A Hardy-Ramanujan formula for restricted partitions
Dedicated to the Memory of S. Ramanujan
Received 30 November 1988, Revised 27 November 1989, Available online 10 July 2004
Communicated by Hans Zassenhaus
Under an Elsevier user license
Open Archive
- Recommended articles
- Citing articles (0)
References
-
How to compute the number of restricted partitions
(1987) preprint, Lund
-
The Theory of Partitions (3e éd.), Addision-Wesley, Reading (1976) (Reissued by Cambridge University Press, Cambridge, 1985)
-
Formulae for partitions into given elements derived from Sylvester's theorem
Quart. J. Math., 40 (1909), pp. 275–348
-
Une formule asymptotique pour le nombre des partitions de n
Comptes rendus, 164 (1917), pp. 35–38
-
Asymptotic formulae in combinatory analysis
Proc. London Math. Soc. (3e éd.), 17 (1918), pp. 75–115
-
The Analysis of Linear Partial Differential Operators (3e éd.), Vol. 1, Springer-Verlag, New York (1983)
-
On a test of whether one or two random variables is stochastically larger than the other
Ann. Math. Stat., 18 (1947), pp. 50–60
-
Die linearen Relationen zwischen den ganzen Poincaréschen Reihe von reller Dimension zur Modulgruppe
Abh. Math. Sem. Univ. Hamburg., 12 (1938), pp. 415–472
-
Fourier expansions of modular forms and problems of partition
Bull. Amer. Math. Soc., 46 (1940), pp. 59–73 ReprintedCollected Papers of H. Rademacher (3e éd.), Vol. II, MIT Press, Cambridge (1974), pp. 204–219
-
Topics in Analytic Number Theory (3e éd.), Springer-Verlag, New York (1973)
-
Vorlesungen über Invariantentheorie (3e éd.), Springer-Verlag, Berlin (1968)
-
Some asymptotic formulas for lattice paths
J. Statist. Plann. Inference, 14 (1986), pp. 123–142
open in overlay
Copyright © 1991 Published by Elsevier Inc.