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Multiple knockout analysis of genetic robustness in the
yeast metabolic network
David Deutscher1, Isaac Meilijson2, Martin Kupiec3 & Eytan Ruppin1,4

Genetic robustness characterizes the constancy of the
phenotype in face of heritable perturbations. Previous
investigations have used comprehensive single and double
gene knockouts to study gene essentiality and pairwise gene
interactions in the yeast Saccharomyces cerevisiae. Here we
conduct an in silico multiple knockout investigation of a flux
balance analysis model of the yeast’s metabolic network.
Cataloging gene sets that provide mutual functional backup, we
identify sets of up to eight interacting genes and characterize
the ‘k robustness’ (the depth of backup interactions) ofk robustness’ (the depth of backup interactions) ofk
each gene. We find that 74% (360) of the metabolic genes
participate in processes that are essential to growth in a
standard laboratory environment, compared with only 13%
previously found to be essential using single knockouts. The
genes’ k robustness is shown to be a solid indicator of theirk robustness is shown to be a solid indicator of theirk
biological buffering capacity and is correlated with both
the genes’ environmental specificity and their evolutionary
retention.

In laboratory conditions, about 19% of the genes in the yeast S. cere-
visiae are essentialvisiae are essentialvisiae 1; that is, their null mutation is lethal to the organ-
ism (see also the Saccharomyces Genome Database (SGD) (http://
www.yeastgenome.org)). All other genes are apparently dispensable,
demonstrating genetic robustness2,3. Several authors3–8 have provided
three explanations accounting for this observed dispensability: (i) a
gene’s function might be buffered by duplication or overlap at either
the sequence or the molecular function levels (also termed degeneracy,
genetic buffering5 or, often, redundancy3,9); (ii) a gene’s function might
be buffered by an alternative biochemical pathway (functional comple-
mentation5); or (iii) a gene might be involved in processes that are
required only under untested environmental conditions4. The first two
mechanisms involve functional backup interactions between genes, the
main subject of this study.

Gene essentiality and pairwise genetic interactions have been previ-
ously investigated using large-scale single and double knockout studies
in yeast1,10–14. Here we go beyond gene essentiality and chart the archi-
tecture of robustness against gene knockouts of the yeast metabolic

network, employing large-scale deep multiple knockouts in an in silico
model. Such knockouts have been used experimentally to study small-
scale networks7, but large-scale multiple knockouts11 are still scarce
owing to the high combinatorial number of experiments involved. Two
recent papers performed all double knockouts of yeast and the bacte-
rium H. pylori metabolic genes using in silico models12,13.

Multiple knockouts, essential sets and k robustnessk robustnessk
Extending the common notion of essentiality to the realm of genetic
robustness via multiple knockouts, we define a gene as ‘contributing’
to the organism’s viability and growth if it is a member of an ‘essential
gene set’. This denotes a set of genes whose combined knockout results
in a mutant strain with very slow or no growth (relative to the wild-
type growth rate) but where the growth rate of a mutant missing only
a subgroup of these genes remains high. Hence, the functioning of any
one gene in an essential set buffers against the concomitant knockout
of all other genes in the set, providing a basic functional backup and
indicating the existence of pairwise backup interactions (also termed
synthetic11, aggravating12 or synergistic14 interactions). We denote the
system as ‘k robust’ to a specific gene knockout according to the sizek robust’ to a specific gene knockout according to the sizek k
of the smallest essential gene set that includes the knocked-out gene
(its interaction depth). Thus, the system is 1-robust to knockout of
an essential gene, 2-robust to knockout of any nonessential gene that
is involved in a synthetic lethal pair11, and so on. This definition of k
robustness subsumes the set of essential genes, creating a higher-level
dichotomy of contributing versus noncontributing genes. It extends
the classical notion of an essential contribution of a gene to its poten-
tial contribution in face of possibly larger genetic or environmental
perturbations. We further denote as ‘coessential’ genes that are in a
common essential set. Our definition of essential gene sets is similar
to that of minimal cut sets introduced in ref. 15, but the calculation in
that work relies on the use of elementary modes16, currently feasible
only for small-scale networks.

We study genetic robustness using a previously reconstructed17–19

flux balance analysis20 (FBA) model of the metabolic network of the
yeast, incorporating 708 genes, 1,175 reactions and 584 metabolites.
Our investigation is focused on those 484 model genes with known
ORFs whose product enzyme is not on a dead-end pathway in the
model4 (Supplementary Table 1 online). (The analysis excludes ficti-
tious genes, which catalyze reactions that are known or assumed to be
available to the yeast according to biochemical literature but that are
not annotated to any known ORF.) The FBA analysis takes into con-
sideration the structure, stoichiometry and basic thermodynamics of
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the metabolic network, applying mass-balance constraints to predict
phenotypes and other properties with general prediction accuracy of
70–90% (ref. 20) and single-deletion mutant viability with 89% accu-
racy (Supplementary Note). Our analysis is performed in two stages:
in the first, we exhaustively search through the space of all possible
combinations of concomitant, multiple knockouts of genes, up to the
concomitant knockout of four genes. We record the essential sets found
and list the contributing genes with their k robustness levels. Becausek robustness levels. Becausek
further exhaustive search is currently computationally infeasible, the
second stage uses a stochastic sampling method to identify genes with
k robustness levels >4 (see Methods). The FBA model estimates the
organism’s potential to grow under various conditions, though in real-
ity the organism may not use all this potential owing to additional
non-modeled constraints (for example, non-optimal gene expression
resulting from regulatory constraints). Therefore, the k robustness wek robustness wek
record is actually an approximation of the true, experimental value,
reflecting the backup potential provided by the network structure and
stoichiometry. Finally, essential sets are marked as based on functional
duplication if all genes in the set catalyze the same essential reaction, as
alternative pathways if there are no isoenzymes in the set or as a mixed
mechanism otherwise. Each gene is tagged with one or both types of
functional backup.

Coessential genes and their corroboration
Our study focused on a standard synthetic rich medium17 (see
Methods). Using an exhaustive multiple knockout search, we found
48 essential genes, 14 essential pairs, 17 triplets and 39 essential qua-
druples, overall involving 159 contributing genes. The gene knockout
sampling method identified an additional 173 contributing genes with
k robustness levels >4, the vast majority of which are 10-robust or less.k robustness levels >4, the vast majority of which are 10-robust or less.k
Inspection of the list of reactions in the metabolic network identified
an additional 28 contributing genes that catalyze essential reactions
but that are backed up by at least four duplicated isoenzymes. We
repeated the same procedure using a glucose minimal medium for
comparison. The essential sets found are detailed in Supplementary
Table 1.

Validating these model predictions is not straightforward, as almost
no experimental multiple knockouts of the yeast’s metabolic genes are
available. Considering the very few relevant known synthetic lethal
interactions, FBA predictions of coessential genes (pairs that are in

the same set; see Supplementary Table 1) achieve good recall, given
our use of sampling (59%; Supplementary Note). To further test the
model’s accuracy, one can measure the percentage of experimentally
essential genes in each k robustness level. Ideally, one would expect
that all 1-robust genes, but no other genes, be experimentally iden-
tified as essential if the model were completely accurate. The true
picture (Fig. 1) depicts a rapid decrease in the fraction of essential
genes with rising k robustness levels, showing that k robustness is
indeed a clear indicator of the biological buffering capacity. To further
corroborate the validity of the pairwise interactions predicted by the
model between members of the same essential set, we followed the
procedures laid out in ref. 11 to search for other possible biological
pairwise relations that correspond with these interactions. The list of
predicted interacting gene pairs is indeed significantly enriched with
many experimentally measured pairwise characteristics (Table 1).
Although this enrichment is expected for isoenzyme pairs, it remains
valid even when considering only non-isoenzyme coessential genes. In
addition, we find that the expression patterns of coessential pairs are

Table 1 The overlap between several gene or protein pair characteristics (C) and the ‘coessentiality’ property (B)

Characteristic C B only C only B&C Neither P valueP valueP
Large-scale

experimental P valueP valueP
P value forP value forP

non-isoenzymes

Sequence homology 2,837 386 328 113,335 5 × 10–314 4 × 10–22 0.002

Similar biological process 2,751 3,249 431 110,455 8 × 10–147 <2 × 10–322 7 × 10–22

Same biological process 2,877 1,511 305 112,193 2 × 10–145 5 × 10–296 6 × 10–7

Same subcellular localization 2,188 24,210 994 89,494 4 × 10–38 2 × 10–70 3 × 10–7

Common regulatory motifs 1,439 8,072 379 51,535 3 × 10–17 - 2 × 10–6

Same MIPS mutant phenotype 3,155 129 27 113,575 2 × 10–14 9 × 10–316 5 × 10–11

Physical interaction (DIP) 3,148 59 17 113,662 2 × 10–11 - 0.11

Physical interaction: same MIPS
complex (mostly TAP, HMS-PCI)

3,100 1,131 65 112,590 2 × 10–7 4 × 10–6 0.01

Correlated expression, (Rosetta)
CC > 0.7

3,048 131 6 112,255 0.16 0.79 0.64

Correlated expression, (Rosetta)
CC < –0.7

3,054 23 0 112,363 1 0.37 1

Table entries indicate the number of pairs that have the property or combination of properties indicated, and P values are from Fisher’s exact test. The next-to-lastP values are from Fisher’s exact test. The next-to-lastP
column indicates, for comparison, the results obtained by ref. 11 measuring the overlap between experimental genetic interactions and the corresponding character-
istics. The last column lists corresponding P values obtained by considering the 2,866 (90%) non-isoenzyme coessential gene pairs alone.P values obtained by considering the 2,866 (90%) non-isoenzyme coessential gene pairs alone.P CC: correlation coefficient.
The data sets are detailed in Methods.

1 2 3 4 5 6
10

−2

10
−1

10
0

k robustness

F
ra

ct
io

n
of

ex
pe

rim
en

ta
lly

es
se

nt
ia

lg
en

es

Figure 1 Fraction of essential genes in each k robustness level. Essentiality
is determined according to large-scale experiments (see the SGD). The
straight line is the linear regression fit. Data is presented for k ≤ 6, as the
number of genes in higher levels is very small.
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more coherent and similar than that of random pairs (Supplementary
Note). Finally, k robustness values (either for all genes or only for
non-isoenzyme pairs) are correlated with several other properties of
genes, including evolutionary conservation, environmental specific-
ity and expression levels (Supplementary Table 2 online), showing
that k robustness indeed has a biological meaning, related to other
genetic properties. Nonetheless, this does not suggest any causal rela-
tion between genetic robustness, or k robustness, and other genetic
qualities, a subject that is still a contentious issue2,21–24.

The nature of the genetic interactions depicted in essential sets is
demonstrated in the following example concerning the pentose phos-
phate pathway: ribose 5-phosphate is a critical precursor in the syn-
thesis of nucleic acids, which are needed in high amounts in growing
cells, and is produced by the pentose phosphate pathway using either
the oxidative or nonoxidative branches25. Therefore, it is not surprising
that the disruption of both branches is predicted to be lethal, giving
rise to several essential sets, such as the combination of glucose 6-phos-
phate dehydrogenase (ZWF1) and the two transketolases (TKL1, TKL2),
a combination that previously has been found experimentally26 (see
additional examples in the Supplementary Note and Supplementary
Fig. 1 online).

The architecture of metabolic robustness
We analyzed these results on a large scale (Fig. 2 shows a histogram of the
genes’ robustness levels). The contributing genes total 74% (360) of the
tested genes, compared with only 10% of these genes that are identified
in silico as essential using traditional single knockouts17 (and 13% previ-
ously found in vivo1; see also the SGD). This indicates that a large major-
ity of the genes are involved in processes already required in the standard
laboratory rich environment, even though the individual genes are not
essential. Using a glucose minimal medium, a slightly smaller set of 72%
of the genes is uncovered at markedly lower k robustness levels. These
differences arise mainly from the more extensive activity of membrane
transporters and catabolic pathways in the rich medium, increasing the
number of contributing genes and the overall k robustness (as synthesis
and transport buffer each other). These media-dependent changes are
described in more detail in the Supplementary Note.

Backups arise more often from alternative pathways than from
functional gene duplication (Fig. 2), the former being solely respon-
sible for 45% of the backed up genes and partially responsible for 33%

more. Furthermore, considering all coessential gene pairs, only 10%
involve genes coding for duplicated isoenzymes. Alternative pathways
are particularly dominant in genes with high k robustness levels, sug-
gesting that their role in genetic robustness might be underestimated
when the investigation is limited to shallow knockout depths. Another
notable quality of backup interactions is transitivity, or the formation
of dense neighborhoods11: we find that the probability of a backup
interaction between two genes is significantly higher (P < 10−323) if
both genes are backed up by a common third gene (a fivefold increase,
from 2.7% in general to 14% among genes with a common neighbor).
In agreement with ref. 7, we find that the number of essential sets
per gene is usually small, averaging 8 sets or 22 pairwise interactions
per gene, although a few genes are involved in many interactions
(Supplementary Fig. 2 online).

We used the Gene Ontology (GO)-Slim biological process annota-
tions from the SGD (http://www.yeastgenome.org; November 2005)
to test if any biological process category is significantly enriched or
depleted with backed-up genes, as portrayed in Figure 3 (see Methods).
Indeed, two main metabolic functions, amino acid metabolism and
generation of precursor metabolites and energy are highly backed up
(P = 3 × 10−11 and P = 0.01, respectively). In contrast, genes function-
ing in lipid metabolism contain significantly more essential genes
than expected by chance (P = 1 × 10−10), comprising a particularly
non-robust functional category. The backup interactions between the
functional categories in the metabolic network are shown in Figure 4.
The functional categories of precursors and energy generation, carbo-
hydrate metabolism, amino acid metabolism and transport processes
have notable interfunctional backups (which may be quite intricate
when examined in detail; see examples in Supplementary Note).
These and other categories also have significantly elevated levels of
intrafunctional backup interactions, although overall, interfunctional
backup interactions are abundant. This is evident also with the higher
resolution possible by using the full GO annotation: defining two
GO terms as similar if they are annotated with significantly over-
lapping gene sets11,27, we find that only 18% of backup interactions
are between genes annotated with similar GO terms, comparable to
the 27% found experimentally in ref. 11 and differing from previous
observations in small-scale systems7 (see also Supplementary Fig. 3
and Supplementary Methods online). It should be noted that
the qualitative similarities between the findings in ref. 11 and our

E 3 5 7 9 5+

g

E 3 5 7 9 5+

h

E 3 5 7 9 5+
0

20

40

60

80

100

e

G
en

e
co

un
t

E 3 5 7 9 5+

b

E 3 5 7 9 5+

c

E 3 5 7 9 5+

d

E 3 5 7 9 5+

f

k robustness

E 3 5 7 9 5+
0

20

40

60

80

100

a
G

en
e

co
un

t

R
ic

h
m

ed
iu

m
M

in
im

al
m

ed
iu

m

Figure 2 k robustness gene histograms
and the distribution of backup
mechanisms for contributing genes at
different levels of k robustness, on rich
(a–d) and minimal media (e–h). Backed up
genes are black if backed up by alternative
pathways (a,e), light gray if backed up by
duplication (c,g) and dark gray if backed
by both mechanisms (b,f). d and h present
the total counts, with the leftmost column
in each panel depicting essential genes
with no backups. Genes with robustness
levels 5 and up are found using stochastic
search, and their robustness level
might be overestimated (Methods). The
rightmost column in each pane counts
contributing genes whose robustness
level remains undetermined or is >10,
including 17 genes encoding various
hexose transporters comprising a single
duplicated-function essential set.
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findings also include the existence of dense neighborhoods and arise
even though the studies involve different subsets of the yeast genome
and use in silico versus in vivo knockouts of different depths.

Robustness, dispensability and evolution
Two previous FBA-based studies4,28 of the mechanisms for dispens-
ability reported that the majority of dispensable metabolic genes are
specific to certain environmental conditions, concluding that environ-
mental specificity is the dominant explanation behind dispensability.
They further showed that gene duplication is the second common
explanation. We find that 91% of the condition-specific genes identi-
fied in ref. 4 are contributing genes (as defined above) already in the
standard rich environment. There is a significant correlation between
the k robustness of genes and their environmental specificity, measured
as the number of environments where the gene is dispensable (R =
0.39, P = 9 × 10−11, N = 252 (B. Papp, personal communication; Fig. 5a
and Supplementary Note)). That is, genes with many backups tend
to catalyze reactions that are essential in only a few specific environ-
ments. This may suggest that the availability of backups allows for the
functional divergence and specification of genes with high k robustness
to specific environments during evolution. It has been reported28 that
redundancy (duplication) is an important cause of metabolic network
robustness to single-gene deletions during growth on glucose (mini-
mal medium). This conclusion can also be seen in our results (Fig. 2).
However, when extending the analysis to multiple gene knockouts, we
find that at higher depths, and especially in the more complex rich
medium, the role of alternative pathways towards genetic robustness
is more prominent than that of duplication.

To examine the extent to which the k robustness of genes may actu-
ally confer them with a functional backup from an evolutionary perspec-
tive, we compared the genes’ k robustness with the propensity for gene
loss21,22 (PGL data courtesy of Y.Wolf, personal communication; Fig. 5b),
which is an (inverse) measure of the evolutionary conservation of genes.
The resulting significant correlation (R = 0.23,P = 1 × 10−4,N = 278) shows

that genes with high k robustness are less conserved and hence testifies
that they are indeed functionally buffered, permitting their divergence.
This conclusion is further strengthened by the finding that the PGL scores
of coessential genes are significantly more similar, or coherent, than those
of random gene pairs. This is unsurprising for homologous or isoenzyme
pairs but is true even when disregarding them: the average absolute dif-
ference in PGL scores of non-isoenzyme coessential genes is 27% lower
than the average for all gene pairs (P = 3 × 10−66, Wilcoxon’s rank-sum
test; similar results hold considering nonhomologous coessential genes).
It seems that common evolutionary forces were imposed on backup gene
pairs to channel them in similar evolutionary paths. Although still con-
troversial, previous studies have found that environmental specificity and
gene expression are both correlated with evolutionary conservation of
genes4,21–24.As both are also correlated with k robustness (Supplementary
Table 2), we verified that k robustness and PGL are correlated even when
statistically controlling for these variables (Pearson’s partial R = 0.22, P =
5 × 10−4, N = 233; Supplementary Note).

It is important to note that genetic robustness did not necessar-
ily evolve because it was favored by natural selection2. This explana-
tion, termed ‘adaptive’ robustness, claims that for well-adapted traits,
mutations derive a non-optimal phenotype and hence decrease fitness.
However, alternative ‘intrinsic’ theories—often raised in the context of
dominancy but relevant to genetic robustness in general—view robust-
ness as a correlated side effect of the evolution of other properties,
such as higher metabolic efficiency4such as higher metabolic efficiency4such as higher metabolic efficiency , or even as an inherent property
of complex, evolving systems3. An intermediate, ‘congruent’ possibility
points to the tight coupling between genetic robustness and environ-
mental robustness (buffering of non-heritable perturbations), as many
mechanisms allow both (for instance, buffering between transport and
synthesis). As environmental perturbations occur at a higher frequency,
this view posits the evolution of genetic robustness as a side effect of
the evolution of environmental robustness29. Our findings do not con-
tradict any of these possibilities.

Our investigation leaves the contribution of 26% of the genes unde-
tected, and assuming that genes retained by evolution do fulfill some
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Carbohydrate metabolism

Generation of precursors and energy

Amino acid and derivative metabolism
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Transport

Response to stress

Cellular respiration

Gene count

Figure 3 Metabolic network robustness across different functional GO-
Slim categories on rich medium, showing for each category the proportions
of essential genes (dark), backed up genes (light), and genes not found
to contribute in our analysis (white). Superimposed numbers indicate
gene counts (for clarity, only counts of 3 or more are indicated). Only
categories annotated with at least ten genes are included. The respective
measurements in glucose minimal medium are very similar, except that
many more of the genes involved in amino acid and derivative metabolism
are essential (45/110).

Figure 4 Functional backup capacity on rich medium. Vertices of the graph
represent GO-Slim biological process categories (annotated with at least
ten genes). Dotted edges connect categories if there are any two genes in a
common essential set that are annotated one to each category. Dashed edges
indicate a higher-than-average frequency of such gene pairs, whereas solid
edges indicate a statistically significant high frequency (see Methods). Edge
width correlates with the logarithm of the frequency. Numbers in brackets
indicate how many genes are annotated to each functional category.
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function, they should be accounted for. First, we verified that at least
12% of the genes are non-contributing in rich medium (see Methods).
Second, some genes might be heavily backed up and escape detection
because of the depth limit of our investigation, the ‘optimistic’ bias of
the model and its inaccuracies (see Methods). Last, some tested genes
might be backed up by model genes without a known ORF, which were
excluded from the current study. Even so, the contributions of almost
three-quarters of yeast metabolic genes are detected, uncovering the
underlying architecture of robustness of yeast metabolism.

METHODS
The model. We use the constraint-based model of ref. 18, focusing on the 484
genes with known ORFs that are not on a dead-end pathway4genes with known ORFs that are not on a dead-end pathway4genes with known ORFs that are not on a dead-end pathway (that is, at least
one of their catalyzed reactions’ products is a substrate for another reaction that
is itself not on a dead-end and vice versa). Growth on both rich and minimal
media was simulated under aerobic conditions. The minimal medium included
glucose, oxygen, ammonia, phosphate, sulfate and potassium. The rich medium
included, in addition, 20 amino acids, purines and pyrimidines17.

The FBA finds an upper bound on the obtainable growth rate of the organ-
ism and hence has an optimistic bias, falsely predicting viability more often than
falsely predicting lethality (80% of the errors are false positives17). Hence, rather
than falsely attributing contribution, we are more likely to miss some contribut-
ing genes and detect the contributing genes at k robustness levels higher than

their real level.

Search for backed up genes and essential sets. We performed an exhaustive
search, which included all gene sets of up to four genes. Each set marked essen-
tial had a lethal knockout phenotype (growth rate <20% of the wild-type rate)
with all subset knockout mutants viable (growth rate >80%; see Supplementary
Methods and Supplementary Fig. 4). If all genes in an essential set were iso-
enzymes catalyzing the same essential reaction, their backup was attributed to
duplication.Alternatively, if no isoenzymes were found in an essential set, backup
was attributed to alternative pathways. When both isoenzymes and other genes
were found in a common essential set, the genes encoding the isoenzymes were
tagged with both types of backup mechanisms, whereas the other genes were
obviously tagged as buffered by alternative pathways solely.

The exhaustive search took a week using a cluster of ten computers. Testing all
combinations of five knockouts would have increased the computational resources
needed by two orders of magnitude and would have required about two years.Thus,
we searched for genes that are more than 4-robust using stochastic sampling meth-
ods, requiring an additional 2 weeks on the computer cluster.

To stochastically test whether gene X is contributing, we repeatedly tested
random knocked-out mutants, each missing a large number of knocked-out
genes but leaving gene X intact. Finding such a knockout configuration that
is itself viable but then becomes lethal when gene X is knocked out (mean-
ing that all its backups are already silenced) provides proof of X’s contribu-
tion. As the probability of finding such an event can be estimated analytically
assuming that gene X is k robust (Supplementary Methods), one can bound
the probability that the said gene is contributing at a given k robustness level
by repeating this stochastic test a sufficient number of times. We calibrated
parameters of the stochastic testing for a misdetection rate of 10−2 for 8-robust
genes (on rich medium, or 6-robust genes on minimal medium, according
to computational feasibility) and validated them on the sets of contributing
genes found with the exhaustive search. This implies an extremely high detec-
tion rate for genes with robustness levels <8, a 45% misdetection probability
of 9-robust genes, and an 85% misdetection probability of 10-robust genes.
We were usually able to extract essential sets from the large knockout groups
during the stochastic search (Supplementary Methods), additionally giving
upper bounds on k robustness levels.

We have used the model to compute the maximal and minimal possible flux
through any reaction, given that the growth rate is at least 80% of the wild-type
growth. This computation enables us to identify reactions that always have a zero
flux under these conditions, even after multiple knockouts, and hence identify

genes that are noncontributing in the rich environment tested.

Experimental gene pair characteristics. We evaluated the statistical significance
of the overlaps in Table 1 using Fisher’s exact test. The experimental data sets are
as follows. (i) Sequence homology using BLAST E values below 10E values below 10E −4. (ii) Same or
similar biological process GO annotation (see the SGD): genes were considered to
have the same process annotation if they shared at least one direct biological pro-
cess. Two GO annotations were considered similar if the sets of genes annotated
to each one (including genes annotated to descendent terms in the ontology)
were significantly and strongly overlapping. Significance was evaluated using
Fisher’s exact test, corrected for multiple testing by limiting the false discovery
rate (FDR)30 to 10%. Strength of association was determined by LOD11 values
>3. Genes were considered similarly annotated if at least one of their annotations
(one annotation of each gene) was similar. (iii) Same subcellular localization (that
is, sharing at least one direct cellular component GO annotation; see the SGD).
(iv) Common regulatory motifs. Motifs are from ref. 31. Considering only genes
that have at least one regulatory motif attached in the data, we listed all gene
pairs that have at least one common motif. (v) Same MIPS mutant phenotype.
This was determined according to the list of phenotypes in the MIPS database
(http://mips.gsf.de/genre/proj/yeast/, August 2005), excluding nonspecific phe-
notype categories (categories with names including the word ‘other’, categories
with more than 200 genes, and those at the least specific level of the hierarchy).
(vi) Physical interaction (DIP). The protein-protein interactions, based on the
DIP database, were taken from ref. 32 (data courtesy of R. Sharan). Only interac-
tions with a positive probability were considered. (vii) Physical interaction (MIPS
complex). This means participation in at least one protein complex listed in MIPS
(usually from large-scale tandem affinity purification (TAP) or high-throughput
mass spectrometric protein complex identification (HMS-PCI) experiments).
(viii) Correlated expression (Rosetta). This was computed among the expression
vectors of each gene in the 300 conditions of the Rosetta compendium33 (ignoring

missing values). Correlation coefficients >0.7 or <–0.7 were considered.

Functional qualities of essential sets. For each GO-Slim biological process cat-
egory at the SGD, we tested the number of backed up genes out of all genes anno-
tated to that category, compared with a random distribution of the contributing
genes across categories. P values are from Fisher’s exact test, corrected for multipleP values are from Fisher’s exact test, corrected for multipleP
testing by controlling the FDR30 at 10%. Two GO terms were defined as similar if
they had a significant overlap of annotated genes11 (after genes were annotated
with all ancestor terms in the GO hierarchy) using the same statistical test. We
counted the percentage of gene pairs annotated with such similar terms, out of
all coessential gene pairs, to find that most coessential pairs are not annotated
with similar terms. Similar results were obtained when considering the semantic
similarity27similarity27similarity of GO terms (Supplementary Methods). The existence of the dense
neighborhoods’ quality was tested by considering all coessential gene pairs using
the procedure of ref. 11 (when examining a specific pair of interacting genes, care
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Figure 5 Environmental specificity (ES) and propensity for gene loss (PGL)
as a function of robustness level. Means ± s.e.m. are shown for the ES (a)
and PGL (b) measures at each k robustness level. The dashed lines are the
least squares linear regression through the original data points. Owing to
their small number and the uncertainty in their robustness level estimation,
we do not consider genes with k robustness >9, although the significant
correlations found remain valid across k robustness thresholds from 5–12.
The correlation between k robustness and PGL goes beyond the previously
reported correlation between essentiality and evolutionary conservation21–24,
as it remains significant even when considering only nonessential genes
(R = 0.26, P = 5 × 10−5, N = 235).
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was taken to exclude all other interactions arising from their common essential
set). For pairwise backups between two GO-Slim categories, we counted the
number of gene pairs, one from each category, and the proportion of such pairs
that are coessential, compared with a random distribution of such coessential
gene pairs (Fisher’s exact test, corrected for multiple testing).

Note: Supplementary information is available on the Nature Genetics website.
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