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In stochastic block models, which are among the most prominent statistical models for cluster analysis of
complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within and
between groups. A recent extension by Karrer and Newman [Karrer and Newman, Phys. Rev. E 83, 016107
(2011)] incorporates a node degree correction to model degree heterogeneity within each group. Although
this demonstrably leads to better performance on several networks, it is not obvious whether modeling node
degree is always appropriate or necessary. We formulate the degree corrected stochastic block model as a
nonparametric Bayesian model, incorporating a parameter to control the amount of degree correction that can
then be inferred from data. Additionally, our formulation yields principled ways of inferring the number of
groups as well as predicting missing links in the network that can be used to quantify the model’s predictive
performance. On synthetic data we demonstrate that including the degree correction yields better performance
on both recovering the true group structure and predicting missing links when degree heterogeneity is present,
whereas performance is on par for data with no degree heterogeneity within clusters. On seven real networks
(with no ground truth group structure available) we show that predictive performance is about equal whether or
not degree correction is included; however, for some networks significantly fewer clusters are discovered when
correcting for degree, indicating that the data can be more compactly explained by clusters of heterogenous degree
nodes.
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I. INTRODUCTION

The stochastic block model (SBM) [1–3] has become a
prominent tool for modeling group structure in complex net-
works [4]. However, as pointed out by Karrer and Newman [5],
the stochastic block model has a tendency to group nodes
according to their degree such that high-degree nodes group
together even though their patterns of interactions with the
remaining network may differ. This grouping thus reflects
aspects of node degree rather than overall statistical patterns
in the network. To alleviate this issue, Karrer and New-
man introduced the degree-corrected stochastic block model
(DCSBM) [5]. In their model, additional parameters modeling
node degree heterogeneity are introduced, allowing nodes of
varying degree to be clustered together, and they demonstrate
that including this degree correction reduces the tendency
to group nodes according to their degree distribution [5].
The parameters in the DCSBM are inferred using maximum
likelihood (ML) estimation and since closed-form expressions
for the ML estimates of the additional degree-correction
parameters are available, the computational complexity of the
inference procedure is similar to inference in the SBM.

Although Karrer and Newman demonstrate on several
network data sets that degree correction leads to better
performance [5], it is not obvious whether including a
degree correction is always appropriate on real network data.
Furthermore, the number of groups used in the analysis is likely
to influence the results since groups of heterogenous node
degree can be reasonably modeled by a number of homogenous
subgroups. Not handling this issue in a principled manner
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could potentially confound the results. Finally, an important
subject of network modeling is validation. Although many
real networks are hypothesized to possess group structure, no
ground truth clustering is available, which makes it difficult
to assess the goodness of the obtained clustering. A popular
alternative is to measure the predictive performance on held-
out links in the network. In order to do this in a principled
manner the methods must be able to handle missing entries
in the network data as well as define a predictive distribution
over the missing entries.

In this paper we address these three important challenges
when modeling network data by the DCSBM.

(i) Can we infer the extent to which degree correction is
necessary?

(ii) How can we determine the number of components?
(iii) How can we predict links in the DCSBM?
In particular, we formulate a nonparametric Bayesian

generative model for the DCSBM. The number of components
is inferred using the Chinese Restaurant Process, which has
previously been used to determine the number of components
in stochastic block models [6,7]. Our generative model is
characterized by admitting a simple inference procedure in
which both the degree parameter and group interactions
can be analytically marginalized such that inference reduces
to estimating the assignments of nodes to clusters as for
the DCSBM. We address the link-prediction problem using
Markov chain Monte Carlo (MCMC) imputation. By inferring
the hyperparameter in the prior distribution of the parameters
that account for heterogenous node degree our model is able to
determine the extent to which a degree correction is necessary,
possibly reducing to an uncorrected stochastic block model.
On synthetic as well as seven real networks, we demonstrate
the utility of our proposed model for determining the number
of components, link prediction, and inferring the magnitude of
the parameter controlling degree correction.
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Past work on the SBM and DCSBM has not treated the
problem of inferring components, the presence of degree het-
erogeneity, and link prediction under one unified framework.
Although Bayesian approaches to inferring components and
link prediction have a long history for the SBM [4,6,7], most
work on the DCSBM has been focused on other inference
methods. As noted, Karrer and Newman [5] treated the
problem of inference in the DCSBM from a ML perspective.
A related approach was taken by Peixoto [8], who considered
degree correction as constraints on a block-model ensemble
and derived an entropy-based cost function. For the SBM,
a method relying on a minimum-description-length-based
approach to learning has been proposed, giving rise to an effi-
cient maximization procedure [9]. The minimum-description-
length approach by Rosvall and Bergstrom [10] allows degree
correction, but is otherwise analytically different from the
DCSBM. For the DCSBM minimum-description-length-based
procedures were considered by Peixoto [11] to give an
efficient MCMC-based inference procedure (see also [12]
for additional discussion of this approach and an application
to the problem of estimating the number of components).
The belief propagation method of Decelle et al. [13,14]
may also be applied to the DCSBM. More related to our
approach is that of Yan et al. [15], who consider the problem
of inferring the number of groups in the DCSBM from a
model-selection perspective. While these approaches represent
important contributions to the problem of jointly modeling
degree heterogeneity and block structure, none of the current
proposals are based on a Baysian generative model and allow
joint inference of degree correction, number of components,
and missing links using a MCMC-based approach.

II. METHODS

Let A be the adjacency matrix of an undirected observed
network of n nodes such that Aij is the number of links between
nodes i and j . We allow a positive number of self-links Aii

in our model definition (note that in the original formulation
of the DCSBM [5] Aii is defined as twice the number of self-
links). The DSCBM [5] for an undirected graph assumes that
the links between nodes i and j follow a Poisson distribution

Aij ∼ P
(
θiηzizj

θj

)
for i �= j. (1)

The parameter η�m controls the probability of links between
nodes in groups � and m, zi = � indicates that node i is
assigned to group �, and θi is a node-specific parameter
that regulates this link probability and thus accounts for
heterogenous node degrees. The model is subject to the
constraint that

∑
i δzi�θi = 1 for all groups �, i.e., the sum

of the θi within each group is one.
We presently propose a nonparametric Bayesian gener-

ative model that extends the DCSBM dubbed the infinite-
degree-corrected stochastic block model (IDCSBM). Like
the DCSBM, we also maintain node weights θi to control
the degree, however, to arrive at a Bayesian formulation we
assume that the weights within each group are drawn from
a Dirichlet distribution. More precisely, for each group �

containing n� nodes, we introduce an n�-dimensional vector of
weights (φi)zi=� drawn from a Dirichlet distribution and define
θi = n�φi in Eq. (1).

The scaling by n� makes the average degree of any given
node independent of the size of the group the node belongs
to. The full model now consists of (i) generating a random
partition, (ii) generating the interaction between each group
of the partition η�m from a gamma distribution, (iii) for each
group, generating (φi)zi=� from a Dirichlet distribution and
rescaling with n�, and finally (iv) using Eq. (1) to generate the
number of links Aij between node i �= j .

The full model is given generatively below. The symbol
D denotes the Dirichlet distribution and G the gamma
distribution. For analytical convenience the model assumes
a particular parametrization of the self-links Aii , a point we
will return to later:

z ∼ C(α) (clusters), (2)

(φi)zi=� ∼ D(γ 1(n�)) for � � 0,
(3)

θi = nzi
φi (relative degree),

η�m ∼ G(κ,λ) for � � m (link rate), (4)

Aij ∼ P
(
θiηzizj

θj

)
for i < j (link weight),

(5)
Aii ∼ P

(
1
2θ2

i ηzizi

)
for i = j.

In the above 1(n�) is a vector of ones with length n�, N =∑L
�=1 n� is the total number of nodes, and L is the number

of groups. As a prior over the node partition z we use C(α),
the Chinese restaurant process (CRP) parametrized by a single
parameter α controlling the distribution of group size [16].
A potential advantage of the CRP over, for instance, a uniform
prior over partitions is that the CRP is consistent under
projections whereas the uniform prior is not. The simplest
example is the case where z is a partition of two nodes
assigned to the same group (i.e., z1 = z2 = 1) and we consider
a partition obtained by including a third node. In this case
for the CRP it holds: p(z1 = z2 = 1|α) = p(z1 = z2 = 1,z3 =
1|α) + p(z1 = z2 = 1,z3 = 2|α), however for the uniform
prior the left-hand side is 1

2 and the right-hand side 2
5 .

Notice the role played by γ in the Dirichlet distribution in
Eq. (3). If γ → ∞, we will have φi → 1

n�
for zi = � or simply

θi → 1 for all i (the limits are understood in the distribution)
and the model is thus independent of degree in Eq. (1). On
the other hand, for γ → 0, within each group � a single
node i∗ will have mass θi∗ = n� and the network becomes
very nearly entirely dominated by a few nodes. We return to
the properties of the model in Sec. II B. The advantage of a
Bayesian formulation is that we can infer not only θi , but also
a distribution of the degree-correction variable γ representing
the appropriateness of modeling degree heterogeneity for the
network.

By collecting variables of the same type the joint density
factorizes as

p(A,φ,η,z|α,γ,κ,λ)

= p(A|θ,η,z)p(η|κ,λ)p(φ|z,γ )p(z|α). (6)

The model thus depend on parameters (α,γ,κ,λ). While one
could fix these at a particular value, a more principled approach
we have taken is to introduce vague uninformative priors and
sample these as well [17]. Either choice has no effect on
the following derivation below. In our notation the relevant
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densities are

p(z|α) = αL�(α)

�(N + α)

L∏
�=1

�(n�) (CRP), (7)

D(x|γ ) = 1

B(γ )

∏
i

x
γi−1
i , B(γ ) =

∏
i �(γi)

�
( ∑

i γi

) , (8)

G(x|κ,λ) = 1

G(κ,λ)
xκ−1e−λx, G(κ,λ) = λ−κ�(κ). (9)

The advantage of the present formulation is the use of
the Dirichlet distribution within each group and the particular
parametrization of Aii , which allows the node weights as well
as group interactions to be integrated out analytically. To see
this we introduce the shorthand notation for between- and
within-group link counts

N+
�m =

⎧⎪⎨
⎪⎩

∑
i : zi = �,
j : zj = m

Aij , � �= m∑
i � j :

zi = zj = �

Aij , � = m,

N�m =
{

n�nm, � �= m

n�n�

2 , � = m.

as well as node degrees ki = ∑
j Aij and k̂i = ki + Aii . It now

follows by some algebra that

p(A|θ ,η,z) =
∏
i<j

(
θiηzizj

θj

)Aij

Aij !eθiηzi zj
θj

∏
i

( θ2
i ηzi zi

2

)Aii

Aii!e(1/2)θ2
i ηzi zi

=
∏

i 2−Aii∏
i�j Aij !

∏
��m

η
N+

�m

�m e−η�mN�m

∏
i

θ
ki+Aii

i

=
∏

i 2−Aii∏
i�j Aij !

[∏
��m

η
N+

�m

�m e−η�mN�m

]∏
�

n
k̂�

�

∏
i:zi=�

φ
k̂i

i ,

(10)

p(η|κ,λ) =
∏
��m

1

G(κ,λ)
ηκ−1

�m e−η�mλ, (11)

p(φ|z,γ ) =
∏

�

1

B(γ 1(n�))

∏
i:zi=� �(γ )

(
θi

n�

)γ−1

n��(n�γ )
. (12)

Inserting into Eq. (6), collecting terms, and exploiting the
conjugacy of the Dirichlet and gamma distributions to the
Poisson distribution, we can analytically marginalize (i.e.,
collapse) φ and η to obtain

p(A,z|α,γ,κ,λ)

=
∫

dη dφ p(A|θ,η,z)p(η|κ,λ)p(φ|z,γ )p(z|α)

= 1∏
i�j Aij !

∏
i 2Aii

∏
��m

G(N+
�m + κ,N�m + λ)

G(κ,λ)

×
[∏

�

B
(
γ 1(n�) + (k̂i)i:zi=�

)

B
(
γ 1(n�)

) n
k̂�

�

]
αL�(α)

�(N + α)

L∏
�=1

�(n�).

(13)

In the above derivation we exploit that
∑

zi=� θi = n� and thus
the derivation requires access to the entire network. As a
result, the inference of our generative model is reduced to
determining the posterior distribution of the assignment of
nodes to groups z.

The assignment matrix z is inferred using standard Gibbs
sampling [6] and using the Bayesian framework we can treat
the hyperparameters γ , α, λ, and κ as random variables. In
particular, we will invoke the uninformative prior p(x) ∝ x−1

for all four parameters and infer them using random-walk
Metropolis updates of the form x∗ = exp(ln x + z), z ∼
N (0,σ = 0.1). For each Gibbs sweep over z, we performed 20
Metropolis-Hastings updates of the hyperparameters. While
Metropolis-Hastings updates with random proposals are not
very computational efficient, we noticed throughout the exper-
iments that this step had a small computational cost compared
to sampling z.

A. Imputation and link prediction

Missing (unobserved) links commonly occur in the network
and predicting missing links is an important goal of network
modeling. Comparing the prediction of a model on unobserved
data to the actual value is furthermore a popular way to validate
a model. In addition, the self-links Aii are often unknown
or, if the network cannot contain self-links such as the case
of a friendship network, they should be treated as auxiliary
variables that are integrated out.

For the IDCSBM the (marginalized) expression for z
in Eq. (13) requires access to all entries in the adjacency
matrix and so it is not possible to marginalize missing data
simply by ignoring the corresponding terms in the likelihood
function. To overcome this difficulty we marginalize missing
entries by formulating a Markov chain Monte Carlo algorithm
jointly over the parameters and the missing links. This is
done by sampling z and the hyperparameters using Gibbs
sampling and random-walk Metropolis-Hastings updates and
then conditionally on A and z drawing values of η�m and
(φi)zi=� conditional on the full matrix A and assignments
z and conditionally on these values draw the values of
A corresponding to the missing links from the Poisson
distribution equation (5). This corresponds to imputing the
missing values from their predictive distribution in each step
of the MCMC algorithm and, assuming convergence of the
Markov chain, is equivalent to marginalizing the missing links.
We use this framework both to handle self-links and also for
link prediction in general. Another popular method to predict
missing data is simply replacing missing entries of A with
0 [4,5,18]; however, as the diagonal of A is often fully missing
and the Poisson rate for Aii is proportional to θ2

i , this approach
would create an undesirable bias for θi .

B. Properties of the model

An important property of the model is that it can accurately
determine the degree distribution of the data and the link
density between the groups. Suppose A0 is an observed
network and let z be any fixed cluster. Conditional on A0

and z, we may compute the posterior over η and θ and check
if these distributions accurately reflect relevant properties of
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A0. Notice from Eq. (10) that the posterior distributions of η

and θ are

p(η�m|A0,z) = G(η�m|N+
�m + κ,N�m + λ), (14)

p

[(
θi

n�

)
zi=�

∣∣∣∣A0,z
]

= D
[(

θi

n�

)
zi=�

∣∣∣∣γ 1n�
+ (k̂i)zi=�

]
.

(15)

Recall for two Poisson distributed random variables X ∼ P(a)
and Y ∼ P(b) that their sum is Poissonian with rate a + b: X +
Y ∼ P(a + b). This, along with the derivation (10), allows us
to compute various properties of the model.

First consider the total interaction strength between two
groups � and m. The interaction

∑
i�j δzi=�δzj =mAij , consid-

ered as a random variable, is then distributed as P(η�mN�m). If
X ∼ P(λ) then E[X] = λ and so the average between-group
interaction is [the expectation is with respect to p(·|A0,z)]

E

⎡
⎣∑

i�j

δzi = �,
zj = m

Aij

⎤
⎦ = E[N�mη�m] = N�m(N+

�m + κ)

N�m + λ
. (16)

For analytical simplicity, we will consider the degree plus the
diagonal element. To this end we define the degree of node i

as di = ∑
j Aij + Aii . Since each Aij is Poisson distributed

the degree too is a Poissonian random variable. If zi = � then
di’s distribution is given by

di ∼ P

⎛
⎝∑

j �=i

θiη�zj
θj + 2

θ2
i η��

2

⎞
⎠ = P

(
θi

∑
m

η�mnm

)
.

(17)

We may now compute the average, again with respect to A0

and fixed z,

E[di] = E

[
θi

∑
m

η�mnm

]

= n�

k̂i + γ∑
j :zj =� k̂j + γ n�

∑
m

N+
�m + κ

N�m + λ
nm

= (k̂i + γ )
∑
m

N�m2δ�m

N�m + λ

N+
�m + κ∑

h N+
�h2δ�h + γ n�

. (18)

Assuming that the groups are fairly large and in the low limit of
the prior γ , the sum will be 1 to first order. The derivations (16)
and (18) show in the limit of large systems that the relative
influence of the prior terms will vanish and the model will
accurately capture the between-group link density as well as
the node degree.

III. RESULTS AND DISCUSSION

We analyze synthetic data sets generated from our model
as well as seven real networks from the literature.

A. Synthetic data

In our synthetic simulation studies we generated networks
of N = 80 nodes from our generative model with the
parameters κ and α fixed at κ = 0.5 and α = 4 and under
different values of λ and γ . Each such network was analyzed
using our IDCSBM as well as the corresponding ISBM
without degree correction. In Fig. 1 the normalized mutual
information (NMI), the ratio of the true number of components
to the estimated number of components Lfrac = 〈 L

Ltrue
〉, and

the area under the curve (AUC) of the receiver operator
characteristic are given (error bars indicate standard deviation
of the mean where the deviation is computed over ten restarts
of the sampler). In the analysis we ran the samplers for 1000
iterations and discarded the first half as burn-in. The AUC
scores were computed by treating 5% of the links and a
similar number of nonlinks as missing.

From the plot of the NMI we see that the degree-corrected
model (IDCSBM) better recovers the true generated group
structure than the degree-uncorrected model (ISBM) and as
expected the performances of the two methods converge as γ

increases, corresponding to networks that do not exhibit degree
heterogeneity. Furthermore, the IDCSBM recovers the correct
number of groups whereas the ISBM generates more than the
true number of groups in order to account for the effect of
a skewed degree distribution. The predictive performance as
quantified by the AUC scores are more or less similar with
a tendency of slightly better predictions for the IDCSBM. As
expected, this is most notable for small values of γ . We further
observe that structure is better recovered when the contrast in
the interactions is high, as influenced by the values of λ. This
too can be expected since very sparse networks presumably
have little recoverable structure.
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FIG. 1. (Color online) Plots of the IDCSBM and ISBM results on simulated networks, showing (a) the normalized mutual information, (b)
the ratio of estimated to true number of components Lfrac, and (c) the area under the curve of the receiver operator characteristics as computed
by running the proposed methods on networks produced from the generative model of the IDCSBM with different values of λ and γ . The solid
lines indicate results for the IDCSBM and the dotted lines indicate results for the ISBM.
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FIG. 2. (Color online) Plots of the IDCSBM and ISBM results on the seven real network for (a) AUC scores on held-out links and (b) the
number of inferred groups L; results are averaged over ten random restarts. The degree-corrected and -noncorrected methods perform roughly
similarly with a tendency for the degree-corrected model to find fewer groups.

B. Real data

We analyzed the following seven networks.
(i) Football: undirected unweighted network of American

football games between 115 Division IA colleges in the the
fall of 2000 [19].

(ii) Hagmann: undirected weighted network of the number
of links between 998 brain regions as estimated by tractogra-
phy from diffusion spectrum imaging across five subjects [20].
The graph of each subject has been symmetrized, thresholded
at zero, and the five subject graphs added together.

(iii) USPower: undirected unweighted network of 4941
nodes representing the topology of the Western States Power
Grid of the United States compiled in Ref. [21].

(iv) Caltech: the Caltech39 social network of 769 students
from the Facebook100 data set [22].

(v) Yeast: the interaction network between 2361 proteins of
yeast [23].

(vi) Lesmis: undirected and weighted graph of the coap-
pearances of 77 characters in Les Miserables by Hugo [24].

(vii) NIPS: undirected weighted network of the number
of coauthorships between 234 authors of papers presented at
the Conference on Neural Information Processing Systems
1–12 [25].

Figure 2 shows the results for the IDCSBM and the ISBM
on the seven networks in terms of AUC score treating 5%
of the links (and a similar number of nonlinks) as missing.
Furthermore, the numbers of components estimated by the two
models are given. The samplers were run for 1000 iterations
(half discarded as burn-in) and the results are averaged over
ten restarts.

From Fig. 2 it can be seen that in general the performance
in predicting a link as quantified by the AUC scores is on
par for the IDCSBM and ISBM. However, as observed also
in the synthetic study, the IDCSBM model extracts fewer
components than the ISBM for the Hagmann, Caltech, and
Lesmis networks. Thus, the model allocates fewer groups
when compared to the ISBM, which allocates additional
clusters in order to compensate for its lack of ability to
explicitly account for degree.

Another way to examine this effect is to look at the degree
distribution within each group. Since the groups have vastly
different sizes it is hard to summarize this effect into a single

number; however, if we consider a fixed group structure
z and a single group � of size n� we may compute the
empirical mean E[k�] = 1

n�

∑
i:zi=� ki and standard deviation

S[k�] =
√

1
n�

∑
i:zi=�(ki − E[k�])2 of the degree within this

group.
Plotted in Fig. 3 is the average of the empirical standard

deviation of the degree distribution as a function of group
size, that is, for each point (k,y) in Fig. 3, y is an estimate
of E[S[k�]], where the expectation is conditional on n� = k.
This quantity is easily estimated based on the last 500 states
of a MCMC chain. The error bars are the standard deviation
of the mean of each point based on ten random restarts of the
sampler.

As can be seen, the IDCSBM reveals larger groups of
nodes, confirming our previous findings in Fig. 2 and, more
importantly, that the variance of the degree distribution within
groups is larger than for the ISBM for all groups sizes. This
shows that the compensation for degree heterogeneity affects
not only a few large groups the IDCSBM lumps together and
the ISBM splits apart, but groups of all sizes.
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FIG. 3. (Color online) Variance of degree heterogeneity for the
ISBM and IDCSBM for the Hagmann data set. Each point (k,y) is an
estimate of the standard deviation of the degree distribution for nodes
in a group � of size n� = k (see main text for details).
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FIG. 4. (Color online) Inferred values of 〈γ 〉 for (a) the artificial and (b) the real networks. The box plots show the inferred mean of γ for
each of the 10 (or 50) MCMC chains (on artificial or real networks). For the artificial network (a), the networks are grouped according to the
planted value of λ (controlling link density) and each of the eight boxes in a group corresponds to a planted value of γ , the planted values
indicated by the horizontal lines. In the limit of good sampling the boxes should lie on the dotted lines. As shown, the sampler infers the correct
value of degree correction for the artificial networks except for very sparse networks (λ = 0.5). For the real networks the model infers very
different degrees of node heterogeneity.

To better understand the role of γ , we examined the
behavior of the mean value of γ , 〈γ 〉, across the random
restarts of the chains for both the artificial and real data sets
(see Fig. 4). For the artificial data sets [Fig. 4(a)] we grouped
the networks according to the values of λ and γ used to
generate the networks and plot the value of 〈γ 〉 across the
50 restarts. Consistent with the other findings, the model has
more difficulties recovering the true value of γ for very low
link density (λ = 0.5) or when the planted value of γ is very
high, here 200 as the highest value. The later finding may be
related to this value not being favored by the prior. However,
the sampler generally recovers the planted value of γ well
across chains.

For the real networks [Fig. 4(b)], the recovered values of
〈γ 〉 across chains show quite high variability for some of
the larger networks, indicating that they may exhibit mixing
times significantly longer than the 1000 iterations used here.
Notice that since high values of γ are associated with a nearly
vanishing effect of the degree, we see that the model correctly
identifies the skewed degree distribution of the social networks
Caltech and Yeast, while indicating that the effect of degree
for the (very strongly) community-structured network Football
and the spatially embedded USPower network is vanishing.

IV. CONCLUSION

In this paper we extended the degree-corrected stochastic
block model [5] to a nonparametric Bayesian generative model
(the IDCSBM). The advantage of the proposed model is that
the number of blocks, i.e., the distribution of the number of
groups, can be inferred, extending the model to an infinite
representation similar to what has previously been done for

the regular stochastic block model [6,7]. By exploiting that
the model is formulated generatively, we have derived a
Markov chain Monte Carlo algorithm that handles missing
links explicitly by marginalizing missing entries. We have
further shown that we can learn the parameter γ in the
process and thereby determine the extent to which networks
can use the degree-correction parameter θ introduced in the
degree-corrected stochastic block model. We have shown
analytically that under a wide range of conditions the model
will be able to accurately model between-group link density
as well as node degree.

On synthetic and real networks, we demonstrated that
the IDCSBM can result in a more compact representation
of network structure. The IDCSBM also tends to use fewer
components than the ISBM while accounting equally well
for the networks as quantified by the AUC link prediction
scores. On synthetic data with degree heterogeneity, we
have shown that the proposed model, which corrects for
degree skewness, is able to infer the parameters controlling
degree heterogeneity correctly and obtain a more compact
and accurate representation. As expected, this also translates
in improved link prediction. On real network data, we have
shown that a model that captures degree skewness does not
dominate a model that does not in terms of link prediction;
however, the IDCSBM is able to consistently determine vastly
different values of γ and thereby the presence or absence of
degree heterogeneity.
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