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Preface

«… i’ vegno per menarvi all’altra riva

ne le tenebre etterne, in caldo e ’n gelo.
E tu che se’ costì, anima viva,
pàrtiti da cotesti che son morti.
Ma poi che vide ch’io non mi partiva,
disse: «Per altra via, per altri porti
verrai a piaggia, non qui, per passare:
più lieve legno convien che ti porti».
E ’l duca lui: «Caròn, non ti crucciare:
vuolsi così colà dove si puote
ciò che si vuole, e più non dimandare».

—Dante Alighieri, Divina Commedia

This book is intended as a complete, self-consistent introduction to a general
methodology to study complex networks. This methodology combines concepts of
information theory, statistical physics, and graph theory and provides a way to build
maximum-entropy models of networks. These models have a rigorous theoretical
origin and a range of practical applications. In this book, we emphasize the
applications to pattern detection, network reconstruction, and graph combinatorics.

Most of the results in this book have been developed by ourselves and our direct
collaborators. Our approach has been rigorously investigated both analytically and
numerically and used in several applications, ranging from physics to economics
and biology. Given the robustness of the method, its wide range of applicability,
and the growing interest it has been attracting from our colleagues, we felt the need
of writing a compact text unifying our results fragmented across many publications.

Pattern detection, network reconstruction, and graph combinatorics are by
themselves three distinct and active fields of research. Several specialized and
generally unrelated techniques have been proposed within each of these fields. Our
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aim in this present book is not that of discussing the existing field-specific
approaches, but that of emphasizing the connections between these seemingly
independent problems.

Moving from common, general, first principles, we present a unified method-
ology which provides various explicit solutions to the aforementioned problems.
Thus, while providing the references necessary to contextualize all the results
discussed here, this book is deliberately not in a review-like structure. Rather, it
focuses on an original, unifying approach to these three selected domains of
network theory.

This book is intended for a broad audience, ranging from Ph.D. students in
physics and mathematics looking for an unconventional introduction to network
theory, to researchers in other disciplines (e.g., economics, social sciences, biology)
interested in the application of network analysis to their topic(s) of interest. No prior
knowledge of network theory or any of the specific topics discussed here is
required.

Lucca, Italy Tiziano Squartini
Leiden, The Netherlands Diego Garlaschelli
May 2017
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Chapter 1
Introduction

Forthwith this frame of mine was wrenched
With a woful agony, Which forced me to begin my tale;
And then it left me free.
Since then, at an uncertain hour,
That agony returns:
And till my ghastly tale is told,
This heart within me burns.
I pass, like night, from land to land;
I have strange power of speech;
That moment that his face I see,
I know the man that must hear me:
To him my tale I teach.

– Samuel Taylor Coleridge, The Rime of the Ancient Mariner

Whoever has played ‘Guess Who?’ knows the importance of gaining maximally
useful information in absence of complete knowledge. To win the game, a player
must be able to identify an unknown character among many possible ones. Each
player should aim at discarding the highest number of ‘wrong’ characters by asking
the smallest number of questions about the traits of the face of the unknown character.
The key to winning the game is a careful choice of the traits about which questions
are asked: at each round, the best choice is the one that selects the most informative
traits, i.e. those that allow the player to identify most quickly the correct character.

A similar problem is encountered in most areas of science. Researchers often deal
with complicated real-world systems about which there is only limited empirical
information available, for instance because it is impossible to characterize all the
components and/or all the interactions among them. The scientific challenge is that
of identifying the most informative properties of the system, i.e. a relatively small
set of properties which, once empirically measured, shed as much light as possible
about the entirety of the system itself. The same problem underlies the practice

© The Author(s) 2017
T. Squartini and D. Garlaschelli, Maximum-Entropy Networks,
SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-69438-2_1
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2 1 Introduction

of theoretical modelling as well. A good theoretical model of a system or process
is one that uses the smallest number of parameters and/or explanatory variables to
replicate the observed phenomenology. So, like in ‘GuessWho?’, the identification of
a few informative properties is the key to good scientific practice. At an underlying
mathematical level, the identification of the most informative properties strongly
depends on an enumeration problem: once a new set of properties is measured, how
many configurations of the system are still compatible with the measured values?
A set of properties for which the number of compatible configurations is small is a
‘good’ choice. In the jargon of information theory, such properties encode a lot of
information. In that of of statistical physics, their measurement lowers the entropy,
which is a measure of the uncertainty of the outcome of a random process.

* * *

The focus of this book is on networks (or graphs in the mathematical jargon), i.e.
systems whose components are nodes (or vertices) connected by links (or edges).

Over the last two decades, the study of networks has been steadily flourishing into
a very active and popular discipline, often referred to as ‘Network Science’, ‘Network
Theory’, or simply ‘Complex Networks’. The reason for this tremendous growth of
interest is the fact that networks are encountered virtually ubiquitously across many
problems of scientific and societal relevance. How infectious diseases, biological sig-
nals, financial crises, computer viruses, electrical breakdowns, mechanical fractures,
rumours and opinions spread throughout organisms, materials, societies, economies
and ecologies ultimately depends on the structure of some underlying network. Such
a network may for instance describe how different cells, people, companies, comput-
ers, power plants, physical systems or biological species are connected together. As a
matter of fact, different disciplines, including biology, social science, epidemiology,
mathematics, physics, neuroscience, finance, economics, ecology, computer science
and engineering, often focus their analyses on systems that admit a common abstract
description in terms of graphs.

Quite surprisingly, the empirical topological properties of the vast majority of
networks encountered across these disciplines are remarkably similar. For instance,
most networks feature a large number of nodes with a few connections and a few
nodes (or ‘hubs’) with a very large number of connections. Indeed, the observed
frequency of nodes with a given number of connections is in most cases found to
decrease slowly with, and typically as a negative power of, this number. Networks
with this property are called scale-free networks. Similarly,most real-world networks
turn out to display community structure, i.e. to be partitioned into groups of nodes that
are much more densely connected internally than with each other. Other widespread
properties include a high level of clustering, i.e. the formation of many connected
triples of nodes, and a short average path length among most pairs of nodes, a
property that goes under the name of small-world effect. The observation of these
common phenomenological properties in the structure of many different networks
has stimulated the development of a unifying mathematical language to charaterize
the empirical properties of complex networks and a common framework to study
generic processes for the spread of information, shocks and instabilities throughout
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them. Statistical physics, graph theory and computer science have played a major
role in developingmethods,models and tools to characterize and understand complex
networks.

Many excellent books and review articles introducing network science from the
above interdisciplinary viewpoint already exist in the literature. This book does not
want to replicate this material and focuses on networks from a different perspective.

* * *

The aim of this book is that of illustrating how seemingly unrelated challenges
encountered in network science are highly intertwined and, ultimately, have a com-
mon theoretical underpinning. For the sake of illustration, we have selected three
key problems: pattern detection, network reconstruction and graph combinatorics.

Pattern detection is the identification of empirical properties that systematically
deviate from some simple benchmark or reference model. In the context of networks,
these properties might be a surprising preference of certain nodes to connect to each
other with respect to the rest of the network, or an unexpectedly large number of
triangles forming around some particular nodes. These ‘surprising’ or ‘unexpected’
properties are likely to represent important structural patterns singling out nontrivial
information about the (unknown) network formation process. Detecting such patterns
requires the specificationof a nullmodel (or evenmultiple nullmodels) of the network
as a benchmark. In our ‘Big Data’ era dominated by the need to identify meaningful
information in huge streams of noisy data that are continuously produced, pattern
detection is becoming more and more important as a core component of virtually
any data-mining technique.

Network reconstruction is the problem of inferring the unknown structure of a net-
work, given only partial knowledge about some of its structural properties. In many
practical situations, network data are protected by privacy or confidentiality issues.
For instance, when the nodes of the network represent banks and the links represents
their credit relationships, generally only very limited information is publicly known.
Banks only publicly disclose their total exposures towards the aggregate of all other
banks and ‘who is connected to whom’ is not known. A similar condition applies
to networks of social contacts, for which the available data typically only report the
aggregate number of encounters of each node. In order to carry out any network-
dependent analysis, e.g. the estimation of the level of systemic risk embodied in the
interbank market or the prediction of how infectious diseases will spread across a
population, one has to resort to advanced reconstruction techniques identifying the
most likely set of networks compatible with the partial information available. Net-
work reconstruction is therefore rapidly becoming a key instrument in both science
and policy making.

Graph combinatorics refers to various graph-related operations in discrete math-
ematics. These operations typically include, or are related to, the sampling of graphs
with given topological properties, or their enumeration in some appropriate asymp-
totic limit. Imagine the set of, say, all simple undirected graphs with N vertices, i.e.
graphs whose nodes can be connected by either no edge or a single edge that does
not have a specified direction. Calculating how many such graphs have a given total
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number L of links is straightforward. Similarly, sampling a certain number of such
graphs can be done efficiently and uniformly for any value of L . However, counting
how many graphs meet some more heterogeneous topological constraint can be a
daunting task. An important example is the asymptotic enumeration and uniform
sampling of graphs with given degree sequence, i.e. graphs where each vertex i is
assigned a different number ki of edges (this number is known as the degree of node
i). At present, the counting problem is solved only under stringent conditions on
the heterogeneity of the values in the degree sequence, while there is no general
result allowing us to enumerate graphs with an arbitrary degree sequence. Similarly,
sampling graphs with given degree sequence uniformly becomes more and more
challenging as the heterogeneity in the degrees increases. Counting and sampling
graphs with heterogeneous topology is therefore an active field of research.

* * *

Themessage of this book is that there are deep connections, of both theoretical and
applied nature, between the three scientific challenges outlined above. As a conse-
quence, it is possible to define certain problem-specific techniques within a common
framework that facilitates a beneficial interaction between the three topics. In par-
ticular, two unifying notions will recur throughout the book: entropy maximization
and topological complexity.

Entropy maximization is like an abstract, invisible and beautiful tree with many
concrete, visible and juicy fruits and is therefore a powerful example for Lewin’s
golden statement that “There is nothing more practical than a good theory”. For
the purposes of this book, the maximization of the entropy is introduced in order to
construct ensembles of graphs whose topology is maximally random, apart from a
controlled set of structural properties enforced as constraints. This leads us to the
definition and analysis of maximum-entropy ensembles of networks with topolog-
ical constraints. It turns out that such ensembles provide a common answer to the
problems of the maximally random construction of null models for pattern detec-
tion, themaximally unbiased inference of networks from partial information and the
maximally uniform sampling of graphs with given constraints. Our introduction of
a general method to define constrained maximum-entropy ensembles of graphs will
allow us to address each of these applications in a coherent fashion, thus emphasizing
the relationships between the different topics covered by the book.

Topological complexity is, tautologically, what makes real-world networks ‘com-
plex’. It is loosely defined here as the combination of all the empirical topological
properties, universally observed across most networks, that are not easily repro-
duced by simple homogeneous models. In particular, the widespread observation of
heterogeneous (e.g. scale-free) and hierarchically structured (e.g. community-like)
topologies mentioned above suggests that real networks may obey complex organiz-
ing principles. Therefore, any sensible model of real-world networks should feature
an appropriately high degree of structural heterogeneity. Maximum-entropy models
are no exception and they should be flexibly defined in terms of constraints that are
distributed heterogeneously over the network. This is precisely what we will do in
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this book, effectively combining entropy maximization and topological complexity
together from the very beginning.

Importantly, besides calling for an appropriate theoretical framework for the gen-
eral problem of network modelling, the topological complexity of real networks has
also strong practical implications for each of the three topics discussed in this book.
In fact, most pattern detection, network reconstruction and graph enumeration tech-
niques work well when applied to networks with low topological complexity, while
they are all seriously compromised by the high complexity of real-world networks.
For instance, when applied to graphs with narrowly distributed degrees, these tech-
niques are more amenable to analytical and numerical treatment; but when applied to
real-world networks with sufficiently broad degree distributions, they either become
unfeasible or require approximations that often allow for no control on the resulting
errors and biases. Thus topological complexity, which in principle is ‘only’ a phe-
nomenological property affecting the values of the structural quantities measured in
real networks, turns out to be of fundamental nature and calls for new conceptual
frameworks.

* * *

The structure of this book is organized as follows.
Chapter 2 illustrates the general maximum-entropy method which forms the core

of the approach used in all the following chapters. The key quantities at the basis
of this method, entropy and likelihood, are introduced and both maximized in order
to obtain explicit probability distributions over ensembles of graphs with structural
constraints taken as input from any real-world network. Importantly, the method is
compatiblewith any level of empirical topological complexity from the outset. This is
ensured by the use of exact maximum-entropy probability distributionswhich, unlike
inmost alternative approaches, we do not try to approximate andwhichwe rigorously
fit to real-world networks via the application of the maximum-likelihood principle.
This methodology avoids any approximation based on questionable assumptions of
‘simplicity’ of the network. Two examples are worked out explicitly and several
statistical criteria to discriminate between different models are explained.

Chapter 3 focuses on the detection of empirical patterns (such as degree cor-
relations, the hierarchical character of a particular structure, the tendency to form
reciprocal connections, etc.) in real-world networks. Here, the maximum-entropy
method is used to define null models of a real-world network and patterns are sought
for by looking for statistically significant discrepancies between the real network and
the null model. Several null models are implemented and applied to many networks,
ranging from economics to biology. Via these examples, we elaborate on selected
applied topics such as the identification of topological patterns in food webs, the
realistic modelling of the international trade network, the characterization of reci-
procity of weighted networks and the detection of early-warning signals of the 2008
crisis in the Dutch interbank network.

Chapter 4 deals with the problem of network reconstruction from partial informa-
tion.Here, themaximum-entropymethod is used to infer the higher-order topological
properties of real-world networks, with an emphasis on financial and economic ones,

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_3
http://dx.doi.org/10.1007/978-3-319-69438-2_4
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starting from the knowledge of only a few pieces of empirical node-specific informa-
tion imposed as constraints. We test various maximum-entropy models while look-
ing for the empirical constraints that lead to satisfactorily reconstructed networks.
We show that real-world networks can be reliably reconstructed only if some piece
of topological information, heterogeneously distributed over nodes, is known and
enforced. When this information is not known, one has to find ways to preliminary
infer it. Remarkably, the maximum-entropy principle provides again a good recipe
to perform this inference by predicting various functional relationships linking the
unknown properties to the known ones. The result is a reliable reconstructionmethod
with minimal input requirements.

Chapter 5 deals with graph combinatorics. Here we argue that, for any combina-
torial problem with ‘hard’ constraints, e.g. counting how many graphs have exactly
the same value of a given topological property, the maximum-entropy approach pro-
vides an explicit answer to the dual problemwith ‘softened’ constraints, i.e. where the
topological property is enforced only as an average over the ensemble of graphs. We
show that, in regimes of strong topological heterogeneity for which the ‘hard’ enu-
meration problem is at present still unsolved, the dual ‘soft’ problem can sometimes
be solved exactly. This naturally leads to the general question of whether ensembles
with hard and soft constraints are asymptotically equivalent, an intriguing problem
known as ensemble (non)equivalence. We show recent results proving that ensem-
ble equivalence, while traditionally assumed to hold in fairly general circumstances,
breaks down for ensembles of graphs with a number of constraints that grows with
the number of nodes, e.g. for random graphs with given degree sequence. We discuss
some important consequences for the enumeration and sampling of such graphs.

Chapter 6 looks at the main results of the book in retrospect and offers an overar-
ching summary, a few take-home messages and some concluding remarks.

http://dx.doi.org/10.1007/978-3-319-69438-2_5
http://dx.doi.org/10.1007/978-3-319-69438-2_6


Chapter 2
Maximum-Entropy Ensembles of Graphs

Whereof one cannot speak, thereof one must be silent.

—Ludwig Josef Johann Wittgenstein, Logisch-Philosophische
Abhandlung

Abstract In this chapter we describe the core method that will be used throughout
the rest of the book, i.e. the construction of a constrained maximum-entropy ensem-
ble of networks. This procedure requires the definition of the entropy of a network
ensemble, the specification of structural properties to be enforced as constraints, the
calculation of the resultingmaximum-entropy probability of network configurations,
and the maximization of the likelihood, given the empirical values of the enforced
constraints. We describe this procedure explicitly, after giving some general motiva-
tions. In particular, we discuss the crucial importance of enforcing local constraints
that preserve the (empirical) heterogeneity of nodeproperties. Themaximum-entropy
method not only generates the exact probabilities of occurrence of any graph in the
ensemble, but also the expectation values and the higher moments of any quantity of
interest. Moreover, unlike most alternative approaches, it is applicable to networks
that are either binary orweighted, either undirected or directed, either sparse or dense,
either tree-like or clustered, either small or large. We also discuss various likelihood-
based statistical criteria to rank competing models resulting from different choices
of the constraints. These criteria are useful to assess the informativeness of different
network properties.

2.1 Constructing Constrained Graph Ensembles:
Why and How?

In Chap.1 we already anticipated that various problems of great importance in net-
work science may be (re)formulated in such a way that similar underlying concepts
are invoked and a common toolkit is employed. In particular, we gave a series of
motivations for addressing three specific problems that will be discussed in detail in
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Fig. 2.1 Abstract construction of a constrained ensemble of networks. (1) First, a particular network
(for instance, an observed real-world one) is considered. (2) Then, a set of topological properties
(in the example shown, the different numbers of connections of nodes) is chosen as a constraint
and measured on the network. (3) Finally, an ensemble of networks induced by the measured
constraints is constructed according to some rule resulting in a probability distribution over the
space of allowed configurations. In the problem of pattern detection (see Chap. 3), the average
properties of the constrained ensemble are then compared to those of the original network in order
to detect statistically significant patterns in the latter. In the problem of network reconstruction (see
Chap.4), one actually does not have empirical access to the original network, but only to a set of its
properties; the procedure therefore starts at step 2) by treating these properties as constraints and
then produces an ensemble of inferred possible configurations for the unknown network. Finally,
in various problems in graph combinatorics (see Chap.5), one is interested in correctly sampling
and/or enumerating the configurations from the induced ensemble

the following chapters of this book, namely the detection of statistically significant
structural patterns in real networks (Chap. 3), the reconstruction of networks from
partial empirical information (Chap.4) and the sampling or enumeration of graphs
with specified topological properties (Chap. 5). These three different problems, while
unrelated at first sight, require in fact a common framework: the construction of an
ensemble of random graphs with given constraints [1–23]. In the case of pattern
detection, the constraints represent null hypotheses used as a reference to identify
empirical patterns. In the case of network reconstruction, they represent pieces of
incomplete data used to infermissing information. In the case of graph combinatorics,
they represent topological properties of the network configurations to be sampled or
enumerated.

A pictorial representation of the construction of a constrained ensemble of graphs
is given in Fig. 2.1. In general, the proceduremay go through three steps: wemay start
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froma specific (real-world) network, thenmeasure the topological propertieswewant
to preserve, and finally impose these properties as a constraint in the construction of
the ensemble. In all the cases considered in this book, we impose that the graphs in
the ensemble all have exactly the same number of nodes as the original network. It
should at this point be noted that, at least conceptually, we may skip the first step
and start directly with the specification of the constraints themselves (in such a case,
the number of nodes in the original network should also be known, if not already
evident from the constraints themselves). Whether one can actually skip the first step
depends on the particular technical implementation, not on the theoretical definition
of the ensemble. For instance, in certain computational pattern-detection approaches
that aim at iteratively randomizing a real-world network while preserving some of
its properties (explicit examples are given below in Sect. 2.1.2), one has to start
from the first step. By contrast, in other cases (e.g. when only partial information is
available about the original network, as in the problems considered in Chap.4), one
is forced to start from the second step. This implies that, in order to be useful for
multiple purposes, ‘good’ ensemble constructions should be able to take (only) the
values of the chosen constraints as input. Of course, this requires that such values
are graphic,1 i.e. realizable in at least one graph. If the constraints come from the
observation of some network (including the case when they are the only information
available about some unknown underlying network), their graphicality is of course
always guaranteed.

In general, the third step in the construction of an ensemble of constrained graphs,
i.e. the specification of a (satisfactory) graph probability, is the most challenging one.
The reason is twofold, as briefly explained below.

• Firstly, not all choices of the constraints lead to equally easy ways of constructing
the resulting ensemble. In fact, the most important and useful constraints turn
out to be node-specific, which implies that the local properties of nodes have
to be preserved separately. This requirement complicates the construction of the
probability distribution. This point is discussed in detail in Sect. 2.1.1.

• Secondly, not all probability distributions satisfying the chosen constraints are
equally acceptable from a theoretical point of view. For instance, a key requisite is
that they assign the same probability to all graphs that have the same value of the
constraints, because there is no reason to prefer any one such graph over any other
such graph. This point is illustrated in Sect. 2.1.2 for the case of computational
methods and in Sect. 2.1.3 for the case of analytical methods.

In the rest of this chapter, we explain in detail the two points above, first by
highlighting the importance of imposing local constraints (Sect. 2.1.1) and then by
emphasizing how most computational (Sect. 2.1.2) and analytical (Sect. 2.1.3) meth-
ods proposed in the literature fail to correctly sample the resulting ensembles. Then,
in Sect. 2.2 we introduce a rigorous methodology to produce a graph probability

1A topological property f , where f (G) is the value of the property in graph G, is said to evaluate
to a graphic (or graphical) value f̃ if there exist at least one graph G̃ that realizes such value, i.e.
for which f (G̃) = f̃ .
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meeting all the desired requirements. The methodology is based on the maximiza-
tion of the entropy subject to a set of chosen constraints (this step fixes the functional
form of the probability distribution) and the subsequent maximization of the likeli-
hood (this step fixes the numerical values of the probability distribution). We will
see that the maximum-entropy formulation solves all the highlighted problems in
an elegant and mathematically explicit way, a result that will come as a relief. This
procedure represents the core of the formalism that will be used repeatedly in this
book.

2.1.1 Definition and Importance of Local Constraints

To characterize the structure of a given network, arbitrarily many topological prop-
erties can be defined. Among these, the simplest and most important properties are
local quantities, i.e. functions of only the immediate neighbourhood of each node.
Let us introduce some notation to define these local properties, before discussing
their importance.

A binary undirected graph2 with N vertices is completely specified by a sym-
metric N × N adjacency matrix A. The entries of the latter are such that ai j = 1
if the vertices i and j are connected and ai j = 0 otherwise. For each node i , the
degree ki (A) = ∑

j �=i ai j is defined as the number of connections of that node, and
is therefore a local node-specific property. The degree sequence k(A) = {ki (A)}Ni=1
is the N -dimensional vector of degrees of all nodes.

In case of weighted3 undirected graphs, a network is specified by a symmetric
N × N weight matrix W where the entry wi j quantifies the intensity of the link
connecting nodes i and j . This includes the case wi j = 0 corresponding to nodes i
and j being not connected. Besides the degree (which is still defined as the number
of connections of a node, irrespective of their intensity), another local property that
can be introduced in this case is the strength si (W) = ∑

j �=i wi j , defined as the sum
of the weight of all links of vertex i . The strength sequence s(W) = {si (W)}Ni=1 is
the N -dimensional vector of strengths of all nodes.

2An undirected graph (or network) is a graph where no direction is specified for the edges. An
undirected graph is binary or simple if each pair of nodes i and j (with i �= j) is connected by at
most one edge, i.e. if there are no multiple edges between the same two nodes. We will also assume
the absence of self-loops (edges starting and ending at the same node) throughout the book.
3Aweighted graph (or network) is a graphwhere linksmay carry different intensities.When dealing
with weighted networks, throughout the book we will assume non-negative integer link weights
(i.e. wi j = 0, 1, 2 · · · + ∞) for simplicity. This corresponds to the assumption that an indivisible
unit of measure of link weights has been preliminary specified. Under this assumption, a weighted
network can also be regarded as a graph that is in general not simple, i.e. where multiple links of unit
weight are allowed between the same two nodes. We will still exclude the possibility of self-loops.
Ideally, one may think of link weights becoming continuous as the unit of measure is chosen to be
vanishingly small.
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In case of (either binary ofweighted) directed4 graphs, thematricesA andW are in
general not symmetric, and eachnode admits an in-degree kini (A) = ∑

j �=i a ji , anout-
degree kouti (A) = ∑

j �=i ai j , an in-strength sini (W) = ∑
j �=i w ji and an out-strength

souti (W) = ∑
j �=i wi j . Correspondingly, we can introduce the in-degree sequence

kin(A) = {kini (A)}Ni=1, the out-degree sequence kout (A) = {kouti (A)}Ni=1, the in-
strength sequence sin(W) = {sini (W)}Ni=1 and the out-strength sequence sout (W) =
{souti (W)}Ni=1.

The degree(s) and strength(s) defined above are in some sense the immediate, first-
order structural properties that can be measured in any network. For these reason, we
will refer to the degree and strength sequences as the local topological properties of
a network. To speak in general terms more easily, we will denote a generic sequence
of such local constraints with the vector C(G), where G denotes a generic graph
(either binary or weighted, either directed or undirected) and C denotes a generic
sequence of constraints (e.g. k or s) or a concatenation of more sequences (e.g. the
concatenation of kout and kin , or of sout and sin).

The importance of local topological properties comes from the fact that, in most
situations, they directly reflect the effects of ‘size’ or ‘importance’ of nodes. For
instance, more popular people naturally have a higher degree in a social network, and
morewealthy companies or countries naturally have a higher strength in an economic
network. Clearly, one expects the size and/or importance of nodes to have a strong
impact on the realized patterns of connections. For various reasons, one would like to
characterize this effect quantitatively by constructing (ensembles of) networks that
have the same local properties of a given real-world network. For instance, if one has
empirical access only to the degrees and/or strengths of nodes of a network, then the
best guess one can make about the unknown network is given by a suitable ensem-
ble of graphs matching the empirical local properties. This is the problem of network
reconstruction that will be treated extensively inChap.4. Another example is encoun-
teredwhen looking for higher-order patterns in a real network, i.e. for topological fea-
tures that cannot be explained or replicated starting from the knowledge of only the
local properties. In this case, which is the problem of pattern detection that will be
treated extensively inChap. 3, one requires a benchmarkmodel constructed fromonly
the local properties themselves. Both challenges require the introduction of ensem-
bles of networks with given local properties.

Having clarified the importance of constructing graph ensembles tailored on the
empirical values of the degrees and/or strengths of nodes, onemight at this point won-
der whether such values may be produced as random fluctuations around a common
average value (in which case the model would only require the average value as a
parameter, besides a choice of the probability distribution of the random fluctuations

4A directed graph is a graph where a direction is specified for each edge (self-loops are not allowed
in this case as well). A directed graph is binary (or simple) if any two nodes i and j are connected
in one of the following four mutually-exclusive ways: via only a directed link from i to j , via only
a directed link from j to i , via both such links, or via no link at all. A directed graph is weighted if
links can carry different intensities, including when they are pointing in opposite direction between
the same two nodes. Again, we will assume non-negative integer weights.
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http://dx.doi.org/10.1007/978-3-319-69438-2_3


12 2 Maximum-Entropy Ensembles of Graphs

around it) or whether more complicated and higher-dimensional models, controlling
the local constraints for each node separately, are needed. The answer to this question
has been given over decades of extensive empirical analyses which have conclusively
shown that the empirical values of the degrees and the strengths observed inmost real-
world networks are in some sense ‘irreducible’ to the outcome of any simple homo-
geneous model. For instance, in most real-world networks both the empirical degree
distribution5 and the empirical strength distribution6 turn out to be very broad, and
typically with a right tail decaying as a power law of the form P(x) ∝ x−γ , with
2 < γ < 3. In the abstract limit where the number of nodes becomes infinite, the
variance of these distributions diverges while the mean remains finite, implying that
the average value is not representative of the value of individual nodes. This signals
the absence of a typical scale for the degree or strength of nodes. For this reason, most
empirical networks are called scale-free [24]. The degree and strength distribution of
these networks is much broader thanwould be obtained under a simple homogeneous
network formation model with just a global constraint on e.g. the average degree or
the average strength of nodes, even after including noise or stochasticity.

For instance, the oldest and most popular random graph model, the Erdős-Rényi
(ER) model [25], constructs a simple binary random graph with N nodes by connect-
ing each (distinct) pair of these nodes with a given probability p. Since each node
has N − 1 potential other nodes to connect to, and since the same value p of the
probability is used for all pairs of nodes, it immediately follows that the expected7

degree of each node i has the same value 〈ki 〉 = p(N − 1). This is already an indi-
cation of the complete homogeneity of the ER model. Moreover, it is easy to show
that, for each node i , the probability for the degree ki taking a particular value k
is distributed binomially in k around the above expected value p(N − 1). Since a
binomial distribution is much narrower than typical empirical degree distributions,
it is intuitively clear that the latter cannot be regarded as typical realizations of the
ER model. This argument can be confirmed in various statistically rigorous ways,
although we will not focus on this issue in this book. Note that the parameter p has
a direct control on the expected total number of links 〈L〉 = pN (N − 1)/2, where
N (N − 1)/2 is the number of pairs of N nodes (i.e. the maximum possible number
of edges). Therefore one can regard the ER model as an ensemble of random graphs
with a global constraint on the expected total number 〈L〉 of links, or equivalently on
the expected average degree8 〈k̄〉 = 2〈L〉/N = p(N − 1). It is then clear that such
a global, overall constraint would not produce realistic network configurations. This

5The empirical degree distribution is defined, for a given network, as the fraction P(k) of nodes
that have degree k.
6The empirical strength distribution is defined, for a given network, as the fraction P(s) of nodes
that have strength s.
7Throughout the book, by expected value (or expectation) of a topological property we mean the
average of that property over the ensemble of random graphs under consideration. We denote
expectation values with angular brackets 〈·〉. The rigorous definition is given later in Eq. (2.7).
8The average degree in a simple undirected graph with N nodes is defined as k̄ = N−1 ∑N

i=1 ki
and necessarily equals 2L/N , where L is the total number of links.
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calls for more complicated models where the (expected) degree of each node can be
controlled independently of the degree of the other nodes.

An almost identical argument holds for the strengths. One can define theweighted
randomgraphmodel (WRG) [19] as theweighted counterpart of theERmodel,where
the only constraint is now the expected total weight 〈W 〉 of all links in the network, or
equivalently the expected average strength9 〈s̄〉 = 2〈W 〉/N . It can be shown that this
constraint can be implemented by going over all pairs of nodes and placing an edge of
weightw according to a geometric probability distribution having the same parameter
value for all node pairs. The resulting strength of all nodes is distributed according
to a negative binomial distribution with the same expected value. Empirical strength
distributions are therefore incompatible with typical realisations of the WRG. More
complicated models of weighted networks, with separately controllable strenghts,
are needed in order to restore compatibility with the heterogeneity of real-world
networks.

The above discussion clarifies that, in order to construct ensembles of constrained
networks that are both practically useful and theoretically sound, one should intro-
duce a way of controlling each local property (i.e. each degree and/or strength)
separately. It is useful at this point to look back at Fig. 2.1. We denote the particular
initial graph (step 1) byG∗ and the corresponding numerical value of the constraints
(step 2) by C∗ ≡ C(G∗). The third step will generate a collection of many graphs
{G} which include G∗ itself. It should be noted that the constraints C define the suf-
ficient statistics of the problem: the construction of the ensemble should be possible
by knowing only the value C∗ (i.e. skipping step 1) and no other property of the
graph G∗. While this idea is conceptually simple, implementing it correctly is very
challenging. Understanding the origins of this difficulty is a key step towards the
appreciation of the maximum-entropy method that will be described in Sect. 2.2. For
this reason, in the rest of this section we briefly review the problem by discussing
various alternative attempts at the construction of ensembles of graphs with local
constraints.

2.1.2 Computational Approaches

For concreteness, let us consider the case of binary undirected graphs, which is by
far the most frequently explored situation. We will consider many other ensembles
later in the book. The ensemble of binary undirected graphs with specified degree
sequence C∗ ≡ k∗ is known as the binary configuration model (BCM) [1, 2, 23].

Given a real-world binary undirected network G∗ ≡ A∗, an entirely ‘bottom-
up’ computational approach to the generation of the associated binary configuration
model with degree sequence k∗ ≡ k(A∗) consists in initially assigning each vertex
i a number of ‘edge stubs’ equal to the target degree k∗

i . Then, pairs of stubs are

9The average strength in a weighted undirected graph with N nodes is defined as s̄ = N−1 ∑N
i=1 si

and necessarily equals 2W/N , where W is the total weight of all links in the network.
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randomly matched avoiding the formation of self-loops and multiple links, until all
degrees reach their desired values (edge stub connection). Looking back at Fig. 2.1,
this implementation has the desirable property that one can start from ‘step 2’ in the
ensemble construction. Indeed, the edge stubs are precisely the half-edges portrayed
inside the second box in the picture. Unfortunately, if the values of the degrees are
too heterogeneous, this procedure is known to get stuck in configurations where ver-
tices requiring additional connections have no more eligible partners [1, 2]. Typical
realizations of the procedure share this problem, which therefore cannot be eas-
ily circumvented by simply aborting the unsuccessful realizations and starting over
again.

A popular alternative method is based on a ‘top-down’ implementation where the
entire real networkA∗ is taken as the initial configuration, and a family of randomized
variants is generated by iteratively applying a local rewiring algorithm (LRA). In
the LRA, two edges (A, B) and (C, D) are randomly selected and replaced by the
two edges (A, D) and (C, B), if the latter are both not already present [1, 2] (see
Fig. 2.2 for an illustration). Technically, the above procedure generates an ensemble
where all randomized networks have exactly the same degree sequence as the original
network.Thismethodhas been applied to various networks, including the Internet [2],
cellular networks [3] and food webs [8], in order to detect higher-order patterns
(such as clustering and motifs) not merely due to local constraints. Unfortunately,
this approach is time-consuming since many (a number R much larger than the
observed number of links L [1, 20], even if not rigorously specified) iterations of
the LRA are required to obtain a single randomized network, and the entire process
must be repeated several times to produce a large number M (again unspecified)
of randomized networks, on each of which any topological property X of interest
must be measured explicitly and averaged at the end to obtain an estimate for 〈X〉.
The computational time required to obtain 〈X〉 is therefore of the order O(M ·
TR · R) + O(M · TX ), where TR is the average time required to perform a single
successful rewiring step and TX is that required to compute X on a single network
in the randomized set. Moreover, even if the sufficient statistics of the problem is
the degree sequence k(A∗) alone, the above approach requires the entire original
network A∗ (or any other network with the same degree sequence, which is however
difficult to obtain from scratch due to the problems discussed above) as the starting
configuration, thus making use of much more information than required in principle.

Besides these practical limitations, the main problem of the LRA is the fact that
it is biased, i.e. it does not sample the desired ensemble uniformly. This has been
rigorously shown relatively recently [21, 26, 27]. For undirected networks, unifor-
mity has been shown to hold, at least approximately, only when the degree sequence
is such that [27]

kmax · k2/(k)2 	 N (2.1)

where kmax is the largest degree in the network, k is the average degree, k2 is the
second moment, and N is the number of vertices. Clearly, the above condition sets
an upper bound for the heterogeneity of the degrees of vertices, and is violated if the
heterogeneity is strong. This is another indication that the available methods break
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Fig. 2.2 An illustration of
the local rewiring algorithm
whose iteration allows to
computationally explore the
configuration model with
sharp constraints (upper
panel, for undirected
networks; lower panel, for
directed networks)

down for ‘strongly heterogeneous’ networks. As we discuss later, most real-world
networks are found to fall precisely within this class.

For directed networks, where links are oriented and the constraints to be met are
the numbers of incoming and outgoing links (in-degree and out-degree) separately,
a condition similar to Eq. (2.1) holds, but there is also the additional problem that
the LRA is non-ergodic, i.e. it is in general not able to explore the entire ensemble of
networks [26]. The violation of uniformity and ergodicity in the LRA implies that the
average quantities over the graphs it generates are biased, i.e. they do not correspond
to the correct expectations.

It has been shown that, in order to restore ergodicity, it is enough to introduce
an additional ‘triangular move’ inverting the direction of closed loops of three ver-
tices [26]. However, in order to restore uniformity, one must do something much
more complicated: at each iteration, the attempted ‘rewiring move’ must be accepted
with a probability that depends on some complicated property of the current network
configuration [21, 26, 27]. Since this property must be recalculated at each step, the
resulting algorithm is extremely time consuming.

Other recent alternatives [28–30] rely on theorems, such as the Erdös-Gallai [31]
one, that set necessary and sufficient conditions for a degree sequence to be graphic,
i.e. realized by at least one graph. These ‘graphic’ methods exploit such (or related)
conditions to define biased sampling algorithms in conjunction with the estima-
tion of the corresponding sampling probabilities, thus allowing one to statistically
reweight the outcome and sample the ensemble effectively uniformly [28–30]. Del
Genio et al. [28] show that, for networks with power-law degree distribution of the
form P(k) ∼ k−γ , the computational complexity of sampling one graph using their
algorithm is O(N 2) if γ > 3. However, when γ < 3 the computational complexity
increases to O(N 2.5) if

kmax <
√
N (2.2)



16 2 Maximum-Entropy Ensembles of Graphs

and toO(N 3) if kmax >
√
N . Theupper bound

√
N is a particular case of the so-called

‘structural cut-off’ that wewill discuss inmore detail later. For themoment, it enough
for us to note that Eq. (2.2) is another indication that, for strongly heterogeneous
networks, the problem of sampling gets more complicated. As we will discuss later,
most real networks violate Eq. (2.2) strongly.

So, while ‘graphic’ algorithms do provide a solution for every network, their
complexity increases for networks of increasing (and realistic) heterogeneity. Amore
fundamental limitation is that they can only handle the problem of binary graphs
with given degree sequence. The generalization of these methods to other types of
networks and other constraints is not straightforward, as it would require the proof
of more general ‘graphicality’ theorems, and ad hoc modifications of the algorithm.

For what concerns weighted networks, the available ‘hard’ algorithms regard
each link weight as an integer multiple w of a fundamental unit of weight, transform
each edge of weight w into w edges of unit weight and rewire the latter as in the
unweighted case, now ensuring that the strength of each vertex is preserved. This
means replacing a list of L∗ ≤ N (N − 1)/2 weighted links, summing up to a total
weightW ∗ = ∑

i< j w
∗
i j , withW

∗  N (N−1)/2 unweighed links. As real networks
have broadly distributed weights summing up to a largeW ∗, this procedure becomes
very time consuming as unfeasibly many rewiring steps per randomized variant must
be performed. Moreover, much less is known about the potential bias produced by
this algorithm in the case of weighted networks.

2.1.3 Analytical Approaches

In contrast with computational methods, analytical approaches seek to provide
explicit mathematical expressions that directly estimate the ensemble averages of
topological properties, without generating the ensemble computationally. Two main
approaches exist. One makes use of generating functions for the relevant probability
distributions [23]. For the binary configuration model, the key quantity is the gen-
erating function g(z) = ∑

k z
k P(k) of the degree distribution. Unfortunately, this

method assumes the network to be infinite and locally tree-like (even if in some
cases this approximation turns out to perform unexpectedly well even beyond its
formal range of applicability [32]), and is thus in general inappropriate if the size
of the network is small and if the input degree distribution can only be realized by
dense and/or clustered networks. In this approach, clustered or dense networks can
only be generated by imposing additional constraints besides the degree sequence,
such as the number of triangles attached to vertices [33], thus leading to a different
ensemble which is not the one we are seeking to characterize. A different approach
looks for an analytical expression for the probability pi j that the vertices i and j
are connected in the randomized ensemble [4]. Due to its probabilistic nature, this
approach generates an ensemble with soft constraints, i.e. where graphs violating
the constraints are present and assigned non-zero probabilities. The constraints are
still realized on average, i.e. the expectation value 〈C〉 of C is still equal to C∗. The
popular expression used for pi j is
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pi j = k∗
i k

∗
j

2L∗ (2.3)

where L∗ ≡ L(A∗) = ∑
i ki (A

∗)/2 = ∑
i< j a

∗
i j is the total number of links.

While the expected degree 〈ki 〉 = ∑
j pi j generated by the above formula coincides

(approximately, as we discuss below) with the desired degree k∗
i , the probability pi j

may exceed 1 for pairs of highly connected nodes such that k∗
i k

∗
j > 2L∗. In general,

only if the degree sequence is such that

k∗
i <

√
2L∗ =

√∑

j

k∗
j ∀i (2.4)

then using Eq. (2.3) on the real networkA∗ will not lead to the above problem.While
the above condition is typically obeyed by networks with narrow degree distribu-
tion it is generally violated by scale-free networks displaying a power-law degree
distribution P(k) ∼ k−γ , and this violation becomes stronger and stronger as the
density of the network increases. In particular, it is easy to see that in order to ensure
Eq. (2.4) the maximum degree k∗

max = maxi k∗
i in the network should not exceed the

so-called structural cut-off kc ∼ N 1/2 [34]. This is particularly evident for sparse
networks where the average degree k̄ = ∑

i ki/N = 2L/N remains constant as N
increases, so that Eq. (2.4) remains valid only if kmax <

√
2L ∼ N 1/2. By contrast,

extreme value theory shows that in networks with degree distribution P(k) ∼ k−γ

the maximum degree scales as k∗
max ∼ N 1/(γ−1), so that if γ < 3 (as observed in

most real-world scale-free networks) then k∗
max > N 1/2 which exceeds kc.

Loosely speaking, themeaning of pi j being larger than 1 for some pairs of vertices
in Eq. (2.3) is that i and j should be connected by more than one undirected edge
in order to actually realize the desired degree sequence. Also, since the desired
equality 〈ki 〉 = k∗

i is only ensured if one lets the sum in
∑

j pi j = 〈ki 〉 run over all
vertices including i itself, onemust allow the presence of self-loops in the randomized
networks. Thus, even if this is not evident at a first glance, the ensemble generated
by Eq. (2.3) does not only contain binary and loop-less undirected graphs and is thus
not a proper null model for an empirical binary loop-less network A∗ with degree
sequence k∗ violating Eq. (2.4), as is typically the case for real-world networks with
broad degree distributions.

Anelegant proof that the correct ensemble probability pi j for loop-less graphswith
no multiple connections differs from Eq. (2.3) has been proposed [5] and re-derived
within the framework of maximum-entropy graph ensembles [10]. An independent
proof of the inadequacy of Eq. (2.3) is that it does not generate the graph A∗ with
maximum likelihood [35]. These results show that the functional form of pi j in
Eq. (2.3) is intrinsically problematic and does not give highest likelihood to A∗ and
to all other graphs with the same degree sequence as k∗.

We can brieflymake a similar comment for weighted networkswith given strength
sequence s∗, an ensemble knownasweighted configurationmodel [11] (anddiscussed
at length in Sect. 2.2.3 and Chaps. 3 and 4). A (naïve, yet widely used) generaliza-

http://dx.doi.org/10.1007/978-3-319-69438-2_3
http://dx.doi.org/10.1007/978-3-319-69438-2_4
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tion [11, 36] of the (naïve, yet widely used) expression (2.3) states that the expected
weight of the link between nodes i and j in this ensemble is

〈wi j 〉 = s∗
i s

∗
j

2W ∗
tot

(2.5)

whereW ∗
tot ≡ Wtot (W∗) = ∑

i si (W
∗)/2 = ∑

i< j w
∗
i j is the total weight. The above

expression has been shown to have as many limitations as its binary counterpart, and
to be incorrect [18]. A simple signature of this inadequacy is the fact that, although
Eq. (2.5) is treated as an expected value, there is no indication of the probability
distribution fromwhich it is derived. Therefore, it is impossible to derive the expected
value of topological properties that are nonlinear functions of the weights.

Therefore, while the available analytical methods are useful to characterise arti-
ficially generated networks with special properties, they cannot be used to correctly
describe ensembles of networks that are realistically small, clustered, or dense.Unfor-
tunately, the above limitations are generally ignored, and Eqs. (2.3) and (2.5) are
frequently used beyond their limits of applicability to estimate connection probabil-
ities and expected link weights. Analogous problems exist in the case of directed
networks.

2.2 The Maximum-Entropy Method

The discussion in the previous section highlights that none of the above implemen-
tations succeeds in obtaining the properties of ensembles of constrained networks
such that two requests are met simultaneously:

• the method is general and works for any network, even if displaying small size,
high density and large clustering;

• expected values across the ensemble are unbiased and can be computed analyti-
cally, without sampling the configuration space explicitly.

In this section, we introduce a different method that fulfills the above criteria. The
method is based on themaximum-entropy principle and leads to exact expressions for
the probability of occurrenceof anygraph. It therefore allowsus to calculate, correctly
and analytically, the expected topological properties of graphs in the ensemble. We
first illustrate the methodology in full generality, i.e. by considering an abstract
choice of topological constraints, and then work out two explicit examples in detail.
More examples will be given throughout the rest of the book when needed to address
specific problems.

Looking again at Fig. 2.1, let us denote by G a generic network in the ensemble,
and byG∗ the particular original network (wemay think of it as the empirical network
we need to randomize). The chosen constraint isC∗ = C(G∗). The ensemble consists
of all possible networks {G} with the same number N of nodes and of the same type
(undirected/directed, binary/weighted, etc.) as G∗, and includes G∗ itself. Note that
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G can always be thought of as a matrix with entries {gi j }, where gi j represents the
(either binary or non-negative) weight of the edge (i, j). Any topological property X
evaluates to X (G)whenmeasured on the particular networkG, i.e. it is an (arbitrarily
complicated) function of the entries {gi j }.

Each graphG in the ensemble has an occurrence probability P(G) whose form is
determined by the particular constraints enforced. This probability must always be
such that ∑

G

P(G) = 1 (2.6)

where the sum runs over all graphs in the ensemble. The expectation or mean value
of any topological property X is the ensemble average

〈X〉 ≡
∑

G

X (G)P(G). (2.7)

At this point, we look for the probability distribution that maximizes the Shannon-
Gibbs entropy

S(P) ≡ −
∑

G

P(G) ln P(G) (2.8)

subject to the normalization condition (2.6) and to the desired constraints C∗. The
entropy S(P) is a measure of the level of uncertainty, or randomness, in the outcome
of the random variable described by the probability distribution P . Variables that
have a certain outcome, i.e. whose probability is one for such outcome and zero for
all other outcomes, correspond to zero entropy. On the contrary, variables that are
maximally uncertain, i.e. for which every possible outcome has exactly the same
probability, yield the maximum value10 of the entropy. Maximizing the entropy sub-
ject to constraints is widely used in statistical mechanics and information theory, and
in general for problems with incomplete information [37–40]. The deep meaning
of constrained entropy maximization is that, in absence of any information other
than the knowledge of C∗, the probability should make the outcome of the random
variable (C in this case) maximally uncertain provided that the constraints are met.
Otherwise, the probability would be favouring specific configurations, making them
more predictable than others and introducing an unjustified bias. Now, the solution
to the entropy maximization problem depends on whether we want the constraints
C∗ to be hard or soft.

Enforcing hard constraints means that we only allow (i.e. assign non-zero prob-
ability) the graphs that match the constraints exactly, i.e. such that C(G) = C(G∗).
This means that, in the above definition of entropy, we can restrict the sum to such
configurations only. It is easy to see that the resultingmaximum-entropy distribution,
which is known as themicrocanonical ensemble in statistical physics, is uniform over

10The maximum value of the entropy S(P) depends on the total number of configurations over
which the sum in Eq. (2.8) runs. This number can be rescaled to one for all probability distributions,
upon normalizing S(P) by the maximum value itself.



20 2 Maximum-Entropy Ensembles of Graphs

the set of graphs that match the hard constraints:

Pmic(G) =
{
1/ΩC∗ if C(G) = C(G∗)
0 otherwise

(2.9)

whereΩC∗ denotes the number of graphs for whichC(G) = C∗. An intuitive picture
ofmicrocanonical ensembles of graphs is given in Fig. 2.3. SinceΩC∗ is a combinato-
rial quantity, the above result establishes an important connection between statistical
physics, probability theory and combinatorics. This connection will be explored in
detail in Chap. 5. At this point, one should note that, while for simple constraints
(such as the total number of links) it is easy to compute ΩC∗ , for more complicated
constraints (including the degree sequence and the other local constraints we are
interested in this book) this can become a very hard task. For instance, enumerat-
ing the number of graphs with a given degree sequence k∗ is an open problem, and
asymptotic expressions are known only in some restricted regime of density of the
graph, i.e. under certain conditions thatk∗ must obey. For this reason,microcanonical
graph ensembles are hard to deal with analytically and they are most often sampled
computationally using the techniques we described in Sect. 2.1.2. However, as we
discussed, these techniques are either computationally unfeasible or affected by the
problem of bias, i.e. they do not sample the space of graphs according to the correct
uniform probability (2.9). The computational difficulties are therefore related to the
difficulties in calculating ΩC∗ explicitly.

On the other hand, enforcing soft constraints means requiring that the desired
value C∗ is met only on average over the ensemble, or in other words that the
constraint is 〈C〉 = C∗. This requirement defines what is known as the canonical
ensemble in statistical physics. However, unlike the traditional examples in physics,
where the total energy is the only (scalar) constraint, for the cases of interest here the
number of constraints grows linearly with the number of nodes in the system, since
C is a vector of node-specific quantities. This important difference has enormous
consequences, as we will discuss in Chap.5. The form of the probability Pcan in the
canonical ensemble is found by requiring that, in addition to Eq. (2.6), the constraints
are given by

〈C〉 =
∑

G

C(G)Pcan(G) = C∗. (2.10)

It is easy to show [10] that the corresponding solution to the constrained entropy
maximization problem is found by introducing a vector of Lagrange multipliers θ ,
one for each of the constraints in C. The resulting conditional (on the value of θ )
probability reads

Pcan(G|θ) = e−H(G,θ)

Z(θ)
(2.11)

where H(G, θ) is the so-called graph Hamiltonian defined as the linear combination

http://dx.doi.org/10.1007/978-3-319-69438-2_5
http://dx.doi.org/10.1007/978-3-319-69438-2_5
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Fig. 2.3 Difference between microcanonical and canonical ensembles. Top: the microcanonical
probability Pmic is non-zero only for the subset of graphs that realize the enforced constraints C∗
exactly. Bottom: by contrast, the canonical probability Pcan is non-zero for all graphs with the
prescribed number of nodes, including those that violate the constraints (thus ranging from the
empty graph to the complete graph), and has a constant value Pcan for all graphs for which Pmic is
non-zero. In general, Pcan has the same value for all graphs that have the same value of C

H(G, θ) ≡
∑

a

θaCa(G) = θ · C(G) (2.12)

and the normalizing quantity Z(θ) is the so-called partition function, defined as

Z(θ) ≡
∑

G

e−H(G,θ). (2.13)

The above results show that the graph probability Pcan(G|θ) always depends on the
value θ , which in turn depends on the constraints considered. As a consequence, we
can rewrite Eq. (2.7) more explicitly as a function of θ :

〈X〉θ ≡
∑

G

X (G)Pcan(G|θ) (2.14)

where 〈·〉θ denotes that the ensemble average is evaluated at the particular parameter
choice θ . The above expression clarifies that the expectation value of any topolog-
ical property X depends on the specific enforced constraints through θ . Different
choices of the constraints imply different values of θ , P(G|θ) and 〈X〉θ . Impor-
tantly, Pcan(G|θ) depends on G only through C(G). This automatically implies that
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the canonical ensemble is unbiased, i.e. graphs with the same value of the constraints
are assigned equal probability. A pictorial representation of this property is given in
Fig. 2.3.

Now, a crucial difference between the microcanonical and canonical ensembles
is that, if C∗ is a vector of local topological constraints, Pmic cannot be exactly
factorized into probabilities that involve distinct pairs of nodes, whereas Pcan can.
This implies that the exact computation of θ∗ is feasible even if that ofΩC∗ is not. For
these reasons, which will be illustrated in explicit examples later on, the canonical
ensemble offers a viable and exact solution to the problem of constructing ensembles
of graphs with local constraints. It will be the main tool we will use throughout the
rest of the book. In statistical physics, results obtained within the canonical ensemble
are generally expected to become equivalent to those that would be obtained within
the microcanonical one in the so-called thermodynamic limit.11 This notion is called
ensemble equivalence. Whether or not ensemble equivalence holds also in the case
of local constraints is an intriguing question, and its answer is postponed to Chap. 5.
Here and in Chaps. 3 and 4, we assume that enforcing the constraint C∗ softly is
a perfectly acceptable strategy, for instance because its measured value may have
been corrupted by noise or error, and we are therefore inclined to accept other values
around C∗ in the ensemble construction.

2.2.1 Maximum-Likelihood Parameter Estimation

Maximum-entropy graph ensembles generated by Eq. (2.11) have been used exten-
sively to characterize mathematically networks with specified properties [5, 7, 10,
17, 18]. However, traditionally the Lagrange multipliers {θa} have been considered
as free parameters, generally drawn from carefully chosen probability densities [10,
17, 18] that allow for analytical results, in terms of which the properties of the net-
work model have been investigated. In most cases, the aim has been to explore the
topological properties in the thermodynamic limit N → ∞, where N is the number
of vertices of the network. This means that only generic statistical properties of real
networks, such as a power-law degree distribution with a certain exponent, have been
used to generate the ensemble. However, this implies that the specific properties of a
particular real network (such as deviations of individual vertices from thefitted degree
distribution, the intrinsic finiteness of the system, etc.) have been ignored and, more
importantly, that it has not been possible to establish any correspondence between
the vertices of the real network and those of the model. Thus these approaches have
not allowed maximum-entropy graph ensembles to be considered as null models
of a particular real network in order to detect empirical topological patterns, or to

11In statistical physics, the thermodynamic limit is defined as the limit where the number of fun-
damental units that describe the microscopic configurations of the system diverges. In our graph
ensembles, we regard the nodes as the units and their connections as the interactions.

http://dx.doi.org/10.1007/978-3-319-69438-2_5
http://dx.doi.org/10.1007/978-3-319-69438-2_3
http://dx.doi.org/10.1007/978-3-319-69438-2_4
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reconstruct network topology from partial information, or even to enumerate graphs
compatible with a specified vector of constraints.

Now, following [41], we make a step forward and construct, for a given choice
of the constraints, the particular maximum-entropy graph ensemble representing the
family of correctly randomized counterparts of a given real network G∗. Explicitly,
we consider a canonical ensemble of graphs with the same number N of vertices as
the real network, and for a given choice of the constraints we fit the model defined by
Eq. (2.11) to the empirical networkG∗. To this end, we exploit previous results [35]
showing that maximum-entropy graph ensembles defined by Eq. (2.11) are a par-
ticular class of models for which the maximum-likelihood principle provides an
excellent way to estimate parameters. In particular, it can be easily shown [35] that
the log-likelihood

L (θ) ≡ ln P(G∗|θ) = −H(G∗, θ) − ln Z(θ) (2.15)

is maximized by the particular value θ∗ such that the ensemble average 〈Ca〉θ∗ of
each constraint Ca equals the empirical value Ca(G∗) measured on the real network:

〈C〉∗ ≡ 〈C〉θ∗ =
∑

G

C(G)P(G|θ∗) = C(G∗) (2.16)

where we have used 〈·〉∗ as a shorthand notation to indicate the ensemble average
〈·〉θ∗ evaluated at the particular value θ∗. The above results means that the maximum
likelihood principle indicates, for maximum-entropy graph ensembles, precisely the
parameter choice that ensures that the desired constraints are met. This is not true
in general: in other network models, tuning the average values of the topological
properties of interest to their empirical values requires a parameter choice which
in general does not maximize the likelihood to obtain the real network [35], thus
introducing a bias in the analysis [42–44].

Solving the maximum-likelihood equations only takes a computational time TE

which is much shorter than the time required to measure any topological property
of typical interest. Moreover, the time required to compute the expectation value
〈X〉 of a given property X analytically (formally corresponding to an average over a
huge number of randomized configurations) is the same as the time TX required to
compute the same property on the single original network. The artificial generation
of many randomized variants of the original network is no longer required. Therefore
this method takes only a total time O(TE + TX ) to obtain 〈X〉 analytically, which is
incredibly shorter than the aforementioned time O(M ·TR · R)+O(M ·TX ) required
by the LRA to obtain 〈X〉 only approximately. Importantly, TE is independent of
the complexity of the topological property X to measure, which means that for
complicatedpropertiesO(TE+TX ) = O(TX ). Therefore for any topological property
X which can be measured in a large but still reasonable time O(TX ) on the real
network, the computation of its expectation value 〈X〉 will require the same time
O(TX ). If the time required in order to obtain 〈X〉 is too large, it is because the time
required to measure X is too large as well. In other words, the property X is too
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complicated to be computed on the real network itself. In such a case, the problem
is not due to the method, but to a demanding choice of X for that particular network.

Note that inEqs. (2.14) and (2.16) the expectation values and themodel parameters
play inverted roles: while in Eq. (2.14) the expectation values are obtained as a
function of the parameters θ which can be varied arbitrarily, in Eq. (2.16) the observed
constraints, which are measured on the particular real network and are therefore
given as an input, are used to fix the model parameters to the values θ∗. Once the
parameters solving the equations are found, they can be directly used to obtain the
expectation value 〈X〉 and standard deviation σ [X ] of any topological property X
of interest analytically (details on how to calculate standard deviations can be found
in [41]). When useful, this also allows one to obtain a z-score representing the
number of standard deviations by which the randomized value 〈X〉 differs form the
observed value X (A∗). The possibility to obtain the standard deviations and z-scores
is very important, because it allows one to assess which topological properties X
are consistent with their randomized value 〈X〉 within a statistical error, and which
deviate significantly from the null expectation. In the former case, one can conclude
that the enforced constraints completely explain the higher-order property X . In
the latter case, the observed property cannot be traced back to the constraints, and
therefore requires additional explanations or generating mechanisms besides those
required in order to explain the constraints themselves.Wewill discuss this procedure
in more detail in the next chapter.

2.2.2 A First Worked-Out Example: Binary, Undirected
Networks with Constrained Degree Sequence

In the binary, undirected case, each graphG is completely specified by its (symmetric)
adjacency matrix A. An important ensemble of binary undirected graphs is one
where the constraint is the degree sequence [10]. This null model is also known as
configuration model (CM). In our formalism this model is implemented by defining
the following Hamiltonian:

H(A) =
∑

i

θi ki (A) =
∑

i

∑

j<i

(θi + θ j )ai j (2.17)

and one can show [10] that this allows one to write the partition function as

Z(θ) ≡
∑

A

e−H(A,θ) =
∏

i

∏

j<i

(1 + xi x j ) (2.18)

and the graph probability as
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P(A) =
∏

i

∏

j<i

p
ai j
i j (1 − pi j )

1−ai j (2.19)

where
pi j = xi x j

1 + xi x j
(2.20)

(with xi ≡ e−θi ) is the probability that a link exists between vertices i and j in the
maximum-entropy ensemble of binary undirected graphs characterized by the given
degree sequence as the constraint.

The maximum-likelihood condition [41] prescribes to find the solution {x∗
i }Ni=1 to

the equations

〈ki 〉 =
∑

j �=i

xi x j

1 + xi x j
= ki (A∗) ∀i (2.21)

by choosing the imposed constraint to be the empirical degree sequence {ki (A∗)}Ni=1
of the particular real networkA∗ or, equivalently, by finding the values of the parame-
ters {x∗

i }Ni=1 that maximize the likelihood P(A∗) [35, 41]. Inserting the {x∗
i }Ni=1 into

Eq. (2.20) allows one to easily compute the expectation value 〈X〉∗ of any topological
property X analytically, without generating the randomized networks explicitly [41].

Thus, Eq. (2.20) yields the exact value of the connection probability in the ensem-
ble of randomized networks with the same average degree sequence as the empiri-
cal one and Eq. (2.21) shows that, by construction, the degrees of all vertices are
special local quantities whose expected and empirical values are exactly equal:
〈ki 〉∗ = ki (A∗). It follows that the pi j coefficients can be calculated by using any
of the networks in the corresponding degree sequence-constrained microcanonical
ensemble.

The expectation value of any higher-order topological property can be derived
exploiting the fact that 〈ai j 〉 = pi j and that different pairs of vertices are statistically
independent, which implies 〈ai j akl〉 = pi j pkl if (i, j) and (k, l) are distinct pairs of
vertices, whereas 〈ai j akl〉 = 〈a2i j 〉 = 〈ai j 〉 = pi j if (i, j) = (k, l).

2.2.3 A Second Worked-Out Example: Weighted, Undirected
Networks with Constrained Strength Sequence

In the weighted, undirected case, each graph G is completely specified by its (sym-
metric) non-negative weight matrix W whose entries wi j will be understood as
integer-valued. The ensemble with local constraints is in this case known asweighted
configuration model (WCM) [11] and specifies the strength sequence as the con-
straint. The Hamiltonian therefore reads

H(W) =
∑

i

θi si (W) =
∑

i

∑

j<i

(θi + θ j )wi j (2.22)
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and one can show that this allows to write the partition function as [10]

Z(θ) ≡
∑

W

e−H(W,θ) =
∏

i

∏

j<i

(1 − xi x j )
−1 (2.23)

and the graph probability as [18]

P(W) =
∏

i

∏

j<i

qi j (wi j ) (2.24)

where
qi j (w) = (xi x j )

w(1 − xi x j ) (2.25)

(with xi ≡ e−θi ) is the probability that a link of weight w exists between vertices i
and j in the maximum-entropy ensemble of weighted, undirected graphs, subject to
specifying the given strength sequence as the constraint.

If the latter is chosen to be the empirical strength sequence {si (W∗)} of the par-
ticular real network W∗, then Eq. (2.25) yields the exact value of the connection
probability in the ensemble of randomized weighted networks with the same aver-
age strength sequence as the empirical one, provided that the parameters {xi }Ni=1 are
set to the values {x∗

i }Ni=1 that maximize the likelihood P(W∗) [41]. These values are
the solution of the following set of N coupled nonlinear equations:

〈si 〉 =
∑

j �=i

xi x j

1 − xi x j
= si (W∗) ∀i. (2.26)

Once the values {x∗
i }Ni=1 are found, they are inserted into Eq. (2.25)which allows to

easily compute the expectation value 〈X〉∗ of any topological property X analytically.
Equation (2.26) shows that, by construction, the strengths of all vertices are special
local quantities whose expected and empirical values are exactly equal: 〈si 〉∗ =
si (W∗).

The expectation value of any higher-order topological property can be derived
exploiting the fact that 〈wi j 〉 = ∑

w wqi j (w) = xi x j/(1 − xi x j ), and that different
pairs of vertices are statistically independent, which implies 〈wi jwkl〉 = 〈wi j 〉〈wkl〉
if (i − j) and (k− l) are distinct pairs of vertices, whereas 〈wi jwkl〉 = 〈w2

i j 〉 if (i − j)
and (k − l) are the same pair of vertices. The expected value of the power of the
weight between vertices i and j is calculated as follows:

〈wα
i j 〉 ≡

∑

w

wαqi j (w) = (1 − xi x j )Li−α(xi x j ) (2.27)

where Lin(z) denotes the Polylogarithm function defined as
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Lin(z) ≡
∞∑

l=1

zl

ln
. (2.28)

The adjacencymatrix representing the existence of a link (irrespective of its intensity)
between vertex i and vertex j is derived from the weight matrix by setting ai j =
Θ(wi j ), where Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise. The probability that
vertices i and j are connected, irrespective of the edge weight, is now 〈ai j 〉 = pi j ≡
1−qi j (0) = xi x j . In analogy with the expectation values of products of weights, we
have 〈ai j akl〉 = pi j pkl if (i − j) and (k − l) are distinct pairs of vertices, whereas
〈ai j akl〉 = 〈a2i j 〉 = 〈ai j 〉 = pi j if (i − j) and (k − l) are the same pair of vertices.

2.3 Comparing Models Obtained from Different
Constraints

The two worked out examples considered above will be used extensively throughout
this book, together with other models. When multiple models are applied to the same
set of network data, one needs a rigorous statistical procedure to compare them and
choose, loosely speaking, the ‘best one’. In fact, judging a model purely on the basis
of its performance in reproducing the observed trends represents a naïve way of
proceeding exposed to many risks, the most dangerous one being that of preferring
models that overfit the data via redundant parameters that have high inter-correlations
and provide spurious information on the system [45, 46]. For instance, alternative
models are often compared exclusively in terms of the values of their likelihood
functions evaluated in their stationary points: the higher the value, the better the
model is expected to describe the considered network. However, this procedure lacks
a rigorous statistical justification and does not address the parsimony of the models,
e.g. the number of parameters.

On the contrary,wewould like to rely on a criterion able to unambiguously identify
not only the most effective null model in explaining empirical data, but also the most
statistically correct one. A more appropriate way of testing the effectiveness of two
competing null models (say NMi and NMj , where NMj contains extra parameters
with respect to NMi ) is the Likelihood Ratio Test (LRT) [47], which prescribes to
calculate the quantity

DNMi /NMj ≡ −2(LNMi (θ
∗
i ) − LNMj (θ

∗
j )) (2.29)

(where the symbols θ i and θ j indicate the two different sets of Lagrange multipliers
that maximize the likelihood of the two models) and compare it to some threshold
value determined by some chosen significance level. If DNMi/NMj is smaller than
the threshold, then model NMj should be rejected even though its log-likelihood is
higher than that of NMi .
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However, the LRT suffers from some limitations [47]. One lies in the fact that
the competing null models have to be nested: NMi has to be a special case of NMj .
Another limitation has to do with the number of models that can be tested: only two
alternative hypoteses at a time can be compared, thus making a global ranking of all
the models in our set impossible.

So, we prefer a criterion which is suitable for more than two, possibly not nested,
competing null models. The Akaike Information Criterion (AIC) [45, 46, 48] is one
such criterion. It prescribes to calculate the quantity

AIC∗
NMi

≡ 2KNMi − 2LNMi (θ
∗
i ) ∀i (2.30)

for every null model in the set and then choose the model with the lowest value.
Since the above quantity is (twice) the difference between the number of parameters
K of null model NMi and its log-likelihood evaluated in its maximum, such pro-
cedure satisfies all our requirements: it is likelihood-based, it discounts the number
of model parameters and allows for a comparison among several (not necessarily
nested) models.

However, whenever the number n of empirical observations becomes too small
with respect to the number of parameters (a rule of thumb being n/KNMi < 40 [45,
46]) the modified quantity

AICc∗
NMi

≡ AIC∗
NMi

+ 2KNMi (KNMi + 1)

n − KNMi − 1
, (2.31)

providing an extra correction term further penalizing models with many parameters,
should be used. When n  K 2

NMi
, AICc converges to AIC and the usual form is

recovered. Notice that n has no subscript because the comparison between different
null models has to be carried on the same set of observations: naturally, this holds
true also for AIC and, generally speaking, for all model selection methods. More
precisely, in all the cases of interest for us, our samples will be constituted by the
entries of the adjacencymatrix, i.e. n = N (N−1)/2 observations when dealing with
undirected networks and n = N (N − 1) observations when dealing with directed
networks.

Both AIC and AICc select the most effective model in explaining observations,
avoiding (or, at least, strongly reducing) the risk of choosing overfitting models.
However, to quantify the relative improvement brought about by the best model, the
so called Akaike weights can be computed as follows:

wAIC
NMi

≡ e− ΔNMi
2

∑R
r=1 e

− ΔNMr
2

(2.32)

where ΔNMi ≡ AIC∗
NMi

− min{AIC∗
NMi

}Ri=1, R being the total number of consid-
ered null models. The Akaike weight of a specific model is usually interpreted
as the probability that that model is, in fact, the best one. Models with Δ ≤ 2
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are given substantial statistical support, models with 4 ≤ Δ ≤ 7 are given less
support and models with Δ > 10 have essentially no support [45, 46, 48–50]. Con-
fidence intervals can also be defined [45, 46, 48–50].

An alternative criterion to AIC, theBayesian Information Criterion (BIC) [45, 46,
48–50], has also been proposed and the corresponding weights defined accordingly.
The only, apparently simple but actually substantial, difference lies in the term to be
discounted from the maximized likelihood:

BIC∗
NMi

≡ KNMi ln n − 2LNMi (θ
∗
i ) ∀i. (2.33)

The first addendum does not only account for the number of parameters, KNMi , but
also for the cardinality of the sample, n. Since BIC discounts the sample cardinality
from the very beginning, there is no need to define a corrected Bayesian Information
Criterion analogous to AICc. The Bayesian weights are defined analogously to the
Akaike weights:

wBIC
NMi

≡ e− ΔB
NMi
2

∑R
r=1 e

− ΔB
NMr
2

(2.34)

where now ΔB
NMi

≡ BIC∗
NMi

− min{BIC∗
NMi

}Ri=1, R being the total number of con-
sidered null models. Criteria to interpret BIC weights follow the same lines stated
for AIC weights [45, 46, 48–50].

Generally speaking, because of the extra term ln n, BIC is believed to be more
restrictive than AIC, as the former favors models with a lower number of parameters
than those favored by the latter [45]. However, which criterion performs best, and
under which conditions, is still debated and other model-selection methods (such
as multimodel inference, where some form of average over different models is per-
formed [45]) have been proposed. In this book we will use both criteria and compare
them when necessary.
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Chapter 3
Pattern Detection

In truth at first Chaos came to be, but next wide-bosomed Earth,
the ever-sure foundation of all the deathless ones who hold the
peaks of snowy Olympus, and dim Tartarus in the depth of the
wide-pathed Earth, and Eros, fairest among the deathless gods,
who unnerves the limbs and overcomes the mind and wise
counsels of all gods and all men within them.

—Hesiod, Θεoγ oνια

Abstract Here we show that the maximum-entropy method introduced in the previ-
ous chapter can be used to define various benchmarks (i.e. null models) to assess the
presence of virtually any structural pattern of interest in a real network. Such patterns
include assortativity, clustering, reciprocity, motifs and possibly the weighted coun-
terparts of many of these properties. They are detected as statistically significant
deviations of the real network from the random benchmark. We apply our toolkit
to various biological, transportation, economic and financial networks. Importantly,
since the maximum-entropy method allows for any level of density or clustering,
the same methodology can be applied with equal and full reliability across all the
networks considered. The results of this analysis may therefore differ from the cor-
responding results that would be obtained using alternative methods that do require
some (often unverified) assumption of a sparse or tree-like topology. We indeed
identify clear patterns, some of which turn out to be unaccessible or incorrectly
interpretable using other methods, in the analysis of degree-degree and strength-
strength correlations, anomalously dense connections in the neighborhoods of nodes
and statistically surprising abundances of dyadic and triadic motifs. Incidentally,
some of the detected motifs turn out to provide early-warning signals of the 2008
financial crisis in theDutch interbank network and ameasure of temporal (in)stability
of economic networks, leading to a sort of ‘equilibrium’ and ‘out of equilibrium’
classification.

© The Author(s) 2017
T. Squartini and D. Garlaschelli, Maximum-Entropy Networks,
SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-69438-2_3
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3.1 Detecting Assortativity and Clustering

We start with the problem of identifying and quantifying two important structural
properties in real networks: assortativity, i.e. the tendency of nodes of similar degree
to connect to each other, and clustering, i.e. the tendency of triples of nodes to
connect together. We discuss the case of binary undirected networks in Sect. 3.1.1
and that of binary directed networks in Sect. 3.1.2. The case of weighted networks
will be considered later in Sect. 3.4.1, as part of a separate discussion focusing on
the generalization of various binary topological properties to the weighted case.

3.1.1 Undirected Networks

In social network analysis, assortativity is defined as the tendency of nodes that
share similar features (e.g. age, gender, beliefs, culture, etc.) to be more likely con-
nected with each other than with other nodes in the network. Assortativity therefore
manifests itself as an increased abundance of links among nodes of similar type,
as compared to a network where no such tendency is in place. The opposite ten-
dency, known as disassortativity and corresponding to a decreased abundance of
links among similar nodes, is also a possible property of real networks. Being one
of the most studied topological properties of networks, (dis)assortativity has been
defined and characterized in many different ways. Different definitions provide alter-
native quantifications of the (anti)correlation between the features of adjacent nodes.
A feature of special importance, being already ‘visible’ in a network even if no exter-
nal information about the properties of nodes (such as age, gender, etc.) is known,
is the degree itself. The resulting notion of (dis)assortativity by degree indicates
whether nodes of similar degree tend to have a preference for (not) being connected
to each other. (Dis)assortativity by degree is found to be quite strong in real networks
and has been shown to dramatically affect various structural and dynamical features
[1]. Here we follow Ref. [2] and focus on a metric that provides a quantification of
assortativity by degree for each node separately. In particular, given a real binary
undirected network A∗ we define the average nearest neighbour degree (ANND for
short) of node i as

knni (A∗) ≡
∑

j �=i a
∗
i j k

∗
j

k∗
i

=
∑

j �=i

∑
k �= j a

∗
i j a

∗
jk

∑
j �=i a

∗
i j

, (3.1)

where k∗
i ≡ ki (A∗) = ∑

j �=i a
∗
i j is the degree of node i in the network A∗. It should

be noted that, while the degree is a first-order property that only depends on the
number of links (topological paths of length one) entering a vertex, the ANND is a
second-order property determined by paths of length two, i.e. the terms of the form
a∗
i j a

∗
jk in the above formula.
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Along the same line, one can consider third-order correlations by introducing
topological properties involving paths of length three. Clustering, i.e. the tendency
of triples of nodes to form triangles, is a clear and popular example of such properties.
In social network analysis, clustering is also known as triadic closure, as it represents
the tendency of triads of nodes to be ‘closed’, i.e. fully connected. Also this property
is believed to be quite strong in real networks (e.g. pairs of your friends are typically
friends of each other). Again, among the many possible definitions of clustering,
we follow Ref. [2] and focus on the local (i.e. node-specific) clustering coefficient
defined as

ci (A∗) ≡
∑

j �=i

∑
k �=i, j a

∗
i j a

∗
jka

∗
ki

k∗
i (k

∗
i − 1)

=
∑

j �=i

∑
k �=i, j a

∗
i j a

∗
jka

∗
ki

∑
j �=i

∑
k �=i, j a

∗
i j a

∗
ki

. (3.2)

In the above formula, the numerator counts how many pairs of neighbours of node
i are connected to each other, while the denominator counts how many pairs of
neighbours of node i (irrespective of whether they are connected to each other) exist.
So ci (A∗) is a measure of the local link density, i.e. the fraction of links realized in
the neighbourhood of node i .

A useful way of exploiting the local character of both knni (A∗) and ci (A∗) is
plotting their values versus that of ki (A∗) for all nodes in a given network. In Fig. 3.1
we provide such plots for several real-world networks, namely the network of the
500 largest US airports [3], the synaptic network of the nematode C. elegans [4],
the protein interaction network of the bacterium H. pylori [5] and an instance of the
Italian interbank network [6]. These networks are among the most studied ones in the
literature. Normally, the above plots are used in order to determinewhether nontrivial
correlations exist in the structure of real networks. In particular, the departure of the
resulting trends from a ‘flat’ (i.e., degree-independent) behaviour is interpreted as
a sign of interesting patterns, because such flat behavior is found for uncorrelated
networks modeled as Erdős-Rényi random graphs (see Sect. 2.1.1).

However, as we discussed in Sect. 2.1.1, a comparison with a completely homo-
geneous model such as the Erdős-Rényi random graph fails to control for the effects
of the obserbed heterogeneity of nodes in the real network considered. Such a null
model destroys not only, as we desire, the empirical second- and third-order corre-
lations we want to identify in the real networks, but also the first-order properties
of nodes, such as their degree. As a consequence, the observed deviation of the real
network from the model may be partly due to the heterogeneity of nodes, which
should not be confused with distinct higher-order properties.

In order to disentagle first- from higher-order effects, one should therefore use
the configuration model (see Sect. 2.1.1) as a more stringent null model where the
degree of each node is set equal to its empirical value and the network is completely
random otherwise. And this is where an incorrect implementation of the model may
lead to highly biased results and incorrect interpretations.

We therefore compare the correlation structure of the original networks, as mea-
sured by the dependence of knni (A∗) and ci (A∗) on ki (A∗), with the expected values
〈knni 〉∗ and 〈ci 〉∗ obtained analytically using the maximum-entropy method:

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
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Fig. 3.1 Assortativity (left) and clustering (right) patterns in various real-world binary undirected
networks. Red points are the empirical data, black solid curves are averages over the configuration
model obtained using the local rewiring algorithm (see Sect. 2.1.2) and blue dashed curves are the
analytical expectations (± one standard deviation) obtained using the maximum-entropy method
(see Sect. 2.1.2). Green curves are the flat expectations under the Erdös-Rényi random graph model
(see Sect. 2.1.1), which highlights the average level of correlation in the random case. The panels
show the average nearest neighbour degree knni versus ki (left) and the local clustering coefficient
ci versus ki (right) for: a and b the network of the largest US airports (N = 500 nodes) [3], c and
d the synaptic network of Caenorhabditis elegans (N = 264 nodes) [4], e and f the protein-protein
interaction network of Helicobacter pylori (N = 732 nides) [5], g and h the network of liquidity
reserves exchanges between Italian banks in 1999 [6] (N = 215 nodes). (Adapted from Ref. [2])

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
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Note that we are averaging the values of knni (A∗) and ci (A∗) over all vertices with the
same degree: this makes our comparison with the values 〈knni 〉∗ and 〈ci 〉∗ consistent,
since both real and randomized quantities can be plotted using the same values
〈ki 〉∗ = ki (A∗) on the abscissa (we use the same strategy in what follows). We also
highlight the region within one standard deviation around the average by plotting the
curves 〈knni 〉∗ ± σ ∗[knni ] and 〈ci 〉∗ ± σ ∗[ci ].

For the sake of comparison, we also report the average values obtained sam-
pling the microcanonical ensemble with the standard local rewiring algorithm
[7, 8] (see Sect. 2.1.2) and the expected values obtained under the Erdős-Rènyi ran-
dom graph model with the same number of links (see Sect. 2.1.1). As we mentioned
in Sect. 2.1.2, the microcanonical method requires the generation of many random-
ized variants, many rewirings per variant and the measurement of knni and ci on each
variant separately, plus a final averaging. Moreover, it is subject to bias. By contrast,
the canonical maximum-entropy method is unbiased and only requires the prelimi-
nary estimation of the {x∗

i }Ni=1. Then the calculation of 〈knni 〉 and 〈ci 〉 takes exactly
the same time as that of the empirical values.

In this particular case, the two approaches yield very similar results. The reason
lies in the low link density, making all the considered networks satisfy Eq. (2.1), i.e.
reducing the bias affecting the microcanonical approach, for all practical purposes,
to zero.

The above results allow us to interpret the effect of the degree sequence on higher-
order properties. Firstly, the trends displayed by the CM are not flat as those expected
in the random graph case. This confirms that residual structural correlations, simply
due to the enforced constraint, are still present after the rewiring has taken place. The
presence of these correlations does not require any additional explanation besides the
existence of the constraints themselves. This is very different from the picture one
would get by using the (wrong) expectation of Eq. (2.3) which would yield flat trends
as well, naively suggesting that correlations can never be traced back to the degree
sequence alone. Secondly, while the trends observed in all the networks considered
are always decreasing, they unveil different correlation patterns when compared to
the randomized trends. The real interbank data are almost indistinguishable from the
randomized curves,meaning that structural constraints can fully explain the observed
behaviour of higher-order network properties. Instead, in the airport network the ran-
domized curves lie below the real data (except for an opposite trend of 〈knni 〉 for low
degrees). This means that the real network is more correlated than the baseline ran-
domized expectation and indicates that additional mechanisms producing positive
correlationsmust be present on top of structural effects. By contrast, in theH. pylori’s
protein network the expected curves lie above the real data, suggesting the presence of
mechanisms producing negative correlations. Therefore seemingly similar trends can

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
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Fig. 3.2 Left panel: average nearest neighbor degree knni versus degree ki in the 2002 snapshot of
the real binary undirectedWTW (red points) and corresponding average over themaximum-entropy
ensemble with specified degrees (blue curve). Right panel: clustering coefficient ci versus degree ki
(red points) and corresponding average over themaximum-entropy ensemble with specified degrees
(blue curve). Adapted from Ref. [9]

actually correspond to very different types of structural organization. This confirms
that measuring the topological properties alone is uninformative, making the com-
parison between real data and randomized ensembles essential. Thus the possibility
to analytically and quickly characterize such ensembles is a remarkable advantage
of the maximum-entropy approach.

The close agreement between the interbank network and the corresponding
maximum-entropy model suggests that, for some networks, the knowledge of the
degree sequence may be predictive of other higher-order properties. To further
explore this hypothesis, we repeat the previous analysis on another economic net-
work: the World Trade Web (WTW) or International Trade Network (ITN), whose
nodes represent world countries and whose links represent (possibly directed and
weighted) trade connections. In Fig. 3.2 we show the plot of the average nearest
neighbour degree versus the degree for the WTW in its undirected and unweighted
projection, where any two countries are connected if a trade relation in any direc-
tion exists between them. We observe a decreasing trend, indicating that on average
countries trading with highly connected countries have a few trade partners, whereas
countries trading with poorly connected countries have many trade partners. If we
compare this trend with the one followed by the corresponding randomized quantity
obtained under the binary configuration model, we find a very close agreement. This
means that the empirical assortativity of this network, like the one of the interbank
network considered above, is entirely explained by the degree sequence.

A similar result is found for the behavior of the clustering coefficient ci . Again,
we find a decreasing trend of ci as a function of ki (see Fig. 3.2). This means that trade
partners of highly connected countries are poorly interconnected, whereas partners
of poorly connected countries are highly interconnected. However, if this trend is
compared with the one displayed by the randomized quantity we again find a very
close agreement. This signals that in the WTW also the profile of the clustering
coefficient is completely explained by the constraint on the degree sequence and does
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not imply the presence of meaningful indirect interactions on top of a concatenation
of direct interactions alone.

The above results show that the patterns observed in the binary undirected descrip-
tion of the interbank and trade networks considered do not require, besides the fact
that different banks and countries have specific numbers of trade partners, the pres-
ence of higher-order mechanisms as an additional explanation. On the other hand,
the fact that the degrees alone are enough to explain higher-order network properties
means that the degree sequence is an important structural pattern in its own. This
result suggests that it may be in principle possible to reconstruct the whole struc-
ture of various financial and economic networks from the knowledge of their degree
sequence alone, an idea that will be explored in great detail in the next chapter. At
the same time, from the perspective of economic modeling this result highlights the
importance of including the degree sequence among the focuses of theories andmod-
els of banking and trade, which are instead currently oriented mainly at reproducing
the weighted structure, rather than the topology of the network.

3.1.2 Directed Networks

When considering binary, directed networks the second-order topological properties
are measured by the outward ANND and the inward ANND, which are defined as
natural generalizations of Eq. (3.1):

knn,out
i (A∗) ≡

∑
j �=i a

∗
i j k

out∗
j

kout∗i

=
∑

j �=i

∑
k �= j a

∗
i j a

∗
jk

∑
j �=i a

∗
i j

, (3.5)

knn,in
i (A∗) ≡

∑
j �=i a

∗
j i k

in∗
j

kin∗
i

=
∑

j �=i

∑
k �= j a

∗
j i a

∗
k j

∑
j �=i a

∗
j i

. (3.6)

Given a particular real network A∗ and a measured topological property X (A∗),
the maximum-entropy method allows to analytically obtain the expectation value
〈X〉∗ and standard deviation σ ∗[X ] across the ensemble of binary directed graphs
with, on average, the same directed degree sequences kout (A∗) and kin(A∗) as A∗
(directed configuration model, DCM). In this case the method makes use of two
N -dimensional vectors x, y of auxiliary variables and requires that these parameters
are set to the particular values x∗, y∗ that solve the following set of 2N coupled
nonlinear equations:

〈kouti 〉 =
∑

j �=i

x∗
i y

∗
j

1 + x∗
i y

∗
j

= kouti (A∗) ∀i, (3.7)

〈kini 〉 =
∑

j �=i

x∗
j y

∗
i

1 + x∗
j y

∗
i

= kini (A∗) ∀i. (3.8)
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The quantities x∗, y∗ allow to obtain 〈X〉∗ and σ ∗[X ] analytically and quickly,
outperforming the directed version of the LRA. Note that, as in the undirected case,
the method only makes use of the sufficient statistics of the problem.

In Fig. 3.3 we plot the observed values knn,in
i (A∗) versus kini (A∗) and knn,out

i (A∗)
versus kouti (A∗), as well as the expectations 〈knn,in

i 〉∗ ± σ ∗[knn,in
i ] and 〈knn,out

i 〉∗ ±
σ ∗[knn,out

i ] obtained using the DCM, for three real directed networks: the neural
network of C. elegans [4] (now in its directed version), the metabolic network of E.
coli [16] and the Little Rock Lake food web [17]. As before, we also show the micro-
canonical average obtained using the LRA and the expectation under the directed
random graph model (DRG) with the same number of links. Again, we find a very
good agreement between the two approaches, confirming that the maximum-entropy
method yields the correct prediction in incredibly shorter time. For the C. elegans
network (Fig. 3.3a, b), we also show the microcanonical standard deviations, which
turn out to be indistinguishable from the canonical ones. We also confirm that while
some networks (C. elegans and E. coli) are almost consistent with the null model,
others (Little Rock) deviate significantly.

However, the most interesting point for the present analysis is that, while for the
undirected networks considered above all randomized trends were decreasing, in this
case we find that the three randomized trends behave in totally different ways. In
the neural network, both 〈knn,in

i 〉∗ and 〈knn,out
i 〉∗ are approximately constant. This

means that the baseline behavior for both quantities is flat and uncorrelated (as in the
directed random graph, but at a different level). By contrast, in the metabolic network
the expected curves are decreasing and, thus, the ensemble of randomized networks is
disassortative as for the undirected graphs considered above. Finally, in the food web
the constraints enforce unusual positive correlations and the randomized ensemble
is even assortative. Interestingly, while it is expected that random networks with
specified degrees display a disassortative behavior [8, 14], the assortative trend is
totally surprising. This is because the maximum-entropy method extracts the hidden
variables directly from the specific realworld network, rather than drawing them from
ad hoc distributions. The resulting values can be distributed in a very complicated
fashion, invalidating the results obtained under other hypotheses. To further highlight
this important point, we selected threemore foodwebs characterized by a particularly
small size (see Fig. 4.2). Small networks cannot be described by approximating the
mass probability function of their topological properties (such as the degree) with
a continuous probability density. Therefore in this case the difference between the
expectations obtained by drawing the x and y values from analytically tractable
continuous distributions and those obtained by solving Eq. (3.7) using the empirical
degrees is particularly evident.

We now consider the binary, directed description of the WTW, with an interest
in understanding whether the introduction of directionality changes the picture we
have described so far. We consider the usual quantities

http://dx.doi.org/10.1007/978-3-319-69438-2_4
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kin/ in
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Fig. 3.3 Application of the maximum-entropy method to directed networks. Red points are the
empirical data, the black solid curves are expectations under the directed configuration model using
the local rewiring algorithm and the blue dashed curves are the exact expectations obtained using the
maximum-entropy method (± one standard deviation). The green curves are the flat expectations
under the directed version of the (Erdös-Rényi) RGmodel. The panels report knn,in

i versus kini (left)
and knn,out

i versus kouti (right) for: a and b the directed neural network of Caenorhabditis elegans
(N = 264) [4], c and d the metabolic network ofEscherichia coli (N = 1078) [16], e and f the Little
Rock Lake food web (N = 183) [17]. For the C. elegans network, we also show the microcanonical
standard deviations obtained using the LRA (black dotted curves), which are indistinguishable from
the canonical ones. Adapted from Ref. [2]
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plus the additional ones

kin/out
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kout/ ini (A∗) ≡
∑
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∗
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The analysis of the four directed versions of the ANND is shown in Fig. 3.4.
We immediately see that all quantities still display a disassortative trend, with some
differences in the ranges of observed values. Again, all the four empirical behaviors
are in striking accordance with the null model. This means that both the decreasing
trends and the ranges of values displayed by all quantities are well reproduced by
a collection of random graphs with the same in-degrees and out-degrees as the real
network.

We might in principle consider various directed counterparts of the clustering
coefficient which have been defined in literature [18, 19]. However, we will later
consider all the possible triadic patterns of connectivity, which provide an even more
refined description of the tendency to form directed triangles in a directed network.
We therefore skip the discussion of directed clustering and move on to different
topological patterns.
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Fig. 3.4 Directed average nearest neighbor degrees versus vertex degrees in the 2002 snapshot of
the real binary directed WTW (red points) and corresponding averages over the maximum-entropy
ensemble with specified out-degrees and in-degrees (blue curves). a kin/ in

i versus kini . b kin/out
i

versus kini . c kout/ ini versus kouti . d kout/outi versus kouti . Adapted from Ref. [9]
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Fig. 3.5 The dyadic, binary,
directed motifs: L→, L↔
and L�

3.2 Detecting Dyadic Motifs

For a binary network there are four possible dyadic configurations for each pair of
nodes (see Fig. 3.5). In fact, node i can be linked to node j through a single link
pointing from i to j , through a link pointing from j to i , through a pair of links
pointing in opposite directions or through no link at all. In mathematical terms, it is
possible to associate each of these four patterns, also called dyadic motifs, to one of
the following binary quantities: a→

i j ≡ ai j (1− a ji ), a←
i j ≡ a ji (1− ai j ), a↔

i j ≡ ai j a ji

and a�

i j ≡ (1− ai j )(1− a ji ). Notice that when counting the global number of such
patterns the first two configurations become actually the same: thus, at an aggregate
level, we only speak of three non-isomorphic dyadic motifs.

Thenumber of occurrences Nm of a particular dyadicmotifm (m = L→, L↔, L�)
can be written in two equivalent ways (see Table3.1): the first one employs products
of adjacency matrix elements, ai j the second one employs the quantities a→

i j , a
←
i j ,

a↔
i j and a�

i j .
If Nm denotes the number of occurrences of a particular motif m (Fig. 3.5),

the maximum-entropy method allows to calculate the expected number 〈Nm〉∗ (see
Table3.2) and standard deviation σ ∗[Nm] exactly and thus to obtain the z-score

zm ≡ Nm(A∗) − 〈Nm〉∗
σ ∗[Nm] (3.13)

analytically. If the observations were exactly reproduced by the null model, then
the z-scores would be exactly zero. On the other hand, significantly large positive
or negative z-scores indicate an over- or under-estimation of the motifs’ empirical

Table 3.1 Classification and
definitions of the dyadic
motifs

Motif m Nm : 1st definition Nm : 2nd
definition

L→ ∑
i
∑

j �=i ai j (1 − a ji )
∑

i
∑

j �=i a
→
i j

L↔ ∑
i
∑

j �=i ai j a ji
∑

i
∑

j �=i a
↔
i j

L�

∑
i
∑

j �=i (1 − ai j )(1 − a ji )
∑

i
∑

j �=i a
�

i j

Table 3.2 Expectation
values of the dyadic motifs

Motif m 〈Nm〉DCM

〈L→〉 ∑
i
∑

j �=i pi j (1 − p ji )

〈L↔〉 ∑
i
∑

j �=i pi j p ji

〈L� 〉 ∑
i
∑

j �=i (1 − pi j )(1 − p ji )
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abundance respectively. The meaning of the z-scores is well defined for normally
distributed variables: in this case, the deviations can be nicely quantified in terms of
probabilities, as the intervals zm = ±1, ±2, ±3 select regions enclosing a probabil-
ity of 68, 95 and 99.7%, respectively. Choosing a threshold allows the identification
of significantly deviating patterns. While for non-normally distributed variables it
is impossible to attach probabilities to z-scores, large values still highlight the most
deviating patterns. Thus, the value of z[Nm] indicates by how many standard devi-
ations the observed and expected numbers of occurrences of motif m differ. Large
values of z[Nm] indicate motifs that are either over- or under-represented under the
particular null model considered and that are therefore not explained by the lower-
order constraints enforced.

We are now going to look at another example of financial network, namely the
Dutch Interbank Network (DIN). This time we are interested in the dynamical evo-
lution of the network, in particular in the identification of possible ongoing structural
changes associated with the financial crisis of 2007-2008. To this end, we construct
quarterly time series of the z-scores of the three non-isomorphic dyadic motifs, rang-
ing from the beginning of 1998 to the end of 2008. When using the DRG as a null
model, we find that from 1998 to 2007 these time series displaymoderate fluctuations
around roughly stationary values, while in 2008 they all suddenly jump to different
values (see top panel of Fig. 3.6). This means that, while the DRG does identify
a global structural change provoked by the economic crisis (emphasizing that the
critical configuration is ‘anomalous’ with respect to the previous decade), it does not
provide any useful early-warning signal. Note that the fact that the DRG correctly
identifies the ‘crisis’ only in terms of dyadic properties is in any case a fundamental
result showing that there are clear signatures of the crisis in theDIN’s topology.With-
out this preliminary observation, looking for early-warning signals in the evolution
of the dyadic properties themselves would have no empirical justification.

Performing the same analysis under the DCM yields a completely different result
[20]. The bottom panel of Fig. 3.6 shows that in this case the dyadic z-scores undergo
a gradual evolution towards the collapsed configuration, thus providing an early-
warning signal of the crisis. Remarkably, after a period of minor fluctuations, all
the trends of the dyadic z-scores show a sudden inversion of sign at the beginning
of 2005, thus backdating the beginning of the DIN’s major structural change three
years before its dramatic manifestation in 2008 [20].

This remarkable result, which we reprise also in the next section, shows that
the maximum-entropy method can really extract hidden patterns from network data.
While in the previous sectionswehad been concernedwith static topological patterns,
here we have identified a dynamical pattern, i.e. a regime shift.

At the same time, the above result indicates that only a careful choice of the
constraints may be able to unveil the relevant pattern. In particular, controlling for
the heterogeneous degrees of banks appears to be crucial.Wewill encounter a similar
result in the next chapter when dealing with the problem of network reconstruction.
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Fig. 3.6 z-scores of the 3
dyadic, binary, directed
motifs (� - L→, • - L↔, � -
L� ) for the 44 quarterly
snapshots of the DIN under
the DRG (top panel) and the
DCM (bottom panel). The
orange-shaded area
corresponds to the
‘pre-crisis’ period, while the
red-shaded area corresponds
to the crisis period

3.2.1 Reciprocity

The dyadic pattern m = L↔ has a special importance in the study of the reciprocity
of directed networks. We therefore devote a separate discussion to this particular
pattern. Indeed, the study of reciprocity has a long tradition in social science [21]
as a way to quantify how many ‘ties’ (directed links) are reciprocated in a social
network of ‘actors’ (vertices). The reciprocal link of a directed link pointing from i
to j is a link pointing from j to i. A link is reciprocated if its reciprocal one is present
in the network. In terms of the adjacency matrix of the graph, two reciprocated links
are present between i and j if and only if ai j = a ji = 1. In a natural way, it follows
that the reciprocity is the fraction of links having a reciprocal partner [22] and for
the observed matrix A∗ it is defined as

r(A∗) ≡
∑

i

∑
j �=i a

∗
i j a

∗
j i

L∗ ≡ L↔∗

L∗ . (3.14)

As for the other quantities defined so far, calculating the reciprocity is not enough
to conclude whether its value is statistically significant. Can the measured value be
the result of mere chance? To answer this question, let us implement the directed



46 3 Pattern Detection

Fig. 3.7 Temporal evolution of the observed reciprocity r (black) of the Dutch Interbank Network
in the time-interval 1998–2008 [20] and of ρ under the DRG (purple) and the DCM (blue). The
orange-shaded area corresponds to the ‘pre-crisis’ period, while the red-shaded area corresponds
to the crisis period

random graph model (DRG in what follows) and the DCM to compare the observed
r with its expected value:

〈r〉∗ =
∑

i

∑
j �=i p

∗
i j p

∗
j i

∑
i

∑
j �=i p

∗
i j

= 〈L↔〉∗
〈L〉∗ ; (3.15)

in order to do this, let us calculate the ρ index [23], defined as

ρ ≡ r(A∗) − 〈r〉∗
1 − 〈r〉∗ (3.16)

which automatically discounts for the effects of the imposed constraints. By def-
inition, ρ ranges between 1 and −1: in fact, the denominator is always positive
and, in magnitude, smaller than the numerator. It simply normalizes the index, not
contributing to the sign of the quantity itself which, in turn, is decided only by the
relative magnitude between the observed value r and its expectation. A positive sign
indicates a stronger than expected tendency to reciprocate whereas a negative sign,
a tendency weaker than expected to establish reciprocal links.

We can use the reciprocity to look again at the temporal evolution of the DIN.
This is shown in Fig. 3.7. We confirm a behaviour similar to the one we observed
when looking at the dyadic motifs. For the initial decade, the raw reciprocity shows
an essentially constant trend, with small fluctuations around an average value of
approximately 0.26, but the last four periods are characterized by an impressive
decrease of the reciprocity value (approximately 40%): they lie almost 3 sigmas away
from the sample average, clearly indicating that the DIN shows an anomalously low
reciprocity value in those time periods already affected by the crisis.

The trends of ρ calculated under the DRG and the DCMare also shown in Fig. 3.7.
The positive sign of the trend of ρ under the DRG (i.e. ρDRG) indicates that the
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tendency of the network to reciprocate is stronger than expected under this model.
This is intuitive by considering that 〈r〉DRG coincides with the network’s density of
links, which is also an average of all the single pair-specific probabilities. In fact,

〈r〉DRG =
∑

i

∑
j �=i p

2

∑
i

∑
j �=i p

= p =
∑

i

∑
j �=i pi j

N (N − 1)
= 〈L〉DRG

N (N − 1)
≡ 〈c〉DRG (3.17)

where c is the link density. Using the maximum-likelihood condition, the expected
density is 〈c〉∗DRG = 〈L〉∗DRG

N (N−1) = L(A∗)
N (N−1) = c(A∗) for any matrixA∗ of the time period

considered. Given the low value of the density c for this particular network, the DRG
does basically a simple, small translation (and rescaling) of r towards lower values:
ρDRG = r−c

1−c � r − c.

Far more interesting is the trend of ρDCM . As a general comment, the network is
more consistent with the DCM rather than with the DRG, as the smaller values of the
respective ρ indices show. In more detail, the DCM highlights two opposite patterns.
During the first twenty-eight periods, the reciprocity is higher than expected (similar
to the DRG, but with the difference that ρDCM presents an almost constant trend, by
showing smaller fluctuations than ρDRG): this implies that even the specification of
the entire in- and out-degree sequences is not enough to fully account for the observed
reciprocity, as the positive value of ρDCM witnesses. During the following sixteen
quarters, the network inverts the tendency and tends to be less reciprocated than
expected, showing an almost perfect monotonic decrease. This clear anti-reciprocal
behavior, not detected by the DRG but revealed by the DCM (i.e. not encoded in
the total number of links, but partially encoded in the degree sequences) is an early
signature of the upcoming crisis, as the nodes start avoiding mutual exchanges two
years before the 2008.

3.3 Detecting Triadic Motifs

In principle, third-order properties can be studied by introducing generalizations of
the clustering coefficient [19, 24]. However, there is a proliferation of possible third-
order patterns due to the directionality of links. For this reason, a more complete
analysis consists in counting (across the entire network) all the possible directed
motifs [25] involving two and three vertices and comparing the empirical abundances
with the expected ones under the null model (see Fig. 3.8 for an illustration and
Table3.3 for the mathematical definition).

Before presenting our results, we note however that directionality makes the pos-
sible specifications of the null model proliferate as well. In particular, besides the
DCMconsidered above, amore refinedway to randomize directed networks includes
the possibility to enforce additional constraints on the reciprocity structure [26, 27]
(reciprocal configuration model, RCM). In other words, it is possible (and important
in many applications [26, 28]) to preserve not only the total numbers kini and kouti
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Fig. 3.8 The triadic, binary, directed motifs

of incoming and outgoing links of each vertex, but also the number of reciprocated
links (pairs of links in both directions) [23, 29].

Given a real binary directed networkA∗, this specification is equivalent to enforc-
ing, for each vertex i , the three directed-degree sequences [23, 27] k→(A∗), k←(A∗)
and k↔(A∗) where

k→
i (A∗) ≡

∑

j �=i

a∗
i j (1 − a∗

j i ), k
←
i (A∗) ≡

∑

j �=i

a∗
j i (1 − a∗

i j ), k
↔
i (A∗) ≡

∑

j �=i

a∗
i j a

∗
j i

(3.18)

Table 3.3 Classification and definitions of the triadic motifs (sums are taken over terns of vertices)

Motif m Nm : 1st definition Nm : 2nd definition

1
∑

i �= j �=k(1 − ai j )a ji a jk(1 − akj )(1 − aik)(1 − aki )
∑

i �= j �=k a
←
i j a

→
jk a

�

ik

2
∑

i �= j �=k ai j (1 − a ji )a jk(1 − akj )(1 − aik)(1 − aki )
∑

i �= j �=k a
→
i j a

→
jk a

�

ik

3
∑

i �= j �=k ai j a ji a jk(1 − akj )(1 − aik)(1 − aki )
∑

i �= j �=k a
↔
i j a

→
jk a

�

ik

4
∑

i �= j �=k(1 − ai j )(1 − a ji )a jk(1 − akj )aik(1 − aki )
∑

i �= j �=k a
�

i j a
→
jk a

→
ik

5
∑

i �= j �=k(1 − ai j )a ji a jk(1 − akj )aik(1 − aki )
∑

i �= j �=k a
←
i j a

→
jk a

→
ik

6
∑

i �= j �=k ai j a ji a jk(1 − akj )aik(1 − aki )
∑

i �= j �=k a
↔
i j a

→
jk a

→
ik

7
∑

i �= j �=k ai j a ji (1 − a jk)akj (1 − aik)(1 − aki )
∑

i �= j �=k a
↔
i j a

←
jk a

�

ik

8
∑

i �= j �=k ai j a ji a jkak j (1 − aik)(1 − aki )
∑

i �= j �=k a
↔
i j a

↔
jk a

�

ik

9
∑

i �= j �=k(1 − ai j )a ji (1 − a jk)akj aik(1 − aki )
∑

i �= j �=k a
←
i j a

←
jk a

→
ik

10
∑

i �= j �=k(1 − ai j )a ji a jkak j aik(1 − aki )
∑

i �= j �=k a
←
i j a

↔
jk a

→
ik

11
∑

i �= j �=k ai j (1 − a ji )a jkak j aik(1 − aki )
∑

i �= j �=k a
→
i j a

↔
jk a

→
ik

12
∑

i �= j �=k ai j a ji a jkak j aik(1 − aki )
∑

i �= j �=k a
↔
i j a

↔
jk a

→
ik

13
∑

i �= j �=k ai j a ji a jkak j aikaki
∑

i �= j �=k a
↔
i j a

↔
jk a

↔
ik



3.3 Detecting Triadic Motifs 49

are, respectively, the (vertex-specific) number of non-reciprocated outgoing links, the
number of non-reciprocated incoming links and the number of reciprocated links.
Equivalently,

k→
i (A∗) ≡

∑

j �=i

a→∗
i j , k←

i (A∗) ≡
∑

j �=i

a←∗
i j , k↔

i (A∗) ≡
∑

j �=i

a↔∗
i j (3.19)

where a→
i j , a

←
i j , a

↔
i j and a�

i j are the dyadic quantities defined in the preceding section
(Table3.1).

The randomization procedure starts by writing the hamiltonian, as

H(A,α,β, γ ) =
∑

i

[αi k
→
i (A) + βi k

←
i (A) + γi k

↔
i (A)]. (3.20)

Explicitly rewriting the hamiltonian in terms of the mutually excluding variables
a→
i j , a

←
i j and a↔

i j ≡ ai j a ji allows to analytically calculate the partition function as in
[27]: Z(α,β, γ ) = ∏

i< j (1 + e−αi−β j + e−α j−βi + e−γi−γ j ). As a consequence, the
graph probability factorizes as a pair-specific product of four factors

P(A|α,β, γ ) =
∏

i

∏

j<i

(p→
i j )a

→
i j (p←

i j )a
←
i j (p↔

i j )a
↔
i j (p�

i j )a
�

i j (3.21)

and, by setting xi ≡ e−αi , yi ≡ e−βi and zi ≡ e−γi [27], the coefficients’s expressions
are found to be

p→
i j ≡ xi y j

1 + xi y j + x j yi + zi z j
, p←

i j ≡ x j yi
1 + xi y j + x j yi + zi z j

, (3.22)

p↔
i j ≡ zi z j

1 + xi y j + x j yi + zi z j
, p�

i j ≡ 1

1 + xi y j + x j yi + zi z j
. (3.23)

By maximizing the likelihood L (x, y, z), the values x∗, y∗, z∗ corresponding to
the point of maximum can be found by solving the following system

〈k→
i 〉 =

∑

j �=i

x∗
i y

∗
j

1 + x∗
i y

∗
j + x∗

j y
∗
i + z∗

i z
∗
j

= k→
i (A∗) ∀i, (3.24)

〈k←
i 〉 =

∑

j �=i

x∗
j y

∗
i

1 + x∗
i y

∗
j + x∗

j y
∗
i + z∗

i z
∗
j

= k←
i (A∗) ∀i, (3.25)

〈k↔
i 〉 =

∑

j �=i

z∗
i z

∗
j

1 + x∗
i y

∗
j + x∗

j y
∗
i + z∗

i z
∗
j

= k↔
i (A∗) ∀i. (3.26)

The expectation value of any topological property, aswell as its standard deviation,
can now be calculated analytically in terms of the vectors x∗, y∗, z∗.
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As for the dyadicmotifs, the number of occurrences Nm of a particular triadicmotif
m (m = 1 . . . 13) can be written either as a product of adjacency matrix elements,
ai j or employing the quantities a→

i j , a
←
i j , a

↔
i j and a�

i j (see Table3.4). Notice that
the RCM can be employed to detect only the abundance of triadic motifs, since the
dyadicmotifs would be exactly reproduced by definition (in fact, 〈k→

i 〉 = k→
i implies

〈L→〉 = 〈∑i k
→
i 〉 = ∑

i 〈k→
i 〉 = ∑

i k
→
i = L→ and the same holds true for the other

two dyadic motifs.
Since the values of zm are sensitive to the number of nodes, when it is necessary to

compare the z-scores of networkswith different size, or of differently sized snapshots
of the same network, a size-independent measure is needed. For this reason, it is
customary to normalize the z-scores by introducing the significance profile [26]
defined as

SPm ≡ zm
√∑13

m=1 z
2
m

(3.27)

and measuring the relative importance of each motif with respect to the other ones.
While the z-scores are unbounded quantities, SPm lies between −1 and +1.

In Fig. 3.9 we show the z-scores for all the possible 13 non-isomorphic connected
motifs with three vertices in 8 real food webs, for both null models. We also show the
two lines z = ±2 tohighlight the regionwithin 2 standarddeviations from themodel’s
expectations. This analysis is similar to that of Ref. [28], but is made much simpler
by the maximum-entropy method which does not require to randomize the webs
through a computational algorithm preserving the (reciprocal) degree sequences.
The food webs considered here are from different ecosystems (lagoons, marshes,

Table 3.4 Expectation values of the triadic motifs (sums are taken over triples of vertices)

Motif m 〈Nm〉DCM 〈Nm〉RCM

1
∑

i �= j �=k(1− pi j )p ji p jk(1− pkj )(1− pik)(1− pki )
∑

i �= j �=k p←
i j p

→
jk p

�

ik

2
∑

i �= j �=k pi j (1− p ji )p jk(1− pkj )(1− pik)(1− pki )
∑

i �= j �=k p→
i j p

→
jk p

�

ik

3
∑

i �= j �=k pi j p ji p jk(1 − pkj )(1 − pik)(1 − pki )
∑

i �= j �=k p↔
i j p

→
jk p

�

ik

4
∑

i �= j �=k(1− pi j )(1− p ji )p jk(1− pkj )pik(1− pki )
∑

i �= j �=k p�

i j p→
jk p

→
ik

5
∑

i �= j �=k(1 − pi j )p ji p jk(1 − pkj )pik(1 − pki )
∑

i �= j �=k p←
i j p

→
jk p

→
ik

6
∑

i �= j �=k pi j p ji p jk(1 − pkj )pik(1 − pki )
∑

i �= j �=k p↔
i j p

→
jk p

→
ik

7
∑

i �= j �=k pi j p ji (1 − p jk)pkj (1 − pik)(1 − pki )
∑

i �= j �=k p↔
i j p

←
jk p

�

ik

8
∑

i �= j �=k pi j p ji p jk pk j (1 − pik)(1 − pki )
∑

i �= j �=k p↔
i j p

↔
jk p

�

ik

9
∑

i �= j �=k(1 − pi j )p ji (1 − p jk)pkj pik(1 − pki )
∑

i �= j �=k p←
i j p

←
jk p

→
ik

10
∑

i �= j �=k(1 − pi j )p ji p jk pk j pik(1 − pki )
∑

i �= j �=k p←
i j p

↔
jk p

→
ik

11
∑

i �= j �=k pi j (1 − p ji )p jk pk j pik(1 − pki )
∑

i �= j �=k p→
i j p

↔
jk p

→
ik

12
∑

i �= j �=k pi j p ji p jk pk j pik(1 − pki )
∑

i �= j �=k p↔
i j p

↔
jk p

→
ik

13
∑

i �= j �=k pi j p ji p jk pk j pik pki
∑

i �= j �=k p↔
i j p

↔
jk p

↔
ik
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Fig. 3.9 Legend: - Chesapeake Bay, - Little Rock Lake, - Maspalomas Lagoon, - Florida
Bay, - St Marks Seagrass, - Everglades Marshes, - Grassland, - Ythan Estuary. Application
of the maximum-entropy method to the analysis of directed motifs and significance profiles in
8 real food webs. Left column: z-scores and significance profiles obtained enforcing only the in-
degree and out-degree sequences (DCM). Right column: z-scores and significance profiles obtained
enforcing also the reciprocal degree sequence (RCM). The shaded area correspond to the region
zm ∈ [−2,+2], enclosing a probability of 95%

lakes, bays, estuaries, grasses), with a prevalence of aquatic habitats. The presence
of (intrinsically directed) predator-prey relationships implies that reciprocity is a
very important quantity in food webs [28]. Thus the RCM should fluctuate less than
the DCM. Indeed, this is confirmed by our analysis. The z-scores for the motifs
m = 2, 3, 13 are significantly reduced from the DCM to the RCM. Also, while the
motifsm = 1, 6, 10, 11 display large values of z with opposite signs across different
webs under theDCM, the signs of all statistically surprisingmotifs (i.e. when |z| � 2)
become consistent with each other under the RCM (except for m = 13).

As a consequence, under the RCM all networks display a very similar pattern and
the most striking features of real webs become the over-representation of motifsm =
2, 10 (plusm = 6, 11, 13 for the Little Rock Lake web) and the under-representation
of motifs m = 5, 9, 13 (plus m = 3, 7, 8 for Little Rock Lake). In particular, the
under-representation of motifm = 9 (the 3-loop) is the most common pattern across
all webs and becomes stronger as the reciprocity of the web increases. Also note that
in a network with no reciprocated links, the number of motifs with at least a pair
of reciprocated links is zero. Under the RCM, the expected number of these motifs
remains zero. By contrast, their expected number under the DCM is always positive.
Thus we confirm that the upgrade to the RCM is necessary, as its stricter constraints
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Fig. 3.10 z-scores (first and second panel) and significance profiles (third and fourth panel) of the
13 triadic, binary, directed motifs for the WTW in the years 1950, 1960, 1970, 1980, 1990 and
2000, under the DCM ( , first and third panel) and the RCM ( , second and fourth panel). The
dashed, red lines represent the values z = ±3, the dotted, purple lines the values z = ±2 and the
dot-dashed, pink lines the values z = ±1

allow us to analyze 3-vertices motifs once 2-vertices motifs (i.e. all possible dyadic
patterns) are correctly accounted for. The possibility to treat the RCM analytically
using the maximum-entropy method is therefore an important step forward.

We now perform a similar analysis on the WTW, where the different instances
of the network represent different temporal snapshots of its long-term evolution.
The initial number (85) of countries roughly doubles during the time period consid-
ered (1950–2000), mainly because of many colonies becoming independent and the
Soviet Uniot disgregating into many states. This expansion of the network and the
simultaneous globalization process have caused a significant increase in the number
of links [30], as well as considerable variations in the nodes’ degrees. This circum-
stance makes the WTW an ideal example for testing whether an economic network
undergoes a quasi-equilibrium evolution driven by the dynamics of the local prop-
erties.

The results of the anaysis of the z-scores are shown in Fig. 3.10. Under the DCM,
the z-scores indicate large deviations between observations and expectations and the
agreement worsens as the network evolves. These results confirm that, while some
higher-order properties of the WTW were previously found to be well-reproduced
by constraining the nodes’ degrees [9], the triadic patterns are irreducible to the in-
and out-degrees themselves [25].
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By contrast, the agreement improves substantially under the RCM: now, all the
z-scores (with the only exception of motif 8) lie within the error bars zm = ±3.
This indicates that, once the number of reciprocated and non-reciprocated links of
each node are separately controlled for, the triadic structure of the network is almost
completely explained. Moreover, the shape of the profiles is more stable than under
the DCM. All these findings indicate that the RCM should be preferred to the DCM,
the reciprocity structure playing a strong role in shaping the topology of the WTW
[23, 25].

The panels of Fig. 3.10 also show the significance profiles for all 13 motifs, as
defined in Eq. (3.27). We find that discounting the effect of the increasing size of the
network makes the curves of the 6 different snapshots collapse to a single profile.
This effect is obviously more evident under the DCM, since under the RCM the
z-scores of the different snapshots were already largely overlapping.

So, even if in absolute terms many structural quantities change (the number of
nodes, the number of links, the degrees, etc.), under both null models the significance
profiles are extremely stable, clearly pointing out that the deviating patterns are
systematic and the relative importance of each motif remains constant.

We now show the results of the reciprocity analysis of the WTW is almost
completely consistent with a quasi-equilibrium network driven by the local (non-
)reciprocated degrees k↔

i , k←
i and k→

i . In other words, even if the network under-
goes major changes under the effect of complicated economic and political processes
(such as the creation of new independent states, globalization and the establishment
of reciprocated relationships), once these processes are reabsorbed into the evolu-
tion of the local constraints, the quasi-equilibrium character of the network becomes
manifest.

3.4 Some Extensions to Weighted Networks

In the rest of this chapter we move to the case of weighted networks and the corre-
sponding generalization of some of the quantities considered so far for binary graphs.
It should be noted that generalizing binary topological properties to weighted graphs
is to some extent arbitrary, as no unique choice exist [31–34]. Therefore the def-
initions we consider here are necessarily only some examples of many possible
generalizations.

3.4.1 Weighted Assortativity and Clustering

We start with the analysis of the completely aggregated WTW network. We start
with the weighted counterpart of the average nearest neighbor degree (ANND), i.e.
the average nearest neighbor strength (ANNS) of vertex i , defined as
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snni (W∗) ≡
∑

j �=i a
∗
i j s

∗
j

k∗
i

=
∑

j �=i

∑
k �= j a

∗
i jw

∗
jk

∑
j �=i a

∗
i j

(3.28)

The ANNSmeasures the average strength of the neighbors of a given vertex. Sim-
ilarly to the ANND, the ANNS involves indirect interactions of length two, however
(as happens for most weighted quantities) mixing both weighted and purely topo-
logical information: in particular, terms of the type ai jw jk appear in the definition.
The correlations between the strength of neighboring countries can be inspected by
plotting snni versus si . This is shown in Fig. 3.11: even if the points are now signif-
icantly more scattered, we find a decreasing trend as previously observed for the
corresponding binary quantities (see Fig. 3.2). This trend signals that highly trading
countries trade typically with poorly trading ones (and vice versa), confirming on a
weighted basis the disassortative character observed at the binary level. However, in
this case the null model behaves in a completely different way: over the randomized
ensemble with specified strength sequence (i.e. the Weighed Configuration Model
introduced in Sect. 2.2.3), the expectation value

〈snni 〉∗ =
∑

j �=i p
∗
i j 〈s j 〉∗

〈ki 〉∗ =
∑

j �=i p
∗
i j s

∗
j

〈ki 〉∗ =
∑

j �=i

∑
k �= j p

∗
i j 〈wjk〉∗

∑
j �=i p

∗
i j

(3.29)

of the ANNS decreases over a much narrower range (see Fig. 3.11) and is always
different from the observed value. This important results implies that, even if we
observe disassortativity in both cases (binary andweighted), we find that in the binary
case this property is completely explained by the degree sequence, whereas in the
weighted case it is not explained by the strength sequence. This has implications for
economic models of international trade: while no theoretical explanation is required
in order to explain why poorly connected countries trade with highly connected
ones on a binary basis (once the number of trade partners is specified), additional

Fig. 3.11 Left panel: average nearest neighbor strength versus strength in the 2002 snapshot of the
real weighted undirectedWTW (red points) and corresponding average over the maximum-entropy
ensemble with specified strengths (blue curve). Right panel: weighted clustering coefficient versus
strength. All the quantities have been divided by the total weight of all links in the network and are
hence denoted by a tilde

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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explanations are required in order to explain the same phenomenon at a weighted
level, even after controlling for the total trade volumes of all countries.

We now consider the weighted version of the clustering coefficient. In particular,
we choose the definition proposed in Ref. [18], which has a more direct extension to
the directed case [19].According to that definition, theweighted clustering coefficient
ci represents the intensity of the triangles in which vertex i participates:

cwi (W∗) ≡
∑

j �=i

∑
k �=i, j (w

∗
i jw

∗
jkw

∗
ki )

1/3

k∗
i (k

∗
i − 1)

=
∑

j �=i

∑
k �=i, j (w

∗
i jw

∗
jkw

∗
ki )

1/3

∑
j �=i

∑
k �=i, j a

∗
i j a

∗
ik

(3.30)

Note that cwi takes into account indirect interactions of length three, corresponding
to products of the typewi jw jkwki appearing in the above formula. In Fig. 3.11 we plot
ci versus si . This time we find an increasing trend of cwi as a function of si , indicating
that countries with larger total trade participate in more intense trade triangles. We
also show the trend followed by the randomized quantity

〈cwi 〉∗ =
∑

j �=i

∑
k �=i, j 〈(wi jw jkwki )

1/3〉∗
〈ki (ki − 1)〉∗ =

∑
j �=i

∑
k �=i, j 〈w1/3

i j 〉∗〈w1/3
jk 〉∗〈w1/3

ki 〉∗
∑

j �=i

∑
k �=i, j p

∗
i j p

∗
ik

(3.31)

which is found to approximately reproduce the empirical data. Despite the partial
accordance between the clustering profile of real and randomized networks, the total
level of clustering of the realWTW is however larger than its randomized counterpart
[9, 10].

The above results confirm that, unlike the binary case, the properties of the
weighted undirected version of the WTW are not completely reproduced by
simply controlling for the local properties. The presence of higher-order mechanisms
is required as an explanation for the onset and evolution of the observed patterns.
This result holds across different years and is enhanced as lower levels of commod-
ity aggregation are considered. This shows that a weighted network approach to the
analysis of international trade conveys additional information with respect to tradi-
tional economic studies that describe trade in terms of local properties alone (total
trade, openness, etc.) [36]. Interestingly, a major deviation between the real network
and the null model is in the topology implied by local constraints. This confirms,
from a different point of view, that in order to properly understand the structure of
the international trade system is essential to reproduce its binary topology, even if
one is interested in a weighted description. We will use this result in the next chapter,
when aiming at defining reliable network reconstruction methods.

3.4.2 Weighted Reciprocity

We now follow [35] and discuss an interesting weighted generalization of the binary
reciprocity introduced previously in Sect. 3.2.1. Let us consider a directed, weighted
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network specified by the weight matrixW, where the entry wi j indicates the weight
of the directed link from vertex i to vertex j , including the case wi j = 0 indicating
the absence of such link. As Fig. 3.12 shows, we can always decompose each pair
(wi j ,wji ) of reciprocal links into a bidirectional (fully reciprocated) interaction,
plus a unidirectional (non reciprocated) interaction. Formally, we can define the
reciprocated weight between i and j (the symmetric part) as

w↔
i j ≡ min[wi j ,wji ] = w↔

j i (3.32)

and the non-reciprocated weight from i to j (the asymmetric part) as

w→
i j ≡ wi j − w↔

i j (3.33)

Note that if w→
i j > 0 then w→

j i = 0, which makes the unidirectionality manifest.
We can also define

w←
i j ≡ wji − w↔

i j = w→
j i (3.34)

as the non-reciprocated weight from j to i and restate the unidirectionality property
in terms of the fact thatw→

i j andw
←
i j cannot be both nonzero. Thus any dyad (wi j ,wji )

can be equivalently decomposed as (w↔
i j ,w

→
i j ,w←

i j ). If the network is binary, all the
above variables are either 0 or 1 and our decomposition coincideswith the one already
described in Sect. 3.2.

From the above fundamental dyadic quantities it is possible to define reciprocity
measures at the more aggregate level of vertices. We recall that the out- and in-
strength of a vertex i are defined as the sum of the weights of the out-going and
in-coming links respectively:

souti (W∗) ≡
∑

j �=i

w∗
i j , sini (W∗) ≡

∑

j �=i

w∗
j i . (3.35)

Using Eqs. (3.32)–(3.34), we can split the above quantities into their reciprocated
and non-reciprocated contributions. We first define the reciprocated strength

Fig. 3.12 Basic decomposition of any two dyadic fluxes (in the example shown, wi j = 2 and
wji = 7) into a fully reciprocated component (w↔

i j = 2) and a fully non-reciprocated component
(w←

i j = 5, which implies w→
i j = 0) [35]
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s↔
i (W∗) ≡

∑

j �=i

w↔∗
i j (3.36)

which measures the overlap between the in-strength and the out-strength of vertex i ,
i.e. the portion of strength of that vertex which is fully reciprocated by its neighbours.
Then we define the non-reciprocated out-strength as

s→
i (W∗) ≡

∑

j �=i

w→∗
i j = souti − s↔∗

i (3.37)

and the non-reciprocated in-strength as

s←
i (W∗) ≡

∑

j �=i

w←∗
i j = sini − s↔∗

i . (3.38)

The last two quantities represent the non-reciprocated components of souti and sini
respectively, i.e. the out-going and in-coming fluxes which exceed the inverse fluxes
contributed by the neighbours of vertex i .

Finally, we introduce weighted measures of reciprocity at the global, network-
wide level. Recall that the total weight of the network is

W ∗
tot ≡

∑

i

∑

j �=i

w∗
i j =

∑

i

souti (W∗) =
∑

i

sini (W∗); (3.39)

similarly, we denote the total reciprocated weight as

W↔∗ ≡
∑

i

∑

j �=i

w↔∗
i j =

∑

i

s↔
i (W∗). (3.40)

Extending the definition used for binary graphs (see Sect. 3.2.1), we can then
define the weighted reciprocity of a weighted network as

rw(W∗) ≡ W↔∗
W ∗

tot
(3.41)

If all fluxes are perfectly reciprocated (i.e. W↔∗ = W ∗
tot ) then rw(W∗) = 1,

whereas in absence of reciprocation (i.e. W↔∗ = 0) then rw(W∗) = 0 [40–43].
Just like its binary counterpart, Eq. (3.41) is informative only after a comparison

with a null model, NM , is made, i.e. with a value 〈rw〉NM expected for a network
having some property in common (e.g. the number of vertices N and/or the total
weight Wtot ) with the observed one. As a consequence, networks with different
empirical values of such quantities cannot be consistently ranked in terms of the
measured value of rw. As in the binary case [23] the problem has been solved by
introducing a transformed quantity that we generalize to the present setting as
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Fig. 3.13 Temporal evolution of the reciprocity of the World Trade Web during the 53years from
1948 to 2000: a observed value of rw (blue) and its expected values 〈rw〉 under the Weighted
Configuration Model (red), the Balanced Configuration Model (green) and the Weighted Random
Graph (orange); b evolution of ρw under the same three null models as above

ρw ≡ rw(W∗) − 〈rw〉∗NM

1 − 〈rw〉∗NM

. (3.42)

The sign of ρw is directly informative of an increased, with respect to the null
model, tendency to reciprocate (ρw > 0) or to avoid reciprocation (ρw < 0). If ρw is
consistent with zero, then the observed level of reciprocity is compatible with what
merely expected by chance under the null model.

In the weighted, directed case, each graph G is completely specified by its
non-negative (integer-valued) weight matrix W, which now is in general not sym-
metric. The constraints specified in the randomization method [2] are now the
joint in-strength and out-strength sequence (directed weighted configuration model,
DWCM): {Ca} = {sini (W)}Ni=1 and {souti (W)}Ni=1. The exact values of the connection
probabilities in the ensemble of randomized (directed, weighted) graphs are found
by solving the following set of 2N coupled non-linear equations [44]:

〈souti 〉 =
∑

j �=i

xi y j
1 − xi y j

,= souti (W∗) ∀i (3.43)

〈sini 〉 =
∑

j �=i

x j yi
1 − x j yi

= sini (W∗) ∀i (3.44)

where the in-strengths and out-strengths of all vertices are special local quantities
whose expected and empirical values are exactly equal: 〈sini 〉 = sini (W∗) and 〈souti 〉 =
souti (W∗).

Since ρw consistently ranks the reciprocity of networks with different properties,
it can also track the evolution of reciprocity in a network that changes over time. For
this reason, in our dataset we have included 53 yearly snapshots of the World Trade
Web, from year 1948 to 2000 [45, 46]. In Fig. 3.13 we show the evolution of rw,
〈rw〉 and ρw under three null models: the DWCM, the balanced configuration model
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(BCM, i.e. the same as the DWCM but further imposing sini = souti ) and the directed
weighted random graph model (WRG). The plots confirm that, unlike ρw, rw is not
an adequate indicator of the evolution of reciprocity, since the baseline expected
value 〈rw〉 (under every null model) also changes in time as a sort of moving target
as shown in Fig. 3.13a.

Note that 〈rw〉WCM fluctuates much more than 〈rw〉WRG and 〈rw〉BCM and its
fluctuations resemble those of the observed value rw (see Fig. 3.13a). This is due to the
fact that, while all snapshots of the network are characterized by ‘static’ fluctuations
of the empirical strengths of vertices around the balanced flux condition sini = souti∀ i , these fluctuations have different entities in different years. Changes in the size of
‘static’ fluctuations produce the ‘temporal’ fluctuations observed in the evolution of
〈rw〉WCM and partly also in the observed value rw, confirming the important role of
node (im)balances. After controlling for the time-varying entity of node imbalances
(using the WCM), we indeed find that the fluctuations of ρw

WCM are less pronounced
than those of ρw

BCM and ρw
W RG (see Fig. 3.13b). However, the fluctuations of r and

〈rw〉WCM do not cancel out completely and their resulting net effect (the trend of
ρw
WCM ) is still significant, indicating the strongest level of reciprocity across the

three null models.
While a binary analysis of the WTW [45, 47] detected an almost monotonic

increase of the reciprocity, with a marked acceleration in the 90’s, we find that the
weighted reciprocity has instead undergone a rapid decrease over the same decade:
this counter-intuitive result confirms that the information conveyed by a weighted
analysis of reciprocity is nontrivial and irreducible to the binary picture.

The above results confirm that, unlike the binary case, the knowledge of local
weighted properties conveys only limited information about the actual structure of
the network: higher-order properties, in fact, are not explained by local constraints.
Moreover, simple purely topological properties such as link density are not repro-
duced by the null model. This result confirms that, even in weighted analyses, the
binary structure plays an important role, being responsible for major departures of
the empirical network from the null model.

3.4.3 A Model for Weighted Networks with Reciprocity

We conclude this chapter by defining a maximum-entropy model that generalizes
the RCM introduced in Sect. 3.3 to the weighted case. This model can generate
weighted networks with given in-, out-, and reciprocated strengths sequences, and
can thus accurately replicate the weighted reciprocity of any real network. Themodel
goes under the name ofWeighted Reciprocal ConfigurationModel (WRCM) and has
been introduced in [35]. This implies a slight generalization of the formulas already
shown. The graph hamiltonian becomes

H(W|θ) =
∑

i

[αi s
→
i (W) + βi s

←
i (W) + γi s

↔
i (W)] (3.45)
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where, now, θ ≡ {α, β, γ } and

s→
i (W∗) ≡

∑

j �=i

w→∗
i j , s←

i (W∗) ≡
∑

j �=i

w←∗
i j , s↔

i (W∗) ≡
∑

j �=i

w↔∗
i j (3.46)

with obvious meaning of the symbols (defined above). The partition function now
becomes

Z(θ) =
∏

i

∏

j<i

(1 − xi x j yi y j )

(1 − xi y j )(1 − x j yi )(1 − zi z j )
≡

∏

i

∏

j<i

ZW RCM
i j (θ) (3.47)

and the likelihood is

ln P(W∗|θ) =
∑

i

∑

j<i

[(w→
i j )∗ ln(xi y j ) + (w←

i j )∗ ln(x j yi ) + (w↔
i j )

∗ ln(zi z j ) +

− ln ZWRCM
i j (θ)]. (3.48)

The solution to this optimization problem, with respect to x, y and z, can be found
by solving the following system:

〈s→
i 〉∗ =

∑

j �=i

〈w→
i j 〉∗ = s→

i (W∗), ∀i, (3.49)

〈s←
i 〉∗ =

∑

j �=i

〈w←
i j 〉∗ = s←

i (W∗), ∀i, (3.50)

〈s↔
i 〉∗ =

∑

j �=i

〈w↔
i j 〉∗ = s↔

i (W∗), ∀i (3.51)

where

〈w→
i j 〉∗ = x∗

i y
∗
j (1 − x∗

j y
∗
i )

(1 − x∗
i y

∗
j )(1 − x∗

i x
∗
j y

∗
i y

∗
j )

, (3.52)

〈w←
i j 〉∗ = x∗

j y
∗
i (1 − x∗

i y
∗
j )

(1 − x∗
j y

∗
i )(1 − x∗

i x
∗
j y

∗
i y

∗
j )

, (3.53)

〈w↔
i j 〉∗ = z∗

i z
∗
j

1 − z∗
i z

∗
j

. (3.54)

With the definition of the WRCM model all the vertex-level, strength sequences
are exactly reproduced, impyling that the reciprocity is reproduced at a local level.
The WRCM is powerful enough to allow for the analysis of the weighted motifs and
for community detection on weighted networks, especially for those networks where
the reciprocity plays an important role in shaping their structure.
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Chapter 4
Network Reconstruction

When they propose to establish the universal from the
particulars by means of induction, they will effect this by a
review of either all or some of the particulars. But if they review
some, the induction will be insecure, since some of the
particulars omitted in the induction may contravene the
universal; while if they are to review all, they will be toiling at
the impossible, since the particulars are infinite and indefinite.

—Sextus Empiricus, Πυρρωνειoι υπoτυπωσεις

Abstract In this chapter we show that the maximum-entropy method has important
and beneficial implications for the problem of network reconstruction. In general,
network reconstruction coversmany aspects, e.g. the inference ofmissing links,miss-
ing nodes, etc. Our formalism naturally defines an improved method of inference of
unknown link probabilities and link weights from partial node-specific information.
An important application is the reconstruction of privacy-protected financial net-
works from public bank-specific data and the subsequent estimation of the level of
systemic risk in a financial system. The method allows us to infer the unobserved
network structure with great accuracy even if only the strengths and/or the degrees of
nodes are known. We present a detailed discussion of this problem and a validation
of the method on many real-world examples. We start by illustrating the limitations
of purely weighted null models which, by enforcing only the strength sequence,
perform very poorly in reproducing the binary topology of real networks. These lim-
itations can be overcome by adding the degree sequence as a newpiece of information
which is usually not included in traditional models. Indeed, when constraining both
the degree and the strength sequence, the agreement between the observed and the
expected higher-order properties of real-world networks improves dramatically. We
then discuss how the observational requirements can be further relaxed while keep-
ing the reconstruction method reliable, as imposed by the empirical inaccessibility
of the degree sequence in many cases.

© The Author(s) 2017
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4.1 Reconstructing Network Properties from Partial
Information

In this section we mainly follow Ref. [1] in describing our approach to the network
reconstruction problem. As a preliminary observation and motivation for addressing
this problem, it should benoted that hownodes are connected to eachother determines
not only the structure of a network, but also the dynamics of processes taking place on
it. Indeed, a range of phenomena of critical importance, from the spread of infectious
diseases to the diffusion of opinions and the propagation of financial crises, turn out
to be highly sensitive to the topology of the underlying network that mediates the
interactions [2]. This sensitivity implies that, whenever it is not possible to have a
complete empirical knowledge of the network, one should make an optimal use of
the partial information available and try to reconstruct the most likely network, or
rather an ensemble of likely networks, in the least biased way. In the Big Data era,
this kind of problem is becoming more and more important given the ever-increasing
availability of data that, for privacy issues, are often of aggregate nature [3, 4].

Among the possible types of incomplete topological information (e.g. missing
links, missing nodes, etc.), one of the most frequently encountered situations is when
only a local knowledge of the network is available [5–10]. For instance, in binary
networks knowing the number of links of each node is typically much easier than
knowing the identity of all neighbours. Similarly, in weighted networks knowing the
total intensity of all the links connected to each node is much easier than knowing
the identity of all neighbours and the intensity of all links separately.

A typical example is that of interbank networks, where it is relatively easy to know
the total exposures of each bank, while privacy issues make it much more difficult to
know who is lending to whom, and how much [5, 6, 8, 9]. Similarly, a huge amount
of information is continuously collected about individuals [3, 4]. In that case as well,
privacy issues are becoming increasingly important, and methods that are able to
give detailed predictions from aggregated data, while at the same time respecting the
privacy of individuals, are therefore becoming more and more desirable.

In our approach, network reconstruction can be formally regarded as a constrained
entropy maximization problem, where the constraints represent the available infor-
mation and the maximization of the entropy ensures that the reconstructed ensemble
of networks is maximally random, given the enforced constraints [11, 12]. When the
available information is just local, one only knows O(N ) quantities (e.g. the degrees
of all nodes) instead of the total O(N 2) ones (e.g. all entries of the adjacency matrix)
fully describing the network. This makes the network reconstruction problem very
challenging, since the number of missing variables is still O(N 2), i.e. of the same
order of the total number (Fig. 4.1).
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Fig. 4.1 Pictorial representation of the process of network reconstruction from local topological
properties. Given a set of known node-specific properties (in the example considered, the degrees
of all nodes), the goal is that of inferring the complete structure of the network. In general, since
there are many network configurations compatible with the known constraints, the outcome of the
reconstruction process is actually a probability distribution over the space of networks compatible
with the constraints. This leads to the construction of a microcanonical or canonical ensemble (see
Fig. 2.3), if the constraints are treated as ‘hard’ or ‘soft’ respectively

4.1.1 Reconstruction of Binary Networks

If we consider binary networks, the simplest and most extensively used null model
is the CM that we have introduced in Subsect. 2.2.2 [11, 12]. From some of the
results we have illustrated in Sect. 3.1, it turns out that some binary networks, e.g.
the Italian Interbank network, the World Trade Web and some biological networks
can be reconstructed remarkably well from the knowledge of their degree sequence
alone. As additional evidence of this, in Fig. 4.2 we consider two foodwebs (note that
these networks are directed) and show the results of an analysis similar to the one
of Fig. 3.3. The figure shows that the empirical structure of the two webs is largely
consistent with the null model.

Additionally, we consider a set of undirected networks of different type, includ-
ing the Italian Interbank network in year 1999 [13], three ‘classic’ social networks
collected in [14], seven food webs from [15] and finally the aggregatedWTW in year
2002 [16]. For these networks, we provide a compact description of the agreement
between the empirical structure and the reconstructed one in Fig. 4.3. This confirms
that the assortativity and clustering patterns are correctly reproduced for most nodes
of all networks.

4.1.2 Naive Extension to Weighted Networks
and Its Limitations

In the rest of this chapter we address the problem of the effective reconstruction, from
local properties alone, of weighted networks. We first show that, in contrast with
what is generally believed, the reconstruction of weighted networks does not merely

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_3
http://dx.doi.org/10.1007/978-3-319-69438-2_3
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(a) (b)

(c) (d)

Fig. 4.2 Reconstruction of second-order properties of two directed food webs from the knowledge
of the nodes degrees. Red points are the empirical data and the blue dashed curves are the exact
expectations (± one standard deviation) under the directed configuration model obtained using the
maximum-entropy method. The green curves are the flat expectations under the directed version
of the (Erdös-Rényi) RG model. The panels report knn,in

i versus kini (left) and knn,out
i versus kouti

(right) for: a and b the Narragansett Bay web (N = 35) [15], c and d the Mondego Estuary web
(N = 46) [15]

involve a one-to-one mapping of the corresponding methodology that works well
for binary networks. Specifically, we are going to show that inferring the structure
of a weighted network only from the knowledge of its strength sequence can lead
to a very bad reconstruction, even for the networks that, at a binary level, can be
reproduced extremely well from their degree sequence [1, 12, 16, 17].

As shown in the previous chapters, the most natural generalization of the CM to
weighted networks is a reconstructed ensemble with given strength sequence (i.e. the
WCM) [12, 18, 19]. The latter is widely used both as a reconstruction method and
as the most important null model to detect communities. In both cases, if si denotes
the strength of node i and N is the number of nodes, the expected weight of the
link between nodes i and j predicted by the WCM is routinely written as shown
by Eq. (2.5) or in a slightly different way if the network is directed. Equation (2.5)
represents one of the standard procedures to infer interbank linkages from the total
exposures of individual banks [5], or the fundamental null model used by most
algorithms aimed at detecting densely connected communities in weighted networks
[20]. Unfortunately, despite its widespread use, such a recipe for weights estimation

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
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Fig. 4.3 Reconstruction of various undirected binary networks from node degrees using the CM,
showing that purely binary local properties are very informative. In each panel we compare the
reconstructed (y axis) and real (x axis) value of a node-specific network property, for all nodes of
the following 12 networks: Office social network ( ), Research group social network ( ), Fraternity
social network ( ), Maspalomas Lagoon food web ( ), Chesapeake Bay food web ( ), Crystal
River (control) food web ( ), Crystal River food web ( ), Michigan Lake food web ( ), Mondego
Estuary food web ( ), Everglades Marshes food web ( ), Italian Interbank network in year 1999
( ), aggregated World Trade Web in year 2002 ( ). Left: average nearest neighbour degree (knni ).
Right: binary clustering coefficient (ci )

is however incorrect and differs from the unbiased expression derived within our
rigorous maximum-entropy approach [12, 21, 22].

But a more profound limitation of the WCM persists even when it is correctly
implemented. It should be noted that themotivation for using theWCMas the natural
generalization of the CM to weighted networks is the implicit assumption that the
strength is an improved node-specific property, superior to the degree because it
encapsulates the extra information provided by link weights. However, while the
complete knowledge of a weighted network conveys of course more information
than the complete knowledge of just its binary projection, the strength sequence is
often surprisingly less informative than the degree sequence [12, 16, 17, 23]. In
particular, several purely topological properties of real weighted networks turn out
to be reproduced much better by applying the CM to the binary projection of the
graph, than by applying the WCM to the original weighted network [12, 16, 17].

Figure4.4 confirms and extends these non-obvious findings to various networks
of different nature. We compare, for all networks in the sample, the empirical and
reconstructed values of various structural properties, including both purely topologi-
cal properties and their weighted counterparts. If the full weighted matrix is denoted
by W (where wi j is the weight of the link between node i and node j), the purely
topological quantities are calculated on the binary projection A (adjacency matrix)
of W, with entries ai j = 1 if wi j > 0 and ai j = 0 if wi j = 0. The binary quantities
we choose are again the average nearest neighbor degree (ANND) and the binary
clustering coefficient introduced in Sect. 3.1.1. The corresponding weighted quanti-
ties are the average nearest neighbor strength (ANNS) and the weighted clustering
coefficient introduced in Sect. 3.4.1. [16, 24]. In each panel of Fig. 4.4, we show

http://dx.doi.org/10.1007/978-3-319-69438-2_3
http://dx.doi.org/10.1007/978-3-319-69438-2_3


68 4 Network Reconstruction

10
1

10
2

10
3

10
2

knn

<
kn

n >

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c

<
c>

10
1

10
3

10
5

10
7

10
5

snn

<
sn

n >

10
−1

10
1

10
3

10
4

10
6

10
5

cw

<
cw

>

Fig. 4.4 Naïve network reconstruction from node strengths (WCM), showing that purely weighted
local properties are poorly informative. In each panel we compare the reconstructed (y axis) and real
(x axis) value of a node-specific network property, for all nodes of the following 12 networks: Office
social network ( ), Research group social network ( ), Fraternity social network ( ), Maspalomas
Lagoon food web ( ), Chesapeake Bay food web ( ), Crystal River (control) food web ( ), Crystal
River food web ( ), Michigan Lake food web ( ), Mondego Estuary food web ( ), Everglades
Marshes food web ( ), Italian Interbank network in year 1999 ( ), aggregated World Trade Web
in year 2002 ( ). Top left: average nearest neighbour degree (knni ). Top right: binary clustering
coefficient (ci ). Bottom left: average nearest neighbour strength (snni ). Bottom right: weighted
clustering coefficient (cwi )

the measured value of one of the quantity defined above, for all nodes and for all
networks, and we compare it with the corresponding reconstructed value predicted
by the WCM. In this type of plot, every point is a node: therefore the target of a
good reconstruction method is that of placing all the points along the identity. By
contrast, in most cases we find that the reconstructed values for all nodes of a given
network lie along horizontal lines, i.e. they are nearly equal to each other and totally
unrelated to the ‘target’ real values.

The typical interpretation of a result like the above one is that the reconstruc-
tion of networks from local node-specific information is intrinsically problematic,
presumably because of higher-order mechanisms involved in the formation of real
networks, thus taking a difference between real data and the WCM as an important
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Fig. 4.5 Reconstructionof nodedegrees fromnode strengths (WCM), showing that purelyweighted
local properties are poorly informative.We compare the reconstructed (y axis) and real (x axis) value
of the degree, for all nodes of the following 12 networks: Office social network ( ), Research group
social network ( ), Fraternity social network ( ), Maspalomas Lagoon food web ( ), Chesapeake
Bay food web ( ), Crystal River (control) food web ( ), Crystal River food web ( ), Michigan Lake
food web ( ), Mondego Estuary food web ( ), Everglades Marshes food web ( ), Italian Interbank
network in year 1999 ( ), aggregated World Trade Web in year 2002 ( )

signature of non-local patterns [12, 18, 19]. In what follows, we propose a different
interpretation of the above findings.

We conjecture that the reason for the bad agreement between observations and
the WCM prediction lies in the fact that the strength sequence gives a very bad
prediction of purely topological properties, and particularly the degrees, as Fig. 4.5
clearly shows: in fact, out of the many, possible ways to redistribute the strength
of each node among the remaining vertices irrespectively of the number of new
links created, the WCM selects those predicting much denser networks than the real
ones [16].

4.2 The Enhanced Configuration Model

The above discussion leads us to the expectation that the poor reconstruction achieved
by the WCM might be largely due to fact that the strength sequence discards purely
topological information, in particular the degrees. Reversing the point of view, we
keep following [1] and conjecture that the degrees are to be considered a ‘funda-
mental’ local structural property of weighted networks, irreducible to the knowledge
of the strengths and thus at least as important as the latter. We should at this point
clarify that by ‘irreducible’ we do not refer to the numerical values of strengths and
degrees, but to the different functional roles that the two quantities play in determin-
ing or constraining the network structure: in fact, strengths and degrees are typically
highly correlated in real networks [25], whichmeans that we can reasonably infer the
values of one quantity from those of the other (in this sense, strengths and degrees
are ‘reducible’ to each other). However, this is, generally speaking, only true from
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an empirical point of view. What is of interest to us is a deeper form of irreducibil-
ity, encountered when the joint specification of strengths and degrees constrains the
network in a fundamentally different way than the specification of only one of the
two. As an example, nothing guarantees that their observed correlation is preserved
by the randomization procedure (i.e. that si ∝ f (ki ) implies 〈si 〉 ∝ f (〈ki 〉)), as
proved by the bad performance of the WCM in reproducing the degree sequence of
the networks considered in this chapter.

So, our conjecture leads us to believe that the reconstruction of weighted networks
would be significantly enhanced by the specification of both strengths and degrees.
For simplicity, we will refer to the ensemble of networks with given strengths and
degrees as the enhanced configuration model (ECM) [1]. Early attempts to generate
the ECM were either based on computational randomizations [26] or on theoretical
arguments [19]. However, analytical calculations later showed that these approaches
are statistically biased [22].

Formally, an ensemble of weighted networks with N nodes can be characterized
by a collection {W} of N × N matrices and by an appropriate probability P(W)

[22]. We look for a probability that maximizes Shannon entropy with a constraint
on the expected degree and strength sequences 〈k〉, 〈s〉 [22]. The fundamental result
[22] of this constrained maximization is the probability

P(W|x, y) =
∏

i< j

qi j (wi j |x, y) (4.1)

where x and y are two N -dimensional Lagrange multipliers controlling for the
expected degrees and strengths respectively (with xi ≥ 0 and 0 ≤ yi < 1 ∀ i),
and

qi j (w|x, y) = (xi x j )
Θ(w)(yi y j )w(1 − yi y j )

1 − yi y j + xi x j yi y j
(4.2)

is the probability that a link of weight w exists between nodes i and j . In the above
expression, Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise. Equation (4.2) defines
the ‘mixed’ Bose-Fermi distribution [22] where, due to the presence of Θ(w), the
establishment of a link of unit weight between two nodes requires a different (higher
if xi x j > 0) ‘cost’ than the reinforcement (by a unit of weight) of an already existing
link. This feature is due to the mixed binary and weighted constraints and makes the
ECM potentially very appropriate to model real networks.

We consider a particular real weighted network W∗, whose only degrees k∗
i ≡

ki (W∗) and strengths s∗
i ≡ si (W∗) are known. The log-likelihood of the ECM

defined by Eqs. (4.1) and (4.2) reads

L (x, y) ≡ ln P(W∗|x, y) = ∑
i< j ln qi j (w

∗
i j |x, y) =

∑N
i=1

(
k∗
i ln xi + s∗

i ln yi
) + ∑

i< j ln
(

1−yi y j
1−yi y j+xi x j yi y j

)
. (4.3)
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We now look for the specific parameter values x∗, y∗ that maximize L (x, y).
A direct calculation shows that x∗, y∗ can be obtained as the real solution to the
following system of 2N equations [12, 27]:

〈ki 〉 =
∑

j 
=i

xi x j yi y j
1 − yi y j + xi x j yi y j

= ki (W∗) ∀i, (4.4)

〈si 〉 =
∑

j 
=i

xi x j yi y j
(1 − yi y j )(1 − yi y j + xi x j yi y j )

= si (W∗) ∀i. (4.5)

Therefore,wefind that the likelihood-maximizing valuesx∗, y∗ are precisely those
ensuring that the expected degree and strength sequences coincide with the observed
sequences k∗ and s∗, thus solving our initial problem. The values x∗, y∗ contain all
the information necessary to reconstruct the network: consistently with our problem,
either solving the 2N Eqs. (4.4) and (4.5) or, equivalently, maximizing the function
L (x, y) of 2N variables only requires the knowledge of the observed strengths and
degrees, and not that of the entire network W∗.

Once the solutions x∗ and y∗ are found, they can be used to obtain the reconstructed
(ensemble-averaged) network properties analytically: formost topological properties
of interest, this involves calculating the expected product of (powers of) distinct
matrix entries, which simply reads

〈
∑

i 
= j 
=k,...

wα
i j · wβ

jk · . . .

〉
=

∑

i 
= j 
=k,...

〈wα
i j 〉 · 〈wβ

jk〉 · 〈. . . 〉 (4.6)

with the generic term given by

〈wγ

i j 〉∗ =
+∞∑

w=0

wγ qi j (w|x∗, y∗) = x∗
i x

∗
j (1 − y∗

i y
∗
j )Li−γ (y∗

i y
∗
j )

1 − y∗
i y

∗
j + x∗

i x
∗
j y

∗
i y

∗
j

(4.7)

where Lin(z) is the nth polylogarithm of z. The simplest and most useful cases
γ = 1 and γ = 0 yield the expected weight 〈wi j 〉 and the connection probability
pi j = 〈Θ(wi j )〉 = 〈ai j 〉, respectively. Therefore the reconstructed value 〈X〉 can be
calculated in the same time as that required to calculate the real (if known) value
X (W∗) (i.e. the shortest possible time), by simply replacing wγ

i j with 〈wγ

i j 〉 in the
definition of X (W).

We can now apply our general methodology to the reconstruction of real-world
networks. We consider again the assortativity and clustering properties. The result
is illustrated in Fig. 4.6 for all the networks shown previously in Fig. 4.4. We clearly
see that the enhanced method achieves a dramatic improvement over the standard
approach. Nowmost points lie in the vicinity of the identity, meaning that the method
is able to successfully reconstruct, for each vertex, the structure of the network two
and three steps away from it. Note that the noisiest property is the binary clustering
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Fig. 4.6 Enhanced network reconstruction from strengths and degrees, showing dramatic improve-
ments over the standard approach. In each panel we compare the reconstructed (y axis) and real (x
axis) value of a node-specific network property, for all nodes of the following 12 networks: Office
social network ( ), Research group social network ( ), Fraternity social network ( ), Maspalomas
Lagoon food web ( ), Chesapeake Bay food web ( ), Crystal River (control) food web ( ), Crystal
River food web ( ), Michigan Lake food web ( ), Mondego Estuary food web ( ), Everglades
Marshes food web ( ), Italian Interbank network in year 1999 ( ), aggregated World Trade Web in
year 2002 ( ). Top left: average nearest neighbour degree (knni ). Top right: binary clustering coeffi-
cient (ci ). Bottom left: average nearest neighbour strength (snni ). Bottom right: weighted clustering
coefficient (cwi )

coefficient; however if we compare our results with the naive ones we find that the
improvement achieved for this quantity is perhaps the most significant one.

The above findings completely reverse the conclusions one would draw from the
previous interpretation of the naive results. First, network reconstruction from purely
local properties is now shown to be possible to a highly satisfactory level, at least
for the networks considered here. Second, the assortativity and clustering properties
of these networks turn out to be well explained by purely local, even if augmented,
properties. So, there is no need to invoke non-local mechanisms in order to explain
such properties in these networks.We similarly expect that, if one considers the ECM
as an improved null model to detect communities or other higher-order patterns,
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the result will be dramatically different from what is obtained by using the WCM
prediction in the definition of the modularity [20].

We now confirm the superiority of the method using the rigorous statistical tests
illustrated in Sect. 2.3, comparing the performance of the WCM and ECM in repro-
ducing the whole network. At the same time, this approach will automatically allow
us to test our initial conjecture that the degrees are irreducible to the strengths. Indeed,
both problems can be equivalently stated within a model selection framework, where
one is interested in determining not only which of the two models achieves the best
fit to the data, but also whether the introduction of the degrees as extra parameters
in the ECM is really non-redundant.

To start with, we need to compare the likelihood of the ordinary WCM with that
of ECM. Note that the WCM can be obtained as a particular case of the MCM by
setting x = 1. The log-likelihood of the WCM is therefore the reduced function
L (1, y) of N variables, and is maximized by a new vector y∗∗ 
= y∗ which is also
the solution of Eq. (4.5) with x = 1. The predictions of theWCM are still obtained as
in Eqs. (4.6) and (4.7), by replacing x∗

i with 1 and y
∗
i with y

∗∗
i in the latter. This is how

the reconstructed properties in Fig. 4.4 were computed. Now, if we simply compare
the maximized likelihoods of the two reconstruction methods, we trivially obtain
L (x∗, y∗) ≥ L (1, y∗∗) since the ECM always improves the fit to the real network
W∗, given that it includes the WCM as a particular case and has extra parameters.
Thus, for our two competing null models, the most appropriate information-theoretic
criteria are the LRT and AIC. The latter reads

AIC∗
ECM ≡ 4N − 2L (x∗, y∗), (4.8)

AIC∗
WCM ≡ 2N − 2L (1, y∗∗) (4.9)

and the optimal model is the one minimizing AIC. In our case, Akaike weights [28]
read

wAIC
ECM ≡ e− AICECM

2

e− AICECM
2 + e− AICWCM

2

, wAIC
WCM ≡ 1 − wAIC

ECM . (4.10)

since the addendum accounting for the minimumAIC in the termsΔECM andΔWCM

can be simplified (being present both at the numerator and at the denominator).
The AIC weights of the two reconstruction methods are shown in Table4.1 for

all networks [29]. We see that, apart from two social networks, the enhanced method
is always superior to the naïve one, achieving unit probability (within machine pre-
cision) of being the best among the two models. Moreover, the LRT response is
the same of AIC, at both 5 and 1% significance levels. A closer inspection of the
two networks for which the opposite result holds reveals that they are (almost) fully
connected. This explains why the specification of the degree sequence, which in this
case is close to the almost fully connected prediction of the WCM, is redundant
for these networks. In such cases, the relevant local constraints effectively reduce to
the strength sequence, so the ‘standard’ WCM is preferable. Our method correctly
identifies this situation. However, whenever the topology is nontrivial (as in most

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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Table 4.1 AIC weights for the considered null models (AICc and BIC weights give exactly the
same results)

Network wAIC
WCM wAIC

ECM

Office social network [14] 1 0

Research group social network [14] 1 0

Fraternity social network [14] 0 1

Maspalomas Lagoon food web [15] 0 1

Chesapeake Bay food web [15] 0 1

Crystal River (control) food web [15] 0 1

Crystal River food web [15] 0 1

Michigan Lake food web [15] 0 1

Mondego Estuary food web [15] 0 1

Everglades Marshes food web [15] 0 1

Italian interbank network (1999) [13] 0 1

World Trade Web (2000)[16] 0 1

real-world networks), the local constraints are irreducible to the strength sequence
alone and the degrees must be separately specified. We should therefore expect that,
for the vast majority of real-world networks, the degree sequence is irreducible to the
strength sequence. In such cases, the inclusion of degrees is non-redundant, explain-
ing why the ECM retrieves significantly more information.

4.2.1 In-Depth Example: Reconstructing the World Trade
Web

In sect. 3.4.1 we have shown that, at the binary level, the degree correlations and
clustering structure of the WTW are excellently reproduced by the CM, i.e., using
only the knowledge of the degree sequence. By contrast, when the WCM is imple-
mented as a natural extension of the CM for valued graphs, the binary quantities
and also the corresponding weighted quantities are very different from the predicted
counterparts. These results are very robust and hold true over time and for various
resolutions (i.e. for different levels of aggregation of traded commodities) [23].

In Fig. 4.7 we show the higher-order binary quantities (ANND and clustering)
plotted versus the node degree and the higher-order weighted quantities (ANNS and
clustering) plotted versus the node strength, for the 2002 snapshot of theWorld Trade
Web. We plot together the observed values (red points), the corresponding quantities
predicted by theWCM(green points) and by the ECM (blue points): while, on the one
hand, there is a very close agreement between the observed values and the expected
ones computed on the maximum-entropy ensemble generated by the ECM, on the
other the ECM and the WCM predictions strongly differ; the expected values for the

http://dx.doi.org/10.1007/978-3-319-69438-2_3


4.2 The Enhanced Configuration Model 75

binary and the weighted quantities under the WCM are similar to those for a fully
connected topology (i.e. 〈ki 〉WCM � N − 1):

〈knni 〉∗WCM � N − 1, 〈c〉∗WCM � 1 (4.11)

〈snni 〉∗WCM �
∑

j 
=i p
∗
i j s

∗
j

〈ki 〉∗ �
∑

i s
∗
i

N − 1
� 2W ∗

tot

N − 1
(4.12)

where N stands for the number of nodes in the network, while W ∗
tot is total trade

volume for the considered year (predictions (4.11) are represented, respectively, by
the black dashed line in Fig. 4.7a, b while (4.12) corresponds to the black top line in
Fig. 4.7c). This outcome, here emerging from the comparison between red and green
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Fig. 4.7 Comparison between the observed undirected binary and weighted properties (red points)
and the corresponding ensemble averages of the WCM (green points) and the ECM (blue points)
for the aggregated WTW in the 2002 snapshot. Note that the red and the green points correspond
to the values already shown in Fig. 3.11 apart from an overall rescaling constant. a average nearest
neighbor degree knni versus degree ki .; b binary clustering coefficient ci versus degree ki ; c aver-
age nearest neighbor strength snni versus strength si ; d weighted clustering coefficient cwi versus
strength si

http://dx.doi.org/10.1007/978-3-319-69438-2_3
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Fig. 4.8 Temporal evolution of the correlation coefficient between knni and 〈knni 〉 (top left panel),
ci and 〈ci 〉 (top right panel), snni and 〈snni 〉 (bottom left panel), cwi and 〈cwi 〉 (bottom right panel) in
the 1992–2002 snapshots of the observed undirected WTW and of the corresponding maximum-
entropy ensembles with specified degrees and strengths. Red points stands for observed values, blue
for the randomized ones; the 95% confidence intervals are represented as vertical bars

points, perfectly illustrates that the naïve expectation that weighted quantities are per
se more informative than the corresponding binary ones is fundamentally incorrect.

On the contrary, the ECM performs excellently both for the binary and weighted
versions of the WTW. Firstly, it reveals a slightly improved agreement for the binary
trends. In fact, the monotonic trend predicted by the degree sequence only now
follows, in a closer way, the observed cloud of points, while the prediction by WCM
are concentrated far from the observed (red) points. Secondly, we also find a much
better agreement between the observed and the randomized weighted trends. This
implies that the weighted structure alone does not allow a deep understanding of the
topology, representing an irreducible piece of information to be accounted for from
the beginning.

In accordance with the existing literature we find a disassortative pattern for the
WTW and a decreasing trend of ci versus ki . This confirms that it is very likely
to find nodes with many trade partners connected with nodes with small degree
(and vice-versa), while trade partners of poorly connected nodes are highly inter-
connected. Similar considerations hold true when we introduce weights, indeed snni
and cwi are related with indirect paths of length two and three, respectively, but now
they summarize mixed information about topology and weights (the terms ai jw jk



4.2 The Enhanced Configuration Model 77

Table 4.2 The 14 most relevant commodity classes (plus aggregate trade) in year 2003 and the
corresponding total trade value (USD), trade value per link (USD), and share of world aggregate
trade. From Ref. [30]

HS Code Commodity Value (USD) % of aggregate trade

84 Nuclear reactors, boilers,
machinery and mechanical
appliances; parts thereof

5.67 × 1011 11.37

85 Electric machinery, equipment and
parts; sound equipment; television
equipment

5.58 × 1011 11.18

27 Mineral fuels, mineral oils &
products of their distillation;
bitumin substances; mineral wax

4.45 × 1011 8.92

87 Vehicles, (not railway, tramway,
rolling stock); parts and
accessories

3.09 × 1011 6.19

90 Optical, photographic,
cinematographic, measuring,
checking, precision, medical or
surgical instruments/apparatus;
parts & accessories

1.78 × 1011 3.58

39 Plastics and articles thereof. 1.71 × 1011 3.44

29 Organic chemicals 1.67 × 1011 3.35

30 Pharmaceutical products 1.4 × 1011 2.81

72 Iron and steel 1.35 × 1011 2.70

71 Pearls, precious stones, metals,
coins, etc.

1.01 × 1011 2.02

10 Cereals 3.63 × 1010 0.73

52 Cotton, including yarn and woven
fabric thereof

3.29 × 1010 0.66

9 Coffee, tea, mate & spices 1.28 × 1010 0.26

93 Arms and ammunition, parts and
accessories thereof

4.31 × 109 0.09

ALL Aggregate (all 97 commodities) 4.99 × 1012 100.00

are determinant in this sense). Again, by plotting these quantities versus the strength
we gather signals that countries highly involved in the WTW are connected with
poorly trading countries, confirming a disassortative pattern (even if less prominent)
for the weighted network. Interestingly, these patterns are perfectly reproduced by
the quantities predicted using the ECM. This implies that the knowledge of both
the number of trade partners of each node and the total amount of trade flowing
through each country is maximally informative about the higher-order and non local
dynamics of the whole network.
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To further investigate this issue, we explore the evolution of the same properties
over time.To this aim, for eachnetworkpropertywe take the series of observedvalues,
e.g. {knni }Ni=1, and the series of its expected values, e.g. {〈knni 〉}Ni=1; then, we compute
the correlation coefficient between the analyzed property and the related constraint,
e.g. ki (for assumption ki ≡ 〈ki 〉). The associated 95% confidence intervals are
plotted as well. Figure4.8 shows results perfectly in line with the outcome of the CM
for the same data-set [23]. This implies that by simultaneously preserving degrees
and strength, the ECM does not affect the ability of the CM to predict the topology
of the WTW. We obtain a very close agreement between observed and expected
values over time as confirmed by the correlation coefficient around r � 1. Also
for the weighted network properties we observe an excellent agreement between
observed quantities and the corresponding averages over the ECM ensemble for the
whole period. Indeed the correlation coefficients between observed and randomized
properties is almost r � 1 for all times.

We complete our analysis of the WTW as an undirected network by studying
whether the picture changes when one considers the individual networks formed
by imports and exports of single commodities. This application allows us also to
gather information about the ECM ability to predict different networks according
to their level of sparseness. Indeed, we know that the undirected WTW is a highly
dense network (density∼0.5) andwe have already observed that some randomization
techniques work only under specific conditions. Indeed, the commodities have been
chosen and ordered according to the intensity of trade and level of aggregation.1

For brevity we just show the scatter plot between binary and weighted higher-order
properties and the related constraints, respectively {ki }Ni=1 and {si }Ni=1 (Figs. 4.9 and
4.10).

We find that the results obtained in our aggregated study also hold for individ-
ual commodities, independently on the level of aggregation. We recognize a small
improvement in the prediction according to the increase of network density (this is
especially true for the weighted case), nevertheless the agreement is always very
good. From an economic point of view, we can just point out a slight growth of
dissortativity when less traded commodities are considered. Moreover, we confirm
that the agreement between the model and the real network is still pronounced for
the weighted quantities (Figs. 4.11, 4.12).

While the binary results confirm again the outcome shown in the previous chapter,
the excellent agreement between observed and randomized weighted properties also
for the commodity-specific case is surprising. The case of weighted clustering coef-
ficient is really interesting in this sense. Indeed, in the aggregated case also theWCM

1In particular, among the 97 commodity classes, we have focused on the 14 particularly relevant
commodities identified in [30] and reported in Table4.2. These 14 commodities include the 10 most
traded commodities in terms of total trade value (following the ranking in year 2003 [30]), plus
4 classes which are less traded but more relevant in economic terms. We selected the two least
traded commodities in the set (c = 93, 9), two intermediate ones (c = 39, 90), the most traded one
(c = 84), plus the network formed by combining all the top 14 commodities. The last sub-network
represents an intermediate level of aggregation between single commodities and the completely
aggregated data (c = 0).
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Fig. 4.9 Average nearest neighbor degree knni versus degree ki in the 2002 snapshots of the
commodity-specific (disaggregated) versions of the observed binary undirected WTW (red points),
and corresponding average over the maximum entropy ensemble with specified degrees and
strengths (blue points): a commodity 93; b commodity 09; c commodity 39; d commodity 90;
e commodity 84; f aggregation of the top 14 commodities (see Table4.1 for details). From a to f,
the intensity of trade and level of aggregation increases

seemed to show a good prediction of this quantity, but this outcome is not robust to
disaggregation. On the contrary, Fig. 4.12 shows that the ECM is not affected by this
limit neither for cwi nor for any other network quantities.

The last step of our analysis consists in the comparison between the new enhanced
model and the ordinary WCM in term of trade-off between accuracy of the results
and parsimony in the use of constraints. Indeed, even if it is evident that the ECM
performs better than the WCM in replicating WTW properties, we want to check
if the former over-fits the network, i.e. if the introduction of degrees is redundant.
As we mentioned, the WCM can be obtained as a particular case of the ECM by
setting x∗

i = 1 ∀ i , by ‘switching’ off the Lagrange parameters controlling for the
degrees. The log-likelihood of the WCM is therefore the reduced function L (1, y)
of N variables, and is maximized by a new vector y∗∗ 
= y∗, where (x∗, y∗) stands
for the solution of the ECM and y∗∗ the solution of the WCM for the same observed
network. For our two competing null models, following the suggestion in [30], we
implement the AICc criterion, i.e.

AICc∗
ECM ≡ 4N + 8N (2N + 1)

N 2 − 5N − 2
− 2L (x∗, y∗), (4.13)

AICc∗
WCM ≡ 2N + 4N (N + 1)

N 2 − 3N − 2
− 2L (1, y∗∗). (4.14)



80 4 Network Reconstruction

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

c,
<
c>

(a)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

k

c,
<
c>

(b)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

k

c,
<
c>

(c)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

k

c,
<
c>

(d)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

k

c,
<
c>

(e)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

k

c,
<
c>

(f)

Fig. 4.10 Binary clustering coefficient ci versus degree ki in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the observed binary undirected WTW (red points), and corre-
sponding average over the maximum entropy ensemble with specified degrees and strengths (blue
points): a commodity 93; b commodity 09; c commodity 39; d commodity 90; e commodity 84; f
aggregation of the top 14 commodities (see Table4.1 for details). From a to f, the intensity of trade
and level of aggregation increases

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

s

sn
n ,
<
sn

n >

(a)

10
1

10
2

10
3

10
4

10
5

10
6

10
6

10
4

10
5

10
6

s

sn
n ,
<
sn

n >

(b)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
5

10
6

10
7

s

sn
n ,
<
sn

n >

(c)

10
1

10
3

10
5

10
7

10
8

10
4

10
5

10
6

10
7

s

sn
n ,
<
sn

n >

(d)

10
2

10
4

10
6

10
8

10
6

10
7

s

sn
n ,
<
sn

n >

(e)

10
2

10
4

10
6

10
8

10
7

10
8

s

sn
n ,
<
sn

n >

(f)

Fig. 4.11 Average nearest neighbor strength snni versus degree ki in the 2002 snapshots of
the commodity-specific (disaggregated) versions of the observed binary undirected WTW (red
points), and corresponding average over the maximum entropy ensemble with specified degrees
and strengths (blue points): a commodity 93; b commodity 09; c commodity 39; d commodity 90;
e commodity 84; f aggregation of the top 14 commodities (see Table4.1 for details). From a to f,
the intensity of trade and level of aggregation increases
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Fig. 4.12 Weighted clustering coefficient cwi versus degree ki in the 2002 snapshots of the
commodity-specific (disaggregated) versions of the observed binary undirected WTW (red points),
and corresponding average over the maximum entropy ensemble with specified degrees and
strengths (blue points): a commodity 93; b commodity 09; c commodity 39; d commodity 90;
e commodity 84; f aggregation of the top 14 commodities (see Table4.1 for details). From a to f,
the intensity of trade and level of aggregation increases

The additional term is necessary because n/K < 40 (recall that n is the sample
cardinality and K is the number of parameters of the model with more parameters,
i.e. the ECM [30]). Akaike weights in our case read

wAICc
ECM ≡ e− AICcECM

2

e− AICcECM
2 + e− AICcWCM

2

, wAICc
WCM ≡ 1 − wAICc

ECM . (4.15)

Given a real network, a low value of wAICc
ECM will indicate that the addition of the

degree sequence is redundant (the relevant local constraints effectively reduce to the
strength sequence, so the ‘standard’WCM is preferable), while a high value ofwAICc

ECM
will indicate that the local constraints are irreducible to the strength sequence (so
the degrees must be separately specified). We stress that the result of this procedure
is not predictable a priori (it depends on the numerical values of {si }Ni=1 and {ki }Ni=1)
and can only be achieved after a comparison with the ECM. Thus, even in cases
when the WCM turns out to be the best model, our introduction of the ECM is still
a necessary step making the whole approach self-consistent.

In Table4.3 we show the results for the two competing model. We also used the
Bayesian Information Criterion (BIC) [30]. Both criteria confirm that addition of
the degree sequence to the WCM is non-redundant and extremely informative for
the prediction of the WTW properties.
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Table 4.3 AICc and BIC values, AICc and BIC weights for the considered null models applied
to the WTW in 2002

AICc BIC wAICc wBIC

WCM 209.972 211.179 0 0

ECM 165.731 168.137 1 1

4.3 Further Reducing the Observational Requirements

Several analyses suggest that the probability for any two nodes to interact can be
explicitlywritten in terms of non-structural quantities, which are typical of the system
under analysis. This assumption rests upon the hypothesis that the activity of each
node can be summed up by an ‘intrinsic’ quantity, gi , called fitness, the latter being
related to the corresponding Lagrange multiplier through a relation as xi = f (gi ).
In the case of the World Trade Web such a relation reads xi = √

z GDPi ∀ i [27].
This line of reasoning leads to a generalized procedure to make inference, whose

defining equation can be assumed to be

pi j = f (gi ) f (g j )

1 + f (gi ) f (g j )
. (4.16)

As noticed elsewhere [33], this generalization allows one to use of external as
well as structural properties as fitnesses, provided that the aforementioned functional
form is satisfied. This has profound implications on the kind of information that is
necessary to know to accurately reconstruct a network. As we will show in the rest of
the chapter, if the existing correlations between nodes strengths and nodes degrees
are used, the amount of required information can be significantly reduced.

4.3.1 Bootstrap Method

Exploiting the correlations between strengths and degrees amounts at identifying the
nodes fitnesses with the nodes strengths, i.e. gi = si ∀ i and choosing a functional
dependence relating xi and si . Although this choice strongly depends on the particular
system under analysis, in what follows we focus on a functional formwhich has been
verified to hold for the economic and financial systems considered throughout this
book: xi = √

z si (W∗) ∀ i [31]. The nodes strengths {si (W∗)}Ni=1 are, thus, assumed
to play the role of structural fitnesses controlling for the nodes degrees via a universal
parameter z. Following this line of reasoning, Eq. (4.16) can be rewritten as

pi j = z si (W∗)s j (W∗)
1 + z si (W∗)s j (W∗)

. (4.17)
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Although Eq. (4.17) makes the knowledge of the whole degree sequence unnec-
essary, some kind of topological information is, however, still required in order to
estimate the only unknown z. Upon resorting on the likelihood prescription men-
tioned in [10], the only equation to be solved is

〈L〉 =
∑

i

∑

j<i

z si (W∗)s j (W∗)
1 + z si (W∗)s j (W∗)

= L(A∗). (4.18)

The power of this approach lies in the fact that an accurate estimation of the
whole degree sequence can be obtained at the negligible computational cost required
to solveEq. (4.18). Once the parameter z has been found, in fact, the unknowndegrees
can be easily estimated as k̃i = ∑

j 
=i
z si (W∗)s j (W∗)

1+z si (W∗)s j (W∗) ∀ i .
The algorithmwe have described further clarifies the role that strengths have in the

whole process of reconstruction. In particular, the information encoded into nodes
strengths is not per se at a ‘lower level’ with respect to the information encoded
into the degrees. What our method points out is the way to make a correct use of it:
strengths should not be used to directly reconstruct the network but to, first, estimate
the degrees and only then to be enforced as complementary constraints. In this sense,
estimating the degrees from the strengths is equivalent to ‘bootstrap’ the ECM and
provides an easy, yet very effective, recipe to obtain the degree sequence whenever
the latter is not directly observable. Once the ‘bootstrap’ step has been carried on, we
can rest upon our usual ECM estimation technique, enforcing the estimated degrees
as genuine topological constraints:

〈ki 〉 =
∑

j 
=i

xi x j yi y j
1 − yi y j + xi x j yi y j

= k̃i ∀i, (4.19)

〈si 〉 =
∑

j 
=i

xi x j yi y j
(1 − yi y j )(1 − yi y j + xi x j yi y j )

= si (W∗) ∀i. (4.20)

It is important to remark that the applicability of our ‘bootstrapped’ ECM cru-
cially depends on the accuracy of the choice of the function f (gi ) or, whenever
strengths are used as fitnesses, whether the induced degrees are able to provide good
estimates for the unknown degrees. This is indeed the case for the WTW and the
Electronic Interbank Italian Market (e-MID), as Fig. 4.13 shows. The effectiveness
of the aforementioned model in reproducing basic network properties is shown in
Fig. 4.14.

4.3.2 The Degree-Corrected Gravity Model

Although the ECM (both in its complete and ‘bootstrapped’ version) represents a
very accurate reconstructionmodel, solvingEqs. (4.20) and (4.19) can be, sometimes,
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Fig. 4.13 Relation between node strengths {si (W∗)}Ni=1 and their degree-induced Lagrange mul-
tipliers {xi }Ni=1, obtained by solving the CM. The linearity of such a relation lies at the basis of
our assumption that xi ∝ si (W∗) ∀ i accurately describes the binary network topology. Left panel
refers to the WTW, right panel to e-MID

computationally demanding. For this reason, a simpler version of the ‘bootstrapped’
ECM can be devised which is often as accurate as the aforementioned one.

Once more, economics provides the main inspiration for such a model: in partic-
ular, although the gravity model has been proved to provide a poor performance in
reproducing the WTW topological structure, the observed trade exchanges between
countries are, on the other hand, nicely reproduced by it [32]. In network terms, the
gravity model prescription can be rephrased as

〈wi j 〉 = si (W∗)s j (W∗)
2W ∗

tot
(4.21)

where W ∗
tot is the observed total weight. However, as already noticed in Chap. 2, the

recipe provided by Eq. (4.21) suffers from a number of limitations, the most evident
being that it induces a fully-connected network configuration. A straightforward way
to both retain the explanatory power of the gravity model and avoid ending up with
a complete network is provided by the following recipe

wi j =
{

0 with probability 1 − pi j ,
si (W∗)s j (W∗)

2W ∗
tot

pi j with probability pi j
(4.22)

with pi j = z si (W∗)s j (W∗)
1+z si (W∗)s j (W∗) . Each entry of the network adjacency matrix is ‘weighted’

by its probability of appearance, thus ensuring that the estimation provided by

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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(a) (b)

(c) (d)

Fig. 4.14 Scatter plots of the average nearest neighbor strength snni versus strength si a average
nearest neighbor degree knni versus degree ki b weighted clustering coefficient cwi versus strength
si c and binary clustering coefficient ci versus degree ki d for the real quantities (dark points), those
estimated by our method (purple points) and those computed by a WCM-based reconstruction
(green points). Insets: scatter plots of the observed values versus the expected values for the same
quantities

Eq. (4.21) is preserved. The latter is appealing because provides a very simple recipe,
yet able to satisfy the weighted constraints (〈si 〉 = si (W∗) = ∑

j w
∗
i j ∀ i). Equa-

tions (4.22) define the degree-corrected gravity model [33].
It should be noticed that, in order to ensure that the strengths are correctly repro-

duced, the sum above must run over all indices, including i = j . Terms of this
kind describe nodes self-interactions which, however, are highly unrealistic. Exclud-
ing diagonal terms from our analysis implies that our sums must run over different
indices, i.e. j 
= i , thus causing the expectations coming from the degree-corrected
gravity model to need an extra-term to restore the correct value . More explicitly,

〈si 〉 =
∑

j 
=i

〈wi j 〉 = si (W∗)(2W ∗
tot − si (W∗))

2W ∗
tot

= si (W∗) − s2i (W
∗)

2W ∗
tot

, (4.23)

and themissing term to be added up to our expectations is precisely the diagonal term,
i.e. 〈wii 〉. Following [34],we adopt the prescription of redistributing the diagonal term
〈wii 〉 across the i-th row and the i-th column. As discussed in [34], redistributing the
diagonal terms across the corresponding rows and columns amounts to redistribute
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(a) (b)

(d) (e)

(c)

(f)

Fig. 4.15 Properties of real and synthetic networks. Left panels (a, d): dependence of the size of
the giant component on the occupation probability p. Central panels (b, e): empirical probability
distribution of the directed shortest path length λ. Right panels (c, f): dependence of the DebtRank
index on the initial distress Φ [33]. Top panels refer to the WTW, bottom panels to e-MID

the strengths of the following matrix on the entries equal to 1

0 1 1 1 . . .
s21 (W

∗)
2W ∗

tot

1 0 1 1 . . .
s22 (W

∗)
2W ∗

tot

1 1 0 1 . . .
s23 (W

∗)
2W ∗

tot

1 1 1 0 . . .
s24 (W

∗)
2W ∗

tot

...
...

...
...

. . .
...

s21 (W
∗)

2W ∗
tot

s22 (W
∗)

2W ∗
tot

s23 (W
∗)

2W ∗
tot

s24 (W
∗)

2W ∗
tot

. . .

(4.24)

This problem can be solved by implementing a procedure inspired to the iterative
proportional fitting (IPF) algorithm [35], defined by the following iterations

⎧
⎪⎪⎨

⎪⎪⎩

w(n)
i j = s2i (W

∗)
2W ∗

tot

(
w(n−1)
i j∑

k(
=i) w
(n−1)
ik

)

w(n+1)
i j = s2j (W

∗)
2W ∗

tot

(
w(n)
i j∑

k(
= j) w
(n)
k j

) (4.25)

and upon setting the matrix defined by w(0)
i j = 1 ∀ i 
= j as the initial configuration.

The probabilistic recipe defining the degree-corrected gravity model thus becomes
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wi j =
{

0 with probability 1 − pi j ,(
si (W∗)s j (W∗)

2W ∗
tot

+ w(∞)
i j

)
1
pi j

with probability pi j ; (4.26)

the analytical functional form of the first three IPF algorithm iterations read:

w(1)
i j = s2i (W

∗)
2W ∗

tot

[
1

N − 1

]
;

w(2)
i j = s2i (W

∗)
2W ∗

tot

[
s2j (W

∗)
∑

l 
= j s
2
l (W∗)

]
; (4.27)

w(3)
i j = s2i (W

∗)
2W ∗

tot

[
s2j (W

∗)
∑

l 
= j s
2
l (W∗)

] ⎡

⎣ 1
∑

k 
=i
s2k (W

∗)∑
m 
=k s

2
m (W∗)

⎤

⎦ .

A directed version of the degree-corrected gravity model has been defined as well
[33] whose performance is show in Fig. 4.15.

References

1. R.Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli, Enhanced reconstruction of weighted
networks from strengths and degrees. New J. Phys. 16, 043022 (2014)

2. A. Barrat, M. Barthlemy, A. Vespignani, Dynamical Processes on Complex Networks (Cam-
bridge University Press, Cambridge, 2008)

3. C. Lynch, Big data: How do your data grow? Nature 455(7209), 28–29 (2008)
4. S. Lohr, The Age of Big Data, New York Times 11 (2012)
5. S. Wells, Financial interlinkages in the United Kingdom’s interbank market and the risk of

contagion, Bank of England Working Paper 230/2004 (2004)
6. L. Bargigli, M. Gallegati, Random digraphs with given expected degree sequences: a model

for economic networks. J. Econ. Behav. Organ. 78(3), 396–411 (2011)
7. N. Musmeci, S. Battiston, G. Caldarelli, M. Puliga, A. Gabrielli, Bootstrapping topological

properties and systemic risk of complex networks using the fitness model. J. Stat. Phys. 151(3–
4), 720–734 (2013)

8. G. Caldarelli, A. Chessa, F. Pammolli, A. Gabrielli,M. Puliga, Reconstructing a credit network.
Nat. Phys. 9(3), 125–126 (2013)

9. I. Mastromatteo, E. Zarinelli, M. Marsili, Reconstruction of financial networks for robust
estimation of systemic risk. J. Stat. Mech. 03, P03011 (2012)

10. D. Garlaschelli, M.I. Loffredo, Structure and evolution of the world trade network. Physica A
355, 138–144 (2005)

11. J. Park, M.E.J. Newman, Statistical mechanics of networks. Phys. Rev. E 70(6), 066117 (2004)
12. T. Squartini, D. Garlaschelli, Analytical maximum-likelihood method to detect patterns in real

networks. New J. Phys. 13(8), 083001 (2011)
13. G. De Masi, G. Iori, G. Caldarelli, Fitness model for the Italian interbank money market. Phys.

Rev. E 74(6), 066112 (2006)
14. P.D. Killworth, H.R. Bernard, Informant accuracy in social network data. Hum. Organ. 35(3),

269–286 (1976)
15. http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
16. T. Squartini, G. Fagiolo, D. Garlaschelli, Randomizing world trade. II. A weighted network

analysis. Phys. Rev. E 84(4), 046118 (2011)

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm


88 4 Network Reconstruction

17. G. Fagiolo, T. Squartini, D. Garlaschelli, Null models of economic networks: the case of the
world trade web. J. Econ. Interact. Coord. 8(1), 75–107 (2012)

18. M.A. Serrano, M. Boguná, Weighted configuration model. AIP Conference Proceedings
776(101) (2005)

19. M.A. Serrano, M. Boguná, R. Pastor-Satorras, Correlations in weighted networks. Phys. Rev.
E 74, 055101(R) (2006)

20. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
21. G. Bianconi, Entropy of network ensembles. Phys. Rev. E 79(3), 036114 (2009)
22. D. Garlaschelli, M.I. Loffredo, Generalized bose-fermi statistics and structural correlations in

weighted networks. Phys. Rev. Lett. 102(3), 038701 (2010)
23. T. Squartini, G. Fagiolo, D. Garlaschelli, Randomizing world trade. I. A binary network analy-

sis. Phys. Rev. E 84(4), 046117 (2011)
24. G. Fagiolo, Clustering in complex directed networks. Phys. Rev. E 76(2), 026107 (2007)
25. A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, The architecture of complex

weighted networks. Proc. Nat. Acad. Sci. 101(11), 3747–3752 (2004)
26. K. Bhattacharya, G. Mukherjee, J. Saramäki, K. Kaski, S.S. Manna, The international trade

network: weighted network analysis and modelling. J. Stat. Mech. 02, P02002 (2008)
27. D. Garlaschelli, M.I. Loffredo, Maximum likelihood: extracting unbiased information from

complex networks. Phys. Rev. E 78(1), 015101 (2008)
28. H. Akaike, A new look at the statistical model identification. IEEE Trans. Aut. Cont. 19,

716–723 (1974)
29. We also used the Bayesian Information Criterion (BIC) that puts a higher penalty on the number

of parameters. We found that BIC weights are identical to the AIC ones (within machine
precision) for all networks in our samples

30. K.P. Burnham, D.R. Anderson, Multimodel inference: understanding AIC and BIC in Model
Selection. Soc. Met. Res. 33, 261–304 (2004)

31. G. Cimini, T. Squartini, A. Gabrielli, D. Garlaschelli, Estimating topological properties of
weighted networks from limited information. Phys. Rev. E 92, 040802 (2015)

32. A. Almog, R. Bird, D. Garlaschelli, Enhanced Gravity Model of trade: reconciling macroeco-
nomic and network models, (2015), arXiv:1506.00348

33. G. Cimini, T. Squartini, A. Gabrielli, D. Garlaschelli, Systemic risk analysis in reconstructed
economic and financial networks. Sci. Rep. 5, 15758 (2015)

34. T. Squartini, G. Cimini, A. Gabrielli, D. Garlaschelli, Network reconstruction via density
sampling, Applied Network Science, 2(1), 3 (2016), arXiv:1610.05494

35. M.Y.Bishop, S.E. Fienberg,W.P.Holland,DiscreteMultivariate Analysis: Theory andPractice
(Springer Science & Business Media, Berlin, 2007)

http://arxiv.org/abs/1506.00348
http://arxiv.org/abs/1610.05494


Chapter 5
Graph Combinatorics

The heavier the burden, the closer our lives come to the earth,
the more real and truthful they become. Conversely, the
absolute, absence of burden causes man to be lighter than air, to
soar into, heights, take leave of the earth and his earthly being,
and become only half real, his movements as free as they are,
insignificant. What then shall we choose? Weight or lightness?

—Milan Kundera, Nesnesitelná Lehkost Bytí

Abstract In this chapter we go back to a formal level and discuss the connection
between the maximum-entropy ensembles of constrained graphs considered so far
and various combinatorial problems in the asymptotic limit of an infinite number
of nodes. This seemingly mysterious connection is actually a natural consequence
of the fact that, for any discrete combinatorial problem where we need to sample
or enumerate the (microcanonical) configurations compatible with a given ‘hard’
constraint, there exists a dual (canonical) problem induced by the ‘soft’ version
of the same constraint. Thus, if the microcanonical and canonical ensembles are
asymptotically equivalent, one can operate in the canonical ensemble and, up tofinite-
size corrections, extend the results to themacrocanonical one,which is otherwise very
hard to deal with. It is therefore intriguing to relate the feasibility of combinatorial
problems to the property of ensemble equivalence. We show that, while graphs with
a single constraint on the total number of links are ensemble-equivalent, graphs with
given degree sequence are not. Unlike other examples in statistical physics, where the
lack of ensemble equivalence arises from long-range interactions or non-additivity,
here the novel mechansim is the extensivity of the number of constraints. We discuss
important implications for graph combinatorics and for the choice of the correct
ensemble in practical situations. The final result is an explicit connection between
the solution of a combinatorial problem and the (non)equivalence between the two
associated microcanonical and canonical ensembles.

© The Author(s) 2017
T. Squartini and D. Garlaschelli, Maximum-Entropy Networks,
SpringerBriefs in Complexity, https://doi.org/10.1007/978-3-319-69438-2_5
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5.1 A Dual Route to Combinatorics?

As in the above reflection in Milan Kundera’s “The unbearable lightness of being”,
which revolves around the dilemma of choosing between ‘light’ and ‘heavy’, in this
chapter we ponder the duality of ‘soft’ and ‘hard’. In Sect. 2.2 we have clarified
that, in general, a given set of structural properties C∗ can be implemented either as
a ‘hard’ constraint, thus giving rise to the microcanonical ensemble, or as a ‘soft’
constraint, thus giving rise to the canonical ensemble. From that point onwards, we
have decided to choose the canonical ensemble as our approach, due to the fact that,
when local node-specific constraints are imposed on graphs, the canonical ensemble
is analytically tractable while the microcanonical one is not. This has indeed led us to
a series of successes that would have been impossible to achieve microcanonically.

Combinatorics, a branch of discrete mathematics that studies the construction,
enumeration, and existence of discrete structures [1], is on the other hand an inher-
ently ‘microcanonical’ discipline. For instance, in the context of graph theory
(with which combinatorics strongly overlaps [2]), typical combinatorial problems
are graph sampling, i.e. generating and mathematically characterizing instances of
graphs that exactly match some criterion, and the closely related one of graph enu-
meration, i.e. counting how many graphs match a given set of constraints. Combi-
natorial problems are difficult precisely because of the ‘hard’ nature of the imposed
constraints. Apparently, the knowledge we have accumulated about the canonical
ensemble seems of no help in this case. But is this completely true?

In this chapter, we address some problems in graph combinatorics. As for the
previous topics treated in this book, our aim is not that of reviewing the established
field-specific approaches to the problem. In fact, combinatorics is a huge branch
of discrete mathematics and it has its own well-developed toolkit of mathematical
techniques,whichwe are not going to discuss here. Rather, we aim at emphasizing the
fact that the maximum-entropy approach can give its unique contribution to certain
combinatorial problems as well, highlighting some aspects that are otherwise not
apparent. We are not going to consider the sampling and enumeration of graphs for
any specific application, but we want to understand some of the properties of these
combinatorial problems at a formal level. Interestingly, we will see in the end that,
despite its abstract nature, this theoretical investigation has (somewhat unexpected)
concrete consequences for how the practical problems discussed in Chaps. 3 and 4
have to be dealt with, and how the approach we used so far should be interpreted.

Our strategy is the following. In Sect. 5.2, we argue that, given a combinatorial
problemwith hard constraintsC∗, one can formally define a dual problemwith ‘soft-
ened’ constraints. This can be achieved by reformulating the original microcanonical
problem in the conjugate canonical ensemble defined by the same C∗. In Sect. 5.3,
using both simple examples and general arguments, we then characterize not only
the exact canonical solution, but also the ‘divergence’ between the canonical ensem-
ble and the corresponding microcanonical one in the thermodynamic limit (recall
the definition in footnote 11). After considering alternative definitions for such a
divergence, we rigorously quantify it in terms of the Kullback-Leibler divergence,

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_3
http://dx.doi.org/10.1007/978-3-319-69438-2_4
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or relative entropy, between the canonical and microcanonical probability distribu-
tions Pcan(G) and Pmic(G). Along the way, quantifying the difference between the
canonical and microcanonical ensembles leads us to a beautiful journey at the fun-
damentals of statistical physics, where the notion of ensemble equivalence we have
briefly anticipated in Sect. 2.2 is crucial for the calculation of many quantities. In
Sect. 5.4 we show that ensembles of graphs with a single global constraint are equiva-
lent, wheras those characterized by a set of local constraints are not. Besides proving
non-equivalence, we also quantify it rigorously to leading order. In Sect. 5.5 we try
to relate the unknown microcanonical solution to a combination of the exact canon-
ical one and the calculated divergence between the two. Our end result will be that,
for constraints that lead to ensemble equivalence, the canonical ensemble can ideed
provide explicit solutions, corrected for the finite size of the system, to problems in
graph combinatorics. On the other hand, for non-equivalent problems, combinator-
ial expressions will depend explicilty on the relative entropy between the canonical
and microcanonical ensemble. This novel result establishes an enchanting, explicit
connection between the solution of a combinatorial enumeration problem and the
(non)equivalence between the two associated dualmaximum-entropy ensembles.We
conclude with a discussion, in Sect. 5.6, of the consequences of our results for the
choice of the ensemble to work with in practical situations.

5.2 ‘Soft’ Combinatorial Enumeration

Let us consider the canonical ensemble defined by the soft constraintC∗ and assume
that the Lagrange multipliers θ have already been fixed to their maximum-likelihood
values θ∗ that ensure 〈C〉 = C∗ (see Sect. 2.2.1). For ease of the notation, we drop the
symbol θ∗ from Pcan(G|θ∗) and simply write Pcan(G). Let us now denote by Qcan(C)

the probability that, in a graph G sampled with canonical probability Pcan(G), the
constraints take the particular value C. Note that Qcan(C) depends on θ∗, but this
dependence has been omitted here as well. Of course, C is a random variable which
is a function C(G) of the random variable G. Now, since all graphs G that have the
same value C(G) of the constraints are assigned the same probability Pcan(G), and
since there is an (unknown) number ΩC of such graphs, we have

Qcan(C) = ΩC Pcan(G). (5.1)

Inverting and setting C = C∗, we get

ΩC∗ = Q∗
can

P∗
can

(5.2)

where we have defined

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
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P∗
can ≡ Pcan(G∗), Q∗

can ≡ Qcan(C∗), (5.3)

G∗ being any of the ‘microcanonical’ graphs for which C(G∗) = C∗.
Equation (5.2) establishes a simple but important connection between a micro-

canonical, purely combinatorial quantity (left hand side) and two canonical, purely
probabilistic quantities (right hand side). Moreover it shows that, since we can cal-
culate the value of P∗

can exactly, the calculation of ΩC∗ reduces to that of Q∗
can only.

The latter can be visualized as the height of the ‘peak’ of the probability Qcan(C)

at the value C∗. Since Qcan(C) must sum up to one, Q∗
can must become closer to

1 as Qcan(C) becomes more peaked. Indeed, if we define a corresponding quantity
Qmic(C) as the probability of observing the value C in the microcanonical ensem-
ble, we have Q∗

mic ≡ Qmic(C∗) = 1, because C is a deterministic variable in that
ensemble. This observation suggests that, if the ensembles become asymptotically
equivalent in the thermodynamic limit, then Q∗

can → 1 and hence ΩC∗ → 1/P∗
can,

which can be calculated exactly. Thus deriving an asymptotic expression for P∗
can

allows one to do the same for ΩC∗ . On the other hand, we also expect that if the
ensembles are not asymptotically equivalent, then the value of the constraints in the
canonical ensemble will keep fluctuating around the value C∗, even in the thermo-
dynamic limit. We therefore expect that Q∗

can does not converge to 1, but to a value
dictated by the amplitude of the fluctuations, i.e. by the breadth of the distribution
Qcan(C). We will confirm these expectations rigorously in Sect. 5.5.

5.3 Quantifying Ensemble (non)equivalence

In statistical physics, calculating the equilibrium properties of a system with a given
total energy requires averaging over the so-called microcanonical ensemble [3,
4], i.e. the set of all configurations having exactly the same value of the energy.
Apart from trivial cases, this is a mathematically challenging task. Moreover, it is
difficult to physically realize a condition when there is really no uncertainty in the
value of the total energy. Therefore, one often prefers to work within the canonical
ensemble [4], i.e. an extended set of configurations including those with the ‘wrong’
energy but such that the average energy over the ensemble matches the specified
value. This matching is achieved through the selection of an appropriate temperature,
mathematically arising as the Lagrangemultiplier enforcing the average total energy.

Starting from Gibbs [4], the canonical and microcanonical ensembles have been
shown to be equivalent in the thermodynamic limit for simple examples like ideal
gases or other non-interacting systems. The original argument is that in a canoni-
cal ensemble at fixed temperature the energy fluctuations should be negligible with
respect to the total energy, so that in the thermodynamic limit the ensemble is effec-
tively microcanonical with a unique value of the energy. Today, most textbooks still
convey themessage that the equivalence of ensembles holds universally for every sys-
tem, justifying the use of energy and temperature as two different parameters giving
an equivalent description of the equilibrium properties of basically every system.
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However, over the last couple of decades various studies have highlighted that, for
certain many-body systems encountered in models of fluid turbulence [5, 6], quan-
tum phase separation [7–9], star formation [10, 11], nuclear fragmentation [12] and
spin interaction [13], ensemble equivalence breaks down. Physically, it is believed
that one of the main causes of ensemble nonequivalence is the presence of long-
range interactions.Mathematically, the problemhas been approached in variousways
[14, 15].

In particular, microcanonical and canonical ensembles are said to be thermody-
namically equivalent [9] when the entropy and the free energy are one-to-one related
by a Legendre transform. The ensembles are instead said to bemacrostate equivalent
[14] when the set of equilibrium values of the macrostate (energy, magnetization,
etc.) predicted by the two ensembles are the same. Finally, a recent and mathemati-
cally appealing definition is that ofmeasure equivalence [15], according to which the
ensembles are said to be equivalent when the canonical probability distribution con-
verges to the micro-canonical probability distribution in the thermodynamic limit.
Under certain conditions, the three definitions have been shown to be equivalent [15].
Moreover, large deviations theory [16] shows that the ensembles are nonequivalent
on all three levels when the microcanonical entropy function is nonconcave as a
function of the energy density in the thermodynamic limit [15]. This is an interesting
insight, because for a long time physicists had believed that the entropy is always a
strictly concave function.

In Sect. 5.3.3 we adopt the third definition and study ensemble (non)equivalence
for our ensembles of graphswith given topological constraints, following [17].Before
doing that, however, we consider (non)equivalence from the point of view of its pos-
sible manifestations on the marginal probabilities (Sect. 5.3.1) and on the canonical
fluctuations of the constraints (Sect. 5.3.2).

5.3.1 Marginal Equivalence

Let us start by comparing the marginal probabilities of the microcanonical and
canonical distributions. We stress that, for mathematically solvable choices of the
constraints, the maximum-entropy method introduced in Chap.2 directly provides
‘from the beginning’ the explicit values of the probabilities pcani j that a link from i to
j is there. The superscript stands for ‘canonical’ and the probability is evaluated at
the parameter values that maximize the likelihood. Let us start by considering some
simple graphs. We shall only focus on unweighted networks for simplicity.

The Random Graph Model
Let us start with simple undirected graphs with a fixed number of links, i.e. C ≡ L .
Writing L = λM where M ≡ N (N − 1)/2 is the number of pairs of vertices and λ

is the fraction of realized links, we have for the microcanonical ensemble

ΩL∗ =
(
M

L∗

)
=

(
M

λ∗M

)
. (5.4)

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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The canonical distribution (2.11) can be obtained setting H(G, θ) = θL(G) and
p∗ ≡ e−θ∗

1+e−θ∗ = λ∗ [17]. This produces an Erdős-Rényi random graph where each
pair of nodes is connected with probability p∗ = L∗/M :

Pcan(G) = (p∗)L(G)(1 − p∗)M−L(G). (5.5)

Marginal distributions describe the behavior of the single random variables, dis-
regarding the correlations: since we are dealing with binary networks, marginals are
Bernoulli distributions. We can, thus, focus on just one coefficient. In the micro-
canonical case, the probability pmic

i j that the single-link random variable ai j is 1
requires the knowledge of the number of configurations where that link is indeed
present. This number can be obtained by repeating the counting process carried out
for the whole network, while keeping the value of the specific entry fixed. Thus, the
generic microcanonical marginal reads

pmic
i j = ΩL∗|ai j=1

ΩL∗
=

( N (N−1)
2 − 1

L − 1

)
/

( N (N−1)
2

L

)
= 2L

N (N − 1)
= p∗ = pcani j , (5.6)

showing that the two marginal probabilities coincide.

The ‘sparsest graph’ model
We now consider all graphs characterized by N vertices (with N being an even
number) and degree sequence equal to ki = 1, ∀ i (i.e. all nodes have a degree which
is exactly 1). In order to realize such constraints, nodes must be linked in pairs, in
order to ensure that (just) N/2 links are present. The number of such configurations is

Ωk∗ = N !
2N/2

(N
2

)! (5.7)

which can be intuitively justified by considering that while a permutation of node-
labels produces a different network structure, two operations exist that leave it unal-
tered: exchanging the labels of any two linked nodes and permuting the links labels.
The microcanonical marginals can be computed by imagining to keep a given pair
of nodes connected while reconnecting the other ones:

pmic
i j = Ωk∗|ai j=1

Ωk∗
= (N − 2)!

2(N−2)/2
(N−2

2

)! · 2
N/2

(N
2

)!
N ! = 1

N − 1
. (5.8)

In the canonical framework, a graph of this kind can be formally reconduced to
the Random Graph Model, described by the probability distribution

Pcan(G) =
(

1

N − 1

) N
2

(
1 − 1

N − 1

)(N
2)− N

2

(5.9)

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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where p∗ = 1
N−1 = pcani j = pmic

i j , again showing equivalence of the marginal
probabilities.

The name of this particular class of graphs comes from the observation that the
link density of any graph of this kind reads c = 1

N−1 ; interestingly, in order for any
graph with N vertices (N being an even number) to have a lower density, a number
of links L < N/2 should be observed: this, however, would allow for the presence
of disconnected vertices.

The h-star model
Our third and last example of graphs concerns h-star graphs, characterized by a

fully connected ‘core’ of h hubs and a ‘periphery’ of N − h ‘leaves’, each with a
single connection to one of the hubs. The periphery is divided into h sets of equal
size (N − h)/h, such that every leaf in each of the sets is connected to the same hub.
The microcanonical number of these graphs is given by the multinomial coefficient

Ωk∗ =
(
N − h

h
,
N − h

h
. . .

N − h

h

)
! = (N − h)!(

N−h
h !)h ; (5.10)

on the other hand, the number of microcanonical configurations where a given link is
present can be estimated uponkeeping the corresponding leave-node label fixedwhile
permuting the labels of the remaining leaves. The corresponding microcanonical
marginal reads

pmic
CP = Ωk∗|aCP=1

Ωk∗
= (N − h − 1)!(

N−h
h !)h−1 (

N−h
h − 1!) ·

(
N−h
h !)h

(N − h)! = 1

h
. (5.11)

Now, the canonical probability is still described by Eqs. (2.19), (2.20) and (2.21).
Noting that the degree of a peripheral node is kP = 1 and that of a core node is
kC = h − 1 + N−h

h , Eq. (2.21) reduces to only two independent equations

h p∗
CP + (N − h − 1) p∗

PP = 1, (5.12)

(h − 1) p∗
CC + (N − h) p∗

CP = (h − 1) + N − h

h
, (5.13)

where p∗
CC , p

∗
PP and p∗

CP denote the connection probability (evaluated at maximum
likelihood) between two core nodes, two peripheral nodes, and a core node and a
peripheral node respectively. The implicit solution is

p∗
CC = 1, p∗

PP = 0, p∗
CP = h−1 (5.14)

thus guaranteeing that pmic
CP = pcanCP .

A real-world example
When coming to real-world examples, marginal equivalence can only be tested
numerically. In particular, while the canonical approach is still analytical, the micro-

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
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Fig. 5.1 Convergence of the microcanonical connection probability pmic
i j (measured using the local

rewiring algorithm described in Sect. 2.1.2) to the canonical probability pcani j (obtained using our
maximum-entropy method) as the number R of local rewiring moves per network increases. The
network being used is the Little Rock Lake food web. From [17]

canonical approach samples the configuration space iteratively and the microcanon-
ical probability pmic

i j can only be evaluated as the frequency of occurrence of the link
over many randomizations.1 As the number of randomized networks increases, this
frequency converges to pmic

i j . However this asymptotic value will also depend on the
number R of elementary rewiring steps used to obtain a single randomized network
in the Local Rewiring Algorithm described in Sect. 2.1.2.

To see this, let us focus on the Little Rock Lake network and consider the trivial
case R = 0. As no rewiring takes place, all the ‘randomized’ networks will in fact
coincide with the original network. If the adjacency matrix of the latter has elements
{ai j }, this means that pmic

i j = ai j . If R is nonzero but still very small, pmic
i j will not

change substantially. Only if R is large enough then pmic
i j will approach pcani j . This is

shown explicitly in Fig. 5.1, where we plot pcani j as a function of pmic
i j for all pairs of

vertices (i, j) by taking the Little Rock Lake food web (see Chap.3 for a description)
as the starting network. As R increases from R = 0 to R = 10000, the double-
peaked shape (corresponding to pmic

i j = ai j independently of pcani j ) evolves towards
the identity pmic

i j = pcani j .

1Since, in this particular case, the low value of the network density guarantees the LRA not to be
biased, we can safely use it to generate several randomized versions of the actual network structure.

http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_2
http://dx.doi.org/10.1007/978-3-319-69438-2_3
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Figure (5.1) shows that the canonical approach allows the values pcani j , to which
the microcanonical pmic

i j will converge only after several iterations, to be obtained
‘from the beginning’. Notably, the number R of rewiring steps required for pmic

i j to
converge to pcani j acceptably is not known a priori and without the knowledge of pcani j
itself. This problematic aspect of the microcanonical approach highlights another
advantage of the canonical one.

5.3.2 Fluctuating Constraints

The marginal equivalence shown in the previous section has interesting conse-
quences. One concerns the expected value of functions which show a linear depen-
dence on our random variables. Since the canonical andmicrocanonical expectations
of the latter coincide, the expected values of linear functions coincide as well. A sim-
ple example is provided by the total number of links, for which

〈L〉 =
∑
i< j

〈ai j 〉 =
∑
i< j

pcani j =
∑
i< j

pmic
i j = L = L (5.15)

(with obvious meaning of the symbols—L indicates the arithmetic mean of L taken
over themicrocanonical ensemble).Another relevant example is provided bydegrees.
As in the previous case,

〈ki 〉 =
∑
j �=i

〈ai j 〉 =
∑
j �=i

pcani j =
∑
j �=i

pmic
i j = ki = ki ∀ i. (5.16)

Although the expected value of the constraints defining the two ensembles coin-
cide, their fluctuations do not. While, in fact, constraints fluctuations do vanish in
the microcanonical case, this is no longer true in the canonical case, where fluc-
tuations differ from zero: standard deviations of links and degrees, in fact, read

σ [L] = √
Mλ∗(λ∗ − 1) and σ [ki ] =

√∑
j �=i p

can
i j (1 − pcani j ), respectively.

It is instructive to recall that a fundamental quantity in statistical physics, the total
energy, is characterized by (relative) fluctuations that vanish in the thermodynamic
limit. In fact

σ [E]
E

∝ 1√
N

(5.17)

a ratio that tends to zero as the number of particles constituting the system tends
to infinity. On the other hand, network models exist predicting values for the nodes
degrees which remain finite even when the size of the network under analysis tends
to infinity. As an example, let us consider the model defined by pi j = p � c/N with
c being a constant: the relative fluctuation of any degree reads, in this case,
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σ [ki ]
ki

� 1

c
(5.18)

which does not vanish as the size of the system increases. Since the claim that the
microcanonical and the canonical ensembles are equivalent rests upon the asymp-
totically vanishing value of (relative) fluctuations, the evidence that network models
exist for which this is not true indicates that any trace of (non)equivalence has to be
encoded into the constraints fluctuations.

In the general case, the formula for computing the relative fluctuations of node
degrees read

σ [ki ]
ki

=
√√√√ 1

ki
−

∑
i �= j p

2
i j

(
∑

i �= j pi j )
2

(5.19)

and it is possible to derive an analogous expression for the relative fluctuations of
node strengths. These calculations have been carried out in [27] for the Binary Con-
figurationModel, theWeighedConfigurationModel and the EnhancedConfiguration
Model. Upper or lower bounds for the relative fluctuations have also been obtained.
The behaviour of these quantities is illustrated in Fig. 5.2 by fitting the models to a
couple of real-world networks.

5.3.3 Measure Equivalence

The fact that the microcanonical and canonical marginal probabilities assume pro-
gressively closer values does not represent a sufficient condition for concluding that
the microcanonical and canonical ensemble distributions are equivalent. In fact, mar-
ginal probabilities do not contain any information about the dependence between dif-
ferent pairs of vertices.While in the canonical approach these correlations are absent,
and different pairs of vertices are always statistically independent, in themicrocanon-
ical approach these correlations arise from themicrocanonical constraint ofmatching
the degree sequence (or other contraints) exactly.

In order to measure the difference between microcanonical and canonical proba-
bilities in a way that incorporates all possible dependencies between pairs of nodes,
we use the KL divergence, which allows the whole amount of information encoded
into the two aforementioned distributions to be compared at once. In the rest of this
chapter, we mainly follow [26] and explore the idea that the microcanonical and
canonical ensembles are equivalent if and only if their specific Kullback-Leibler
(KL) divergence is zero. Since we are considering discrete systems, we need to use
the following discrete version of the KL divergence:
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Fig. 5.2 Top left panel: relative fluctuations of the degree of each node in the Binary Configuration
Model with degree sequence taken from the network of liquidity reserves exchanges between Italian
banks in year 1999. The blue points are the exact values in Eq. (5.19), while the dashed curve is an
upper bound (the lower bound is the abscissa). Top right panel: relative fluctuations of the strength
of each node in the Weighted Configuration Model with strength sequence taken from the same
network. The blue points are again the exact values, given by a formula analogous to Eq. (5.19),
while the dashed curve is now a lower bound (the upper bound exceeds 1 and extends beyond
the region shown). Bottom panels: relative fluctuations of the degree (left) and strength (right) of
each node in the Enhanced Configuration Model with degree and strength sequences taken from
the World Trade Web in year 2000. The blue points indicate the exact values, while the dashed
curve (left) is an upper bound and the black points (right) are a reference value, typically exceeded.
Adapted from [27]

SN (Pmic||Pcan) ≡
∑
G

Pmic(G) ln
Pmic(G)

Pcan(G)
. (5.20)

The KL divergence is an information-theoretic quantity measuring how much of the
information contained in the microcanonical ensemble is lost if we use the canonical
one instead. The information loss can be understood in terms of the higher uncer-
tainty encoded in the canonical distribution, where the value of the constraints is
not sharp. Also note that, for the models we are considering, the canonical prob-
ability is the product of the marginal single-edge probabilities considered so far,
i.e. is the product of the marginals of the microcanonical probability. Therefore the
above KL divergence also coincides with the mutual information of the edges in the
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Fig. 5.3 Equation (5.25) shows that, in discrete systems, ensemble equivalence reduces to an
extremely simple, local condition involving the ratio P∗

mic/P
∗
can of the microcanonical and canonical

probabilities of a single ‘microcanonical’ configurationG∗ (anyone of those realizing the constraints
sharply)

microcanonical ensemble. It precisely quantifies the microcanonical dependencies
among different edges of the network. The independence of all edges is therefore the
signature property of the canonical ensemble.

Note that, for finite systems, canonical and microcanonical probabilities are
always different, and the KL divergence is always strictly positive. We therefore
define the relative entropy density

s ≡ lim
N→∞

SN (Pmic||Pcan)
N

(5.21)

and, following [15], we say that the ensembles are (measure) equivalent if and only
if

s = 0. (5.22)

Since SN (Pmic||Pcan) cannot be negative, the ensembles are necessarily nonequivalent
if and only if

s > 0. (5.23)

We now make a simple but crucial observation. From Eq. (5.3), and noting from
the form of H(G, θ) that Pcan(G1) = Pcan(G2) if C(G1) = C(G2) (the canonical
probability is the same for all configurations having the same values of the con-
straints), we rewrite Eq. (5.20) as

SN (Pmic||Pcan) = ln
Pmic(G∗)
Pcan(G∗)

= ln
P∗
mic

P∗
can

(5.24)
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where G∗ is any configuration in GN such that C(G∗) = C∗. The condition for
equivalence, Eq. (5.22), then becomes

lim
N→∞

1

N
ln

P∗
mic

P∗
can

= 0 (5.25)

or equivalently,

lim
N→∞

1

N
ln P∗

mic = lim
N→∞

1

N
ln P∗

can (5.26)

Equation (5.25) shows that, in discrete systems, ensemble equivalence reduces to
an extremely simple, local condition involving the ratio of the microcanonical and
canonical probabilities of a single ‘microcanonical’ configuration G∗ (any one of
those realizing the constraints sharply). Equation (5.26) shows that the breaking of
ensemble equivalence concides with Pmic(G∗) and Pcan(G∗) obeying different large
deviations properties [16]. Again, it is striking that this criterion involves only a
single configuration G∗. Besides its theoretical importance, this result also greatly
simplifies the mathematical calculations.

5.4 Breaking of Equivalence Between Ensembles

Let us now use the above definitions in order to quantify the degree of (non)
equivalence in the specific examples introduced in the previous section. The first
model was an ensemble of simple undirected graphs with a fixed number of links,
i.e. C ≡ L , whose microcanonical and canonical ensembles are determined by Eqs.
(5.4) and (5.5) respectively.

We can now compute the relative entropy

S(Pmic||Pcan) = − ln

(
M

λ∗M

)

− λ∗M ln λ∗ − (1 − λ∗)M ln(1 − λ∗)
= ln

√
2πMλ∗(1 − λ∗) + O(1/M), (5.27)

where we have used Stirling’s formula n! ≈ √
2πn(n/e)n[1 + O(1/n)] [22]. We

then get

s = lim
N→∞

ln
√
2πMλ∗(1 − λ∗)

N
= 0, (5.28)

which proves ensemble equivalence in this case.

For the next examples we consider four ensembles of networks with given degree
sequenceC ≡ k = (k1, k2 . . . kN ), i.e. three specific cases of the binary configuration
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model considered throughout the previous chapters. Since the exact microcanonical
number Ωk is unknown in general, we have to consider specific cases.

Our first three examples are in the sparse regime where the maximum degree
behaves as

kmax = o(
√
N ) with N � 2L , (5.29)

where the inequality means that k � 1. Using the combinatorial results valid in this
regime [23, 24], we find

Ωk∗ =
√
2( 2Le )L∏n
i=1 k

∗
i !

· e− f (k∗)+ 1
4 +o

(
(k∗)3

N

)
, (5.30)

where k = ∑N
i=1 ki/N (average degree), L = Nk/2 (number of links), f (k) ≡

(k2/2k)2 and k2 = ∑N
i=1 k

2
i /N . On the other hand, as described in Sect. 2.2.2, the

canonical ensemble is defined by the N equations [17]

∑
j �=i

e−θ∗
i −θ∗

j

1 + e−θ∗
i −θ∗

j
= k∗

i ∀i. (5.31)

Setting p∗
i j ≡ e−θ∗

i −θ∗
j /(1 + e−θ∗

i −θ∗
j ), the canonical probability of the CM reads

Pcan(G) =
N∏
i=1

∏
j<i

(p∗
i j )

gi j (1 − p∗
i j )

1−gi j (5.32)

where gi j is the i, j entry of the adjacency matrix of the graph G. Equation (5.29)
ensures that kmax � √

2L , a condition under which Eq. (5.31) is solved by [17]

p∗
i j = e−θ∗

i −θ∗
j

1 + e−θ∗
i −θ∗

j
≈ e−θ∗

i −θ∗
j = k∗

i k
∗
j

2L∗ � 1. (5.33)

Note that this implies θ∗
i = − ln k∗

i√
2L∗ and ln(1 − p∗

i j ) ≈ −p∗
i j . Using these expres-

sions, Eq. (5.32) leads to

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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ln Pcan(G∗) =
N∑
i=1

∑
j<i

[g∗
i j ln p∗

i j + (1 − g∗
i j ) ln(1 − p∗

i j )]

= −
N∑
i=1

∑
j<i

[g∗
i j (θ

∗
i + θ∗

j ) + ln(1 − p∗
i j )]

≈ −
N∑
i=1

k∗
i θ

∗
i −

N∑
i=1

∑
j<i

p∗
i j

=
N∑
i=1

k∗
i ln k

∗
i − L∗ ln(2L∗) − L∗. (5.34)

Combining Eqs. (5.30) and (5.34), we obtain

S(Pmic||Pcan) = −L∗ ln(2L∗) + L∗ +
N∑
i=1

ln(k∗
i !)

+ f (k∗) − 1/4 + o
(
(k∗)3/N

)

−
N∑
i=1

k∗
i ln k

∗
i + L∗ ln(2L∗) + L∗

=
N∑
i=1

[ln(k∗
i !) − k∗

i ln k
∗
i + k∗

i ]

+ f (k∗) − 1/4 + o
(
(k∗)3/N

)
. (5.35)

Defining ξ ≡ limN→∞ f (k∗)/N , and using bars to denote averages over nodes
(intended as a limit), we finally get

s = ln(k∗!) − k∗ ln k∗ + k∗ + ξ ≥ ln
√
2πk∗ + ξ (5.36)

where the inequality is valid for every k∗ ≥ 1 [22]. Since ξ ≥ 0, the above expres-
sion is strictly positive, proving that in this case the microcanonical and canonical
ensembles are, more surprisingly, not equivalent.

Our first example of graphs with given degree sequence is the class of k∗-regular
graphs (where every node has the same degree ki = k∗) with k∗ = o(

√
N ). In this

case ξ = 0 and ln k∗ = ln k∗. If k∗ is finite, Eq. (5.36) becomes

s = ln(k∗!) − k∗ ln k∗ + k∗ ≥ ln
√
2πk∗, (5.37)

while, if k∗ growswith N , s diverges like ln k∗. The non-equivalence of regular graphs
can be related to the fact that the canonical versions of the two ensembles considered
so far, defined by C = L and C = k respectively, coincide via the identification
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p∗ = L∗/M = k∗/(N − 1). Since the two microcanonical ensembles are different,
while the canonical ones are the same, only one (if any) of the two cases can show
ensemble equivalence. As we proved ensemble equivalence for C = L , there cannot
be equivalence for C = k as well.

Our second example of networkswith given degree sequence is the important class
of sparse ‘uncorrelated’ scale-free networks [25], defined by a truncated power-law
degree distribution of the form F(k) = Ak−γ for 1 ≤ k ≤ kc (with 2 < γ < 3
like in most real-world networks) and F(k) = 0 otherwise. The cut-off kc ∼ √

N
[25] is needed to ensure that the maximum degree k∗

max does not exceed the bounds
in Eq. (5.29), so that Eq. (5.33) is valid. Approximating F(k) with a continuous
distribution, it is easy to see that normalization implies A = (γ − 1)/(1 − k1−γ

c ).
Calculating ka as limN→∞

∫ kc
1 dkF(k)ka , we get

f (k∗) =
(

γ − 2

2(3 − γ )
· k

3−γ
c − 1

1 − k2−γ
c

)2

∼ N 3−γ , (5.38)

which leads to ξ = 0. Similarly, it is easy to show that

ln k∗ = lim
N→∞

∫ kc

1
dkF(k) ln k = 1

γ − 1
. (5.39)

Thus Eq. (5.36) becomes in this case

s ≥ ln
√
2πk∗ = 1

2(γ − 1)
+ ln

√
2π (5.40)

showing that the canonical and microcanonical ensembles of uncorrelated scale-free
networks are not equivalent.

Our third example is the ‘sparsest’ graph model introduced in Sect. 5.3.1. Upon
re-expressing its microcanonical probability as

Pmic(G∗) =
N−1∏
i=0

1

N − 2i + 1
= (N − 1)!!

N ! (5.41)

the relative entropy is

S(Pmic||Pcan) = ln

[
(N − 1)(

N
2)(N − 1)!!

N !(N − 2)(
N
2)− N

2

]
(5.42)

and the KL divergence reads

s = 1. (5.43)
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Our fourth and last example of graphs with given degree sequence is the class of
h-star graphs considered in Sect. 5.3.1, for which Eq. (5.29) is violated and therefore
Eqs. (5.30) and (5.36) cannot be used. The microcanonical number of such graphs
Ωk∗ = (N−h)!

( N−h
h !)h

can thus be approximated by applying Stirling’s approximation:

Pmic(G∗) = hh−N [2π(N − h)]
1
2 (k−1) h− h

2 . (5.44)

The canonical probability, instead, reads

Pcan(G∗) =
(
1

h

)N−h (
1 − 1

h

)(h−1)(N−h)

, (5.45)

the relative entropy is

S(Pmic||Pcan) = (N − h)(h − 1) ln

(
h

h − 1

)
(5.46)

+ (k − 1) ln
√
2π(N − h) − h ln

√
h,

and the specific KL divergence is

s = (h − 1) ln

(
h

h − 1

)
. (5.47)

So, although microcanonical marginals match, we again find nonequivalence for
all h > 1 (in the ‘deterministic’ case h = 1, both ensembles admit only one star-like
configuration and are therefore equivalent).

The proof of the breakdown of ensemble equivalence in graphs with given degree
sequence provides a theoretical explanation for some otherwise anomalous phenom-
ena that have been recently observed, namely the fact that the canonical and micro-
canonical entropies of random regular graphs are different even in the thermodynamic
limit [19] and the non-vanishing of canonical fluctuations in the configuration model
[27]. Moreover, these results show that, while it is generally believed that ensemble
nonequivalence is associated with long-range interactions, it can naturally arise also
in systems with multiple (local) constraints.The proof of ensemble nonequivalence
has been recently extended to random with given degrees and arbitrary modular
structure [28].
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5.5 Implications of (non)equivalence for Combinatorics

Looking at Eq. (5.2), we note that Eq. (5.24) can be reformulated as

SN (Pmic||Pcan) = ln
P∗
mic

P∗
can

= ln
Ω−1

C∗

P∗
can

= − ln Qcan(C∗), (5.48)

which is an important result showing that the degree of nonequivalence is entirely
determined by the probability that, in the canonical ensemble, the constraint C takes
the particular microcanonical valueC∗. We also note that Eq. (5.21) can be rewritten
as

SN (Pmic||Pcan) = sN + o(N ), (5.49)

where o(N ) indicates a quantity that, if divided by N , vanishes in the limit of infinite
N . Combining Eqs. (5.48) and (5.49), we get

ΩC∗ = e−Ns−o(1/N )

P∗
can

. (5.50)

The above equation is an important result. It connects the number of microcanonical
configurations, which is the result of a combinatorial enumeration problem, to the
relative entropy density between the canonical and microcanonical ensembles. From
the above equation, it follows that, for constraints that lead to ensemble equivalence
(s = 0), the number of microcanonical configurations can be enumerated as

ΩC∗ = e−o(1/N )

P∗
can

. (5.51)

Importantly, P∗
can canbe calculated exactly using themethodwedescribed inSect. 2.2,

so the above formula is powerful for equivalent ensembles. On the other hand, for
constraints that lead to nonequivalence (s > 0), the full expression (5.50) applies.
For these systems, one should be warned that neglecting the effects of ensemble
nonequivalence may naively result in the inappropriate use of Eq. (5.51). This would
determine an error in the extimation of ΩC∗ that is exponential in N .

One can check that Eq. (5.50) is verified in the previous examples where P∗
mic,

and hence ΩC∗ , has been calculated explicitly. In particular, the Erdős-Rènyi model
obeys Eq. (5.51), whereas the ‘sparsest graph’ and ‘core-periphery’ models obey
Eq. (5.50).

In general, the above findings contribute to the theoretical understanding of non-
equivalence in discrete systems, by showing that it can manifest itself in combinator-
ial enumeration problems and that it is directly related to a non-vanishing difference
between the canonical and microcanonical large deviation properties of a single
microstate.

http://dx.doi.org/10.1007/978-3-319-69438-2_2
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5.6 “What Then Shall We Choose?” Hardness or Softness?

Weprovided evidence that, for graphswith local node-specific constraints, the canon-
ical and microcanonical ensembles are not equivalent. This result implies that choos-
ing between microcanonical and canonical approaches to the sampling of network
ensembles is not only a matter of (computational) convenience, but also a theoretical
issue that should be addressed more formally. To this end, we recall that micro-
canonical ensembles describe isolated systems that do not interact with an external
‘heat bath’ or ‘reservoir’. In ordinary statistical physics, this means that there is no
exchange of energy with the external world. In our setting, this means that micro-
canonical approaches do not contemplate the possibility that the network interacts
with some external ‘source of error’, i.e. that the value of the enforced constraints
might be affected by errors or missing entries in the data. When present, such errors
(e.g. a missing link, implying a wrong value of the degree of two nodes) are propa-
gated to the entire collection of randomized networks, with the result that the ‘correct’
network is not included in themicrocanonical collection of graphs onwhich inference
is being made.

By contrast, besides being unbiased and mathematically tractable, the canonical
approach is also themost appropriate choice if onewants to account for possible errors
in the data, since canonical ensembles appropriately describe systems in contact with
an external reservoir (source of errors) affecting the value of the constraints. While
in presence of even small errors microcanonical methods assign zero probability to
the ‘uncorrupted’ configuration and to all the configurations with the same value
of the constraints, the canonical method assigns these configurations a probability
which is only slightly smaller than the (maximum) probability assigned to the set of
configurations consistent with the observed (‘corrupted’) one. These considerations
suggest that, given its simplicity, elegance, and ability to deal with potential errors
in the data, the use of the canonical ensemble should be preferred to that of the
microcanonical one.
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Chapter 6
Concluding Remarks

It lay thickly drifted on the crooked crosses and headstones, on
the spears of the little gate, on the barren thorns. His soul
swooned slowly as he heard the snow falling faintly through the
universe and faintly falling, like the descent of their last end,
upon all the living and the dead.

– James Joyce, The Dubliners

Now that we have reached the end of this book, we can look at its main contents in
retrospect and try and make some overarching summary and remarks. Here we take
the liberty of offering some personal perspective and take-home message, mostly
based on our own experience with the scientific content of the book.

Throughout the book we have focused on the construction and use of ensembles
of networks with given topological properties. We have discussed some general
motivations, theoretical foundations, and practical applications.We have particularly
emphasized three different challenges that, while being apparently unrelated, turn
out to share common underlying concepts and are amenable to a unified treatment
within the same theoretical framework. These practical applications are the problems
of pattern detection, i.e. the identification of structural features that cannot be simply
traced back to the properties of individual nodes in a real network (Chap.3), network
reconstruction, i.e. the probabilistic inference of the whole structure of a real-world
network from partial node-specific information (Chap.4), and graph combinatorics,
i.e. certain combinatorial operations such as the sampling and enumeration of graphs
with given local topological properties (Chap.5).

In Chap.2 we have introduced and adopted a specific methodology to construct
the graph ensembles needed to address these three challenges, namely the principle
of maximum entropy. As in many other applications in different branches of science,
most prominently in statistical physics [1], the principle prescribes that the most
unbiased (i.e. maximally random) expectation about the microscopic configuration
(i.e. the state of all fundamental units) of a system is achieved by the probability dis-
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tribution that maximizes Shannon’s entropy, subject to a specified set of macroscopic
constraints (e.g. the total energy). In the case of interest for this book, the principle
translates into the construction of maximum-entropy ensembles of networks with
given topological constraints. The resulting methodology was first proposed in a
seminal paper [2] where the authors of this book combined the abstract formalism
of maximum-entropy graph ensembles [1, 3, 4], also known as exponential random
graphs in the social science literature [5, 6], with the technique of exact likelihood
maximization [7]. This combination is a crucial step that allows significant progress
towards the applications considered in this book.

Indeed, without likelihood maximization, the abstract use of maximum-entropy
graph ensembles would result in treating the Lagrange multipliers as free parameters
to bedrawn fromsuitable probability distributions inducing certain classes of network
topologies (e.g. regular graphs, scale-free networks, etc.) [8]. This approach would
have not allowed us to calibrate the maximum-entropy model to a specific empirical
network (or partial information about it) and would have therefore been of limited
use in addressing the three challenges discussed here.

Similarly, the use of exponential random graphs in the social science litera-
ture mainly relies on approximate techniques, such as Markov Chain Monte Carlo
[5, 6], that avoid the exact calculation of the partition function and the consequent
exact maximization of the likelihood. This approach would have prevented us from
achieving another goal we set ourselves in this book: namely, the possibility of cal-
culating analytically the probability distribution over graphs in the ensemble and
the resulting expectation values and higher moments of the quantities of interest.
The analytic control over the ensemble conferred by our exact approach not only
reduces the computational complexity of the calculation of the expected properties
dramatically, but also allows us to carry out otherwise impossible operations, such
as the canonical sampling of graphs with given properties, as described in Chap. 5.

In Chap.3 we have discussed the application of the maximum-entropy method to
the problem of pattern detection. Historically, this was the main initial motivation for
the introduction of our method in the original paper [2]. Since pattern detection is the
identification of nontrivial structural properties in a real-world network, it requires
a comparison of such network with a suitable null model used as a reference or
benchmark. As we have discussed, the latter is chosen to be a random graph model
that preserves the local topological properties (i.e. the degrees and/or the strengths)
of the real network and is otherwise completely random.

We have indeed illustrated the usefulness of maximum-entropy ensembles of
graphs with local constraints in identifying a variety of nontrivial structural patterns
in several real networks. These patterns include assortativity, clustering, reciprocity,
and more in general all possible dyadic and triadic motifs. We have considered
different types of graphs, i.e. binary, weighted, directed, and undirected graphs, and
the corresponding maximum-entropy ensembles.

We have emphasized the importance of such ensembles being accurately tailored
on the real-world network: depending on the particular values of the empirical local
properties, i.e. the observed degrees or strengths of nodes, certain trends that would
be superficially classified as assortative, disassortative or clustered may turn out to

http://dx.doi.org/10.1007/978-3-319-69438-2_5
http://dx.doi.org/10.1007/978-3-319-69438-2_3
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actually deserve a different—sometimes opposite—interpretation. Even properties
that are believed to be characteristic of the maximum-entropy ensembles themselves,
e.g. the expectation that ensembles of unipartite graphswith given degreeswould nat-
urally exhibit a decreasing (disassortative) relationship between the average degree
of the neighbours of a node and the degree of the node itself [8], are in some cases
found to be completely reversed when the local node properties are taken as input
from an empirical network, rather than sampled from an ad hoc distribution.

From a practical point of view, the use of our (canonical) analytical method allows
a fast and exact calculation of expectation values and statistical deviations, such as
the z-scores, that would otherwise require the numerical sampling of many graphs
from the (microcanonical) ensemble of graphs with given constraints. The numerical
techniques proposed to perform such a sampling, which include the popular Local
Rewiring Algorithm [9], turn out to be biased and may therefore lead to misleading
results.

In Chap.4 we have discussed the application of the maximum-entropy method to
the problem of network reconstruction. Network reconstruction employs purely local
topological information to infer the higher-order structural properties of a real-world
network [10] This problem arises whenever the complete structure of a network is
not known (for instance, due to confidentiality or privacy issues), but local properties
are. An example relevant for the epidemiology of sexually transmitted diseases is
the network of sexual contacts among people, for which only aggregate information
(the total number of contacts with different partners) can be typically surveyed in a
population. In such cases, optimal inference about the network can be achieved by
maximising the entropy subject to the known (local) constraints, which again leads
to the ensembles with fixed degrees considered here.

In Chap.5 we have used the canonical maximum-entropy method as a ‘soft’
alternative for ‘hard’ combinatorial problems. We have found that the canonical and
microcanonical ensembles of randomgraphswith local constraints arenot equivalent.
Besides that, we have quantified the degree of nonequivalence in terms of the relative
entropy between the two associated probability distribution. We have finally related
the asymptotic solution to hard enumeration problems to (computable) properties of
the dual soft ensemble and to the relative entropy itself. These results provide new
perspectives into a probabilistic route to the solution of combinatorial problems.

The aforementioned applications, along with similar ones, make use of random
graphs with local constraints. Our proof of nonequivalence of the corresponding
ensembles have the following important implication. While for ensemble-equivalent
models it makes practically no difference whether a microcanonical or canonical
implementation is applied to large networks, for nonequivalent models different
choices of the ensemble lead to asymptotically different results. As a consequence,
while for applications based on ensemble-equivalent models the choice of the work-
ing ensemble can be arbitrary or be done on mathematical convenience (as usually
done), for those based on nonequivalent models the choice should be principled,
i.e., dictated by a theoretical criterion that indicates a priori which ensemble is the
appropriate one.

http://dx.doi.org/10.1007/978-3-319-69438-2_4
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Among the possible criteria, we stress again that the canonical ensemble repre-
sents the most appropriate choice whenever the available data are subject to (even
small) errors, i.e. when the measured value of the constraint entering as input in
the construction of the random graph ensemble is only the best available estimate
for some unknown ‘true’ (error-free) value. In this situation, we want that possible
small deviations of the constraint from its true value result in small deviations of
the ensemble probability from the one we would have obtained using the true value.
Using the microcanonical ensemble implies that even small deviations from the true
value will imply a zero probability for the true graph and for all the configurations
having the true value of the constraint. This means that even small initial measure-
ment errors would severely bias the entire inference procedure. On the other hand,
using the canonical ensemble implies that small deviations of the constraint from
the true value imply only a slight difference in the constructed probability distribu-
tion. So, besides being the mathematically simpler option, we argue that canonical
ensembles are also the most appropriate principled choice whenever one wants to
account for possible uncertainties in the measured values of the constraints.

From a general point of view one should note that, in contrast with the traditional
case in statistical physics, the constraints imposed on the most important network
ensembles considered here are mesoscopic rather than macroscopic. Indeed, exam-
ples of macroscopic constraints (analogous to the total energy of a physical system)
are the total number of links L(A) = ∑

i, j ai j and the totalweightW (W) = ∑
i, j wi j ,

for binary and weighted graphs respectively. These quantities are defined as sums
over all the pairs of nodes in the network. By contrast, the most important ensembles
we have used in the book enforce the degree ki (A) = ∑

j ai j and/or the strength
si (W) = ∑

j wi j of eachnode i separately. These quantities are local sumsover nodes
and therefore stand at an intermediate, mesoscopic level in between the microscopic
level of individual edges, which are the true “degrees of freedom” of the system,
and the macroscopic level where all such degrees of freedom are aggregated into an
overall total value. Enforcing mesoscopic, as opposed to macroscopic, constraints
is the key requirement that allows the graph ensembles to accurately replicate the
observed heterogeneity observed in real-world networks. At the same time, unlike
traditional examples in statistical physics, this property also leads to the breaking of
the equivalence between canonical and microcanonical ensembles of graphs, with
the aforementioned far-reaching consequences.
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