A Hardy-Ramanujan formula for restricted partitions

Dedicated to the Memory of S. Ramanujan

Received 30 November 1988, Revised 27 November 1989, Available online 10 July 2004

Communicated by Hans Zassenhaus

doi:10.1016/0022-314X(91)90079-Q

Get rights and content

Under an Elsevier user license


Open Archive

References

  • 1. 

    G. Almkvist

    How to compute the number of restricted partitions

    (1987) preprint, Lund

  • 2. 

    G.E. Andrews

    The Theory of Partitions (3e éd.), Addision-Wesley, Reading (1976) (Reissued by Cambridge University Press, Cambridge, 1985)

  • 3. 

    J.W.L. Glaisher

    Formulae for partitions into given elements derived from Sylvester's theorem

    Quart. J. Math., 40 (1909), pp. 275–348

  • 4. 

    G.H. Hardy, S. Ramanujan

    Une formule asymptotique pour le nombre des partitions de n

    Comptes rendus, 164 (1917), pp. 35–38

  • 5. 

    G.H. Hardy, S. Ramanujan

    Asymptotic formulae in combinatory analysis

    Proc. London Math. Soc. (3e éd.), 17 (1918), pp. 75–115

  • 6. 

    L. Hörmander

    The Analysis of Linear Partial Differential Operators (3e éd.), Vol. 1, Springer-Verlag, New York (1983)

  • 7. 

    H.B. Mann, D.R. Whitney

    On a test of whether one or two random variables is stochastically larger than the other

    Ann. Math. Stat., 18 (1947), pp. 50–60

  • 8. 

    H. Peterson

    Die linearen Relationen zwischen den ganzen Poincaréschen Reihe von reller Dimension zur Modulgruppe

    Abh. Math. Sem. Univ. Hamburg., 12 (1938), pp. 415–472

  • 9. 

    H. Rademacher

    Fourier expansions of modular forms and problems of partition

    Bull. Amer. Math. Soc., 46 (1940), pp. 59–73 ReprintedCollected Papers of H. Rademacher (3e éd.), Vol. II, MIT Press, Cambridge (1974), pp. 204–219

  • 10. 

    H. Rademacher

    Topics in Analytic Number Theory (3e éd.), Springer-Verlag, New York (1973)

  • 11. 

    I. Schur

    Vorlesungen über Invariantentheorie (3e éd.), Springer-Verlag, Berlin (1968)

  • 12. 

    L. Takács

    Some asymptotic formulas for lattice paths

    J. Statist. Plann. Inference, 14 (1986), pp. 123–142

    Article PDF (821K)

open in overlay

Copyright © 1991 Published by Elsevier Inc.