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Abstract

The rating of items based on pairwise comparisons has been a topic of statistical
investigation for many decades. Numerous approaches have been proposed. One of
the best known is the Bradley-Terry model. This paper seeks to assemble and explain
a variety of motivations for its use. Some are based on principles or on maximising an
objective function; others are derived from well-known statistical models, or stylised
game scenarios. They include both examples well-known in the literature as well as
what are believed to be novel presentations.

1 Introduction

The first conference that the lead author attended as a PhD student was an Ameri-
can sports statistics conference. He presented a poster related to the Bradley-Terry
model. As a retrodictive model on rugby union in a sea of American sports predic-
tions, it felt a little out of place. But a kind attendee took pity on him and decided to
engage him with a question. She asked, “Why would I choose Bradley-Terry rather
than the Thurstone model?” (by which he took her to mean what is more commonly
referred to as the Thurstone-Mosteller model). He flummered a vague response in-
volving analytic niceness and simplicity — he suspects Occam’s razor even got a
mention. She looked suitably unconvinced. It is to be hoped that this paper repre-
sents a more ordered response to the conference interlocutor and an aggregation of,
as David (1988, p.13) puts it in his canonical survey of pairwise comparison methods,
“the many routes to the ubiquitous Bradley-Terry model.”
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Thus, the main original contribution of the work is in aggregating the motivations
for the Bradley-Terry model, or as Bradley (1976) refers to them, the ‘bases for model
formulation’. In collating these motivations, we hope that the work provides a useful
resource to those encountering the model for the first time and some new perspectives
for those more familiar with it. It may also complement other works, such as David
(1988),Cattelan (2012), Vojnović (2015), or Wu et al. (2022) that provide alternative
helpful summary perspectives on the model. The work takes in a diverse scope of
motivating ideas including likelihood and entropy maximisation, psychological choice
and sensation models, distance minimisation, a prominent Markov chain Monte Carlo
method, other well-known rating models such as PageRank and the RPI of American
college sports, sudden-death play-offs, pub pool norms and the British playground
game of conkers. The aggregation of these motivations serves to demonstrate the
broad appeal of the Bradley-Terry model in many settings.

The paper also offers a number of novelties including: a more extensive explicit
discussion of the Bradley-Terry model in the context of an exponential family of dis-
tributions than has appeared previously, which provides a uniting theme to a number
of the more notable motivations; a formalisation of perhaps the most intuitive moti-
vation for the model, by proposing an explicit measure for the simplicity of a model
in the pairwise comparison scenario and showing that, under plausible constraints,
Bradley-Terry is the model that maximises this measure; and a demonstration of
how the ideas behind the rating method of Wei (1952) and Kendall (1955) and of the
Ratings Percentage Index (RPI) can be related to the Bradley-Terry model through
Perron-Frobenius Theorem.

The scenario under consideration in this paper is one where there is a desire to
create a ranking of items based on the observation of a set of binary-outcome pairwise
comparisons. One popular approach to ranking is to determine a uni-dimensional
rating, and then order items by their ratings. Statistical models such as Bradley-
Terry or Thurstone-Mosteller achieve this by defining the probability of a preference
for alternative i over alternative j in a pairwise comparison independently from other
preferences conditional on the strengths of the items. In the Bradley-Terry model
the probability is defined as

pij =
πi

πi + πj

,

where πi is a positive-valued parameter that may be interpreted as a rating of alter-
native i, with a higher rating indicating greater ‘strength’ or ‘worth’.

This results in a model that generates independent Binomial realisations be-
tween pairs of items. Therefore, with a logit transformation of the above, one can
equivalently state the model as a member of the class of generalised linear models
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(McCullagh and Nelder, 1989) with

F (pij) = λi − λj,

where λi = log(πi) is a real-valued parameter indicating the strength of i, and F
is taken as the logit function. The Thurstone-Mosteller model (Thurstone, 1927a;
Mosteller, 1951), about which the interlocutor asked, is derived from taking F to be
the probit function instead. In practice, as Stern (1992) notes, the models are often
empirically very similar.

The Bradley-Terry model has formed the basis for many models and analyses in
many contexts over time including, for example, those for journal citations (Stigler,
1994), college sports (Wobus, 2007), animal behavior (Stuart-Fox et al., 2006), risk
analysis (Merrick et al., 2002), wine tasting (Oberfeld et al., 2009), university rank-
ing (Dittrich et al., 1998), font selection (O’Donovan et al., 2014), educational assess-
ment (Pollitt, 2012b), locational deprivation (Seymour et al., 2022) and of course in
chess, which was the subject of the original work by Zermelo (1928), as well as being
the subject of the popular closely-related ranking method proposed by Elo (1978),
which is widely known and is still in use in the sport today.

Originally documented by Zermelo (1928), the Bradley-Terry model took the
name by which it came to be commonly known when Bradley and Terry (1952) inde-
pendently rediscovered it. Following the work of Thurstone (1927a,b,c) and Zermelo
(1928), paired comparison methods saw little development for the best part of a
quarter of a century until they became an active area of investigation in the 1950s
and 60s. Much of this work took place in the context of the psychological litera-
ture, with Luce’s Choice Axiom (Luce, 1959) a particularly notable contribution,
leading to the model sometimes being referred to as the Bradley-Terry-Luce (BTL)
model. A number of these works showed how the Bradley-Terry model could be
derived based on plausible axioms or desirable model features (Good, 1955; Luce,
1959; Bühlmann and Huber, 1963; Luce and Suppes, 1965). Towards the end of this
period, Thompson and Singh (1967) demonstrated that a consideration of extreme
value distributions within a discriminal process leads to the Bradley-Terry model, and
Daniels (1969), in a highly original paper, noted the links between the Bradley-Terry
model and what might now be recognised as an undamped PageRank (Page et al.,
1999).

For further details of the development of the model up to this point David (1988)
provides a thorough account of the paired comparison literature more generally,
Bradley (1976) and Davidson and Farquhar (1976) give interesting perspectives on
the literature related to the Bradley-Terry model at the end of this period, and
Glickman (2013) is a highly readable account of the history, particularly as it pertains
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to the contribution of Zermelo.
The next significant contributions to motivating the Bradley-Terry model came

from Henery (1986) and Joe (1988) in identifying the model as the result of max-
imising an objective function subject to a suitable constraint. The later work (Joe,
1988) seems to have been unaware of Henery (1986), but provides a more complete
presentation. As well as considering the Bradley-Terry model as a maximum entropy
model and noting its relationship to an appropriate sufficient statistic, Joe (1988)
also explicitly notes the link to a maximum likelihood derivation. A number of moti-
vations in this paper are based on game-style scenarios. Perhaps the most interesting
paper related to this also comes from this period (Stern, 1990). In the context of the
purpose of this work, McCullagh (1993) provides a particularly pertinent contribu-
tion at the end of this period, demonstrating how the Bradley-Terry model can be
motivated from a geometric perspective, as well as how, under certain conditions, it
is essentially equivalent to two other well-known models for permutations and from
directional statistics respectively.

More recently Slutzki and Volij (2006), Negahban et al. (2012), Maystre and Grossglauser
(2015) and Selby (2020) provide more detailed accounts of the link between the
Bradley-Terry model and the limiting distribution of a Markov Chain, and thereby
to an undamped PageRank. The Social Choice literature provides an interesting
perspective on this relationship, building on the approach of Rubinstein (1980) to
provide axiomatic justifications for ranking methods. Slutzki and Volij (2006) is
perhaps the most notable example in the present context.

The paper proceeds by dividing the motivations up into six types: axiomatic;
objective function maximisation; discriminal processes; standard models; game sce-
narios; and quasi-symmetry and consistent estimators. These categorisations are
somewhat arbitrary, and linkages exist across them which will be highlighted, but
for the present purpose they provide a useful means to order the work. It begins
with Section 2, the discussion of axiomatic approaches, which takes as a starting
point features that one might reasonably desire of a pairwise comparison model. A
number are very closely linked and might even be thought of as restatements of the
same idea, but the intuitions behind them differ sufficiently, as evidenced by their
separate appearances in the literature, such that they are presented separately here.

In Section 3, the selection of a rating model is cast in the familiar framework of
a constrained optimisation, where an objective function is maximised or minimised
subject to some plausible constraint. Section 4 takes the context of Thurstone’s
discriminal processes, and discusses the distributions that lead to a Bradley-Terry
model under this set-up, and how they might be motivated. In Section 5, it is noted
how the Bradley-Terry model is apparent in other well-known statistical models,
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as a conditional form of Rasch, Mallows φ, von Mises-Fisher, hazard and network
models. In Section 6, some examples are introduced that derive from realistic game
scenarios picking up on the highly intuitive nature of the model. In Section 7, the
quasi-symmetry model is discussed, and is used to show how the often intuitive
approaches that underlie a number of other popular rating methods can be related
to Bradley-Terry and produce consistent estimators for the Bradley-Terry strength
parameters. This also leads to noting the link to Barker’s algorithm, a popular
Markov chain Monte Carlo method.

In each subsection, the reference given in the title is that of the earliest work
linking the approach explicitly to the Bradley-Terry model, and the subsections are
ordered chronologically by these. The sections are ordered with statistical interest
and chronology in mind.

In Section 8, the natural questions of how these motivations are linked and the
usefulness of motivating the model from diverse perspectives is addressed. The link-
ages are established with an examination of the Bradley-Terry model in the context
of an exponential family of distributions. In demonstrating the usefulness of the
approach, two illustrative examples are provided where it may be natural to use the
model based on one motivation, but its application can be aided by considering it
through another motivation.

Throughout the paper, pij will be the probability of i beating j or for a preference
for i over j given a comparison between i and j, where i, j ∈ T and T is of size n. The
n× n data matrix C = [cij ] will be the ‘competition’ matrix of preferences or wins,
such that cij is the number of times i was preferred over j. M = C+CT is defined as
the symmetric matrix wheremij is the number of comparisons, or ‘matches’ in British
sports parlance, between i and j. For the avoidance of doubt, no item is compared
with itself, so that cii = mii = 0 for all i. The observed wins for a team i is denoted
by wi =

∑

j cij . C is taken to be irreducible, that is, as described by Ford Jr (1957,
p.29): “[I]n every possible partition of the objects into two non-empty subsets, some
object in the second set has been preferred at least once to some object in the first
set.” This ensures that strength estimates are finite. It is not assumed that there
are the same number of comparisons between any two items, nor indeed that the
number of comparisons between any two items is non-zero. Shortened summation
notation is used such that

∑

i,j is taken to be
∑n

i=1

∑n

j=1 and
∑

i<j is taken to be
∑n

j=1

∑j−1
i=1 . Where appropriate, the language of sports — contests, scores, teams,

wins — is used to aid in providing clear interpretability, though the motivations may
be analogised outside this context.
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2 Axiomatic motivations

It is sometimes possible to fix properties that we would desire of a model and use
them to derive a unique model. In this section, we consider such properties that lead
to the Bradley-Terry model.

2.1 Transitivity of odds (Good, 1955)

Consider four teams i, j, k, l. Suppose that the probability that j beats k is greater
than the probability that j beats l,

pjk > pjl,

then it is intuitive to think that the probability that i beats k will be greater than
the probability that i beats l,

pik > pil.

Perhaps the simplest way to enforce this is by insisting on the transitivity of odds as
Good (1955) proposes, that is

pij
pji

× pjk
pkj

=
pik
pki

.

Alternatively one might think of the same condition in the manner that Luce and Suppes
(1965) refers to it as the product rule, where for any triple (i, j, k) the probability
of the intransitive cycle i beats j, j beats k, k beats i is the same as that of the
intransitive cycle i beats k, k beats j, j beats i, expressed

pijpjkpki = pikpkjpji for all triplets (i, j, k).

Strang et al. (2022) characterise this as an ‘arbitrage free’ condition and it is also
known as Kolmogorov’s criterion (Kolmogorov, 1936; Kelly, 1979).

Jech (1983) provides an alternative justification for the principle by considering
estimating the odds of an item i beating an item k in the scenario where the com-
parison can only be made indirectly by comparing i to j and j to k. If i beats j
and j beats k then i is taken to have beaten k. If i loses to j and j loses to k then
k is taken to have beaten i. For other result combinations (i beats j and k beats
j, or j beats i and j beats k) judgement is reserved. In any given comparison, the
probability that i beats k is thus pik = pijpjk and the probability that k beats i is
thus pki = pjipkj. Taking the ratio of these probabilities, the odds conform to the
transitivity condition. Jech (1983, p.246) claims that this leads to the “one and only
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one correct way of comparing the records of teams in an incomplete tournament”,
which seems a little bold, but the argument nevertheless demonstrates the intuitive
appeal of the property.

Returning to how this criterion leads to the Bradley-Terry model, and following
Good (1955), it may alternatively be expressed as

log
pij
pji

+ log
pjk
pkj

= log
pik
pki

.

Letting pij/pji = exp(τ(θi, θj)), where θi can be thought of as a parameter summaris-
ing the strength of i, then

τ(θi, θj) + τ(θj , θk) = τ(θi, θk).

Setting θj = θi, it may be noted that τ(θi, θi) = 0 for all i. By setting θk = θi it
may be noted that τ is an antisymmetric function. Further, by differentiating with
respect to θi it may be noted that the partial derivative of τ(θi, θj) with respect to θi
is independent of θj , so that τ(θi, θj) is some function of θi alone plus some function
of θj alone, and since τ is antisymmetric it must be of the form

τ(θi, θj) = t(θi)− t(θj).

Since θi is the strength of i then τ(θi, θj) must be a monotone increasing function of
θi and so t(θi) is a monotone increasing function of θi also. Therefore, λi = t(θi) is
also a strength parameter for i and

pij
pji

= exp(λi − λj) for all i, j,

giving the Bradley-Terry model.

2.2 Luce’s Choice Axiom (Luce, 1959)

Let pS(i) be the probability that item i is chosen from a set S ⊆ T , then a complete
system of choice probabilities satisfies Luce’s Choice Axiom if and only if for every i
and for S ⊆ T

pS(i) =
pT (i)

∑

k∈S pT (k)
.

The choice axiom is a version of the decision theory axiom of the independence
of irrelevant alternatives, the idea that a choice from S is independent of the other
choices available in T . Luce (1959) introduces it with the assertion that many choice
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situations are characterised by a multistage process, whereby a subset of the total
choice set is selected, from which further subsets are selected iteratively, until a single
choice is made from one of these subsets. While it is noted that the final result is
likely to depend on these intermediate categorisations for complex choices and a
multistage process, for a simple decision and a two stage process, it is argued that
the two-stage choice, reflected by the product pS(i)

∑

k∈S pT (k), does not depend on
S, and by setting S = T it is apparent that this must be pT (i). The Choice Axiom
itself has been motivated by appealing to the decomposition of a full ranking model
(Block and Marschak, 1960), to invariance under uniform expansion of the choice set
(Yellot, 1977), and, under specific assumptions, in a consideration of the utility of
gambling (Luce et al., 2008).

A complete system satisfies the Choice Axiom if and only if there exist a set of
numbers π1, π2, . . . πn such that for every i and S ⊆ T

pS(i) =
πi

∑

k∈S πk

.

In order to see this, let
πi = κpT (i), κ > 0,

then

pS(i) =
pT (i)

∑

k∈S pT (k)

=
κpT (i)

∑

k∈S κpT (k)

=
πi

∑

k∈S πk

.

πi is unique up to a multiplicative constant since suppose there is another π′
i satisfying

this condition, then

πi = κpT (i) =
κπ′

i
∑

k∈T π′
k

,

and setting κ′ = κ/
∑

k∈T π′
k then π = κ′π′

i

Taking S to be the two member set {i, j} gives the Bradley-Terry model.

2.3 Reciprocity (Block and Marschak, 1960)

What might be thought of as an alternative expression of the Choice Axiom is noted
in Block and Marschak (1960). The idea is that the odds of i beating j should be
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equivalent to the ratio of strength parameters of i and j.

pij
pji

=
πi

πj

for all i, j .

Of course this condition can be framed in other familiar equivalent terms, either as
detailed balance, more typically expressed as

pijπj = pjiπi for all i, j,

or that the irreducible, positive recurrent, aperiodic Markov chain for which P =
[pij ] is the transition matrix is reversible, which itself is the case if and only if
the transitivity condition of Section 2.1 holds (Kelly, 1979). The condition leads
immediately to

pij =
πi

πi + πj

.

The relationship to Markov chains is discussed further elsewhere in this work. An
explicit motivation in the context of a discrete Markov chain is introduced in Section
6.4, and the discussion of Section 7 is also relevant, in particular with the link to
Barker’s algorithm, a prominent Markov chain Monte Carlo method, discussed in
Section 7.5.

2.4 Wins as a sufficient statistic (Bühlmann and Huber, 1963)

Define a statistical model for pairwise comparison where the probability that i beats
j is independent of other pairwise comparisons conditional on strengths πi and πj .
Suppose wi =

∑

j cij are the wins gained by team i and that the wins vector w =

(w1, w2, . . . , wn)
T is a sufficient statistic for the strength vector π = (π1, π2, . . . , πn)

T .
Consider the comparison matrix C = [cij ] with ckl, clm, cmk non-zero, for the

triplet (k, l,m) where without loss of generality k < l < m. Now consider an
alternative C ′ with c′kl = ckl − 1, c′lm = clm − 1, c′mk = cmk − 1 and c′lk = clk + 1,
c′ml = cml + 1, c′km = ckm + 1, and all else the same. Then the wins vectors for the
tournaments represented by C and C ′ are identical. If wins are a sufficient statistic
for the strength parameters then the likelihood is dependent on C only through w,
and so the likelihoods must also be identical. The likelihood is

∏

i<j

(

mij

cij

)

p
cij
ij (1− pij)

mij−cij ,
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so that the log-likelihood, up to a constant term, is

∑

i<j

cij log

(

pij
1− pij

)

+mij log(1− pij).

Setting these equal for C and C ′, we get that

(ckl − c′kl) log
pkl
plk

+ (clm − c′lm) log
plm
pml

+ (cmk − c′mk) log
pmk

pkm
= 0,

and so
log

pkl
plk

+ log
plm
pml

+ log
pmk

pkm
= 0,

by the specifications of c′kl, c
′
lm, c

′
mk, giving the Bradley-Terry model following the

same argument as in Section 2.1.

3 Objective function maximisation

It is a common procedure in quantitative analysis to identify an appropriate objective
function and seek to maximise (or minimise) that function under certain plausible
constraints. Indeed the familiarity of such procedures makes these motivations per-
haps some of the most persuasive in the use of the Bradley-Terry model.

3.1 Maximum entropy with retrodictive criterion (Henery,
1986; Joe, 1988)

In order to determine a functional form for the pij , we wish to select an appropriate
objective function S(p), a function of the probabilities pij , and then maximise this
objective function subject to some appropriate constraint.

The proposed constraint is that of the ‘retrodictive criterion’, that the observed
number of wins for each team is equal to the expected number of wins given the
matches played. That is

wi =
∑

j

cij =
∑

j

mijpij for all teams i.

A justification for this criterion was pithily expressed by Stob (1984, p.280) in sum-
marising the argument of Jech (1983): “What sort of a claim is it that a team
solely on the basis of the results should have expected to win more games than they
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did?” This would seem to fail to appreciate the bias present from finite observations;
nevertheless, it reflects the intuitive appeal of the condition.

Alternatively the framework provided by Firth (2022) offers a justification for
the retrodictive criterion based on two intuitive formulations for rating in this set-
ting. The first formulation proposes that given the pairwise win probabilities pij, an
intuitive rating for a team i would be the average win probability against all other
competitors

p̄i· =
1

n− 1

n
∑

j=1,j 6=i

pij .

The second takes the ratio of observed wins for i divided by the ‘effective matches’
played by i, wi/m

′
i. Effective matches played, m′

i, is chosen to account for the
strength of opposition. Any definition of m′

i should meet two criteria. First, if the
opponents played by i have been strictly stronger (weaker) than average, then m′

i

is strictly less (greater) than mi, the matches played by i, thus making the value of
observed wins per effective matches played greater (less) than the value of observed
wins per matches played. Second, observed wins per effective matches played wi/m

′
i

is equal to the observed wins per matches played wi/mi in the case of a round-robin
tournament, so that the rating accords with round-robin ranking. The simplest
proposal meeting these two criteria is to scale each match played by the ratio of the
probability of winning that match to the average probability of winning a match,

m′
i =

∑

j

mijpij/p̄i·.

If we then set these two ratings, p̄i· and wi/m
′
i equal for all teams i, then we get the

retrodictive criterion.
Turning to the objective function, the approach of maximising entropy is common

in statistical physics. Entropy is a measure of the uncertainty of a random variable.
By maximising it, roughly speaking, the assumptions in the model are minimised.
Jaynes (1957) influentially advocated for the choice of entropy in a broader range
of statistical settings, building on the ideas from information theory of Shannon
(1948). Good et al. (1963) provides further discussion noting “[t]he mere fact that
the principle of maximum entropy generates classical statistical mechanics, as a null
hypothesis, would be sufficient reason for examining its implications in mathematical
statistics.” Luce (1959), on the other hand, casts doubt on its applicability to choice
contexts.

In this setting, the entropy is defined as

S(p) = −
∑

i,j

mijpij log pij = −
∑

i<j

mij(pij log pij + (1− pij) log(1− pij)).

11



We maximise the entropy subject to the retrodictive criterion using the method of
Lagrange multipliers

L(p,η) = S(p)−
n

∑

i=1

ηi

( n
∑

j=1

(mijpij − cij)

)

,

and setting ∂L
∂pij

= 0 for all pij in the normal way gives that

∂S(p)

∂pij
=

∂

∂pij

n
∑

r=1

ηr

( n
∑

s=1

(mrsprs − crs)

)

for all i, j.

So that for all i, j such that mij 6= 0,

− log pij + log(1− pij) = ηi − ηj ,

or equivalently

pij =
πi

πi + πj

,

where πi = exp(−ηi), and it can readily be checked by differentiating S(p) that this
is a maximum.

3.2 Maximum likelihood estimation with retrodictive crite-

rion (Joe, 1988)

Maintaining the retrodictive criterion of Section 3.1, we might consider the likelihood
as an alternative objective function to maximise. This is consistent with the use
of likelihood-based information criteria, such as AIC and BIC, for model choice.
Suppose the probability of i being preferred to j is given by

pij = f(λi, λj),

where λi and λj are real-valued parameters describing the strength of items i and j,
and f : R× R → [0, 1]. Then the likelihood function is given by

L(λ) =
∏

i<j

(

mij

cij

)

p
cij
ij (1− pij)

mij−cij =
∏

i<j

(

mij

cij

)

p
cij
ij p

cji
ji ,

and the log-likelihood function, ignoring the constant term, is

l(λ) =
∑

i<j

cij log(pij) + cji log(pji).
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At an extreme point of the log-likelihood, for all k,

0 =
∂

∂λk

l(λ) =
∑

j

ckj
∂

∂λk

log(pkj) + cjk
∂

∂λk

log(pjk).

Considering the constraint we note that

0 =
∑

j

ckj −mkjpkj =
∑

j

ckj − (ckj + cjk)pkj

=
∑

j

ckj(1− pkj)− cjkpkj

=
∑

j

ckj(1− pkj)− cjk(1− pjk),

and so there is an extreme point where

∂

∂λk

log(pkj) = (1− pkj) and

∂

∂λk

log(pjk) = −(1 − pjk),

which gives

∂pkj
∂λk

= pkj(1− pkj) and

∂pjk
∂λk

= −pjk(1− pjk).

Solving these separable differential equations for pij gives

pij =
1

1 + e−(λi−λj)

=
πi

πi + πj

where πi = eλi, and, as before, this is a maximum since the log-likelihood is strictly
concave. So that the Bradley-Terry model is the likelihood maximising model.

3.3 Geometric minimisation (McCullagh, 1993)

If one were to conceive of the rating of n items under a geometric interpretation, a
natural general framing might be that the observed results are represented as vectors
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in some n-space and then a rating vector can be taken as the vector that minimises
some aggregate quantity with respect to these observed result vectors. McCullagh
(1993) presents just such a framing with the outcome and rating vectors confined to
a n-sphere, taken to be of unit radius for convenience. For example, in a five-team
tournament consisting of competitors A,B,C,D,E then a win for D over B would
be represented by the result vector x = (0,−1/

√
2, 0, 1/

√
2, 0).

With both the rating vector and observed result vectors lying on the unit sphere,
a natural quantity to seek to minimise is the angle between the rating vector and
an observed result vector, or equivalently maximising the cosine of the angle as
expressed through the dot product of the vectors, x · λ. Note that this is equivalent
to minimising the squared Euclidean distance between the points on the sphere since

|| x− λ ||2= 2− 2x · λ.

So to find our rating vector λ, we would sum the dot product over all observed results
and select λ such that it maximises this quantity.

In the notation used in this paper, and keeping the unit radius, any result vector
xij representing a win for i over j will have value 1/

√
2 in the ith position, −1/

√
2

in the jth position and zero elsewhere. The sum over all such results is therefore

1√
2

∑

i,j

cij (λi − λj) =
1√
2

∑

i,j

λi(cij − cji),

which is the form of the likelihood maximisation that gives the Bradley-Terry rating
(see Section 8.1 for further details). Thus, a geometric interpretation of rating where
one minimises the aggregate angles between results and rating on a sphere returns the
Bradley-Terry ratings. One nice feature of this motivation is the ready extendability
to scenarios of differing numbers of competitors in each contest, while maintaining
consistency with Bradley-Terry in the pairwise contest case. This is discussed further
in Section 8.2.1.

McCullagh (1993) also demonstrates the link to Mallows’ φ-model and the von
Mises-Fisher distribution. These are presented in Section 5.

3.4 Definitional simplicity 1

Often when selecting a model, transparency and interpretability are desirable fea-
tures. This may be especially so in contexts where fairness of a ranking system are
a consideration. These sort of contexts are common in pairwise comparison with the
methods being used to perform activities like ranking sports teams (Firth, 2022) or
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in educational assessment (Pollitt, 2012b). Therefore, there may be a legitimate de-
sire for definitionally simpler, more intuitive models. It is thus appealing to consider
how one might select a model with the goal of maximising definitional simplicity.

Suppose one wished to determine a ranking by defining a probability for the
preference for i over j related only to positive real-valued strength parameters πi

and πj respectively,
pij = f(πi, πj).

A reasonable set of criteria for this function would be:

1. f : R+ × R
+ → [0, 1],

2. f(πi, πj) =
1
2
when πi = πj ,

3. limπi→0,πj fixed f(πi, πj) = 0,

4. limπj→0,πi fixed f(πi, πj) = 1,

5. limπi→∞,πj fixed f(πi, πj) = 1,

6. limπj→∞,πi fixed f(πi, πj) = 0.

where R
+ is taken to be the set of positive real numbers not including zero.

Assume that the simplest set of functions are those that may be defined solely
using the four basic operators (+,−,×,÷), and that any measure of the simplicity
of a function is a strictly decreasing function of the number of these operators used.
So, in this setup, maximising definitional simplicity of a function is equivalent to
minimising the number of basic operators in its defnition. Bracketing anywhere,
used in the conventional sense, to identify a functional subclause, is allowed without
increasing or reducing simplicity. Constants are also allowed in place of parameters
without increasing or reducing simplicity. In the language of Computer Science, this
is therefore defining simplicity by the minimum number of floating point operations
(flops).

No f with exactly zero or one operator can meet criterion 5 other than f(πi, πj) =
1 or equivalents (for example, f(πi, πj) = πi/πi), which violates criteria 2, 3 and 6.
Likewise, considering a function with two operators and again considering criterion
5, then it must be that the operator ÷ is employed as otherwise the limit of criterion
5 would be infinite in absolute value other than in cases which are equivalent to a
constant (for example, f(πi, πj) = πi+(1−πi)) or where πi is not included, but if πi

is not included then criteria 2 and 3 will be in contradiction. So if there is a solution
with exactly two operators then it must be of the form f(πi, πj) = g(πi, πj)÷h(πi, πj)

15



where either g or h is equal to either one of the parameters or to a constant in order
that only two operators are used, and the other must be a single operator function
involving + or − in order to meet criterion 5 without being equivalent to a constant
(for example, f(πi, πj) = πi÷(c×πi)). From criterion 3 it must be that g(πi, πj) = πi

and then from criterion 5, h must take πi as one of its terms. Criterion 6 implies
that the other term in h is πj and criterion 2 then implies that h(πi, πj) = πi + πj .
This gives f(πi, πj) = πi ÷ (πi + πj), which meets all the required criteria. It may be
noted that not all the criteria were required for its unique derivation, and that other
subsets of the criteria may be used to derive the same result. That is to say that

pij =
πi

πi + πj

will be the unique simplicity maximiser under a number of different subsets of the
plausible criteria.

3.5 Definitional simplicity 2

Given positive-valued strength parameters πi and πj for i and j respectively, one
may want to consider a model where the probability of i being preferred to j is a
function of the ratio xij = πi/πj ,

pij = f(xij).

A reasonable set of criteria for this function would then be:

1. f : R+ → [0, 1],

2. f(1) = 1
2
,

3. limx→0 f(x) = 0,

4. limx→∞ f(x) = 1,

Proceeding in a similar fashion to the previous section, the only function including
exactly zero or one flop that meets criterion 4 is f(x) = 1 (or equivalents, for example,
f(x) = x ÷ x), but this violates criteria 2 and 3. Considering a function with two
operators and again considering criterion 4, then it must be that the operator ÷ is
employed as otherwise the limit would be infinite in absolute value other than in cases
which are equivalent to a constant (for example, f(x) = x+ (1− x)). So if there is a
solution with exactly two operators then it must be of the form f(x) = g(x)÷ h(x)
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where either g(x) = x or h(x) = x or g(x) = constant or h(x) = constant in order
that only two operators are used, and the other must be a single-operator function
involving + or − in order to meet criterion 4. Criterion 3 implies that g(x) = x, and
criterion 2 then tells us that h(x) = 1 + x. Thus

f(x) =
x

1 + x
,

giving

pij =
πi

πi + πj

.

4 Discriminal processes

Consider a scenario where the strength of each of two entities in a given pairwise
interaction is independently observed with error and then compared. The item with
the greater observed strength is preferred. This is the model of Thurstone’s ‘dis-
criminal processes’ (Thurstone, 1927a). Denote the observed strength of i as bi with
‘true’ strength λi, so that bi = λi + ǫi, where ǫi is an error term. Item i is preferred
to item j if and only if bi > bj . Taking the error to be Gaussian, as Thurstone
himself did, leads to what is commonly known as the Thurstone-Mosteller model
(Thurstone, 1927a; Mosteller, 1951), but the set up may also be used to motivate
the Bradley-Terry model by considering alternative distributions for bi.

4.1 Exponential Distribution (Holman and Marley as cited

by Luce and Suppes (1965, p.338))

Suppose bi and bj follow independent exponential distributions whose expected values
are given by πi and πj respectively with the cdf,

Fi(x) = 1− e
− x

πi , x ∈ R
+.

Then, with F ′ denoting the pdf, the probability that i is preferred to j in a pairwise
comparison is

pij =

∫ ∞

0

Fj(x)F
′
i (x)dx

=

∫ ∞

0

(

1− e
x
πj

) 1

πi

e
− x

πi dx
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= 1− 1

πi

(

1
πi
+ 1

πj

)

∫ ∞

0

(

1

πi

+
1

πj

)

e
−
(

1

πi
+ 1

πj

)

x
dx

= 1− πj

πi + πj

=
πi

πi + πj

.

4.2 Extreme value distributions (Bradley, 1965; Thompson and Singh,
1967)

Thompson and Singh (1967) provide a rationale for a broader class of distributions
that lead to a Bradley-Terry model under a discriminal process. Based on ideas from
Psychology, sensations are hypothesised to be a result of a large number of stimuli.
These stimuli are modeled as having independent identical distributions G(x). One
might then consider the distribution of the resultant sensation.

Two intuitive possibilities would be to model the distribution of the sensation
F (x) either as the average of those stimuli or the maximum of those stimuli. Tak-
ing the average gives a normal distribution for F (x) in the limit, leading to a
Thurstone-Mosteller comparison model. Taking the maximum of the stimuli, in the
limit, gives, by extreme value theorem (Fisher and Tippett, 1928; Gnedenko, 1943;
Gumbel, 1958), one of three distributions for F (x) — Gumbel, Weibull, or Frechet
— depending on the underlying stimuli distribution G(x), leading to a Bradley-Terry
comparison model. The Gumbel is the most notable of these, being the sensation
distribution for stimuli distributions such as the normal, lognormal, logistic, and
exponential.

While Thompson and Singh (1967) provided a clear motivation for considering
such models and do not assume that the underlying stimuli distributions need have
the same location parameters for i and j, Lehmann (1953) had previously consid-
ered a family of distributions in the context of the power of rank tests of the form
FXi

(x; πi) = Gπi(x), where G(x) is itself a distribution function. Bradley (1965)
discussed this family of distributions with respect to the Bradley-Terry model. As
Bradley (1976) notes, if G(x) is a distribution function, andXi is the random variable
relating to a sensation i, with distribution function

P(Xi 6 x) = Gπi(x),

where πi > 0, then comparing sensations i and j,

pij = P(Xi > Xj) =

∫

xi>xj

dGπi(xi)dG
πj(xj) =

πi

πi + πj

, i 6= j.
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4.2.1 Gumbel distribution (Thompson and Singh, 1967)

Suppose bi follows a Gumbel distribution with mean λi. Then

Pr(bi ≤ x) = Fi(x) = exp (−πie
−αx) for x ∈ R and parameter α > 0,

where πi = eαλi−γ, with γ the Euler-Mascheroni constant. Then the probability that
i is preferred to j in a pairwise comparison is

pij =

∫ ∞

−∞
Fj(x)F

′
i (x)dx

=

∫ ∞

−∞
exp (−πje

−αx)απi exp (−αx− πie
−αx)dx

=
πi

πi + πj

∫ ∞

−∞
α(πi + πj) exp (−αx− (πi + πj)e

−αx)dx

=
πi

πi + πj

.

4.2.2 Weibull distribution (Thompson and Singh, 1967)

Suppose bi follows a Weibull distribution

P(bi ≤ x) = Fi(x) = 1− exp (−(x/λi)
α) for x ∈ R

+ and parameter α > 0.

Then the probability that i is preferred to j in a pairwise comparison is

pij =

∫ ∞

0

Fj(x)F
′
i (x)dx

=

∫ ∞

0

[1− exp (−(x/λj)
α)]

α

λi

(x/λi)
α−1 exp (−(x/λi)

α)dx

= 1−
∫ ∞

0

α

λi

(x/λi)
α−1 exp (−(x/λj)

α)− (x/λi)
α)dx

= 1−
λα
j

λα
i + λα

j

∫ ∞

0

α

λiλj

(x/λiλj)
α−1(λα

i + λα
j ) exp (−(x/λiλj)

α(λα
i + λα

j ))dx

=
πi

πi + πj

,

where πi = λα
i .
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4.2.3 Fréchet distribution (Thompson and Singh, 1967)

Suppose bi follows a Frechet distribution

P(bi ≤ x) = Fi(x) = exp (−πix
−α)for x ∈ R

+ and parameter α > 0.

Then the probability that i is preferred to j in a pairwise comparison is

pij =

∫ ∞

0

Fj(x)F
′
i (x)dx

=

∫ ∞

0

exp (−πjx
−α)

πiα

xα+1
exp (−πix

−α)dx

=
πi

πi + πj

∫ ∞

0

α
πi + πj

xα+1
exp (−(πi + πj)x

−α)dx

=
πi

πi + πj

.

5 Standard models

A number of models familiar to statisticians may be related to the Bradley-Terry
model by considering conditional forms. In Section 3.3, we noted how McCullagh
(1993) demonstrated links to Mallows’ φ-model and the von Mises-Fisher distribu-
tion. We expand on those links here and also discuss the relation to three more
models familiar to statisticians.

5.1 Rasch model (Andrich, 1978)

Let Xvi be a binary random variable, representing the outcome of a test v taken by
candidate i, where Xvi = 1 represents passing the test, and Xvi = 0 denotes failure.
Under the Rasch simple logistic model (Rasch, 1960, 1961) the probability of the
outcome Xvi = 1 is taken to be

P(Xvi = 1) =
eλi−δv

1 + eλi−δv
,

where λi represents the ability of candidate i and δv the difficulty of test v.
There are two conceptualisations by which we might derive the Bradley-Terry

model from this. First, as Andrich (1978) notes, if we take

pij = P(i passes a test v | exactly one of i and j pass the test v),
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then since

P(Xvi = 1, Xvj = 0) =
eλi−δv

(1 + eλi−δv)(1 + eλj−δv)
,

and

P(Xvi +Xvj = 1) =
eλi−δv + eλj−δv

(1 + eλi−δv)(1 + eλj−δv)

then conditional on being able to discern that one of the test-takers has performed
better based on the binary test outcome and taking their test outcomes to be inde-
pendent conditional on their abilities and the test difficulty then the probability that
i has beaten j is

pij =
P(Xvi = 1, Xvj = 0)

P(Xvi +Xvj = 1)
=

eλi

eλi + eλj
=

πi

πi + πj

,

where πi = eλi.
Second, we might more directly consider that in comparing i with j we are setting

a test for i of difficulty equal to the strength of the comparator λj (or equivalently
setting a test for j of difficulty equal to the strength of the comparator λi), so that

pij =
eλi−λj

1 + eλi−λj
=

πi

πi + πj

.

5.2 Mallows’ φ-model (McCullagh, 1993)

Mallows (1957) discusses models on the space of permutations. In the context of this
paper, a permutation might equivalently be thought of as a ranking. The simplest
of these model families is Mallows’ φ-model,

p(x) = Kφ exp {−φd(x, λ)},

where d is a distance measure between an observed permutation x and the ‘modal
permutation’ λ, φ is a concentration parameter and Kφ is a constant of proportion-
ality. Thus, in maximising the likelihood of the model given observed permutations,
the modal permutation is the permutation that has the minimum aggregate distance
to the observed permutations. In considering distances on permutations or ranks, the
Spearman rank correlation coefficient is a natural candidate and is the one considered
here.

McCullagh (1993) notes that the use of ordinal numbers to represent ranks, while
a strong norm, is somewhat arbitrary. He proposes that the ranks are transformed
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such that

k′ =
k − (n + 1)/2
√

n(n2 − 1)/12
,

where k is an integer from 1 to n representing a rank. With this transformation, the
rank permutations are projected onto the unit sphere. For this paper, we consider a
‘modal rating’ rather than a modal permutation or ranking and thus take the negative
of this transformation to ensure that higher-ranked items have higher value. For
example, a rank vector (2, 3, 1, 4), expressing that item 1 came second, item 2 third
etc. would be transformed to the vector 1

2
√
5
(1,−1, 3,−3). The observed pairwise

results may be projected onto the unit sphere with the pairwise ranking of a win for
i over j represented by a vector with the value 1/

√
2 in the ith position, −1/

√
2 in

the jth position and zero elsewhere.
If the pairwise results are represented in this way and the distance measure is

taken to be the Spearman rank correlation coefficient, which is equivalent to the
squared Euclidean distance, then following the argument from Section 3.3, the Mal-
lows’ φ-model becomes equivalent in form to the Bradley-Terry model, with the
modal permutation vector equal to the vector of Bradley-Terry ratings. McCullagh
(1993) notes that, strictly speaking, the models are not equivalent. Under the pro-
posed ranking transformation, the Mallows’ φ-model is defined on the sample space
of permutations represented on the unit sphere and has a ranking as the parameter
λ, whereas the Bradley-Terry model is defined on the sample space of pairwise unit
vectors and takes λ to be any point on the unit sphere.

5.3 von Mises-Fisher distribution (McCullagh, 1993)

The von Mises-Fisher distribution (von Mises, 1918; Fisher, 1953) is a well-known
model in directional statistics. It defines a probability density for a random n-
dimensional unit vector x as

p(x;λ) = Cκ exp {κx · λ}.

As discussed in Sections 3.3 and 5.2, if we take the pairwise result outcomes and
the Bradley-Terry rating vector to be defined on the unit sphere then this takes the
same form as the Bradley-Terry model. As with the Mallows’ model, McCullagh
(1993) notes that strictly speaking they are not equivalent due to being defined on
different sample spaces. In this case, the von Mises-Fisher distribution is defined on
the continuous sample space of the unit sphere, whereas the Bradley-Terry model
takes the pairwise rankings projected onto the unit sphere as its sample space.
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5.4 Cox proprtional hazards model (Su and Zhou, 2006)

Consider a proportional hazards model (Cox, 1972) on random variables Ti with
hazard function given by

hi(t) = h(t)πi.

Thus the hazard rate for object i is given by a multiplicative factor πi. Then

P(Ti < Tj) =

∫ ∞

0

FTi
(t)fTj

(t) dt

=

∫ ∞

0

(

1− exp

{

−
∫ t

0

h(x)πi dx

})

h(t)πj exp

{

−
∫ t

0

h(x)πj dx

}

dt

= 1−
∫ ∞

0

h(t)πj exp

{

−(πi + πj)

∫ t

0

h(x) dx

}

dt

= 1− πj

πi + πj

=
πi

πi + πj

.

Further, as Su and Zhou (2006) note, if a stratified proportional hazards model is
used such that each stratum represents a different match with

hij(t) = hsij(t)πi,

where sij is the stratum for a match between i and j then the contribution to the
partial likelihood from the random variables Ti and Tj with the event {Ti < Tj} is
πi/(πi + πj).

5.5 Network models

Consider a binary directed network Y , with an edge i → j taking the value yij.
A common class of models in network analysis takes a conditional independence
approach, assuming that the value of any directed edge is independent of all other
edge values given an appropriate set of parameters. In a generalised form for the
current purposes it can be expressed as

µij = P(yij = 1)

logit(µij; δi, γj, fij) = δi + γj + fij,

where δi and γj, sometimes referred to as sociality and attractivity parameters
(Krivitsky et al., 2009), reflect the heterogeneity of out-degree and in-degree respec-
tively, and fij = f(i, j) is a symmetric function capturing the propensity for an
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edge in either direction to exist. For example, Hoff et al. (2002) takes f(i, j) to be
the Euclidean distance between points associated with i and j in a latent space but
note that f(i, j) could be any distance measure satisfying the triangle inequality
f(i, j) 6 f(i, k) + f(k, j). Often models also incorporate a term of the form βTxij

within f(i, j) , where xij is a vector of pair-specific characteristics, in order to capture
known homophilies.

Applying the conditional independence assumption and looking at the probability
of an edge being present only in the direction i → j and not the j → i direction,

P(yij = 1, yji = 0; δi, δj , γi, γj, fij) =
eδi+γj+fij

(1 + eδi+γj+fij )(1 + eδj+γi+fij )
,

so

P(yij = 1 | yij + yji = 1; δi, δj , γi, γj, fij) =
eδi+γj+fij

eδi+γj+fij + eδj+γi+fij

=
eδi−γi

eδi−γi + eδj−γj

=
eλi

eλi + eλj

=
πi

πi + πj

,

where πi = eλi and λi = δi − γi. If Y is considered as a tournament matrix with
a directed edge i → j indicating i beats j, then sociality is a team’s propensity for
winning and attractivity the propensity for losing so that assessing the strength of a
team as the difference between these is readily intuitive.

6 Game scenarios

The Bradley-Terry model has frequently been associated with an analysis of sport.
So it is perhaps not surprising that there are a number of game scenarios in which
the model may be very naturally motivated. Some of these are presented here.

6.1 Poisson scoring (Audley, 1960; Stern, 1990)

Consider two teams i and j who score according to independent Poisson processes
Xi(t) and Xj(t) with rate parameters πi and πj respectively. The winner is the first
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team to score. Then by Poisson thinning, for any value of t,

pij = P(Xi(t) = 1 | Xi(t) +Xj(t) = 1) =
πi

πi + πj

.

Audley (1960) presents an argument for this framing based in the psychologi-
cal literature, considering the probability of one response occurring before another,
where the probability of a response occurring in any given small time interval is
determined by a response-specific parameter. While the argument is presented in
terms of discrete time, it notes that the continuous alternative would be to consider
Poisson distributions. Stern (1990) notes that the context may be widened to that
of two gamma random variables with the same shape parameter and different scale
parameters, showing that taking a shape parameter of one returns the Bradley-Terry
model, whereas allowing it to tend to infinity sees the model tend to the Thurstone-
Mosteller model. The idea might also be considered in the context of the discriminal
process on exponential distributions of Section 4.1, since the interarrival time of a
homogeneous Poisson process with rate parameter λ has an exponential distribution
with a mean 1/λ.

More directly it is simply an expression of the standard equivalence between
a multinomial distribution, in this case Bernoulli, and independent Poisson dis-
tributions conditional on their total, sometimes referred to as the “Poisson trick”
(Fienberg and Larntz, 1976; Lee et al., 2017).

6.2 Sudden death (Stirzaker, 1999; Vojnović, 2015)

Consider two teams i and j involved in a ‘sudden death’ shoot-out. They play a
game where in each round they succeed with independent probabilities pi and pj
respectively. The winner is the team who first has more successes than the other
team. Let (i ≻ j)n be the event that i wins the ‘sudden death’ contest in round n.
Then

pij =
∞
∑

n=1

P[(i ≻ j)n]

=
∞
∑

n=1

n−1
∑

k=0

pi(1− pj)

(

n− 1

k

)

(pipj)
k((1− pi)(1− pj))

n−k−1

= pi(1− pj)
∞
∑

m=0

m
∑

k=0

(

m

k

)

(pipj)
k((1− pi)(1− pj))

m−k
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= pi(1− pj)
∞
∑

m=0

(pipj + (1− pi)(1− pj))
m

= pi(1− pj)

∞
∑

m=0

(2pipj − pi − pj + 1)m

=
pi(1− pj)

pi + pj − 2pipj

=
pi(1− pj)

pi(1− pj) + pj(1− pi)

=

pi
1−pi

pi
1−pi

+
pj

1−pj

=
πi

πi + πj

,

where πi =
pi

1−pi
.

Further, suppose there is an alternative contest but now the winner is the team
that is the first to have r more successes than the opposition. Such a contest may
be understood as an aggregation of the sudden death contests described above, such
that the winner is the first team to win r more sudden death contests than the
opposition. Based on the result above, given that there is a winner to a sudden
death contest, the probability that the winner is i is qi = pi/(1− pi). Let Ai be the
event that i wins and Ar+k be the event that a result, either i or j winning, occurs
after the winning team has won exactly r + k sudden death contests then

pij = P(Ai) =
∞
∑

k=0

P(Ai|Ar+k)P(Ar+k)

=

∞
∑

k=0

qr+k
i qkj

qr+k
i qkj + qki q

r+k
j

P (Ar+k)

=
qri

qri + qrj

∞
∑

k=0

P (Ar+k)

=
qri

qri + qrj

=
πi

πi + πj

,

where πi = qri .
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6.3 Accumulated win ratio (Vojnović, 2015)

Take a sequence of matches between two players, i and j, where the probability
that team i wins is proportional to the accumulated number of wins in previous
matches. Suppose that the probability that i wins the first match is πi/(πi + πj).
Then consider the probability that i will win the nth match. The claim is that this
is πi/(πi + πj). We proceed to show this by induction. Define notation (i ≻ j)n as
meaning i beats j in match n then our base case is

P[(i ≻ j)1] =
πi

πi + πj

.

Now assume the inductive hypothesis for some k > 1

P[(i ≻ j)k] =
πi

πi + πj

.

Then proceeding by induction

P[(i ≻ j)k+1] = P[(i ≻ j)k+1 | (i ≻ j)k]P[(i ≻ j)k]

+ P[(i ≻ j)k+1 | (j ≻ i)k]P[(j ≻ i)k]

=
πi + 1

πi + 1 + πj

πi

πi + πj

+
πi

πi + 1 + πj

πj

πi + πj

=
πi(πi + 1 + πj)

(πi + 1 + πj)(πi + πj)

=
πi

πi + πj

.

6.4 Continuous time state transition

Consider a match where the winner is the team winning at the end of a defined period
of play. We choose to model the continuous state of ‘winning’ by a continuous time
Markov chain on a binary state space I = {i winning, j winning}, Let the rate at
which there is a switch from the state ‘i winning’ to the state ‘j winning’ be denoted
by πj , and the rate at which the switch from the state ‘j winning’ to the state
‘i winning’ be denoted by πi. Then the intensity matrix is

Q =

(

−πj πj

πi −πi,

)

and the equilibrium distribution vector of this process p is such that

pQ = 0,
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and in this case is given by the probability vector p =
(

πi

πi+πj
,

πj

πi+πj

)

.

Assuming that we are likely to see a large number of state changes during the
course of the match or the probability of the initial state being ‘i winning’ may be
approximated by πi/(πi+πj) then the probability that i beats j may be approximated
by

pij =
πi

πi + πj

.

The authors are not aware of published work that uses this continuous-time
model, which might reasonably be called the “Bradley-Terry process” model.

7 Quasi-symmetry and consistent estimators

The quasi-symmetry model was proposed by Caussinus (1965). A matrix C is quasi-
symmetric if it can be decomposed such that

cij = αiβjγij,

where γij = γji. The form of this can be simplified by taking ai = αi/βi and sij =
βiβjγij, so that

cij = aisij,

or in matrix form
C = AS,

where A is a diagonal matrix and S is symmetric. Informally, one might think of the
symmetric matrix representing the intensity of interactions, and the diagonal matrix
as the relative ratings. Asymptotically, where the number of matches between each
pair of teams tends to infinity and the number of teams is held constant, by the Law
of Large Numbers, under a Bradley-Terry data generating process, we would expect
the results matrix to be quasi-symmetric, since

E[cij ] = pijmij =
πi

πi + πj

mij = aiisij,

where sij = mij/(πi + πj) = sji and πi = aii. So, rating methods that accord with
Bradley-Terry in the case of a quasi-symmetric results matrix are consistent estima-
tors for the Bradley-Terry model given a Bradley-Terry data generating process, and
thus motivations for those rating methods are of interest in the context of this paper.
This is especially so as it provides a link to a number of other, sometimes familiar,
rating methods.
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7.1 PageRank (Daniels, 1969)

Daniels (1969) appears to have been the first to document the link between the
Bradley-Terry model and what might now be recognised as an undamped PageRank
(Page et al., 1999). PageRank has come to be widely known as it formed the basis
for the original Google search algorithm. An intuitive explanation for the way it
functions is the so-called ‘random surfer’ model. It envisages a (web-)surfer, who is
randomly assigned to a node in a directed network. The random surfer then moves
randomly to one of the other nodes. With a given probability they may move to
any node (teleportation) or alternatively they move to a node to which there is a
weighted directed edge from the node where they are currently. The probability of
moving to any particular destination node if they do not teleport is set equal to
the weight of the edge between the origin node and the destination node divided by
the total weight of edges from the origin node. This process continues indefinitely
with the proportion of time spent at each node representing the PageRank for that
node. What we refer to here as ‘undamped PageRank’ is the algorithm with the
teleportation probability set to zero.

In the notation of this paper, we may take the comparison matrix to define the
relevant weighted directed network, with cij the weight of the directed edge from j to
i. DefineD as the diagonal matrix of column sums with djj =

∑

k ckj. The undamped
PageRank rating vector αPR is the stationary distribution of the Markov chain with
column-normalised comparison matrix CD−1 as a left stochastic transition matrix.
That is

αPR = CD−1αPR.

While this rating is perhaps best known from its link to PageRank, it had been
previously identified as the ‘total influence’ metric in Pinski and Narin (1976) in the
context of bibliometrics. It has been independently axiomatised in Altman and Tennenholtz
(2005) and in Slutzki and Volij (2006). More prosaically, such a measure might be
motivated in the context of sports competition by the idea of a ‘glory-seeker’ fan,
or, as Langville and Meyer (2012, p. 68) terms it, the ‘fair weather’ fan. Consider a
fan who begins by selecting a team to support at random. At each step they trans-
fer their allegiance to one of the teams that has beaten the team they previously
supported. This decision is made at random in proportion to the number of their
defeats that were against each team. Each team is then rated by the proportion of
time that the glory-seeker has spent supporting them.

While there is a pleasing intuition to this approach, there are situations where
using PageRank is questionable. We present two toy examples that demonstrate just
such circumstances. First, consider a five team round-robin tournament between

29



teams A, B, C, D and E. A beats B, C and D; B beats C, D and E; C beats D and
E; D beats E; and E beats A, as represented in Table 1.

A B C D E Wins
A 0 1 1 1 0 3
B 0 0 1 1 1 3
C 0 0 0 1 1 2
D 0 0 0 0 1 1
E 1 0 0 0 0 1

Table 1: Five-team round-robin tournament

Undamped PageRank would rate A and E joint first, because every time the
glory-seeker selects team A, they will subsequently select team E, whereas standard
round-robin ranking by the number of wins would rate A as joint first and E as
joint last. Rubinstein (1980) established axiomatic grounds for why number of wins
should be taken as the rating in a round-robin tournament and, beyond that, it is
a strong norm in competitive sport, so in this situation PageRank might be deemed
inappropriate.

Second, consider three teams F, G, and H. Their strengths are such that we
would expect F to beat G in 2/3 of matches, F to beat H in 4/5 of matches, and
G to beat H in 2/3 of matches. Now consider two tournaments between these three
teams. In the first of these tournaments each team plays each other team 15 times
and the proportion of results follow expectations. These results are represented in
Table 2(a). In the second tournament the teams win their match-ups in the same
proportions, but H plays six times more matches against both F and G; while F and
G play each other the same number of times as in the first tournament, with results
represented in Table 2(b).

F G H
F 0 10 12
G 5 0 10
H 3 5 0

(a)

F G H
F 0 10 72
G 5 0 60
H 18 30 0

(b)

Table 2: Three-team tournaments

It seems clear that based on propensity to win, in either tournament (a) or (b),
team F should be ranked higher than team G and team G should be ranked higher
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than team H. PageRank meets this requirement for tournament (a), but ranks H
highest based on the results of tournament (b).

In both examples, it seems that undamped PageRank focuses too much on the
wins of a team, ignoring the losses. In the first example, it was E’s win against A
that drove its high ranking rather than being balanced by its losses to B, C and
D. In the second example, the number of H’s wins saw it ranked highest, ignoring
its higher number of losses. Therefore one suggestion to address this would be to
construct a rating, π = D−1αPR, by scaling the undamped PageRank rating of each
competitor by dividing by their number of losses.

π = D−1αPR = D−1CD−1αPR = D−1Cπ,

so that π is an eigenvector for Ĉ = D−1C.
A vector π is an eigenvector for Ĉ = D−1C with an eigenvalue of 1 if and only if

∑

j

cijπj = diiπi for all i,

but if C = AS is quasi-symmetric such that A is a diagonal matrix and S is symmetric
then choosing πi = aii yields

∑

j

cijπj =
∑

j

aiisijajj = aii
∑

j

sjiajj = πi

∑

j

cji = diiπi for all i,

so that the scaled undamped PageRank π = D−1αPR is the diagonal component
of a quasi-symmetric matrix. Equivalently it is the Bradley-Terry rating vector in
the special case of a quasi-symmetric comparison matrix C and thus a consistent
estimator for the Bradley-Terry rating vector given a Bradley-Terry data-generating
process.

In the context of bibliometrics, this rating method was proposed as the ‘influence
weight’ measure by Pinski and Narin (1976) and as ‘Scroogefactor’ by Selby (2020),
the name we will adopt for the rating for the remainder of this section. In the
bibliometric context, cij within the comparison matrix represents a citation in journal
j of an article in journal i. It was motivated by noting that journals are likely
to be of different sizes and that one may be interested in determining influence
independent of size. The proposal was therefore to normalise the citations received
by i by the citations given by i. More recently, the ‘Rank Centrality’ algorithm of
Negahban et al. (2012) proposes the same estimator applied to ratio matrices, and it
is also equivalent to the ‘Luce Spectral Ranking’ of Maystre and Grossglauser (2015)
in the k = 2 case. A more detailed discussion of these links was provided by Selby
(2020).
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As a brief illustration, we return to our examples. In the first example, with
results from Table 1, the results do not make up a quasi-symmetric matrix, so that
the Bradley-Terry rating and Scroogefactor do not align. As can be seen in Table 3,
Bradley-Terry produces the same ranking as the convention of taking the number of
wins, since the vector of the number of wins is a sufficient statistic for the Bradley-
Terry rating as we showed in Section 2.4. Undamped PageRank and Scroogefactor
both rank the teams in the descending order A, B, C, D, but undamped PageRank
ranks E as being first equal, whereas Scroogefactor places it third. If we take number
of wins to be the correct ranking, then ScroogeFactor gives a more accurate ranking
in placing E closer to last equal.

A B C D E
Wins 3(1=) 3(1=) 2(3) 1(4=) 1(4=)
Bradley-Terry 7.57(1=) 7.57(1=) 2.75(3) 1.00(4=) 1(4=)
PageRank 1.00(1=) 0.67(3) 0.44(4) 0.33(5) 1(1=)
Scroogefactor 3.00(1) 2.00(2) 0.67(4) 0.33(5) 1(3)

Table 3: Five-team round-robin tournament rating(ranking), with rating of E stan-
dardised to 1. PageRank here is undamped.

In the second example, there is no convention such as the number of wins to
anchor our methodology on. But given the ratio of wins and losses for each pair, it
seems clear that the teams should be ranked in descending order F, G, H. Since both
results matrices are quasi-symmetric then Bradley-Terry and Scroogefactor are the
same and provide a ranking in the appropriate ordering. As can be seen in Table 4,
this is matched by undamped PageRank in the the first of the tournaments where
every team plays every other the same number of times, but undamped PageRank
disagrees when H has a higher number of match-ups against the other two teams.

7.2 Fair bets (Daniels, 1969)

Daniels (1969) introduces an idea referred to as ‘fair scores’. It was elaborated on and
cast in the perhaps more intuitive language of ‘bets’ by Moon and Pullman (1970).
Both provide interesting discussions of more general approaches. More recently,
Slutzki and Volij (2006) provides an excellent summary of the approach, providing
two axiomatisations for it, a presentation of a more informal motivation due to Laslier
(1997), the link to undamped PageRank, and an argument for why the axiomatisa-
tions may lead us to believe that the ‘fair bets’ method is more appropriate for sports
tournaments, while the undamped PageRank is more suitable for citation networks.
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F G H
Bradley-Terry 4.00(1) 2.00(2) 1(3)
PageRank 1.45(1) 1.36(2) 1(3)
ScroogeFactor 4.00(1) 2.00(2) 1(3)

(a)

F G H
Bradley-Terry 4.00(1) 2.00(2) 1(3)
PageRank 0.98(2) 0.86(3) 1(1)
ScroogeFactor 4.00(1) 2.00(2) 1(3)

(b)

Table 4: Three-team tournament rating(ranking) with rating of H standardised to
1. PageRank is undamped.

The first of the axiomatisations shows that the ‘fair bets’ model is the unique
ranking derived under the three simultaneous requirements of uniformity, inverse
proportionality to losses, and neutrality. Uniformity here requires that if a tourna-
ment outcome is balanced in the sense that every competitor has the same number of
wins and losses then the competitors must be ranked equally. Inverse proportionality
to losses requires that if one begins with a balanced tournament outcome, and then a
single competitor’s losses are multiplied by a constant then its rating will be divided
by the same constant relative to the other competitors. Neutrality requires that if
one begins with a balanced tournament outcome and some new matches are added
between two teams where they share the wins equally then competitors will remain
equally ranked.

The second of the axiomatisations requires two axioms, consistency between a
ranking and its reduced forms, and reciprocity. Reciprocity here requires that, in
a two-player tournament, the ratio of the two competitors’ ratings is equal to the
ratio of their wins in matches between them, assuming that there are a non-zero
number of matches between them. The reduced form condition considers a reduced
tournament without a team k, with the comparison matrix modified to, in effect,
reallocate results involving k so that the comparison matrix is redefined as

cij =

{

0 i = j

cij +
cikckj
∑

t ctk
otherwise.

The axiom requires that the relative ratings of two teams in any reduced tournament
are equal to their ratio in the full tournament. Consistency requirements of this type
are a common feature of axiomatic approaches to ranking (Thomson et al., 1996).
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Alternatively, inkeeping with the original presentation of Daniels (1969), suppose
one retrospectively wishes to assign a betting scheme to a tournament, where the
loser pays to the winner an amount on the result of each match. This is subject to
two conditions. First, the amount that is paid to the winner by the loser is a value
dependent solely on the strength of the loser. So that if i beats j then i will receive
an amount αFB

j from j. Second, the betting scheme is fair. Here ‘fair’ is taken to
mean that the wagered amounts will have led to the result that betting on any team
throughout the tournament will have a net gain of zero. Then one has the condition
that, for all i,

∑

j

cijα
FB
j =

∑

j

cjiα
FB
i ,

where αFB may be taken as a rating vector for the participants, with the intuition
being that one would be prepared to wager more on a strong team.

If C = AS is quasi-symmetric then we have for all i

∑

j

aiisijα
FB
j =

∑

j

ajjsjiα
FB
i ,

so that
∑

j

sij(aiiα
FB
j − ajjα

FB
i ) = 0.

Thus, αFB
i = aii = πi, and the Fair Bets rating is a consistent estimator for the

Bradley-Terry rating vector given a Bradley-Terry generating process.

7.3 Wei-Kendall

The rating method introduced in Wei (1952) and Kendall (1955) relies on an iterative
application of the comparison matrix. The motivation for such a procedure might
be seen by taking the five-team tournament example from Section 7.1. One might
argue that ranking D and E equally is unfair as E’s single victory occurred against a
top-ranked team A, whereas D gained its only victory against bottom-ranked E. An
approach to address this suggested by Wei (1952) is to weight each victory by the
rating of the defeated team. The notion of inheriting the wins of a defeated opponent
to inform a rating is intuitive enough that it forms the basis for the predominant
rating system of the British playground game of conkers (Barrow, 2014). Under the
Wei-Kendall method we would begin with a rating vector defined by the sum of wins

1αWK = Ce = {3, 3, 2, 1, 1}T ,
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where e is a n × 1 vector of 1s. Then we assign to each team the sum of the first
iteration ratings of each team they have beaten

2αWK = C1αWK = C2e = {6, 4, 2, 1, 3}T .

This second iteration measure is sometimes used in chess for tie-breaking, where it
is known as the Sonneborn-Berger score (Hooper and Whyld, 1996). But then one
might reason that the victories should instead have been weighted by this updated
rating. Proceeding in this way for the next five iterations we have Wei-Kendall rating
vectors

3αWK = {7, 6, 4, 3, 6}T ,
4αWK

= {13, 13, 9, 6, 7}T ,
5αWK = {28, 22, 13, 7, 13}T ,
6αWK = {42, 33, 20, 13, 28}T ,
7αWK = {66, 61, 41, 28, 42}T .

Note that E continues to be ranked higher than D and C.
Generalising, one may define a series of rating vectors

kαWK = Cke.

It is then natural to consider the limit, but this is clearly not convergent. However,
as Moon (1968) notes, since the matrix C is irreducible then by the Perron-Frobenius
theorem (Frobenius, 1912) the rating vector defined by

αWK = lim
k→∞

(

C

ρ

)k

e,

where ρ is the dominant eigenvalue of C, is convergent, and this normalised limit
may be thought of as a rating vector. In the case considered above this gives

αWK = {1.63, 1.38, 0.87, 0.55, 0.95}T .

The same motivational construct can be applied to give a consistent estimator
of the Bradley-Terry rating vector in the case of a Bradley-Terry data-generating
process. In both cases, the idea is that we start with an intuitive rating method.
It is then noted that the initial wins should not be considered equal and instead
those wins should be weighted using the best rating available. This may be done
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iteratively defining a rating in the limit. In the case of the Wei-Kendall method, the
sum of wins is used as the initial rating. Here, the initial rating is based on the win-
loss ratio of each team, Ĉe = D−1Ce. In the reweighting step in the Wei-Kendall
method, the wins are simply weighted by the rating of the losing team. Here, leaning
on the intuition of needing to account for losses as well as wins, we scale the vector
of rating-weighted wins by the losses for each team. Proceeding in this manner, we
define a rating vector

π = lim
k→∞

Ĉke.

Since the scaled matrix Ĉ has unit dominant eigenvalue, then by Perron-Frobenius
Theorem the limit is convergent and π is equal to the leading eigenvector of Ĉ. If
additionally Ĉ is quasi-symmetric, which it will be if C is quasi-symmetric, then this
leading eigenvector will be the vector of Bradley-Terry ratings. Thus by applying
the same reasoning used to motivate the Wei-Kendall method, but starting with an
alternative plausible rating method, win-loss ratio, and accounting for losses as well
as wins in the reweighting step, we derive a consistent estimator for the Bradley-Terry
rating vector given a Bradley-Terry data-generating process.

7.4 Ratings Percentage Index

A rating measure that until recently was prevalent in college sports in North America
is the Ratings Percentage Index (RPI). It is commonly defined as

RPI = 25%×Win Percentage

+ 50%×Opposition’s Win Percentage

+ 25%×Opposition’s Opposition’s Win Percentage.

In the notation of this article, recalling that M is the matrix of the number of
matches, let the matrix M̂ = [m̂ij ] with m̂ij = mij/

∑

j mij , so that m̂ij is the
proportion of i’s matches that are against team j. Define the win percentage vector
x = (x1, x2, . . . , xn)

T where xi = wi/mi =
∑

j cij/
∑

j mij , then the RPI rating

vector RPI = (RPI1,RPI2, . . . ,RPIn)
T may be defined as

RPI = 0.25x+ 0.5M̂x+ 0.25M̂2x

An argument very much like the one in the previous section may be followed
to motivate this, that we must consider the strength of opposition in aggregating
wins and that we can do this iteratively. In the RPI it is assumed that the previous
iterations carry information that should be retained in the overall rating and that
three such applications is sufficient.
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The choice of win percentage as the initial rating vector and of the proportion
of matches as the relevant weighting factor when taking account of the strength of
opposition is not unintuitive, but not exclusively so. For example, one might instead
take each team’s win-loss ratio as the initial rating. To account for the strength of
opposition one might weight wins by the opposition’s rating rather than weighting
matches, and then normalise those weighted wins by the number of losses. The
0.25/0.5/0.25 weighting is arbitrary and indeed has been criticised as overweighting
the strength of a team’s opposition and for producing perverse incentives (Baker,
2014). In the absence of any clear reason to do otherwise, an equal weighting might
instead be applied. This would give an initial rating vector

α1 = Ĉe,

and considering down to an opposition’s opposition’s strength as in RPI

α3 =
1

3
Ĉ2α1 +

1

3
Ĉα1 +

1

3
α1 =

1

3
(Ĉ3 + Ĉ2 + Ĉ)e.

Clearly there is no particular reason to stop after recursively considering two levels
of opposition antecedents and so one might more generally consider

π = lim
r→∞

1

r

r
∑

k=1

Ĉke.

This is the row sum vector of the Cesaro average for Ĉ and so

π = lim
k→∞

Ĉke,

giving the same result as in the previous section. And so we have that an RPI-style
rating based on win-loss ratios is a consistent estimator for the Bradley-Terry rating
vector, given a Bradley-Terry data-generating process.

7.5 “Winner stays on” - Barker’s algorithm

It is a convention in some settings, for example pub pool tables, to play on the
basis of “winner stays on”, where the winner of any match continues to play the next
competitor. While rarely part of an official ranking system, it is intuitive that players
who spend more games as “reigning champion” might be considered stronger.

Suppose that one would like to design a “winner stays on” tournament with the
property that the long-term proportion of time spent as the “reigning champion”
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is directly proportional to their strength. For a countable collection of players, let
player i have a specified strength of πi. Denoting the indicator that player i is the
reigning champion after the kth game by T k

i , then the design requirement can be
specified as

lim
K→∞

1

K

K
∑

k=1

T k
i =

πi
∑n

i=1 πi

.

To make progress with this one must specify the selection probability for the
next opponent. Suppose that the current reigning champion is player i, then the
probability their next opponent is chosen to be player j is denoted φij. Assuming all
games are conditionally independent given the players involved then this construction
is a Markov chain on the player identities with transition probability of switching
“reigning champion” from player i to player j given by φijpij .

This setup is akin to the Markov chain Monte Carlo problem of generating sam-
ples from a probability distribution only known up to a scaling constant. Satisfying
the above requirement for the tournament is equivalent to ensuring that the con-
structed Markov chain has an invariant distribution that is given by the (normalised)
strengths.

There are many ways that the pij can be specified to achieve this goal but a
natural way is to invoke reversibility by designing the chain so that it satisfies the
detailed balance equations. Again, there are many choices of pij here but if one wishes
the game outcomes to be determined directly by a ratio involving the strengths of the
teams, then the natural choice would be to use the acceptance ratio from Barker’s
algorithm (Barker,1965)

pij =
πiφij

πiφij + πjφji

.

This can be interpreted as a game being decided by a Bradley-Terry type probabil-
ity where the player’s strength is biased for that particular game by a multiplicative
factor accounting for the imbalance of symmetry for proposing that particular op-
ponent as their next opponent. Hence, the biased strength of player i is given by
πiφij which is the original strength multiplied by the proposed opponent probability
of choosing j which is independent of the strength of player j.

Suppose further that the opponent proposal distribution is symmetric, i.e. φij =
φji for all pairs i and j. This would be the case if the next opponent was selected
uniformly at random in a finite collection of players or if there was some local stan-
dardised symmetric proposal centred about the current player’s identity. Then, the
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above probability that team i beats team j is given by

pij =
πi

πi + πj

.

8 Discussion

Faced with “the many routes to the ubiquitous Bradley-Terry model”, two natural
questions to ask are: how are these motivations linked? and how is a recognition of
these diverse motivations useful in statistical modelling?

In seeking to address the linkages, we discuss the Bradley-Terry model in the
context of an exponential family of distributions (Darmois, 1935; Pitman, 1936;
Koopman, 1936). This provides a direct link between perhaps the most substan-
tial motivations, those of Sections 2 and Sections 3.1 and 3.2, by showing that the
motivations are the specific expression in the Bradley-Terry context of general fea-
tures of exponential family models. It also provides a direct link to the motivations
of Sections 3.3, 5.2 and 5.3, as these are explicitly exponential family models from
alternative contexts translated to be applicable to the context under consideration
with the Bradley-Terry model.

The usefulness of being able to compare motivations is illustrated in two examples,
where the initial motivation for using the model comes from one motivation, but by
applying the insight from another motivation we are able to substantiate and advance
the method.

8.1 The Bradley-Terry model as an exponential family of

distributions

Following Geyer (2020), a statistical model is an exponential family of distributions
if it has a log-likelihood of the form

l(θ) = 〈y, θ〉 − k(θ),

where y is a vector-valued canonical statistic; θ is a vector-valued canonical param-
eter; 〈., .〉 represents an inner product; and k is a real-valued function, the cumulant
function, which is defined such that ∇k(θ) = Eθ(Y ) . In seeking a maximum likeli-
hood estimate, the derivative is taken and set equal to zero

0 = ∇l(θ) = y −∇k(θ) = y − Eθ(Y ),

by the definition of the cumulant function within an exponential family.
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In the model discussed here, the likelihood is

∏

i<j

(

mij

cij

)

p
cij
ij (1− pij)

mij−cij ,

so that the log-likelihood, up to a constant term, may be taken to be

1

2

∑

i,j

cij log

(

pij
1− pij

)

+mij log(1− pij),

and may be rewritten in the form

l(θ) =
1

2

∑

i,j

cijθij −mij log(1 + eθij ),

where θ is the canonical parameter, a vector of length n(n − 1) corresponding to
the directed pairwise comparisons, and with θij = log(pij/(1 − pij)); the canonical
statistic vector y takes scaled outcomes cij/2 as its elements; and the cumulant
function is k(θ) =

∑

i,j mij log(1 + eθij )/2.
What Geyer et al. (2007) refer to as an affine canonical submodel may be parametrised

through the linear transformation

θ = a+Xβ,

where a is an offset vector, X is a design matrix, and β is the canonical parameter
for the submodel, giving a log-likelihood of

l(β) = 〈XTy, β〉 − kSUB(β),

where kSUB(β) = k(a + Xβ), so that this defines a new exponential family with
canonical statistic vector XTy, canonical parameter vector β, and cumulant function
kSUB.

In the context of the Bradley-Terry model, one may take a = 0, β = λ, where
λ is the vector of log-strengths λi = log πi, and X to be the design matrix with
the columns representing the n participants, and the rows representing the n(n− 1)
directed pairwise comparisons. The entry in the row corresponding to a preference
for i over j has 1 in column i, −1 in column j and zero elsewhere. This gives a
log-likelihood

l(λ) =
1

2

∑

i,j

(cij − cji)λi −
1

2

∑

i,j

mij log(1 + eλi−λj)
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=
1

2

∑

i,j

(2cij −mij)λi −
1

2

∑

i,j

mij log(1 + eλi−λj)

=
∑

i,j

cijλi −
1

2

∑

i,j

mij(λi + log(1 + eλi−λj )).

Define a vector of wins w by wi =
∑

j cij, then

l(λ) =
∑

i

wiλi −
1

2

∑

i,j

mij(λi + log(1 + eλi−λj)),

defining an exponential family where the number of wins is the vector-valued canoni-
cal statistic and log-strength is the vector-valued canonical parameter. It is a feature
of an exponential family of distributions that ‘observed equals expected’, or more
precisely that the observed value of the canonical statistic vector equals its expected
value under the MLE distribution, that is to say

y = Eθ̂(Y ) = ∇k(θ̂),

which under this affine canonical submodel translates to

wk =
1

2

∑

j

mkj

(

1 +
eλk−λj

1 + eλk−λj

)

− 1

2

∑

i

mik

eλi−λk

1 + eλi−λk

=
∑

j

mkj

eλk

eλk + eλj
for all k,

noting that pkj = eλk/(eλk + eλj ) gives what was referred to as the retrodictive
criterion in Sections 3.1 and 3.2.

The motivations based on wins as a sufficient statistic, maximum entropy and
maximum likelihood of Sections 2.4, 3.1, and 3.2 may thus be seen as an example
of a general fact about exponential families. If one starts with a canonical statistic,
then the corresponding affine submodel, if it exists, will be uniquely determined
and it will be the maximum entropy and maximum likelihood model subject to the
‘observed equals expected’ constraint on the canonical statistic. As shown in Section
2.4, the requirement to take wins as a sufficient statistic leads directly to the same
statistical condition as the other axiomatic motivations presented in Section 2. Thus,
a consideration of the Bradley-Terry model as an exponential family of distributions
gives a synthesis to the axiomatic and objective function motivations.
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8.2 Motivation-switching

In this section we present two brief examples to illustrate the usefulness of being
able to consider the Bradley-Terry model from a diverse set of motivations. They
are characterised by the selection of the model being based on one motivation but
then justification and advancement of the methods employed being based on the
consideration of other motivations.

8.2.1 Sports ranking

The Bradley-Terry model is frequently employed in analysis of sports competitions.
Indeed, the original work by Zermelo (1928) was an analysis of competitive chess.
Many times the choice of the Bradley-Terry model for sports ranking may be based
on its familiarity in the context, or perhaps on an informal version of the definitional
simplicity motivations of Sections 3.4 and 3.5. However, a more principled motivation
for its application could rest in its status as the unique statistical pairwise comparison
model for which the number of wins is a sufficient statistic. Taking the number of
wins as the defining ranking measure in balanced sports tournaments is a strong
norm and was axiomatised in Rubinstein (1980). It is then natural to generalise this
principle by maintaining wins as a sufficient statistic to unbalanced tournaments,
where competitors may play differing number of matches against differing opponents
of varying strength.

This perspective also provides a natural way to extend the principle to situations
where it is points rather than wins that are taken as the determinating data in round-
robin tournaments, allowing for result outcomes other than win/loss. Taking points
as a sufficient statistic provides a principled motivation to the use of the ties model
of Davidson (1970) for unbalanced tournaments in sports where the number of points
on offer for a draw is half that for a win, or in employing David Firth’s alt-3 model
(Firth, 2022) for soccer, where the norm is 3 points for a win and 1 for a draw.

The geometric motivation of Section 3.3 and the permutation-based model of
Section 5.2 may also be applied to extend the situations covered by ranking in a way
that is consistent with these well-established sports norms. For example, in athletics
— or track and field in North American parlance — it is common for races to be of
variable size and to have different entrants at each race. If T , of size n, is the total
set of competitors, let Ak, of size nk, be the set of competitors in race k, and rik the
finishing position for competitor i ∈ T . Then we can define a result vector of length
n for race k, xk, with value

(nk + 1)/2− rik
√

nk(n2
k − 1)/12
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if i ∈ Ak and zero otherwise. Consistent with Sections 3.3 and 5.2, a rating vector λ
can then be determined by minimising the cumulative squared Euclidean distance

∑

k

d(xk, λ),

giving a rating consistent with the Bradley-Terry model in the pairwise comparison
case.

8.2.2 Comparative Judgement

Comparative Judgement is a form of educational assessment. It creates ratings for
a set of items by having judges rank subsets of the items. These comparisons are
most commonly pairwise with the Bradley-Terry model being fitted to determine the
ratings. Andrich (1978) is often cited in that literature and so it seems reasonable
to speculate that the familiarity of the Rasch model in educational assessment may
be a significant reason for the model choice. But given the nature of the outcome
— the rating of academic work — there might be a legitimate desire to be able to
demonstrate the fairness of any method used. While there are not the strong norms
around number of wins as a rating measure in this context like in the sports example,
the idea of maximising entropy and in that sense minimising the assumptions in the
modelling may be attractive as a justification.

The motivations discussed here might also influence some of the practices em-
ployed in Comparative Judgement. Often the comparisons are scheduled in order
to be able to produce ratings of equivalent reliability with fewer judgements than
would be achieved with random scheduling. These adaptive scheduling schemes
work by scheduling comparisons between items that are similar in strength so that
the information from each pairwise comparison is maximised (Pollitt, 2012a). The
Swiss scheduling scheme, where competitors with the same, or as similar as pos-
sible, number of wins are scheduled to play each other, is a well-known example.
More sophisticated approaches use an online rating that accounts for the observed
comparators in order to schedule the next comparisons. These ratings could be the
Bradley-Terry ratings, but their computational expense may make them unsuitable.
The motivations for the consistent estimators to the Bradley-Terry model discussed
in Section 7 may provide grounds for using computationally faster spectral methods
for the online rating used for scheduling, even if the final rating is based on fitting
the Bradley-Terry model directly, based on the fairness justification.
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9 Concluding Remarks

In concluding, we highlight four aspects that we hope the reader may take from this
work. First is a general interest in the model. Special status is accorded to mod-
els and phenomena that become apparent from a diversity of seemingly unrelated
perspectives. It is in this spirit, and with a certain affection for the Bradley-Terry
model, that this work was initially undertaken. Undoubtedly some of the motiva-
tions presented here carry more weight than others. Being the unique solution to
maximising entropy subject to the retrodictive criterion will be a relevant motivation
in more scenarios than being a readily hypothesised model for a sudden death contest
on a difference of r points. Nevertheless, the number and diversity of motivations is
suggestive of the applicability and attractiveness of the model, and lays the basis for
its use in a wide variety of contexts.

Second is an appreciation for the importance of model motivations. Often the
motivation for using a particular model is a pragmatic one based on goodness of
fit, predictive ability, computational ease or simply familiarity to the practitioner.
However, there can be scenarios where a more principled motivation matters. This
is likely to be the case where there are issues of fairness involved. Such scenarios
are not uncommon where the output of a model is a rating, as with the examples of
official sports ranking and educational assessment. The ‘wins as a sufficient statistic’
and ‘maximum entropy’ motivations may be particularly pertinent in those scenar-
ios. Third is an appreciation for how understanding different motivations can aid
in modelling practice, as illustrated with the examples of Sections 8.2.1 and 8.2.2.
The setting of the Bradley-Terry model in the context of an exponential family of
distributions, and the directly related motivations, may be particularly useful in ad-
vancing or expanding its application. Finally, we hope the work may be useful in
devising material for engaging wider audiences. Some of the subject matter that the
Bradley-Terry model relates to — ratings in general, especially when applied to fields
like sports — are ones that can be of great interest to student and outside audiences,
and so it is to be hoped that this work can assist in that engagement.
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von Mises, R. (1918). Über die “Ganzzahligkeit” der Atomgewicht und verwandte
Fragen. Physikalische Zeitschrift, 19:490–500.

Wei, T.-H. (1952). Algebraic foundations of ranking theory. PhD thesis, University
of Cambridge.

Wobus, J. (2007). Krach ratings. http://sports.vaporia.com/krach.html, ac-
cessed October 4, 2022.

Wu, W., Niezink, N., and Junker, B. (2022). A diagnostic framework for the bradley–
terry model. Journal of the Royal Statistical Society Series A: Statistics in Society,
185(Supplement 2):S461–S484.

Yellot, J. (1977). The relationship between Luce’s choice axiom, Thurstone’s theory
of comparative judgment, and the double exponential distribution. Journal of
Mathematical Psychology, 15(2):109–144.

Zermelo, E. (1928). Die Berechnung der Turnier-ergebnisse als ein Maximumproblem
der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 29(1):436–460.

51

http://sports.vaporia.com/krach.html

	Introduction
	Axiomatic motivations
	Transitivity of odds
	Luce's Choice Axiom
	Reciprocity
	Wins as a sufficient statistic

	Objective function maximisation
	Maximum entropy with retrodictive criterion
	Maximum likelihood estimation with retrodictive criterion
	Geometric minimisation
	Definitional simplicity 1
	Definitional simplicity 2

	Discriminal processes
	Exponential Distribution
	Extreme value distributions
	Gumbel distribution
	Weibull distribution
	Fréchet distribution


	Standard models
	Rasch model
	Mallows' -model
	von Mises-Fisher distribution
	Cox proportional hazards model
	Network models

	Game scenarios
	Poisson scoring
	Sudden death
	Accumulated win ratio
	Continuous time state transition

	Quasi-symmetry and consistent estimators
	PageRank
	Fair Bets
	Wei-Kendall
	Ratings Percentage Index
	``Winner stays on'' - Barker's algorithm

	Discussion
	The Bradley-Terry model as an exponential family of distributions
	Motivation-switching
	Sports ranking
	Comparative Judgement


	Concluding Remarks

