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Across many scientific domains, there is common need to automatically extract a simplified view
or a coarse-graining of how a complex system’s components interact. This general task is called
community detection in networks and is analogous to searching for clusters in independent vector
data. It is common to evaluate the performance of community detection algorithms by their ability
to find so-called ground truth communities. This works well in synthetic networks with planted
communities because such networks’ links are formed explicitly based on the planted communities.
However, there are no planted communities in real world networks. Instead, it is standard practice
to treat some observed discrete-valued node attributes, or metadata, as ground truth. Here, we show
that metadata are not the same as ground truth, and that treating them as such induces severe
theoretical and practical problems. We prove that no algorithm can uniquely solve community
detection, and we prove a general No Free Lunch theorem for community detection, which implies
that no algorithm can perform better than any other across all inputs. However, node metadata
still have value and a careful exploration of their relationship with network structure can yield
insights of genuine worth. We illustrate this point by introducing two statistical techniques that can
quantify the relationship between metadata and community structure for a broad class models. We
demonstrate these techniques using both synthetic and real-world networks, and for multiple types
of metadata and community structure.

Community detection is a fundamental task of network
science that seeks to describe the large-scale structure of
a network by dividing its nodes into communities (also
called blocks or groups), based only on the pattern of
links. This task is similar to that of clustering vector
data, as both seek to identify meaningful groups within
some dataset.

Community detection has been used productively in
many applications, including identifying allegiances or
personal interests in social networks [1, 2], biological
function in metabolic networks [3, 4], fraud in telecom-
munications networks [5], and homology in genetic simi-
larity networks [6]. Many approaches to community de-
tection exist, spanning not just different algorithms and
partitioning strategies, but also fundamentally different
definitions of what it means to be a “community”. This
diversity is a strength, as networks generated by different
processes and phenomena should not a priori be expected
to be well-described by the same structural principles.

With so many different approaches to community de-
tection available, it is natural to compare them to assess
their relative strengths and weaknesses. Typically, this
comparison is made by assessing the method’s ability to
identify so-called ground truth communities, which works
well in artificially generated networks, whose links are
explicitly placed according to the existence of these com-
munities, which are called a planted partition. However,
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for real-world networks, the true data generating process
is typically unknown, which necessarily implies that there
can be no ground truth communities for real networks. A
common goal in searching for communities in a real net-
work is to produce insights about this true but unknown
data generating process, by reducing a large and compli-
cated system to a simpler set of interacting units. But
without access to the very thing these methods are in-
tended to find, objectively evaluating their performance
is difficult.

Instead, it has become standard practice to treat some
observed data on the nodes of a network (e.g., a person’s
ethnicity, gender or affiliation for a social network, or
a gene’s functional class for a gene regulatory network)
as if they were ground truth communities. While this
widespread practice is convenient, it can lead to incorrect
scientific conclusions under relatively common circum-
stances. In this paper, we identify these consequences
and articulate the argument against treating metadata
as ground truth communities. We then present two novel
methods that can be used effectively to explore the re-
lationship between metadata and community structure,
and we demonstrate these methods on both synthetic and
real-world networks.

The use of node metadata as a proxy for ground truth
stems from a reasonable need: since artificial networks
may not be representative of naturally occurring net-
works, community detection methods must also be con-
fronted with real-world examples to show that they work
well in practice. If the detected communities correlate
with the metadata, we may reasonably conclude that the
metadata are involved in or depend upon the generation
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FIG. 1. The SBM likelihood surface for bipartitions of the
Karate Club network [12] shows two distinct peaks that repre-
sent scientifically reasonable partitions. The lower peak corre-
sponds to the social group partition given by the metadata—
often treated as ground truth—while the higher peak corre-
sponds to a leader-follower partition.

of the observed interactions. However, the scientific value
of a method is as much defined by the way it fails as by
its ability to succeed. Because metadata always have
an uncertain relationship with ground truth, failure to
find a good division that correlates with our metadata is
a highly confounded outcome, arising for any of several
reasons:

(i) these particular metadata are irrelevant to the
structure of the network,

(ii) the detected communities and the metadata cap-
ture different aspects of the network’s structure,

(iii) the network contains no communities as in a simple
random graph [7] or a network that is sufficiently
sparse that its communities are not detectable [8],
or

(iv) the community detection algorithm performed
poorly.

Most work on community detection assumes that failure
to find communities that correlate with metadata implies
case (iv), algorithm failure, although some critical work
has focused on case (iii), difficult or impossible to recover
communities. The lack of consideration for cases (i) and
(ii) suggests the possibility for selection bias in the pub-
lished literature in this area (a point recently suggested
by [9]). Indeed, recent critiques of the general utility of
community detection in networks [9–11] can be viewed
as a side effect of confusion about the role of metadata
in evaluating algorithm results.

For these reasons, using metadata to assess the per-
formance of community detection algorithms can lead to
errors of interpretation, false comparisons between meth-
ods, and oversights of alternative patterns and expla-
nations, including those that do not correlate with the
known metadata.

For example, Zachary’s Karate Club [12] is a small real-
world network with compelling metadata frequently used
to demonstrate community detection algorithms. The
network represents the observed social interactions of 34
members of a karate club. At the time of study, the club
fell into a political dispute and split into two factions.
These faction labels are the metadata commonly used
as ground truth communities in evaluating community
detection methods. However, these factions are not the
only scientifically reasonable way to partition the net-
work. Figure 1 shows the landscape for a large num-
ber of two-group partitions of the Karate Club, under
the stochastic blockmodel (SBM) for community detec-
tion [13, 14]. Partitions that are similar to each other are
embedded nearby in the horizontal coordinates, mean-
ing that the two broad peaks in the landscape represent
two distinct sets of high-likelihood partitions, one cen-
tered around the faction division and one that divides
the network into leaders and followers. Other common
approaches to community detection [15–17], suggest that
the best divisions of this network have more than two
communities [18, 19]. The multiplicity and diversity of
good partitions illustrates the ambiguous status of the
faction metadata as a desirable target.

The Karate Club network is among many examples
for which standard community detection methods re-
turn communities that either subdivide the metadata
partition [20] or do not correlate with the metadata at
all [21, 22]. More generally, most real-world networks
have many good partitions, there are many plausible
ways to sort all partitions to find good ones, and there is
no consensus on which method to use on which type of
network [22, 23].

In what follows, we first rigorously develop the argu-
ments against the use of metadata as community ground
truth. We then introduce two techniques that produc-
tively explore the relationship between observed meta-
data and community structure, and apply both meth-
ods to a variety of synthetic and real-world networks, us-
ing multiple community detection frameworks. Through
these examples, we illustrate how a careful exploration of
the relationship between metadata and community struc-
ture can shed light on the role that node attributes play
in generating network links in real complex systems.

GROUND TRUTH AND METADATA IN
COMMUNITY DETECTION

Community detection is an inverse problem. Sup-
pose that some generative process g embeds ground-truth
communities T in the patterns of links in a network
G = g(T ). Our goal is to discover those communities
based only on the observed links. To do so, we write
down a community detection scheme f that uses the net-
work to find communities C = f(G). If we have chosen f
well, then the communities C will be equal to the ground
truth T and we have solved the inverse problem. Thus,
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the community detection problem for a single graph seeks
a method f∗ that minimizes the distance between the
identified communities and the ground truth:

f∗ = arg min
f

d(T , f(G)) , (1)

where d is a measure of distance between partitions.
For a method f to be generally useful, it should be the

minimizer for many different graphs, each with its own
generative process and ground truth. Often in the com-
munity detection literature, several algorithms are tested
on a range of networks to identify which performs best
overall [10, 24, 25]. If a universally optimal community
detection method exists, it must solve Eq. (1) for any
type of generative process g and partition T , that is,

∃ f∗ s.t. f∗ = arg min
f

d
(
T , f (g(T ))

)
∀{g, T } . (2)

In fact, no such universal f∗ community detection
method can exist because the mapping from generative
models g and ground truth partitions T to graphs G is
not a bijection. Any network G can result from mul-
tiple, distinct generative processes, each with its own
ground truth, such that G = g1(T1) = g2(T2), with
(g1, T1) 6= (g2, T2) (see Theorem 1 in Supplemental Text
A). Thus, no community detection algorithm method
can uniquely solve the problem for all possible networks
(Eq. (2)), or even a single network (Eq. (1)).

Substituting metadata M for ground truth T exacer-
bates the situation by creating additional problems. In
real networks we do not know the ground truth or the
generating process. Instead, it is common to seek a par-
tition that matches some node metadataM. Optimizing
a community detection method to discover M is equiva-
lent to finding f∗ such that

f∗ = arg min
f

d(M, f(G)) , (3)

yet this does not necessarily solve the community detec-
tion problem of Eq. (1) since we cannot guarantee that
the metadata are equivalent to the unobserved ground
truth, d(M, T ) = 0. Consequently, both d(C, T ) = 0
and d(C, T ) > 0 are possibilities. Thus, when we evalu-
ate a community detection method by its ability to find
a metadata partition, we confound the metadata’s cor-
respondence to the true communities, i.e., d(M, T ) [case
(ii) in the previous section] and the community detection
method’s ability to find true communities, i.e., d(C, T )
[case (iv)]. In this way, treating metadata as ground
truth simultaneously tests the metadata’s relevance and
the algorithm’s performance, with no ability to differen-
tiate between the two. Past evaluations of community
detection algorithms that only measure performance by
metadata recovery are thus inconclusive. It is only with
synthetic data, where the generative process is known,
that ground truth is knowable and performance objec-
tively measurable.

However, even when the generative process is known,
there is no best overall community detection method.
As in supervised learning, we prove a No Free Lunch
theorem [26] for community detection (Theorem 3, Sup-
plemental Text A). That is, no method has an a pri-
ori advantage over any other. For a set of cases that
a particular method fa outperforms fb, there must ex-
ist a set of cases where fb outperforms fa—on average
no algorithm performs better than any other. On the
other hand, the theorem also implies that if the tasks of
interest correspond to a restricted subset of cases (e.g.,
finding communities in gene regulatory networks or cer-
tain kinds of groups in social networks), then there may
be a method that outperforms others within the confines
of that subset. In short, matching beliefs about the gen-
erative process g with the assumptions of the algorithm f
can lead to better, more accurate, but restricted results.
(See Supplemental Text A for additional discussion.)

RELATING METADATA AND STRUCTURE

Metadata labels describe the nodes, while communi-
ties describe how nodes interact. Correspondence be-
tween metadata and communities does suggests a rela-
tionship between how nodes interact and the properties
of the nodes themselves. This correspondence has been
used productively to assist in the inference of community
structure [22], learn the relationship between metadata
and network topology [27, 28] and explain dependencies
between metadata and network structure [29].

Here we propose two new methods to explore how
metadata relates to the structure of the network when
the metadata only correlate weakly with the identified
communities. Both methods utilize the powerful tools of
probabilistic models, but are not restricted to any partic-
ular model of community structure. The first is a statis-
tical test to assess whether or not the metadata partition
and network structure are related [case (i)]. The second
explores the space of network partitions to determine if
the metadata represent the same or different aspects of
the network structure as the “optimal” communities in-
ferred by a chosen model [case (ii)].

In principle, any probabilistic generative model
(e.g., [13, 14, 30–33]) of communities in networks could
be used within these methods. Here we derive results
for the popular stochastic blockmodel [13, 14] and its
degree-corrected equivalent [21] (alternative formulations
discussed in Supplemental Texts B and C). The SBM
defines communities as sets of nodes that are stochas-
tically equivalent. This means that the probability pij
of a link between a pair of nodes i and j depends only
their community assignment, i.e., pij = ωπi,πj

, where πi
is the community assignment for node i and ωπi,πj

is the
probability that a link exists between members of groups
πi and πj . This general definition of community struc-
ture is quite flexible, and allows for both assortative and
disassortative community structure, as well as arbitrary
mixtures thereof.
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Testing for a relationship between metadata and
structure

Our first method, called the blockmodel entropy signif-
icance test, is a statistical test to determine if the meta-
data partition is relevant to the network structure [case
(i)], i.e., if it provides a good description of the network
under a given model. We quantify relevance using the
entropy, which is a measure of how many bits of infor-
mation it takes to record the network given both the net-
work model and its parameters. The lower the entropy,
the better the metadata describe the network.

Here, we use the SBM with maximum likelihood pa-
rameters for the partition induced by the metadata,
which is given by ω̂rs = mrs

nrns
where mrs is the number

of links between group r and group s and nr is the num-
ber of nodes in group r. Then the entropy HSBM(G;M)
can be calculated as a sum of entropies for every possible
link (see Supplemental Text B). The statistical signifi-
cance of this entropy value is obtained by comparing it
to a null distribution of such values, derived by comput-
ing the entropies induced by random permutations {π̃}
of the observed metadata values H(G; π̃). This choice of
null model preserves both the empirical network struc-
ture and the relative frequencies of metadata values, but
removes the correlation between the two. The result is a
standard p-value, defined as

p-value = Pr [H(G; π̃) ≤ H(G;M)] . (4)

Smaller p-values indicate that the metadata provide a
better description of the network, making it relatively
less plausible that a random permutation of the metadata
values could describe the network as well as the observed
metadata does. Recently, Bianconi et al. [34] proposed
a related entropy test for this task, based on a Normal
approximation to the null distribution under the SBM.
The blockmodel entropy significance test described here
is a generalization of Bianconi et al.’s test that is both
more flexible, as it can be used with any number of null
models, and more accurate, as the true null distribution
is substantially non-Normal (Fig. S2).

To gain some intuition as to how this p-value behaves,
we first apply it to synthetic networks with known com-
munity structure (see Supplemental Text B). For these
networks, our ability to detect relevant metadata is deter-
mined jointly by the strength of the planted communities
and the correlation between metadata and communities.
Figure 2 shows that for networks with strong community
structure we can reliably detect relevant metadata even
for relatively low levels of correlation with the planted
structure. In fact, our method can still identify relevant
metadata when the community structure is sufficiently
weak that communities are provably undetectable by any
community detection algorithm that relies only on the
network [8]. Statistical significance requires an increas-
ing level of correlation with the underlying structure as
community strength decreases; if there is no structure
in the network (ε = 1) then any metadata partition will

FIG. 2. Expected p-value estimates of the blockmodel en-
tropy significance test for metadata with varying correlation
` with two equally sized planted communities (see Supplemen-
tal Text B). Each curve represents networks with a fixed com-
munity strength ε = ωrs/ωrr. Solid lines indicate strong com-
munity structure in the so-called detectable regime (ε < λ),
while dashed lines represent weak undetectable communities
(ε > λ) [8]. Four block density diagrams visually depict ε
values.

be correctly identified as irrelevant. Note that a low p-
value does not mean that the metadata provide the best
description of the network, nor does it imply that we
should be able to recover the metadata partition using
community detection.

We now apply the blockmodel entropy significance test
to a social network of interactions within a law firm, and
to biological networks representing similarities among
genes in the human malaria parasite P. falciparum (see
Supplemental Text D). The first set, the Lazega Lawyers
networks, comprises three networks on the same set of
nodes and five metadata attributes. The multiple com-
binations of edge and metadata types that yield highly
significant p-values (Table S5) indicate that each set
of metadata provides non-trivial information about the
structure of multiple networks, and vice versa, implying
that all metadata sets are relevant to the edge formation
process, so none should be individually treated as ground
truth.

The second set, the malaria var gene networks, com-
prises nine networks on the same set of nodes and three
sets of metadata. For each network, we find a non-
significant p-value when the metadata denote the para-
site strain-of-origin, under both the SBM and the degree-
corrected SBM (Table S6). In contrast to the Lazega
Lawyers network, these strain metadata are statistically
irrelevant for explaining the observed patterns of gene
recombinations. This finding substantially strengthens
the conclusions of Ref. [35] which used a less sensitive
test based on label assortativity. Some metadata for
these networks do correlate, however (see Supplemental
Text B).
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FIG. 3. The neoSBM on synthetic data. (A) The SBM likelihood surface shows four distinct peaks corresponding to a
sequence of locally optimal partitions. (B) Block density diagrams depict community structure for locally optimal partitions,
where darker color indicates higher probability of interaction. (C) The neoSBM, with partition 1 as the metadata partition,
interpolates between partition 1 and the globally optimal SBM partition 4. The number of free nodes q and SBM log likelihood
as a function of θ show three discontinuous jumps as the neoSBM traverses each of the locally optimal partitions (1–4).

Diagnosing the structural aspects captured by
metadata and communities

Our second method provides a direct means to diag-
nose whether some metadata and a network’s detected
communities differ because they reveal different aspects
of the network’s structure [case (ii)]. We accomlish
this by extending the SBM to probe the local struc-
ture around and between the metadata partition and the
detected structural communities. This extended model,
which we call the neoSBM, performs community detec-
tion under a constraint in which each node is assigned one
of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a
node is blue, its community is fixed as its metadata label,
while if it is red, its community is free to be chosen by the
model. We choose q automatically within the inference
step of the model by imposing a likelihood penalty in the
form of a Bernoulli prior with parameter θ, which controls
for the additional freedom that comes from varying q.
The neoSBM’s log likelihood is LneoSBM = LSBM +qf(θ),
where f(θ) may be interpreted as the cost of freeing a
node from its metadata label (see Supplemental Text C
for exact formulation).

By varying the cost of freeing a node, we can use the
neoSBM to produce a graphical diagnostic of how the
metadata and inferred community partitions are related.
As the cost of freeing nodes is reduced, the neoSBM cre-
ates a path through the space of partitions from meta-
data to the optimal community partition and, as it does
so, we monitor the improvement of the partition by the
increase in SBM log likelihood. A steady increase in-
dicates that the neoSBM is incrementally refining the
metadata partition until it matches the globally optimal
SBM communities. This behavior implies that the meta-
data and community partitions represent related aspects
of the network structure. On the other hand, if the SBM

likelihood remains constant for a substantial range of θ,
followed by a sharp increase or jump, it indicates that the
neoSBM has moved from one local optimum to another.
Multiple plateaus and jumps indicate that several local
optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

We examine the path between partitions in terms of
the SBM log likelihood and the number of free nodes as
a function of θ for a synthetic network with four locally
optimal partitions (see Supplemental Text C), which cor-
respond to the four distinct peaks in the surface plot
(Fig. 3A). We take the partition of the lowest of these
peaks as metadata and use the neoSBM to generate a
path to the globally optimal partition. This produces
three discontinuous jumps in log likelihood and number
of free nodes (Fig. 3C), one for each time the model en-
counters a new locally optimal partition.

Examining the partitions along the neoSBM’s path
can provide direct insights into the relationship between
metadata and network structure. Figure 3B shows the
structure at each of the four traversed optima as block-
wise interaction matrices ω. Each partition has a dif-
ferent type of large-scale structure, from core-periphery
to assortative patterns. In this way, when metadata do
not closely match inferred communities, the neoSBM can
shed light on whether and how the metadata capture sim-
ilar or different aspects of network structure.

We now present an application of the neoSBM to the
Lazega Lawyers data analyzed in the previous section.
When initialized with the law school and office location
metadata, the neoSBM produces distinct patterns of re-
laxation to the global optimum (Fig. 4A,C), approaching
it from opposite sides of the peak in the likelihood sur-
face. Starting at the law school metadata, the model tra-
verses the space of partitions to the global SBM-optimal
partition without encountering any local optima. In con-
trast, the path from the office metadata crosses one local
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FIG. 4. The neoSBM on Lazega Lawyers friendship data [36]. (A) Points of two neoSBM paths using office (red) and law
school (blue) metadata partitions are shown on the SBM likelihood surface (greyscale to emphasize paths). (B) Block density
diagrams depict community structure for metadata, (1–2) intermediate optimal, and (3) globally optimal partitions, where
darker color indicates higher probability of interaction. (C) The neoSBM traverses two distinct paths to the global optimum
(3), but only the path beginning at the office metadata partition traverses a local optimum (1), indicated by a plateau in free
nodes q and log likelihood.

optimum (Fig. 4A,B), which indicates that the law school
metadata are more closely associated with the large-scale
organization of the network than are the office metadata.
Both metadata are relevant, however, as we determined
in the previous section. Results for other real-world net-
works are included in Supplemental Text C, including
generalizations of the neoSBM to degree-corrected SBMs.

DISCUSSION

Treating node metadata as ground truth communi-
ties for real-world networks is commonly justified via
an erroneous belief that the purpose of community de-
tection is to recover groups that match metadata la-
bels [9, 11, 25, 37]. Consequently, metadata recovery
is often used to measure community detection perfor-
mance [38] and metadata are often referred to as ground
truth [22, 39]. However, the organization of real networks
typically correlates with multiple sets of metadata, both
observed and unobserved. Thus, labeling any particular
set to be “ground truth” is an arbitrary and generally
unjustified decision. Furthermore, when a community
detection algorithm fails to identify communities that
match known metadata, poor algorithm performance is
indistinguishable from three alternative possibilities: (i)
the metadata are irrelevant to the network structure, (ii)
the metadata and communities capture different aspects
of the network structure, or (iii) the network lacks group
structure. Here, we have introduced two new statistical
tools to directly investigate cases (i) and (ii), and ex-
plored the mathematical and practical problems of treat-
ing metadata as ground truth.

By focusing on detecting communities that are highly
correlated with metadata, we risk overlooking other sci-
entifically relevant organizational patterns. Disagree-
ments between metadata labels and community detection

results may in fact point to interesting or unexpected
generative processes. For instance, in the Karate Club
network, there is one node whose metadata label is not
recovered by most algorithms. In this case, although the
student had more social ties to the president’s group,
he chose to join the instructor’s group so as not to lose
his progress toward his black belt [12]. In other cases,
metadata may provide a narrative that blinds us to ad-
ditional structure, exemplified by a network of political
blogs [1] in which liberal and conservative blogs formed
two highly assortative groups. Consequently, recovery
of these two groups has been used as a signal that a
method produces “good” results [21]. A deeper analysis,
however, suggests that this network is better described
by subdividing these two groups, a step that reveals sub-
stantial substructure within the dominant patterns of po-
litical connectivity [20, 33]. These subgroups remained
overlooked in part because the metadata labels aligned
closely with an attractively simple narrative.

The task of community detection is the network anal-
ogy of data clustering. Whereas clustering divides a set of
vectors into groups with similar attribute patterns, com-
munity detection divides a network into groups of nodes
with similar connectivity patterns. The general prob-
lem of clustering, however, is notoriously slippery [40]
and cannot be solved universally [41]. Essentially, which
clustering is optimal depends on its subsequent uses, and
similar constraints apply to community detection [42].

There is no universally accepted definition of commu-
nity structure, nor should there be. Networks represent a
wide variety of complex systems, from biological to social
to artificial systems, and their large-scale structure may
be generated by fundamentally different processes. Good
community detection methods like the SBM can be pow-
erful exploratory tools, able to uncover a wide variety of
such patterns in real networks. But, as we have shown
here, there are no free lunches in community detection.



7

Instead, algorithmic biases that improve performance on
one class of networks must reduce performance on others.
An important direction of future work is thus to better
understand both these trade offs and the errors that can
occur in domain-agnostic applications [43, 44].

A complementary approach is to incorporate the meta-
data into inference process itself, which can help guide
a method toward producing more useful results. The
neoSBM introduced here is one such method. Oth-
ers include methods that use metadata as a prior for
community assignment [22] and identify relevant com-
munities to predict missing network or metadata infor-
mation [27, 28, 45]. However, there is potential to go
further than these domain-agnostic methods can take
us. Tools that incorporate correct domain-specific knowl-
edge about the systems they represent will provide the

best lens for revealing patterns beyond what is already
known and ultimately lead to important scientific break-
throughs. By rigorously probing these relationships we
can move past the false notion of metadata as ground
truth, and instead uncover the particular organizing prin-
ciples underlying real world networks and their meta-
data.
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Appendix A: No optimal community detection
algorithm

Spoon boy: Do not try and bend the spoonthat’s impos-
sible. Instead, only try to realize the truth.
Neo: What truth?
Spoon boy: There is no spoon.
Neo: There is no spoon?
Spoon boy: Then you will see that it is not the spoon that
bends, it is only yourself.

In the main text we argue that that the goal of re-
covering ground truth communities is ill posed because
it lacks a unique solution and we also claim a “No Free
Lunch” theorem for community detection. In this Sup-
plemental Text, we describe and expound those claims
using technical arguments.

For convenience, we provide a reference table of nota-
tion used in derivations in this Supplemental Text.

TABLE S1. Notation used in this Supplemental Text

Variable Definition

G a network, G = (V,E)

N the number of nodes |V |
T ground truth (planted) partition

C detected communities partition

g generative model, maps a partition to a network. G = g(T )

f comm. detection method, maps G to a partition C = f(G)

`(·, ·) an error or loss function, returns a scalar

X the space of possible inputs, i.e., all possible graphs G
Y the space of possible outputs, i.e., all possible partitions

γ the true relationship between X and Y

h the hypothesis about the relationship between X and Y

σX probability density over X

Λ(`) total loss across all possible inputs for loss function `

u, v two partitions of N objects

Ω the set of all possible partitions of N objects.

BN the Nth Bell number, the number of possible ways

that N objects can be partitioned. B = |Ω|

1. Ground-truth community detection is an
ill-posed inverse problem

A problem that is well posed satisfies three proper-
ties: (i) a solution exists, (ii) the solution is unique, and
(iii) the solution’s behavior changes continuously with
the problem’s initial conditions. The classic example of
an ill-posed problem is the inverse heat equation, which
violates condition (iii) because its solution (the distri-
bution of temperature in the past) is highly sensitive
to changes in the distribution of temperatures at the
present. The problem of reproducing ground truth com-
munities T from a network G by formulating the correct
community detection algorithm f∗ is ill posed because

it fails condition (ii), i.e., community detection has no
unique solution.

Definition: The ground truth community detection prob-
lem: given a fixed network G in which there has been hid-
den some ground truth partition T , find the true com-
munities that were planted in, embedded in, or used to
generate the network. In other words, given G, find the
T such that G = g(T ).

We now argue that the ground truth community de-
tection problem is ill posed because its solution is not
unique. The intuition behind this argument is that any
network G could have been created using many differ-
ent planted partitions via different generative processes.
Therefore, searching for the ground truth partition with-
out knowing the exact generative mechanism is an im-
possible task; there is no ground truth.

Theorem 1: For a fixed network G, the solution to
the ground truth community detection problem is not
unique.

Proof: We first show that the graph G can be produced
by using two different planted partitions, T1 and T2 with
T1 6= T2. Let T1 be the trivial 1-partition in which all
vertices are in the same group, and let g1 be the gener-
ative model of Erdős-Rényi random graphs with proba-
bility p ∈ (0, 1). Then the model and partition g1(T1)
create G with non-zero probability. Let T2 be the triv-
ial N -partition in which each vertex is in its own group,
and let g2 be a generative model that specifies the ex-
act number of edges between all groups, such that g2(T2)
produces G with probability one. We therefore have two
partitions T1 6= T2 and both g1(T1) and g2(T2) can create
G. Since two different planted partitions may be respon-
sible for G, both are potential solutions of the community
detection problem. Therefore, the solution to the com-
munity detection problem is not unique for the network
G. To complete the proof, note that the 1-partition and
N -partition argument above applies equally well to any
network G.

The theorem above relies on two trivial partitions, the
1-partition and the N -partition in its proof, but other
examples exist as well: consider the generative model
gG∗ which maps any partition that it is given to some
fixed network G∗, essentially ignoring the information
provided by the partition [similar to case (i) in the main
text]. These models, while sufficient for the proof, are
not particularly interesting for practictioners, yet non-
trivial models and partitions also exist for any network.
For instance, the Karate Club network may have plau-
sibly been produced by the SBM with a core-periphery
partition or by the degree-corrected SBM with a social
faction partition [21].

Belief in ground truth T necessitates a belief in a spe-
cific generative mechanism g which together produced
the network G. For real-world networks, which may arise
through more complex processes than those described
here, we do not know the generative mechanism. Theo-
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rem 1 means that, in these cases, it is impossible to re-
cover the true partition because any partition may plau-
sibly have been used to generate the network. There-
fore the ground truth community detection problem is
ill-posed for any network for which the generative pro-
cess is unknown because there is no unique solution. Put
differently, it is impossible to uniquely solve an inverse
problem when the function to be inverted is not a bijec-
tion.

2. No Free Lunch for community detection

The “no free lunch” (NFL) theorem [26] for machine
learning states that for supervised learning problems, the
expected misclassification rate, summed over all possible
datasets, is independent of the algorithm used. In other
words, averaged over all problems, every algorithm has
the same performance. Therefore, if algorithm f1 out-
performs algorithm f2 for one set of problems, then there
exists some other set of problems for which algorithm f2

outperforms algorithm f1. In other words, it is impossi-
ble to get overall better performance without some cost;
there is no free lunch.

The NFL theorem holds for community detection.
Demonstrating this requires that we first translate the
community detection problem into the language and no-
tation of the Extended Bayesian Framework (EBF) used
in the NFL theorems for supervised learning. Then, un-
der an appropriate choice of error (or “loss”) function `,
the performance of any community detection method f ,
summed over all problems {g, T }, is identical∑

g,T
`
(
T , f (g(T ))

)
= Λ(`) ∀f , (A1)

where Λ(`) depends on the particular error function ` but
is otherwise a constant, representing the total error.

In the following, we map community detection nota-
tion to EBF notation, provide a guiding example, and
then resolve a subtle issue related to the loss function
`. We then discuss the implications of this result for fu-
ture studies of community detection. The proofs of the
NFL theorems are not recapitulated here, but are fully
detailed in Ref. [26] and discussed extensively elsewhere.

a. Community detection in the Extended Bayesian
Framework

The Extended Bayesian Framework (EBF) is a
framework—a set of variables, definitions, and
assumptions—for supervised learning that provides
a clear and precise description of the problem. It is
important in both the proof and implications of the
NFL theorem, and was formalized at length in Ref. [26].
In what follows, random variables will be denoted
by capital letters, e.g. X, while instances of random

variables will be denoted by the corresponding lowercase
letters, e.g. x. In the EBF, we suppose that there exists
an input space X, an output space Y , and that each
of these has a countable (but possibly infinite) number
of elements, |X| = n and |Y | = r. The fundamental
relationship to be learned is how X and Y are related,
and to that end, let γ be the true or target relationship
between X and Y , i.e., γ is the conditional distribution
of Y , given X. The points in the space X need not be
distributed uniformly either, so we also specify σ, the
probability density function of points x in the input
space X, i.e., P (x|σ) = σX . In the nomenclature of
community detection, the input x ∈ X is simply the
observed graph G, and the output y ∈ Y is the true
partition into communities T for the nodes described by
x. To solve a community detection problem, we hope
to predict the true communities y from the input graph
x; a community detection method will be successful
when its hypothesized relationship h is an accurate
representation of the true relationship γ between X and
Y .

In supervised learning, for which the NFL theorems
were originally proved, we aim to learn the relation-
ship between X and Y from a training set d which
consists of m ordered pairs of samples from X and Y ,
{dX(i), dY (i)}mi=1. In response to the training data, the
learning algorithm produces a hypothesis h in the form
of an x-conditioned probability distribution over values
y. The way in which the learning algorithm produces
a hypothesis from training sets is described by P (h|d),
the distribution over hypotheses conditioned on the ob-
served data. Note that the algorithm learns from the data
alone and is independent of γ, i.e., P (h|d, f) = P (h|d).
If the algorithm performs well the hypothesis h will have
high correspondence with the true relationship γ. There-
fore, in supervised learning, algorithms are evaluated by
their ability to make sufficient use of a limited train-
ing set to provide good predictions of y given x not in
the training set. On the other hand, in unsupervised
learning—a category which includes clustering and com-
munity detection—the training set d is empty (m = 0),
so the prediction h is based solely on the prior beliefs en-
coded in the model P (h). We note that in the NFL the-
orems for supervised learning, the independence of train-
ing data d from γ and σ is important to establish, but
for unsupervised tasks, the set d is empty so it is trivially
independent of γ and σ.

To better understand the EBF for community detec-
tion, an example is helpful. Consider the problem of
finding two planted communities in a network G. The
true relationship γ between the network and its parti-
tion is hidden. Given only G—which is a point in the
space of graphs X—fitting the parameters of an SBM,
maximizing modularity, or using another method of our
choice, produces a hypothesis h, which is a prediction
about which nodes belong to which groups. If these com-
munities are found correctly by the algorithm, then h will
be highly correlated with the true communities mapped
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by γ. (This is equally true for both hard partitions,
where each node belongs to only one group, and soft par-
titions, where each node may be distributed over multiple
groups.) In other words, h estimates γ based on a point
in X called G. Because the estimate h is based only on
G and the assumptions of the algorithm P (h), it repro-
duces γ with possibly limited accuracy, and therefore its
community assignments may or may not be highly cor-
related with the true assignments T ∈ Y . Increasing the
size of the input data set may help with accuracy as well:
by generating a larger graph using the same generative
model, G supplies a different point in X providing more
information to the community detection method. This
may allow the estimate h to produce better predictions
of γ, thereby producing a more accurate partitioning of
nodes into their true communities, but only if the model
P (h) is sufficiently aligned to reality P (γ).

All learning algorithms make some prior assumptions,
in the form of P (h), about the possible relationships be-
tween inputs and outputs. For unsupervised methods
such as community detection, there is a much greater
importance associated with these assumptions because
they do not have access to training data. For instance, a
supervised algorithm could supposedly start from a uni-
formly ignorant prior P (h) and rely on having a suf-
ficiently large training set that P (h|d) is informative.
When there is no training data it is necessary that P (h)
is informative of the possible input-output relationship.
Thus, community detection algorithms encode beliefs or
definitions of community structure, and these beliefs con-
stitute a prior over the kinds of problems that we expect
to see. Some methods, for example, search only for as-
sortative [15, 31] or disassortative [32] community struc-
tures, while other are more flexible and can find mixtures
of assortative, disassortative, and core-periphery struc-
tures [13, 14, 21, 33] and allow for nodes to belong to
multiple communities [30, 31].

b. Loss functions and a priori superiority

So far, we have discussed the phrasing of community
detection in the language of EBF but have not described
the way in which error (also called loss or cost) is mea-
sured. The error function quantifies the accuracy of pre-
dictions, and the EBF introduces a random variable C
which represents the error associated with a particular
γ and h, i.e., the error associated with using a par-
ticular algorithm for a particular problem. Conceptu-
ally, this is what the community detection literature at-
tempts to estimate when algorithms are compared based
on their ability to recover planted communities in syn-
thetic data. More formally, C is measured by the distri-
bution P (c|h, γ, d), which incorporates the relationships
between the test set and the generating process, as well as
the way in which the hypothesis is related to the training
data. Therefore, the quantity of interest to those devel-
oping algorithms is the expected error, E(C|h, γ, d). For

1 2 3 4 5
FIG. S1. The five distinct ways to partition three nodes. Nor-
malized mutual information and adjusted mutual information
between each pair of partitions are presented in Tables S2 and
S3, respectively.

example, in the context of supervised learning, choosing
the loss function ` to be the average misclassification rate
is common. For the purposes of community detection,
misclassification rate is not of interest for a pedantic but
important reason: for community detection and other re-
lated unsupervised tasks such as clustering, permutations
of the group labels are inconsequential because the parti-
tion is the desired outcome; labeling two groups a and b
is equivalent to labeling them b and a. As a result, many
of the loss functions typically used to compare partitions
have a “geometric” structure that implies an a priori su-
periority of some algorithms, which would appear to con-
tradict the NFL theorem. We now discuss one such loss
function frequently used to evaluate community detec-
tion algorithms, the normalized mutual information, and
the structure that it imposes on the space of partitions.

Normalized mutual information is an information-
theoretic measurement of similarity between two parti-
tions that treats both partitions as statistical objects.
For a partition u of N objects into Ku groups, the prob-
ability that an object chosen uniformly at random falls
into group ui is pi = |ui|/N , i = 1 . . .Ku. The entropy
associate with a partition u is then the entropy of its
corresponding distribution p,

H(u) = −
Ku∑
i=1

pi log (pi) .

When comparing two partitions u and v of the same set
of objects, each object belongs to some group ui in the
first partitions and some other group vj , j = 1 . . .Kv in
the second partition, with the corresponding probability
pij . The mutual information between the two partitions
is therefore

I(u, v) =

Ku∑
i=1

Kv∑
j=1

pij log

(
pij
pipj

)
,

which can be normalized to define normalized mutual
information as

NMI(u, v) =
I(u, v)√
H(u)H(v)

. (A2)
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Other normalizing factors in the denominator are possi-
ble, including 1

2 [H(u)+H(v)] and max{H(u), H(v)}; see
[46]. NMI maps partitions to the unit interval, with 0
indicating that two partitions are uncorrelated and 1 in-
dicating that they are identical (even if the groups labels
differ).

To understand how an error function imposes a ge-
ometric structure, consider a simple problem (unre-
lated to community detection) of predicting, based on
some inputs X, a point in the unit circle in Y ={
y
∣∣ ‖y‖ ≤ 1, y ∈ R2

}
. If all points in Y are equally

likely, then an algorithm that guesses the center of the
circle h = 0 will outperform an algorithm that guesses a
point on the boundary h ∈ ∂Y , simply due to the fact
that the center of the circle is, on average, closer to the
other points of the circle than any boundary point. Nor-
malized mutual information imposes a geometric struc-
ture on the space of partitions in a similar way.

Consider a loss function based on normalized mutual
information (NMI) and imagine a community detection
algorithm that entirely ignores the network and simply
returns a fixed partition of the vertices. As in the ex-
ample above, NMI provides a geometrical structure on
the space of partitions, an algorithm that always returns
a partition toward the middle of the space of partitions
will outperform an algorithm that always returns a par-
tition on the boundary of that space. To demonstrate
this point, Fig. S1 shows all five possible partitions of
three vertices, and Table S2 shows their NMI for all pair-
wise comparisons. Averaged over all possible correct an-
swers, an algorithm that consistently predicts partition 5
will outperform all others, and an algorithm that consis-
tently predicts partition 1 will underperform all others.
However, this structure is a known issue of NMI, and so
other error functions and corrections have been proposed
such as the adjusted mutual information (AMI), which
accounts for the geometry of the space [46]. Table S3
shows the AMI for the same set of partitions, and the
expected AMI is zero except for the partition that con-
tains only a single group and the partition of each node
into separate groups. In the case of these partitions, the
1-partition and the N -partition, the expected AMI is the
reciprocal of the Bell number BN—the Bell number is the
total number of distinct ways that N objects can be par-
titioned, and it grows superexponentially with N—so as
the number of vertices N increases, so AMI approaches 0
superexponentially; for even small networks, 1/BN ≈ 0.
In this way, AMI provides a “geometry-free” space in
which no one partition is a priori closer to all others.
This key property of AMI, called homogeneity, is proved
in a Lemma in the next section.

c. Theorem and corollary

We now prove a lemma about adjusted mutual infor-
mation, and then formally state the NFL theorem for
supervised learning and prove the no free lunch corollary

TABLE S2. Normalized mutual information for partitions in
Fig. S1

Partition 2

Partition 1 1 2 3 4 5

1 1 0 0 0 0

2 0 1 0.27 0.27 0.76

3 0 0.27 1 0.27 0.76

4 0 0.27 0.27 1 0.76

5 0 0.76 0.76 0.76 1

E[NMI] 0.20 0.46 0.46 0.46 0.66

TABLE S3. Adjusted mutual information for partitions in
Fig. S1

Partition 2

Partition 1 1 2 3 4 5

1 1 0 0 0 0

2 0 1 -0.5 -0.5 0

3 0 -0.5 1 -0.5 0

4 0 -0.5 -0.5 1 0

5 0 0 0 0 1

E[AMI] 0.20 0 0 0 0.20

for community detection.

Lemma 1: Adjusted mutual information (AMI) is a ho-
mogenous loss function over the interior of the space of
partitions of N objects. Including the boundary parti-
tions, i.e., the 1-partition and the N -partition, AMI is
homogenous within B−1

N .

Proof: Showing that AMI is a homogenous loss function
requires that we show

L(u) =
∑
v∈Ω

AMI(u, v) (A3)

is independent of u, where Ω is the space of all partitions
of N objects. Stated plainly, if L(u) is independent of
u, it means that the total AMI between partition u and
all possible partitions will be the same, no matter which
partition u is chosen. The definition of AMI is:

AMI(u, v) =
I(u, v)− E[I(u, v)]√
H(u)H(v)− E[I(u, v)]

where I is mutual information and H is entropy [46]. The
AMI takes on a value of 1 when two partitions are identi-
cal and a value of 0 when they are only correlated to the
extent that one would expect by chance. In particular,
the expectation E is taken over all possible pairs of par-
titions u′ and v′ such that every u′ has the same number
of groups and the same number of objects belonging to
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each group as does u, and likewise for v′ and v. In this
way, the expectation E is taken over all pairs of divisions
that preserve the group sizes of the two partitions being
compared. For convenience of notation, let φ be a sub-
set of all partitions Ω such that every partition v ∈ φ
has the same number of groups and same number of ob-
jects in each group. The set of all partitions Ω may be
subdivided into non-overlapping subsets {φi}, such that
∪iφi = Ω and φi ∩ φj = ∅ for any i 6= j. (For example,
in Fig. S1, partition 1 belongs to φ1, partitions 2, 3, and
4 belong to φ2, and partition 5 belongs to φ3.) Let the
particular subset φi to which a partition u belongs be
denoted by φ(u).

Prior to proceeding, we note that there are two special
boundary partitions, the 1-partition in which all objects
are in a single group and the N -partition in which each
object is in its own group. These will be denoted by 1̄ and
N̄ respectively. Note that 1̄ = φ(1̄) so that |φ(1̄)| = 1,
and that φ(N̄) is equivalent to the set of all possible
relabelings of the N objects, so that |φ(N̄)| = N ! .
Because there is only one element of φ(1̄), it is nec-
essarily true that I(1̄, 1̄) = E[I(1̄, 1̄)] = H(1̄). Thus,
for this special case, the numerator and denominator of
AMI are identical, and AMI(1̄, 1̄) = 1. Similarly, be-
cause the set φ(N̄) contains every possible permutation
of the labels of the objects, yet all partitions are identical,
I(N̄ , N̄) = E[I(N̄ , N̄)] = H(N̄), and so AMI(N̄ , N̄) = 1.

In order to prove Eq. (A3), we will show that L(u) =
0 for all u except 1̄ and N̄ by demonstrating that the
numerator of the definition of AMI is 0, specifically,∑

v∈Ω

[I(u, v)− E[I(u, v)]] = 0 ∀ u 6= 1̄ or N̄ . (A4)

In fact, we will show that Eq. (A4) holds by breaking the
entire sum over all partitions Ω into sums over each of
its disjoint subsets {φi}, and proving that∑

v′∈φ(v)

[I(u, v′)− E[I(u, v′)]] = 0

∀ u and ∀ v except u = v = 1̄ or u = v = N̄ . (A5)

In other words, we will show that the numerator of the
definition of AMI is equal to zero when summed over any
subset φ(v) for any fixed partition u, except the bound-
ary cases that both u and v are equal to 1̄ or both are
equal to N̄ . We first examine the expectation term in
Eq. (A5). Recall that the expectation is taken over all
pairs of members of the subsets φ(u) and φ(v), respec-
tively,

E[I(u, v)] =
1

|φ(u)||φ(v)|
∑

u′∈φ(u)

∑
v′∈φ(v)

I(u′, v′) . (A6)

In fact, because the sums above are taken over the sub-
sets φ(u) and φ(v) that contain u and v, the expected
mutual information is equal to a constant ζ for any pair
of partitions drawn from φ(u) and φ(v),

E[I(u, v)] = ζ ∀ u ∈ φ(u) and ∀ v ∈ φ(v) . (A7)

Note then that we may rewrite the sum over expectations
in Eq. (A5) as

∑
v′∈φ(v)E[I(u, v′)] = |φ(v)| ζ. Therefore,

it remains to be shown that the sum over mutual infor-
mations in Eq. (A5) is also equal to |φ(v)| ζ,∑

v′∈φ(v)

I(u, v′) = |φ(v)| ζ . (A8)

To see that this is true, despite the fact that u is fixed
(and not averaged over all u′ ∈ φ(u) as in E[I(u, v)]),
note that Eq. (A8) nevertheless sums over every v′ ∈ φ(v)
which is the set of every randomization of the partition
v, provided group sizes are held constant. Because this
includes all relabelings (or reindexings) of the N objects
being partitioned, it must be true that,∑
v′∈φ(v)

I(u1, v
′) =

∑
v′∈φ(v)

I(u2, v
′) whenever u1 ∈ φ(u2) .

(A9)
In other words, the sum of mutual information between a
fixed partition u1 and all members of a subset φ(v) must
be equal to the sum of mutual information between a
different fixed partition u2 and the same subset φ(v), but
only if u1 and u2 both belong to the same subset as each
other. Therefore, Eq. (A8) is true, meaning that the sum
over the two terms in Eq. (A5) is zero, independent of u.
This first implies that the AMI between any boundary
partition and any interior partition is 0, AMI(u, 1̄) = 0
for any u 6= 1̄ and AMI(u, N̄) = 0 for any u 6= N̄ . This,
in turn, implies Eq. (A4) is true. This completes the
proof of the first statement, that Eq. (A3) is true, and
in particular, L(u) = 0, for any u 6= 1̄, N̄ and AMI is
homogeneous over all non-boundary partitions.

In the special cases of u = v = 1̄ and u = v = N̄ ,
note that we have already shown that AMI(1̄, 1̄) = 1,
AMI(N̄ , N̄) = 1, and AMI(u, 1̄) = 0 for any u 6= 1̄ and
AMI(u, N̄) = 0 for any u 6= N̄ . Therefore,

L(1̄) =
∑
v∈Ω

AMI(1̄, v) = B−1
N ,

L(N̄) =
∑
v∈Ω

AMI(N̄ , v) = B−1
N , (A10)

completing the proof of the second statement: includ-
ing the boundary points, AMI is homogenous within an
additive constant B−1

N .

Theorem 2 (Wolpert 1996): For homogeneous loss `,
the uniform average over all γ of P (c|γ, d) equals Λ(c)/r.

Proof: See Ref. [26].

Theorem 3 (No free lunch for community detec-
tion): For the community detection problem with a loss
function of adjusted mutual information, the uniform av-
erage over all γ of P (c|γ) equals Λ(c)/r.

Proof: Lemma 1 proves that adjusted mutual informa-
tion is homogenous and applying Theorem 2 with d = ∅
completes the proof.
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d. Implications

No free lunch for community detection means that,
uniformly averaged over all community detection prob-
lems, and evaluated by AMI, all algorithms have equiv-
alent performance. Phrased more usefully, it means that
any subset of problems for which an algorithm outper-
forms others is balanced by another subset for which the
algorithm underperforms others. Thus, there is no single
community detection algorithm that is best overall.

On the other hand, if the set of problems of interest is
a non-uniform subset of all problems, then one algorithm
may outperform another on this subset. In other words,
the bias of an algorithm to solving a particular type of
community detection problem may be its strength, ac-
cepting the fact that such an advantage must be balanced
by disadvantages elsewhere. For instance, algorithms like
the unconstrained SBM (which can find both assortative
and disassortative communities and mixtures and gra-
dations thereof) are not universally superior to versions
of the SBM constrained to find only assortative or dis-
assortative communities [32]—if the particular subset of
problems is believed to contain only disassortative com-
munities, then the unconstrained SBM will not perform
as well as a constrained one. In other words, no free
lunch for community detection means that matching the
assumptions in the model to the underlying generative
process can lead to better, more accurate results, but
only in the cases when the beliefs about the underlying
generative process are correct; in the other cases, the
same model assumptions that improved performance on
some problems will diminish it for others. We note that
relatively little is known about which algorithms perform
better than others within particular domains or on par-
ticular classes of networks. A valuable line of future re-
search on community detection will be developing such
an understanding [43, 44].

Morpheus: The Matrix is a system, Neo. That system
is our enemy. But when you’re inside, you look around,
what do you see? ... The very minds of the people we
are trying to save. But until we do, these people are still
a part of that system and that makes them our enemy.
You have to understand, most of these people are not
ready to be unplugged. And many of them are so inured,
so hopelessly dependent on the system, that they will fight
to protect it.
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Appendix B: Blockmodel Entropy Significance Test

Cypher: You know, I know this steak doesn’t exist. I
know that when I put it in my mouth, the Matrix is telling
my brain that it is juicy and delicious. After nine years,
you know what I realize? Cypher: Ignorance is bliss.

This Supplemental Text is divided into four subsec-
tions providing additional details on the Blockmodel En-
tropy Significance Test.

• Subsection I describes maximum likelihood param-
eter estimation for the SBM (I.a) and degree-
corrected SBM (I.b).

• Subsection II describes rapid computation of the
entropy H(G;M) for the SBM.

• Subsection III demonstrates the mathematical link
between our formulation of the SBM entropy and
the SBM log likelihood which has been derived else-
where [21, 47].

• Subsection IV provides additional examples of re-
sults of the Blockmodel Entropy Significance Test
using multiple different network data and metadata
sets (see Supplemental Text D) as well as three
additional generative network models beyond the
SBM.

For convenience, we provide a reference table of nota-
tion used in derivations in this Supplemental Text.

TABLE S4. Notation used in this Supplemental Text

Variable Definition

G a network, G = (V,E)

N the number of nodes |V |
π a partition of nodes into groups

K the total number of groups

πi the group assignment of node i

nr the number of nodes in group r

mrs the number of edges between groups r and s

κr the total degrees of group r, κr =
∑

smrs

ki the degree of node i.

HX(G|π) entropy H of model X estimated for graph G using partition π

â maximum likelihood estimate of model parameter a

pij the probability that an edge exists between nodes i and j

1. Estimation of SBM parameters

a. Bernoulli SBM parameters

Let the N nodes of a network G be partitioned into K
groups, with the group assignment of node i given by πi.
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FIG. S2. Distributions of permuted partition entropies
are negatively skewed. Probability density functions (top)
and cumulative distribution functions (bottom) are shown for
the entropies of partitions of the Karate Club network and its
faction metadata. The red broken line indicates the point
entropy of the metadata partition while the black solid line
shows the distribution of entropies for 104 independent per-
mutations of the metadata partition. Note that these permu-
tation entropies are far from normal; a normal distribution
with equivalent mean µ and variance σ2 is shown in blue for
contrast.

In the SBM, the probability of a link existing between any
two nodes i and j depends only on the group assignments
πi and πj . This means that the entire model can be
parameterized by a K×K matrix of block-to-block edge
probabilities, ω. Accordingly, let ω be a matrix such that
pij = ωπiπj

is the probability of a link existing between i
and j. Letting the number of nodes in group r be nr, then
between two groups r and s there are nrns possible links,
each of which has the same probability of existence, ωrs.
This implies that the existence of the nrns edges between
groups r and s will be determined by nrns independent
Bernoulli trials, each with parameter ωrs.

We must now estimate the value of ωrs for a network
G whose nodes have been divided according to their as-
signments in partition π. Of course, any ω whose entries
are positive will have some non-zero probability of hav-
ing generated the observed links in G. However, here we
choose the values of ω to be those that maximize the like-
lihood of observing G. Specifically, observe that of the
nrns Bernoulli trials, there are mrs actual edges in the
graph, i.e., mrs trial successes. Therefore, the maximum
likelihood estimate of ωrs is simply ω̂rs = mrs/nrns.
Thus, p̂ij = ω̂πiπj

.

b. Poisson degree-corrected SBM parameters

In the degree-corrected Poisson SBM [21], it is still as-
sumed that each link exists independently of the others,
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with some specified probability given by a block connec-
tivity matrix ω. However, this model differs in two key
ways from the Bernoulli SBM. First, rather than each
edge existing with probability pij , Poisson SBMs state
that the expected number of edges between nodes i and
j is given by a parameter qij , with the actual number of
edges drawn from a Poisson distribution with identical
mean. For very small values of q, the probability of an
edge existing is approximately q, and thus if the graph
is sufficiently sparse, Poisson SBMs behave similarly to
Bernoulli SBMs, despite the fact that they could, in prin-
ciple, generate multigraphs.

The second way in which this degree-corrected Poisson
SBM differs from the Bernoulli SBM is that the param-
eters qij are no longer identical across the set of all i in
group r and all j in group s, as they are in the uncor-
rected SBM. Now, each node has a degree affinity θi so
that qij = θiθjeπiπj

, where ers is the K ×K block struc-
ture matrix, controlling the numbers of links between
groups, similar in principle to ωrs above. The new pa-
rameters, θi, properly chosen [21], can be used to specify
the expected degree of each node.

As above, since we are given a network G and a fixed
partition π, we must estimate the entries of e, as well
as the values of θ. The parameters can again be chosen
to maximize the likelihood of observing G, which are de-
rived in [21] but we do not derive here. First, êrs = mrs,
where mrs =

∑
ij Aijδr,πi

δs,πj
is the number of links be-

tween groups r and s. Then, θ̂i = ki/κπi
, where κr is the

number of degrees connecting to group r, κr =
∑
smrs.

Thus, q̂ij = kikjmπiπj
/κπi

κπj
. We note that this maxi-

mum likelihood estimate is only valid in the regime that
kikjmπiπj

� κπi
κπj

.

2. Rapidly computing entropy for Bernoulli SBMs

Under either a Bernoulli-type SBM, a link exists be-
tween nodes i and j with probability pij , independently
of all other links. This amounts to a Bernoulli trial or
flip of a biased coin, and the entropy of this Bernoulli
trial with parameter pij is simply

h(pij) ≡ −pij log2 pij − (1− pij) log2 (1− pij) . (B1)

Hereafter, we will write simply log in place of log2. Be-
cause the Bernoulli trial on each link is conditionally in-
dependent of other links, the entropy of the network is
the sum of all valid h(pij). For an undirected network
this is

HSBM(G) =
∑
i≤j

h(pij) =
1

2

∑
ij

h(pij) +
∑
i

h(pii)

 .

(B2)

Under the SBM, the probabilities within each block are
identical so we may group them and change to an index

over groups, rewriting Eq. (B2) as

HSBM(G) =
1

2

[∑
rs

nrnsh(ωrs) +
∑
r

nrh(ωrr)

]
. (B3)

which may be simplified by plugging in the maximum
likelihood estimate of ω̂rs and the definition of Bernoulli
entropy h Eq. (B1), yielding

HSBM(G) = . . .

− 1

2

[∑
rs

mrs log ω̂rs + (nrns −mrs) log(1− ω̂rs)

]
+O(n−1) .

(B4)

where we have noted that the diagonal terms are O(n−1)
whenever nr = cn for some constant c.

Eq. (B4) allows for a O(K2) computation, rather
than O(N2) of Eq. (B2). For degree-corrected Bernoulli
SBMs, entropies may be summed as in Eq. (B2), even
though the rapid computation of Eq. (B4) will not be
valid. However, in what follows, we show the connection
between model entropy H and model log likelihood L.

3. Connecting entropy and log likelihood

The connection between model entropy H and model
log likelihood L enables the Blockmodel Entropy Signif-
icance Test to be expanded beyond the simple Bernoulli
SBM to degree-corrected SBMs, Poisson SBMs, mixed-
membership models, and other generative models with
computable log likelihoods.

We begin from Eq. (B4) and use the Taylor series

(1− x) ln(1− x) = −x+

∞∑
`=2

x`

`(`− 1)
, (B5)

in which we substitute x = ω̂rs = mrs/nrns to write
Eq. (B4) to leading order as

HSBM(G) ≈− 1

2

∑
rs

[
mrs ln

(
mrs

nrns

)
−mrs . . .

+ nrns

∞∑
`=2

1

`(`− 1)

(
mrs

nrns

)` ]
. (B6)

Finally, we note that − 1
2

∑
rs−mrs is simply |E|, the

total number of links in the network and therefore

H(G) ≈|E| − 1

2

∑
rs

[
mrs ln

(
mrs

nrns

)
. . .

+ nrns

∞∑
`=2

1

`(`− 1)

(
mrs

nrns

)` ]
. (B7)

If all blocks of links are sparse, then mrs � nrns and
the terms in the infinite sum decay rapidly, leading to



17

the first order approximation

HSBM(G) ≈ |E| − 1

2

∑
rs

mrs ln

(
mrs

nrns

)
. (B8)

Here we derived Eq. (B7) and Eq. (B8) by considering
the conditionally independent entropies associated with
every link of the network. However, the same equations
can also be derived by calculating the size Ω of the ensem-
ble of networks associated with the same SBM, and then
taking a logarithm, H = log Ω. The log likelihood is the
logarithm of the probability of observing an individual
network realization from the ensemble, L = logP , and
under the assumption that each graph in the ensemble
occurs with the same probability, P = 1/Ω. Therefore,
the entropy H and the log likelihood L are related simply
by L = −H [47].

The relationship between the “microcanonical” en-
tropy and log likelihood allows for the Blockmodel En-
tropy Significance test to be expanded easily to any gen-
erative model for networks for which a likelihood is easily
computed,

p-value = Pr [L(G; π̃) ≥ L(G;M)] . (B9)

The Bernoulli SBM entropy Eq. (B4) or its approxima-
tion for sparse networks Eq. (B8) are convenient because
they are fast to compute—one need only to count links
between groups, sizes of groups, and compute O(K2)
terms. By contrast, Eq. (B2), which is exact, requires
O(N2) computations. Depending on the assumptions
involved, computing a log likelihood L may be more
or less rapid, or more or less exact. In the additional
tests in this Supplemental Text, we employ the equa-
tions above to apply the BESTest using Bernoulli SBM
and degree-corrected SBM, as well as Poisson SBM and
degree-corrected SBM.

Finally, we note that an alternative version of entropy
that is not based on the blockmodel but instead by the
size of the ensemble of networks with identical degree
sequence and communities is discussed in Ref. [34].

4. Generation of synthetic networks for blockmodel
entropy significance test

The tests described in the main text, and detailed in
this Supplemental Text, will yield a p-value which indi-
cates the extent to which a set of metadata (and a gen-
erative model) describes a network better than a random
partition. In order to understand the sensitivity of the
BESTest, we generated sets of synthetic networks and
synthetic metadata, applied the BESTest to them, and
produced Fig. 2. Here we describe the process used to
generated those synthetic networks.

We generated networks of N = 1000 nodes and two
planted communities r and s using the (Bernoulli) SBM.
Each node was assigned to one of the communities (Ti = r

TABLE S5. Lazega Lawyers: BESTest p-values

Attribute

Network Status Gender Office Practice Law School

SBM

Friendship < 10−6 0.034 < 10−6 0.033 0.134

Cowork < 10−3 0.094 < 10−6 < 10−6 0.922

Advice < 10−6 0.010 < 10−6 < 10−6 0.205

DCSBM

Friendship < 10−6 < 10−3 < 10−3 < 10−3 0.034

Cowork < 10−6 0.982 0.396 < 10−6 0.805

Advice < 10−6 0.033 0.147 < 10−6 0.115

Poisson SBM

Friendship < 10−6 0.046 < 10−6 0.044 0.167

Cowork < 10−3 0.099 < 10−6 < 10−6 0.977

Advice < 10−6 0.013 < 10−6 < 10−6 0.316

Poisson DCSBM

Friendship < 10−6 < 10−3 < 10−6 < 10−3 0.014

Cowork < 10−4 0.969 < 10−6 < 10−6 0.781

Advice < 10−5 0.018 < 10−6 < 10−6 0.046

or Ti = s) with equal probability. We then gener-
ated a network with a given community strength ε =
ωrs/ωrr such that low values of ε generate strongly as-
sortative communities with few connecting edges between
them and as ε grows, the generated communities become
weaker, producing a random graph with no communi-
ties when ε = 1. For each node i, with probability `
we assigned its metadata label to be its community label
(Mi = Ti), otherwise we assigned it a uniformly random
label. Thus, as ` increases from 0 to 1 the metadata
labels correlate more with the planted communities.

5. V. Additional applications of the BESTest

We now present and discuss the results of applying the
BESTest to the Lazega Lawyers and Malaria data sets
(see Supplemental Text D).

a. Lazega Lawyers

We applied the BESTest to all three Lazega Lawyers
networks (Friendship, Cowork, Advice) which share the
same set of nodes but have different sets of edges,
representing different relationships between individuals.
There were five sets of node metadata (Status, Gen-
der, Office, Practice, and Law School). We applied the
BESTest to each combination of network and metadata,
using four generative models (SBM, degree-corrected
SBM, Poisson SBM, and Poisson degree-corrected SBM).
These results are shown in Table S5.
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First, note that values between Bernoulli and Pois-
son models are not identical, though they are similar,
implying that the models are not entirely interchange-
able. More importantly, however, the results for degree-
corrected and degree-uncorrected models are substan-
tially more different, with relationships varying from sig-
nificant under one model to insignificant under another.
This highlights the fact that metadata can explain pat-
terns of group structure in a network only through the
lens of a particular network generative model; a change in
the model may impact the metadata’s ability to explain
patterns in network community structure.

Second, note that under all models, for each network
there exist multiple sets of metadata that are significant.
Similarly, there exist multiple networks for which any
individual set of metadata is significant. This fundamen-
tally undermines the notion that one should expect a
single set of metadata to function as ground truth, given
that multiple sets of metadata explain multiple networks.

b. Malaria

We applied the BESTest to nine layers of a network of
malaria parasite genes (Malaria 1-9) using four generative
models (SBM, degree-corrected SBM, Poisson SBM, and
Poisson degree-corrected SBM). Three sets of metadata
exist for these networks, (parasite origin, CP group, and
UPS), described in detail in Supplemental Text D.

The parasite origin results are shown in Table S6, and
none of the p-values listed is significant. This result in-
dicates that when the nodes of each layer are divided
into groups based on parasite origin, the entropy of the
resulting model is no better than assigning the nodes to
groups at random. This implies, in turn, that the malaria
parasite antigen genes do not group by the parasite from
which they came, confirming previous observations [35].
However, as shown in Fig. 2 the BESTest is sensitive to
even small levels of explanatory power provided by meta-
data, indicating that parasite origin has truly no bearing
on the community structure of malaria parasite antigen
genes, for all four generative models tested.

On the other hand, it is known that the genes repre-
sented by the nodes of the malaria parasite networks are
correlated with CP group and UPS metadata. As shown
in Tables S7 and S8 the BESTest indeed finds that this is
the case, with a handful of exceptions, again confirming
previous results that used less sophisticated techniques
[35].

Morpheus: I’m trying to free your mind, Neo. But I can
only show you the door. You’re the one that has to walk
through it.

TABLE S6. Malaria: BESTest p-values for parasite origin
metadata

Model

Network SBM DCSBM Poi. SBM Poi. DCSBM

Malaria 1 0.566 0.066 0.606 0.086

Malaria 2 0.064 0.126 0.066 0.143

Malaria 3 0.536 0.415 0.532 0.501

Malaria 4 0.588 0.570 0.604 0.644

Malaria 5 0.382 0.097 0.369 0.087

Malaria 6 0.275 0.817 0.293 0.751

Malaria 7 0.020 0.437 0.019 0.501

Malaria 8 0.464 0.143 0.468 0.172

Malaria 9 0.115 0.104 0.108 0.200

TABLE S7. Malaria: BESTest p-values for CP group meta-
data

Model

Network SBM DCSBM Poi. SBM Poi. DCSBM

Malaria 1 < 10−5 0.002 < 10−5 < 10−5

Malaria 2 < 10−5 0.042 < 10−5 < 10−5

Malaria 3 < 10−5 0.237 < 10−5 < 10−5

Malaria 4 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 5 < 10−5 0.005 < 10−5 < 10−5

Malaria 6 < 10−5 0.002 < 10−5 < 10−5

Malaria 7 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 8 < 10−5 0.002 < 10−5 < 10−5

Malaria 9 < 10−5 < 10−5 < 10−5 < 10−5

TABLE S8. Malaria: BESTest p-values for UPS metadata

Model

Network SBM DCSBM Poi. SBM Poi. DCSBM

Malaria 1 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 2 < 10−5 0.100 < 10−5 < 10−5

Malaria 3 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 4 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 5 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 6 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 7 < 10−5 < 10−5 < 10−5 < 10−5

Malaria 8 < 10−5 0.007 < 10−5 < 10−5

Malaria 9 < 10−5 < 10−4 < 10−5 < 10−5
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Appendix C: The neoSBM

Morpheus: Unfortunately, no one can be told what the
Matrix is. You have to see it for yourself... This is your
last chance. After this, there is no turning back. You
take the blue pill, the story ends, you wake up in your
bed and believe whatever you want to believe. You take
the red pill, you stay in Wonderland, and I show you how
deep the rabbit hole goes. Remember: all I’m offering is
the truth. Nothing more.

This Supplemental Text is divided into four subsec-
tions providing additional details on the neoSBM.

• Subsection I describes the neoSBM (I.a) and the
inference methods used in this paper (I.b).

• Subsection II describes the generation of the syn-
thetic network used in the main text, Fig. 3.

• Subsection III describes how the neoSBM can be
extended to other models including the degree cor-
rected neoSBM.

• Subsection IV provides additional examples of re-
sults of the neoSBM applied to the Lazega Lawyers
networks (IV.a) and the Malaria networks (IV.b).

For convenience, we provide a reference table of nota-
tion used in derivations in this Supplemental Text.

TABLE S9. Notation used in this Supplemental Text

Variable Definition

G a network, G = (V,E)

N the number of nodes |V |
eij the number of edges between nodes i and j, eij ∈ {0, 1}
ki the degree of node i.

ωrs the probability of an edge between nodes in groups r and s

π a partition of nodes into groups

M a set of metadata labels

C an inferred optimal community assignment

z neo-state indicator variable, zi ∈ {b, r}
LX log likelihood L of model X

q the number of free nodes, q =
∑

i δzi,r

δa,b the Kronecker delta: δa,b = 1 for a = b; δa,b = 0 for a 6= b

1. neoSBM model description and inference

a. Model description

The neoSBM extends the SBM, allowing metadata to
influence the inferred partitions by controlling the num-
ber of nodes that are assigned to groups according to

their metadata labels. The task of the neoSBM is to per-
form community detection under a constraint in which
each node is assigned a latent state variable zi, which
can take one of two states, which we call blue or red.
If a node is blue zi = b, its community is fixed as its
metadata label πi = Mi. However, if it is red zi = r, its
community is free to be chosen by the model. We adjust
the number of free nodes q by varying the Bernoulli prior
probability θ that a node will be free (red state). We can
then write down the likelihood Lneo of a network G given
a community assignment π under the neoSBM as:

Lneo(G;π, z) =
∏
ij

ωeijπiπj
(1− ωπiπj

)(1−eij)
∏
i

θδzi,r (1− θ)δzi,b .

(C1)
The first product in Eq. (C1) corresponds to the standard
SBM likelihood Lsbm, while the second product corre-
sponds to the probability of the states P (z = r|θ) and
acts as a penalty function to control the number of free
nodes. While it is possible to find communities by opti-
mizing Eq. (C1) directly, instead we work with the more
practical log likelihood,

Lneo(G;π, z) =
∑
ij

eij logωπiπj + (1− eij) log(1− ωπiπj )

+
∑
i

δzi,r log θ + δzi,b log(1− θ) , (C2)

since maximizing Eq. (C1) is equivalent to maximiz-
ing Eq. (C2). We can then rearrange the second sum
logP (z = r|θ), to give:

logP (z = r|θ) =
∑
i

δzi,r

(
log

θ

1− θ

)
+N log(1− θ)

= qf(θ) +N log(1− θ) , (C3)

dropping the constant term, we can rewrite the neoSBM
log likelihood in terms of the SBM log likelihood and a
function of the number of free nodes q,

Lneo(G;π, z) = Lsbm(G;π) + qf(θ) . (C4)

Unconstrained optmization of Lsbm yields the SBM op-
timal communities C,

C = arg max
π
Lsbm(G;π) , (C5)

and so the SBM likelihood given the metadata partition
M will always be less than or equal to the likelihood of the
inferred partition C. That is Lsbm(G;M) ≤ Lsbm(G;C),
where the inequality is saturated if and only if the meta-
data is equal to the optimal SBM partition. So the min-
imum number of free nodes q̂ required to maximize the
SBM likelihood is

q̂ =
∑
i

1− δMi,Ci
, (C6)

for which the label permutations of M and C are maxi-
mally aligned. Whenever q > q̂ there will be no further
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improvement in Lsbm. To interpolate between M and
C we vary the prior probability of each node to take
the red state P (z = r|θ). For values of θ < 0.5 we
can interpret the log probability, or f(θ), as the cost of
freeing a node because the log likelihood Lneo will in-
cur a penalty for setting each zi = r. Maximizing Lneo

is therefore a trade-off between freeing nodes to maxi-
mize Lsbm and fixing nodes to metadata labels to maxi-
mize logP (z|θ). When the SBM likelihood of both par-
titions is equal (i.e., M = C) then Lneo(G;π, z) will be
maximized when q = 0 unless θ ≥ 0.5. However, when
Lsbm(G;M) < Lsbm(G;C), q can be greater than 0 if the
resulting partition π provides a sufficient increase in log
likelihood. Specifically, if

Lsbm(G;π)− Lsbm(G;M) > qf(θ) , (C7)

then it indicates that the cost of freeing q nodes is out-
weighed by its contribution to improving the likelihood.

Here we have discussed the extension of the SBM to the
neoSBM, but this extension can be easily generalized to
any probabilistic generative network model that specifies
the likelihood of a graph given a partition of the network.
We present one such generalization, the degree-corrected
neoSBM, in subsection III of this Supplemental Text.

b. Inference

Inference of the parameters of the neoSBM was per-
formed using a Markov chain Monte Carlo (MCMC) ap-
proach. The community labels of the free nodes were
inferred in the same way as the standard SBM [48]. How-
ever, to infer the values of bi that determined whether or
not each node was free, we used a uniform Bernoulli (i.e.,
a fair coin) as a proposal distribution. Since this distri-
bution is symmetric we can simply accept each proposal
with probability a:

a = min {∆Lneo, 1} . (C8)

To avoid getting trapped in local optima of the likeli-
hood, we initialize the neoSBM with the labels set to the
inferred SBM partition, π = C, and all nodes initialized
to be free, bi = r for all i.

2. Synthetic network generation for the neoSBM

The test that demonstrated the function of the
neoSBM on synthetic data, depicted in Fig. 3 of the
main text, required networks with multiple local optima
under the SBM: one corresponding to the inferred par-
tition (global optimum) and at least one other to rep-
resent a relevant metadata partition. To create such a
network, we divided vertices into 2K groups to create K
assortative communities, each of which was subdivided
to contain a core and a periphery group. For K = 4,
Figure S3 shows the 8-block interaction matrix used to

create the synthetic networks. By subsequently varying
the mean degree within each block, we obtained two un-
correlated partitions when K = 4, both of which are
relevant to the network structure. Finally, we assigned
as metadata the core-periphery structure containing one
periphery group ({2, 4, 5, 7} in Fig. S3) and three core
groups ({1,3},{6},{8} in Fig. S3). The partition inferred
by the SBM in the absence of the neoSBM’s likelihood
penalty corresponds to the assortative group structure.

C
M

FIG. S3. The block interaction matrix used to generate syn-
thetic networks. The external colored rows and columns in-
dicate the partition used as metadata (M) and the maximum
likelihood partition under the SBM (C).

3. Extensions

The neoSBM can easily be extended to any probabilis-
tic model for which we identify communities by maxi-
mizing the model likelihood. As an example, consider
the degree-corrected SBM, which allows for nodes with
heterogenous degrees to belong to the same community
(see Supplemental Text B for more details). We can cre-
ate a degree-corrected neoSBM in much the same way
as we created the neoSBM, by penalizing the likelihood
according to the number of free nodes using a Bernoulli
prior. This treatment gives the log likelihood:

Ldcneo(G;π, z) = Ldcsbm(G;π) + qf(θ) , (C9)

where qf(θ) = q logP (z = r|θ) +N log(1− θ) as before.
We present results from this model in subsection IV of
this Supplemental Text.

We can also easily extend the neoSBM to other, non-
probabilistic, community detection methods provided
they explicitly optimize a global objective function. Then
we can similarly create a penalized version of this objec-
tive function. That is, for some community detection
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model X, we can create a neo-objective function UneoX

UneoX = UX + qf(θ) , (C10)

where f(θ) could either represent the Bernoulli prior as
before or any other cost function, e.g., f(θ) = θ, for
θ ≤ 0.

4. IV. Results on real-world networks

In order to further demonstrate the neoSBM and the
neoDCSBM described above, we present and discuss the
application of the neoSBM to malaria var gene networks
and the application of the neoDCSBM to the Karate Club
network. Full details about these datasets are presented
in Supplementary Text D.

a. neoSBM and the Malaria var gene networks

The metadata corresponding to upstream promoter se-
quence (UPS) are known to correlate with community
structure in the malaria var gene networks, particularly
at loci one and six [22, 35]. We provided the neoSBM
with UPS metadata (K = 4) and investigated the path of
partitions between the metadata partition and the glob-
ally optimal partitions for each of the two networks. Fig-
ures S4 (locus one) and S5 (locus six) show likelihood
surfaces, block density diagrams, and the neoSBM’s out-
puts q (free nodes) and SBM log likelihood.

Comparison of the neoSBM results for the same meta-
data on two different network layers reveals not only that
the intermediate paths of locally optimal partitions differ
but that the UPS metadata are more locally stable for the
locus six network. This is indicated by the substantially
larger value of θ at which the neoSBM switches from the
metadata partition to the first intermediate local opti-
mum. These transitions 1→ 2 involve different numbers
of free nodes, however, indicating that the switch from
optimum 1 to optimum 2 was accompanied by a much
larger change in node mobility for the locus six network.
Note that the neoSBM provides a more nuanced view
of the relationship between UPS metadata and malaria
layers one and six than the BESTest did, which found
that UPS metadata were significantly correlated with the
structures of both networks.

b. neoDCSBM and the Karate Club network

The likelihood surface for both models contains two lo-
cal optima that correspond two the same two partitions,
each being globally optimal for one of the models. Using
the faction each member joined after the club split as
metadata Fig. S6 compares the output from the neoSBM
and the neoDCSBM. Both models initially change just a
single node to reach a local optimum. For the DCSBM

this is the global optimum and so we see no further
change. However, for the neoSBM this is not the global
optimum (see Fig. 1) and so once θ is large enough we
see a discontinuous jump as it switches to the globally
optimal high-degree/low-degree partition.
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FIG. S4. Results of the neoSBM on the malaria var gene network at locus one (“malaria 1”) using UPS metadata. (A) The
SBM likelihood surface shows two peaks, one subtle 2 and one prominent 3, corresponding to a locally optimal partition near
the metadata and the globally optimal partition, respectively. There is no peak at the metadata partition 1, however. (B) Block
density diagrams depict community structure for metadata and locally optimal partitions, where darker color indicates higher
probability of interaction. (C) The neoSBM, beginning from UPS metadata, interpolates between metadata 1 and the globally
optimal SBM partition 3. The number of free nodes q and SBM log likelihood as a function of θ shows two discontinuous jumps
as the neoSBM traverses from the metadata to the locally optimal partition (1 → 2) and then from that partition to the global
optimum (2 → 3).
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FIG. S5. Results of the neoSBM on the malaria var gene network at locus six (“malaria 6”) using UPS metadata. (A) The SBM
likelihood surface shows one prominent peak at the globally optimal partition. (B) Block density diagrams depict community
structure for metadata and locally optimal partitions where darker color indicates higher probability of interaction. (C) The
neoSBM, beginning from UPS metadata, interpolates between metadata 1 and the globally optimal SBM partition, traversing
a local optimum during its path. The number of free nodes q and SBM log likelihood as a function of θ shows two discontinuous
jumps as the neoSBM traverses from the metadata to the locally optimal partition (1 → 2), from that partition to another the
global optimum (2 → 3).
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FIG. S6. The results of the neoSBM and the degree-corrected neoSBM on the karate club network. The SBM and DCSBM log
likelihood surfaces (A and C respectively) show distinct two peaks that correspond to the same two partitions of the network:
the two social factions and the leader-follower partition. When we use the faction partition as metadata, we from the output
(B and D) that both models change a single node in order to reach the locally optimal partition. For the neoDCSBM (D), this
is the global optimum and no further change is observed. For the neoSBM, the leader-follower partition is globally optimal, so
once theta is large enough we see the model jump to this partition.
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Appendix D: Datasets

1. Lazega Lawyers networks

The Lazega Lawyers network is a multilayer network
consisting of 71 attorneys of a law firm with three differ-
ent sets of links, corresponding to friendships, exchange
of professional advice, and shared cases [36]. The origi-
nal study also collected five sets of categorical node meta-
data, corresponding to status (partner or associate), gen-
der, office location, type of practice (corporate or liti-
gation), and law school (Harvard, Yale, UConn, other).
The relationships and dynamics within the law firm were
studied extensively in the initial publication of these
datasets, but they were not primarily analyzed as com-
plex networks.

2. Malaria var gene networks

The Malaria dataset consists of 307 var gene sequences
from the malaria parasite P. falciparum [35]. Each var
gene encodes a protein that the parasite uses to evade
the human immune system, and therefore this family of
genes is under intense evolutionary pressures from the
human host. The original study focused on uncovering
the functional and evolutionary constraints on var gene
evolution by identifying community structure in var gene
networks.

These sequences were independently analyzed at 9
loci (locations within the genes), producing 9 different
genetic-substring-sharing networks with the same node
set. In other words, there are 9 layers in this multi-

layer network. Each parasite genome contains around
60 var genes, and the 307 genes in this data set repre-
sent seven parasite genomes. The original study included
three sets of categorical node metadata, corresponding
to the upstream promoter sequence classification (UPS,
K = 3), CysPoLV groups (CP K = 6), and the para-
site strain from which sequence was generated (parasite
origin K = 7).

3. Karate Club network

The Zachary Karate Club represents the observed so-
cial interactions of 34 members of a karate club [12]. At
the time of study, the club fell into a political dispute
and split into two factions, which are treated as meta-
data. The Karate Club has been analyzed exhaustively
in studies of community detection, and its faction meta-
data have often been used as ground truth for community
detection, due to the network’s small size and easily in-
terpretable social narrative.

Neo: I know you’re out there. I can feel you now. I
know that you’re afraid... you’re afraid of us. You’re
afraid of change. I don’t know the future. I didn’t come
here to tell you how this is going to end. I came here
to tell you how it’s going to begin. I’m going to hang up
this phone, and then I’m going to show these people what
you don’t want them to see. I’m going to show them a
world without you. A world without rules and controls,
without borders or boundaries. A world where anything
is possible. Where we go from there is a choice I leave to
you.
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