] have been recently introduced to
enable an “exploratory” analysis of networks, allowing us to
extract unspecified structural patterns even if some edges in
the networks are missing [28,29]. By fitting the model to the
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observed network structure, vertices with the same connection
profiles are categorized into a predefined number of groups.
The philosophy of these approaches is quite similar to that of
the “role model” in sociology [30]—individuals having locally
or globally analogous relationships with others play the same
“role” or take up the same “position” [31]. It is clear to see
that the possible topologies of the groups include community
structure and multipartite structure, but they can be much,
much wider.

One common assumption shared by these models is that
the target networks contain positive links only. However, we
frequently encounter the signed networks, which have both
positive and negative edges, in biology [19,32], computer
science [33], and last but definitely not least, social sci-
ence [34–37]. The negative connections usually represent hos-
tility, conflict, opposition, disagreement, and distrust between
individuals or organizations, as well as the anticorrelation
among objectives, whose coupled relation with positive links
has been empirically shown to play a crucial role in the function
and evolution of the whole network [32,37].

Several works have been conducted to detect community
structure in these kinds of networks. Yang et al. [34] proposed
an agent-based method that performs a random walk from one
specific vertex for a few steps to mine the communities in
positive and signed networks. Gómez et al. [35] presented
a generalization of the widely used modularity [10,14] to
allow for negative links. Traag and Bruggeman [36] extended
the Potts model to incorporate negative edges, resulting in
a method similar to the clustering of signed graphs. These
approaches focus on the problem of community detection and
thus they inevitably suffer a devastating failure if the signed
networks comprise other structural patterns, for example the
disassortative structure, as shown in Sec. IV A. To make
matters worse, they simply give a “hard” partition of signed
networks in which a specific vertex could belong to one and
only one cluster. Similar to the positive networks, we have good
reason to believe that the signed networks also simultaneously
include all kinds of mesoscopic structures that might overlap
with each other.
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In this paper, we aim to capture and extract the intrinsic
mesoscopic structure of networks with both positive and
negative links. This goal is achieved by dividing the vertices
into groups such that the vertices within each group have
similar positive and negative connection patterns to other
groups. We propose a generalized stochastic block model,
referred to as the signed stochastic block model (SSBM), in
which the group memberships of each vertex are represented
by unobserved or hidden quantities, and the relationship among
groups is explicitly characterized by two block matrices,
one for the positive links and the other for the negative
links. By using the expectation-maximization algorithm, we
fit the model to the observed network structure and reveal the
structural patterns without prior knowledge of what specific
structures exist in the network. As a result, not only can various
unspecific structures be successfully found, but also their
types can be immediately elucidated by the block matrices.
In addition, the model parameters tell us the fuzzy group
memberships and the centrality of each vertex, which enable
us to discover the networks’ overlapping structures and to
identify two kinds of important vertices, i.e., group core and
bridge. Experiments on a number of synthetic and real-world
networks validate the effectiveness and the advantage of our
model.

The rest of this paper is organized as follows. We begin
with the depictions of the mesoscopic structures, especially
the definitions of the community structure and disassortative
structure, in signed networks in Sec. II. Then we introduce an
extension of the stochastic block model in Sec. III, and we
show how to employ it to perform an exploratory analysis
of a given network with both positive and negative links.
Experimental results on a series of synthetic networks with
various designed structures and three social networks are given
in Sec. IV, followed by the conclusions in Sec. V.

II. MESOSCOPIC STRUCTURES IN SIGNED NETWORKS

It is well known that the mesoscopic structural patterns in
positive networks can be roughly classified into the following
two different types: “Assortative structure,” usually called
“community structure” in most cases, refers to groups of
vertices within which connections are relatively dense and
between which they are sparser [10–12]. In contrast, “disas-
sortative structure,” also named “bipartite structure” or more
generally “multipartite structure,” means that network vertices
have most of their connections outside their group [10,11,13].

For a signed network, its mesoscopic structure is quite
different from and much more complicated than that in a
positive network since both the density and the sign of the
links should be taken into account at the same time. The
intuitive descriptions of assortative structure and disassortative
structure given in Refs. [10,11] are no longer suitable. A natural
question arises: How can we characterize the mesoscopic
structures in a network that has both positive and negative
edges? Guidance can be provided by the social balance
theory [38], which states that the attitudes of two individuals
toward a third person should match if they are positively
related. In this situation, the triad is said to be socially
balanced. A network is called balanced provided that all its
triads are balanced. This concept can be further generalized
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FIG. 1. Stochastic block model for signed networks. Unfilled
circles represent observed network structure and filled ones cor-
respond to hidden memberships. The solid line between vertices
i and j indicates the existence of one positive or negative edge
connecting them. The dashed line indicates that the relation between
the corresponding quantities is unobserved and requires being learned
from the observed network data.

to k-balance [39,40] when the network can be divided into
k clusters, each having only positive links within itself and
negative links with others.

Following this principle, we can reasonably describe the
community structure in a signed network as a set of groups
of vertices within which positive links are comparatively
dense and negative links are sparser, and on the contrary
between which positive links are much looser and negative
links are thicker [34–36]. Obviously, this is an extension of
the standard community structure in networks with positive
edges. In contrast, disassortative structure can be defined as
a collection of vertices that have most of their negative links
within the group to which they belong while the majority of
their positive connections are outside their group.

III. METHODS

A. The SSBM model

Given a directed network G = (V,E), we can represent it by
an adjacency matrix A. The entries of the matrix are defined
as follows: Aij = 1 if a positive link is present from vertex
i to vertex j , Aij = −1 if a negative link is present from
vertex i to vertex j , and Aij = 0 otherwise. For weighted
networks, Aij can be generalized to represent the weight of
the link. We further separate the positive component from the
negative one by setting A+

ij = Aij if Aij > 0 and 0 otherwise,
and A−

ij = −Aij if Aij < 0 and 0 otherwise, so A = A+ − A−.
Suppose that the vertices fall into c groups whose mem-

berships are “hidden” or “missing” for the moment and will
be inferred from the observed network structure. The number
of groups c can also be inferred from the data, which will be
discussed in Sec. III C, but we take it as a given here. The
standard solution for such an inference problem is to give a
generative model for the observed network structure and then
to determine the parameters of the model by finding its best
fit [11,22–25].

The model we use is a kind of stochastic block model that
parametrizes the probability of each possible configuration
of group assignments and edges as follows (see Fig. 1 for a
schematic illustration). Given an edge eij , we choose a pair
of groups r and s for its tail and head with probability ω+

rs

if eij is positive, or with probability ω−
rs if eij is negative.

The two scalars ω+
rs and ω−

rs giving the probability that a
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randomly selected positive and negative edge from group
r to s, respectively, explicitly characterize various types of
connecting patterns among groups, as we will see later. Then,
we draw the tail vertex i from group r with probability θri and
the head vertex j from group s with probability φsj . Intuitively,
the parameter θri captures the centrality of vertex i in the group
r from the perspective of outgoing edges, while φsj describes
the centrality of vertex j in the group s from the perspective of
incoming edges. The parameters ω+

rs , ω−
rs , θri , and φsj satisfy

the normalization condition
c∑

r=1

c∑
s=1

ω+
rs = 1,

c∑
r=1

c∑
s=1

ω−
rs = 1,

n∑
i=1

θri = 1,

n∑
j=1

φsj = 1.

Let ←−
gij and −→

gij be the group membership of the tail and head
of the edge eij , respectively. So far, we have introduced all
the quantities in our model: observed quantities {Aij }, hidden
quantities {−→gij ,

←−
gij }, and model parameters {ω+

rs ,ω
−
rs ,θri ,φsj }.

To simplify the notations, we shall henceforth denote by ω+
the entire set {ω+

rs} and similarly ω−, θ , φ, ←−
g , and −→

g for
{ω−

rs}, {θri}, {φsj }, {←−gij }, and {−→gij }. The probability that we
observe a positive edge e+

ij can be written as

Pr(e+
ij |ω+,θ,φ) =

∑
rs

ω+
rsθriφsj , (1)

and the probability of observing a negative edge e−
ij is

Pr(e−
ij |ω−,θ,φ) =

∑
rs

ω−
rsθriφsj . (2)

The marginal likelihood of the signed network, therefore, can
be represented by

Pr(A|ω+,ω−,θ,φ)

=
∏
ij

(∑
rs

ω+
rsθriφsj

)A+
ij

(∑
rs

ω−
rsθriφsj

)A−
ij

. (3)

Note that the self-loop links are allowed, and the weights A+
ij

and A−
ij , respectively, are viewed as the number of positive and

negative multiple links from vertex i to vertex j , as is done in
many existing models [23–25].

To infer the missing group memberships ←−
g and −→

g , we
need to maximize the likelihood in Eq. (3) with respect to the
model parameters ω+, ω−, θ , and φ. For convenience, one
usually works not directly with the likelihood itself but with
its logarithm,

L = lnPr(A|ω+,ω−,θ,φ)

=
∑
ij

A+
ij ln

(∑
rs

ω+
r,sθriφsj

)

+
∑
ij

A−
ij ln

(∑
rs

ω−
r,sθriφsj

)
. (4)

The maximum of the likelihood and its logarithm occur in
the same place because the logarithm is a monotonically
increasing function.

Considering that the group memberships ←−
g and −→

g are
unknown, it is intractable to optimize the log-likelihood L
directly again. We can, however, make a good guess of the
hidden variables ←−

g and −→
g according to the network structure

and the model parameters, and seek the maximization of the
following expected log-likelihood:

L =
∑
←−
g ,

−→
g

Pr(←−g ,
−→
g |A+,ω+,θ,φ)lnPr(A+|←−g ,

−→
g ,ω+,θ,φ) +

∑
←−
g ,

−→
g

Pr(←−g ,
−→
g |A−,ω−,θ,φ)lnPr(A−|←−g ,

−→
g ,ω−,θ,φ)

=
∑
ijrs

Pr(r,s|e+
ij ,ω

+,θ,φ)[A+
ij (lnω+

rs + lnθri + lnφsj )] +
∑
ijrs

Pr(r,s|e−
ij ,ω

−,θ,φ)[A−
ij (lnω−

rs + lnθri + lnφsj )]

=
∑
ijrs

q+
ijrsA

+
ij (lnω+

rs + lnθri + lnφsj ) +
∑
ijrs

q−
ijrsA

−
ij (lnω−

rs + lnθri + lnφsj ), (5)

where q+
ijrs = Pr(←−gij = r,

−→
gij = s|e+

ij ,ω
+,θ,φ) is the prob-

ability that one will find a positive edge e+
ij with its tail

vertex i from group r and its head vertex j from group s

given the network and the model parameters. An analogous
interpretation can also be made for q−

ijrs = Pr(←−gij = r,
−→
gij =

s|e−
ij ,ω

−,θ,φ).
With the expected log-likelihood, the best estimate of the

value of L together with the position of its maximum give
the most likely values of the model parameters. Finding
the maximum still presents a problem, however, since the
calculation of q+

ijrs and q−
ijrs requires the values of ω+,

ω−, θ , and φ, and vice versa. One possible solution is to
adopt an iterative self-consistent approach that evaluates both
simultaneously. Like many previous works [11,23–25], we

utilize the expectation-maximization (EM) algorithm, which
first computes the posterior probabilities of hidden variables
using estimated model parameters and observed data (the E-
step), and then reestimates the model parameters (the M-step).

In the E-step, we calculate the expected probabilities q+
ijrs

and q−
ijrs given the observed network A and parameters ω+,

ω−, θ , and φ,

q+
ijrs = Pr(←−gij = r,

−→
gij = s,e+

ij |ω+,θ,φ)

Pr(e+
ij |ω+,θ,φ)

= ω+
rsθriφsj∑

rs ω+
rsθriφsj

,
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q−
ijrs = Pr(←−gij = r,

−→
gij = s,e−

ij |ω−,θ,φ)

Pr(e−
ij |ω−,θ,φ)

= ω−
rsθriφsj∑

rs ω−
rsθriφsj

. (6)

In the M-step, we use the values of q+
ijrs and q−

ijrs estimated
in the E-step to evaluate the expected log-likelihood and to
find the values of the parameters that maximize it. Introducing
the Lagrange multipliers ρ+, ρ−, γr , and λs to incorporate
the normalization conditions, the expected log-likelihood
expression to be maximized becomes

L̃ = L + ρ+
(

1 −
∑
rs

ω+
rs

)
+ ρ−

(
1 −

∑
rs

ω−
rs

)

+
∑

r

γr

(
1 −

∑
i

θri

)
+

∑
s

λs

⎛
⎝1 −

∑
j

φsj

⎞
⎠. (7)

By letting the derivative of L̃ be 0, the maximum of the
expected log-likelihood appears at the places where

ω+
rs =

∑
ij A+

ij q
+
ijrs∑

ijrs A+
ij q

+
ijrs

,

ω−
rs =

∑
ij A−

ij q
−
ijrs∑

ijrs A−
ij q

−
ijrs

,

(8)

θri =
∑

js A+
ij q

+
ijrs + ∑

js A−
ij q

−
ijrs∑

ijs A+
ij q

+
ijrs + ∑

ijs A−
ij q

−
ijrs

,

φsj =
∑

ir A+
ij q

+
ijrs + ∑

ir A−
ij q

−
ijrs∑

ijr A+
ij q

+
ijrs + ∑

ijr A−
ij q

−
ijrs

.

Equations (6) and (8) constitute our EM algorithm for
exploratory analysis of signed networks. When the algorithm
converges, we obtain a set of values for hidden quantities q+

ijrs ,
q−

ijrs and model parameters ω+, ω−, θ , and φ.
It is worthwhile to note that the EM algorithm is known

to converge to local maxima of the likelihood but not
always to global maxima. With different starting values, the
algorithm may give rise to different solutions. To obtain a
satisfactory solution, we perform several runs with different
initial conditions and return the solution giving the highest
log-likelihood over all the runs.

Now we consider the computational complexity of the EM
algorithm. For each iteration, the cost consists of two parts.
The first part is from the calculation of q+

ijrs and q−
ijrs using

Eq. (6), whose time complexity is O(mc2). Here m is the edges
in the network and c is the number of groups. The second part
is from the estimation of the model parameters using Eq. (8),
whose time complexity is also O(mc2). We use T to denote
the number of iterations before the iteration process converges.
Then, the total cost of the EM algorithm for our model is
O(T mc2). It is difficult to give a theoretical estimation for the
number T of iterations. Generally speaking, T is determined
by the network structure and the initial condition.

B. Soft partition and overlapping structures

The parameters, obtained by fitting the model to the
observed network structure with the EM algorithm, provide
us with useful information for the mesoscopic structure in
a given network. Specifically, the matrices ω+ and ω−,
in analogy with the image graph in the role model [41],
characterize the connecting patterns among different groups,
which determine the type of structural patterns. Furthermore,
θ and φ indicate the centrality of a vertex in its groups
from the perspective of outgoing edges and incoming edges,
respectively. Consequently, the probability of vertex i drawn
from group r when it is the tail of edges can be defined as

αir =
∑

s(ω
+
rs + ω−

rs)θri∑
rs(ω

+
rs + ω−

rs)θri

, (9)

and vertex i can be simply assigned to the group r∗ to which it
most likely belongs, i.e., r∗ = arg maxr{αir , r = 1,2, . . . ,c}.
The result yields a hard partition of the signed network.

In fact, the set of scalars {αir}cr=1 supply us with the
probabilities that vertex i belongs to different groups, which
can be referred to as soft or fuzzy memberships. Assigning
vertices to more than one group has attracted by far the most in-
terest, particularly in overlapping community detection [8,16–
18]. The vertices belonging to several groups are found to
take a special role in networks, e.g., signal transduction in
biological networks. Furthermore, some vertices, considered
as “instable” [16], are located on the border between two
groups and thus are difficult to classify into any group. It is of
great importance to reveal the global organization of a signed
network in terms of overlapping mesoscopic structures and to
find the instable vertices. We employ here bridgeness [17] and
group entropy [20] to capture the vertices’ instabilities and
to extract the overlapping mesoscopic structure. These two
measures of vertex i are computed as

bi = 1 −
√√√√ c

c − 1

c∑
r=1

(
αir − 1

c

)2

, (10)

ξi = −
c∑

r=1

αir logc αir . (11)

Note that vertex i has a large bridgeness bi and entropy
ξi when it most likely participates in more than one group
simultaneously, and vice versa. From the perspective of
incoming edges, we can represent the probability of vertex
j belonging to group s by

βjs =
∑

r (ω+
rs + ω−

rs)φsj∑
rs(ω

+
rs + ω−

rs)φsj

. (12)

These statements for αir also apply to βjs , so we do not need
to repeat them.

The model described above focuses on directed networks.
Actually, the model could be easily generalized to undirected
networks by letting the parameter θ be identical to φ. The
derivation follows the case of directed networks, and the results
are the same as Eqs. (6) and (8).

062805-4



STOCHASTIC BLOCK MODEL AND EXPLORATORY . . . PHYSICAL REVIEW E 91, 062805 (2015)

C. Model selection

Up to now, our model has assumed that the number of
groups c is known a priori. This information, however, is
unavailable in many cases. It is necessary to provide a criterion
to determine an appropriate group number for a given network.
Several methods have been proposed to deal with this model
selection issue. We adopt the minimum description length
(MDL) principle, which was also utilized in the previous
generative models for network structure exploration [25].

According to the MDL principle, the required length to
describe the network data comprises two components. The first
one describes the coding length of the network, which is −L

for a directed network and −L/2 for an undirected network.
The other gives the length for coding model parameters,
i.e., −∑

rs lnω+
rs − ∑

rs lnω−
rs − ∑

ri lnθri − ∑
sj lnφsj for a

directed network and −∑
rs lnω+

rs − ∑
rs lnω−

rs − ∑
ri lnθri

for an undirected network. The optimal c is the one that
minimizes the total description length.

IV. EXPERIMENTAL RESULTS

In this section, we extensively test our SSBM model on
a series of synthetic signed networks with various known
structures, including community structure and disassortative
structure. After that, the method is also applied to three real-life
social networks.

A. Synthetic networks

The ad hoc networks, designed by Girvan and New-
man [12], have been broadly used to validate and compare
community detection algorithms [14–16,20]. By contrast,
there exists no such benchmark for community detection in
networks with both positive and negative links. We generate the
signed ad hoc networks with controlled community structure
using the method developed in Refs. [34,42]. The networks
have 128 vertices, which are divided into four groups with 32
vertices each. Edges are placed randomly such that they are
positive within groups and negative between groups, and the
average degree of a vertex is 16. The community structure is
controlled by three parameters, pin indicating the probability
of each vertex connecting to other vertices in the same group,
p+ the probability of positive links appearing between groups,
and p− the probability of negative links arising within groups.
Thus, the parameter pin regulates the cohesiveness of the
communities, and the remaining parameters p+ and p− add
noise to the community structure when pin is fixed.

For the synthetic networks, we simply consider their hard
partition as defined in Sec. III B. The results are evaluated by
the normalized mutual information (NMI) [43], which can be
formulated as

NMI(C1,C2) =
∑c

i=1

∑c
j=1 nij ln nij n

n
(1)
i n

(2)
j√( ∑c

i=1 n
(1)
i ln n

(1)
i

n

)( ∑c
i=1 n

(2)
i ln n

(2)
i

n

) ,

where C1 and C2 are the true group assignment and the
assignment found by the algorithms, respectively, n is the
number of vertices, nij is the number of vertices in the known
group i that are assigned to the inferred group j , n

(1)
i is the
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FIG. 2. (Color online) NMI of our method and other approaches
on balanced ad hoc networks with controlled community structure
(a) and disassortative structure (b). Each point is an average over 50
realizations of the networks.

number of vertices in the true group i, and n
(2)
j is the number

of vertices in the inferred group j . The larger the NMI value,
the better the partition obtained by the algorithms.

We conduct two different experiments. First, we set the
two parameters p+ and p− to be zero and gradually change
pin from 1 to 0. In this situation, all the generated synthetic
networks are 4-balanced. Figure 2(a) reports the experimental
results obtained by our method and two state-of-the-art
approaches, namely generalized modularity maximization
through simulated annealing (denoted by GMMax) [35,36] and
the finding and extracting community (FEC) method [34]. In
addition, we also implement the simulated annealing algorithm
to maximize the standard modularity by ignoring the sign of
the links (denoted by MMax) and removing the negative edges
(denoted by PMMax), respectively. Each point in the curves
is an average over 50 realizations of the synthetic random
networks. Bear in mind that the community structure becomes
less cohesive as the parameter pin decreases from 1 to 0. We
can see that both the SSBM model and the GMMax method
perform fairly well and are almost able to perfectly recover
the communities in the synthetic networks for all cases. When
0 � pin � 0.1, our model is even slightly superior to the
GMMax approach. The remaining three methods, however,
can only achieve promising results when pin is sufficiently
large. They all show a fast deterioration as pin becomes smaller
and smaller. For example, the NMI of the FEC algorithm
begins to drop once pin exceeds 0.8, and then quickly reduces
to less than 0.2 when pin = 0.5 and even to approximately
0 when pin is smaller than 0.3. Similar performances can be
observed for the MMax and PMMax approaches as well. These
results are quite understandable since both the SSBM model
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FIG. 3. NMI on unbalanced ad hoc networks with controlled community structure (first row) for (a) FEC, (b) GMMax, and (c) SSBM, and
with controlled disassortative structure (second row) for (d) FEC, (e) GMMin, and (f) SSBM. Each point is an average over 50 realizations of
the networks.

and the GMMax method consider the contribution made by the
negative links in signed networks, which is either neglected or
removed in the remaining three approaches. This highlights the
importance of the negative edges for community detection in
the signed networks. Moreover, the PMMax method always
outshines the MMax method, especially when pin in the
range 0 � pin � 0.5, which is in agreement with the results
reported in Ref. [42], indicating that the positive links in signed
networks have a significant impact on community detection.

Then, we fix the parameter pin = 0.8 and gradually change
the other two parameters p+ and p− from 0 to 0.5, respectively.
Clearly, all the synthetic networks are not balanced in this
setting. The results obtained by our model and two updated
algorithms are give in the upper row of Fig. 3. As we can see,
the SSBM model consistently, and sometimes significantly,
outperforms the other two approaches. More specifically, its
NMF is always 1 except for a few negligible perturbations.
By contrast, the FEC algorithm cannot offer a satisfactory
partition of the signed networks when 0 � p+ � 0.3 and 0 �
p− � 0.5, whose NMI is less than 0.4 at all times. When 0.3 �
p+ � 0.5 and 0 � p− � 0.5, the GMMax approach exhibits a
competitive performance, but its NMI suddenly collapses and
continuously decreases once p+ is larger than 0.3.

We turn now to the second experiment in which the
synthetic networks have controlled disassortative structure.
The signed networks are generated in the same way, except that
we randomly place negative links within groups and positive
links between groups. Similarly, the disassortative structure
in these networks is controlled by three parameters again. pin

indicates the probability of each vertex connecting to other
vertices in the same group, p+ is the probability of positive
links appearing within groups, and p− is the probability of
negative links arising between groups.

We first study the balanced networks by setting p+ and
p− to zero and changing pin from 1 to 0 once again. As
shown in Fig. 2(b), the FEC algorithm, the MMax method,
and our model achieve performances that are very similar
to those in the first experiment. That is, our model always
successfully finds the clusters in the synthetic networks in
all cases, while the FEC algorithm and the MMax method
perform fairly well when pin is large enough, but quickly
degrade as pin approaches 0. The PMMax and the GMMax
methods, however, perform rather badly. The NMI of the
PMMax method seems to be no greater than 0.5 even if pin = 1,
while the NMI of the GMMax approach nearly vanishes in all
cases. This is because the two methods, which seek standard
and generalized modularity maximization, respectively, are
suitable only for community detection. As a consequence,
they deserve to suffer a serious failure in this experiment.
Instead, one should minimize the modularity to uncover the
multipartite structure in networks, as indicated in Ref. [10].
Therefore, we apply the simulated annealing algorithm to
minimize the generalized modularity (denoted by GMMin)
and the standard modularity by ignoring the sign of the links
(denoted by MMin) and excluding the negative connections
(denoted by PMMin), respectively. We see from Fig. 2(b)
that the GMMin method can compete with our SSBM model
except for a slight inferiority when 0 � pin � 0.1. However,
the MMin and PMMin approaches perform unsatisfactorily
due to the fact that they do not consider the contributions
derived from the negative links.

We investigate next the disassortative structure in unbal-
anced synthetic networks by fixing pin = 0.8 and changing
p+ and p− from 0 to 0.5 step by step. The lower row of Fig. 3
gives the results obtained by the FEC method, the GMMin
approach, and our SSBM model, which are quite similar to
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FIG. 4. (Color online) Detecting the mesoscopic structure of a synthetic network. (a) The adjacency matrix of the signed network where
the black dots denote the positive links and the gray dots represent the negative edges. The partitioning results for different methods (b) EFC,
(c) GMMax, (d) GMMin and SSBM from the perspective of outgoing edges (e) and incoming edges (f), where the solid edges denote the
positive links and the dashed edges represent negative links. The sizes of the vertices in (e) and (f) indicate their centrality degree in the
corresponding groups according to the parameters θ and φ, respectively.

those in the first experiment. In particular, although the SSBM
does not perform perfectly in some cases, its NMF is still
rather high, say, more than 0.98. When 0 � p− � 0.3, the
GMMin approach yields sufficiently good results, but its NMF
reduces at a very fast speed along with p− toward 0.5. The FEC
algorithm achieves the worst performance in all cases.

Finally, we focus on a synthetic network containing a
multitude of mesoscopic structures, whose adjacency matrix
is given in Fig. 4(a). Intuitively, according to the outgoing
edges in this network, the second group is the community
structure and the third group belongs to the disassortative
structure. The first group, with positive outgoing links only,
can be viewed as an example of the standard community
structure in positive networks, while the last group, which
includes only negative outgoing links, can be referred to
as an extreme example of disassortative structure in signed
networks. Meanwhile, from the perspective of incoming edges,
the four groups exhibit different types of structural patterns,
which cannot be categorized simply as community structure
or disassortative structure. We apply the FEC algorithm, the
GMMax method, the GMMin method, and our model to
this signed network. Limited by their intrinsic assumptions,
the FEC algorithm, the GMMax method, and the GMMin
method fail to uncover the structural patterns, as shown
in Figs. 4(b)–4(d). In particular, the generalized modularity
proposed in Refs. [35,36], regardless of whether it is maximum
or minimum, misleads us into receiving an improper partition
of the network in which the four groups merge with each other.
But by dividing vertices with the same connection profiles
into groups, our model could accurately detect all types of
mesoscopic structures, both from the perspective of outgoing

links [Fig. 4(e)] and incoming edges [Fig. 4(f)]. Furthermore,
the obtained parameters θ and φ reveal the centrality of each
vertex in its corresponding group from the two perspectives.

B. Real-life networks

We test our method further by applying it to several real
networks containing both positive and negative links. The
first network is a relation graph of 10 parties of the Slovene
Parliamentary in 1994 [44]. The weights of links in the network
were estimated via 72 questionnaires among 90 members of
the Slovene National Parliament. The questionnaires were
designed to estimate the distance between the ten parties on a
scale from −3 to 3, and the final weights were the averaged
values multiplied by 100.

Applying our model to this signed network, we find that
the MDL achieves its minima when c = 2, as shown in
Fig. 5(a), indicating that there are exactly two communities
in the network. Figure 6(a) gives the partition obtained by our
method, which divides the network into two groups of equal
size and produces a completely consistent split with the true
communities in the network. As expected, vertices within the
same community are mostly connected by positive links, while
vertices from different communities are mainly connected
by negative links. We shade each vertex proportional to the
parameters {αir}cr=1, the magnitude of which supplies us with
the probabilities of each vertex belonging to different groups.1

1Both this network and the Gahuku-Gama Subtribes network are
undirected graphs, and therefore the parameter α is identical to β,
and θ is identical to φ.
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FIG. 5. Model selection results for (a) the Slovene Parliamentary
network, (b) the Gahuku-Gama Subtribes network and (c) the
international conflict and alliance network.

From Table I, we see that all the vertices can be exclusively
separated into two communities, except for the vertex “SNS,”
which belongs to the circle group with probability 0.0186 and
to the square group with probability 0.9814. In other words,
the two communities overlap with each other at this vertex,
resulting in its high bridgeness of 0.0372 and group entropy
of 0.1334. This is validated by the observation that the vertex
has two negative links with vertices “ZS-ESS”and “DS”in the
same community. We also visualize the learned parameters ω+
and ω− in Fig. 6(b), which indeed provide a coarse-grained
description of the signed network and reveal that this network
actually has two communities.
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SDSSLDS
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1 2
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FIG. 6. Exploratory analysis of the Slovene Parliamentary net-
work [44]. The solid edges denote positive links and the dashed edges
represent negative links. The true community structure in this network
is represented by two different shapes, namely a circle and a square.
The shades of nodes indicate the membership α obtained by fitting
our model to this network. The sizes of the vertices, proportional to
θ , indicate their centrality degree with respect to their corresponding
group.
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FIG. 7. (Color online) Exploratory analysis of the Gahuku-Gama
Subtribes network [45]. The solid edges denote positive links and the
dashed edges represent negative links. The true community structure
in this network is represented by three different shapes, while the
inferred groups are denoted by different colors. The sizes of the
vertices are proportional to the parameters θ .

The second network is the Gahuku-Gama Subtribes net-
work, which was created based on Read’s study on the cultures
of the Eastern Central Highlands of New Guinea [45]. This
network describes the political alliance and enmities among
the 16 Gahuku-Gama subtribes, which were distributed in
a particular area and were engaged in warfare with one
another in 1954. The positive and negative links of the
network correspond to political arrangements with positive
and negative ties, respectively. Figure 5(b) tells us that this
signed network consists of three groups, because the MDL of
the SSBM model is at a minimum when c = 3. The three
groups categorized by our model are given in Fig. 7(a),
and they match perfectly with the true communities in the
signed network. As shown in Table II, the vertex “MASIL”
participates in the circle group with probability 0.7143 and in
the square group with probability 0.2857. As a result, it has
a large value of bridgeness 0.3773 and group entropy 0.5446.
This implies that these two groups overlap with each other
at this vertex, which is approved by the fact that the vertex
“MASIL” has two positive links connected to “NAGAM” and
“UHETO,” respectively. The learned parameters ω+ and ω−
supply us with a thumbnail of the signed network again in
Fig. 7(b).

Finally, we test our model on the network of international
relations taken from the Correlates of War data set over
the period 1993–2001 [36]. In this network, positive links
represent military alliances and negative links denote military
disputes. The disputes are associated with three hostility
levels, from “no militarized action” to “interstate war.” For
each pair of countries, we chose the mean level of hostility
between them over the given time interval as the weight of
their negative link. The positive links denote the alliances:
1 for entente, 2 for nonaggression pact, and 3 for defense
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TABLE I. The soft group membership α, bridgeness bi [17], and group entropy ξi [20] of each vertex in the Slovene Parliamentary
network [42]. Larger bridgeness or entropy means that the corresponding nodes are more “instable.”

Vertex SKD ZLSD SDSS LDS ZS-ESS ZS DS SLS SPS-SNS SNS

αi1 1.000 0 1.000 0 0 1.000 0 1.000 1.000 0.0186
αi2 0 1.000 0 1.000 1.000 0 1.000 0 0 0.9814
bi 0 0 0 0 0 0 0 0 0 0.0372
ξi 0 0 0 0 0 0 0 0 0 0.1334

pact. Finally, we normalized both the negative and positive
links into the interval [0, 1], and the final weight of the
link among each pair of countries is the remainder of the
weight of the normalized positive links minus the weight of
the normalized negative links. The obtained network contains
a giant component consisting of 161 vertices (countries) and
2517 links (conflicts or alliances). Here, we only investigate
the structure of the giant component.

The structure of this network was investigated in several
existing studies. These studies indicated that there are six main
power blocs, each consisting of a set of countries with similar
actions of alliances or disputes. In Ref. [36], the authors labeled
these power blocs as (i) the West, (ii) Latin America, (iii) the
Muslim World, (iv) Asia, (v) West Africa, and (vi) Central
Africa. Applying the SSBM model to this network, we find
that the MDL arrives at its minimum when c = 6, as illustrated
in Fig. 5(c). By partitioning the network into six groups, we
summarize the results in Fig. 8. From the rearranged adjacency
matrix [Fig. 8(c)], we can conclude that the first, second,
third, and fifth groups, from bottom left to top right, distinctly
belong to the community structure, while the sixth group
can be viewed as the disassortative structure. However, the
fourth group cannot be simply categorized as either community
structure or disassortative structure. In agreement with the
assumption of the SSBM model, vertices in the six groups
exhibit similar connection profiles, although miscellaneous
structural patterns coexist in this network.

From the perspective of the outgoing edges, we obtain a split
of the network that is similar to the one obtained in Ref. [36],
as shown in Fig. 8(a). However, several notable differences
exist between the two results. Specifically, “Pakistan” is
grouped with the West and “South Korea” is grouped with
the Muslim World in Ref. [36]. These false categorizations

can be correctly amended, which is consistent with the con-
figuration depicted in Huntington’s renowned book The Clash
of Civilizations [46]. In addition, we categorized “Australia,”
which is grouped with the West in Ref. [36], into the group Asia
for understandable reasons. Figure 8(b) gives a quite different
structure of this network from the perspective of incoming
edges. Three groups, namely the West, Latin America, and the
Muslim World, stay almost the same. But “Russia,” together
with some countries of the former Soviet Union, are isolated
from the Asia group and form another independent power bloc.
Meanwhile, the remaining countries in the Asia group join
with the West Africa countries to constitute a bigger cluster.
It is not difficult to see that all the changes appear to be in
accordance with the history and evolution of the international
relations.

Recall that the parameters θ and φ provide us with
the centrality degrees of each vertex in its corresponding
group from the perspective of outgoing edges and incoming
edges, respectively. In other words, the parameters measure
the importance of each vertex in its group. For a better
visualization, the sizes of vertices in Figs. 8(d) and 8(e)
are proportional to the magnitude of the scalars θ and φ.
Coincidentally, we discover that the big vertices, marked by
the red bold border, usually stand for the dominant countries in
their corresponding groups. For example, the largest vertex of
the West is “USA” in Fig. 8(d). In fact, this state often serves as
a leader in its power bloc. A similar interpretation can be given
for the vertex “Russia” in the Asia group. We further check the
bridgeness and group entropy for each vertex in the network
(data not shown), and we mark the vertices, which have large
values of these two measures, with the black bold border. As
anticipated, these kinds of vertices are particularly prone to
residing on the boundaries of different groups. That is to say,

TABLE II. The soft group membership α, bridgeness bi [17] and group entropy ξi [20] of each vertex in the Gahuku-Gama Subtribes
network [45]. Larger bridgeness or entropy means that the corresponding nodes are more “instable.”

Vertex GAVEV KOTUN OVE ALIKA NAGAM GAHUK MASIL UKUDZ NOTOH KOHIK

αi1 1.000 1.000 0 0 0 0 0 0 0 0
αi2 0 0 1.000 1.000 0 1.000 0.7143 1.000 0 0
αi3 0 0 0 0 1.000 0 0.2857 0 1.000 1.000
bi 0 0 0 0 0 0 0.3773 0 0 0
ξi 0 0 0 0 0 0 0.5446 0 0 0
Vertex GEHAM ASARO UHETO SEUVE NAGAD GAMA
αi1 0 0 0 0 1.000 1.000
αi2 1.000 1.000 0 0 0 0
αi3 0 0 1.000 1.000 0 0
bi 0 0 0 0 0 0
ξi 0 0 0 0 0 0
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FIG. 8. (Color online) Exploratory analysis of the international conflict and alliance network [36]. Maps of the groups found using the
SSBM model from the perspective of outgoing edges (a) and incoming edges (b). (c) The rearranged adjacency matrix, in which the black dots
denote positive links and the gray dots represent negative edges. Six groups are separated by black solid lines. The partition of this network is
obtained by the SSBM model from the perspective of outgoing edges (d) and incoming edges (e), where the solid edges denote positive links
and the dashed edges represent negative links. The sizes of the vertices are proportional to their centrality degrees θ and φ, respectively. The
red bold border vertices have large centrality degrees, while the black bold border vertices have large values of bridgeness and group entropy.

the vertices that are very difficult to divide into one group build
a fuzzy watershed of the overlapping structures. In Fig. 8(d),
the three vertices “Janpan,” “Philippines,” and “Australia,”
with high values of both bridgeness and group entropy, play a
transitional role between the West and Asia groups. In reality,
the above-mentioned Asian countries frequently collaborated
with their counterparts in the West group in many areas, from
economics to the military.

V. CONCLUSIONS

We propose an extension of the stochastic block model to
study the mesoscopic structural patterns in signed networks.
Without prior knowledge of what specific structure exists, our

model can not only accurately detect broad types of intrinsic
structures, but it can also directly learn their types from the
network data. Experiments on a number of synthetic and
real-world networks demonstrate that our model outperforms
the state-of-the-art approaches at extracting various structural
features in a given network. Due to the flexibility inherited
from the stochastic model, our method is an effective way to
reveal the global organization of the networks in terms of the
structural regularities, which further helps us to understand the
relationship between the structure and function of networks.
As future work, we will generalize our model by removing the
requirement that the block matrices must be square matrices,
and we will investigate the possible applications of the more
flexible models.
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(Metodološki zvezki 12, FDV, Ljubljana, 1996), pp. 209–216.

[45] K. E. Read, Southwest. J. Anthropol. 10, 1 (1954).
[46] S. P. Huntington, The Clash of Civilizations and the Remaking

of World Order (Simon & Schuster, New York, 1996).

062805-11

http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1137/080734315
http://dx.doi.org/10.1137/080734315
http://dx.doi.org/10.1137/080734315
http://dx.doi.org/10.1137/080734315
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1109/2.989932
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1049/iet-syb:20060077
http://dx.doi.org/10.1049/iet-syb:20060077
http://dx.doi.org/10.1049/iet-syb:20060077
http://dx.doi.org/10.1049/iet-syb:20060077
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1103/PhysRevE.68.056107
http://dx.doi.org/10.1103/PhysRevE.68.056107
http://dx.doi.org/10.1103/PhysRevE.68.056107
http://dx.doi.org/10.1103/PhysRevE.68.056107
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1103/PhysRevE.72.056135
http://dx.doi.org/10.1103/PhysRevE.72.056135
http://dx.doi.org/10.1103/PhysRevE.72.056135
http://dx.doi.org/10.1103/PhysRevE.72.056135
http://dx.doi.org/10.1103/PhysRevE.77.016107
http://dx.doi.org/10.1103/PhysRevE.77.016107
http://dx.doi.org/10.1103/PhysRevE.77.016107
http://dx.doi.org/10.1103/PhysRevE.77.016107
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1063/1.3560932
http://dx.doi.org/10.1016/j.physa.2011.08.043
http://dx.doi.org/10.1016/j.physa.2011.08.043
http://dx.doi.org/10.1016/j.physa.2011.08.043
http://dx.doi.org/10.1016/j.physa.2011.08.043
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1007/s10994-010-5214-7
http://dx.doi.org/10.1007/s10994-010-5214-7
http://dx.doi.org/10.1007/s10994-010-5214-7
http://dx.doi.org/10.1007/s10994-010-5214-7
http://dx.doi.org/10.1103/PhysRevE.84.056111
http://dx.doi.org/10.1103/PhysRevE.84.056111
http://dx.doi.org/10.1103/PhysRevE.84.056111
http://dx.doi.org/10.1103/PhysRevE.84.056111
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1073/pnas.0908366106
http://dx.doi.org/10.1080/0022250X.1971.9989788
http://dx.doi.org/10.1080/0022250X.1971.9989788
http://dx.doi.org/10.1080/0022250X.1971.9989788
http://dx.doi.org/10.1080/0022250X.1971.9989788
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1186/1471-2164-10-327
http://dx.doi.org/10.1186/1471-2164-10-327
http://dx.doi.org/10.1186/1471-2164-10-327
http://dx.doi.org/10.1186/1471-2164-10-327
http://dx.doi.org/10.1103/PhysRevE.86.036116
http://dx.doi.org/10.1103/PhysRevE.86.036116
http://dx.doi.org/10.1103/PhysRevE.86.036116
http://dx.doi.org/10.1103/PhysRevE.86.036116
http://dx.doi.org/10.1109/TKDE.2007.1061
http://dx.doi.org/10.1109/TKDE.2007.1061
http://dx.doi.org/10.1109/TKDE.2007.1061
http://dx.doi.org/10.1109/TKDE.2007.1061
http://dx.doi.org/10.1103/PhysRevE.80.016114
http://dx.doi.org/10.1103/PhysRevE.80.016114
http://dx.doi.org/10.1103/PhysRevE.80.016114
http://dx.doi.org/10.1103/PhysRevE.80.016114
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1080/00223980.1946.9917275
http://dx.doi.org/10.1080/00223980.1946.9917275
http://dx.doi.org/10.1080/00223980.1946.9917275
http://dx.doi.org/10.1080/00223980.1946.9917275
http://dx.doi.org/10.1177/001872676702000206
http://dx.doi.org/10.1177/001872676702000206
http://dx.doi.org/10.1177/001872676702000206
http://dx.doi.org/10.1177/001872676702000206
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://arxiv.org/abs/arXiv:0801.3290



