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Mechanosensitive channels are ion channels activated by membrane tension. We investigate the influence of
the spatial distribution of bacterial mechanosensitive channels on activation (gating). Based on elastic short-range
interactions we map this physical process onto an Ising-like model, which enables us to predict the clustering
of channels and the effects of clustering on their gating. We conclude that the aggregation of channels and the
consequent interactions among them leads to a global cooperative gating behavior with potentially dramatic
consequences for the cell.
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Recent advances in the understanding of the functional
organization of the cell membrane are shedding light on the
complex dynamics of the components of the cell surface [1–3].
There is considerable evidence that nonspecific, membrane-
mediated forces are important for the formation of protein
complexes on the membrane [4]. In this work, we address the
question of how the spatial organization of membrane proteins
can be shaped by their short-range interactions, and how this
spatial organization can affect their function. We focus on the
behavior of mechanosensitive channels, which are activated
by membrane deformation. These channels are present in
several organisms, such as bacteria, humans, and plants, and
are responsible for a variety of functions, ranging from volume
regulation and locomotion to sensory input and signaling [5].
Membrane mechanical properties can also influence other
types of ion channels [6]; thus mechanosensitive channels
can be used as a general model for proteins actuated by
membrane-mediated forces. The channels which are best
characterized are from E. coli and are of two types: channels
of large (MscL) and small (MscS) conductance [7]. These
channels are responsible for preventing the osmotic pressure
from reaching dangerous levels under hypo-osmotic shock.
They are activated directly by membrane tension, which causes
a membrane deformation in the channel neighborhood [8], and
gate (open) when the cell is placed in an environment of low
osmolarity. Although there are not many mechanosensitive
channels on the E. coli membrane, they are often over-
expressed for studies, and are present in larger numbers in other
organisms [5]. For these reasons, they are an excellent and
well-studied model system, from which broader conclusions
may be drawn. Since the forces influencing them are short
range, and typically attractive, there is the possibility that
they form clusters. Two questions of crucial importance are,
(i) Under what conditions do channels cluster? and (ii) How
does clustering affect the gating of the channels? We address
both questions by presenting a general statistical mechanics
framework—which can be easily carried over to other types of
channels with different interaction forces—and conclude that
channels should indeed cluster if their density (or interaction
strength) is high enough, and that this has an enormous effect
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on the gating response of the channels, which display a much
richer cooperative behavior than can be inferred from the
characteristics of individual channels.

The collective behavior of MscL is a result of their mutual
interactions, mediated by the membrane deformation around
them. We model channel agglomeration and its effects on
gating in a coarse-grained manner, in which the channels
are placed on a two-dimensional lattice and only their
nearest-neighbour interactions are considered. Initially, using
a lattice gas model, we obtain the conditions for channel
agglomeration, and their detailed spatial configuration. Based
on that, we subsequently show that the gating dynamics of
the clustered channels can be mapped onto an Ising-like
model, with the addition of a spatially inhomogeneous field.
This opens a new approach in the analysis of propagation of
conformational states through a cluster of proteins. One of our
major findings is that clustering leads to a lower threshold of
channel activation, causing the clustered channels to open for
lower membrane tensions than in the case of isolated channels.
Furthermore, our method allows us to study nonequilibrium
properties of the system such as the dynamics of transition.
Due to this transition, clustering leads to an increase in the
time it takes for the clustered channels to open in response
to osmotic shock. Both these results show that the channel
response to osmotic stress is crucially affected by interactions
inside clusters.

Membrane proteins diffuse in the lipid bilayer, which
can be considered as a two-dimensional fluid. They also
interact with each other [1]. The possible forces among
membrane proteins are electrostatic and membrane-mediated
interactions [9]. The electrostatic forces can be neglected due
to the charge screening effect in physiological solutions, since
the Debye length is 1 nm [2], which is just a fraction of the
size of a channel molecule. Segregation by lipid affinity is
also not considered, since MscL does not exhibit strong lipid
preferences in E. coli [10]. Therefore, we consider only elastic
forces in what follows [9]. These forces are short range and
have magnitudes of the order of ∼ kbT0 (T0 is the typical room
temperature, T0 = 300 K). They arise from the hydrophobic
mismatch between the size of the core of a protein and the
length of the lipid layer that surrounds it [4]. Since lipids are
more flexible than proteins, they tend to deform and adapt to
the size of the protein core [see Fig. 1(a)]. It is the energy cost
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FIG. 1. (Color online) (a) Examples of the deformation profile
around two open and two closed channels, left (blue) and right (red),
respectively. (b) Interaction energy between two channels in different
states (as in [11]).

of deforming the lipid layers which results in a force among
nearby channels on the membrane. As shown in Fig. 1(a), this
kind of deformation depends on whether the channel is open
or closed; therefore, the forces between channels depend on
their state. Since E. coli is the paradigm for such studies, we
use the appropriate parameters for the MscL of these bacteria
to obtain the deformation profile φ(r), defined as the distance
of the membrane contour to its relaxed state, as a function of
the distance r to the protein. For that we minimize the free
energy,

G =
∫ [

Ka

2

(
φ(r)

l

)2

+ κb

4
[∇2φ(r) − c0]2 + τ

φ(r)

l

]
dr2,

(1)

where l is the mismatch length, the first term represents
the energy cost of membrane stretching (Ka = 60kbT0/nm2),
the second is that of membrane bending (κb = 20kbT0, with
c0 = 0.009 nm−1 as the membrane curvature, we considered
values in the range 0–0.04 nm−1, without any significant
difference) [8,11], and the last term considers the membrane
tension τ . To find the φ(r) which minimizes G, we numer-
ically solve the Euler-Lagrange equations corresponding to
Eq. (1) (see [11] for details). Considering a system of two
channels, we find that the forces between them are short range
(∼5 nm) [Fig. 1(b)], and they remain roughly the same for
slight differences in value of c0 and τ . This distance is
comparable to the diameter of a single protein, which validates
our coarse-grained two-dimensional lattice approximation,
which will follow.

The dynamics of agglomeration. We consider initially the
normal physiological conditions for bacteria, which corre-
sponds to a low membrane tension. In this case, all the channels
are in the closed state and diffuse on the cell, interacting
with each other through the elastic forces described above.
Using the fact that their interaction is short range and can
be approximately decomposed into pairwise interactions, we
place the channels on a two-dimensional square lattice, and
describe the system by the Hamiltonian H = −J

∑
〈ij〉 sisj ,

where si are occupancy variables associated with the lattice
sites, which assume values either 1 or −1 for an occupied
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FIG. 2. (Color online) Homogeneous and nonhomogeneous state
phase diagram, for J = 5kbT0

4 and ρ = 1.7 × 10−3.

or free lattice site, respectively, and J is the strength of the
pairwise interaction between two channels. The brackets in the
sum indicate that it is performed over all pairs of adjacent sites.
Since the number of channels is constant, i.e.,

∑
i si = Nρ,

where N is the total number of sites and ρ is the density of
occupied sites, this corresponds simply to a lattice gas, which
is characterized by the existence of either a nonhomogeneous
or a homogeneous phase, depending on the interaction strength
J (or on the thermal fluctuation T ), and on the particle density
ρ, as follows: For a weak interaction (or a high temperature)
only a homogeneous phase is observed independently of the
density. For J high enough (or T low enough) this system has
two critical densities [12], ρ± = 1

2 {1 ± [1 − csch2(2βJ )]
1
8 }.

When the density ρ is lower then ρ− or higher then ρ+
the particle distribution is homogeneous. However, if ρ− <

ρ < ρ+ the particles segregate in different domains with
different local densities: a low density (ρ−) region and a high
density (ρ+) region (Fig. 2). From Eq. (1), we can determine
that J ≈ 1.25kbT0, which gives ρ− = 1.710−3 particles/site.
Given that a wild type E. coli cell has on average only five
channels [7] and a membrane area of ∼ 6.10−12 m2 [13],
the density of the channels is given by ρ ≈ 1.6 × 10−5

particles/site, which corresponds to a very low density, deep
in the homogeneous phase, without any clustering. Below,
when we consider the effect of agglomeration on gating,
we will argue that there is a likely biological reason for
this. Often, these channels are artificially over-expressed, and
some authors do see nonhomogeneous distributions in such
situations [14,15], suggesting that clustering may be occurring.
Unfortunately they do not estimate the channel density. We
suggest as a possible experiment to estimate the density in
those samples and compare the appearance of agglomeration
changing the density conditions.

Gating dynamics. We turn now to the gating response of
the channels, when the tension is changed abruptly. This is the
case, for example, if the osmolarity of the medium is suddenly
decreased. We note that the gating dynamics take place on a
shorter time scale than the diffusion of the channels: the gating
response of channels is of the order of microseconds [16] and
the free diffusion is of the order of ∼ 0.5 nm2/μs for a crowded
environment such as a biological membrane [17]. Since the
area of a single channel is approximately π (2.5)2 ∼ 20 nm2,
they cannot move significantly during a gating event, so we
assume simply that their positions remain fixed in their initial
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FIG. 3. Interaction energies for two channels. For E = 10kbT0

and P = 10kbT0.

values given by the lattice gas model discussed previously.
Then the question is, How does the spatial clustering affect the
channel’s response to osmotic tension? We will describe the
state of each channel i by a variable σi , which can have values 1
and −1, corresponding to an open or closed state, respectively
[18]. The new energy of the system can now be written as the
sum of the noninteraction energy of the individual channels
and their interaction energy, H = Hnon + Hint. These energies
can be obtained by solving Eq. (1), for a system of only one
or two channels, respectively, and considering all the different
channel conformation states. This results in Hnon = h

∑
i σi ,

where

h = (	Ggate − τ	A)/2 (2)

is a global noninteraction field, where 	Ggate ∼ 50kbT0 is
the energy difference between conformations, 	A is the
deformation area of the protein, and τ is the the membrane
tension, which changes according to the osmolarity of the
medium. In an analogous fashion, we can obtain the energy
levels for interacting channels, as shown in Fig. 3, for an
approximate distance of around 6–7 nm from their centers.
Since the interaction energies do not change significantly
with tension [11], we have assumed τ0 ∼ 2.5kbT0/nm2, which
is the tension for which a single channel opens [7]. These
energy levels can be written as a Hamiltonian composed of a
symmetric term, plus an additional spatially correlated field,
Hint = −E

2

∑
〈ij〉 σiσj − P

4

∑
〈ij〉(σi + σj ), where the spatial

correlation of the second term is due to the fact that it is
summed only over neighboring sites. The second term can
be interpreted as a noninteraction Hamiltonian, with particles
subject to a local field ki , which is equal to the number of
occupied neighbors of site i, which results in −P

2

∑
i kiσi .

Thus, the complete energy of the system is given by the
Hamiltonian

H = h
∑

i

σi − P

2

∑
i

kiσi − E

2

∑
〈ij〉

σiσj , (3)

where the sums are taken over occupied sites and neighboring
sites. Due to the presence of the local field ki , this is not
simply an Ising Hamiltonian. It resembles the random field
Ising model [19], where the values of ki are replaced by
randomly distributed local variables. In our case, however,
they are not random, but instead they represent a quenched
correlated disorder which is a byproduct of the diffusion and
aggregation of the channels, as modeled by the lattice gas
dynamics discussed previously.

The system given by the Hamiltonian in Eq. (3) is investi-
gated using Monte Carlo simulations. We choose biologically
relevant initial conditions in which all the particles are

initialized in the closed state (mimicking conditions before an
osmotic shock). This corresponds to a metastable state for the
interacting particles: The transition to a global minimum (all
channels open) involves the particles leaving a local minimum
of the energy (all channels closed), and temporarily assuming
anti-aligned states with respect to their neighbors. This process
can be extremely slow, and it determines the response time
of the bacterium to osmotic shock. This is potentially an
important aspect of the system’s dynamics: clustering can
cause the channels’ response time to increase. We initially
examine the two extreme cases where the particle distribution
is uniform. In the low-density limit (ρ < ρ−), most particles
are isolated and there is no agglomeration. Without any mutual
iteration, the individual channels will assume a preferred
state given directly by Eq. (2), and will thus open when
τ	A > 	Ggate. The other extreme case is when the lattice
is completely covered by particles, i.e., ρ = 1 and ki = 4 for
all i. In this case, Eq. (3) becomes the standard Ising model
with external field h − 2P . The term 2P is due to the channel
interactions and, as a result, the transition to open channels
occurs for a lower tension than in the case of noninteracting
particles (P = E = 0).

For the intermediate case, when ρ− < ρ < ρ+, the process
of diffusion described previously makes the channels agglom-
erate in clusters of finite size with highly irregular geometrical
structures. These structures introduce an anisotropy in the
local field ki , which enables certain configurations of mixed
states −1 and +1 to coexist. This can be observed by a
comparison of the gating threshold for a group of channels
inside clusters with ramified (e.g., J = 0.75) or with dense
(e.g., J = 1.25) structures, as in Fig. 4. The transition
between the two uniform global states can occur in several
steps, where certain discrete groups of channels change their
configuration at different values of tension. The most obvious
steps correspond to the high-density regions (ki = 4) and
the low-density regions (ki = 0), which gate for lower and
for higher tensions, respectively. However, there are also
intermediate transition steps that correspond to the outer layer
of the clusters (particles with 1 < ki < 4), and the number of
such steps varies with density. In the case of compact clusters
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FIG. 4. (Color online) Average conformation 〈σ 〉 as a function
of particle density ρ and membrane tension τ . The top row
corresponds to J = 1.25KbT0; bottom row to J = 0.75KbT0. (a) and
(c): Equilibrium configuration. (b) and (d): Initial condition σ = −1
after a transient of 105 iterations per particle. Simulations were carried
out on a square lattice of linear size 1000 and averaged over five
independent realizations.
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the transition for ki = 4 is the only one present. If we consider
now a system starting from the metastable state where all
channels are closed, after a finite (but large) simulation time
of 105 Monte Carlo steps per particle, the situation changes
significantly, as can be seen in Figs. 4(b) and 4(d). In this
case, the several discrete transition steps are replaced by a
single global transition at significantly larger values of tension,
characterizing a delay in the reaction time of the channels.
We now turn to a more detailed comparison to the E. coli
system. In bacteria the physiological conditions correspond
to a membrane tension of τ ∼ 0.5kbT0/nm2 [7]. In this
condition the independent channels are all closed, since their
gating threshold τ0 is ∼ 2.5kbT0/nm2. However, our theory
predicts that in this situation τ is enough to trigger the gating
response of clustered channels [see Fig. 4(a)]; this is a dramatic
change caused by clustering on the gating dynamics [20].
However, because of the initial metastable state, clustering
also increases the delay in the gating response. If long enough,
this delay may be crucial, since the bacterial cell wall can
only sustain high tensions for a very limited amount of time.
The gating response time of a noninteracting channel is of the
order of a few microseconds [16], and the survival time of

the order of 100 ms [21]. Using the approximation derived
in [22], we estimate the response time for ρ = 1 to be t ∼
exp 2E2

kbT (2P−h) Monte Carlo steps (mcs) per particle. Assuming
that each mcs per particle corresponds to the characteristic
reaction time of a single channel, i.e., ∼3 μs, this gives us a
gating response of ∼ 20 ms, for τ = τ0. Thus we predict that
under these conditions most cells would survive the osmotic
shock even with clustered channels, but their gating time is
orders of magnitude greater than when assuming isolated
channels. This is a measurable effect with current experimental
techniques, and this delay could be crucial for cells with
weakened cell walls, for example. Also, even if the channels
manage to open in time, the formation of compact channel
clusters will cause problems for the closing of the channels
(for which there will also be a delay), after the osmotic stress
is removed. Clustering has therefore dramatic consequences
for the nonequilibrium dynamics of the gating.
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