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Modularity is a popular measure of community structure. How-
ever, maximizing the modularity can lead to many competing
partitions, with almost the same modularity, that are poorly
correlated with each other. It can also produce illusory ‘‘communi-
ties’’ in random graphs where none exist. We address this problem
by using the modularity as a Hamiltonian at finite temperature
and using an efficient belief propagation algorithm to obtain the
consensus of many partitions with high modularity, rather than
looking for a single partition that maximizes it. We show analyt-
ically and numerically that the proposed algorithm works all of the
way down to the detectability transition in networks generated
by the stochastic block model. It also performs well on real-world
networks, revealing large communities in some networks where
previous work has claimed no communities exist. Finally we show
that by applying our algorithm recursively, subdividing communi-
ties until no statistically significant subcommunities can be found,
we can detect hierarchical structure in real-world networks more
efficiently than previous methods.

networks | community detection | message-passing algorithms |
statistical significance | phase transitions

Community detection, or node clustering, is a key problem in
network science, computer science, sociology, and biology. It

aims to partition the nodes in a network into groups such that
there are many edges connecting nodes within the same group and
comparatively few edges connecting nodes in different groups.
Many methods have been proposed for this problem. These

include spectral clustering, where we classify nodes according to
the eigenvectors of a linear operator such as the adjacency ma-
trix, the random walk matrix, the graph Laplacian, or other linear
operators (1–3); statistical inference, where we fit the network
with a generative model such as the stochastic block model (4–7);
and a wide variety of other methods, e.g., refs. 8–10. See ref. 11
for a review.
We focus here on a popular measure of the quality of a parti-

tion, the modularity (e.g., refs. 8 and 12–14). We think of a par-
tition ftg into q groups as a function t : V → f1; . . . ; qg, where ti is
the group to which node i belongs. The modularity of a partition
ftg of a network with n nodes and m edges is defined as

Q
�ftg�= 1

m

 X
hiji∈E

δti tj −
X
hiji

didj
2m

δti tj

!
: [1]

Here E is the set of edges, di is the degree of node i, and δ is the
Kronecker delta function. The modularity is proportional to the
number of edges connecting nodes in the same community minus
the expected number of such edges if the graph were random
conditioned on its degree distribution, that is, the expectation in
a null model where i and j are connected with probability pro-
portional to didj.
However, maximizing over all possible partitions often gives

a large modularity even in random graphs with no community

structure (15–18). Thus, maximizing the modularity can lead to
overfitting, where the “optimal” partition simply reflects random
noise. Even in real-world networks, the modularity often exhibits
a large amount of degeneracy, with multiple local optima that
are poorly correlated with each other and are not robust to small
perturbations (19).
Thus, we need to add some notion of statistical significance to

our algorithms. One approach is hypothesis testing, comparing
various measures of community structure to the distribution we
would see in a null model such as Erd}os–Rényi (ER) graphs (20–
22). However, even when communities really exist, the modu-
larity of the true partition is often no higher than that of random
graphs. In Fig. 1, we show partitions of two networks with the
same size and degree distribution: an ER graph (Left) and a
graph generated by the stochastic block model (Right), in the
detectable regime where it is easy to find a partition correlated
with the true one (5, 6). The true partition of the network in
Fig. 1, Right has a smaller modularity than the partition found for
the random graph in Fig. 1, Left. We can find a partition with
higher modularity (and lower accuracy) in Fig. 1, Right, using,
e.g., simulated annealing, but then the modularities we obtain for
the two networks are similar. Thus, the usual approach of null
distributions and P values for hypothesis testing does not appear
to work.
We propose to solve this problem with the tools of statistical

physics. As in ref. 16, we treat the modularity as the Hamiltonian
of a spin system. We define the energy of a partition ftg as
EðftgÞ=−mQðftgÞ and introduce a Gibbs distribution as a func-
tion of inverse temperature β, PðftgÞ∝ e−βEðftgÞ. Rather than
maximizing the modularity by searching for the ground state of
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this system, we focus on its Gibbs distribution at a finite temper-
ature, looking for many high-modularity partitions rather than a
single one. In analogy with previous work on the stochastic block
model (5, 6), we define a partition f̂tg by computing the marginals
of the Gibbs distribution and assigning each node to its most likely
community. Specifically, if ψ i

t is the marginal probability that i
belongs to group t, then t̂i = argmaxt ψ

i
t, breaking ties randomly if

more than one t achieves the maximum. We call f̂tg the retrieval
partition and call its modularity Qðf̂tgÞ the retrieval modularity.
We claim that f̂tg is a far better measure of significant community
structure than the maximum-modularity partition. In the language
of statistics, the maximum marginal prediction is better than the
maximum a posteriori prediction (e.g., ref. 23). More informally,
the consensus of many good solutions is better than the ‘‘best’’
single one (24, 25).
We give an efficient belief propagation (BP) algorithm to

approximate these marginals, which is derived from the cavity
method of statistical physics. This algorithm is highly scalable;
each iteration takes linear time on sparse networks if the number
of groups is fixed, and it converges rapidly in most cases. It is
optimal in the sense that for synthetic graphs generated by the
stochastic block model, it works all of the way down to the de-
tectability transition. It provides a principled way to choose the
number of communities, unlike other algorithms that tend to
overfit. Finally, by applying this algorithm recursively, subdivid-
ing communities until no statistically significant subcommunities
exist, we can uncover hierarchical structure.
We validate our approach with experiments on real and syn-

thetic networks. In particular, we find significant large commu-
nities in some large networks where previous work claimed there
were none. We also compare our algorithm with several others,
finding that it obtains more accurate results, both in terms of
determining the number of communities and in terms of match-
ing their ground-truth structure.

Results
Results on the Stochastic Block Model. Also called the planted
partition model, the stochastic block model (SBM) is a popular
ensemble of networks with community structure. There are q
groups of nodes, and each node i has a group label tpi ∈ f1; . . . ; qg;
thus ft*g is the true, or planted, partition. Edges are generated
independently according to a q× q matrix p, by connecting each
pair of nodes hiji with probability ptpi ;tpj . Here for simplicity we

discuss the commonly studied case where the q groups have equal
size and where p has only two distinct entries, prs = cin=n if r= s
and cout=n if r≠ s. We use e= cout=cin to denote the ratio between
these two entries. In the assortative case, cin > cout and e< 1.
When « is small, the community structure is strong; when e= 1,
the network becomes an ER graph.
For a given average degree c= ðcin + ðq− 1ÞcoutÞ=q, there is a

so-called detectability phase transition (5, 6), at a critical value

e* =
ffiffiffi
c

p
− 1ffiffiffi

c
p

− 1+ q
: [2]

For e< e* , BP can label the nodes with high accuracy; for e> e* ,
neither BP nor any other algorithm can label the nodes better
than chance, and indeed no algorithm can distinguish the net-
work from an ER graph with high probability. This transition was
recently established rigorously in the case q= 2 (26–28).
For larger numbers of groups, the situation is more compli-

cated. For q≤ 4, in the assortative case, this detectability tran-
sition coincides with the Kesten–Stigum bound (29, 30). For
q≥ 5 the Kesten–Stigum bound marks a conjectured transition to
a ‘‘hard but detectable’’ phase where community detection is still
possible but takes exponential time, whereas the detectability
transition is at a larger value of «; that is, the thresholds for
reconstruction and robust reconstruction become different. Our
claim is that our algorithm succeeds down to the Kesten–Stigum
bound, i.e., throughout the detectable regime for q≤ 4 and the
easily detectable regime for q≥ 5.
In Fig. 2 we compare the behavior of our BP algorithm on ER

graphs and a network generated by the SBM in the detectable
regime. Both graphs have the same size and average degree c= 3.
For the ER graph (Fig. 2, Left) there are just two phases, sep-
arated by a transition at βp = 1:317: the paramagnetic phase,
where BP converges to a factorized fixed point where every node
is equally likely to be in every group, and the spin-glass phase,
where replica symmetry is broken and BP fails to converge. The
convergence time diverges at the transition. Note that in the spin-
glass phase, the retrieval modularity returned by BP fluctuates
wildly as BP jumps from one local optimum to another and has
little meaning. In any case BP assumes replica symmetry, which is
incorrect in this phase.
In contrast, the SBM network in Fig. 2, Right has strong com-

munity structure. In addition to the paramagnetic and spin-glass
phases, there is now a retrieval phase in a range of β, where BP
finds a retrieval state describing statistically significant community
structure. The retrieval modularity jumps sharply at βR = 1:072,

Fig. 1. The adjacency matrices of two networks, partitioned to show pos-
sible community structure. Each blue point is an edge. (Left) The network is
an ER graph, with no real community structure; however, a search by sim-
ulated annealing finds a partition with modularity 0.391. (Right) The net-
work has true communities and is generated by the stochastic block model,
but the true partition has modularity of just 0.333. Thus, illusory communi-
ties in random graphs can have higher modularity than true communities in
structured graphs. Both networks have size n= 5,000 and a Poisson degree
distribution with mean c= 3; the network at Right has cout=cin = 0:2, in the
easily detectable regime of the stochastic block model.

Fig. 2. Retrieval modularity (blue ×, left y axis) and BP convergence time
(red +, right y axis) of an ER random graph (Left) and a network generated
by the stochastic block model in the detectable regime (Right). Both net-
works have n= 1,000 and average degree c= 3, and the network on the right
has e= 0:2. In both cases we ran BP with q= 2 groups. In the ER graph, which
has no community structure, there are two phases, paramagnetic (P) and
spin glass (SG), with a transition at β* = 1:317. In the SBM network, there is
an additional retrieval phase (R) between βR = 1:072 and βSG = 2:27, where BP
finds a retrieval state with high modularity, indicating statistically significant
community structure.
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when we first enter this phase, and then increases gently to 0.393
as β increases; for comparison, the modularity of the planted
partition isMhiddenðeÞ= 1=ð1+ eÞ− 1=2= 0:33. When we enter the
spin-glass phase at βSG = 2:27, the retrieval modularity fluctuates
as in the ER graph. The convergence time diverges at both phase
transitions.
We can compute two of these transition points analytically by

analyzing the linear stability of the factorized fixed point (Methods).
Stability against random perturbations gives

β* ðq; cÞ= log
�

qffiffiffi
c

p
− 1

+ 1
�
; [3]

and stability against correlated perturbations gives

βRðq; c; eÞ= log
�

qð1+ ðq− 1ÞeÞ
cð1− eÞ− ð1+ ðq− 1ÞeÞ+ 1

�
: [4]

These cross at the Kesten–Stigum bound, where e= e* . We do
not currently have an analytic expression for βSG.
In Fig. 3, Left we show the phase diagram of our algorithm on

SBM networks, including the paramagnetic, retrieval, and spin-
glass phases as a function of «, with q= 2 and c= 3. The boundary
βR between the paramagnetic and retrieval phases is in excellent
agreement with our expression [4]. For e< ep≈ 0:267, our algo-
rithm finds a retrieval state for βR < β< βSG. In Fig. 3, Right we
show the accuracy of the retrieval partition f̂tg, defined as its

overlap with the planted partition, i.e., the fraction of nodes la-
beled correctly.
We emphasize that β* is not the optimal value of β; i.e., it is not

on the Nishimori line (23, 31, 32). However, the optimal β depends
on the parameters of the SBM (SI Text). Our claim is that setting
β= β* in our algorithm succeeds throughout the easily detectable
regime, even when the parameters are unknown. In Fig. 3, Right we
compare our algorithm with that of refs. 5 and 6, which learns the
SBM parameters using an expectation-maximization (EM) algo-
rithm. Our algorithm provides nearly the same overlap, without the
need for the EM loop.

Results on Real-World Networks and Choosing the Number of Groups.
We tested our algorithm on a number of real-world networks. As
for networks generated by the SBM in the detectable regime, we
find a retrieval phase between the paramagnetic and spin-glass
phases (SI Text). Rather than attempting to learn the optimal
parameters or temperature for these networks, we simply set
β= β* ðq* ; cÞ as defined in [3], where q* is the ground-truth
number of groups (if known) and c is the average degree. Again,
this value of β is not optimal, and varying β may improve the
algorithm’s performance; however, setting β= β* appears to
work well in practice.
When the number of groups is not known, determining it is

a classic model-selection problem. The maximum modularity
typically grows with q. In contrast, the retrieval modularity stops
growing when q exceeds the correct value, giving us a principled
method of choosing q* (SI Text). For those networks where q* is
known, we found that this procedure agrees perfectly with the
ground truth.
As shown in Table 1, our algorithm finds a retrieval state in all

these networks, with high retrieval modularity and high overlap
with the ground truth. For the Gnutella, Epinions, and web-
Google networks, no ground truth is known; but in contrast with
ref. 37, our algorithm finds significant large-scale communities.
Whereas most of these networks are assortative, one network

in the table, the adjacency network of common adjectives and
nouns in the novel David Copperfield (40) (see ref. 2), is dis-
assortative, because nouns are more likely to be adjacent to
adjectives than other nouns and vice versa. In this case, we found
a retrieval state with negative modularity and high overlap with
the ground truth, by setting β to −β* ðq* ; cÞ.
Results on Hierarchical Clustering. Many networks appear to have
hierarchical structure with communities and subcommunities on
many scales (2, 8, 24, 38, 39). We can look for such structures by
working recursively: We determine the optimal number q* of
groups, divide the network into subgraphs, and apply the algo-
rithm to each one. We stop dividing when there is no retrieval

Fig. 3. (Left) Phase diagram for networks generated by the stochastic block
model, showing the paramagnetic (P), retrieval (R), and spin-glass (SG)
phases. Blue circles with error bars denote experimental estimates of βR, the
boundary between the paramagnetic and retrieval phases, and the solid
green line shows our theoretical expression [4]. The spin-glass instability
occurs for β> β* (2, 3) (red dashed line) and e* is the detectability transition
(black dashed line). (Right) The overlap of the retrieval partition at
β= 1:315≈ β* (2, 3) (blue circles) and the partition obtained with the algo-
rithm of ref. 5, which infers the parameters of the SBM with an additional
EM learning algorithm. Each experiment is on the giant component of
a network with n= 105, q= 2 groups, and average degree c= 3. We average
over 10 random instances.

Table 1. Retrieval modularity, overlap between the retrieval partition and the ground truth, the number of groups q* as determined
by our algorithm, the inverse temperature β* defined in [3], and the convergence time measured in seconds and iterations for several
real-world networks (2, 33–37)

Network n m q* β* Qðt̂Þ Overlap Time, s No. iterations

Zachary’s karate club 34 78 2 1.012 0.371 1 0.001 26
Dolphin social network 62 159 2 0.948 0.395 0.887 0.001 33
Books about US politics 105 441 3 0.948 0.521 0.829 0.002 23
Word adjacencies 112 425 2 −0.761 −0.275 0.848 0.003 35
Political blogs 1,222 16,714 2 0.387 0.426 0.948 0.043 18
Gnutella 62,586 147,892 7 0.995 0.517 37.43 433
Epinions 75,888 405,740 4 0.632 0.429 57.13 213
Web-Google 916,428 4,322,051 5 0.676 0.724 2,331 505

For Gnutella, Epinions, and web-Google (37) no ground truth is known, but based on our results we claim, contrary to ref. 37, that these networks have
statistically significant large-scale communities.
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state, indicating that the remaining subgraphs have no significant
internal structure.
For networks generated by the SBM, each subgraph is an ER

graph. Our algorithm finds no retrieval state in the subgraphs, so
it stops after one level of division. The same occurs in some small
real-world networks, e.g., Zachary’s karate club. In some larger
real-world networks, on the other hand, our algorithm re-
peatedly finds a retrieval state in the subgraphs, suggesting a
deep hierarchical structure.
An example is the network of political blogs (34). Our algo-

rithm first finds two large communities corresponding to liberals
and conservatives and agreeing with the ground-truth labels on
95% of the nodes. However, as shown in Fig. 4, it splits these into
subcommunities, eventually finding a hierarchy five levels deep
with a total of 14 subgroups. We show the adjacency matrix with
nodes ordered by this final partition in Fig. 4, Right and the hi-
erarchical structure is clearly visible. The modularity of the
second through fifth levels is 0.426, 0.331, 0.285, and 0.282, re-
spectively. This decreasing modularity may explain why the al-
gorithm did not immediately split the network all of the way
down to the subcommunities.
A nested SBM was used to explore hierarchical structure in ref.

39, where the blog network was also reported to have hierarchical
structure. Our results are slightly different, giving 14 rather than
17 subgroups, but the first three levels of subdivision are similar.

Comparison with Other Algorithms. In this section we compare the
performance of our algorithm with two popular algorithms:
Louvain (9) and OSLOM (21). In particular, OSLOM tries to
focus on statistically significant communities.
Louvain gives partitions with similar modularity to that of our

algorithm, but with a much larger number of groups, particularly
on large networks. For example, on the Gnutella and Epinions
network (37), our algorithm finds q* = 7 and q* = 4 groups with
modularity 0.517 and 0.429, respectively, whereas the Louvain
method finds 66 and 949 groups with modularity 0.499 and 0.430,
respectively. Thus, our algorithm finds large-scale communities,
with a modularity similar to that of the smaller communities found
by Louvain. Of course, we emphasize that maximizing the modu-
larity is not our goal: Finding statistically significant communities is.
We show results on synthetic networks in Fig. 5. In Fig. 5, Left

we apply Louvain, OSLOM, and our algorithm to SBM networks
with q= 6. We compute the normalized mutual information
(NMI) (41) between the inferred partition and the planted one.
(We use the NMI rather than the overlap because the numbers
of groups given by OSLOM and Louvain are very different from

the planted partition.) For Louvain and OSLOM, the NMI drops
off well below the detectability transition. In Fig. 5, Right we show
the number of groups that each algorithm infers for an ER graph
with c= 4. Our algorithm correctly chooses q= 1, recognizing that
this network has no internal structure. The other algorithms overfit,
inferring a number of communities that grow with n. In SI Text we
report on experiments on benchmark networks with heavy-tailed
degree distributions (42), with similar results.

Discussion
We have presented a physics-based method for finding statistically
significant communities. Rather than using an explicit generative or
graphical model, it uses a popular measure of community structure,
namely the modularity. It does not attempt to maximize the mod-
ularity, which is both computationally difficult and prone to over-
fitting. Instead it estimates the marginals of the Gibbs distribution,
using a scalable BP algorithm derived from the cavity method (next
section), and defines the retrieval partition by assigning each node
to its most likely community according to these marginals.
In essence, the algorithm looks for the consensus of many

partitions with high modularity. When this consensus exists, it
indicates statistically significant community structure, as opposed
to random fluctuations. Moreover, by testing for the existence of
this retrieval state, as opposed to a spin-glass state where the
algorithm fluctuates between many unrelated local optima, we
can determine the correct number of groups and decompose a
network hierarchically.
We note that this algorithm is related to BP for the degree-

corrected stochastic block model (DCSBM). Specifically, for a
fixed β, the modularity is linearly related to the log-likelihood of
the DCSBM with particular parameters (SI Text). However, our
algorithm does not have to learn the parameters of the block
model with an EM algorithm or perform model selection be-
tween the stochastic block model and its degree-corrected vari-
ant (43). To be clear, β is still a tunable parameter that can be
optimized, but the heuristic value β= β* appears to work well for
a wide range of networks.
In addition to the detectability transition in the SBM, another

well-known barrier to community detection is the resolution limit
(44) where communities become difficult to find when their size
is Oð ffiffiffi

n
p Þ or less. In SI Text, we give some evidence that our

hierarchical clustering algorithm overcomes this barrier. Namely,
for the classic example of a ring of cliques, at the second level
our algorithm divides the graph precisely into these cliques.
Another recent proposal for determining the number of groups

is to use the number of real eigenvalues of the nonbacktracking
matrix, outside the bulk of the spectrum (3). For some networks,
such as the political blogs, this gives a larger number than the q*

Fig. 4. (Left) A hierarchical division of the political blog network (34). We
apply our technique recursively, looking for a retrieval state and optimizing
the number of groups in which to split the community at each stage. We
stop when no retrieval state is detected, indicating that the remaining
groups have no statistically significant subcommunities. Each leaf denotes
one node, the size indicates its degree, and the colors indicate different
groups in the final division. (Right) The adjacency matrix of the network
ordered according to this partition.

Fig. 5. Comparison of BP with Louvain and OSLOM on SBM networks with
n= 104, c= 6, and q= 6. (Left) We show the normalized mutual information
(NMI) between each algorithm’s results and the true partition as a function of «;
the other algorithms’ NMI drops sharply well below the detectability transition
at e= 0:195. (Right) We show the inferred number of groups on the giant
component of an ER graph with c= 4. Whereas our algorithm correctly finds
q* = 1, the other algorithms overfit, finding a growing number of small com-
munities as n increases. Each point is averaged over 20 instances.
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we found here; it may be that, in some sense, this method detects
not just top-level communities, but also subcommunities deeper
in the hierarchy. It would be interesting to perform a detailed
comparison of the two methods.
Our approach can be extended to generalizations of the

modularity, where the graph is weighted or where a parameter γ
represents the relative importance of the expected number of
internal edges (16). Finally, it would be interesting to apply BP
to other objective functions, such as normalized cut or conduc-
tance, devising Hamiltonians from them and considering the
resulting Gibbs distributions.
Finally, we note that rather than running BP once and using the

resulting marginals, we could use decimation (45) to fix the labels
of the most biased nodes, run BP again to update the marginals,
and so on. This would increase the running time of the algorithm,
but it may improve its performance. Another approach would be
reinforcement (45), where we add external fields that point to-
ward the likely configuration. We leave this for future work.

Methods
Defining Statistical Significance. As described above, an ER random graph has
many partitions with high modularity. However, these partitions are nearly
uncorrelated with each other. In the language of disordered materials, the
landscape of partitions is glassy: Although the optimal one might be unique,
there are many others whose modularity is almost as high, but have a large
Hamming distance from the optimum and from each other. If we define a
Gibbs distribution on the partitions, we encounter either a paramagnetic
state where the marginals are uniform or a spin glass with replica symmetry
breaking where we jump between local optima. In either case, focusing on
any one of these optima is simply overfitting.

For networks such as Fig. 1, Right in contrast, there are many high-modu-
larity partitions that are correlated with each other and with the ground truth.
As a result, the landscape has a smooth valley surrounding the ground truth.
At a suitable temperature, the Gibbs distribution is in a retrieval phase with
both low energy (high modularity) and high entropy, giving it a lower free
energy than that of the paramagnetic state, with its marginals biased toward
the ground truth. When BP converges to a fixed point, it finds a (local) mini-
mum of the Bethe free energy, approximating this lower free energy phase.

We propose the existence of this retrieval phase as a physics-based defi-
nition of statistical significance. When it exists, the retrieval partition defined
by the maximummarginals is an optimal prediction of which nodes belong to
which groups.

The idea of using the free energy to separate real community structure
from random noise, and using the Gibbs marginals to define a partition, also
appeared in refs. 5 and 6. However, that work is based on a specific gen-
erative model, namely the stochastic block model, and the energy is (minus)
the log-likelihood of the observed network. In contrast, we avoid explicit
generative models and focus directly on the modularity as a measure of
community structure.

The Cavity Method and Belief Propagation. Our goal is to compute the mar-
ginal probability distribution that each node belongs to a given group and
the free energy of the Gibbs distribution. We could do this using a Monte
Carlo Markov chain algorithm. However, to obtain marginals we would need
many independent samples, and to obtain the free energy we would need to
sample at many different temperatures. Thus, the Monte Carlo Markov chain
(MCMC) is prohibitively slow for our purposes.

Instead, for sparse networks, we can use belief propagation (46), known in
statistical physics as the cavity method (47). BP makes a conditional in-
dependence assumption, which is exact only on trees; however, in the
regimes we consider (the detectable regime of the stochastic block model
and typical real-world graphs), its estimates of the marginals are quite ac-
curate. It also provides an estimate of the free energy, called the Bethe free
energy, which is a function of one- and two-point marginals.

BP works with ‘‘messages’’ ψ i→ k
t : These are estimates, sent from node i to

node k, of the marginal probability that ti = t based on i’s interactions with
nodes j≠ k. The update equations for these messages are as follows:

ψ i→k
t ∝ exp

"
−
βdi

2m
θt +

X
j∈∂ink

log
�
1+ψ j→i

t

�
eβ − 1

��#
: [5]

Here ∂i denotes the set of i’s neighbors, and θt =
Pn

j=1djψ
j
t denotes an ex-

ternal field acting on nodes in group t, which we update after each BP

iteration. We refer to SI Text for detailed derivations of the BP update
equations and Bethe free energy.

For q groups and m edges, each iteration of [5] takes time OðqmÞ. If q is
fixed, this is linear in the number of edges and linear in the number of nodes
when the network is sparse (i.e., when the average degree is constant).
Moreover, these updates can be easily parallelized. Empirically, the number
of iterations required to converge appears to depend very weakly on the
network size, although in some cases it must grow at least logarithmically.

The Factorized Solution and Local Stability. Observe that the factorized so-
lution, ψ j→i

t = 1=q, where each node is equally likely to be in each possible
group, is always a fixed point of [5]. If BP converges to this solution, we
cannot label the nodes better than chance, and the retrieval modularity is
zero. This is the paramagnetic state.

There are two other possibilities: BP fails to converge, or it converges to
a nonfactorized fixed point, which we call the retrieval state. In the latter
case, we can compute the marginals by

ψ i
t ∝ exp

"
−
βdi

2m
θt +

X
j∈∂i

log
�
1+ψ j→i

t

�
eβ − 1

��#
, [6]

and define the retrieval partition t̂ that assigns each node to its most likely
community. This partition represents the consensus of the Gibbs distribution:
It indicates that there are many high-modularity partitions that are corre-
lated with each other. The retrieval modularity Qðft̂gÞ is then a good mea-
sure of the extent to which the network has statistically significant community
structure.

On the other hand, if BP does not converge, this means that neither the
factorized solution nor any other fixed point is locally stable; the spin-glass
susceptibility diverges, and replica symmetry is broken. In other words, the
space of partitions breaks into an exponential number of clusters, and BP
jumps from one to another. The retrieval partition obtained using the current
marginals will change to a very different partition if we run BP a bit longer or
if we perturb the initial BP messages slightly. In the spin-glass phase, we are
free to define a retrieval modularity from the current marginals, but it
fluctuates rapidly and does not represent a consensus of many partitions.

The linear stability of the factorized solution can be characterized by
computing the derivatives of messages with respect to each other at the
factorized fixed point. Using [5], we find that ∂ψ i→k

t =∂ψ j→i
s = Tst , where Tst is

the q×q matrix

Tst =
∂ψ i→k

t

∂ψ j→i
s

					
1
q

=
eβ − 1

eβ − 1+q

�
δst −

1
q

�
: [7]

Its largest eigenvalue (in magnitude) is

λ=
eβ −1

eβ − 1+q
: [8]

On locally tree-like graphs with Poisson degree distributions and average
degree c, the factorized fixed point is then unstable with respect to random
noise whenever cλ2 > 1. This is also known as the de Almeida–Thouless local
stability condition (48), the Kesten–Stigum bound (29, 30), or the threshold
for census or robust reconstruction (49, 50). In our case, it shows that β must
exceed a critical β* given by [3]. If the network has some other degree
distribution but is otherwise random, [3] holds where c is the average excess
degree, i.e., the expected number of additional neighbors of the endpoint
of a random edge.

If there is no statistically significant community structure, then BP has just
two phases, the paramagnetic one and the spin glass: For β< β* it converges
to the factorized fixed point, and for β> β* it does not converge at all. On
the other hand, if there are statistically significant communities, then BP
converges to a retrieval state in the range βR < β< βSG. Typically βR < β* and β*
is in the retrieval phase, because even if the factorized fixed point is locally
stable, BP can still converge to a retrieval state if its free energy is lower than
that of the paramagnetic solution. Thus, we can test for statistically significant
communities by running BP at β= β* . Note that our calculation of β* in [3]
assumes that the network is random conditioned on its degree distribution; in
principle β* could fall outside the retrieval phase for real-world networks. In
that case, our heuristic method of setting β= β* fails, and it would be necessary
to scan values of β in the vicinity of β* for the retrieval state.

To estimate βR, we again consider the linear stability of BP around the
factorized fixed point; but now we consider arbitrary perturbations, as op-
posed to random noise. Let T be the q×q matrix defined in [7]. The matrix
of derivatives of all 2qm messages with respect to each other is a tensor
product T ⊗B, where B is the nonbacktracking matrix (3). The adaptive
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external field in the BP equations suppresses eigenvectors where every node
is in the same community. As a result, the relevant eigenvalue is λμ, where λ
is the largest eigenvalue of T, and μ is the second-largest eigenvalue of B,
and the factorized fixed point is unstable whenever λμ> 1. For networks
generated by the SBM, we have (3)

μ=
cð1− eÞ

1+ ðq− 1Þe: [9]

Combining this with [8] and setting λμ= 1 gives Eq. 4.
However, this assumes that the corresponding eigenvector of B is correlated

with the community structure, so that perturbing BP away from the factorized
fixed point will lead to the retrieval state. This is true as long as μ is outside the
bulk of B’s eigenvalues, which are confined to a disk of radius

ffiffiffi
c

p
in the com-

plex plane (3); if it is inside the bulk, then the community structure is washed
out by isotropic eigenvectors and becomes hard to find. Thus, the communities
are detectable as long as μ>

ffiffiffi
c

p
. This is equivalent to βR < β* or equivalently

e< e* . Thus, the retrieval state exists all of the way down to the Kesten–Stigum
transition where e= e* , μ=

ffiffiffi
c

p
, and βR = β* . At that point, the relevant ei-

genvalue crosses into the bulk, and the retrieval phase disappears.
We note that the paramagnetic, retrieval, and spin-glass states were also

studied in ref. 51, using a generalized Potts model and a heat bath MCMC al-
gorithm. However, their Hamiltonian depends on a tunable cut-size parameter,
rather than on a general measure of community structure such as the modu-
larity. Moreover, it is difficult to obtain analytical results on phase transitions
usingMCMCalgorithms, whereas the stability of BP fixed points is quite tractable.

Defining the Spin-Glass Phase. Although we have identified the spin-glass
phase with the nonconvergence of belief propagation, the true phase dia-
gram is potentially more complicated. The spin-glass phase is defined by the
divergence of the spin-glass susceptibility. If this phase appears continu-
ously, then in sparse problems this is equivalent to the sensitivity of the BP
messages to noise, i.e., whether it converges to a stable fixed point. However,
if the spin-glass phase appears discontinuously, it could be that BP converges
even though the true susceptibility diverges (e.g., ref. 52).

We expect this to happen above the Nishimori line when the hard but
detectable phase exists (5), when there is a retrieval state with lower free
energy than the factorized fixed point but with an exponentially small basin
of attraction, so that BP starting with random messages fails to converge to
the true minimum of the free energy. Detecting this spin-glass phase would
require us to go beyond the replica-symmetric BP equations used here to
equations with one-step replica symmetry breaking (45). In the assortative
case of the stochastic block model, the hard-but-detectable phase exists for
q≥ 5. Happily, the corresponding range of parameters is quite narrow;
nevertheless, more work on this needs to be done.
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