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Advanced inference techniques allow one to reconstruct the pattern of interaction from high
dimensional data sets, which probe simultaneously thousands of units of extended systems – such as
cells, neural tissues or financial markets. We focus here on the statistical properties of inferred models
and argue that inference procedures are likely to yield models which are close to singular values of
parameters, akin to critical points in physics where phase transitions occur. These are points where
the response of physical systems to external perturbations, as measured by the susceptibility, is very
large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics
in the space of probability distributions of these models (the Fisher Information) is directly related
to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate
close to critical points, where the susceptibility diverges in infinite systems. This region is the one
where the estimate of inferred parameters is most stable. In order to illustrate these points, we
discuss inference of interacting point processes with application to financial data and show that
sensible choices of observation time-scales naturally yield models which are close to criticality.

PACS numbers: 64.60.aq, 64.60.Cn, 89.75.Hc

The behavior of complex systems such as a cell, the
brain or a financial market, is the result of the pattern
of interaction taking place among its components. Tech-
nological advances, either in experimental techniques or
in data storage and acquisition, have made the micro
scale at which the interaction takes place accessible to
empirical analysis. Massive data, probing for instance
the expression of genes in a cell [1], the structure and
the interactions of proteins [2], the activity of neurons
in a neural tissue [3, 4] or the one of traders in financial
markets [5] is now available. This, in principle, makes the
reconstruction of the network of interactions at the micro
scale possible. The reconstruction consists in inferring a
model, specifying the wiring of the network of interac-
tions between micro-units, as well as their strength.

The typical situation is one where the micro-state is
specified by a vector ~s, with component si specifying
the state of unit i, and data consists of a sequence
ŝ = {~s(t), t = 1, . . . , T} of T samples. Under the assump-
tion that samples can be considered as independent, the
problem consists in estimating the probability distribu-
tion of ~s, in a way which allows for robust generalization,
i.e. for the generation of yet unseen samples.

As a mean of illustration, it is instructive to discuss
a specific example. Prices of stocks in a financial mar-
ket move in a correlated fashion. This correlation arises
from the correlated activity of traders buying and selling
the different stocks. So for example, a particular activity
pattern on stock 1 may be interpreted as revealing some
information to traders, which may induce them to trade
stock 2. One way to formalize this idea in a statistical
model, is to fix a time interval ∆t and define a binary
variable on each stock which takes value +1 if a trade
occurred in that interval, or −1 otherwise. In this way,
the activity of a stock market with N stocks is repre-

sented as a string of N “spins” si = ±1, and repeated
measurements produce T samples of ~s.

In spite of its abundance, data is far from being able to
completely identify the correct model, and one is left with
a complex inference problem. This is because the number
of available samples is way smaller than the number of
possible microscopic states. In our workhorse example,
even reducing attention to the N = 100 most traded
stocks, and at very high frequency ∆t = 30s, one year of
data amounts to T ≈ 105 samples, whereas the number
of possible micro-states is 2100 ≈ 1030.

This problem is addressed in statistical learning the-
ory in two steps: i) model selection and ii) inference of
parameters. Boltzmann learning [6] addresses i) by first
identifying those empirical quantities which we want the
model to reproduce and then invoking the principle of
maximum entropy [7]. So, for example, if correlated ac-
tivity on stocks is the result of interaction mediated by
traders, and we assume that traders react to movement
on single stocks, it is natural to require that our model
reproduces the observed pairwise correlations between
stocks. If we require that the distribution of ~s reproduces
the measured values of a collection Φ = {φµ(~s)}Mµ=1 of M
functions of the micro-state ~s, then maximal entropy pre-
scribes distributions of the exponential form:

p(~s|g) = exp

(
M∑
µ=0

gµ φµ(~s)

)
, (1)

where g = {gµ : µ = 0 . . .M} ∈ G are the parameters of
the model, to be inferred in ii) (see below).

Our focus here, is not on model selection nor on the
inference procedure. Rather, we focus on the statistical
properties which we expect to observe in inferred models,
and argue that there are reasons to expect them to be
very peculiar.
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Probability distribution of the form (1), in the limit
N → ∞, have been the object of enquiry in statistical
mechanics, since its very beginning, in particular, as a
function of “temperature” which in physics modulates
the strength of the interactions between variables. A fic-
titious (inverse) temperature can be introduced with the
replacement g → βg. Then p(~s|βg) is expected to inter-
polate between a “low temperature” behavior (β →∞),
where the distribution is concentrated on few states and
the si are strongly correlated, and a “high temperature”
behavior (β → 0), where the different components of ~s
are very weakly dependent. These two polar behaviors,
often, do not morph continuously into each other as β
varies in [0,∞) but rather they do so in a sharp manner,
in a small neighborhood of a critical inverse tempera-
ture βc. The critical point βc is characterized by the fact
that fluctuations – corresponding e.g. to specific heat in
physics – become very large.

Remarkably, inference procedure often produces mod-
els which seem to be “poised close to a critical point”,
i.e. for which fluctuations are maximal for β ≈ 1, sug-
gesting with βc ≈ 1. This was first observed in [8] for
the activity of neuronal tissues and in [9] for the statics
of natural images. Fig. 1 presents similar evidence for
the activity pattern of 100 stocks of the New York Stock
Exchange at high frequency (see caption and discussion
below for details).

Critical models of the form (1) seem to be rather spe-
cial in physics, since they arise only when the parameters
are fine tuned to a set of zero measure. In spite of this,
they have attracted and still attract considerable interest,
with much efforts being devoted to elucidate their proper-
ties. On the contrary, critical models seem to arise ubiq-
uitously in the analysis of complex systems [10], evoking
theories of Self-Organized Criticality [11].

Leaving aside the mechanisms for which a real system
self-organizes close to a critical point, we address here
the issue from a purely statistical point of view. So, for
example, when can one conclude in a statistically signif-
icant manner that a given system is critical? And then,
can criticality be induced by the inference procedure?

Specifically, drawing from results of information geom-
etry [12, 13] we argue that when the distance in the space
of models is properly defined in a reparametrization in-
variant manner, one finds that the number of statistically
distinguishable models accumulates close to the region in
parameter space where models are critical. Conversely,
models far from the critical points can hardly be distin-
guished. Loosely speaking, models that can be inferred
are only in a finite region around critical points. This
implies that when the distance from the critical point
is measured in terms of distinguishable models, inferred
models turn out to be typically much further away from
criticality than what the distance of estimated param-
eters from criticality would suggest. This provides an
alternative characterization of criticality, whose relation

with information theory was earlier investigated in [14] in
the context of thermodynamic fluctuation theory, and in
[15] in relation to quantum phase transitions. Indeed our
discussion just relies on basic properties of statistical me-
chanics and large deviation theory, and doesn’t require
any specific assumption about the model it is applied to.

In what follows, we address the problem of the infer-
ence of a probability distribution over a set of binary
variables. We recall [12] that the statistical distinguisha-
bility of empirical distributions, naturally leads to the no-
tion of curvature in the space of probability distributions.
Then we show that curvature is related to susceptibility
of the corresponding models. We apply these ideas to the
model of a fully connected ferromagnet, which despite be-
ing simple enough to provide tractable solution, realizes
all the features previously described. We illustrate the
points above by specializing to inference of data produced
by “fully connected” Hawkes point-processes [16]. This
shows that when a fictitious temperature is introduced
in estimated models, a maximum of the specific heat of
the corresponding Ising ferromagnet naturally arises for
β ≈ 1.
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FIG. 1: Specific heat as a function of the inverse temperature
β for financial data, for various choices of the bin sizes (lines
from the top to the bottom correspond respectively to ∆t =
30, 28, 26, 24 s).

DISTINGUISHABILITY OF STATISTICAL
MODELS

Given a set ŝ = {~s(t), t = 1, . . . , T} of T observations
of a string of N binary variables ~s ∈ {−1, 1}N , we con-
sider the problem of estimating from empirical data a
statistical model M = {Φ,G} defined by a probability
distribution as in Eq. (1) where Φ = {φµ(~s)}Mµ=0 is a

collection of functions of the vector ~s ∈ {−1, 1}N and
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g = {gµ : µ = 0 . . .M} ∈ G are the corresponding pa-

rameters. With the choice φ0(~s) = 1, the normalization
condition fixes g0(g) to be the free energy of the Hamil-
tonian H(~s) = −

∑
µ>0 g

µ φµ(~s) at temperature equal to
one. We shall denote by 〈. . .〉g averages taken over the

distribution p(~s|g).
We briefly recall the arguments of Ref. [12] to assess

whether g and g′ are distinguishable. Imagine that the
inference procedure returns g as the optimal parameters
of the distribution and consider resampling a set ŝg of
T observations from g. By Sanov’s theorem [17], the
probability that the empirical distribution of the sam-
ple ŝg generated by T i.i.d. draws from p(~s|g) falls in
a close neighborhood of g′ is given in the large T limit

by p(ŝg|g′) ∼ e−TD(g||g′), where D(g||g′) =
〈

log
p(~s|g)
p(~s|g′)

〉
g

is the Kullback-Leibler distance of the two distributions.
Requiring that this probability be less than a threshold ε,
for g and g′ to be distinguishable, implies D(g||g′) ≤ κ/T
with κ = − log ε. This condition identifies a volume of
parameters around g of distributions which cannot be
distinguished from g, for a finite data set. Since we as-
sumed T � 1, this volume can be computed from the
expansion

D(g||g + η) =
1

2

∑
µ,ν>0

ηµχµ,νην +O(η3)

where χ̂ is the matrix of second derivatives of D(g||g+η)
computed in η = 0, and is known as the Fisher Informa-
tion (FI). The volume of distributions which are undis-
tinguishable from g is given by [12]:

∆VT,k =

(
2πκ

T

)M/2
1

Γ(M/2 + 1)
√

detχ̂
. (2)

In the language of statistical mechanics, FI corresponds
to a generalized susceptibility, and via fluctuation-
dissipation relations, to the covariance of operators
φµ(s):

χµ,ν = − ∂2g0

∂gµ∂gν
=
∂〈φµ(s)〉g

∂gν

= 〈(φµ(~s)− 〈φµ〉g)(φν(~s)− 〈φν〉g)〉g.

Models with a large FI correspond to models with high
susceptibility for which the error on the estimated cou-
plings is small. More precisely, the Cramér-Rao bound
[17] states that given a set of T independent observa-
tion and an unbiased estimator of the couplings g∗, its
covariance matrix satisfies Cov(g∗) ≥ χ̂−1/T where, the
notation Â ≥ B̂ indicates that the matrix Â− B̂ is posi-
tive semidefinite.

Summarizing, the FI provides a parameterization in-
variant metrics in the space of statistically distinguish-

able distributions dτ =
∏
µ dg

µ
√

det χ̂(g). This measure

concentrates around the “critical” points g where the
susceptibility is large (or diverges for N → ∞), which
correspond to points where estimates of parameters are
more precise. On the contrary, since the susceptibility
decreases fast away from critical points, the volume ele-
ment dτ is expected to be non-negligible only in a bound
region of space. The outcome of the inference procedure
can be considered meaningful when the susceptibility is
sufficiently large, or equivalently, when the error in the
inferred coupling is small enough. This suggests a maxi-
mum distance from the critical point at which parameters
can be inferred [18].

The case of fully connected spin models

In order to illustrate these concepts, let us consider the
simple case of a fully connected ferromagnet character-
ized by the operators Φ = {1, 1

N

∑
i<j sisj ,

∑
i si} and

the corresponding couplings g = {− logZ, J, h}. The cal-
culation of the FI is straightforward and, for N � 1,
to leading order, one finds that the invariant measure of
distinguishable distributions is given by

dτ =
√
N/2

[
Γ3/2 +A(J)θ(J − 1)δ(h)

]
dJdh

where Γ = ∂m
∂h = 1−m2

1−J(1−m2) is the spin susceptibility

and m(J, h) = tanh[Jm(J, h) + h]. The δ(h) contribu-
tion arises from the discontinuity of m at h = 0 in the
ferromagnetic region J > 1 with A(J) =

√
2π2m2Γ.

In the highly magnetized region (J � 1, h 6= 0),
the non-singular contribution to the density of states
dτ ≈

√
8Ne−3(J+|h|)dJdh can be explicitly integrated

to obtain the number of distinguishable states in a fi-
nite region of the phase space. For example, the num-
ber of distinguishable states in the semiplane J ≥ Jmax

stripped of the h ≈ 0 line, given T observations and a

threshold κ is D ≈ T
√
N
√

8
9πκe

−3Jmax . This means that
it is not possible to meaningfully infer any value of J

greater than Jmax ∼ 1
3 log

(
T
√
N
)

. Under the hypothe-

sis that h = 0, instead, we find that Jmax ∼ log
(
T
√
N
)

.

The volume element dτ diverges in a non-integrable man-
ner close to the critical point (J, h) = (1, 0). For h = 0
we find dτ ∼ |1 − J |−3/2 while approaching the critical
point on the line J = 1, one finds the milder divergence
dτ ∼ |h|−1. Hence, there is a macroscopic number of
models located in an infinitesimal region around the crit-
ical point (J, h) = (1, 0). The singularity is smeared by
finite size effects when N < +∞, but it retains the main
characteristics discussed above. A plot of the density of
models for N = 100 is shown in Fig. 2.
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APPLICATION TO HAWKES PROCESSES AND
REAL DATA

In order to investigate the implications of this pic-
ture on the inference of models from data we address the
specific case of synthetic data generated by Hawkes pro-
cesses [16]. An N dimensional Hawkes process is a gen-
eralized Poisson process where the probability of events
P{dN i

t = 1|Nt} = λit dt in an infinitesimal time inter-
val dt depends on a rate λit which is itself a stochastic
variable

λit = µi +
∑
j

∫ t

−∞
dN j

uK
ij
t−u

which depends on the past realization of the process (here
µi ≥ 0, Kij

u ≥ 0). This process reproduces a cross-
excitatory interaction among the different channels, akin
to that occurring between stocks in a financial market
[20] or neurons in the brain [21]. For our purposes, it
will serve as a very simple toy model to generate data
with controlled statistical properties, of a similar type to
that collected in more complex situations. In fact, the
linearity of the model makes it possible to derive analyt-
ically some properties in the stationary state. We focus
on a fully connected version of the Hawkes process, with
µi = µ and Kij

u = α
N e
−νu. The expected number of

events per unit time is 〈λit〉 = µ
1−α/ν , and it diverges for

α → ν. We remark that this singularity is not a proper
phase transition, as it occurs for any finite N .

We also estimate the activity pattern of an ensemble
of 100 stocks of NYSE market (see [22] for details on the
dataset). We consider the jump process defined by the
function N i

t which counts the number of times in which
stock i is traded in the time interval [0, t], disregarding
the (buy or sell) direction of the trade. Data refers to 100
trading days (from 02.01.2003 to 05.30.2003), of which
only the 104 seconds of the central part of the day were
retained, in order to avoid the non-stationary effects due
to the opening and closing hours of the financial market
(see [20]).

Following [3], we map a data-set of events into a se-
quence of spin configurations, by fixing a time interval
∆t and setting sit = +1 if ∆N i

t = N i
t+∆t − N i

t > 0 and
sit = −1 if no event on channel i occurred in [t, t + ∆t).
The choice of ∆t fixes not only the number of data points
T = U/∆t, where U = 106 seconds is the total length of
the time series. It also fixes the scale at which the dy-
namics of the system is observed: for ∆t→ 0 the system
is non-interacting, and can be successfully described by
an independent model [23], while after a certain time
scale correlations start to emerge [24]. Indeed the prod-
uct of the bin size ∆T with the event rate λ also controls
the average magnetization of the system, which can ac-
cordingly be tuned from −1 to 1. Hence, as ∆t varies,
the inferred model performs a trajectory in the space of

couplings.

We fit both data with a model of pairwise interacting
Ising spins, with operators Φ = {1}∪{si}Ni=1∪{sisj}Ni<j=1

and the corresponding couplings g = {− logZ} ∪
{hi}Ni=1 ∪ {Jij}Ni<j=1. Several approximate schemes have
been proposed to compute efficiently the maximum en-
tropy estimate of the couplings [6]. Here we resort to
mean-field theory, which turn out to give results which
are consistent with more sophisticated schemes.

Fig. 2 reports the results of the inference on simu-
lated Hawkes processes and of financial data (see cap-
tion for details). Given the inferred parameters, we
compute the average couplings J̄ = 2

N(N−1)

∑
i<j Jij ,

h̄ = 1
N

∑
i hi and report the trajectory of the point (J̄ , h̄)

as ∆t varies, for both cases. Fitting a fully connected
model Φ = {1, 1

N

∑
i<j sisj ,

∑
i si}, g = {− logZ, J̄, h̄}

produces essentially the same results [25].

The region of ∆t where non-trivial correlations are
present but where the binary representation of events
is still meaningful [23] corresponds to the region where
the trajectory (J̄ , h̄) is closest to the critical point of a
fully connected ferromagnet (J, h) = (1, 0). By Cramér -
Rao’s bound, this is also the region of ∆t where the in-
ferred couplings are likely subject to the smallest errors.
For Hawkes processes, a time interval ∆t smaller than
1/ν does not allow the process to develop correlations,
and for intervals ∆t � 1/〈λi〉 the binary nature of the
process is lost [25]. In addition, i) increasing values of
the interaction parameter α lead to a sequence of curves
in the phase diagram which monotonically approach the
critical point; ii) the mean coupling J̄ increases with bin
size ∆t, except for a small region of the parameter space
in the case µ > ν; iii) h̄ is not monotonic with ∆t. In
particular for α > ν/2 it decreases for ∆t large. Interest-
ingly, the points which are inferred can correspond both
to stable and metastable states. The latter occurs, for
Hawkes processes, for large ∆t and α > ν/2.

Inference of financial data results in a trajectory sim-
ilar to that of Hawkes processes with α > ν/2 (see Fig.
2).

In all these cases, one can introduce a fictitious in-
verse temperature β, rescale the inferred couplings as
(Jij , hi) → (βJij , βhi), and analyze the corresponding
statistical behavior. The fluctuations of observables as
a function of β provide an indication of the proximity
of the inferred model to a critical point. In figure 1 we
plot the specific heat cV = β2 Var[H(~s)] for various bin
sizes in the case of financial data. For a given value of ∆t,
varying the inverse temperature β corresponds to moving
on the line passing through the origin and the inferred
point (white line in Fig. 2). If ∆t is in the region close
to the critical point, for the reasons stated above, then
fluctuations will be maximal for β ≈ 1. We remark, how-
ever, that such a notion of proximity to a critical point is
only apparent. The distance from the critical point eval-
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FIG. 2: Mean couplings (J̄ , h̄) produced by the inference pro-
cedure in various cases and with various bin sizes. Orange,
red, purple and blue points correspond to the inferred values
for a simulated Hawkes process with ν = 0.3, µ = 0.1 and α
respectively equal to (0, 0.075,0.15,0.225). Boxes and circles
correspond respectively to the to the fit of a fully connected
model (2 parameters, J̄ and h̄) and to the mean couplings
for a spin glass (N fields hi and N(N − 1)/2 couplings Jij).
In each of those process we considered N = 100 channels
producing 5000 events each. The dashed line correspond to
theoretical, approximate predictions for the inferred couplings
of those processes at T =∞. The black points correspond to
the values obtained for U = 106 seconds of financial data cor-
responding the activity pattern of 100 stocks of the NYSE. On
the background, the density of models for a fully connected
model is also plotted for the sake of comparison. The white
line intersects the origin and the inferred values of (J̄ , h̄) at
∆T = 18 s: for such a choice of the bin size, a fully connected
model would have the maximum density of models exactly at
β = 1.

uated using β is not invariant under reparametrization of
the couplings: the number of distinguishable models in a
given interval of temperature is not constant throughout
the space of couplings.

DISCUSSION

In summary, we have shown that the measure of distin-
guishable distribution in a parametric family of models
is directly related to the susceptibility of the correspond-
ing model in statistical mechanics. As a consequence,
this measure exhibit a singular concentration at critical
points. One may speculate that, if experiments are de-
signed (or data-set collected) in order to be maximally
informative, they should return data which sample uni-
formly the space of distributions. This, as we have seen,

corresponds to sampling a measure in parameter space
which is sharply peaked at critical points. Hence, in-
ference of data from maximally informative experiments
(see [26] for a survey) is likely to return parameters close
to critical points with high probability.

As stated in the introduction, critical points separate
a region (or “phase”) of weak interaction, where the
different components behave in an essentially uncorre-
lated fashion, from a strongly interactive phase, where
the knowledge of the microscopic variables in one part
of the system fixes the state also in far away regions of
the system. The critical point shares properties of both
phases. It has the largest possible entropy consistent with
system wide coherence. Often, system wide coherence is
implicitly enforced by the fact that we construct data-
sets with elements we believe to be mutually dependent
or causally related. We would hardly analyze data-set
with uncorrelated variables (e.g. the activity of a cell,
planetary motion and fluctuations in financial markets).
Therefore, criticality might not only come from the ac-
tual dynamics of the system, but it might be in the eyes
of those who are trying to infer the underlying dynamical
mechanisms.

Furthermore, if the inference depends on parameters
which can be adjusted (such as ∆t above), then it is
sensible to fix these parameters in a way which makes the
determination of uncertainty about the model as small as
possible. By Cramer-Rao bound, this again suggests that
our inference should fall close to critical points.

At the same time, concluding that a model is close to
a critical point on the basis of a maximum of the specific
heat in a plot like the one in Fig. 1 can be misleading.
Indeed the distance from the critical point should be mea-
sures in terms of the number of distinguishable models
which the number of samples allow us to distinguish. It
might be that even if the model is close to a critical point
in the space of g (i.e. |g−g

c
| � 1) there are many models

between g and g
c
, which are closer to the critical point

and which could, in principle, be distinguished on the
basis of the data.

Even in the simple example presented here, there are
some collective properties of the inferred states which
turn out not to correspond to properties of the real sys-
tem. The proximity to criticality is one such feature,
since the original model (Hawkes process) does not have
a proper phase transition. A further spurious feature
is the fact that, in a region of parameters (large ∆t
and α > ν/2) , the inferred model exhibits a double
peaked distribution, but the empirical data is reproduced
by the least probable maximum. This is the analog of
metastability in physics, a phenomenon by which a sys-
tem may be driven to attain a phase which is different
from the one which would be stable in those circum-
stances. Metastable states usually decay in stable states,
which would lead to the wrong expectation of a sharp
transition in the system of which we’re inferring the cou-
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plings. Actually, the distribution for the real system in
this case does not have a second peak corresponding to
that of the inferred model.

The increasing relevance of methods of statistical
learning of high-dimensional models from data in a wide
range of disciplines, makes it of utmost importance to
understand which features of the inferred models are in-
duced solely by the inference scheme and which ones re-
flect genuine features of the real system. In this respect,
the understanding of collective behavior of models of sta-
tistical mechanics provides a valuable background. This
is particularly true, in the presence of phase transitions
of the associated statistical mechanics model, where the
mapping between microscopic interaction and collective
behavior is no longer single valued. The emphasis which
the study of phase transitions and critical point phenom-
ena has received in statistical physics, assumes a special
relevance for inference, in the light of our findings.
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