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Given a reference computer, Kolmogorov complexity is a well defined
function on all binary strings. In the standard approach, however, only
the asymptotic properties of such functions are considered because they
do not depend on the reference computer. We argue that this approach
can be more useful if it is refined to include an important practical
case of simple binary strings. Kolmogorov complexity calculus may be
developed for this case if we restrict the class of available reference com-
puters. The interesting problem is to define a class of computers which
is restricted in a natural way modeling the real-life situation where only
a limited class of computers is physically available to us. We give an
example of what such a natural restriction might look like mathemat-
ically, and show that under such restrictions some error terms, even
logarithmic in complexity, can disappear from the standard complexity
calculus.

Keywords: Kolmogorov complexity; Algorithmic information theory.

1 Introduction

The asymptotic nature of Kolmogorov complexity calculus renders it signifi-
cantly less useful in practical applications such as inference by the minimum
description length (MDL) principle [9]. In the classical MDL approach [10] this
problem is solved by replacing Kolmogorov complexity with a phenomenolog-
ical complexity measure just before performing the actual inference. Such
a measure can be chosen to suit a particular application, whereas the gen-
eral form of the MDL constructions can be considered as a consequence of
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the asymptotic properties of Kolmogorov complexity (consult section 5.5 in
Ref. [8]). Here we propose a different approach. We argue that Kolmogorov
complexity can become more practical if we restrict the class of reference com-
puters.

Computer science is not the only field which can benefit from the proposed
research. There is a growing interest in using Kolmogorov complexity as a
fundamental physical concept. This includes applications in thermodynam-
ics [1, 2, 14]1, theory of chaos [3, 4, 7, 11]2, physics of computation (con-
sult [8] and references therein), and many other areas of modern theoretical
physics [6, 12, 13]. It is however very difficult to use Kolmogorov complexity in
any concrete physical setting, or indeed, in any concrete application. For that
we need a much more detailed calculus that can be applied to particular cases
of reference computers. The main aim of this article is to stimulate further
research in developing such a practical complexity calculus.

This article is organized as follows. In section 2 we review some basic defini-
tions. In section 3 we present the main conceptual arguments of the paper.
In section 4 we give an example of how one can build a restricted class of
computers in a “natural” way. Considering one of the central equalities of the
standard complexity calculus we give an illustration of how the error terms
may be reduced.

2 Basic definitions

Let X = {Λ, 0, 1, 00, 01, 10, 11, 000, . . .} be the set of finite binary strings where
Λ is the string of length 0. A set of strings Y ⊂ X with the property that no
string in Y is a prefix of another is called an instantaneous code. A prefix
computer is a partial recursive function C : Y×X → X. For each p ∈ Y (pro-
gram string) and for each d ∈ X (data string) the output of the computation is
either undefined or given by C(p, d) ∈ X. Kolmogorov complexity of a string α

given a data string d relative to a computer C is defined as the length KC(α|d)
of the shortest program that makes C compute α given data d:

KC(α|d) ≡ min
p
{|p|

∣

∣ C(p, d) = α} , (1)

where |p| denotes the length of the program p (in bits).

Since this complexity measure depends strongly on the reference computer, it
is important to find an optimal computer U such that the complexity of any
string relative to U is not much higher that the complexity of the same string

1consult [8] for further references.
2 consult [8] for further references.
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relative to any other computer C. Mathematically, a computer U is called
optimal if

∀C ∃κC such that ∀α, d : KU(α|d) ≤ KC(α|d) + κC , (2)

where κC is a constant depending on C (and U) but not on α or d. It turns
out that the set of prefix computers contains such a U and, moreover, it can
be constructed so that any prefix computer can be simulated by U : for further
details consult [8]. Such a U is called a universal prefix computer and its
choice is not unique. Using some particular universal prefix computer U as a
reference, the conditional Kolmogorov complexity of α given β is defined as
KU(α|β).

The above definitions are generalized for the case of many strings as follows.
We choose and fix a particular recursive bijection B : X × X → X for use
throughout the rest of this paper. Let {αi}ni=1 be a set of n strings αi ∈ X. For
2 ≤ k ≤ n we define 〈α1, α2, . . . , αk〉 ≡ B(〈α1, . . . , αk−1〉, αk), and 〈α1〉 ≡ α1.
We can now defineKU(α

1, . . . , αn|β1, . . . , βk) ≡ KU(〈α
1, . . . , αn〉|〈β1, . . . , βk〉).

For any two universal prefix computers U1 and U2 we have, by definition,
|KU1

(α|β)−KU2
(α|β)| ≤ κ(U1, U2) where κ(U1, U2) is a constant that depends

only on U1 and U2 and not on α or β. Most of the research on Kolmogorov com-
plexity is focused on the asymptotic case of nearly random long strings, when
κ(U1, U2) can be neglected in comparison to the value of the complexity. In
such cases, Kolmogorov complexity becomes an asymptotically absolute mea-
sure of the complexity of individual strings. For this reason, many fundamental
properties of Kolmogorov complexity are established up to an error term which
is asymptotically small compared to the complexity of strings involved. For in-
stance, the standard analysis of the prefix Kolmogorov complexity ([8], Section
3.9.2) gives

KU(α, γ|β) = KU(α|γ, β) +KU(γ|β) + ∆ , (3)

where ∆ is an error term which grows logarithmically with the complexity of
the considered strings. This is an example of an asymptotic property that
all Kolmogorov measures of complexity have irrespective of the choice of the
reference computer. Of course, it is important to know that all Kolmogorov
measures of complexity share many of their asymptotic properties. For any
given reference computer, however, Kolmogorov complexity is a well defined
function on all binary strings. Even from a purely mathematical viewpoint it is
interesting to study the properties of such functions beyond the asymptotics.
As for the applied viewpoint, consider, by analogy, mathematical analysis.
This theory would be much less useful if we studied only asymptotic properties
of functions.
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3 Main arguments

Without significant knowledge about the reference computer, Kolmogorov
complexity can be considered only up to an additive error term O(1). Er-
ror terms even as small as O(1) make it impossible to use Occam’s razor to
discriminate between simple hypotheses. The importance of this problem be-
comes apparent once we recognize that the domain of simple hypotheses is
absolutely crucial in our every-day life as well as in fundamental science. In-
deed, it is often the case that, after extensive analysis, the greatest scientific
discoveries can be expressed in a form so simple that they are readily under-
stood by even school children.

Humans can relatively easily discriminate between different hypotheses even
when the Kolmogorov complexities involved are rather small. This gives them
an enormous advantage over the present-day theoretical models. A good exam-
ple is Kepler’s theory of planetary motion. In what was a major breakthrough
in theoretical astronomy at the time, Kepler introduced elliptical orbits as a
better alternative to the complicated Copernican planetary model of super-
imposed epicycles. At the level of accuracy provided by Brahe’s experiments,
the original Copernican model had to be refined by introducing additional
epicycles: the Keplerian theory appeared to be simpler and therefore better
by Occam’s razor. This apparently obvious fact cannot be established using
the standard formalism of Kolmogorov complexity: whereas Kepler’s theory
can be simpler relative to some type of computers, the Copernican model can
be simpler relative to some other type of reference computers.

Much simpler examples can be found in tests that are designed by humans
to test their own intelligence. A typical problem in such tests is to find the
next element in a sequence of symbols. For example, if the first four elements
of a sequence are 1,2,3,4 an intelligent person is supposed to see the simplest
pattern and predict 5 as the next element of the sequence. As in the previ-
ous example, all humans would agree that predicting 5 would correspond to
the choice of the simplest hypothesis, whereas the standard formalism of Kol-
mogorov complexity cannot be used to justify this. It seems entirely plausible
that the ultimate theory of artificial intelligence and, in particular, inductive
inference, can achieve human-like results only if the building blocks of the the-
ory, such as Kolmogorov complexity, are made sensitive to small variations in
the complexity of hypothesis.

The O(1) ambiguity in the classical definition of Kolmogorov complexity and
the error terms like ∆ in Eq. (3) is the price we pay for having an unrestricted
class of reference computers. Every human perceives complexity with respect
to their own built-in reference computer – the brain. As in the case of abstract
reference computers, human brains are not identical. However, they are similar
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enough to allow for a sharper discrimination between individual theories on the
basis of their complexity. This suggests that further progress in applications
of Kolmogorov complexity to the theory of induction can be made possible if
we find a natural way of restricting the class of reference computers.

We see from this discussion that some restrictions on the class of reference
computers are needed. It is desirable, however, to have a complexity theory
which would be as general as possible. As a compromise, we can try to group
all possible reference computers into restricted classes. Although we may want
to study all such classes, we can argue that due to biological, technological, and
other limitations only one class of reference computers is physically available
to us. A definition of this realistic class of reference computers would be the
crucial link between the abstract theory of Kolmogorov complexity and the
practical theories of induction and computer learning.

What kind of restriction of the class of reference computers can be seen as
natural? It appears natural to assume that given some particular level of
technology one can build more powerful computers only at the expense of
a more complex internal design. In section 4 we use this observation to con-
struct an example of a “natural” restriction of the class of reference computers.
Roughly speaking, this restriction entails the requirement that switching to a
more complex reference computer should always be accompanied by an equiv-
alent reduction of program lengths. Using some particular universal computer
U as a reference, we define the complexity of a computer Ws from the set {Wi}
given data d asKU(s|d). We then construct a particular set of computers {Wi}
such that the sum of the complexity of a computer and the length of a program
for it is the same for all equivalent3 programs and for all computers in the set
{Wi} (consult section 4 for details). This gives us a tradeoff between computer
complexity and program lengths similar to what one would expect in the real
world where we face various practical limitations. Together with the original
reference computer U computers {Wi} form a “naturally” restricted class. It
is natural to define a computer W which is universal for this class by setting
W (p, 〈s, d〉) = Ws(p, d), where U is included by defining WΛ ≡ U . Using any
such W as a reference we can see that, in principle, even error terms logarith-
mic in complexity can be removed from the standard complexity calculus. In
particular, we prove that for any triple of simple strings α, β, γ, we have

KW (α, γ|〈Λ, β〉) = KW (α|γ, β) +KW (γ|〈Λ, β〉) + const , (4)

where the constant depends only on the reference machine W (not on α, β
or γ). Apart from subtleties associated with the operation of combining strings

3two programs p1 and p2 for computers C1 and C2 are called equivalent iff C1(p1|d) =
C2(p2|d).
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into pairs, this is analogous to Eq. (3) with the important difference that the
error term is replaced by a constant.

In the standard complexity calculus the above equation holds only up to an
error term which grows logarithmically with the complexity of the considered
strings. As we explained earlier, this is unacceptable if we want to analyze
the complexity of simple strings. The error terms are especially troublesome if
we want to use the complexity calculus as a part of inductive inference based
on the MDL principle. In such cases we are interested in the position of the
minimum rather than on the approximated value of complexity. The error term
can significantly shift the position of the minimum even when mistakes on the
value of complexity are minor. This can introduce uncontrollable mistakes in
the inference results. In our case, however, equation (4) is exact in the sense
that the constant does not influence the position of critical points so it can be
safely ignored in applications such as induction by the MDL principle.

4 Example

As we explained in section 3, a natural restriction of the class of reference
computers can make Kolmogorov complexity more useful in applications such
as inference and computer learning. In this section we consider one possible
way of making such a restriction. We show that, in the important case of
simple strings, the proposed restriction effectively removes the error term in
Eq. (3), which has important applications in physics [13].

Definition 1

Fix δ ∈ N. A set of strings Sδ ⊆ X is called δ-simple iff for any two strings

α, γ ∈ Sδ we have

|α| < δ , |γ| < δ , and |〈α, γ〉| < δ , (5)

where | · | denotes the string length.

Following Chaitin [5], consider a list of infinitely many requirements 〈rk, lk(d)〉
(k = 0, 1, 2, . . . ) for the construction of a computer. Each requirement 〈rk, lk(d)〉
requests that a program of length lk(d) be assigned to the result rk if the com-
puter is given data d. The requirements are said to satisfy the Kraft inequality
if

∑

k 2
−lk(d) ≤ 1: for such requirements there exists an instantaneous code

characterized by the set of string lengths {lk(d)}. A computer C is said to
satisfy the requirements if there are precisely as many programs p of length
l(d) such that C(p, d) = r as there are pairs 〈r, l(d)〉 in the list of requirements.

Fix a universal computer U which can be constructed from an effectively given
list of requirements (consult [5], Theorem 3.2). Consider the set of all programs
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{pk} for U such that the output of computation U(pk, d) is defined. Since B is
a bijection, we can write U(pk, d) = 〈rk, sk〉, where rk and sk are strings from
X. Moreover, because U is a universal computer, any pair of strings 〈α, γ〉 can
be generated this way. In what follows we consider only those pk for which
sk 6= Λ. For every fixed s from the set {sk} we construct a list of requirements

〈rk, |pk| −KU(s|d) + κs
d〉 , k = 1, 2, . . . (6)

where |pk| is the length of the program pk, and κs
d is some constant. It was

shown ([5], Theorem 3.8) that the constant κs
d can be chosen large enough

such that these requirements satisfy the Kraft inequality. Fix any δ ∈ N, and
consider a sublist of requirements (6):

〈rk, |pk| −KU(s|d) + κs
d〉 rk, d ∈ Sδ , (7)

where Sδ is the set of δ-simple strings. For any s ∈ Sδ, we can find κ ≡
max{κs

d| s, d ∈ Sδ}, then choose κs
d = κ, and construct a new list of require-

ments

〈rk, |pk| −KU(s|d) + κ〉 rk, d ∈ Sδ . (8)

For any fixed s ∈ Sδ these requirements satisfy the Kraft inequality by con-
struction. Furthermore, since Sδ is finite and B is recursive these requirements
can be effectively given. This means that for any s ∈ Sδ there is a computer
Ws that satisfies these requirements: consult ([5], Theorem 3.2) for further
details.

For each value of s ∈ Sδ \ {Λ} we use (8) to construct one Ws. We define
WΛ = U , and form the set WU ≡ {Ws| s ∈ Sδ}. This set contains the original
computer U as a somewhat special element. Having the computer U at our
disposal, it would take at least KU(s|d) bits to specify any other Ws from
the set WU given data d. We can now see that requirements (8) are designed
in such a way that more complex computers, i.e. larger KU(s|d), will have
shorter programs, lk(d) = |pk| − KU(s|d) + κ. This is exactly the property
that we wanted to use as a natural restriction that defines a realistic class of
computers.

In what follows we restrict our attention to the set WU . We define a computer
W which is universal for the set WU , i.e. which is designed to simulate any
computer Ws ∈ WU :

W (p, 〈s, d〉) ≡ Ws(p, d) . (9)

Theorem 1

For any α, d ∈ Sδ, and for any γ ∈ Sδ \ {Λ}, we have

KW (α|γ, d) = KW (α, γ|〈Λ, d〉)−KW (γ|〈Λ, d〉) + κ . (10)
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Proof

Consider the program p̃k which causes Ws ∈ WU to produce the result rk ∈ Sδ

given data d

Ws(p̃k, d) = rk . (11)

By definition of Ws, the length of p̃k satisfies the requirement

∀s ∈ Sδ \ {Λ} and ∀d ∈ Sδ : |p̃k| = |pk| −KU(s|d) + κ , (12)

where pk is the program for U such that

U(pk, d) = 〈rk, sk〉 , sk 6= Λ . (13)

We define the set K ≡ {i|U(pi, d) = 〈rk, sk〉}, which can contain more than one
element since some of the pairs {〈rk, sk〉} can coincide. From the construction
of Ws we note that requirements (8) associate exactly one program p̃k with the
corresponding program pk. In other words there is a one-to-one correspondence
between programs p̃k and pk (which is given explicitly by the index k). This
means that the set K coincides with the set K̃ ≡ {i|Ws(p̃i, d) = rk}. Since U ,
d and s are fixed, and using the identity K = K̃, we have from Eq. (12)

min
k∈K̃

|p̃k| = min
k∈K

|pk| −KU(s|d) + κ , s ∈ Sδ \ {Λ} . (14)

By definition of W we have

W (p̃k, 〈s, d〉) ≡ Ws(p̃k, d) = rk , s 6= Λ . (15)

This means, by definition of Kolmogorov complexity, that KW (rk|s, d) =
mini∈K̃ |p̃i|, s 6= Λ. Similarly from Eq. (13), we have KU(rk, sk|d) = mini∈K |pi|
and therefore Eq. (14) becomes

KW (rk|s, d) = KU(rk, sk|d)−KU(s|d) + κ . (16)

BecauseW (p, 〈Λ, d〉) = U(p, d) we have, for instance, KU(s|d) = KW (s, 〈Λ, d〉).
Using this observation to transform both terms at the right hand side of
Eq. (16), and choosing s = sk we have Eq. (10) as required. ✷

Note that, since U is an arbitrary prefix computer, the above analysis provides
a grouping of all possible reference computers into naturally restricted classes.
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