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1. Introduction

An instance of k-satisfiability (k-SAT) consists in a Boolean formula in conjunctive normal
form whereby each elementary clause is the disjunction of k literals (a Boolean variable
or its negation). Solving it amounts to determining whether there exists an assignment
of the variables such that at least one literal in each clause evaluates to true. The k-
SAT problem plays a central role in the theory of computational complexity, being the
first decision problem proven to be NP-complete [1] (for all k ≥ 3). Its optimization
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(minimize the number of unsatisfied clauses) and enumeration (count the number of
optimal assignments) versions are defined straightforwardly and are also hard from the
computational point of view.

Random k-satisfiability is the ensemble defined by drawing a uniformly random
formula among all the ones involving Mk-clauses over N variables. Equivalently, each
of the M clauses is drawn uniformly over the 2k( N

k ) possible ones, independently from

the others. It was observed empirically earlier on [2] that, by tuning the clause density
α = M/N , this ensemble could produce formulas which were hard for known algorithms.
Hardness was argued to be related to a sharp threshold in the satisfiability probability,
emerging as N → ∞ with α fixed. More precisely, it is believed that there exists
a constant αs(k) such that random formulas are with high probability5 satisfiable if
α < αs(k) and unsatisfiable if α > αs(k). The existence of a sharp threshold was
proven in [3], with, however, a critical point αs(k, N) which might not converge when
N → ∞. Despite important progress [4]–[6] the rigorous proof of the existence and
determination of αs(k) remains a major open problem (with the notable exception of
k = 2 [7]).

The connection between threshold phenomena and phase transitions spurred a
considerable amount of work [8]–[12] using techniques from the theory of mean-field spin
glasses [13]. The main outcomes of this approach have been: (i) a precise conjecture on
the location of the satisfiability threshold αs(k) [10, 12]; (ii) the suggestion [9, 10] for k ≥ 3
of another transition at αd(k) < αs(k) affecting the geometry of the solutions space; (iii)
most strikingly, the proposal of a new and extremely effective message passing algorithm,
survey propagation (SP) [10, 11]. This exploits a detailed statistical picture of the solution
space to efficiently find solutions.

According to statistical physics studies, in the intermediate regime α ∈ [αd(k), αs(k)]
solutions tend to group themselves in clusters that are somehow disconnected. As α
increases, the number of these clusters decreases. The satisfiability transition is thus due
to the vanishing of a number of clusters, which still contain a large number of solutions
just before αs(k). The phase transition at αd(k) has been referred to as ‘clustering phase
transition’ or ‘dynamic phase transition’, depending on the feature emphasized. Its nature
and location, as well as a refined description of the regime α ∈ [αd(k), αs(k)], will be the
main topic of this paper. More precisely:

(i) we will argue that previous determinations of αd(k) [10]–[12] have to be corrected
when fluctuations of the cluster sizes are taken into account;

(ii) we will uncover (for k ≥ 4) a new ‘condensation’ phase transition at αc(k) ∈
[αd(k), αs(k)]. For α ∈ [αd(k), αc(k)] the relevant clusters are exponentially numerous.
For α ∈ [αc(k), αs(k)] most of the solutions are contained in a number of clusters that
remain bounded as N → ∞.

This paper is organized as follows. In section 2 we recall some general features
of mean-field disordered models, emphasizing the notions of dynamical transitions and
replica symmetry breaking. In section 3 we define more precisely the ensemble of random
formulas studied and describe the replica symmetric (RS) and one step of replica symmetry
breaking (1RSB) approach to this model. We then apply the program of section 2 to the

5 Here and below ‘with high probability’ (w.h.p.) means with probability converging to 1 as N → ∞.
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random k-satisfiability problem and present our main results in section 4. For the sake
of clarity some technicalities of the 1RSB treatment are presented shortly afterward, see
section 5. To complement these results, which are partly based on a numerical resolution
of integral equations, we present in section 6 an asymptotic expansion in the large-k limit
which gives further credit to our theses. We draw our conclusions in section 7. Technical
details are deferred to three appendices.

A short account of our results has been published in [14], and a detailed analysis of
the related q-coloring problem in [15]. While the present work was being finished two
very interesting papers confirmed the generality of the results of [14]. The first concerned
3-SAT [16] and the second the bi-coloring of random hypergraphs [17].

2. Mean-field disordered systems

The goal of this section is to provide a quick overview of the cavity method [13, 18]. We
will further propose a more precise mathematical formulation of several notions that are
crucial in the statistical physics approach.

2.1. Statistical mechanics and graphical models

Let us start by considering a general model defined by:

(1) A factor graph [19], i.e. a bipartite graph G = (V, F, E). Here V , |V | = N , are
‘variable nodes’ corresponding to variables, F , |F | = M , are ‘function (or factor)
nodes’ describing interactions among these variables, and E are edges between
variables and factors. Given i ∈ V (resp. a ∈ F ), we shall denote by ∂i = {a ∈
F : (ia) ∈ E} (resp. ∂a = {i ∈ V : (ia) ∈ E}) its neighborhood. Further, given
i, j ∈ V , we let d(i, j) be their graph theoretic distance (the minimal number of
factor nodes encountered on a path between i and j).

(2) A space of configurations X V , with X a finite alphabet (a configuration will be
denoted in the following as σ = (σ1, . . . , σN ) ∈ X V ). For any set A ⊆ V , we let
σA = {σi : i ∈ A}.

(3) A set of non-negative weights {wa : a ∈ F}, wa : X ∂a → R+, σ∂a �→ wa(σ∂a). In the
case of constraint satisfaction problems, these are often taken to be indicator functions
(more details on this particular case will be given in section 2.4).

Given these ingredients, a measure over X V is defined as

μN(σ) =
1

ZN

wN(σ), wN(σ) =
∏

a∈F

wa(σ∂a). (1)

This is well defined only if there exists at least one configuration σ∗ that makes all
the weights strictly positive, namely wa(σ

∗
∂a) > 0 for each a. We will assume this to be

the case throughout the paper (i.e. we focus on the ‘satisfiable’ phase). Further, it will
be understood that we consider sequences of graphs (and weights) of diverging size N
(although we shall often drop the subscript N).

doi:10.1088/1742-5468/2008/04/P04004 4
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An important role is played by the large-N behavior of the partition function ZN .
This is described by the free-entropy density6

φ = lim
N→∞

1

N
log ZN , ZN =

∑

σ

wN(σ). (2)

2.2. Pure states and replica symmetry breaking

The replica/cavity method allows us to compute a hierarchy of approximations to φ. This
is thought to yield the exact value of φ itself in ‘mean-field’ models. The hierarchy is
ordered according to the so-called number of steps of replica symmetry breaking (RSB).
At each level the calculation is based on some hypotheses on the typical structure of μ, a
pivotal role being played by the notion of pure state. Since this concept is only intuitively
defined in the physics literature, we propose here two mathematically precise definitions.
In both cases a pure state is a (sequence of) probability measures ρN on XN .

• Definition of pure states through correlation decay. We define the correlation function
of ρN as

CN(r) = sup
A,B: d(A,B)≥r

∑

σA,σB

|ρN(σA, σB) − ρN (σA)ρN(σB)|, (3)

where the sup is taken over all subsets of variable nodes A, B ⊆ V such that the
distance between any pair of nodes (i, j) ∈ A × B is greater than r. Then ρN

is a pure state if this correlation function decays at large r. Technically, we let
C∞(r) = lim supN→∞ CN(r) and require C∞(r) → 0 as r → ∞.

• Definition of pure states through conductance. We let the (ε, δ) conductance of ρN be

FN(ε, δ) = inf
A⊂XN

{
ρN (∂εA)

ρN (A)(1 − ρN(A))
: δ ≤ ρN (A) ≤ 1 − δ

}
. (4)

Here the inf is taken over all subsets of the configuration space. Further, letting D
denote the Hamming distance in XN , we defined the boundary of A as ∂εA = {σ ∈
XN \ A | D(σ,A) ≤ Nε}. With these definitions ρN is pure if its conductance is
bounded below by an inverse polynomial in N for all ε and δ (while non-pure states
have a conductance which typically decays exponentially with N).

These two definitions mimic the well-known ones on Z
d in terms of tail triviality

and extremality [20]. Further, the second one is clearly related to the behavior of local
Monte Carlo Markov chain dynamics. A small conductance amounts to a bottleneck in the
distribution and hence to a large relaxation time. While we expect them to be equivalent
for a large family of models, proving this is a largely open problem. Moreover we should
emphasize that the heuristic cavity method followed in this paper never explicitly uses
either of these definitions.

The hypotheses implicit in the cavity method can be expressed in terms of the pure
states decomposition of μ. This is a partition of the configuration space (dependent on the

6 One usually assumes that the limit exists. If the model is disordered, the almost sure limit can be used, or,
equivalently, log ZN is replaced by its expectation.
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graph and weights) such that the measure μ constrained to each element of this partition
is a pure state. More precisely, let us call {Aγ}γ a partition of XN , and define

Zγ =
∑

σ∈Aγ

w(σ), Wγ =
Zγ

Z
, μγ(σ) =

1

Zγ
w(σ)I(σ ∈ Aγ). (5)

Clearly μ can be written as the convex combination of the μγ with coefficients Wγ. This
defines a pure state decomposition if: (i) each of the μγ is a pure state in the sense given
above, (ii) this is the ‘finest’ such partition, in the sense that the μγ are no longer pure if
any subset of them is replaced by their union.

Statistical physics calculations suggest that a wide class of mean-field models is
described by one of the following ‘universal behaviors’. The terminology used here is
inherited from the literature on mean-field spin glasses [21, 22].

RS Most of the measure is contained in a single element of the partition, namely
Wmax = maxγ Wγ → 1 as N → ∞ (replica symmetric).

d1RSB Most of the measure is carried by N .
= eNΣ∗ pure states7, each one with a weight

Wγ
.
= e−NΣ∗ (dynamical one-step replica symmetry breaking).

1RSB The measure condensates on a subexponential number of pure states, namely, if W[γ]

is the weight of the γth largest state, then limn→∞ limN→∞
∑n

γ=1 W[γ] = 1 (one-step

replica symmetry breaking).

The reader will notice that this list does not include full replica symmetry breaking
phases, in which pure states are organized according to an ultrametric structure. While
this behavior is as generic as the previous ones, our understanding of it in sparse graph
models is still rather poor.

We are mostly concerned with families of models of the type defined in equation (1)
indexed by a continuous parameter α (such as the clause density in k-SAT). In this setting,
the above behaviors often appear in sequence as listed above when the system becomes
more and more constrained (e.g. as α is increased in k-SAT). The different regimes are then
separated by phase transitions: the ‘dynamical’ or ‘clustering’ phase transition from RS to
d1RSB (at αd) and the ‘condensation’ phase transition between d1RSB and 1RSB (at αc).
The paradigmatic example of such transitions is the fully connected p-spin model [21, 22],
where they are encountered upon lowering the temperature.

Let us stress that the above definitions are insensitive to what happens in a fraction
of the space of configurations of vanishing measure. For instance, we neglect metastable
states whose overall weight is exponentially small8.

A convenient tool for distinguishing these various behaviors is the replicated free-
entropy [23]:

Φ(m) = lim
N→∞

1

N
E log

{
∑

γ

Zm
γ

}
, (6)

where m is an arbitrary real number (known as the Parisi replica symmetry breaking
parameter) which allows us to weight differently the various pure states according to

7 Here and in the following
.
= means equality at the leading exponential order.

8 In the fully connected models such metastable states are indeed seen as solutions of the Thouless–Anderson–
Palmer equations, well above the dynamical phase transition.
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their sizes. Suppose indeed that the number of pure states γ with internal free-entropy
density φγ = (log Zγ)/N behave at leading order as exp{NΣ(φγ)}, where Σ(φ) is known
as the complexity (or configurational entropy) of the states. The sum in (6) can then be
computed by the Laplace method; if one assumes for simplicity that Σ is positive on an
interval [φ−, φ+], this leads to

Φ(m) = sup
φ∈[φ−,φ+]

[Σ(φ) + mφ]. (7)

Provided Σ is concave, it can be reconstructed in a parametric way from Φ(m) by a
Legendre inversion [23]:

Σ(φint(m)) = Φ(m) − mΦ′(m), φint(m) = Φ′(m), (8)

where m is such that the supremum in (7) lies in the interior of [φ−, φ+], which defines a
range [m−, m+]. Usually Σ vanishes continuously at φ+. As explained below, when zero-
energy states are concerned φint(m) coincides with the internal entropy of such states. Note
that a given value of m selects the point of the curve Σ(φ) of slope −m; in particular, the
value m = 0 corresponds to the maximum of the curve.

The replica/cavity method at the level of one step of replica symmetry breaking
allows us to compute the replicated free-entropy Φ(m) under an appropriate hypothesis
on the organization of pure states. The various regimes can be distinguished through the
behavior of this function, namely

RS Φ(m) = mφ∗, where φ∗ is the contribution of the single dominant pure state,
Z[1]

.
= eNφ∗ .

d1RSB Φ(m)/m achieves its minimum for m ∈ [0, 1] at m = 1, with Σ∗ = Φ(1)−Φ′(1) > 0.
Then the measure μ decomposes into approximately eNΣ∗ pure states of internal free-
entropy Φ′(1).

1RSB Φ(m)/m achieves its minimum over the interval [0, 1] at ms ∈ (0, 1). Then the
ordered sequence of weights W[1] ≥ W[2] ≥ W[3] ≥ · · · keep fluctuating in the
thermodynamic limit, and converges to a Poisson–Dirichlet process [24] of parameter
ms. The internal free-entropy of these states is Φ′(ms).

In all these cases the total free-entropy density is estimated by minimizing Φ(m)/m
in the interval [0, 1].

2.3. Cavity equations

We shall now recall the fundamental equations used within the 1RSB cavity method and
propose a somehow original derivation. In the following we will be interested in factor
graphs that converge locally9 to trees in the thermodynamic limit.

As a consequence, let us first consider the case of a model of type (1) whose underlying
factor graph is a tree, and discuss later how the long loops are taken into account by
the cavity method. Tree factor graph models are easily solved by a ‘message passing’
procedure [19]. One associates to each directed edge from factor a to variable i (resp. from
i to a) a ‘message’ ηa→i (resp. ηi→a). Messages are probability measures on X . On trees,

9 More precisely, any finite neighborhood of a uniformly chosen random vertex converges to a tree.
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they can be defined as the marginal law of σi with respect to the modified factor graph
Ga→i (resp. Gi→a) where all factor nodes in ∂i \ a (resp. the factor node a) have been
removed. Simple computations yield the following local equations between messages:

ηa→i = fa→i({ηj→a}j∈∂a\i),

fa→i({ηj→a})(σi) =
1

za→i({ηj→a})
∑

σ∂a\i

wa(σ∂a)
∏

j∈∂a\i

ηj→a(σj), (9)

ηi→a = fi→a({ηb→i}b∈∂i\a),

fi→a({ηb→i})(σi) =
1

zi→a({ηb→i})
∏

b∈∂i\a

ηb→i(σi), (10)

where the functions z are fixed by the normalization of the η’s. As we consider a tree
factor graph these equations have a unique solution, easily determined in a single sweep
of updates from the leaves of the graph towards its inside. Moreover the free-entropy of
the model follows from this solution and is

Nφ = log Z = −
∑

(i,a)

log zia(ηa→i, ηi→a) +
∑

a

log za({ηi→a}i∈∂a)

+
∑

i

log zi({ηa→i}a∈∂i). (11)

Here the first sum runs over the undirected edges of the factor graph and the z’s are given
by

zia =
∑

σi

ηa→i(σi)ηi→a(σi), za =
∑

σ∂a

wa(σ∂a)
∏

i∈∂a

ηi→a(σi),

zi =
∑

σi

∏

a∈∂i

ηa→i(σi).
(12)

This computation is correct only on tree factor graphs. Nevertheless it is expected to yield
good estimates of the marginals and free-entropy for a number of models on locally tree-like
graphs. The belief propagation (BP) algorithm consists in iterating equations (9) and (10)
in order to find an (approximate) fixed point. In particular, whenever the RS scenario
holds, there should be one approximate solution of the above equations that yields the
correct leading order of the free-entropy density in the thermodynamic limit. In any case,
when dealing with random factor graphs, one can always turn this simple computation into
a probabilistic one, defining a distribution of random messages by reading (9) and (10) in a
distributional sense with random weight functions and variable degrees. The RS estimate
of the average free-entropy is then obtained by averaging the various terms in (11) with
respect to these random messages.

This approach can be refined in the d1RSB and 1RSB regimes. The BP equations (9)
and (10) should be approximately valid if one computes the messages ηa→i and ηi→a as
marginal laws of the measure μγ restricted to a single pure state γ. When the number of
pure states is very large, one considers a distribution (with respect to the pure states γ
with their weights Wγ) of messages on each directed edge of the factor graph.

A simple and suggestive derivation of the 1RSB equations goes as follows. Assume
that the factor graph is a tree, and choose a subset B of the variable nodes that will act
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as a boundary, for instance (but not necessarily) the leaves of the factor graph. Each
configuration σB of the variables in B induces a conditional distribution μσB on the
remaining variables

μσB(τ ) =
1

ZσB
w(τ)I(τB = σB), (13)

where here and in the following I denotes the indicator function of an event and the
normalizing factor ZσB is the partition function restricted to the configurations coinciding
with σB on the boundary.

Since the factor graph corresponding to μσB is still a tree, the corresponding marginals
and partition function ZσB can be computed iterating the message passing equations (9)
and (10), with an appropriate prescription for the messages ηi→a emerging from variables
i ∈ B, namely ηi→a(τi) = δσi,τi

. Let us denote by η
σB
a→i and η

σB
i→a the corresponding set of

messages, solutions of (9) and (10) on all edges of the factor graph. Further define, for
m ∈ R, a probability measure on the boundary conditions as

μ̃(σB) =
(ZσB)m

∑
σ′

B
(Zσ′

B)m
. (14)

The idea is to mimic the pure states of a large, loopy factor graph model, by the boundary
configurations of a tree model. Calling Pa→i (resp. Pi→a) the distribution of the messages
η

σB
a→i (resp. η

σB
i→a) with respect to μ̃,10 a short reasoning reveals that

Pa→i(η) =
1

Z[{Pj→a}, m]

∫ ∏

j∈∂a\i

dPj→a(ηj→a) δ(η − fa→i({ηj→a})) za→i({ηj→a})m, (15)

Pi→a(η) =
1

Z[{Pb→i}, m]

∫ ∏

b∈∂i\a

dPb→i(ηb→i) δ(η − fi→a({ηb→i})) zi→a({ηb→i})m, (16)

where the functions f and z are defined in equations (9) and (10), and the Z[· · ·]
are normalizing factors determined by the condition

∫
dPa→i(η) =

∫
dPi→a(η) = 1.

Equations (15) and (16) coincide with the standard 1RSB equations with Parisi parameter
m [25]. In addition the free-entropy density associated to the law μ̃, NΦ(m) ≡
log{

∑
σB

(ZσB)m} can be shown to be

NΦ(m) = −
∑

(i,a)∈E

log Zia[Pa→i, Pi→a, m] +
∑

a∈F

log Za[{Pi→a}i∈∂a, m]

+
∑

i∈V

log Zi[{Pa→i}a∈∂i, m], (17)

where the factors Z··· are fractional moments of the ones z··· defined in equation (12),
namely

Zia =

∫
dPa→i(ηa→i)dPi→a(ηi→a) zm

ia , Za =

∫ ∏

i∈∂a

dPi→a(ηi→a) zm
a ,

Zi =

∫ ∏

a∈∂i

dPa→i(ηa→i) zm
i .

(18)

10 More precisely, with respect to the measure μ̃a→i (resp. μ̃i→a) defined similarly for the factor graph Ga→i

(resp. Gi→a).
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As in the RS case, one can heuristically apply (15) and (16) on any graph, even if it
is not a tree. Of particular interest is the limit B → ∅. Equations (15) and (16) may have
two behaviors in this limit: (i) All the distributions Pi→a, Pa→i become Dirac deltas in
this limit. In this case a ‘far-away’ boundary has small influence on the system, and it is
easily seen by comparing (11) and (17) that Φ(m) = mφ. (ii) These distributions remain
non-trivial in the limit B → ∅. This case is interpreted as a consequence of the existence
of many pure states. In this situation, even a small boundary influences the system by
selecting one of such states. We thus interpret the B = ∅ limit of Φ(m) as an estimate of
the replicated potential (6).

In section 2.2 we emphasized the special role played by the value m = 1: the dynamical
transition is signaled by the appearance of a non-trivial solution of the 1RSB equations
with m = 1. This is particularly clear in the present derivation of the 1RSB equations.
Indeed, the distribution μ̃ of the boundary condition coincides in this case with the
Boltzmann distribution μ.

The existence of a non-trivial solution of the 1RSB equations at m = 1 is thus related
to a peculiar form of long range correlations under μ, as first pointed out in [26]. Such
correlations can be measured through a point-to-set correlation function [27]–[29]. For
concreteness let us give an expression of this correlation in the case of Ising spins. Given
a variable node i and a set of variable nodes B, we let

C(i, B) ≡
∑

σB

μ(σB)

(
∑

σi

μ(σi|σB) σi

)2

−
(

∑

σi

μ(σi) σi

)2

. (19)

The reader will recognize the analogy between this expression and the difference q1 − q0

of intra-and inter-state overlaps [30]. The Boltzmann measure has long range point-to-
set correlations if C(i, B) does not decay to 0 when d(i, B) grows. Such correlations were
shown in [31, 32] to imply a diverging relaxation time. We shall come back in the following
to the actual computation of this quantity (see in particular section 5.1).

2.4. Application to constraint satisfaction problems

This short overview of the cavity method did not rely on any hypothesis on the form of
the weight factors wa in equation (1). We now comment briefly on the way this general
formalism is applied to constraint satisfaction problems (CSP), in order to clarify the
relationship of the present work with previous studies. In a CSP the factors a correspond
to constraints, which can be either satisfied or not by the configuration of their adjacent
variables, σ∂a. For a satisfiable instance of a CSP one can take wa to be the indicator
function of the event ‘constraint a is satisfied.’ Then the law defined in (1) is the uniform
distribution over the solutions of the CSP, the partition function counts the number of
such solutions and the free-entropy reduces to the logarithm of the number of solutions.
This ‘entropic’ method [33] is the most adequate to the study of the satisfiable phase.

This approach is, however, ill defined for unsatisfiable instances. The usual way to
handle this case is to define a cost function E(σ) on the space of configurations equal to
the number of unsatisfied constraints under the assignment σ. Following the traditional
notations of statistical mechanics one introduces an inverse temperature β and weighs
the configurations with w(σ) = exp[−βE(σ)]. Small temperatures (large β) favor low-
energy configurations, in the limit β → ∞ the measure μ concentrates on the optimal
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configurations which maximize the number of satisfied constraints. Let us detail this
approach, which was originally followed in [10, 12, 34]. At the 1RSB level the pure states
are characterized by their energy density e and their entropy density s, with the free-
entropy density given by φ = s − βe. Defining the complexity Σ(s, e) according to the
number of pure states with these two characteristics, equation (7) becomes

Φ(β, m) = sup
s,e

[Σ(s, e) + m(s − βe)]. (20)

If one takes now the limit β → ∞ and assumes e > 0, the entropic term becomes irrelevant;
to obtain a finite result one has to take at the same time m → 0 such that the product
βm, usually denoted y, remains finite. One thus obtains

Φe(y) = sup
e

[Σe(e) − ye], Σe(e) ≡ sup
s

Σ(s, e). (21)

In the unsatisfiable phase, the ‘energetic’ cavity approach allows us to characterize
the minimal energy of the problem.

In the case of satisfiable problems, one has to perform a second limit y → ∞ (after
β → ∞) to concentrate on the pure states with e = 0. It follows that the complexity
thus computed is sups Σ(s, e = 0), i.e. the maximum of the entropic complexity. In
other words the procedure y → ∞ after β → ∞ is equivalent to performing the entropic
computation with a Parisi parameter m = 0, i.e. to weigh all the pure states in the
same way, irrespective of their sizes. This is not a problem for the determination of the
satisfiability threshold αs, which corresponds to the disappearing of all zero-energy pure
states, hence to the vanishing of the maximal complexity Σ(m = 0). However, the value
of αd in [10, 12] corresponds to the appearance of a solution of the 1RSB equations with
m = 0, and not with m = 1 which we argued to be the relevant value for the definition
of αd.

In the rest of the paper we shall follow the entropic cavity method, i.e. we take (1) to
be the uniform measure over the solutions of the CSP under study and keep a finite value
for the Parisi parameter m. Before entering the details of this approach in the example
of random k-satisfiability, let us mention that the existence of exponentially numerous
pure states (called clusters in this context) for some values of α and k has been proved
in [35, 36]. An intrinsic limitation of these works was that clusters were defined by much
stricter conditions than the one exposed above (which thus implied limitations on α,
k). The consequences of the existence of a distribution of cluster sizes have also been
investigated in a toy model in [37].

We should also emphasize that, for the simpler CSP known as XORSAT [38, 39],
a precise characterization of the clusters has been achieved through rigorous methods.
A good part of the phenomena studied in the present paper is, however, absent in this
simpler model. In particular, all clusters of XORSAT have the same size because of the
linear structure of the constraints.

3. The cavity method applied to the random k-SAT problem

3.1. Some definitions

In the application of the formalism to k-satisfiability, we use σi ∈ X = {−1, +1} to
encode the Boolean variables. A constraint a on k variables σ∂a is satisfied by all the 2k
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Figure 1. An example of the factor graph representation of a satisfiability formula
for k = 3. The values Ja

i are encoded by drawing a solid (resp. dashed) edge
between clause a and variable i if σi = +1 (resp. −1) satisfies clause a. The
distances between some of the variable nodes are di,j = di,j′ = di,j′ = 1 and
dj,j′ = 2. The neighborhoods are, for instance, ∂i = {a, b, c}, ∂a = {i, j, j′},
∂+i = {a}, ∂−i = {b, c}, ∂+i(a) = ∅, ∂−i(a) = {b, c}, ∂+i(b) = {c}, ∂−i(b) = {a}.

configurations except one, let us call it Ja = {Ja
i : i ∈ ∂a}, in which all the literals of

the clause are false. The weight factors are thus defined as wa(σ∂a) = I(σ∂a �= Ja), the
indicator function of the event ‘clause a is satisfied.’

A formula is represented as a factor graph (cf. figure 1) whose edges are labeled by Ja
i .

This suggests to refine the definition of the neighborhoods. Given a variable node i, ∂+i
(resp. ∂−i) will denote the set of clauses which are satisfied by σi = +1 (resp. σi = −1).
Further, given a clause a ∈ ∂i we call ∂+i(a) (resp. ∂−i(a)) the set of clauses in ∂i \ a
which are satisfied by the same (resp. opposite) value of σi as is a.

For k-SAT formulas the general RS cavity equations (9) and (10) can be written in a
pretty explicit form. As the variables take only two values the cavity probability messages
ηa→i and ηi→a can be parameterized by a single real number, that we shall call respectively
ua→i and hi→a, and define by

ηa→i(σi) =
1 − Ja

i σi tanhua→i

2
, ηi→a(σi) =

1 − Ja
i σi tanh hi→a

2
. (22)

With these conventions equations (9) and (10) take the form

ua→i = f({hj→a}j∈∂a\i), f(h1, . . . , hk−1) = −1

2
log

(
1 −

k−1∏

i=1

1 − tanhhi

2

)
, (23)

hi→a =
∑

b∈∂+i(a)

ub→i −
∑

b∈∂−i(a)

ub→i. (24)

We are interested in the regime where the number M of uniformly chosen clauses
and the number of variables N both diverge at fixed ratio α = M/N . The random factor
graphs thus generated enjoy properties reminiscent of the Erdös–Rényi random graphs
G(N, M) [40, 41]. In particular, for a uniformly random variable node i, the number of
clauses in ∂+i and ∂−i converges to two i.i.d. Poisson random variables of mean αk/2.
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The same statement is true for ∂+i(a) and ∂−i(a) when (i, a) is an uniformly chosen edge
of the factor graph. The degree distribution is a very local description of a graph, looking
at one node or edge only. It is, however, easy to show that any bounded neighborhood of
a uniformly random node i converges to a random (Galton–Watson) tree with the same
degree distribution [41].

3.2. The RS description of the random formulas ensemble

The replica-symmetric treatment of the random k-SAT problem was first worked out
using the replica formalism in [8]. In the cavity formulation one interprets the BP
equations (9), (10), (23) and (24) in a probabilistic way. More precisely, we introduce
the distributions of ua→i, hi→a (over the choice of the random formula) and denote them
as P(0)(h) and Q(0)(u). These distributions satisfy the distributional equations:

u
d
= f(h1, . . . , hk−1), h

d
=

l+∑

i=1

u+
i −

l−∑

i=1

u−
i . (25)

In these expressions h, {hi} (resp. u, {u±
i }) are independent copies of the random variable

of distribution P(0)(h) (resp. Q(0)(u)), the function f is defined in equation (23) and l± are

two independent Poisson random variables of mean αk/2. The symbol
d
= denotes identity

in distribution11.
The RS prediction for the entropy is

φ(0) = −αkE log z1(u, h) + αE log z2(h1, . . . , hk) + E log z3(u
+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

), (26)

where the expectations are over i.i.d. copies of the random variables u and h, and l± are
as above. The various entropy shifts are obtained by rewriting the z’s in equation (12) in
terms of u and h:

z1(u, h) = 1 + tanhh tanh u, (27)

z2(h1, . . . , hk) = 1 −
k∏

i=1

1 − tanh hi

2
, (28)

z3(u
+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

) =

l+∏

i=1

(1 + tanhu+
i )

l−∏

i=1

(1 − tanh u−
i )

+

l+∏

i=1

(1 − tanh u+
i )

l−∏

i=1

(1 + tanh u−
i ). (29)

Similarly the RS overlap can be computed as

q0 = E[tanh2 h]. (30)

Several equivalent expressions of the RS entropy can be found in the literature; the
choice we made in (26) has the advantage of being variational. By this we mean that the

11 More explicitly, given two random variables X and Y we write X
d
= Y if the distributions of X and Y coincide.

For instance, if X, X1, X2 are i.i.d. standard normal random variables, X
d
=(X1 + X2)/

√
2.
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stationarity conditions of the function φ(0)[P,Q, α] with respect to P and Q are nothing
but the self-consistency equations (25). Note also that the rigorous results of [42, 43] imply
that12 the entropy density φ is upper-bounded by the RS φ(0) for any trial distribution
P, as long as Q is linked to P by the first equation in (25), for a regularized version of
the model at finite temperature. Moreover the RS description was proven to be valid for
small values of α in [44].

The numerical resolution of the equation on the order parameter is relatively easy.
The distributions P(0) and Q(0) can indeed be represented by samples (or populations)
of a large number N of representatives, {hi}Ni=1 and {ui}Ni=1. The fixed point condition
stated in (25) is looked for by an iterative population dynamics algorithm [25, 41, 45].

We turn now to the cavity formalism at the 1RSB level, which assumes the
organization of pure states described in section 2.2.

3.3. The 1RSB description of the random formulas ensemble

As in the RS case, when the underlying formula is random, the messages Pi→a, Pa→i along
a uniformly random edge become random variables, whose distributions are denoted as
P(1)[P ], Q(1)[Q]. These distributions satisfy a couple of distributional equations that are
the probabilistic version of equations (15) and (16):

Q(•) d
=

1

Z4[P1, . . . , Pk−1]

∫ k−1∏

i=1

dPi(hi) δ(• − f(h1, . . . , hk−1))z4(h1, . . . , hk−1)
m, (31)

P (•) d
=

1

Z3[{Q+
i }, {Q−

i }]

∫ l+∏

i=1

dQ+
i (u+

i )

l−∏

i=1

dQ−
i (u−

i ) δ

(
• −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)

× z3({u+
i }

l+
i=1, {u−

i }
l−
i=1)

m, (32)

where the P ’s (resp. Q’s) are i.i.d. from P(1) (resp. Q(1)) and l± have the above-stated
Poissonian distribution. The entropy shift z3 used in equation (32) was defined in
equation (29), while z4 is given by

z4(h1, . . . , hk−1) = 2 −
k−1∏

i=1

1 − tanh hi

2
= 1 + e−2f(h1,...,hk−1). (33)

Finally, the 1RSB potential is obtained by taking the expectation of equation (17).
One gets

Φ(m) = −αkE logZ1[Q, P ] + αE logZ2[P1, . . . , Pk]

+ E logZ3[Q
+
1 , . . . , Q+

l+
, Q−

1 , . . . , Q−
l−

], (34)

where the factors Zi are weighted averages of the corresponding entropy shifts:

Z1[Q, P ] =

∫
dP (h) dQ(u) z1(u, h)m, (35)

12 In [42, 43] this claim is made for k even. However, the proof holds verbatim for k odd as well. To the best of
our knowledge, this was observed first by Elitza Maneva in 2005.
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Z2[P1, . . . , Pk] =

∫ k∏

i=1

dPi (hi)z2(h1, . . . , hk)
m, (36)

Z3[Q
+
1 , . . . , Q+

l+
, Q−

1 , . . . , Q−
l−

] =

∫ l+∏

i=1

dQ+
i (u+

i )

l−∏

i=1

dQ−
i (u−

i )z3(u
+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

)m.

(37)

The inter-and intra-state overlaps are given, respectively, by

q0 = E

[(∫
dP (h) tanhh

)2
]

, q1 = E

[∫
dP (h) tanh2 h

]
. (38)

The variational property discussed at the RS level still applies to the 1RSB potential.
This is of particular interest for the computation of the internal entropy of the states,
given by a derivative with respect to m. This derivation can be applied to the explicit
dependence only and yields

φint(m) = −αkE

[∫
dP (h) dQ(u)z1(u, h)m log z1(u, h)

Z1(Q, P )

]

+ αE

[∫ ∏k
i=1dPi(hi) z2({hi}k

i=1)
m log z2({hi}k

i=1)

Z2[{Pi}k
i=1]

]

+ E

[∫ ∏l+
i=1dQ+

i (u+
i )

∏l−
i=1dQ−

i (u−
i ) z3({u+

i }
l+
i=1, {u−

i }
l−
i=1)

m log z3({u+
i }

l+
i=1, {u−

i }
l−
i=1)

Z3[{Q+
i }

l+
i=1, {Q−

i }
l−
i=1]

]
.

(39)

The rigorous results of [42, 43] also imply φ ≤ Φ(m)/m for any value of m in (0, 1) and
any trial order parameter P (with Q defined by equation (31)).

The numerical resolution of the 1RSB equations (31) and (32) is, in general, much
harder than the one of their RS counterparts (compare with equation (25)). The
population dynamics algorithm represents P(1) by a sample of distributions {Pi}Ni=1, which

themselves have to be encoded, for each i, by a finite set of cavity fields {hi,j}N
′

j=1. This
drastically limits the sizes N and N ′, and hence the precision of the numerical results.
Moreover generating one element, say Qi, from k − 1 Pi’s is by itself a non-trivial task.
The various fields representing Qi are weighted in a non-uniform way because of the factor
zm
4 in equation (31), which forces the use of delicate resampling procedures.

These equations can be greatly simplified analytically for two particular values of m,
namely 0 and 1. For the sake of readability we postpone the discussion of these important
simplifications until section 5 and proceed in the next section with the presentation and
the interpretation of the results obtained either at arbitrary m with the full numerical
procedure (whose implementation details are exposed in appendix A) or in m = 0, 1 with
the simplified, more precise ones.
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Figure 2. The point-to-set correlation function for k = 4; from left to right
α = 9.30, 9.33, 9.35 and 9.40.

4. Transitions in the satisfiable regime of random k-SAT

4.1. The dynamical, condensation and satisfiability transitions for k ≥ 4

Let us begin our discussion of the satisfiable regime of random k-SAT by studying the
case k = 4, the values k ≥ 4 having the same qualitative behavior. On the other hand,
the phenomenology of 3-SAT is different and we report on it in section 4.4.

Following the program of section 2 we first have to determine the value αd for the
appearance of a non-trivial solution of the 1RSB equations with m = 1. To this aim we
compute the point-to-set correlation function C�, which is the average of the correlation
function (19) between a randomly chosen variable i and the set B of variables at distance

 from it (see section 5.1 for details of the computation). The plots of figure 2 show that
for α ≤ αd ≈ 9.38 this correlation vanishes at large distance, while for larger values of α a
strictly positive long range correlation sets in discontinuously. To distinguish between the
d1RSB and 1RSB regime we then compute the complexity Σ(m = 1). As demonstrated
in figure 3 this is strictly positive at αd, then decreases continuously until it vanishes at
αc ≈ 9.547. Finally the satisfiability transition αs is found from the criterion of vanishing
of Σ(m = 0), i.e. the maximum of the entropic complexity curve (see figure 3): the value
αs ≈ 9.931 is in agreement with [12] and we shall show in section 5.2 that this is indeed
the same calculation.

To summarize, we find the three regimes RS, d1RSB and 1RSB described in section 2.2
occurring in this order, for the values of α in [0, αd], [αd, αc] and [αc, αs]. We expect this
pattern of transitions to be the same for all k ≥ 4. This is supported by our numerical
investigations for k = 4, 5, 6 (see table 1 for a summary of the numerical values of the
thresholds) and by the large-k expansions presented in section 6.

The entropy density (see figure 3) is given by the RS formula both in the RS and
d1RSB regimes. In the latter case it has to be understood as the sum of the complexity
Σ(m = 1) and of the internal entropy of the associated states, φint(m = 1). In contrast,
for α ∈ [αc, αs] it is necessary to compute the whole function Σ(φ) by varying m. The
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Figure 3. The complexity Σ and the internal entropy φint for the values m = 0, 1,
and m = ms in the 1RSB regime, for k = 4.

Table 1. Numerical values of the various critical thresholds. For k = 3 we have
formally αc = αd, see the text for details on the nature of the difference between
k = 3 and k ≥ 4.

k αd αc αs [12] αf

3 3.86 3.86 4.267 ∗
4 9.38 9.547 9.931 9.88
5 19.16 20.80 21.117 ∗
6 36.53 43.08 43.37 39.87 [46]

entropy density coincides with the one of dominant clusters and is given by the point
where Σ(φ) vanishes.

4.2. The entropic complexity curves

The curves Σ(φ) are shown in figure 4 for several values of α. The symbols are obtained
in a parametric way by solving the 1RSB equations for various values of m and plotting
the point (φint(m), Σ(m)). The lines in figure 4 are numerical interpolations, obtained by
fitting not directly Σ(φ), but instead the data for Φ(m) with a generic smooth function13

and then analytically deriving the fitting function to obtain the curves in figure 4. The

13 We have tried different fitting functions and all provide equivalent and very good results thanks to the
smoothness of Φ(m).
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Figure 4. The complexity Σ(φ) for k = 4 and several values of α: from top to
bottom α = 9.3, 9.45, 9.6, 9.7, 9.8 and 9.9.

agreement of this fitting procedure with the parametric plot is excellent. The three regimes
are clearly illustrated in this figure:

• For α < αd a portion of the curve Σ(φ) can exist (for instance, there is a solution
of the 1RSB equation with m = 0 for α ≥ 8.297 [12]), yet it has no point of slope
−m = −1. The contribution of these clusters is negligible compared to the dominant
RS cluster.

• For α ∈ [αd, αc] (see, e.g., α = 9.45 data in figure 4) the complexity Σ(m = 1) exists
and is positive (it is marked by a black circle in the figure).

• For α ∈ [αc, αs] (see, e.g., α = 9.6, 9.7, 9.8, 9.9 in figure 4) the complexity Σ(m = 1)
is negative and thus the Σ(φ) curve vanishes at φ(ms) (marked with a black square),
where the slope (in absolute value) is smaller than 1 and equals ms(α). The measure
is dominated by a subexponential number of clusters of entropy φ(ms), shown as a
function of α in figure 3.

The value thus estimated of the Parisi parameter ms(α) in the 1RSB regime is plotted
in figure 5 (it is identical to 1 in the d1RSB region). The curve close to the ms data is not
a fit, but instead an explicit approximate expression for ms(α) which becomes exact in
the large-k limit (see section 6 for details). Indeed equation (78) (valid to leading order
at large k) can be equivalently rewritten as

αs − α

αs − αc

=
1 − 2m(1 − m log 2)

2 log 2 − 1
, (40)

and this gives an expression for ms(α) once values of αc and αs determined numerically
for k = 4 are plugged into equation (40). Note that the solution to equation (40) is such
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Figure 5. The value of the Parisi parameter ms in the thermodynamically relevant
pure states of the 1RSB regime in random 4-SAT, and the freezing transition mf .

that (i) ms(αc) = 1, (ii) ms(αs) = 0 and (iii) ms vanishes as a square root at αs. The
finite-k corrections to the expression (40) seem already small for k = 4, as can be inferred
from the good agreement with the numerical data displayed in figure 5. This fact was
also noticed for the coloring problem in [15].

Once we compute the optimal value ms for each value of α, we can plot in figure 6 the
overlap q0 and q1 of the dominating clusters as a function of α. Notice that the inter-state
overlap q0 is an increasing function of α for any fixed value of m, but becomes a decreasing
function of α between αc and αs where we take m = ms(α).

We did not attempt a complete determination of the portion of the plane (α, m)
where non-trivial solutions of the 1RSB equations can be found. From our numerical
investigations it seems that solutions with smaller values of m appear at smaller values
of α, i.e. the threshold αd(m) is an increasing function in the range of parameters we
considered. In particular, solutions with negative m appear at rather small values of α.
The limit of very large negative values of m is, however, difficult to study numerically,
and more work could be done on this issue; the corresponding pure states are tiny because
their variables are overconstrained, which plagues the numerical resolution of the 1RSB
equations.

4.3. On the presence of frozen variables in clusters of solutions

Another characterization of the clusters of solutions, besides their internal entropy and
self-overlap, is the presence or not of frozen variables, that is variables that take the same
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Figure 6. Intra-and inter-state overlaps for k = 4.

value in all the solutions of the cluster. In technical terms this corresponds to a non-
vanishing weight on ±∞ in the 1RSB cavity field distributions P (h) (see equation (59)
below). Our data show that, given a value of α, there exists a threshold mf(α) such that
clusters described by m < mf do contain frozen variables, while those with m > mf do
not. This is consistent with the intuition: the freezing of variables is correlated with a
smaller value of the internal entropy, and hence of m. Numerical estimates for the line
mf(α) are plotted in figure 5 for k = 4. The large error bars are due to the fact that we
have checked the presence of frozen variables only at m values which are multiples of 0.1
(and no interpolation can be done in between, since the property is just true or false). The
interpolating curve is a fit to the mf(α) data with the function A(x− 8.297)B (for m = 0
the critical value of α is αd(m = 0) ≈ 8.297 [12]). The freezing transition αf is defined by
the appearance of frozen variables in dominating clusters, that is ms(αf) = mf(αf). From
the crossing of these two lines in figure 5 we estimated the freezing threshold for k = 4 at
αf ≈ 9.88.

The fact that the freezing transition occurs after the condensation one for k = 4 is
not generic; for k ≥ 6 the threshold mf(α) reaches 1 at αf ≤ αc [46], hence in a part of the
d1RSB regime the dominating clusters do contain frozen variables for these values of k.

Let us, however, emphasize that generally αd < αf , i.e. that in random k-satisfiability
(and also in q-coloring [15]) clustering can occur without implying the freezing of variables.
This fact has been obscured up to now because the energetic cavity method [10, 34] focused
precisely on the fraction of frozen variables in the m = 0 solution of the 1RSB equations,
and because in the simpler XORSAT model [38, 39] the freezing and clustering transitions
coincide. We refer the reader to [46] for a more extensive study of the freezing transition, in
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Figure 7. The point-to-set correlation function for k = 3; from left to right
α = 3.60, 3.84, 3.86, 3.88.

particular its interpretation in terms of the divergence of the minimal rearrangements [47]
it induces, and to [36] where it has been proven that frozen variables exist in every cluster
for k ≥ 9 and α large enough.

4.4. k = 3, a special case

We turn now to the description of our numerical results in the particular case k = 3,
recently investigated also in [16]. The onset of long range point-to-set correlations,
displayed in figure 7 through the correlation function C� (details of the computation are
deferred to section 5.1), is qualitatively different from k = 4 (compare with figure 2). The
long range correlation lim�→∞ C� grows indeed continuously from 0 at αd (in qualitative
agreement with the variational approximation of [9]). In fact, this transition coincides with
a local instability of the RS solution with respect to 1RSB perturbations (this is a generic
fact for all models with continuous dynamic transitions). A numerical procedure can be
used to locate precisely this instability [48]–[50]. We get the estimate αd = αstab ≈ 3.86.
Please note that for k ≥ 4 this local instability occurs after the discontinuous transition,
for instance at αstab ≈ 10.2 for k = 4.

For α > αd the complexity Σ(m = 1) decreases continuously from 0 (see lowest curve
in figure 8): there is no d1RSB regime for 3-SAT. We then turned to the resolution of
the 1RSB equations for other values of m. In figure 8 we plotted the complexity as a
function of α, for various values of m. According to the interpretation of the 1RSB regime
of section 2.2, for each value of α we can find the Parisi parameter ms such that Σ = 0,
and obtain the 1RSB estimate of the entropy as the internal entropy of these states. We
plot this quantity in figure 9, together with the replica symmetric (RS) estimate and the
value obtained from the m = 0 solution.

We also present in figure 10 the entropic complexity curves for a few values of α. Note
that these curves can seem incomplete; in fact, for some values of (α, m) we found only
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Figure 8. The complexity Σ for k = 3 and m from 0 (highest curve) to 1 (lowest
curve). For 0 < m < 1 the domain of existence of Σ may be slightly larger than
the one shown in the plot (we have simulated only α values in multiples of 0.05).

Figure 9. The 1RSB estimate for the entropy of random 3-SAT, compared to
the replica symmetric (RS) estimate and to the internal entropy of the m = 0
solution, corresponding to the maximum of the Σ(φ) curve.

inconsistent solutions of the 1RSB equations, as is explained in more detail in appendix C.
This might be related to an instability of the 1RSB solution toward higher levels of replica
symmetry breaking [50]–[52].
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Figure 10. The complexity Σ(φ) in random 3-SAT, for several values of α.

5. Simplifications of the 1RSB equations

The numerical analysis of the 1RSB equations (31) and (32) is, in general, an extremely
difficult task. Their analytical control is even more challenging. In this section we explain
how the 1RSB approach simplifies in the two cases m = 0 and 1, allowing for a precise
numerical calculation of the complexity and internal entropy in these points.

Because of the special role played by the value m = 1, see section 2, this enables us
to estimate precisely the dynamical and condensation thresholds αd(k) and αc(k). The
simplifications arising at m = 0 are, on the other hand, the reason for the efficiency of
the SP algorithm [10]. Here we will show how the states entropy can be computed at a
small extra cost with respect to the approach of [10].

For the sake of concreteness, we discuss these simplifications in the case of random k-
satisfiability. They have, however, a much wider domain of validity. The same derivations
do indeed hold for general mean-field models on sparse random graphs.

5.1. m = 1 and tree reconstruction

There is a strong connection between the 1RSB formalism with Parisi parameter m = 1
and the tree reconstruction problem (or computation of point-to-set correlation), as
discussed in [26] and outlined in section 2.3. We follow here a somehow inverse perspective
with respect to [26]: starting from the 1RSB equations we shall progressively simplify
them. At the end we shall comment on their interpretation in terms of the tree
reconstruction problem.

Let us first define the averaging functional h[P ] (resp. u[Q]) which associates to the
distribution P (resp. Q) of cavity fields a single real through the relations

tanh h[P ] =

∫
dP (h) tanh h, tanh u[Q] =

∫
dQ(u) tanh u. (41)
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Consider now the right-hand side of equation (32) for m = 1. The normalization factor
can be expressed in terms of these averaged fields:

Z3[Q
+
1 , . . . , Q+

l+
, Q−

1 , . . . , Q−
l−

] = z3[u[Q+
1 ], . . . , u[Q+

l+
], u[Q−

1 ], . . . , u[Q−
l−

]]. (42)

Using this fact and denoting by G[Q+
1 , . . . , Q+

l+
, Q−

1 , . . . , Q−
l−

] the right-hand side of

equation (32) one can also show that

h[G[Q+
1 , . . . , Q+

l+
, Q−

1 , . . . , Q−
l−

]] =

l+∑

i=1

u[Q+
i ] −

l−∑

i=1

u[Q−
i ]. (43)

Treating similarly equation (31), whose rhs shall be denoted F [P1, . . . , Pk−1], one obtains

Z4[P1, . . . , Pk−1]= z4(h[P1], . . . , h[Pk−1]), u[F [P1, . . . , Pk−1]]= f(u[P1], . . . , u[Pk−1]).

(44)

h (resp. u) can be viewed as a random variable, induced by equation (41) with P
(resp. Q) drawn from P(1) (resp. Q(1)). The above remarks show that their distributions
obey the RS self-consistency equation (25). Let us now define a conditional average of
P(1), focusing on the P ’s in the support of P(1) with a prescribed value of h[P ]:

P (h|h) =
1

P(0)(h)

∫
dP(1)[P ] P (h) δ(h − h[P ]). (45)

The conditional distribution Q(u|u) is defined analogously, with P(1)[P ] replaced by
Q(1)[Q].

Consider again the distributional equations (31) and (32). Once the normalization
factors have been expressed in terms of the average fields h, u, the right-hand sides are
multi-linear functions of the distributions P , Q. It is thus possible to take the conditional
average as in equation (45). This yields closed equations on P and Q:

Q(u|u)Q(0)(u) =

∫ k−1∏

i=1

dP(0)(hi)δ(u − f(h1, . . . , hk−1))

×
∫ k−1∏

i=1

dP (hi|hi)δ(u − f(h1, . . . , hk−1)) ×
z4(h1, . . . , hk−1)

z4(h1, . . . , hk−1)
,

P (h|h)P(0)(h) =
∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

dQ(0)(u
+
i )

l−∏

i=1

dQ(0)(u
−
i )

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

) ∫ l+∏

i=1

dQ(u+
i |u+

i )

l−∏

i=1

dQ(u−
i |u−

i )

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)
z3(u

+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

)

z3(u
+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

)
.

(46)

These equations are definitely simpler than the original ones (31) and (32). In particular
P (h|h)P(0)(h) can be viewed as a joint distribution of (h, h) and represented by a

population of couples {(hi, hi)}Ni=1. The presence of the reweighting factors still represents

doi:10.1088/1742-5468/2008/04/P04004 24

http://dx.doi.org/10.1088/1742-5468/2008/04/P04004


J.S
tat.M

ech.
(2008)

P
04004

Clusters of solutions and replica symmetry breaking in random k-satisfiability

a difficulty that we shall now get rid of by a further simplification. Before proceeding, let
us emphasize the identities

∫
dP (h|h) tanhh = tanhh,

∫
dQ(u|u) tanhu = tanh u, (47)

which follow directly from the definition (45) and which are indeed preserved by
equations (46). We define now, for σ = ±1,

P σ(h|h) =
1 + σ tanh h

1 + σ tanh h
P (h|h). (48)

Using property (47), one can check that for any h and any σ P σ(•|h) is well normalized,
and that

P (h|h) =
∑

σ

1 + σ tanhh

2
P σ(h|h). (49)

Similar definitions and properties hold for Qσ(u|u). Inserting these definitions in
equation (46), one obtains

Qσ(u|u)Q(0)(u) =

∫ k−1∏

i=1

dP(0)(hi)δ(u − f(h1, . . . , hk−1))

×
∑

σ1,...,σk−1

μ(σ1, . . . , σk−1|σ, h1, . . . , hk−1)

×
∫ k−1∏

i=1

dP σi
(hi|hi)δ(u − f(h1, . . . , hk−1)), (50)

where the summation runs over the 2k−1 configurations of the Ising spins σ1, . . . , σk−1 with
probabilities given by

μ(σ1, . . . , σk−1|+, h1, . . . , hk−1) =

k−1∏

i=1

1 + σi tanhhi

2
, (51)

μ(σ1, . . . , σk−1|−, h1, . . . , hk−1) =
(1 − I(σ1 = · · · = σk−1 = −))

1 −
∏k−1

i=1 (1 − tanh hi)/(2)

k−1∏

i=1

1 + σi tanh hi

2
. (52)

The second of the equations in (46) yields

P σ(h|h)P(0)(h) =

∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

dQ(0)(u
+
i )

l−∏

i=1

dQ(0)(u
−
i )

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)∫ l+∏

i=1

dQσ(u+
i |u+

i )

l−∏

i=1

dQ−σ(u−
i |u−

i )

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)
. (53)
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The equations (50) and (53) are particularly convenient for numerical resolution.
This can be obtained through an appropriate generalization of the population dynamics
algorithm, that employs two population of triples {(hi, h

+
i , h−

i ) : i = 1, . . . ,N} and
{(uj, u

+
j , u−

j ) : j = 1, . . . ,N}. In the actual implementation it is actually more

convenient to store the hyperbolic tangent of these quantities, e.g. tanhhi, tanh h+
i ,

etc. These populations are updated recursively according to the pseudocode below.

Population Dynamics m = 1 (size N , iterations tmax)

1: For all i ∈ {1, . . . ,N}:
2: Set h±

i = ±∞ and draw hi from P(0);
3: For all t ∈ {1, . . . , tmax}:
4: For all j ∈ {1, . . . ,N} generate a new triple (uj , u

+
j , u−

j ):
5: Choose k − 1 indices i1 . . . ik−1 uniformly in [N ];
6: Compute uj = f(hi1 , . . . , hik−1);
7: Generate a configuration σ1 . . . σk−1 with the law μ(· · · |+, hi1 . . . hik−1) in equation (51);
8: Compute u+

j = f(hσ1
i1

, . . . , h
σk−1
ik−1

);
9: Generate a second configuration of spins with the law (52);
10: Set u−

j = f(hσ1
i1

, . . . , h
σk−1
ik−1

);
11: End-For;
12: For all i ∈ {1, . . . ,N} generate a new triple (hi, h

+
i , h−

i ):
13: Draw two independent Poisson random variables l+ and l− of mean αk/2;
14: Draw l+ + l− i.i.d. indices i+1 , . . . , i+l+ , i−1 , . . . , i−l− uniformly random in [N ];
15: Set hj =

∑l+
m=1 ui+m

−
∑l−

m=1 ui−m
, h±

j =
∑l+

m=1 u±
i+m

−
∑l−

m=1 u∓
i−m

;
16: End-For;

The justification of the initialization will be given below. After a moment of thought
one can convince oneself that the above update rules are the correct discretization
of equations (50) and (53). More precisely, if the triples (hi, h

+
i , h−

i ) are i.i.d. and
the two pairs (hi, h

+
i ), (hi, h

−
i ) have distributions (respectively) P+(h+|h)P(0)(h) and

P−(h−|h)P(0)(h), then the pairs (uj , u
+
j ), (uj , u

−
j ) resulting from the above update have

distributions Q+(u+|u)Q(0)(u), Q−(u−|u)Q(0)(u). An analogous statement holds for the

update from the triples (uj, u
+
j , u−

j ) to (hi, h
+
i , h−

i ).14

Most relevant observables can be written as expectations with respect to the
distributions P±(h±|h)P(0)(h), Q±(u±|u)Q(0)(u) and hence estimated from these
populations of triplets.

Notice that, by definition, the 1RSB potential computed at m = 1 is equal to the RS
free-entropy, Φ(m = 1) = φ(0). The internal entropy can be expressed in terms of P (h|h)

and Q(u|u) by integrating over P(1), Q(1) in equation (39). These conditional distributions

can be further replaced by P σ and Qσ thanks to equation (49), yielding finally

φint(m = 1) = −αk

∫
dP(0)(h)dQ(0)(u)

∑

σ

1 + σ tanh(u + h)

2

∫
dP σ(h|h)dQσ(u|u)

× log z1(u, h) + α

∫ k∏

i=1

dP(0)(hi)
∑

σ1,...,σk

μ(σ1, . . . , σk|h1, . . . , hk)

14 Notice that it would be wrong to claim that (hi, h
+
i , h−

i ) is distributed according to P+(h+|h)P−(h−|h)P(0)(h) :
the update rules used in the algorithm induce correlations between (for instance) the fields h+ and h− inside the
same triplet. These correlations do not spoil our claim.
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×
∫ k∏

i=1

dP σi
(hi|hi) log z2(h1, . . . , hk) +

∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

×
∫ l+∏

i=1

dQ(0)(u
+
i )

l−∏

i=1

dQ(0)(u
−
i )

∑

σ

1 + σ tanh
(∑l+

i=1 u+
i −

∑l−
i=1 u−

i

)

2

×
∫ l+∏

i=1

dQσ(u+
i |u+

i )

l−∏

i=1

dQ−σ(u−
i |u−

i ) log z3(u
+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

). (54)

In the second term the distribution of the configuration (σ1, . . . , σk) is

μ(σ1, . . . , σk|h1, . . . , hk) =
(1 − I(σ1 = · · · = σk = −))

1 −
∏k

i=1(1 − tanh hi)/2

k∏

i=1

(1 + σi tanhhi)/(2). (55)

This expression of the internal free-entropy is readily evaluated by sampling from the
population of triplets defined above. The complexity of the m = 1 states is then finally
expressed as Σ(m = 1) = Φ(m = 1) − φint(m = 1).

Consider now the definition of the overlaps given in equation (38). The inter-state
one q0 is easily seen to be equal to the RS one. Moreover q1 can be written as

q1 =

∫
dP(0)(h)

∫
dP (h|h) tanh2 h. (56)

To rewrite q1 in terms of the distribution P σ, note that tanh2 h = (tanhh)
∑

σ σ(1 +
σ tanh h)/2 and use (48) to obtain

q1 =

∫
dP(0)(h)

∑

σ

σ
1 + σ tanhh

2

∫
dP σ(h|h) tanhh. (57)

These expressions allow us to estimate q0, q1 from the population of triples {(hi, h
+
i , h−

i )}.
In figures 2 and 7 we followed this approach to plot the difference q1(
) − q0 for

several values of α and k = 3, 4, whereby the population {(hi, h
+
i , h−

i )} is obtained after 


iterations of the above algorithm. For α < αd(k), q1(
)− q0
�→ 0, while for α > αd(k) it is

bounded away from 0. Let us emphasize the great simplification achieved: equations (50)
and (53) are much simpler than the original 1RSB equations: they can be solved using
a simple population of triples, instead of a population of populations. Further, the
initialization used in the pseudocode above is the correct one, in the following sense.
If equations (50) and (53) admit a non-trivial solution, then their iteration converges to
a non-trivial solution under such an initialization.

The last statement follows from the interpretation of the order parameters in terms
of tree reconstruction. Consider an infinite tree k-satisfiability formula rooted at variable
node i. The tree is random with distribution defined by letting each variable to be directly
(resp. negated) in l+ (resp. l−) clauses, where l± are independent random Poisson random
variables with mean αk/2. One can define a (uniform) free boundary Gibbs measure μ
over SAT assignments of such a tree. Imagine now we generate a solution from this
measure, conditional on the root value being σ, and denote by σB the values of variables

doi:10.1088/1742-5468/2008/04/P04004 27

http://dx.doi.org/10.1088/1742-5468/2008/04/P04004


J.S
tat.M

ech.
(2008)

P
04004

Clusters of solutions and replica symmetry breaking in random k-satisfiability

at a distance at least 
 from the root. Define the fields h, hσ
� by

μ(σi) ≡
1 + σi tanh h

2
, μ(σi|σB) ≡ 1 + σi tanh hσ

�

2
. (58)

Notice that both are random quantities, h because of the tree randomness and h±
� both

because of the tree and of the random configuration σB. Let P
�

σ(h|h) be the conditional
distribution of hσ

� given h.

It is not hard to show that P
�

σ(h|h) is the distribution obtained by iterating (50)

and (53) 
 times with initial condition P
�

±(h|h) = P(0)(h)δ(h ∓ ∞). This corresponds
indeed to the initialization we used in the population dynamics algorithm. It follows
from the arguments in [26] that this is the correct initialization, in the sense described
above. Further, under the usual assumptions of the cavity method and for α < αc(k), the
quantity q1(
) − q0 plotted in figures 2 and 7 coincides with the correlation function (19)
in the large N limit.

5.2. m = 0: survey propagation and the associated internal entropy

We turn now to the second particular case for which a simplified treatment of the 1RSB
formalism is possible, namely at m = 0.

To begin with, let us consider the structure of the distributions P (h) (resp. Q(u)) in
the support of P(1) (resp. Q(1)) for an arbitrary value of m. A moment of thought reveals
the possibility of ‘hard fields’ h = ±∞ that strictly constrains a variable to take the same
value in all configurations of a cluster of solutions. We can take care explicitly of this
possibility by denoting

P (h) = x−δ(h + ∞) + x+δ(h −∞) + (1 − x− − x+)P̃ (h),

Q(u) = y δ(u −∞) + (1 − y)Q̃(u),
(59)

where P̃ and Q̃ have their support on finite values of the fields, that shall be called ‘soft’
or ‘evanescent’. Rewriting the right-hand side of (31) with these notations yields

Q(•) d
=

1

Z4[P1, . . . , Pk−1]

[(k−1∏

i=1

x−
i

)
δ(• −∞) + 2m

(
1 −

k−1∏

i=1

(1 − x+
i )

)
δ(•)

+
∑

|I|≥1

∏

i∈I

(1 − x+
i − x−

i )
∏

i/∈I

x−
i

∫ ∏

i∈I

dP̃i(hi)(1 + e−2•)m

× δ

(
• +

1

2
log

(
1 −

∏

i∈I

1 − tanh hi

2

))]
, (60)

where the summation on I is over the non-empty subsets of {1, . . . , k − 1}.
To achieve the same task for equation (32) it is advisable to introduce some more

compact notations:

πσ =

lσ∏

i=1

(1 − yσ
i ), Sσ =

lσ∏

i=1

(1 + tanh uσ
i ), Tσ =

lσ∏

i=1

(1 − tanh uσ
i ), (61)
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in terms of which we have, for instance, z3 = S+T− +T+S−. We shall also denote E[•] the

average over the u±
i drawn from the Q±

i , and Ẽ similarly using Q̃±
i . We then obtain

P (•) d
=

1

Z3[{Q+
i }, {Q−

i }]

[
π+Ẽ[T m

+ ]
(
E[Sm

− ] − π−Ẽ[Sm
− ]

)
δ(• + ∞)

+ π−Ẽ[T m
− ]

(
E[Sm

+ ] − π+Ẽ[Sm
+ ]

)
δ(• −∞)

+ π+π−

∫ l+∏

i=1

dQ̃+
i (u+

i )

l−∏

i=1

dQ̃−
i (u−

i )

× δ

(
• −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)
(S+T− + T+S−)m

]
. (62)

Analogously, the replicated free-entropy Φ(m) and its derivative can be rewritten by
making explicit the distinction between hard and soft fields.

Consider now the previous equations with m = 0. As we have explicitly removed all
the contradictory terms which had a strictly vanishing reweighting factor in the original
relations (31) and (32), all the terms raised to the power m in equations (60) and (62)
are strictly positive, hence these factors go to 1 when m vanishes. Two important
consequences are to be underlined: the normalization factors Z3 and Z4 do not depend on

the evanescent distributions P̃ , Q̃. In fact, Z3 = π+ + π− − π+π− and Z4 = 1. Moreover
the equations on the intensity of the hard fields peaks decouple from the evanescent part
when m goes to 0 (60) and (62) yielding for them

y
d
=

k−1∏

i=1

x−
i , (x+, x−)

d
=

(
(1 − π+)π−

π+ + π− − π+π−
,

(1 − π−)π+

π+ + π− − π+π−

)
, (63)

which are nothing other than the probabilistic form of the survey propagation
equations [12]. For future use we denote QSP(y) and PSP(x+, x−) the distributions of
these random variables. The complexity at m = 0 is Σ(m = 0) = Φ(m = 0) and can then
be expressed from equation (34) as

Σ(m = 0) = Φ(m = 0) = −αkE[log(1 − x−y)] + αE

[
log

(
1 −

k∏

i=1

x−
i

)]

+ E[log(π+ + π− − π+π−)], (64)

where the average is done with respect to PSP and QSP.
By focusing on the intensity of the hard fields this ’energetic’ version of the cavity

method [10, 12] lost the information contained in the evanescent field distributions P̃ , Q̃,
which is necessary to obtain the internal entropy of the states, Φ′(m = 0). This quantity

can, however, be obtained in a rather simple way. We shall indeed define Q̃(u|y) as the
average of the evanescent part of Q drawn from Q(1), conditioned on the value of the

hard field delta peak, and similarly P̃ (h|x+, x−). As the right-hand sides of (60) and (62)
are linear functionals of these evanescent distributions when m = 0, closed equations
on this conditional average can be obtained. We shall write them in terms of the joint
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distributions Q̃(u, y) = Q̃(u|y)QSP(y) and P̃ (h, x+, x−) = P̃ (h|x+, x−)PSP(x+, x−):

Q̃(u, y) =

∫ k−1∏

i=1

dhi dx+
i dx−

i P̃ (hi, x
+
i , x−

i )δ

(
y −

k−1∏

i=1

x−
i

)[
1 −

∏k−1
i=1 (1 − x+

i )

1 − y
δ(u)

+

∑k−1
p=1 ( k − 1

p )
∏p

i=1(1 − x+
i − x−

i )
∏k−1

i=p+1 x−
i

1 − y

× δ

(
u +

1

2
log

(
1 −

p∏

i=1

1 − tanhhi

2

))]
, (65)

P̃ (h, x+, x−) =
∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

du+
i dy+

i Q̃(u+
i , y+

i )

l−∏

i=1

du−
i dy−

i Q̃(u−
i , y−

i )

× δ

(
x+ − (1 − π+)π−

π+ + π− − π+π−

)
δ

(
x− − (1 − π−)π+

π+ + π− − π+π−

)

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)
. (66)

A solution of these equations can be obtained through a simple population dynamics

algorithm, encoding Q̃(u, y) as a population of couples {(ui, yi)}Ni=1 and P̃ (h, x+, x−) as
{(hi, x

+
i , x−

i )}Ni=1. The update rules of the algorithm can be deduced from (65) and (66):
a new element (h, x+, x−) is obtained drawing two Poisson random variables l± of mean
αk/2, l+ + l− elements of the population {(ui, yi)} and combining them according to (66).
The translation of (65) is only slightly more complicated. After extracting k− 1 elements
at random from the population {(hi, x

+
i , x−

i )} one obtains y as the product of the k − 1
elements x−. One then draws a configuration (s1, . . . , sk−1) ∈ {−1, 0, +1}k−1, each ‘spin’
si being ±1 with probability x±

i and 0 with probability 1 − x+
i − x−

i , conditional on
(s1, . . . , sk−1) �= (−1, . . . ,−1). If at least one of the si is equal to +1 the new value of u
is taken to 0, otherwise u = − log(1 −

∏
(1 − tanh hi)/2)/2, the product being taken on

the indices i such that σi = 0.
The internal entropy of the m = 0 pure states can be obtained from the solution of

these equations, simplifying equation (39) into

φint(m = 0)

= −αkE

[
x+y log 2 + (1 − y)(x− log(1 − tanh u) + x+ log(1 + tanh u))

1 − x−y

]

− αkE

[
(1 − x+ − x−)(y log(1 + tanh h) + (1 − y) log(1 + tanh h tanhu))

1 − x−y

]

+ αE

[
k∑

p=1

( k
p )

p∏

i=1

(1 − x+
i − x−

i )

k∏

i=p+1

x−
i log

(
1 −

p∏

i=1

1 − tanhhi

2

)]

+ E [π+π− log(S+T− + T+S−) + π−(1 − π+) log(S+T−) + π+(1 − π−) log(T+S−)] ,

(67)
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where the expectation is over independent copies of elements drawn from P̃ (h, x+, x−)

and Q̃(u, y), and in the last line (where we used the shorthand notations defined in (61))
over the Poissonian random variables l±. This quantity was plotted for k = 4 in figure 3.

Let us emphasize the major numerical simplification with respect to the general 1RSB
equations: we have to deal here with populations of couples (or triplets) of fields, not
populations of populations. Yet we manage to extract not only the complexity, which
was the one computed in the probabilistic version of survey propagation, but also the
associated internal entropy.

6. Large k results

To complement the numerical resolution of the 1RSB equations, we present in this section
analytic expansions of the various thresholds and thermodynamic quantities for large k.
Some technical details of these computations are deferred to appendix B.

6.1. Dynamical transition regime

A non-trivial solution of the 1RSB equations appears in the regime defined by

αd =
2k

k

[
log k + log log k + γ + O

(
log log k

log k

)]
, (68)

with γ finite as k → ∞. In this regime the 1RSB distributional order parameters P(1), Q(1)

are supported on cavity field distributions of the form (59) with P̃ ( · ), Q̃( · ) supported
on finite fields. The weights of the hard fields are deterministic to leading order, with

x± =
1

2
− δ(γ, m)

2k log k
+ O

(
1

k(log k)2

)
,

y =
1

2k
21−m

{
1 − δ(γ, m)

log k
+ O

(
1

(log k)2

)}
.

(69)

A set of coupled equations can also be written for the averages of P̃ , Q̃, in terms of which
one computes a function Λ(δ, m) that finally determines δ(γ, m) as a function of γ by
solving the following equation:

γ = δ + log
1

2δ
+ Λ(δ, m) . (70)

Both the expressions for Λ(δ, m) and the equations for the averages of P̃ , Q̃ are quite
involved and we report them in appendix B. In any case the right-hand side of
equation (70) diverges for δ → 0 and δ → ∞. As a consequence a pair of solutions15

appears for γ ≥ γd(m), where γd(m) is obtained by minimizing the above expression over
δ. For m = 0, 1 the formulas simplify yielding Λ(δ, m = 0) = 0 and Λ(δ, m = 1) = log 2
independently of δ, whence the minimum takes place at δ = 1 for these two values of m.

To summarize this yields the following estimate for the dynamical threshold:

αd(k, m) =
2k

k

[
log k + log log k + γd(m) + O

(
log log k

log k

)]
, (71)

15 Consistency arguments imply that the one with smaller δ must be selected.
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with γd(m = 1) = 1 and γd(m = 0) = 1 − log 2. Notice that the transition at m = 1
occurs slightly after the one at m = 0, in agreement with what is found numerically for
small values of k ≥ 4.

6.2. Intermediate regime

Consider now the limit k → ∞ with α = 2kα̂ for some fixed α̂ > 0. On this scale the
SAT/UNSAT phase transition occurs at α̂s = log 2 + O(2−k) [6, 12]. We shall therefore
assume α̂ ∈ (0, log 2). In this regime it is convenient to use again the decomposition (59),

with at leading order P̃ (h) = δ(h) and x± = (1/2)(1 − x̂±e−α̂k). From this ansatz one
finds that x̂± = 2m−1; then it follows that the 1RSB potential is asymptotically

Φ(m) = log 2 − α̂ + e−α̂k(2m−1 − 1) + O(2−k). (72)

By derivation of this expression one obtains the internal entropy

φint(m) = e−α̂k2m−1 log 2 + O(2−k), (73)

and defining a reduced quantity σ by φint = e−α̂k(log 2)σ, we get the complexity function
explicitly:

Σ(σ) = log 2 − α̂ + e−α̂kΣ̃(σ) + O(2−k), Σ̃(σ) = σ(1 − log 2) − σ log σ − 1. (74)

Notice that, for large k, the internal entropy of states is exponentially smaller (in k)
than the complexity. Further, to leading order, the complexity vanishes at α̂ = log 2,
independently on m.

6.3. Condensation regime

In order to resolve the separation between the condensation and satisfiability phase
transitions we must let k → ∞ with α � 2k log 2. More precisely, we define α = 2k log 2−ζ
and take k → ∞ with ζ fixed. Again, we use the ansatz (59) with, at leading order

P̃ (h) = δ(h) and x± = (1/2)(1 − x̂±2−k).
We then get the expansion of the potential

Φ(m) =
1

2k
{ζ − ζs + (2m − 1)/2} + O(2−2k) , (75)

with ζs ≡ 1
2
(1+ log 2). The entropy can be determined by deriving the above with respect

to m; defining the reduced entropy density through φint = 2−k(log 2)σ, the complexity is
in this regime

Σ(σ) =
1

2k

{
ζ − ζs + σ(1 − log 2) − σ log σ − 1

2

}
+ O(2−2k). (76)

The condensation and satisfiability transition are located by determining ζ such that
Σ(m) = 0 for (respectively) m = 1 and 0. We get

αc(k) = 2k log 2 − 3 log 2

2
+ O(2−k), αs(k) = 2k log 2 − 1 + log 2

2
+ O(2−k). (77)

The thermodynamic value ms(ζ) of the Parisi parameter between these two thresholds is
obtained by minimizing Φ(m)/m. At the order of the expression of Φ(m) given above
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Figure 11. Condensation threshold in reduced units, 2−kαc(k). Symbols:
numerical determination by population dynamics algorithm, see table 1. Lines:
analytical large-k expansion, truncated at the three first orders, see equation (80).

ms(ζ) is a solution of

ζ − ζs = 2m−1(2−m − 1 + m log 2) . (78)

In particular one finds close to the satisfiability transition

ms(ζ) � 2

log 2

√
ζ − ζs. (79)

A systematic expansion in powers of 2−k of the satisfiability threshold αs(k) has been
performed up to seventh order in [12]. The corresponding expansion for the condensation
threshold αc(k) is slightly more difficult, because of the necessary control of the corrections
to the evanescent field distributions. We thus contented ourselves with the computation
of the next order in the expansion:

αc(k) = 2k log 2 − 3 log 2

2

−
[
6(log 2)(log 3) − 7(log 2)2

4
k2 +

5(log 2)2 − 3(log 2)(log 3)

2
k − 5 log 2

12

]
1

2k

+ O

(
poly(k)

1

22k

)
. (80)

This expression is compared in figure 11 with the numerical results for small k.

7. Conclusion

The set of solutions of random k-satisfiability formulas exhibits a surprisingly rich
structure that has been explored in a series of statistical mechanics studies [8]–[10]. Either
implicitly or explicitly, these studies are based on defining a probability distribution over
the solutions, and then analyzing its properties. While the most natural choice is the
uniform measure, the authors of [10] achieved a great simplification (and a wealth of
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exact results) by implicitly weighting each solution inversely to the size of the ‘cluster’ it
belongs to. Since clusters sizes are exponential in the number of variables, and have large
deviations, this amounts to focusing on an exponentially small subset of solutions.

In this paper we resumed the (technically more challenging) task of studying the
uniform measure and obtained the first complete phase diagram (including replica
symmetry breaking) in this setting. While we confirmed several of the predictions in [10],
our analysis unveiled a number of new phenomena:

(1) There exists a critical value αd(k) of the clause density that can be characterized
in several equivalent ways: (i) divergence of autocorrelation time under Glauber
dynamics; (ii) divergence of point-to-set correlation length; (iii) appearance of
bottlenecks between ‘sizable’ subsets of solutions. The value of αd(k) is bigger than
the value obtained with the method of [10] (except for k = 3, where it is smaller).

(2) While αd(k) does not correspond to an actual thermodynamic phase transition, such
a phase transition takes place at a second threshold αc(k) < αs(k) (αs(k) being the
satisfiability threshold). This manifests in two-point correlations, as well as in the
overlap distribution.

(3) The phase diagram is qualitatively different for k ≥ 4 and k = 3. The latter value
has been most commonly used in numerical simulations. This difference had not
been recognized before because it does not show up in the behavior of the maximal
complexity Σ(m = 0) investigated up to now.

A number of research directions are suggested by this refined understanding:

(a) We kept ourselves to 1RSB: it would be extremely interesting to investigate whether
more complex hierarchical (FRSB) structures can arise in the set of solutions. A first
step in this direction would be to analyze the stability [50]–[52] of the 1RSB ansatz,
in particular to clarify our numerical findings for k = 3. For k ≥ 4 we believe that
our determination of αd and αc is not affected by FRSB, yet it might be that the
pure states, for some values of their internal entropy, are to be described by an FRSB
structure.

(b) The dynamical threshold αd(k) is expected to affect algorithms that satisfy
detailed balance with respect to the uniform measure over solutions (or its positive
temperature version). Let us stress that it is likely not to have any relation to more
general local search algorithms [53]–[55]. It is an open problem to generalize the static
computations performed here to obtain meaningful predictions in those cases.

(c) Finally, the discovery of the condensation phase transition at αc(k) suggests that
belief propagation might be effective in computing marginals up to this threshold, as
the average of the 1RSB equations with m = 1 corresponds to BP. The possible use
of this information in constructing solutions is discussed in [56]–[59].
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Appendix A. On the numerical resolution of the 1RSB cavity equations

In this section we discuss some issues related to the numerical resolution of equations (31)
and (32). As already mentioned, the 1RSB order parameter P(1)[P ] is approximated by
a sample of N populations, each composed of N ′ elements hi,j, i ∈ [N ], j ∈ [N ′]. The
numerical results presented in this work have been obtained with N = 104 and N ′ = 103.

The solution to the 1RSB cavity equations is found by an iterative procedure: starting
from a ‘good’ initial guess for the fixed point solution, we iterate a sampled version
of equations (31) and (32). After some iterations the sample of populations converges

to a stationary state with fluctuations of order O(1/
√
N , 1/

√
N ′). Convergence to the

stationary regime is usually fast and may take around 102 iterations in the worst cases
we encountered. Once in the stationary regime, we keep iterating for at least 104 steps.
Meanwhile we take averages (over the populations and over the time evolution) of the
quantities of interest. This considerably reduces statistical errors.

Our actual numerical implementation makes use of two transformations with respect
to equations (31) and (32). First, we make a change of variables into

ϕ = e−2u, ψ =
1 + tanh(h)

2
, (A.1)

both taking values in [0, 1] (note that the variable u is defined non-negative, see
the definition of the function f(h1, . . . , hk−1) in equation (23)). Moreover we exploit
the fact that the reweighting term z4(h1, . . . , hk−1) in equation (31) is a function of
u = f(h1, . . . , hk−1) (cf. equation (33)). This allows us to transfer all the effects of

reweighting to the other equation. Denoting Q̂(ϕ) and P̂ (ψ) the new distributions, these
two transformations lead to

Q̂(•) d
=

∫ k−1∏

i=1

dP̂i(ψi) δ

[
• − 1 +

∏

i

(1 − ψi)

]
, (A.2)

P̂ (•) d
=

1

Z

∫ l+∏

i=1

dQ̂+
i (ϕ+

i )

l−∏

i=1

dQ̂−
i (ϕ−

i ) δ

[
• −

∏
i ϕ

−
i∏

i ϕ
+
i +

∏
i ϕ

−
i

](
∏

i

ϕ+
i +

∏

i

ϕ−
i

)m

, (A.3)

where Z in the last equation is obtained by normalization.
One delicate issue in solving this kind of equation is how to represent faithfully the

left-hand side of equation (A.3) by a sample of N ′ representative elements of P̂ , because
of the reweighting term (

∏
i ϕ

+
i +

∏
i ϕ

−
i )m. A possible solution [25] consists in first

generating a larger number, say 5N ′, of outgoing fields, storing them along with the
associated weights, and then performing a resampling step to extract N ′ elements from
this intermediate population. This approach has the advantage of having complexity

independent of the distributions Q̂i. Unhappily, if the weights are strongly concentrated
on a small subset of the 5N ′ fields, the resampled population will have many copies of
these elements. This leads to a deterioration of the sample.

We adopted a different strategy whose running time depends on how strong is
the reweighting. For m ≥ 0, we generate fields sequentially and include them in the
new population with probability proportional to the reweighting factor (divided by the
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normalization factor 2m). This procedure becomes slower when m grows, but it ensures
that no repetitions appear in the new sample.

Solving the equations for m < 0 is instead much easier and no particular care is
needed. For the sake of simplicity we have used the same algorithm as for m ≥ 0 (which
now produces many repetitions in the populations) and we have simply checked the validity
of our results by changing the number and size of populations.

As explained in section 5.2 the cavity field distributions can have a positive weight
on ‘hard’ fields, i.e. on fields that constrain a variable to take either value +1 or −1 in
all solutions of the cluster. This corresponds to ϕ = 0, or ψ ∈ {0, 1}. This would show
up into a positive fraction of the sample taking value, say, ϕ = 0, thus leading to an
inefficient representation.

In order to circumvent this problem, we kept track explicitly of the weights on ϕ = 0
and ψ ∈ {0, 1}, in analogy with equations (60) and (62). This also allows us to locate
more precisely the appearance of a positive fraction of hard fields in the distributions,
as discussed in section 4.3. There is unfortunately one drawback to this approach.

Consider equation (A.3) and suppose that all the distributions Q̂ of the right-hand sides
are supported on ϕ±

i ∈ (0, 1]. By definition the fields ψ thus generated are also strictly
positive. However, the degrees l± are of order αk (i.e. around 40 for 4-SAT in the 1RSB
regime). As a consequence, it may happen that the product of the l− fields ϕ−

i is smaller
than the smallest number in the computer representation used (using 64 bits and the
denormalized floating point notation this limit is roughly ψmin ≈ 5× 10−324). How should
one treat such cases? We have adopted the solution of ignoring, that is not including it in
the population, any number below ψmin. This solution is equivalent to saying that we are

describing with a finite population of numbers the distribution P̂ (ψ) not on the domain
ψ ∈ (0, 1], but on the domain ψ ∈ (ψmin, 1].

A different solution could be to convert all the numbers smaller than ψmin to zero. We
have tried this procedure, but it seems to be unstable, and to introduce systematic errors.
In particular, one obtains a positive weight for ψ = 0, even for values of the parameters
for which this is inconsistent.

The last point we would like to discuss is the problem of how to initialize the
population dynamics algorithm. It is clear that an iterative procedure does, in general,
lead to different solutions depending on the starting point of the iterations. For instance,
the RS solution, where the distributions P (h) in P(1) are concentrated on a single value
of h, is always a fixed point of the 1RSB equations. In the case m = 1, the interpretation
in terms of tree reconstruction [26] leads to a clear prescription for this initialization, as
explained in more detail in section 5.1. One can follow the same procedure for other values
of m, namely initialize the populations with essentially only hard fields. This is crucial
in particular for k = 3, where softer initial conditions lead to an unphysical fixed point,
cf. appendix C.

Appendix B. Large k analysis: some technical details

In this appendix we provide the complete formulas for the dynamical transition regime of
section 6.1. To leading order one can write a set of coupled equations for the average of
P̃ ( · ), Q̃( · ) over the 1RSB order parameters P(1), Q(1). With a slight abuse of notation

doi:10.1088/1742-5468/2008/04/P04004 36

http://dx.doi.org/10.1088/1742-5468/2008/04/P04004


J.S
tat.M

ech.
(2008)

P
04004

Clusters of solutions and replica symmetry breaking in random k-satisfiability

we shall keep denoting by P̃ , Q̃ such averages. In terms of this quantities we have

Λ(δ, m) = − log

{∫
dP̃ (h)

(
1 + tanhh

2

)m}
, (B.1)

where the dependence on δ is through P̃ . Notice that Λ(δ, m = 0) = 0 independently of

P̃ . For m = 1 one can use the fact that, by symmetry
∫

dP̃ (h) (tanhh) = 0, to deduce
Λ(δ, m = 1) = log 2.

For m �= 0, 1 one has to determine the distributions P̃ and Q̃. It turns out that

Q̃(u) =

(
1 − w

2k log k

)
δ(u) +

w

2k log k
Q̃′(u) ,

w ≡ 22−mδ

∫
dP̃ (h)

(
3 + tanhh

2

)m

.

(B.2)

The distributions P̃ , Q̃′ are solutions of the coupled equations

Q̃′(u) =
22−mδ

w

∫
dP̃ (h)

(
3 + tanh h

2

)m

δ

(
u − 1

2
log(1 + e−2h)

)
, (B.3)

P̃ (h) =
1

Z
El±

∫ l+∏

i=1

dQ̃′(u+
i )

∫ l−∏

i=1

dQ̃′(u−
i ) z3(u

+
1 , . . . , u+

l+
, u−

1 , . . . , u−
l−

)m

× δ

(
h −

l+∑

i=1

u+
i +

l−∑

i=1

u−
i

)
, (B.4)

where in the second equation Z is a normalizing factor and l± are two independent Poisson
random variables of mean w/2.

Appendix C. Non-uniqueness of solutions of the 1RSB equations for k = 3

This appendix provides further details on the numerical solution of the 1RSB equations
for k = 3. A difficulty that arises in this case is the presence, for some values of α and
m, of at least two distinct non-trivial solutions of the 1RSB equations (this has been
already noticed in [16] for α = 4.2, and in [15] for the related coloring problem). As
a consequence the initial conditions of the iterative resolution play an important role in
selecting the fixed point that shall be reached.

One can justify the existence of multiple solutions as follows. As mentioned in the
main text, the continuous dynamical transition at αd ≈ 3.86 corresponds to a local
instability of the RS solution with respect to 1RSB perturbations. It is important to
underline that this instability condition is independent of the value of m, that is at αd

a new solution of the 1RSB equations should grow continuously away from the RS one,
for all values of m. This is illustrated in figure C.1, where the overlaps q0 and q1 meet
at αd for various values of m. By continuity these solutions do not contain hard fields in
the neighborhood of αd. In contrast it is known since [10] that another solution of the
m = 0 equations, with a finite weight on hard fields, arises discontinuously at α ≈ 3.92.
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Figure C.1. Intra- and inter-state overlap, q0 and q1, for k = 3 and some values
of the Parisi parameter m. Data below (resp. above) the RS line are for q0

(resp. q1). Full (resp. open) symbols refer to data measured while increasing
(resp. decreasing) α.

For larger values of α these two solutions thus coexist16. A natural conjecture is that two
solutions also coexist for m �= 0. The iterative population dynamics algorithm converges
to one of them depending on the initialization (more precisely, on the fraction of hard
fields in the initial populations).

Our data suggest that the interval of α in which the two solutions coexist shrinks when
m grows from 0. For instance, in figure C.1 one clearly see two branches for m = 0.2 at
high enough values of α, whereas for m = 0.6 the two curves obtained by increasing and
decreasing α at fixed m are superimposed within numerical precision.

It remains to understand which, if any, of these solutions is the correct one. In
principle one should test their stability with respect to higher level of replica symmetry
breaking [50]–[52]. However, it is an extremely demanding numerical task that we did
not undertake. A simpler consistency argument can be invoked by computing the internal
entropy of the pure states. This should be an increasing function of m. We can see in the
curves of figure C.2 that this condition is not respected for all the values of α and m (full
symbols refer to consistent solutions, while open symbols are for inconsistent ones). For
values of α smaller than roughly 4.15 we are not able to find a consistent solution in the
whole range of m ∈ [0, 1] (a consistent solution exists only for m large enough). While for
α roughly larger than 4.15 two solutions coexist at small values of m and the consistent

16 Let us signal a peculiarity of the m = 0 ‘soft’ solution. It is easy to realize from equations (60) and (62) that
the average of the distributions P (h) and Q(u) in this solution verify the RS equations. As a consequence its
intra-overlap q1 coincides with the RS overlap, its complexity vanishes and its internal entropy equals the RS one.
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Figure C.2. The internal entropy should be a non-decreasing function of m if
the solution is consistent. Filled (resp. empty) symbols refer to solutions with
∂mφ > 0 (resp. ∂mφ < 0), for k = 3.

Figure C.3. The entropic complexity Σ(φ) for k = 3 and α = 4.2. The two
different branches correspond to the consistent (full line) and inconsistent solution
(dashed line).
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one is the one with more hard fields. We also notice that this inconsistency is accompanied
by the decreasing of the inter-overlap q0 with α: in other words, we empirically find that
the quantities ∂mφ and ∂αq0 always have the same sign. This observation makes it easier
to locate in figure C.1 consistent solutions (those with q0 increasing with α). In order to
make connection with previous studies where consistent and inconsistent solutions were
found [9, 15, 34] we plot in figure C.3 the entropic complexity curve for α = 4.2: the full
(resp. dashed) curve corresponds to the consistent (resp. inconsistent) branch.
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[38] Mézard M, Ricci-Tersenghi F and Zecchina R, 2003 J. Stat. Phys. 111 505
[39] Cocco S, Dubois O, Mandler J and Monasson R, 2003 Phys. Rev. Lett. 90 047205
[40] Janson S, Luczak T and Rucinski A, 2000 Random Graphs (New York: Wiley)
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