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The modeling of genetic networks especially from microarray and related data has
become an important aspect of the biosciences. This review takes a fresh look at a
specific family of models used for constructing genetic networks, the so-called Boolean
networks. The review outlines the various different types of Boolean network developed
to date, from the original Random Boolean Network to the current Probabilistic Boolean
Network. In addition, some of the different inference methods available to infer these
genetic networks are also examined. Where possible, particular attention is paid to input
requirements as well as the efficiency, advantages and drawbacks of each method. Though
the Boolean network model is one of many models available for network inference today,
it is well established and remains a topic of considerable interest in the field of genetic
network inference. Hybrids of Boolean networks with other approaches may well be the
way forward in inferring the most informative networks.

Keywords: Boolean; inference; genetic networks.

1. Introduction

Biological systems and the processes that occur within them, be they genetic,
metabolic or otherwise can be considered as biological networks.1–3 Modern
advances in technology such as the microarray allow a vast amount of informa-
tion on these natural biological networks to be collected, covering thousands of
genes4 under various conditions and over different periods of time or even species.5
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By using this wealth of information combined with modern computational tech-
niques, biological networks can be reconstructed from the expression data and be
modeled in silico.6

There are many advantages to be gained from the reconstruction and
in silico modeling of biological systems. The researcher may use these networks
to gain a greater understanding of how the biological systems operate and how
they are regulated.3,7 The modeling of biological networks can be seen as part of
the move towards a holistic view of biology, incorporating a diverse range of data
to build a model.8,9 Once constructed and verified, the researcher can go on to use
these network models to provide leads for further laboratory analysis as well as to
predict biological responses.10,11 Perhaps avoiding lengthy wet laboratory work on
the organism to achieve a similar result, this way of modeling forms part of the
“integrative systems biology” approach to the biological sciences.12

One arm of modeling is the reconstruction of genetic networks from exper-
imental data such as time-series expression data from microarrays,13,14 as well
as chromatin immunoprecipitation data,15 and using the information gained from
experimental work to determine the interactions between the genes represented in
the data.16There are many inference methods that can be used to construct these
genetic networks including single value decomposition,17,18 neural networks,19 and
differential equations.20

In addition to genetic inference methods there are a range of genetic network
models that can be used to represent genetic networks. These can include but are
not limited to Bayesian networks,21–24 symbolic models,25,26 and nonlinear vector
autoregressive models.27,28 Another such group for representing genetic networks
are the so-called Boolean networks.

A Boolean network as demonstrated in Fig. 1, consists of a set of nodes con-
nected with edges; each node corresponds to a gene and is a Boolean variable.29

These Boolean variables have one of two values like “true or false” or, in describ-
ing the activity of genes, “on and off” (activated or inactivated). For the purposes
of computational modeling and in the terms of a programming language the two
variables can be represented as 0 and 1.10 Within the Boolean network the state
of the nodes (Boolean variables) and the transitions they can make are determined
by the states of the other nodes (variables) in the network and the Boolean logic
functions governing each node.3

Though Boolean networks have been a topic of considerable interest in the area
of network inference, few reviews are available to draw conclusions together. The
earliest reviews such as S. Huang (1999)30 appeared in the 1990s, with reviews
covering the development of inference methods and networks for genetic network
modeling over the following years.7,8 Of the latest reviews, Hecker et al. (2009)
and Karlebach & Shamir (2008) provide only a general overview of the Boolean
network model and the methods to infer the topology of Boolean networks.31,32

Bornholdt (2008) produced a detailed review of the Boolean network model,
with only minor detail regarding inference methods.33 In consequence, this review
provides a description of the different categories of Boolean networks, a study of

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

09
.0

7:
10

13
-1

02
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 (

U
C

L
) 

on
 0

7/
04

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 26, 2009 15:15 WSPC/185-JBCB 00444

Inference of Gene Regulatory Networks using Boolean-Network Inference Methods 1015

Fig. 1. Representation of a simple Boolean network with three nodes, five edges and the functions
for each node (i.e. 0 or 1 for “off” and “on”). Arrows and bars correspond to activation and
inhibition, respectively. From an initial state where no genes are being expressed (shown on the first
row at time T ), the network input-output table shows that over successive time steps (T− > T +1,
the T + 1 becomes T on the next row), the network will repetitively cycle node B on and off. All

other initial states lead to this same cycle (shown below).

the methods used to infer such networks and prospects for their role in network
inference generally.

2. Boolean Network Categories

2.1. Random boolean networks

The classical model of the Boolean network in genetic modeling is the Random
Boolean Network (RBN). These were proposed by Kauffman for the modeling of
genetic regulatory networks;34 they have also been referred to as Kauffman net-
works or N-K models.10 RBNs are referred to as such because the connections
between the nodes and the logic functions that govern them are initially assigned
randomly before becoming fixed or quenched during operation.10 The characteris-
tics of the RBN are that the connections and functions assigned to each of the nodes
are randomly selected from a group of all possible networks and function combina-
tions. The number possible network combinations a RBN can have is represented
in Eq. (1),10 where N is the number of nodes and K the number of connections
between the nodes. RBNs are an example of discrete dynamic systems where the
states of the Boolean variables and time are discrete, though multi-state and hybrid
models have been developed to compensate for this feature.35

(22k

N/(N − K))N . (1)

Many limitations have been identified with the original model; firstly the huge
number of possible network combinations requires a lot of computational power,
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which generally means that only a small representation of the whole network can
be practically studied. The huge size of the network possibilities can also increase
variance and make statistical analysis of the network difficult.10 Other complexity-
related problems identified with inferring Boolean networks in general include the
consistency problem, which tries to find a network that fits all observations,36

and the best-fit extension problem, when an inference method attempts to deter-
mine a network with inconsistent data with a minimum number of errors, though
these problems were later determined to be polynomial-time solvable.37 Despite
the limitations, RBNs remain popular as network models and have been applied to
understanding Drosophila embryonic development3,38 and the yeast transcriptional
network.39

2.2. Asynchronous and temporal boolean networks

A range of Boolean networks have been developed in addition to the classical RBN.
These networks have been designed to overcome some of the perceived limitations
of the classical RBN model and to build in new functions. One such group are
the asynchronous Boolean networks which were designed as a way of avoiding the
synchronous nature of the classical Boolean network.40 Asynchronous Boolean net-
works update individual nodes randomly and asynchronously. As a result and as
demonstrated in Fig. 2, they can avoid cyclic attractors though they may still
contain point attractors (see Sec. 3 below). These networks may also be referred
to as serial networks and synchronous (classical) networks as parallel networks; the
attractors found within the network can vary depending upon the update method.41

It has been noted that asynchronous networks require greater computing
resources to process than synchronous networks, owing to the increased complex-
ity of the network. A hybrid synchronous–asynchronous model has been proposed
which allows the determination of the asynchronous network properties more effi-
ciently than an asynchronous model alone.42

Temporal Boolean networks are another variation, where the state of the net-
work is not just determined by the previous state but the states preceding the
previous state as well. This model is designed to take into account gene activity
that takes place over more than one time period.43

2.3. Probabilistic boolean networks

Probabilistic Boolean Networks (PBNs), a stochastic extension of the classical
RBN model, are one of the latest additions to the Boolean family, being intro-
duced by Shmulevich et al. in 2001.44 PBNs have been described as a collection
of Boolean networks,45,46 and have been developed as a means of overcoming
the deterministic nature of the classical Boolean networks.47 By referring to the
example network of Fig. 1, Fig. 3 depicts the network possibilities (and associated
probabilities) available for a PBN. Every node may influence itself and every other
node by some probability. In this way, PBNs are designed to deal with uncertainty.44
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Fig. 2. Network wiring diagram demonstrating synchronous and asynchronous update methods.
Each node represents a different state of the same network, i.e. the different combinations of a
gene being expressed or not. Dashed lines represent state transitions possible in the synchronous
network and solid lines the asynchronous network. While it may appear complex at first glance
it is a representation of the same N = 3 network shown in Fig. 1. The dotted line between states
011 and 100 represents the cyclic attractor found within the synchronous network, circumvented
by the additional state transitions possible in the asynchronous network.

Fig. 3. Representation of a PBN, where the functions governing each node are selected from a
number of possible functions depending on probability. In this case, negative values represent
repression. This essentially allows the PBN over time to exist as a number of different Boolean
networks.

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

09
.0

7:
10

13
-1

02
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 (

U
C

L
) 

on
 0

7/
04

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 26, 2009 15:15 WSPC/185-JBCB 00444

1018 G. J. Hickman & T. C. Hodgman

By being able to cope with a degree of uncertainty, PBNs gain several advantages
over the classical Boolean model. They are not deterministic, can deal with noise,8

have greater flexibility, and include the ability to incorporate known biological
information.44 While providing the improvements noted above, PBNs retain all the
advantages of the classical Boolean network model, such as its conceptually simple
binary rule–based modeling system.47

PBNs have been found to be comparable with dynamic Bayesian networks,44,48

though when inference methods are compared directly, PBNs were found to perform
worse in terms of identifying interactions between genes but were faster to run.49

A problem for PBNs as with the earlier RBNs is the large number of possible
connections and function combinations, making the amount of processing power and
time required very demanding on computing resources for large numbers (20+) of
genes. This problem is not helped by the added complexity of probabilistic Boolean
networks.50,51

3. Network Dynamics

An important feature of Boolean networks is that they are dynamic and that the
running network can enter into an attractor state.6 These are states where the
network progresses to a point where it will then cycle through a set of stable states,
this being called a cyclic attractor.52 A biological example could be the gene expres-
sion changes seen in circadian rhythms. In addition to cyclic attractors, singleton
or small attractors are possible. These are stable states that a Boolean network can
reach when the network results in a single state, such as erythrocyte formation.52

An example of what the network topology for both cyclic and singleton attractors
could look like can be found in Fig. 4.

Other features impacting the dynamics of Boolean networks include positive
and negative feedback loops. The identification of features such as attractor states
and feedback loops is important because it yields information on the dynamics of
the network and provides information on the regulation of the genes represented in
the network and cells’ expression states.53 For example, networks containing greater

Fig. 4. Representations of cyclic and singleton attractors, each node represents a network state
(the different combination of 0 or 1 as shown in Fig. 2. Network A progresses to a cyclic attractor

where the network cycles though a series of states (as occurs in Fig. 1), while network B progresses
to a point attractor or single state.
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numbers of independent negative-feedback loops have been found to demonstrate
more random behavior.54

A variety of inference algorithms have been developed for finding singleton
attractors within Boolean networks. Several examples of algorithms which enable
singleton attractors to be identified without looking at all the possible states of the
network have been published.52 These algorithms, such as the basic recursive algo-
rithm which identifies singleton attractors by looking at the gene activity profiles,
were found to be simple and capable but only applicable to RBNs with less than
a hundred genes. There are now many different algorithms available for identifying
attractor states within Boolean networks.55

Work has also been conducted into the dynamics of PBNs.50 Their non-
deterministic nature allows them to cycle through a number of possible attractors,
unlike RBNs.56 Algorithms have been built to identify the steady-state distributions
of PBNs,57 using Monte Carlo and later power-simulation methods.58

4. Inference Methods

A variety of different computer algorithms have been developed to infer genetic
networks in the form of Boolean networks and identify features within them, such
as attractor states.55,59 One aspect of all Boolean-network inference is that the
experimental data from, for example, time-series microarray experiments must first
be processed to binary, since the Boolean functions of the networks can only deal
with binary data.60

4.1. REVEAL

Boolean-network inference was started with REVEAL (REVerse Engineering ALgo-
rithm). It was developed and proposed in 1998 by Shoudan Liang and written in
the C programming language.61 The algorithm infers RBNs from large volumes of
expression data. The algorithm operates via a stepwise process that uses mutual
information analysis of the state transition (expression) data to determine the con-
nections between the nodes (genes), as shown in Fig. 5. The algorithm was initially
only able to function with synchronous Boolean networks, though it was envisioned
to be expanded to multi-state networks. The REVEAL algorithm was also found
to have difficulties in dealing with the noise in biological systems.7 Other disad-
vantages of the algorithm were that it worked best with only a low number of
inputs (connections) per gene (K being from 1–3, which is not so far from biologi-
cal reality) and had a maximum practical gene (node) number of around 30–50. The
reason for this limitation is that the algorithm operates by brute force, examining
all possible input configurations to determine the correct input for each gene, with
more than three inputs the number of combinations becomes too large to compute
with even a small number of genes. Initially larger numbers of connections and
genes were expected to be handled with increased processing and multi-threading
capabilities.61
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Fig. 5. Graphical representation of the REVEAL network inference method. The algorithm will
initially attempt to explain the expression of each gene on the basis of a single connection
(K = 1) to another gene. For the remaining genes, the process is repeated with the value of
K incremented by one (i.e. K = 2, 3, etc.). In the figure elements A.B can be explained for K = 1
but element C cannot and requires an additional step.61

4.2. BOOL

A mathematically simpler algorithm than REVEAL was proposed by Akutsu et al.
(1999).62 This algorithm uses a similar principle to REVEAL in that it infers genetic
networks from state transition information (input/output gene expression pairs)
using a Boolean model. As with REVEAL, the algorithm demonstrated that it was
possible to infer a Boolean network by using only a small amount of transition
information, for example a network the size of 100,000 genes could be identified
from as few as 100 state transition pairs.62 The only problem with the network is
that, although it is a simpler algorithm, it is inefficient and more time and memory
intensive than even the original REVEAL algorithm. It was also still bound by the
problems of REVEAL in that it is limited to only small networks with low numbers
of inputs per gene.62

Akutsu and co-workers went on to develop the BOOL family of inference algo-
rithms. BOOL-2 is capable of dealing with noisy data, but was found to require more
expression-profile data to identify a network than BOOL and REVEAL (90–140
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expression patterns for a 160-node network) in the presence of noise.63 However,
by being able to deal with noise, the algorithm was more suitable for application
with real expression data.

An important issue surrounding the study of Boolean networks (and modeling in
general) is the question of using real as opposed to artificially generated data when
testing algorithms. Modeling should ideally be tested and verified using real data.31

Hakamada et al. reconstructed networks using 21 genes from actual expression data
in the study of S. cerevisiae.64 Hakamada et al. went on to test a Boolean inference
method against the known biological information found in the KEGG database.65

The inference method was able to reconstruct many of the interactions identified
from the KEGG database in addition to identifying known interactions not shown
in KEGG but supported elsewhere.

4.3. Methods reconstructing PBNs

In addition to the classical RBNs, a range of inference methods have become avail-
able to generate newer Boolean network variations. Cotta and Troya (2004) pre-
sented a reverse-engineering approach for noisy, temporal Boolean networks using
evolutionary algorithms and demonstrated it with a 32-node network.66 Martin
et al. have proposed an algorithm based on Akutsu et al. (2000), but instead of
a single optimized network the algorithm generates several likely possibilities and
can be considered as a simple PBN.67

Legacy software like REVEAL has now been used as a benchmark for the
newer algorithms being developed. Zhao et al. (2006) have developed an inference
algorithm combining a PBN model with the minimum descriptive length (MDL)
principle.68 The method incorporating MDL has demonstrated a speed improve-
ment over REVEAL of more than tenfold for a network of 20 nodes, 30 edges and
100 time points. It was also easily scalable to larger networks with hundreds of
nodes.68 One study, however, has questioned the accuracy of the REVEAL and
BOOL algorithms, describing the ability of these algorithms to recognize regula-
tion between genes as no better than chance.69 Further studies would resolve this
matter, but other advances make it unnecessary.

4.4. Improving inference methods

Methods to improve the accuracy of Boolean inference algorithms have recently
been made. One method of improvement is the incorporation of known biological
data into networks.70 Another method of improvement is to make Boolean inference
algorithms more applicable to larger genetic networks: one proposed method based
on chi-square tests has been developed, which reduced computing times by a factor
of more than 70 in a 120-gene network (K being three).71 Another method pro-
poses two algorithms capable of reverse engineering networks and also reducing the
number of plausible networks generated.72 The improvement of inference methods
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for PBNs has also been considered with the use of methods based on Monte Carlo
Markov Chains for the improvement of network processing and approximation.50,51

4.5. AIGNET

Several algorithms that have been created for the inference of Boolean networks do
not rely upon a single model or inference method; these are the hybrid systems.
One such family of algorithms is AIGNET or Algorithms for Inference of Genetic
NETworks.73 AIGNET was proposed as a hybrid method for inferring genetic net-
works using algorithms generating first a static network in the form of a multi-level
digraph then a dynamic model using S-systems, being power-law models consisting
of sets of non linear differential equations, as shown in Fig. 6.73

The first stage generates a binary matrix from gene-expression matrix data.
This matrix is used to identify genes which interact with each other. An accessibil-
ity matrix is then used to place interdependent genes into an equivalence set. The
effects of indirect affection are then removed, and the resulting skeleton matrix is
used to draw the static Boolean network. The multi-level digraph approach was
found to be exceptionally fast at analyzing large genetic networks — less than
one second for a 10,000-gene network (300MHz processor) — but is incapable of
identifying the order of interdependent genes in an equivalence set (genes that
interact and regulate each other).74 In order to overcome this limitation, S-systems
have been applied to identify the network topology of genes in an equivalence set,
using continuous expression data (i.e. numerical values for the transcript levels).74

Fig. 6. Representations of the AIGNET genetic inference method. A hybrid system which uses
both the Boolean network and S-system to reconstruct a genetic network. Hybrids like AIGNET
can offer performance advantages in excess of each method individually.73
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One should note that the S-system models were unable to process the large genetic
networks efficiently, requiring substantial processing resources as the number of
parameters increases.75,76 Indeed, the AIGNET algorithm was able to process large
genetic networks more efficiently than either of the methods applied separately,77

and has been applied to experimental microarray data.78 Later incarnations of the
AIGNET algorithm have gone on to include Bayesian and threshold-test models.79

Additionally the PEACE-1 algorithm has also been proposed as a method for solv-
ing the problem of equivalence created by the static Boolean network of AIGNET
and generating kinetic information.80 However, in one study, AIGNET incor-
rectly removed certain network connections in the special case of double-mutant
knock-outs.81

5. Conclusions

Boolean networks are a simple and useful model for describing genetic regulatory
systems, which have successfully been applied to several different organisms. From
the initial Random Boolean Networks proposed by Kauffman in 1969, a wide vari-
ety of Boolean network models have been developed, along with a range of differ-
ent inference methods which generate these models. A driver of Boolean network
development has been to overcome some of the limitations found with the original
RBNs, which can be described as simplistic, deterministic and synchronous. Early
Boolean inference algorithms were also limited, able to process less than a hundred
nodes (genes), and only a limited number of connections between each node. For
larger genetic networks, processing the huge number of possible network combi-
nations becomes difficult and resource intensive owing to the brute force methods
employed.

In recent years, interest in the Boolean model has waned in favor of newer
models and methods such as Bayesian networks and differential equations. These
methods can avoid many of the noted limitations of the Boolean network.8 Yet
many of the above-mentioned limitations of the Boolean model have themselves
been overcome. More sophisticated inference techniques and algorithms have also
become available which allow Boolean networks to handle larger numbers of genes
and shorten processing times. This ability to handle large numbers of genes is
important if the researcher wishes to take advantage of the quantities of data made
available by modern “omics” methods.

The simplicity of Boolean networks has been praised and the potential of the
Boolean network model for the predictive modeling of incomplete networks should
not be overlooked.33 Their simplicity can be considered their greatest criticism
and yet their great strength. Despite the introduction of alternatives, the Boolean
network should remain as a useful representation for network inference, not just for
early exploration, or when complexity is not a requirement,82 but in concert with
other network models. The studies of hybrid approaches like AIGNET have shown
that individual models and inference methods used in isolation may not necessarily
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Fig. 7. Boolean inference algorithms can be used to create large low-resolution networks from
partial data. When combined with a complementary inference method, a high-resolution network
can be resolved. The use of multiple inference techniques can also allow the integration of more
experimental data or knowledge at a later stage.

be the best approach to accurate network inference. Hybrid approaches, however,
allow large datasets to be processed to a gross Boolean network topology in which
much smaller subsets of the network may be refined by alternative methods such as
Bayesian and S-systems, which give better resolution as they make use of a more
extensive set of prior information (see Fig. 7).83
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