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This chapter provides a self-contained introduction to the use of Bayesian inference to ex-
tract large-scale modular structures from network data, based on the stochastic block model
(SBM), as well as its degree-corrected and overlapping generalizations. We focus on non-
parametric formulations that allow their inference in a manner that prevents overfitting, and
enables model selection. We discuss aspects on the choice of priors, in particular how to
avoid underfitting via increased Bayesian hierarchies, and we contrast the task of sampling
network partitions from the posterior distribution with finding the single point estimate that
maximizes it, while describing efficient algorithms to perform either one. We also show
how inferring the SBM can be used to predict missing and spurious links, and shed light on
the fundamental limitations of the detectability of modular structures in networks.
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I. INTRODUCTION

Since the past decade and a half there has been an ever-increasing demand to analyze network
data, in particular those stemming from social, biological and technological systems. Often these
systems are very large, comprising millions of even billions of nodes and edges, such as the World
Wide Web, and the global-level social interactions among humans. A particular challenge that
arises is how to describe the large-scale structures of these systems, in a way that abstracts away
from low-level details, allowing us to focus instead on “the big picture”. Differently from systems
that are naturally embedded in some low-dimensional space — such as the population density of
cities or the physiology of organisms —- we are unable just to “look” at a network and readily
extract its most salient features. This has prompted a fury of activity in developing algorithmic ap-
proaches to extract such global information in a well-defined manner, many of which are described
in the remaining chapters of this book. Most of them operate on a rather simple ansatz, where we
try to divide the network into “building blocks”, which then can be described at an aggregate level
in a simplified manner. The majority of such methods go under the name “community detection”,
“network clustering” or “block modeling”. In this chapter we consider the situation where the
ultimate objective when analyzing network data in this way is to model it, i.e. we want to make
statements about possible generative mechanisms that are responsible for the network formation.
This overall aim sets us in a well-defined path, where we get to formulate probabilistic models for
network structure, and use principled and robust methods of statistical inference to fit our models
to data. Central to this approach is the ability to distinguish structure from randomness, so that
we do not fool ourselves into believing that there are elaborate structures in our data which are in
fact just the outcome of stochastic fluctuations — which tends to be the Achilles’ heel of alterna-
tive nonstatistical approaches. In addition to providing a description of the data, the models we
infer can also be used to generalize from observations, and make statements about what has not
yet been observed, yielding something more tangible than mere interpretations. In what follows
we will give an introduction to this inference approach, which includes recent developments that
allow us to perform it in a consistent, versatile and efficient manner.

II. STRUCTURE VERSUS RANDOMNESS IN NETWORKS

If we observe a random string of characters we will eventually encounter every possible sub-
string, provided the string is long enough. This leads to the famous thought experiment of a large
number of monkeys with typewriters: Assuming that they type randomly, for a sufficiently large
number of monkeys any output can be observed, including, for example, the very text you are
reading. Therefore, if we are ever faced with this situation, we should not be surprised if a such a
text is in fact produced, and most importantly, we should not offer its simian author a place in a
university department, as this occurrence is unlikely to be repeated. However, this example is of
little practical relevance, as the number of monkeys necessary to type the text “blockmodeling” by
chance is already of the order of 1018, and there are simply not that many monkeys.
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Figure 1. The three panels show the same adjacency matrix, with the only difference between them being
the ordering of the nodes. The different orderings show seemingly clear, albeit very distinct patterns of
modular structure. However, the adjacency matrix in question corresponds to an instance of a fully random
Erdős-Rényi model, where each edge has the same probability of occurring. Although the patterns seen in
the second and third panels are not mere fabrications — as they are really there in the network — they are
also not meaningful descriptions of this network, since they arise purely out of random fluctuations, and
the node groups that are identified bear no relation to the model that produced the data. In other words, the
second and third panels correspond to an overfit of the data, where stochastic fluctuations are misrepresented
as underlying structure. This pitfall can lead to misleading interpretations of results from clustering methods
that do not account for statistical significance.

Networks, however, are different from random strings. The network analogue of a random
string is an Erdős-Rényi random graph [1] where each possible edge can occur with the same
probability. But differently from a random string, a random graph can contain a wealth of structure
before it becomes astronomically large — specially if we search for it. An example of this is shown
in Fig. 1 for a modest network of 5,000 nodes, where its adjacency matrix is visualized using three
different node orderings. Two of the orderings seem to reveal patterns of large-scale connections
that are tantalizingly clear, and indeed would be eagerly captured my many network clustering
methods [2]. In particular, they seem to show groupings of nodes that have distinct probabilities of
connections to each other — in direct contradiction to actual process that generated the network,
where all connections had the same probability of occurring. What makes matters even worse is
that in Fig. 1 is shown only a very small subset of all orderings that have similar patterns, but
are otherwise very distinct from each other. Naturally, in the same way we should not confuse
a monkey with a proper scientist in our previous example, we should not use any of these node
groupings to explain why the network has its structure. Doing so should be considering overfitting
it, i.e. mistaking random fluctuations for generative structure, yielding an overly complicated and
ultimately wrong explanation for the data.

The remedy to this problem is to think probabilistically. We need to ascribe to each possible
explanation of the data a probability that it is correct, which takes into account modeling assump-
tions, the statistical evidence available in the data, as well any source of prior information we may
have. Imbued in the whole procedure must be the principle of parsimony — or Occam’s razor —
where a simpler model is preferred if the evidence is not sufficient to justify a more complicated
one.

In order to follow this path, before we look at any network data, we must first look in the



4

“forward” direction, and decide on which mechanisms generate networks in the first place. Based
on this, we will finally be able to look “backwards”, and tell which particular mechanism generated
a given observed network.

III. THE STOCHASTIC BLOCK MODEL (SBM)

As mentioned in the introduction, we wish to decompose networks into “building blocks”, by
grouping together nodes that have a similar role in the network. From a generative point of view,
we wish to work with models that are based on a partition of N nodes into B such building blocks,
given by the vector bbb with entries

bi ∈ {1, . . . ,B},
specifying the group membership of node i. We wish to construct a generative model that takes
this division of the nodes as parameters, and generates networks with a probability

P(AAA|bbb),

where where AAA = {Ai j} is the adjacency matrix. But what shape should P(AAA|bbb) have? If we
wish to impose that nodes that belong to the same group are statistically indistinguishable, our
ensemble of networks should be fully characterized by the number of edges that connects nodes
of two groups r and s,

ers = ∑
i j

Ai jδbi,rδb j,s, (1)

or twice that number if r = s. If we take these as conserved quantities, the ensemble that reflects
our maximal indifference towards any other aspect is the one that maximizes the entropy [3]

S =−∑
AAA

P(AAA|bbb) lnP(AAA|bbb) (2)

subject to the constraint of Eq. 1. If we relax somewhat our requirements, such that Eq. 1 is obeyed
only on expectation, and if we assume that the placement of edges are conditionally independent,

P(AAA|bbb) = ∏
i≤ j

Pi j(Ai j), (3)

then we can obtain our model using the method of Lagrange multipliers, using the Lagrangian
function

F = S−∑
r≤s

µrs

(
∑
i j

〈
Ai j
〉
δbi,rδb j,s−〈ers〉

)
−∑

i j
νi j

(
∑
x

Pi j(x)−1
)

(4)

where
〈
Ai j
〉
= ∑x xPi j(x), and µµµ and ννν are multipliers that enforce our desired constraints and nor-

malization, respectively. Obtaining the saddle point ∂F/∂Pi j(x)= 0, ∂F/∂ µrs = 0 and ∂F/∂νi j =
0 gives us the maximum entropy ensemble with the desired properties. If we constraint ourselves
to simple graphs, i.e. Ai j ∈ {0,1}, without self loops, i.e. Pi j(x) = δx,0, we have as our maximum
entropy model

P(AAA|ppp,bbb) = ∏
i< j

pAi j
bi,b j

(1− pbi,b j)
1−Ai j . (5)
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Figure 2. The stochastic block model (SBM): (a) The matrix of probabilities between groups prs defines
the large-scale structure of generated networks; (b) a sampled network corresponding to (a), where the node
colors indicate the group membership.

with prs = e−µrs/(1+ e−µrs) being the probability of an edge existing between any two nodes
belonging to group r and s. This model is called the stochastic block model (SBM), and has
its roots in the social sciences [4], but has appeared repeatedly in the literature under a variety
of different names [5–9]. By selecting the probabilities ppp = {prs} appropriately, we can achieve
arbitrary mixing patterns between the groups of nodes, as illustrated in Fig. 2. We stress that while
the SBM can perfectly accommodate the usual “community structure” pattern [10], i.e. when the
diagonal entries of ppp are dominant, it can equally well describe a large variety of other patterns,
such as bipartiteness, core-periphery, and many others.

Instead of simple graphs, we may consider multigraphs by allowing multiple edges between
nodes, i.e. Ai j ∈ N. Repeating the same procedure, we obtain in this case

P(AAA|λλλ ,bbb) = ∏
i< j

λ
Ai j
bi,b j

(λbi,b j +1)Ai j+1 , (6)

with λrs = e−µrs/(1− e−µrs) being the average number of edges existing between any two nodes
belonging to group r and s. Whereas the placement of edges in Eq. 5 is given by a Bernoulli
distribution, in Eq. 6 they are given by a geometric distribution, reflecting the different nature of
both kinds of networks. Although these models are not the same, there is in fact little difference
between the networks they generate in the sparse limit given by prs = λrs = O(1/N) with N� 1.
We see this by noticing how their log-probabilities become asymptotically identical in this limit,
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i.e.

lnP(AAA|ppp,bbb)≈−1
2 ∑

rs
ers ln prs−nrns prs, (7)

lnP(AAA|λλλ ,bbb)≈−1
2 ∑

rs
ers lnλrs−nrnsλrs. (8)

Therefore, since most networks that we are likely to encounter are sparse [11], it does not matter
which model we use, and we may prefer whatever is more convenient for our calculations. With
this in mind, we may consider yet another variant, which uses instead a Poisson distribution to
sample edges [12],

P(AAA|λλλ ,bbb) = ∏
i< j

e−λbi,b j λ
Ai j
bi,b j

Ai j!
×∏

i

e−λbi,bi/2(λbi,bi/2)Aii/2

(Aii/2)!
, (9)

where now we also allow for self-loops. Like the geometric model, the Poisson model also gener-
ates multigraphs, and it is easy to verify that it also leads to Eq. 8 in the sparse limit. This model is
easier to use in some of the calculations that we are going to make, in particular when we consider
important extensions of the SBM, therefore we will focus on it.1

The model above generates undirected networks. It can be very easily modified to generate
directed networks instead, by making λrs an asymmetric matrix, and adjusting the model likelihood
accordingly. The same is true for all model variations that are going to be used in the following
sections. However, for the sake of conciseness we will focus only on the undirected case. We
point out that the corresponding expressions for the directed case are readily available in some of
the literature (e.g. Refs. [13–15]).

Now that we have defined how networks with prescribed modular structure are generated, we
need to develop the reverse procedure, i.e. how to infer the modular structure from data.

IV. BAYESIAN INFERENCE: THE POSTERIOR PROBABILITY OF PARTITIONS

Instead of generating networks, our nominal task is to determine which partition bbb generated an
observed network AAA, assuming this was done via the SBM. In other words, we want to obtain the
probability P(bbb|AAA) that a node partition bbb was responsible for a network AAA. By evoking elementary
properties of conditional probabilities, we can write this probability as

P(bbb|AAA) = P(AAA|bbb)P(bbb)
P(AAA)

(10)

with
P(AAA|bbb) =

∫
P(AAA|λλλ ,bbb)P(λλλ |bbb)dλλλ (11)

1Although the Poisson model is not strictly a maximum entropy ensemble, the generative process behind it is easy
to justify. We can imagine it as the random placement of exactly E edges into the N(N − 1)/2 entries of the
matrix AAA, each with a probability qi j of attracting an edge, with ∑i< j qi j = 1, yielding a multinomial distribution

P(AAA|qqq,E) =E!∏i< j q
Ai j
i j /Ai j! — which incidentally does not conform to Eq. 3, as the edges are not conditionally inde-

pendent. But if we now sample the total number of edges E from a Poisson distribution P(E|Ē) with average Ē, by ex-
ploiting the relationship between the multinomial and Poisson distributions, we have P(AAA|qqq)=∑E P(AAA|qqq,E)P(E|Ē)=
∏i< j e−ωi j ω

Ai j
i j /Ai j!, where ωi j = qi j/Ē, which does conform to Eq. 3. Making qi j = Ēλbi,b j , and allowing self-loops,

we arrive at Eq. 9.
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being the marginal likelihood integrated over the remaining model parameters, and

P(AAA) = ∑
bbb

P(AAA|bbb)P(bbb) (12)

is called the evidence, i.e. the total probability of the data under the model, which serves as a
normalization constant in Eq. 10. Eq. 10 is known as Bayes’ rule, and far from being only a
simple mathematical step, it encodes how our prior beliefs about the model, i.e. before we observe
any data — in the above represented by the prior distributions P(bbb) and P(λλλ |bbb) — are affected
by the observation, yielding the so-called posterior distribution P(bbb|AAA). The overall approach
outlined above has been proposed to the problem of network inference by several authors [14–29],
with different implementations that vary in some superficial details in the model specification,
approximations used, and in particular in the choice of priors. Here we will not review or compare
all approaches in detail, but rather focus on the most important aspects, while choosing a particular
path that makes exact calculations possible.

The prior probabilities are a crucial element of the inference procedure, as they will affect
the shape of the posterior distribution, and ultimately, our inference results. In more traditional
scenarios, the choice of priors would be guided by previous observations of data that are believed
to come from the same model. However, this is not an applicable scenario when considering
networks, which are typically singletons, i.e. they are unique objects, instead of coming from a
population (e.g. there is only one internet, one network of trade between countries, etc).2 In the
absence of such empirical prior information, we should try as much as possible to be guided by
well defined principles and reasonable assumptions about our data, rather than ad hoc choices.
A central proposition we will be using is the principle of maximum indifference about the model
before we observe any data. This will lead us to so-called uninformative priors,3 that are maximum
entropy distributions that ascribe the same probability to each possible parameter combination [3].
These priors have the property that they do no bias the posterior distribution in any particular way,
and thus let the data “speak for itself.” But as we will see in the following, the naive application of
this principle will lead to adverse effects in many cases, and upon closer inspection we will often
be able to identify aspects of the model that we should not be agnostic about. Instead, a more
meaningful approach will be to describe higher-order aspects of the model with their own models.
This can be done in a manner that preserves the unbiased nature of our results, while being able to
provide a more faithful representation of the data.

We begin by choosing the prior for the partition, bbb. The most direct uninformative prior is the
“flat” distribution where all partitions into at most B = N groups are equally likely, namely

P(bbb) =
1

∑bbb′ 1
=

1
aN

(13)

where aN are the ordered Bell numbers [37], given by

aN =
N

∑
B=1

{
N
B

}
B! (14)

2One could argue that most networks change in time, and hence belong to a time series, thus possibly allowing priors to
be selected from earlier observations of the same network. This is a potentially useful way to proceed, but also opens
a Pandora’s box of dynamical network models, where simplistic notions of stationary are likely to be contradicted
by data. Some recent progress has been made on the inference of dynamic networks [30–36], but this field is still in
relative infancy.

3The name “uninformative” is something of a misnomer, as it is questionable if it is possible for priors to truly carry no
information to the posterior distribution. In our context, the term is used simply to refer to maximum entropy priors,
conditioned on specific constraints.
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where
{

N
B

}
are the Stirling numbers of the second kind [38], which count the number of ways to

partition a set of size N into B indistinguishable and nonempty groups (the B! in the above equation
recovers the distinguishability of the groups, which we require). However, upon closer inspection
we often find that such flat distributions are not a good choice. In this particular case, since there
are many more partitions into B+1 groups than there are into B groups (if B is sufficiently smaller
than N), Eq. 13 will typically sample partitions with a number of groups that is comparable to the
number of nodes. Therefore, this uniform assumption seems to betray the principle of parsimony
that we stated in the introduction, since it favors large models with many groups. Instead, we
may wish to be agnostic about the number of groups itself, by first sampling it from its own
uninformative distribution P(B) = 1/N, and then sampling the partition conditioned on it

P(bbb|B) = 1{
N
B

}
B!

, (15)

since
{

N
B

}
B! is the number of ways to partition N nodes into B labelled groups.4 Since bbb is a

parameter of our model, the number of groups B is a called a hyperparameter, and its distribu-
tion P(B) is called a hyperprior. But once more, upon closer inspection we can identify further
problems: If we sample from Eq. 15, most partitions of the nodes will occupy all the groups ap-
proximately equally, i.e. all group sizes will be the approximately the same. Is this something we
want to assume before observing any data? Instead, we may wish to be agnostic about this aspect
as well, and choose to sample first the distribution of group sizes nnn = {nr}, where nr is the number
of nodes in group r, forbidding empty groups,

P(nnn|B) =
(

N−1
B−1

)−1

, (16)

since
(N−1

B−1

)
is the number of ways to divide N nonzero counts into B nonempty bins. Given these

randomly sampled sizes as a constraint, we sample the partition randomly

P(bbb|nnn) = ∏r nr!
N!

. (17)

This gives us finally

P(bbb) = P(bbb|nnn)P(nnn|B)P(B) = ∏r nr!
N!

(
N−1
B−1

)−1

N−1. (18)

At this point the reader may wonder if there is any particular reason to stop here. Certainly we
can find some higher-order aspect of the group sizes nnn that we may wish to be agnostic about,
and introduce a hyperhyperprior, and so on, indefinitely. The reason why we should not keep
recursively being more and more agnostic about higher-order aspects of our model is that it brings
increasingly diminishing returns. In this particular case, if we assume that the individual group

4We could have used simply P(bbb|B) = 1/BN , since BN is the number of partitions of N nodes into B groups, which
are allowed to be empty. However, this would force us to distinguish between the nominal and the actual number
of groups (discounting empty ones) during inference [29], which becomes unnecessary if we simply forbid empty
groups in our prior.
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sizes are sufficiently large, we obtain asymptotically

lnP(bbb)≈−NH(nnn)+O(lnN) (19)

where H(nnn) = −∑r(nr/N) ln(nr/N) is the entropy of the group size distribution. The value
lnP(bbb)→−NH(nnn) is an information-theoretical limit that cannot be surpassed, regardless of how
we choose P(nnn|B). Therefore, the most we can optimize by being more refined is a marginal factor
O(lnN) in the log-probability, which would amount to little practical difference in most cases.

In the above, we went from a purely flat uninformative prior distribution for bbb, to a Bayesian
hierarchy with three levels, where we sample first the number of groups, the groups sizes, and
then finally the partition. In each of the levels we used maximum entropy distributions that are
constrained by parameters that are themselves sampled from their own distributions at a higher
level. In doing so, we removed some intrinsic assumptions about the model (in this case, number
and sizes of groups), thereby postponing any decision on them until we observe the data. This will
be a general strategy we will use for the remaining model parameters.

Having dealt with P(bbb), this leaves us with the prior for the group to group connections, λλλ .
A good starting point is an uninformative prior conditioned on a global average, λ̄ , which will
determine the expected density of the network. For a continuous variable x, the maximum entropy
distribution with a constrained average x̄ is the exponential, P(x) = e−x/x̄/x̄. Therefore, for λλλ we
have

P(λλλ |bbb) = ∏
r≤s

e−nrnsλrs/(1+δrs)λ̄ nrns/(1+δrs)λ̄ , (20)

with λ̄ = 2E/B(B+1) determining the expected total number of edges,5 where we have assumed
the local average 〈λrs〉 = λ̄ (1 + δrs)/nrnS, such that that the expected number of edges ers =
λrsnrns/(1+δrs) will be equal to λ̄ , irrespective of the group sizes nr and ns [15]. Combining this
with Eq. 9, we can compute the integrated marginal likelihood of Eq. 11 as

P(AAA|bbb) = λ̄ E

(λ̄ +1)E+B(B+1)/2
× ∏r<s ers!∏r err!!

∏r ner
r ∏i< j Ai j!∏i Aii!!

. (21)

Just as with the node partition, the uninformative assumption of Eq. 20 also leads to its own
problems, but we postpone dealing with them to Sec. VI. For now, we have everything we need to
write the posterior distribution, with the exception of the model evidence P(AAA) given by Eq. 12.
Unfortunately, since it involves a sum over all possible partitions, it is not tractable to compute the
evidence exactly. However, since it is just a normalization constant, we will not need to determine
it when optimizing or sampling from the posterior, as we will see in Sec. VIII. The numerator
of Eq. 10, which is comprised of the terms that we can compute exactly, already contains all the
information we need to proceed with the inference, and also has a special interpretation, as we will
see in the next section.

The posterior of Eq. 10 will put low probabilities on partitions that are not backed by sufficient
statistical evidence in the network structure, and it will not lead us to spurious partitions such
as those depicted in Fig. 1. Inferring partitions from this posterior amounts to a so-called non-
parametric approach; not because it lacks the estimation of parameters, but because the number
of parameters itself, a.k.a. the order or dimension of the model, will be inferred as well. More

5More strictly, we should treat λ̄ just as another hyperparameter and integrate over its own distribution. But since this
is just a global parameter, not affected by the dimension of the model, we can get away with setting its value directly
from the data. It means we are pretending we know precisely the density of the network we are observing, which is
not a very strong assumption. Nevertheless, readers that are uneasy with this procedure can rest assured that this can
be completely amended once we move to microcanonical models in Sec. V (see footnote 14).
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specifically, the number of groups B itself will be an outcome of the inference procedure, which
will be chosen in order to accommodate the structure in the data, without overfitting. The precise
reasons why the latter is guaranteed might not be immediately obvious for those unfamiliar with
Bayesian inference. In the following section we will provide an explanation by making a straight-
forward connection with information theory. The connection is based on a different interpretation
of our model, which allow us to introduce some important improvements.

V. MICROCANONICAL MODELS AND THE MINIMUM DESCRIPTION LENGTH
PRINCIPLE (MDL)

We can re-interpret the integrated marginal likelihood of Eq. 21 as the joint likelihood of a
microcanonical model given by6

P(AAA|bbb) = P(AAA|eee,bbb)P(eee), (22)

where

P(AAA|eee,bbb) = ∏r<s ers!∏r err!!
∏r ner

r ∏i< j Ai j!∏i Aii!!
, (23)

P(eee) = ∏
r<s

λ̄ ers

(λ̄ +1)ers+1 ∏
r

λ̄ ers/2

(λ̄ +1)ers/2+1
=

λ̄ E

(λ̄ +1)E+B(B+1)/2
, (24)

and eee = {ers} is the matrix of edge counts between groups. The term “microcanonical” — bor-
rowed from statistical physics — means that model parameters correspond to “hard” constraints
that are strictly imposed on the ensemble, as opposed to “soft” constraints that are obeyed only
on average. In the particular case above, P(AAA|eee,bbb) is the probability of generating a multigraph AAA
where Eq. 1 is always fulfilled, i.e. the total number of edges between groups r and s is always
exactly ers, without any fluctuation allowed between samples (see Ref. [15] for a combinatorial
derivation). This contrasts with the parameter λrs in Eq. 9, which determines only the average
number of edges between groups, which fluctuates between samples. Conversely, the prior for
the edge counts P(eee) is a mixture of geometric distributions with average λ̄ , which does allow
the edge counts to fluctuate, guaranteeing the overall equivalence. The fact that Eq. 22 holds is
rather remarkable, since it means that — at least for the basic priors we used — these two kinds of
model (“canonical” and microcanonical) cannot be distinguished from data, since their marginal
likelihoods (and hence the posterior probability) are identical7.

With this microcanonical interpretation in mind, we may frame the posterior probability as
follows. If a variable x occurs with a probability mass P(x), the amount of information necessary
to describe it is − log2 P(x) [39] (if we choose bits as the unit of measurement). Thus, we may
write the numerator of the posterior distribution in Eq. 10 as

P(AAA|bbb)P(bbb) = P(AAA|eee,bbb)P(eee,bbb) = 2−Σ, (25)

6Some readers may wonder why Eq. 22 should not contain a sum, i.e. P(AAA|bbb) = ∑eee P(AAA|eee,bbb)P(eee). Indeed, that is the
proper way to write a marginal likelihood. However, for the microcanonical model there is only one element of the
sum that fulfills the constraint of Eq. 1, and thus yields a nonzero probability, making the marginal likelihood identical
to the joint, as expressed in Eq. 22. The same is true for the partition prior of Eq. 18. We will use this fact in our
notation throughout, and omit sums when they are unnecessary.

7This equivalence occurs for a variety of Bayesian models. For instance, if we flip a coin with a probability p of coming
up heads, the integrated likelihood under a uniform prior after N trials in which m heads were observed is P(xxx) =∫ 1

0 pm(1− p)N−m dp = (N−m)!m!/(N + 1)!. This is the same as the “microcanonical” model P(xxx) = P(xxx|m)P(m)

with P(xxx|m) =
(N

m

)−1
and P(m) = 1/(N+1), i.e. the number of heads is sampled from a uniform distribution, and the

coin flips are sampled randomly among those that have that exact number of heads.
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Figure 3. Bayesian inference of the SBM for a network of American college football teams [48]: (a)
The partition that maximizes the posterior probability of Eq. 10, or equivalently, minimizes the description
length of Eq. 25. Nodes marked in red are not classified according to the known division into “conferences”.
(b) Description length as a function of the number of groups of the corresponding optimal partition, both
for the original and randomized data.

where the quantity

Σ =− log2 P(AAA,eee,bbb) (26)
=− log2 P(AAA|eee,bbb)− log2 P(eee,bbb) (27)

is called the description length of the data [40, 41]. It corresponds to the amount of information
necessary to encode the data AAA together with the model parameters eee and bbb. Therefore, if we find
a network partition that maximizes the posterior distribution of Eq. 21, we are also automatically
finding one which minimizes the description length.8 With this, we can see how the Bayesian ap-
proach outlined above prevents overfitting: As the size of the model increases (via a larger number
of occupied groups), it will constrain itself better to the data, and the amount of information nec-
essary to describe it when the model is known, − log2 P(AAA|eee,bbb), will decrease. At the same time,
the amount of information necessary to describe the model itself, − log2 P(eee,bbb), will increase as
it becomes more complex. Therefore, the latter will function as a penalty9 that prevents the model
from becoming overly complex, and the optimal choice will amount to a proper balance between
both terms.10 Among other things, this approach will allow us to properly estimate the dimension
of the model — represented by the number of groups B — in a parsimonious way.

We now illustrate this approach with a real-world dataset of American college football teams [48],
where a node is a team and an edge exists if two teams played against each other in a season. If

8Sometimes the minimum description length principle (MDL) is considered as an alternative method to Bayesian
inference. Although it is possible to apply MDL in a manner that makes the connection with Bayesian inference
difficult, as for example with the normalized maximum likelihood scheme [42, 43], in its more direct and tractable
form it is fully equivalent to the Bayesian approach [41]. Note also that we do not in fact require the connection with
microcanonical models made here, as the description length can be defined directly as Σ = − log2 P(AAA,bbb), without
referring explicitly to internal model parameters.

9Some readers may notice the similarity between Eq. 27 and other penalty-based criteria, such as BIC [44] and
AIC [45]. Although all these criteria share the same overall interpretation, BIC and AIC rely on specific assump-
tions about the asymptotic shape of the model likelihood, which are known to be invalid for the SBM [46], unlike
Eq. 27 which is exact.

10An important result in information theory states that compressing random data is asymptotically impossible [47]. This
lies at the heart of the effectiveness of the MDL approach in preventing overfitting, as incorporating randomness into
the model description cannot be used to compress the data.
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we find the partition that maximizes the posterior distribution, we uncover B = 10 groups, as can
be seen in Fig. 3a. If we compare this partition with the known division of the teams into “confer-
ences” [49, 50], we find that they match with a high degree of precision, with the exception of only
a few nodes.11 In Fig. 3b we show the description length of the optimal partitions if we constrain
them to have a pre-specified number of groups, which allows us to see how the approach penalizes
both too simple and too complex models, with a global minimum at B = 10 — corresponding to
the most compressive partition. Importantly, if we now randomize the network, by placing all its
edges in a completely random fashion, we obtain instead a trivial partition into B = 1 group —
indicating that the best model for this data is indeed a fully random graph. Hence, we see that
this approach completely avoids the pitfall discussed in Sec. II and does not identify groups in
fully random networks, and that the division shown in Fig. 3a points to a statistically significant
structure in the data, that cannot be explained simply by random fluctuations.

VI. THE “RESOLUTION LIMIT” UNDERFITTING PROBLEM, AND THE NESTED SBM

Although the Bayesian approach outlined above is in general protected against overfitting, it is
still susceptible to underfitting, i.e. when we mistake statistically significant structure for random-
ness, resulting in the inference of an overly simplistic model. This happens whenever there is a
large discrepancy between our prior assumptions and what is observed in the data. We illustrate
this problem with a simple example: Consider a network formed of 64 isolated cliques of size 10,
as shown in Fig. 4a. If we employ the approach described in the previous section, and maximize
the posterior of Eq. 10, we obtain a partition into B = 32 groups, where each group is composed
of two cliques. This is a fairly unsatisfying characterization of this network, and also somewhat
perplexing, since the probability that the inferred SBM will generate the observed network — i.e.
each of the 32 groups will simultaneously and spontaneously split in two disjoint cliques — is
vanishingly small. Indeed, intuitively it seems we should do significantly better with this rather
obvious example, and that the best fit would be to put each of the cliques in their own group. In
order to see what went wrong, we need to revisit our prior assumptions, in particular our choice for
P(λλλ ) in Eq. 20, or equivalently, our choice of P(eee) in Eq. 24 for the microcanonical formulation.
In both cases, they correspond to uninformative priors, which put approximately equal weight on
all allowed types of large-scale structures. As argued before, this seems reasonable at first, since
we should not bias our model before we observe the data. However, the implication of this choice
is that we expect a priori the structure of the network at the aggregate group level, i.e. considering
only the groups and the edges between them (not the individual nodes), to be fully random. This
is indeed not the case in the simple example of Fig. 4, and in fact it is unlikely to be the case for
most networks that we encounter, which will probably be structured at a higher level as well. The
unfavorable outcome of the uninformative assumption can also be seen by inspecting its effect on
the description length of Eq. 25. If we revisit our simple model with C cliques of size m, grouped
uniformly into B groups of size C/B, and we assume that these values are sufficiently large so that
Stirling’s factorial approximation lnx!≈ x lnx− x can be used, the description length becomes

Σ≈−(E−N) log2 B+
B(B+1)

2
log2 E, (28)

11Care should be taken when comparing with “known” divisions in this manner, as there is no guarantee that the available
metadata is in fact relevant for the network structure. See Refs. [51–53] for more detailed discussions.
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Figure 4. Inference of the SBM on a simple artificial network composed of 64 cliques of size 10, illustrating
the underfitting problem: (a) The partition that maximizes the posterior probability of Eq. 10, or equiva-
lently, minimizes the description length of Eq. 25. The 64 cliques are grouped into 32 groups composed of
two cliques each. (b) Minimum description length as a function of the number of groups of the correspond-
ing partition, both for the SBM and its nested variant, which is less susceptible to underfitting, and puts all
64 cliques in their own groups.

where N = Cm is the total number of nodes and E = C
(m

2

)
is the total number of edges, and we

have omitted terms that do not depend on B. From this, we see that if we increase the number
of groups B, this incurs a quadratic penalty in the description length given by the second term of
Eq. 28, which originates precisely from our expression of P(eee): It corresponds to the amount of
information necessary to describe all entries of a symmetric B×B matrix that takes independent
values between 0 and E. Indeed, a more careful analysis of the scaling of the description length in
a similar manner [15, 25] reveals that this approach is unable to uncover a number of groups that
is larger than Bmax ∝

√
N, even if their existence is obvious, as in our example of Fig. 4.12

Trying to avoid this limitation might seem like a conundrum, since replacing the uninformative
prior for P(eee) amounts to making a more definite statement on the most likely large-scale structures
that we expect to find, which we might hesitate to stipulate, as this is precisely what we want to
discover from the data in the first place, and we want to remain unbiased. Luckily, there is in
fact a general approach available to us to deal with this problem: We postpone our decision about
the higher-order aspects of the model until we observe the data. In fact, we already saw this
approach in action when we decided on the prior for the partitions; We do so by replacing the
uninformative prior with a parametric distribution, whose parameters are in turn modelled by a
another distribution, i.e. a hyperprior. The parameters of the prior then become latent variables
that are learned from data, allowing us to uncover further structures, while remaining unbiased.

The microcanonical formulation allows us to proceed in this direction in a straightforward
manner, as we can interpret the matrix of edge counts eee as the adjacency matrix of a multigraph
where each of the groups is represented as a single node. Within this interpretation, an elegant
solution presents itself, where we describe the matrix eee with another SBM, i.e. we partition each

12This same problem occurs for slight variations of the SBM and corresponding priors, provided they are uninformative,
such as those in Refs. [26, 27, 29], and also with other penalty based approaches that rely on functional form similar
to Eq. 28 [54]. Furthermore, this limitation is conspicuously similar to the “resolution limit” present in the popular
heuristic of modularity maximization [55], although it is not yet clear if a deeper connection exists between both
phenomena.
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Figure 5. (a) Diagrammatic representation of the nested SBM described in the text, with L = 3 levels,
adapted from Ref. [56]. (b) Average group sizes N/B obtained with the SBM using uninformative priors,
for a variety of empirical networks, listed in Ref. [56]. The dashed line shows a slope

√
E, highlighting the

systematic underfitting problem. (c) The same as in (b), but using the nested SBM, where the underfitting
has virtually disappeared, with datasets randomly scattered in the allowed range.

of the groups into meta-groups, and the edges between groups are placed according to the edge
counts between meta-groups. For this second SBM, we can proceed in the same manner, and
model it by a third SBM, and so on, forming a nested hierarchy, as illustrated in Fig. 5 [56]. More
precisely, if we denote by Bl , bbbl and eeel the number of groups, the partition and the matrix of edge
counts at level l ∈ {0, . . . ,L}, we have

P(eeel|eeel+1,bbbl) = ∏
r<s

((
nl

rn
l
s

el+1
rs

))−1

∏
r

((
nl

r(n
l
r +1)/2

el+1
rs /2

))−1

, (29)

with
(( n

m

))
=
(n+m−1

m

)
counting the number of m-combinations with repetitions from a set of size

n. Eq. 29 is the likelihood of a maximum-entropy multigraph SBM, i.e. every multigraph occurs
with the same probability, provided they fulfill the imposed constraints13 [13]. The prior for the
partitions is again given by Eq. 18,

P(bbbl) =
∏r nl

r!
Bl−1!

(
Bl−1−1
Bl−1

)−1

B−1
l−1, (30)

13Note that we cannot use in the upper levels exactly the same model we use in the bottom level, given by Eq. 23, as
most terms in the subsequent levels will cancel out. This happens because the model in Eq. 23 is based on the uniform
generation of configurations, not multigraphs [15]. However, we are free to use Eq. 29 in the bottom level as well.
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with B−1 = N, so that the joint probability of the data, edge counts and the hierarchical partition
{bbbl} becomes

P(AAA,{eeel},{bbbl}|L) = P(AAA|eee1,bbb0)P(bbb0)
L

∏
l=1

P(eeel|eeel+1,bbbl)P(bbbl), (31)

where we impose the boundary conditions BL = 1 and P(bbbL) = 1. We can treat the hierarchy
depth L as a latent variable as well, by placing a prior on it P(L) = 1/Lmax, where Lmax is the
maximum value allowed. But since this only contributes to an overall multiplicative constant, it
has no effect on the posterior distribution, and thus can be omitted. If we impose L = 1, we recover
the uninformative prior for eee = eee1,

P(eee) =
((

N(N +1)/2
E

))−1

, (32)

which is different from Eq. 24 only in that the number of edges E is not allowed to fluctuate.14

The inference of this model is done in the same manner as the uninformative one, by obtaining the
posterior distribution of the hierarchical partition

P({bbbl}|AAA) =
P(AAA,{bbbl})

P(AAA)
=

P(AAA,{eeel},{bbbl})
P(AAA)

, (33)

and the description length is given analogously by

Σ =− log2 P(AAA|{eeel},{bbbl})− log2 P({eeel},{bbbl}). (34)

This approach has a series of advantages; in particular, we remain a priori agnostic with respect
to what kind of large-scale structure is present in the network, having constrained ourselves sim-
ply in that it can be represented as a SBM at a higher level, and with the uninformative prior as
a special case. Despite this, we are able to overcome the underfitting problem encountered with
the uninformative approach: If we apply this model to the example of Fig. 4, we can successfully
distinguish all 64 cliques, and provide a lower overall description length for the data, as can be
seen in Fig. 4b. More generally, by investigating the properties of the model likelihood, it is pos-
sible to show that the maximum number of groups that can be uncovered with this model scales
as Bmax ∝ N/ logN, which is significantly larger than the limit with uninformative priors [15, 56].
The difference between both approaches manifests itself very often in practice, as shown in Fig. 5b,
where systematic underfitting is observed for a wide variety of network datasets, which disappears
with the nested model, as seen in Fig. 5c. Crucially, we achieve this decreased tendency to underfit
without sacrificing our protection against overfitting: Despite the more elaborate model specifica-
tion, the inference of the nested SBM is completely nonparametric, and the same Bayesian and
information-theoretical principles still hold. Furthermore, as we already mentioned, the uninfor-
mative case is a special case of the nested SBM, i.e. when L = 1, and hence it can only improve the
inference (e.g. by reducing the description length), with no drawbacks. We stress that the number
of hierarchy levels, as with any other dimension of the model, such as the number of groups in

14The prior of Eq. 32 and the hierarchy in Eq. 31 are conditioned on the total number of edges E, which is typically
unknown before we observe the data. Similarly to the parameter λ̄ in the canonical model formulation, the strictly
correct approach would be to consider this quantity as an additional model parameter, with its prior distribution
P(E). However, in the microcanonical model there is no integration involved, and P(E) — regardless of how we
specify it — would contribute to an overall multiplicative constant that disappears from the posterior distribution after
normalization. Therefore we can simply omit it.
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Figure 6. Fit of the (degree-corrected) nested SBM for the internet topology at the autonomous systems
level, adapted from Ref. [56]. The hierarchical division reveals a core-periphery organization at the higher
levels, where most routes go through a relatively small number of nodes (shown in the inset and in the map).
The lower levels reveal a more detailed picture, where a large number of groups of nodes are identified ac-
cording to their routing patterns (amounting largely to distinct geographical regions). The layout is obtained
with an edge bundling algorithm by Holten [57], which uses the hierarchical partition to route the edges.

each level, is inferred from data, and does not need to be determined a priori.
In addition to the above, the nested model also gives us the capacity of describing the data

at multiple scales, which could potentially exhibit different mixing patterns. This is particularly
useful for large networks, where the SBM might still give us a very complex description, which
becomes easier to interpret if we concentrate first on the upper levels of the hierarchy. A good
example is the result obtained for the internet topology at the autonomous systems level, shown
in Fig. 6. The lowest level of the hierarchy shows a division into a large number of groups, with
a fairly complicated structure, whereas the higher levels show an increasingly simplified picture,
culminating in a core-periphery organization as the dominating pattern.

VII. MODEL VARIATIONS

Varying the number of groups and building hierarchies are not the only ways we have of adapt-
ing the complexity of the model to the data. We may also change the internal structure of the
model, and how the division into groups affect the placement of edges. In fact, the basic ansatz of
the SBM is very versatile, and many variations have been proposed in the literature. In this section
we review two important ones — SBMs with degree correction and group overlap — and review
other model flavors in a summarized manner.



17

Before we go further into the model variations, we point out that the multiplicity of models is a
strength of the inference approach. This is different from the broader field of network clustering,
where a large number of available algorithms often yield conflicting results for the same data,
leaving practitioners lost in how to select between them [58, 59]. Instead, within the inference
framework we can in fact compare different models in a principled manner and select the best one
according to the statistical evidence available. We proceed with a general outline of the model
selection procedure, before following with specific model variations.

A. Model selection

Suppose we define two versions of the SBM, labeled C1 and C2, each with their own posterior
distribution of partitions, P(bbb|AAA,C1) and P(bbb|AAA,C2). Suppose we find the most likely partitions
bbb1 and bbb2, according to C1 and C2, respectively. How do we decide which partition is more repre-
sentative of the data? The consistent approach is to obtain the so-called posterior odds ratio [3, 60]

Λ =
P(bbb1,C1|AAA)
P(bbb2,C2|AAA)

=
P(AAA|bbb1,C1)P(bbb1)P(C1)

P(AAA|bbb2,C2)P(bbb2)P(C2)
, (35)

where P(C ) is our prior belief that variant C is valid. A value of Λ > 1 indicates that the choice
(bbb1,C1) is Λ times more plausible as an explanation for the data than the alternative, (bbb2,C2). If
we are a priori agnostic with respect to which model flavor is best, i.e. P(C1) = P(C2), we have
then

Λ =
P(AAA|bbb1,C1)P(bbb1)

P(AAA|bbb2,C2)P(bbb2)
= 2−∆Σ, (36)

where ∆Σ = Σ1−Σ2 is the description length difference between both choices. Hence, we should
generally prefer the model choice that is most compressive, i.e. with the smallest description
length. However, if the value of Λ is close to 1, we should refrain from forcefully rejecting the
alternative, as the evidence in data would not be strongly decisive either way. I.e. the actual value
of Λ gives us the confidence with which we can choose the preferred model. The final decision,
however, is subjective, since it depends on what we might consider plausible. A value of Λ= 2, for
example, typically cannot be used to forcefully reject the alternative hypothesis, whereas a value
of Λ = 10100 might.

An alternative test we can make is to decide which model class is most representative of the
data, when averaged over all possible partitions. In this case, we proceed in a an analogous way
by computing the posterior odds ratio

Λ′ =
P(C1|AAA)
P(C2|AAA)

=
P(AAA|C1)P(C1)

P(AAA|C2)P(C2)
, (37)

where
P(AAA|C ) = ∑

bbb
P(AAA|bbb,C )P(bbb) (38)

is the model evidence. When P(C1) = P(C2), Λ′ is called the Bayes factor, with an interpretation
analogous to Λ above, but where the statement is made with respect to all possible partitions, not
only the most likely one. Unfortunately, as mentioned previously, the evidence P(AAA|C ) cannot
be computed exactly for the models we are interested in, making this criterion more difficult to
employ in practice (although approximations have been proposed, see e.g. Ref [15]). We return to
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the issue of when it should we optimize or sample from the posterior distribution in Sec. IX, and
hence which of the two criteria should be used.

B. Degree correction

The underlying assumption of all variants of the SBM considered so far is that nodes that belong
to the same group are statistically equivalent. As it turns out, this fundamental aspect results in a
very unrealistic property. Namely, this generative process implies that all nodes that belong to the
same group receive on average the same number of edges. However, a common property of many
empirical networks is that they have very heterogeneous degrees, often broadly distributed over
several orders of magnitudes [11]. Therefore, in order for this property to be reproduced by the
SBM, it is necessary to group nodes according to their degree, which may lead to some seemingly
odd results. An example of this was given in Ref. [12] and is shown in Fig.7a. It corresponds to
a fit of the SBM to a network of political blogs recorded during the 2004 American presidential
election campaign [61], where an edge exists between two blogs if one links to the other. If we
guide ourselves by the layout of the figure, we identify two assortative groups, which happen to be
those aligned with the Republican and Democratic parties. However, inside each group there is a
significant variation in degree, with a few nodes with many connections and many with very few.
Because of what just has been explained, if we perform a fit of the SBM using only B= 2 groups, it
prefers to cluster the nodes into high-degree and low-degree groups, completely ignoring the party
alliance.15 Arguably, this is a bad fit of this network, since — similarly to the underfitting example
of Fig. 4 — the probability of the fitted SBM generating a network with such a party structure is

(a) (b)

Figure 7. Inferred partition for a network of political blogs [61] using (a) the SBM and (b) the DC-SBM, in
both cases forcing B = 2 groups. The node sizes are proportional to the node degrees. The SBM divides the
network into low and high-degree groups, whereas the DC-SBM prefers the division into political factions.

15It is possible that unexpected results of this kind inhibited the initial adoption of SBM methods in the network sci-
ence community, which focused instead on more heuristic community detection methods, save for a few exceptions
(e.g. [16, 18, 19, 21, 62, 63]).
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vanishingly small. In order to solve this undesired behavior, Karrer and Newman [12] proposed a
modified model, which they dubbed the degree-corrected SBM (DC-SBM). In this variation, each
node i is attributed with a parameter θi that controls its expected degree, independently of its group
membership. Given this extra set of parameters, a network is generated with probability

P(AAA|λλλ ,θθθ ,bbb) = ∏
i< j

e−θiθ jλbi,b j (θiθ jλbi,b j)
Ai j

Ai j!
×∏

i

e−θ 2
i λbi,bi/2(θ 2

i λbi,bi/2)Aii/2

(Aii/2)!
, (39)

where λrs again controls the expected number of edges between groups r and s. Note that since
the parameters λrs and θi always appear multiplying each other in the likelihood, their individ-
ual values may be arbitrarily scaled, provided their products remain the same. If we choose the
parametrization ∑i θiδbi,r = 1 for every group r, then they acquire a simple interpretation: λrs is
the expected number of edges between groups r ans s, λrs = 〈ers〉, and θi is proportional to the
expected degree of node i, θi = 〈ki〉/∑s λbi,s.

When inferring this model from the political blogs data — again forcing B = 2 — we obtain
a much more satisfying result, where the two political factions are neatly identified, as seen in
Fig. 7b. As this model is capable of fully decoupling the community structure from the degrees,
which are captured separately by the parameters λλλ and θθθ , respectively, the degree heterogeneity
of the network does not interfere with the identification of the political factions.

Based on the above example, and on the knowledge that most networks possess heterogeneous
degrees, we could expect that the DC-SBM is likely to provide a better fit for most of them. How-
ever, before we jump to this conclusion, we must first acknowledge that the seemingly increased
quality of fit obtained with the SBM came at the expense of adding an extra set of parameters,
θθθ [46]. However intuitive we might judge the improvement brought on by degree correction, sim-
ply adding more parameters to a model is an almost sure recipe for overfitting. Therefore, a more
prudent approach is once more to frame the inference problem in a Bayesian way, by focusing
on the posterior distribution P(bbb|AAA), and on the description length. For this, we must include a
prior for the node propensities θθθ . The uninformative choice is the one which ascribes the same
probability to all possible choices,

P(θθθ |bbb) = ∏
r
(nr−1)!δ (∑i θiδbi,r−1). (40)

Using again an uninformative prior for λλλ ,

P(λλλ |bbb) = ∏
r≤s

e−λrs/(1+δrs)λ̄/(1+δrs)λ̄ (41)

with λ̄ = 2E/B(B+1), the marginal likelihood now becomes

P(AAA|bbb) =
∫

P(AAA|λλλ ,θθθ ,bbb)P(λλλ )P(θθθ |bbb) dλλλdθθθ

=
λ̄ E

(λ̄ +1)E+B(B+1)/2
×∏r<s ers!∏r err!!

∏i< j Ai j!∏i Aii!!
×∏

r

(nr−1)!
(er +nr−1)!

×∏
i

ki!, (42)

where ki = ∑ j Ai j is the degree of node i, which can be used in the same way to obtain a posterior
for bbb, via Eq. 10. Once more, the model above is equivalent to a microcanonical formulation [15],
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Figure 8. Illustration of the generative process of the microcanonical DC-SBM. Given a partition of the
nodes, the edge counts between groups are sampled (a), followed by the degrees of the nodes (b) and finally
the network itself (c). Adapted from Ref. [15]

given by
P(AAA|bbb) = P(AAA|kkk,eee,bbb)P(kkk|eee,bbb)P(eee), (43)

with

P(AAA|kkk,eee,bbb) = ∏r<s ers!∏r err!!∏i ki!
∏i< j Ai j!∏i Aii!!∏r er!!

, (44)

P(kkk|eee,bbb) = ∏
r

((
nr

er

))−1

, (45)

and P(eee) given by Eq. 24. In the model above, P(AAA|kkk,eee,bbb) is the probability of generating a
multigraph where the edge counts between groups as well as the degrees kkk are fixed to specific
values.16 The prior P(kkk|eee,bbb) is the uniform probability of generating a degree sequence, where all
possibilities that satisfy the constraints imposed by the edge counts eee, namely ∑i kiδbi,r = er, occur
with the same probability. The description length of this model is then given by

Σ =− log2 P(AAA,bbb) =− log2 P(AAA|kkk,eee,bbb)− log2 P(kkk,eee,bbb). (46)

Because uninformative priors were used to derive the above equations, we are once more subject
to the same underfitting problem described previously. Luckily, from the microcanonical model
we can again derive a nested DC-SBM, by replacing P(eee) by a nested sequence of SBMs, exactly
in the same was as was done before [15, 56]. We also have the opportunity of replacing the
uninformative prior for the degrees in Eq. 45 with a more realistic option. As was argued in
Ref. [15], degree sequences generated by Eq. 45 result in exponential degree distributions, which
are not quite as heterogeneous as what is often encountered in practice. A more refined approach,
which is already familiar to us at this point, is to increase the Bayesian hierarchy, and choose a
prior that is conditioned on a higher-order aspect of the data, in this case the frequency of degrees,

16The ensemble equivalence of Eq 43 is in some ways more remarkable than for the traditional SBM. This because
a direct equivalence between the ensembles of Eqs. 39 and 44 is not satisfied even in the asymptotic limit of large
networks [13, 64], which does happen for Eqs. 9 and 23. Equivalence is observed only if the individual degrees ki also
become asymptotically large. However, when the parameters λλλ and θθθ are integrated out, the equivalence becomes
exact for networks of any size.
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(a) (b) (c)

Figure 9. Most likely hierarchical partitions of a network of political blogs [61], according to the three
model variants considered, as well as the inferred number of groups B1 at the bottom of the hierarchy, and
the description length Σ: (a) NDC-SBM, B1 = 42, Σ ≈ 89,938 bits, (b) DC-SBM, B1 = 23, Σ ≈ 87,162
bits, (c) DC-SBM with the degree prior of Eq. 47, B1 = 20, Σ≈ 84,890 bits. The nodes circled in blue were
classified as “liberals” and the remaining ones as “conservatives” in Ref. [61] based on the blog contents.
Adapted from Ref. [15].

i.e.

P(kkk|eee,bbb) = P(kkk|eee,bbb,ηηη)P(ηηη |eee,bbb), (47)

where ηηη = {ηr
k}, with ηr

k being the number of nodes of degree k in group r. In the above, P(ηηη |eee,bbb)
is a uniform distribution of frequencies, and P(kkk|eee,bbb,ηηη) generates the degrees according to the
sampled frequencies (we omit the respective expressions for brevity, and refer to Ref. [15] instead).
Thus, this model is capable of using regularities in the degree distribution to inform the division
into groups, and is generally capable of better fits than the uniform model of Eq. 45.

If we apply this nonparametric approach to the same political blog network of Ref. 9, we find
a much more detailed picture of its structure, revealing many more than two groups, as shown in
Fig. 9, for three model variants: the nested SBM, the nested DC-SBM and the nested DC-SBM
with the degree prior of Eq. 47. All three model variants are in fact capable of identifying the
same Republican/Democrat division at the topmost hierarchical level — showing that the non-
degree-corrected SBM is not as inept in capturing this aspect of the data as the result obtained by
forcing B = 2 might suggest. However the internal divisions of both factions that they uncover
are very distinct from each other. If we inspect the obtained values of the description length
with each model we see that the DC-SBM (in particular when using Eq. 47) results in a smaller
value, indicating that it better captures the structure of the data, despite the increased number
of parameters. Indeed, a systematic analysis carried out in Ref. [15] showed that the DC-SBM
does in fact yield shorter description lengths for a majority of empirical datasets, thus ultimately
confirming the original intuition behind the model formulation.

C. Group overlaps

Another way we can change the internal structure of the model is to allow the groups to overlap,
i.e. we allow a node to belong to more than one group at the same time. The connection patterns
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of the nodes are then assumed to be a mixture of the “pure” groups, which results in a richer type
of model [20]. Following Ball et al. [65], we can adapt the Poisson formulation to overlapping
SBMs in a straightforward manner,

P(AAA|κκκ,λλλ ) = ∏
i< j

e−λi jλ
Ai j
i j

Ai j!
∏

i

e−λii/2(λii/2)Aii/2

Aii/2!
, (48)

with
λi j = ∑

rs
κirλrsκ js, (49)

where κir is the probability with which node i is chosen from group r, so that ∑i κir = 1, and λrs
is once more the expected number of edges between groups r and s. The parameters κκκ replace
the disjoint partition bbb we have been using so far by a “soft” clustering into overlapping cate-
gories. Note, however, that this model is a direct generalization of the non-overlapping DC-SBM
of Eq. 39, which is recovered simply by choosing κir = θiδr,bi . The Bayesian formulation can also
be performed by using an uninformative prior for κκκ ,

P(κκκ) = ∏
r
(n−1)!δ (∑i κir−1), (50)

in addition to the same prior for λλλ in Eq. 41. Unfortunately, computing the marginal likelihood
using Eq. 48 directly,

P(AAA) =
∫

P(AAA|κκκ,λλλ )P(κκκ)P(λλλ )dκκκdλλλ , (51)

is not tractable. However, even if we were able to do so, we would have integrated over all model
parameters, thus leaving nothing to characterize our network, other than its total probability under
the model. Instead, it is more useful to consider the auxiliary labelled matrix, or tensor, GGG= {Grs

i j},
where Grs

i j is a particular decomposition of Ai j where the two edge endpoints — or “half-edges”
— of an edge (i, j) are labelled with groups (r,s), such that

Ai j = ∑
rs

Grs
i j . (52)

Since a sum of Poisson variables is also distributed according to a Poisson, we can write Eq. 48 as

P(AAA|κκκ,λλλ ) = ∑
GGG

P(GGG|κκκ,λλλ )∏
i≤ j

δ∑rs Grs
i j ,Ai j , (53)

with each half-edge labelling being generated by

P(GGG|κκκ,λλλ ) = ∏
i< j

∏
rs

e−κirλrsκ js(κirλrsκ js)
Grs

i j

Grs
i j !

×∏
i

∏
rs

e−κirλrsκis/2(κisλrsκis/2)Grs
ii /2

(Grs
ii /2)!

. (54)
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We can now compute the marginal likelihood as

P(GGG) =
∫

P(GGG|κκκ,λλλ )P(κκκ)P(λλλ |λ̄ ) dκκκdλλλ ,

=
λ̄ E

(λ̄ +1)E+B(B+1)/2
∏r<s ers!∏r err!!

∏rs ∏i< j Grs
i j !∏i Grs

ii !!
×∏

r

(N−1)!
(er +N−1)!

×∏
ir

kr
i !, (55)

which is very similar to Eq. 42 for the DC-SBM. With the above, and knowing from Eq. 52 that
there is only one choice of AAA that is compatible with any given GGG, i.e.

P(AAA|GGG) = ∏
i≤ j

δ∑rs Grs
i j ,Ai j , (56)

we can sample from (or maximize) the posterior distribution of the half-edge labels GGG, just like
we did for the node partition bbb in the nonoverlapping models,

P(GGG|AAA) = P(AAA|GGG)P(GGG)

P(AAA)
∝ P(GGG)×∏

i≤ j
δ∑rs Grs

i j ,Ai j , (57)

where the product in the last term only accounts for choices of GGG which are compatible with AAA, i.e.
fulfill Eq. 52. Once more, the model of Eq. 55 is equivalent to its microcanonical analogue [14],

P(GGG) = P(GGG|kkk,eee)P(kkk|eee)P(eee), (58)

where

P(GGG|kkk,eee) = ∏r<s ers!∏r err!!∏ir kr
i !

∏rs ∏i< j Grs
i j !∏i Grs

ii !!∏r er!
, (59)

P(kkk|eee) = ∏
r

((er

N

))−1
(60)

and P(eee) given by Eq. 24. The variables kkk = {kr
i } are the labelled degrees of the labelled network

GGG, where kr
i is the number of incident edges of type r a node i has. The description length becomes

likewise
Σ =− log2 P(GGG) =− log2 P(GGG|kkk,eee)− log2 P(kkk|eee)− log2 P(eee). (61)

The nested variant can be once more obtained by replacing P(eee) in the same manner as before, and
P(kkk|eee) in a manner that is conditioned on the labelled degree frequencies and degree of overlap,
as described in detail in Ref. [14].

Equipped with this more general model, we may ask ourselves again if it provides a better fit
of most networks, like we did for the DC-SBM in the previous section. Indeed, since the model
is more general, we might conclude that this is a inevitability. However, this could be a fallacy,
since more general models also include more parameters and hence are more likely to overfit.
Indeed, previous claims about the existence of “pervasive overlap” in networks, based on nonsta-
tistical methods [67], seemed to be based to some extent on this problematic logic. Claims about
community overlaps are very different from, for example, the statement that networks possess
heterogeneous degrees, since community overlap is not something that can be observed directly;
instead it is something that must be inferred, which is precisely what our Bayesian approach is de-
signed to do in a methodologically correct manner. An example of such a comparison is shown in
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(a) (b) (c)

Figure 10. Network of co-purchase of books about US politics [66], with groups inferred using (a) the non-
overlapping DC-SBM, with description length Σ ≈ 1,938 bits, (b) the overlapping SBM with description
length Σ ≈ 1,931 bits and (c) the overlapping SBM forcing only B = 2 groups, with description length
Σ≈ 1,946 bits.

Fig 10, for a small network of political books. This network, when analyzed using the nonoverlap-
ping SBM, seems to be composed of three groups, easily interpreted as “left wing”, “right wing”
and “center”, as the available metadata corroborates. If we fit the overlapping SBM, we observe
a mixed division into the same kinds of group. If we force the inference of only two groups, we
see that some of the “center” nodes are split between “right wing” or “left wing”. The latter might
seem like a more pleasing interpretation, but looking at the description length reveals that it does
not improve the description of the data. The best model in this case does seem to be the overlap-
ping SBM with B = 3 groups. However, the difference in the description length between all model
variants is not very large, making it difficult to fully reject any of the three variants. A more sys-
tematic analysis done in Ref. [14] revealed that for most empirical networks, in particular larger
ones, the overlapping models do not provide the best fits in the majority of cases, and yield larger
description lengths than the nonoverlapping variants. Hence it seems that the idea of overlapping
groups is less pervasive than that of degree heterogeneity.

It should be emphasized that we can always represent a network generated by an overlapping
SBM by one generated with the nonoverlapping SBM with a larger number of groups representing
the individual types of mixtures. Although model selection gives us the most parsimonious choice
between the two, it does not remove the equivalence. In Fig. 11 we show how networks generated
by the overlapping SBM can be better represented by the nonoverlapping SBM (i.e. with a smaller
description length) as long as the overlapping regions are sufficiently large.
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Figure 11. (a) Artificial network sampled from an assortative overlapping SBM with B = 4 groups and
expected mixture sizes given by n~b ∝ µ |~b|, with µ ∈ [0,1] controlling the degree of overlap (see Ref. [68]
for details). (b) the same network as in (a), but generated according to an equivalent nonoverlapping SBM
with B = 15 groups. (c) Description length per edge Σ/E for the same models in (a) and (b), as a function
of the degree of overlap µ , showing a cross-over where the nonoverlapping model is preferred. Adapted
from Ref. [68].

D. Further model extensions

The simple and versatile nature of the SBM has spawned a large family of extensions and
generalizations incorporating various types of more realistic features. This includes, for exam-
ple, versions of the SBM that are designed for networks with continuous edge covariates (a.k.a.
weights) [69], multilayer networks that are composed of different types of edges [68, 70–73], net-
works that evolve in time [30–36], networks that possess node attributes [74] or are annotated with
metadata [52, 53], networks with uncertain structure [75], as well as networks that do not possess a
discrete modular structure at all, and are instead embedded in generalized continuous spaces [76].
These model variations are too numerous to be described here in any detail. But it suffices to say
that the general Bayesian approach outlined here, including model selection, also applicable to
these variations, without any conceptual difficulty.

VIII. EFFICIENT INFERENCE USING MARKOV CHAIN MONTE CARLO (MCMC)

Although we can write exact expressions for the posterior probability of Eq. 10 (up to a normal-
ization constant) for a variety of model variants, the resulting distributions are not simple enough
to allow us to sample from them — much less find their maximum — in a direct manner. In fact,
fully characterizing the posterior distribution or finding its maximum is, for most models like the
SBM, a NP-hard problem. What we can do, however, is to employ Markov chain Monte Carlo
(MCMC) [77], which can be done efficiently, and in an asymptotically exact manner, as we now
show. The central idea is to sample from P(bbb|AAA) by first starting from some initial configuration bbb0
(in principle arbitrary), and making move proposals bbb→ bbb′ with a probability P(bbb′|bbb), such that,
after a sufficiently long time, the equilibrium distribution is given exactly by P(bbb|AAA). In particular,
given any arbitrary move proposals P(bbb′|bbb) — with the only condition that they fulfill ergodicity,
i.e. that they allow every state to be visited eventually — we can guarantee that the desired pos-
terior distribution is eventually reached by employing the Metropolis-Hastings [78, 79] criterion,
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Figure 12. Efficient MCMC strategies: (a) Move proposals are made by inspecting the neighbourhood of
node i and selecting a random neighbour j. Based on its group membership t = b j, the edge counts between
groups are inspected (right), and the move proposal bi = s is made with probability proportional to ets.
(b) The initial state of the MCMC is obtained with an agglomerative heuristic, where groups are merged
together using the same proposals described in (a).

which dictates we should accept a given move proposal bbb→ bbb′ with a probability a given by

a = min
(

1,
P(bbb′|AAA)
P(bbb|AAA)

P(bbb|bbb′)
P(bbb′|bbb)

)
, (62)

otherwise the proposal is rejected. The ratio P(bbb|bbb′)/P(bbb′|bbb) in Eq. 62 enforces a property known
as detailed balance or reversibility, i.e.

T (bbb′|bbb)P(bbb|AAA) = T (bbb|bbb′)P(bbb′|AAA), (63)

where T (bbb′|bbb) are the final transition probabilities after incorporating the acceptance criterion of
Eq. 62. The detailed balance condition of Eq. 63 together with the ergodicity property guarantee
that the Markov chain will converge to the desired equilibrium distribution P(bbb|AAA). Importantly,
we note that when computing the ratio P(bbb′|AAA)/P(bbb|AAA) in Eq. 62, we do not need to determine
the intractable normalization constant of Eq. 10, since it cancels out, and thus it can be performed
exactly.

The above gives a generic protocol that we can use to sample from the posterior whenever we
can compute the numerator of Eq. 10. If instead we are interested in maximizing the posterior, we
can introduce an “inverse temperature” parameter β , by changing P(bbb|AAA)→ P(bbb|AAA)β in the above
equations, and making β → ∞ in slow increments; what is known as simulated annealing [80].
The simplest implementation of this protocol for the inference of SBMs is to start from a random
partition bbb0, and use move proposals where a node i is randomly selected, and then its new group
membership b′i is chosen randomly between all B+1 choices (where the remaining choice means
we populate a new group),

P(b′i|bbb) =
1

B+1
. (64)

By inspecting Eqs. 21, 42, 55 and 18 for all SBM variants considered, we notice that the ratio
P(bbb′|AAA)/P(bbb|AAA) can be computed in time O(ki), where ki is the degree of node i, independently
of other properties of the model such as the number of groups B. Note that this is not true for all
alternative formulations of the SBM; e.g. for the models in Refs. [26, 27, 29, 81] computing such
an update requires O(ki +B) time [the heat-bath move proposals of Ref. [29] increases this even
further to O(B(ki +B))], thus making them very inefficient for large networks, where the number
of groups can reach the order of thousands or more. Hence, when using these move proposals, a
full sweep of all N nodes in the network can be done in time O(E), independent of B.
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Although fairly simple, the above algorithm suffers from some shortcomings that can seri-
ously degrade its performance in practice. In fact, it is typical for naive implementations of the
Metropolis-Hastings algorithm to perform very badly, despite its theoretical guarantees. This is
because the asymptotic properties of the Markov chain may take a very long time to be realized,
and the equilibrium distribution is never observed in practical time. Generally, we should expect
good convergence times only when: 1. The initial state bbb0 is close enough to the most likely states
of the posterior and 2. the move proposals P(bbb′|bbb) resemble the shape of the posterior. Indeed, it is
a trivial (and not very useful) fact that if the starting state bbbo is sampled directly from the posterior,
and the move proposals match the posterior exactly, P(bbb′|bbb) = P(bbb′|AAA), the Markov chain would
be instantaneously equilibrated. Hence if we can approach this ideal scenario, we should be able
to improve the inference speeds. Here we describe two simple strategies in achieving such an im-
provement which have been shown to yield a significance performance impact [82]. The first one
is to replace the fully random move proposals of Eq. 64 by a more informative choice. Namely,
we use the current information about the model being inferred to guide our next move. We do so
by selecting the membership of a node i being moved according to

P(bi = r|bbb) = ∑
s

P(s|i) esr + ε

es + ε(B+1)
, (65)

where P(s|i) = ∑ j Ai jδb j,s/ki is the fraction of neighbors of node i that belong to group s, and
ε > 0 is an arbitrary parameter that enforces ergodicity, but with no other significant impact in the
algorithm, provided it is sufficiently small (however, if ε→ ∞ we recover the fully random moves
of Eq. 64). What this move proposal means is that we inspect the local neighbourhood of the
node i, and see which groups s are connected to this node, and we use the typical neighborhood
r of the groups s to guide our placement of node i (see Fig. 12a). The purpose of these move
proposals is not to waste time with attempted moves that will almost surely be rejected, as will
typically happen with the fully random version. We emphasize that the move proposals of Eq. 65
do not bias the partitions toward any specific kind of mixing pattern; in particular they do not
prefer assortative versus non-assortative partitions. Furthermore, these proposals can be generated
efficiently, simply by following three steps: 1. sampling a random neighbor j of node i, and
inspecting its group membership s = b j, and then; 2. with probability ε(B+ 1)/(es + ε(B+ 1))
sampling a fully random group r (which can be a new group); 3. or otherwise, sampling a group
label r with a probability proportional to the number of edges leading to it from group s, esr.
These steps can be performed in time O(ki), again independently of B, as long as a continuous
book-keeping is made of the edges which are incident to each group, and therefore it does not
affect the overall O(E) time complexity.

The second strategy is to choose a starting state that lies close to the mode of the posterior. We
do so by performing a Fibonacci search [83] on the number of groups B, where for each value
we obtain the best partition from a larger partition with B′ > B using an agglomerative heuristic,
composed of the following steps taken alternatively: 1. We attempt the moves of Eq. 65 until
no improvement to the posterior is observed, 2. We merge groups together, achieving a smaller
number of groups B′′ ∈ [B,B′], stopping when B′′ = B. We do the last step by treating each group
as a single node and using Eq. 65 as a merge proposal, and selecting the ones that least decrease
the posterior (see Fig 12b). As shown in Ref. [82], the overall complexity of this initialization
algorithm is O(E log2 N), and thus can be employed for very large networks.

The approach above can be adapted to the overlapping model of Sec. VII C, where instead of
the partition bbb, the move proposals are made with respect to the individual half-edge labels [14].
For the nested model, we have instead a hierarchical partition {bl}, and we proceed in each step of
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the Markov chain by randomly choosing a level l and performing the proposals of Eq. 65 on that
level, as described in Ref. [15].

The combination of the two strategies described above makes the inference procedure quite
scalable, and has been successfully employed on networks on the order of 107 to 108 edges, and up
to B = N groups. The MCMC algorithm described in this section, for all model variants described,
is implemented in the graph-tool library [84], freely available under the GPL license at http:
//graph-tool.skewed.de.

IX. TO SAMPLE OR TO OPTIMIZE?

In the examples so far, we have focused on obtaining the most likely partition from the posterior
distribution, which is the one that minimizes the description length of the model. But what if there
are different partitions with very similar or even identical posterior probabilities? In this case,
they function as alternative explanations for the data that must be accepted on equal footing. If
the number of such valid explanations is very large, the one that is the most likely might in fact
not be very representative. This is particularly true if the posterior distribution is multimodal, i.e.
contains multiple far-apart regions in its support that have high probability and are separated by
low probability valleys. An illustration of this is given by the well-known Zachary’s karate club
network [85], which captures the social interactions between members of a karate club amidst a
conflict between the club’s administrator and an instructor, which lead to a split of the club in two
disjoint groups. The measurement of the network was done before the final split actually happened,
and it is very often used as an example of a network exhibiting community structure. If we analyze
this network with the DC-SBM, we obtain three partitions that occur with very high probability
from the posterior distribution: A trivial B = 1 partition, corresponding to the configuration model
without communities (Fig. 13a), a “leader-follower” division into B = 2 groups, separating the
administrator and instructor, together with two close allies, from the rest of the network (Fig. 13b),
and finally a B = 2 division into the aforementioned factions that anticipated the split (Fig. 13c).
If we would guide ourselves strictly by the MDL principle, the preferred partition would be the
trivial B = 1 one, indicating that the most likely explanation of this network is a fully random
graph with a pre-specified degree sequence, and that the observed community structure emerged
spontaneously. However, if we inspect the posterior distribution more closely, we see that other
divisions into B > 1 groups amount to around 50% of the posterior probability (see Fig. 13e).
Therefore, if we consider all B > 1 partitions collectively, they give us little reason to discard the
possibility that the network does in fact posses some group structure. Inspecting the posterior
distribution even more closely, as shown in Fig. 13d, reveals a multimodal structure clustered
around the three aforementioned partitions, giving us three very different explanations for the
data, none of which can be decisively discarded in favor of the others — at least not according to
the evidence available.

The situation encountered for the karate club network is a good example of the so-called bias-
variance trade-off that we are often forced to face: If we choose to single-out a singe partition as a
unique representation of the data, we must invariably bias our result toward any of the three most
likely scenarios, discarding the remaining ones at some loss of useful information. Otherwise, if
we choose to eliminate the bias by incorporating the entire posterior distribution in our representa-
tion, by the same token it will incorporate a larger variance, i.e. it will simultaneously encompass
diverging explanations of the data, leaving us without an unambiguous and clear interpretation.
The only situation where this trade-off is not required is when the model is a perfect fit to the data,
such that the posterior is tightly peaked around a single partition. Therefore, the variance of the

http://graph-tool.skewed.de
http://graph-tool.skewed.de
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Figure 13. Posterior distribution of partitions of Zachary’s karate club network using the DC-SBM. Panels
(a) to (c) show three modes of the distribution and their respective description lengths; (d) 2D projection
of the posterior obtained using multidimensional scaling [86]; (e) Marginal posterior distribution of the
number of groups B.

posterior serves as a good indication of the quality of fit of the model, providing another reason to
include it in the analysis.

It should also be remarked that the potential bias incurred when obtaining only the most likely
partition usually amounts to an underfit of the data, since the uncertainty in the posterior typically
translates into the existence of a more conservative partition with fewer groups.17 Instead, if we
sample from the posterior distribution, we will average over may alternative fits, including those
that model the data more closely with a larger number of groups. However, each individual sample
of the posterior will tend to incorporate more randomness from the data, which will disappear only
if we average over all samples. This means that single samples will tend to overfit the data, and
hence we must resist looking at them individually. It is only in the aforementioned limit of a
perfect fit that we are guaranteed not to be misled one way or another. An additional example of

17It is sometimes argued that choosing the maximum of the posterior can overfit, as the multiplicity of local maxima can
be just a reflection of the randomness in the data [87]. Although this is true in general for parametric posteriors, where
the dimension of the model is externally imposed, for nonparametric ones — which possess intrinsic regularization —
the randomness in the data typically results in maxima with a smaller model dimension, that eschew the randomness
from the model specification, yielding a conservative fit of the data (as reflected by the equivalence with the MDL
criterion discussed in Sec. V). Figs. 13 and 14 show good examples of the posterior maximum yielding a simpler
model than what is typically obtained by averaging over the distribution.
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Figure 14. Hierarchical partitions of a network of collaboration between scientists [88]. (a) Most likely
hierarchical partition according to the DC-SBM with a uniform hyperprior. (b) Uncorrelated samples from
the posterior distribution. (c) Marginal posterior distribution of the number of groups at the first three
hierarchical levels, according to the model variants described in the legend. The vertical lines mark the
value obtained for the most likely partition. Adapted from Ref. [15].

this is shown in Fig. 14 for a network of collaborations among scientists. If we infer the best nested
SBM, we find a specific hierarchical division of the network. However, if we sample hierarchical
divisions from the posterior distribution, we typically encounter larger models — with a larger
number of groups and deeper hierarchy. Each individual sample from the posterior is likely to be
an overfit, but collectively they give a more accurate picture of the network in comparison with the
most likely partition, which probably over-simplifies it. As already mentioned, this discrepancy,
observed for all three SBM versions, tells us that neither of them is an ideal fit for this network.

The final decision on which approach to take depends on the actual objective and resources
available. In general, sampling from the posterior will be more suitable when the objective is
to generalize from observation and make predictions (see next section and Ref. [89]), and when
computational resources are ample. Conversely, if the objective is to make a precise statement
about the data, e.g. in order to summarize and interpret it, and the computational resources are
scarce, maximizing the posterior tends to be more adequate.

X. GENERALIZATION AND PREDICTION

When we fit a model like the SBM to a network, we are doing more than simply dividing
the nodes into statistically equivalent groups; we are also making a statement about a possible
mechanism that generated the network. This means that, to the extent that the model is a good
representation of the data, we can use it generalize and make predictions about what has not been
observed. This has been most explored for the prediction of missing and spurious links [21, 63].
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This represents the situation where we know or stipulate that the observed data is noisy, and may
contain edges that in fact do not exist, or does not contain edges that do exist. With a generative
model like the SBM, we are able to ascribe probabilities to existing and non-existing edges of
being spurious or missing, respectively, as we now describe.

Following Ref. [89], the scenario we will consider is the situation where there exists a complete
network GGG which is decomposed in two parts,

GGG = AAAOOO +δAAA (66)

where AAAOOO is the network that we observe, and the δAAA is the set of missing and spurious edges that
we want to predict, where an entry δAi j > 0 represents a missing edge, and δAi j < 0 a spurious
one. Hence, our task is to obtain the posterior distribution

P(δAAA|AAAOOO). (67)

The central assumption we will make is that the complete network GGG has been generated using
some arbitrary version of the SBM, with a marginal distribution

PG(GGG|bbb). (68)

Given a generated network GGG, we then select δAAA from some arbitrary distribution that models our
source of errors

PδA(δAAA|GGG). (69)

With the above model for the generation of the complete network and its missing and spurious
edges, we can proceed to compute the posterior of Eq. 67. We start from the joint distribution

P(AAAOOO,δAAA|GGG) = P(AAAOOO|δAAA,GGG)PδA(δAAA|GGG) (70)

= δ (GGG− (AAAOOO +δAAA))PδA(δAAA|GGG), (71)

where we have used the fact P(AAAOOO|δAAA,GGG) = δ (GGG− (AAAOOO + δAAA)) originating from Eq. 66. For
the joint distribution conditioned on the partition, we sum the above over all possible graphs GGG,
sampled from our original model,

P(AAAOOO,δAAA|bbb) = ∑
GGG

P(AAAOOO,δAAA|GGG)PG(GGG|bbb) (72)

= PδA(δAAA|AAAOOO +δAAA)PG(AAAOOO +δAAA|bbb). (73)

The final posterior distribution of Eq. 67 is therefore

P(δAAA|AAAOOO) =
∑bbb P(AAAOOO,δAAA|bbb)P(bbb)

P(AAAOOO)
(74)

=
PδA(δAAA|AAAOOO +δAAA)∑bbb PG(AAAOOO +δAAA|bbb)P(bbb)

P(AAAOOO)
, (75)

with P(AAAOOO) being a normalization constant, independent of δAAA. This expression gives a general
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recipe to compute the posterior, where one averages the marginal likelihood PG(AAAOOO + δAAA|bbb) ob-
tained by sampling partitions from the prior P(bbb). However, this procedure will typically take
an astronomical time to converge to the correct asymptotic value, since the largest values of
PG(AAAOOO + δAAA|bbb) will be far away from most values of bbb sampled from P(bbb). A much better ap-
proach is to perform importance sampling, by rewriting the posterior as

P(δAAA|AAAOOO) ∝ PδA(δAAA|AAAOOO +δAAA)∑
bbb

PG(AAAOOO +δAAA|bbb)PG(AAAOOO|bbb)
PG(AAAOOO|bbb)

P(bbb) (76)

∝ PδA(δAAA|AAAOOO +δAAA)∑
bbb

PG(AAAOOO +δAAA|bbb)
PG(AAAOOO|bbb)

PG(bbb|AAAOOO), (77)

where PG(bbb|AAAOOO) is the posterior of partitions obtained by pretending that the observed network
came directly from the SBM. We can sample from this posterior using MCMC as described in
Sec. VIII. As the number of entries in δAAA is typically much smaller than the number of observed
edges, this importance sampling approach will tend to converge much faster. This allows us to
compute P(δAAA|AAAOOO) in practical manner — up to a normalization constant. However, if we want
to compare the relative probability between specific sets of missing/spurious edges, {δAAAi}, via the
ratio

λi =
P(δAAAi|AAAOOO)

∑ j P(δAAA j|AAAOOO)
, (78)

this normalization constant plays no role. The above still depends on our chosen model for the
production of missing and spurious edges, given by Eq. 69. In the absence of domain-specific
information about the source of noise, we must consider all alternative choices {δAAAi} to be equally
likely a priori, so that the we can simply replace PδA(δAAA|AAAOOO+δAAA) ∝ 1 in Eq. 77 — although more
realistic choices can also be included.

In Fig. 15 we show the relative probabilities of two hypothetical missing edges for the American
college football network, obtained with the approach above. We see that a particular missing edge
between teams of the same conference is almost a hundred times more likely than one between
teams of different conference.

The use of the SBM to predict missing and spurious edges has been employed in a variety of
applications, such as the prediction of novel interactions between drugs [90], conflicts in social
networks [91], as well to provide user recommendations [92, 93], and in many cases has outper-
formed a variety of competing methods.
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(a)

(b)

Figure 15. Two hypothetical missing edges in the network of American college football teams. The edge
(a) connects teams of different conferences, whereas (b) connects teams of the same conference. According
to the nested DC-SBM, their posterior probability ratios are λa ≈ 0.013(1) and λb ≈ 0.987(1).

XI. FUNDAMENTAL LIMITS OF INFERENCE: THE DETECTABILITY-INDETECTABILITY
PHASE TRANSITION

Besides defining useful models and investigating their behavior in data, there is another line
of questioning which deals with how far is possible to go when we try to infer the structure of
networks. Naturally, the quality of the inference depends on the statistical evidence available in
the data, and we may therefore ask if it is possible at all to uncover planted structures — i.e.
structures that we impose ourselves — with our inference methods, and if so, what is the best
performance we can expect. Research in this area has exploded in recent years [87, 94], after it
was shown by Decelle et al [95, 96] that not only it may be impossible to uncover planted structures
with the SBM, but the inference undergoes a “phase transition” where it becomes possible only
if the structure is strong enough to cross a non-trivial threshold. This result was obtained using
methods from statistical physics, which we now describe.

The situation we will consider is a “best case scenario”, where all parameters of the model
are known, with the exception of the partition bbb — this in contrast to our overall approach so
far, where we considered all parameters to be unknown random variables. In particular, we will
consider only the prior

P(bbb|γγγ) = ∏
i

γbi. (79)

where γr is the probability of a node belonging in group r. Given this, we wish to obtain the
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posterior distribution of the node partition, using the SBM of Eq. 9,

P(bbb|AAA,λλλ ,γγγ) = P(AAA|bbb,λλλ )P(bbb|γγγ)
P(AAA|λλλ ,γγγ). =

e−H (bbb)

Z
(80)

which was written above in terms of the “Hamiltonian”

H (bbb) =−∑
i< j

(Ai j lnλbi,b j −λbi,b j)−∑
i

lnγbi, (81)

drawing an analogy with Potts-like models in statistical physics [97]. The normalization constant,
called the “partition function”, is given by

Z = ∑
bbb

e−H (bbb). (82)

Far from being an unimportant detail, the partition function can be used to determine all statistical
properties of our inference procedure. For example, if we wish to obtain the marginal posterior
distribution of node i, we can do so by introducing the perturbation H ′(bbb) = H (bbb)−µδbi,r and
computing the derivative

P(bi = r|AAA,λλλ ,γγγ) = ∂ lnZ
∂ µ

∣∣∣∣
µ=0

= ∑
bbb

δbi,r
e−H (bbb)

Z
. (83)

Unfortunately, it does not seem possible to compute the partition function Z in closed form for
an arbitrary graph AAA. However, there is a special case for which we can compute the partition
function, namely when AAA is a tree. This is useful for us, because graphs sampled from the SBM
will be “locally tree-like” if they are sparse (i.e. the degrees are small compared to the size of the
network ki � N), and the group sizes scale with the size of the system, i.e. nr = O(N) (which
implies B� N). Locally tree-like means that typical loops will have length O(N), and hence at
the immediate neighbourhood of any given node the graph will look like a tree. Although being
locally tree-like is not quite the same as being a tree, the graph will become increasing closer to
being a tree in the “thermodynamic limit” N → ∞. Because of this, many properties of locally
tree-like graphs will become asymptotically identical to trees in this limit. If we assume that this
limit holds, we can compute the partition function by pretending that the graph is close enough to
being a tree, in which case we can write the so-called Bethe free energy (we refer to Refs. [96, 98]
for a detailed derivation)

F =− lnZ =−∑
i

lnZi +∑
i< j

Ai j lnZi j−E (84)

with the auxiliary quantities given by

Zi j = N ∑
r<s

λrs(ψ
i→ j
r ψ

j→i
s +ψ

i→ j
s ψ

j→i
r )+N ∑

r
λrrψ

i→ j
r ψ

j→i
r (85)

Zi = ∑
r

nre−hr ∏
j∈∂ i

∑
r

Nλrbiψ
j→i

r , (86)

where ∂ i means the neighbours of node i. In the above equations, the values ψ
i→ j
r are called
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“messages”, and they must fulfill the self-consistency equations

ψ
i→ j
r =

1
Zi→ j γre−hr ∏

k∈∂ i\ j

(
∑
s

Nλrsψ
k→i
s

)
(87)

where k ∈ ∂ i\ j means all neighbours k of i excluding j, the value Zi→ j is a normalization constant
enforcing ∑r ψ

i→ j
r = 1, and hr = ∑i ∑r λrbiψ

i
r is a local auxiliary field. Eqs. 87 are called the

belief-propagation (BP) equations [98], and the entire approach is also known under the name
“cavity method” [99]. The values of the messages are typically obtained by iteration, where we
start from some initial configuration (typically a random one), and compute new values from the
right-hand side of Eq. 87, until they converge to an asymptotic value. Note that the messages
are only defined on edges of the network, and an update involves inspecting the values at the
neighbourhood of the nodes, where the messages can be interpreted as carrying information about
the marginal distribution of a given node, if the same is removed from the network (hence the
names “belief propagation” and “cavity method”). Each iteration of the BP equations can be done
in time O(EB2), and the convergence is often obtained only after a few iterations, rendering the
whole computation fairly efficient, provided B is reasonably small. After the messages have been
obtained, they can be used to compute the node marginals,

P(bi = r|AAA,λλλ ,γγγ) = ψ
i
r =

1
Zi γr ∏

j∈∂ i

[
∑
s
(Nλrs)

Ai j e−λrsψ
j→i

s

]
, (88)

where Zi is a normalization constant.

This whole procedure gives a way of computing the marginal distribution P(bi = r|AAA,λλλ ,γγγ)
in a manner that is asymptotically exact — if AAA is sufficiently large and locally tree-like. Since
networks that are sampled from the SBM fulfill this property, we may proceed with our original
question, and test if we can recover the true value of bbb we used to generate a network. For the test,
we use a simple parametrization named the planted partition model (PP) [7, 100], where γr = 1/B
and

λrs = λinδrs +λout(1−δrs), (89)

with λin and λout specifying the expected number of edges between nodes of the same groups
and of different groups, respectively. If we generate networks from this ensemble, use the BP
equations to compute the posterior marginal distribution of Eq. 88 and compare its maximum
values with the planted partition, we observe, as shown in Fig. 16, that it is recoverable only up
to a certain value of ε = N(λin−λout), above which the posterior distribution is fully random. By
inspecting the stability of the fully uniform solution of the BP equations, the exact threshold can
be determined [96],

ε
∗ = B

√
〈k〉, (90)

where 〈k〉 = N ∑rs λrs/B2 is the average degree of the network. The existence of this threshold is
remarkable, because the ensemble is only equivalent to a completely random one if ε = 0; yet there
is a non-negligible range of values ε ∈ [0,ε∗] for which the planted structure cannot be recovered
even though the model is not random. This might seem counter-intuitive, if we argue that making
N sufficiently large should at some point give us enough data to infer the model with arbitrary
precision. The hole in logic lies in the fact that the number of parameters — the node partition
bbb — also grows with N, and that we would need the effective sample size, i.e. the number of
edges E, to grow faster than N to guarantee that the data is sufficient. Since for sparse graphs we
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Figure 16. Normalized mutual information (NMI) between the planted and inferred partitions of a PP model
with N = 105, B = 3 and 〈k〉= 3 and ε = N(λin−λout). The vertical line marks the detectability threshold
ε∗ = B

√
〈k〉.

have E = O(N), we are never able to reach the limit of sufficient data. Thus, we should be able
to achieve asymptotically perfect inference only for dense graphs (e.g. with E = O(N2)) or by
inferring simultaneously from many graphs independently sampled from the same model. Neither
situation, however, is representative of what we typically encounter when we study networks.

The above result carries important implications into the overall field of network clustering.
The existence of the “detectable” phase for ε > ε∗ means that, in this regime, it is possible for
algorithms to discover the planted partition in polynomial time, with the BP algorithm doing so
optimally. Furthermore, for B > 4 (or B > 3 for the dissortative case with λin < λout) there is
another regime in a range ε∗ < ε < ε†, where BP converges to the planted partition only if the
messages are initialized close enough to the corresponding fixed point. In this regime, the posterior
landscape exhibits a “glassy” structure, with exponentially many maxima that are almost as likely
as the planted partition, but are completely uncorrelated with it. The problem of finding the planted
partition in this case is possible, but conjectured to be NP-hard.

Many systematic comparisons of different community detection algorithms were done in a
manner that was oblivious to these fundamental facts regarding detectability and hardness [101,
102], even though their existence had been conjectured before [103], and hence should be re-
framed with it in mind. Furthermore, we point out that although the analysis based on the BP
equations is widely accepted as correct in statistical physics, they are not completely rigorous
from a mathematical point of view. Because of this, the result of Decelle et al [96] leading to
the threshold of Eq. 90 has initiated intense activity from mathematicians in search of rigorous
proofs, which have subsequently been found for a variety of relaxations of the original statement
(see Ref. [104] for a review), and remains an active area of research.
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XII. CONCLUSION

In this chapter we gave a description of the basic variants of the stochastic block model (SBM),
and a consistent Bayesian formulation that allows us to infer them from data. The focus has
been on developing a framework to extract the large-scale structure of networks while avoiding
both underfitting (mistaking randomness for structure) and underfitting (mistaking structure for
randomness), and doing so in a manner that is analytically tractable and computationally efficient.

The Bayesian inference approach provides a methodologically correct answer to the very cen-
tral question in network analysis of whether patterns of large-scale structure can in fact be sup-
ported by statistical evidence. Besides this practical aspect, it also opens a window into the fun-
damental limits of network analysis itself, giving us a theoretical underpinning we can use to
understand more about the nature of network systems.

Although the methods described here go a long way into allowing us to understand the structure
of networks, some important open problems remain. From a modeling perspective, we know that
for most systems the SBM is quite simplistic, and falls very short of giving us a mechanistic
explanation for them. We can interpret the SBM as being to network data what a histogram is to
spatial data [105], and thus while it fulfills the formal requirements of being a generative model, it
will never deplete the modeling requirements of any particular real system. Although it is naive to
expect to achieve such a level of success with a general model like the SBM, it is yet still unclear
how far we can go. For example, it remains to be seen how tractable it is to incorporate local
structures — like densities of subgraphs — together with the large-scale structure that the SBM
prescribes.

From a methodological perspective, although we can select between the various SBM flavors
given the statistical evidence available, we still lack good methods to assess the quality of fit of
the SBM at an absolute level. In particular, we do not yet have a systematic understanding of how
well the SBM is able to reproduce properties of empirical systems, and what would be the most
important sources of deficiencies, and how these could be overcome.

In addition to these outstanding challenges, there are areas of development that are more likely
to undergo continuous progress. Generalizations and extensions of the SBM to cover specific
cases are essentially open ended, such as the case of dynamic networks, and we can perhaps
expect more realistic models to appear. Furthermore, since the inference of the SBM is in general
a NP-hard problem, and thus most probably lacks a general solution, the search for more efficient
algorithmic strategies that work in particular cases is also a long term goal that is likely to attract
further attention.
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[5] Bo Söderberg, “General formalism for inhomogeneous random graphs,” Phys. Rev. E 66, 066121
(2002).

http://www.citeulike.org/group/3509/article/4012374
http://www.citeulike.org/group/3509/article/4012374
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/ 16/0378-8733(83)90021-7
http://dx.doi.org/ 10.1103/PhysRevE.66.066121
http://dx.doi.org/ 10.1103/PhysRevE.66.066121


38
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Transitions in the Detection of Modules in Sparse Networks,” Phys. Rev. Lett. 107, 065701 (2011).

[96] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová, “Asymptotic analysis
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