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ABSTRACT
Detecting clusters or communities in large real-world graphs such
as large social or information networks is a problem of considerable
interest. In practice, one typically chooses an objective function
that captures the intuition of a network cluster as set of nodes with
better internal connectivity than external connectivity, and then one
applies approximation algorithms or heuristics to extract sets of
nodes that are related to the objective function and that “look like”
good communities for the application of interest.

In this paper, we explore a range of network community detec-
tion methods in order to compare them and to understand their rela-
tive performance and the systematic biases in the clusters they iden-
tify. We evaluate several common objective functions that are used
to formalize the notion of a network community, and we examine
several different classes of approximation algorithms that aim to
optimize such objective functions. In addition, rather than simply
fixing an objective and asking for an approximation to the best clus-
ter of any size, we consider a size-resolved version of the optimiza-
tion problem. Considering community quality as a function of its
size provides a much finer lens with which to examine community
detection algorithms, since objective functions and approximation
algorithms often have non-obvious size-dependent behavior.

Categories and Subject Descriptors: H.2.8 Database Manage-
ment: Database applications – Data mining

General Terms: Measurement; Experimentation.

Keywords: Community structure; Graph partitioning; Conduc-
tance; Spectral methods; Flow-based methods.

1. INTRODUCTION
Detecting clusters or communities in real-world graphs such as

large social networks, web graphs, and biological networks is a
problem of considerable practical interest that has received a great
deal of attention [16, 17, 13, 8, 19]. A “network community” (also
sometimes referred to as a module or cluster) is typically thought of
as a group of nodes with more and/or better interactions amongst
its members than between its members and the remainder of the
network [30, 16].

To extract such sets of nodes one typically chooses an objective
function that captures the above intuition of a community as a set
of nodes with better internal connectivity than external connectiv-
ity. Then, since the objective is typically NP-hard to optimize ex-
actly [24, 4, 31], one employs heuristics [16, 20, 9] or approxima-
tion algorithms [25, 33, 2] to find sets of nodes that approximately
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optimize the objective function and that can be understood or in-
terpreted as “real” communities. Alternatively, one might define
communities operationally to be the output of a community detec-
tion procedure, hoping they bear some relationship to the intuition
as to what it means for a set of nodes to be a good community [16,
29]. Once extracted, such clusters of nodes are often interpreted
as organizational units in social networks, functional units in bio-
chemical networks, ecological niches in food web networks, or sci-
entific disciplines in citation and collaboration networks [16, 30].

In applications, it is important to note that heuristic approaches to
and approximation algorithms for community detection often find
clusters that are systematically “biased,” in the sense that they re-
turn sets of nodes with properties that might be substantially differ-
ent than the set of nodes that achieves the global optimum of the
chosen objective. For example, many spectral-based methods tend
to find compact clusters at the expense that they are not so well
separated from the rest of the network; while other methods tend
to find better-separated clusters that may internally be “less nice.”
Moreover, certain methods tend to perform particularly well or par-
ticularly poorly on certain kinds of graphs, e.g., low-dimensional
manifolds or expanders. Thus, drawing on this experience, it is of
interest to compare these algorithms on large real-world networks
that have many complex structural features such as sparsity, heavy-
tailed degree distributions, small diameters, etc. Moreover, depend-
ing on the particular application and the properties of the network
being analyzed, one might prefer to identify specific types of clus-
ters. Understanding structural properties of clusters identified by
various algorithmic methods and various objective functions can
guide in selecting the most appropriate graph clustering method in
the context of a given network and target application.

In this paper, we explore a range of different community detec-
tion methods in order to elucidate these issues and to understand
better the performance and biases of various network community
detection algorithms on different kinds of networks. To do so,
we consider a set of more than 40 networks; 12 common objec-
tive functions that are used to formalize the concept of community
quality; and 8 different classes of approximation algorithms to find
network communities. One should note that we are not primarily
interested in finding the “best” community detection method or the
most “realistic” formalization of a network community. Instead, we
aim to understand the structural properties of clusters identified by
various methods, and then depending on the particular application
one could choose the most suitable clustering method.

We describe several classes of empirical evaluations of meth-
ods for network community detection to demonstrate the artifac-
tual properties and systematic biases of various community detec-
tion objective functions and approximation algorithms. We also
discuss several meta-issues related to community detection algo-
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rithms in very large graphs, including whether or not existing algo-
rithms are sufficiently powerful to recover interesting communities
and whether or not meaningful communities exist at all. Also in
contrast to previous attempts to evaluate community detection al-
gorithms and/or objective functions, we consider a size-resolved
version of the typical optimization problem. That is, rather than
simply fixing an objective and asking for an approximation to the
best cluster of any size or some fixed partitioning, we ask for an
approximation to the best cluster for every possible size. This pro-
vides a much finer lens with which to examine community detection
algorithms, since objective functions and approximation algorithms
often have non-obvious size-dependent behavior.

The rest of the paper is organized as follows. Section 2 gives the
background and surveys the rich related work in the area of network
community detection. Then, in Section 3.1, we compare structural
properties of clusters extracted by two clustering methods based
on two completely different computational paradigms—a spectral-
based graph partitioning method Local Spectral and a flow-based
partitioning algorithm Metis+MQI; and in Section 3.2, we extend
the analyses by considering related heuristic-based clustering algo-
rithms that in practice perform very well. Section 4 then focuses
on 11 different objective functions that attempt to capture the no-
tion of a community as a set of nodes with better intra- than inter-
connectivity. To understand the performance of various community
detection algorithms at different size scales we compute theoretical
lower bounds on the conductance community-quality score in Sec-
tion 5. We conclude in Section 6 with some general observations.

2. RELATED WORK AND BACKGROUND
Here we survey related work and summarize our previous work,

with an emphasis on technical issues that motivate this paper.

2.1 Related work
A great deal of work has been devoted to finding communities in

large networks, and much of this has been devoted to formalizing
the intuition that a community is a set of nodes that has more and/or
better links between its members than with the remainder of the net-
work. Very relevant to our work is that of Kannan, Vempala, and
Vetta [18], who analyze spectral algorithms and describe a commu-
nity concept in terms of a bicriterion depending on the conductance
of the communities and the relative weight of between-community
edges. Flake, Tarjan, and Tsioutsiouliklis [11] introduce a similar
bicriterion that is based on network flow ideas, and Flake et al. [10]
defined a community as a set of nodes that has more edges point-
ing inside the community than to the rest of the network. Similar
edge-counting ideas were used by Radicchi et al. [30] to define and
apply the notions of a strong community and a weak community.

Within the “complex networks” community, Girvan and New-
man [16] proposed an algorithm that used “betweenness centrality”
to find community boundaries. Following this, Newman and Gir-
van [29] introduced modularity as an a posteriori measure of the
overall quality of a graph partition. Modularity measures internal
(and not external) connectivity, but it does so with reference to a
randomized null model. Modularity has been very influential in re-
cent community detection literature, and one can use spectral tech-
niques to approximate it [34, 28]. However, Guimerà, Sales-Pardo,
and Amaral [17] and Fortunato and Barthélemy [13] showed that
random graphs have high-modularity subsets and that there exists a
size scale below which modularity cannot identify communities.

Finally, we should note several other lines of related work. First,
the Local Spectral Algorithm of Andersen, Chung, and Lang [2]
was used by Andersen and Lang [3] to find (in a scalable manner)
medium-sized communities in very large social graphs. Second,

other recent work has also focused on developing local and/or near-
linear time heuristics for community detection include [7]. Third,
there also exists work which views communities from a somewhat
different perspective. For recent reviews of the large body of work
in this area, see [14, 31, 12, 21].

2.2 Background and motivation
We model each network by an undirected graph, in which nodes

represent entities and edges represent interactions between pairs of
entities. We perform the evaluation of community detection algo-
rithms in a large corpus of over 100 social and information net-
works1. The networks we studied range in size from tens of nodes
and scores of edges up to millions of nodes and tens of millions
of edges; and they were drawn from a wide range of domains, in-
cluding large social networks, citation networks, collaboration net-
works, web graphs, communication networks, citation networks,
internet networks, affiliation networks, and product co-purchasing
networks. In the present work we focus on a subset of these. In par-
ticular, we consider a bipartite authors-to-papers network of DBLP
(AUTHTOPAP-DBLP), Enron email network (EMAIL-ENRON), a
co-authorship network of Arxiv Astro physics papers (COAUTH-
ASTRO-PH), and a social network of Epinions.com (EPINIONS).
See [1] for further information and properties of these networks.

Even though we consider various notions of community score we
will primarily work with conductance, which arguably is the sim-
plest notion of cluster quality, as it can be simply thought of as the
ratio between the number of edges inside the cluster and the number
of edge leaving the cluster [32, 18]. More formally, conductance
φ(S) of a set of nodes S is φ(S) = cS/min(Vol(S),Vol(V \S)),
where cS denotes the size of the edge boundary, cS = |{(u, v) :
u ∈ S, v /∈ S}|, and Vol(S) =

∑
u∈S d(u), where d(u) is the

degree of node u. Thus, in particular, more community-like sets
of nodes have lower conductance. For example in Figure 1(left),
sets A and B have conductance φ(A) = 2

14
> φ(B) = 1

11
, so the

set of nodes B is more community-like than the set A. Conduc-
tance captures a notion of “surface area-to-volume,” and thus it is
widely-used to capture quantitatively the gestalt notion of a good
network community as a set of nodes that has better internal- than
external-connectivity [14, 31].

We then generalize the notion of the quality of a single clus-
ter into a size resolved version. Using a particular measure of
network community quality f(S), e.g., conductance or one of the
other measures described in Section 4, we then define the network
community profile (NCP) [27, 26] that characterizes the quality of
network communities as a function of their size. For every k be-
tween 1 and half the number of nodes in the network2, we define
Φ(k) = min|S|=k f(S). That is, for every possible community
size k, f(k) measures the score of the most community-like set of
nodes of that size, and the NCP measures Φ(k) as a function of k.

For example, in Figure 1(middle) we use conductance as a mea-
sure of cluster quality and for k = 4, among all sets of 4-nodes, B
has best conductance, and thus Φ(4) = 1

11
. Similarly, D and D+E

denote the best conductance sets on 3 and 6 nodes, respectively.
Just as the magnitude of the conductance provides information

about how community-like is a set of nodes, the shape of the NCP
provides insight into how well expressed are network communi-
ties as a function of their size. Moreover, the NCP also provides a
lens to examine the quality of clusters of various sizes. Thus in the
majority of our experiments we will examine and compare differ-

1Networks used in this paper are available at the supporting web-
site [1]: http://snap.stanford.edu/ncp
2Note that one only needs to consider clusters of sizes up to half
the number of nodes in the network since φ(S) = φ(V \ S).
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Figure 1: NCP plot (middle) of a small network (left). NCP of LiveJournal network computed using two different methods.

ent clustering algorithms and objective functions through various
notions of the NCP plot and other kinds of structural metrics of
clusters and how they depend/scale with the size of the cluster.

Moreover, the shape of the NCP is also interesting for a very
different reason. It gives us a powerful way to quantify and sum-
marize the large-scale community structure of networks. We [27,
26] found that the NCP behaves in a characteristic manner for a
range of large social and information networks: when plotted on
log-log scales, the NCP tends to have a universal “V” shape (Fig-
ure 1(right)). Up to a size scale of about 100 nodes, the NCP de-
creases, which means that the best-possible clusters are getting pro-
gressively better with the increasing size. The NCP then reaches
the minimum at around k = 100 and then gradually increases
again, which means that at larger size scales network communities
become less and less community-like. (This should be contrasted
with behavior for mesh-like networks, road networks, common net-
work generation models, and small commonly-studied networks,
for which the NCP is either flat or downward-sloping [27, 26].)
The shape of the NCP can be explained by an onion-like “nested
core-periphery” structure, where the network consists of a large
core (slightly denser and more expander-like than the full graph,
but which itself has a core-periphery structure) and a large number
of small very well-connected communities barely connected to the
core [27, 26]. In this context, it is important to understand the char-
acteristics of various community detection algorithms in order to
make sure that the shape of NCP is a property of the network rather
than an artifact of the approximation algorithm or the function that
formalizes the notion of a network community.

3. COMPARISON OF ALGORITHMS
We compare different clustering algorithms and heuristics. We

focus our analyses on two aspects. First, we are interested in the
quality of the clusters that various methods are able to find. Ba-
sically, we would like to understand how well algorithms perform
in terms of optimizing the notion of community quality (conduc-
tance in this case). Second, we are interested in quantifying the
structural properties of the clusters identified by the algorithms. As
we will see, there are fundamental tradeoffs in network commu-
nity detection—for a given objective function, approximation algo-
rithms are often biased in a sense that they consistently find clusters
with particular internal structure.

We break the experiments into two parts. First, we compare
two graph partitioning algorithms that are theoretically well under-
stood and are based on two very different approaches: a spectral-
based Local Spectral partitioning algorithm, and the flow-based
Metis+MQI. Then we consider several heuristic approaches to net-
work community detection that work well in practice.

3.1 Flow and spectral methods
In this section we compare the Local Spectral Partitioning algo-

rithm [2] with the flow-based Metis+MQI algorithm. The latter is a

surprisingly effective heuristic method for finding low-conductance
cuts, which consists of first using the fast graph bi-partitioning pro-
gram Metis [20] to split the graph into two equal-sized pieces, and
then running MQI, an exact flow-based technique [15, 23] for find-
ing the lowest conductance cut whose small side in contained in
one of the two half-graphs chosen by Metis.

Each of those two methods (Local Spectral and Metis+MQI) was
run repeatedly with randomization on each of our graphs, to pro-
duce a large collection of candidate clusters of various sizes, plus a
lower-envelope curve. The lower-envelope curves for the two algo-
rithms were the basis for the plotted NCP’s in the earlier paper [27].
In the current paper the lower-envelope curves for Local Spectral
and Metis+MQI are plotted respectively as a red line and a green
line in Figure 1(right), and as pairs of black lines in Figure 2(top)
and Figures 4 and 7. Note that the Metis+MQI curves are gener-
ally lower, indicating that this method is generally better than Local
Spectral at the nominal task of finding cuts with low conductance.

However, as we will demonstrate using the scatter plots of Fig-
ure 2, the clusters found by the Local Spectral Method often have
other virtues that compensate for their worse conductance scores.
As an extreme example, many of the raw Metis+MQI clusters are
internally disconnected, which seems like a very bad property for
an alleged community. By contrast, the Local Spectral Method al-
ways returns connected clusters. Acknowledging that this is a big
advantage for Local Spectral, we then modified the collections of
raw Metis+MQI clusters by splitting every internally disconnected
cluster into its various connected components. Then, in all scatter
plots of Figure 2, blue dots represent raw Local Spectral clusters,
which are internally connected, while red dots represent broken-up
Metis+MQI clusters, which are also internally connected.

Let us now consider the top row of scatter plots of Figure 2 which
compares the conductance scores (as a function of cluster size) of
the collections of clusters produced by the two algorithms. The
cloud of blue points (Local Spectral clusters) lies generally above
the cloud of red points (Metis+MQI clusters), again illustrating that
Local Spectral tends to be a weaker method for minimizing con-
ductance score. In more detail, we find that Local Spectral and
Metis+MQI tend to identify similar pieces at very small scales, but
at slightly larger scales a gap opens up between the red cloud and
the blue cloud. At those intermediate size scales, Metis+MQI is
finding lower conductance cuts than Local Spectral.

However, the Local Spectral algorithm returns pieces that are in-
ternally more compact. This is shown in the middle row of Figure 2
where for each of the (connected) pieces for which we plotted a
conductance in the top row, we are now plotting the average short-
est path length between random node pairs in that piece. In these
plots, we see that in the same size range where Metis+MQI is gen-
erating clearly lower conductance connected sets, Local Spectral is
generating pieces with clearly shorter internal paths, i.e., smaller
diameter sets. In other words, the Local Spectral pieces are more
“compact.” This effect is especially pronounced in the DBLP affil-
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Conductance of connected clusters found by Local Spectral (blue) and Metis+MQI (red)

Cluster compactness: average shortest path length

Cluster compactness: external vs. internal conductance

Figure 2: Comparison of Local Spectral (blue) and Metis+MQI (red) on connected clusters. Top: the conductance of the bounding
cut. Middle: the average shortest path length in the cluster. Bottom: the ratio of the external conductance to the internal conductance.
Generally Metis+MQI yields better cuts while Local Spectral yields clusters that are more compact: they have shorter path lengths
and better internal connectivity.

iation network, while it also shows up in the Enron email network
and the astrophysics collaboration network. Moreover, we made
similar observations also for many other datasets (plots not shown).

Finally, in the bottom row of Figure 2 we introduce the topic of
internal vs. external cuts, which is something that none of the exist-
ing algorithms is explicitly optimizing. These are again scatter plots
showing the same set of Local Spectral and Metis+MQI pieces as
before, but now the y-axis is external conductance divided by in-
ternal conductance. External conductance is the quantity that we
usually plot, namely the conductance of the cut which separates
the cluster from the graph. Internal conductance is the score of a
low conductance cut inside the cluster. That is, we take the induced
subgraph on the cluster’s nodes and then find best conductance cut
inside the cluster.

We then compare the ratios of the conductance of the bounding
cut and the internal conductance. Intuitively, good and compact
communities should have small ratios, ideally below 1.0, which
would mean that those clusters are well separated from the rest of
the network and that they are also internally well-connected and

hard to cut again. However, the three bottom-row plots of Fig-
ure 2 show the ratios. Points above the horizontal line are clusters
which are easier to cut internally than they were to be cut from
the rest of the network; while points below the line are clusters that
were relatively easy to cut from the network and are internally well-
connected. Notice that here the distinction between the two meth-
ods is less clear. On the one hand, Local Spectral finds clusters that
have worse (higher) bounding cut conductance, while such clusters
are also internally more compact (have internal cuts of higher con-
ductance). On the other hand, Metis+MQI finds clusters that have
better (lower) bounding cut conductance but are also internally easy
to cut (have internal cut of lower conductance). Thus when one
takes the ratio of the two quantities we observe qualitatively simi-
lar behaviors. However, notice that Local Spectral seem to return
clusters with higher variance in the ratio of external-to-internal con-
ductance. At small size scales Metis+MQI tends to give clusters of
slightly better (lower) ratio, while at larger clusters the advantage
goes to Local Spectral. This has interesting consequence for the
applications of graph partitioning since (depending on the particu-
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lar application domain and the sizes and properties of clusters one
aims to extract) either Local Spectral or Metis+MQI may be the
method of choice.

Also, notice that there are mostly no ratios well below 1.0, except
for very small sizes. This is important, as it seems to hint that
large clusters are relatively hard to cut from the network, but are
then internally easy to split into multiple sub-clusters. This shows
another aspect of our findings: small communities below ≈ 100
nodes are internally compact and well separated from the remainder
of the network, whereas larger clusters are so hard to separate that
cutting them from the network is more expensive than cutting them
internally. Community-like sets of nodes that are better connected
internally than externally don’t seem to exist in large real-world
networks, except at very small size scales.

Last, in Figure 3, we further illustrate the differences between
spectral and flow-based clusters by drawing some example sub-
graphs. The two subgraphs shown on the left of Figure 3 were
found by Local Spectral, while the two subgraphs shown on the
right of Figure 3 were found by Metis+MQI. These two pairs of
subgraphs have a qualitatively different appearance: Metis+MQI
pieces look longer and stringier than the Local Spectral pieces.
All of these subgraphs contain roughly 500 nodes, which is about
the size scale where the differences between the algorithms start to
show up. In these cases, Local Spectral has grown a cluster out a
bit past its natural boundaries (thus the spokes), while Metis+MQI
has strung together a couple of different sparsely connected clus-
ters. (We remark that the tendency of Local Spectral to trade off
cut quality in favor of piece compactness isn’t just an empirical
observation, it is a well understood consequence of the theoretical
analysis of spectral partitioning methods.)

3.2 Other algorithms
Next we consider various other, mostly heuristic, algorithms and

compare their performance in extracting clusters of various sizes.
As a point of reference we use results obtained by the Local Spec-
tral and Metis+MQI algorithms.

We have extensively experimented with several variants of the
global spectral method, both the usual eigenvector-based embed-
ding on a line, and an SDP-based embedding on a hypersphere,
both with the usual hyperplane-sweep rounding method and a flow-
based rounding method which includes MQI as the last step. In
addition, special post-processing can be done to obtain either con-
nected or disconnected sets.

We also experimented with a practical version of the Leighton-
Rao algorithm [24, 25], similar to the implementation described
in [22, 23]. These results are especially interesting because the
Leighton-Rao algorithm, which is based on multi-commodity flow,
provides a completely independent check on Metis, and on spectral
methods generally. The Leighton-Rao algorithm has two phases.
In the first phase, edge congestions are produced by routing a large
number of commodities through the network. We adapted our pro-
gram to optimize conductance (rather than ordinary ratio cut score)
by letting the expected demand between a pair of nodes be pro-
portional to the product of their degrees. In the second phase, a
rounding algorithm is used to convert edge congestions into actual
cuts. Our method was to sweep over node orderings produced by
running Prim’s Minimum Spanning Tree algorithm on the conges-
tion graph, starting from a large number of different initial nodes,
using a range of different scales to avoid quadratic run time. We
used two variations of the method, one that produces connected
sets, and another one that can also produce disconnected sets.

In top row of Figure 4, we show Leighton-Rao curves for three
example graphs. Local Spectral and Metis+MQI curves are drawn

in black, while the Leighton-Rao curves for connected and possibly
disconnected sets are drawn in green and magenta respectively. For
small to medium scales, the Leighton-Rao curves for connected
sets resemble the Local Spectral curves, while the Leighton-Rao
curves for possibly disconnected sets resemble Metis+MQI curves.
This further confirms the structure of clusters produced by Local
Spectral and Metis+MQI, as discussed in Section 3.1.

At large scales, the Leighton-Rao curves shoot up and become
much worse than Local Spectral or Metis+MQI. That Leighton-
Rao has troubles finding good big clusters is not surprising be-
cause expander graphs are known to be the worst case input for
the Leighton-Rao approximation guarantee. Large real networks
contain an expander-like core which is necessarily encountered at
large scales. We remark that Leighton-Rao does not work poorly
at large scales on every kind of graph. (In fact, for large low-
dimensional mesh-like graphs, Leighton-Rao is a very cheap and
effective method for finding cuts at all scales, while our local spec-
tral method becomes impractically slow at medium to large scales.)
This means that based on the structure of the network and sizes of
clusters one is interested in different graph partitioning methods
should be used. While Leighton-Rao is an appropriate method for
mesh-like graphs, it has troubles in the intermingled expander-like
core of large networks.

Finally, in addition to the above approximation algorithms-based
methods for finding low-conductance cuts, we also experimented
with a number of more heuristic approaches that tend to work well
in practice. In particular, we compare Graclus [9] and Newman’s
modularity optimizing program (we refer to it as Dendrogram) [16].
Graclus attempts to partition a graph into pieces bounded by low-
conductance cuts using a kernel k-means algorithm. We ran Gra-
clus repeatedly, asking for 2, 3, . . . , i, i ∗ √

2, ... pieces. Then we
measured the size and conductance of all of the resulting pieces.
Newman’s Dendrogram algorithm constructs a recursive partition-
ing of a graph (that is, a dendrogram) from the bottom up by re-
peatedly deleting the surviving edge with the highest betweenness
centrality. A flat partitioning could then be obtained by cutting at
the level which gives the highest modularity score, but instead of
doing that, we measured the size of conductance of every piece
defined by a subtree in the dendrogram.

The bottom row of Figure 4 presents these results. Again our
two standard curves are drawn in black. The lower-envelopes of
the Graclus or Dendrogram points are roughly similar to those pro-
duced by Local Spectral, which means both methods tend to pro-
duce rather compact clusters at all size scales. Generally, Graclus
tends to produce a variety of clusters of better conductance than
Newman’s algorithm. Moreover, notice that in case of Epinions
social network and the astrophysics coauthorship network Graclus
tends to prefer larger clusters than the Newman’s algorithm. Also,
Graclus seems to find clusters of ten or more nodes, while New-
mans’s algorithm also extracts very small pieces. In general, clus-
ters produced by either Graclus or Dendrogram are qualitatively
similar to those produced by Local Spectral. This means that even
though Local Spectral is computationally cheaper and easily scales
to very large networks, the quality of identified clusters is compa-
rable to that returned by techniques such as Graclus and Dendro-
gram that are significantly more expensive on large networks such
as those we considered.

4. COMPARISON OF OBJECTIVE
FUNCTIONS

In the previous sections, we used conductance since it corre-
sponds most closely to the intuition that a community is a set of
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Figure 3: Two examples of clusters found by the LocalSpectral algorithm (on the left) and two from the Metis+MQI algorithm (on
the right). Note that the Local Spectral clusters are more compact—they are tighter and have smaller diameter since the algorithm
has difficulty pushing probability mass down long extended paths—while the Metis+MQI clusters are more sprawling—they have
larger diameter and more diverse internal structure, but better conductance scores. In both cases, we have shown communities with
ca. 500 nodes (many of nodes overlap at resolution of this figure).
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Leighton-Rao: connected clusters (green), disconnected clusters (magenta).

NCP plots obtained by Graclus and Newman’s Dendrogram algorithm.

Figure 4: Comparison of various algorithms on EPINIONS, EMAIL-ENRON, and CA-ASTRO-PH. Top row: NCP plots for connected
(green) and disconnected (magenta) pieces from our implementation of the Leighton-Rao algorithm. Bottom row: conductance of
cuts found by Graclus and by Newman’s Dendrogram algorithm. Notice the qualitative shape of the NCP plots remains practically
unchanged regardless of what particular community detection algorithm we use. Small clusters tend to be connected, while for
clusters larger than about 100 nodes connected clusters have around 5 times worse conductance score than disconnected clusters.

nodes that is more and/or better connected internally than exter-
nally. In this section, we look at other objective functions that cap-
ture this intuition and/or are popular in the community detection
literature.

In general there are two criteria of interest when thinking about
how good of a cluster is a set of nodes. The first is the number
of edges between the members of the cluster, and the second is
the number of edges between the members of the cluster and the
remainder of the network. We group objective functions into two
groups. The first group, that we refer to as Multi-criterion scores,
combines both criteria (number of edges inside and the number of
edges crossing) into a single objective function; while the second
group of objective functions employs only a single of the two cri-
teria (e.g., volume of the cluster or the number of edges cut).

4.1 Multi-criterion scores
Let G(V,E) be an undirected graph with n = |V | nodes and

m = |E| edges. Let S be the set of nodes in the cluster, where nS

is the number of nodes in S, nS = |S|; mS the number of edges in
S, mS = |{(u, v) : u ∈ S, v ∈ S}|; and cS , the number of edges
on the boundary of S, cS = |{(u, v) : u ∈ S, v �∈ S}|; and d(u) is
the degree of node u.

We consider the following metrics f(S) that capture the notion
of a quality of the cluster. Lower value of score f(S) (when |S| is
kept constant) signifies a more community-like set of nodes.

• Conductance: f(S) = cS
2mS+cS

measures the fraction of
total edge volume that points outside the cluster [32, 18].

• Expansion: f(S) = cS
nS

measures the number of edges per
node that point outside the cluster [30].
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• Internal density: f(S) = 1 − mS
nS(nS−1)/2

is the internal
edge density of the cluster S [30].

• Cut Ratio: f(S) = cS
nS(n−nS )

is the fraction of all possible
edges leaving the cluster [12].

• Normalized Cut: f(S) = cS
2mS+cS

+ cS
2(m−mS )+cS

[32].

• Maximum-ODF (Out Degree Fraction):
maxu∈S

|{(u,v):v �∈S}|
d(u)

is the maximum fraction of edges of
a node pointing outside the cluster [10].

• Average-ODF: f(S) = 1
nS

∑
u∈S

|{(u,v):v �∈S}|
d(u)

is the aver-
age fraction of nodes’ edges pointing outside the cluster [10].

• Flake-ODF: f(S) = |{u:u∈S,|{(u,v):v∈S}|<d(u)/2}|
nS

is the
fraction of nodes in S that have fewer edges pointing inside
than to the outside of the cluster [10].

We then generalize the NCP plot: for every cluster size k we find
a set of nodes S (|S| = k) that optimizes the chosen community
score f(S). We then plot community score as a function of k. It is
not clear how to design an optimization procedure that would, given
a cluster size k and the community score function f(S), find the set
S that minimizes the function, i.e., is the best community. Oper-
ationally, we perform the optimization the following way: we use
the Local Spectral method which starts from a seed node and then
explores the cluster structure around the seed node; running Local
Spectral from each node, we obtain a millions of sets of nodes of
various sizes, many of which are overlapping; and then for each
such set of nodes, we compute the community score f(S) and find
the best cluster of each size.

Figure 5 considers the above eight community scores. Notice
that even though scores span different ranges they all experience
qualitatively similar behavior, where clusters up to size ca. 100
have progressively better scores, while the clusters above ca. 100
nodes become less community-like as their size increases. This
may seem surprising at the first sight, but it should be somewhat
expected, as all these objective functions try to capture the same
basic intuition—they reward sets of nodes that have many edges
internally and few pointing out of the clusters.

There are, however, subtle differences between various scores.
For example, even though Flake-ODF follows same general trend
as conductance, it reaches the minimum about an order of mag-
nitude later than conductance, normalized cut, cut ratio score or
the Average-ODF. On the other hand, Maximum-ODF exhibits the
opposite behavior as it clearly prefers smaller clusters and is basi-
cally flat for clusters larger than about several hundred nodes. This
is interesting as this shows the following trend: if one scores the
community by the “worst-case” node using the Out Degree Frac-
tion (i.e., Maximum-ODF) then only small clusters have no outliers
and thus give good scores. When one considers the average frac-
tion of node’s edges pointing outside the cluster (Average-ODF)
the objective function closely follows the trend of conductance. On
the other hand, if one considers the fraction of nodes in the clus-
ter with more of their edges pointing inside than outside the cluster
(Flake-ODF), then large clusters are preferred.

Next, focusing on the cut ratio score we notice that it is not very
smooth, in the sense that even for large clusters its values seem to
fluctuate quite a lot. This indicates that clusters of similar sizes
can have very different numbers of edges pointing to the rest of the
network. In terms of their internal density, the variations are very
small—the internal density reaches the maximum for clusters of
sizes around 10 nodes and then quickly raises to 1, which means
larger clusters get progressively sparser. For large clusters this
is not particularly surprising as the normalization factor increases
quadratically with the cluster size. This can be contrasted with the

Expansion score that measures the number of edges pointing out-
side the cluster but normalizes by the number of nodes (not the
number of all possible edges).

These experiments suggest that Internal Density and Maximum-
ODF are not particularly good measures of community score and
the cut ratio score may not be preferred due to high variance. Flake-
ODF seems to prefer larger clusters, while conductance, expansion,
normalized cut, and Average-ODF all exhibit qualitatively similar
behaviors and give best scores to similar clusters.

In addition, we performed an experiment where we extracted
clusters based on their conductance score but then also computed
the values of other community scores (for these same clusters).
This way we did not optimize each community score separately,
but rather we optimized conductance and then computed values of
other objective functions on these best-conductance pieces. The
shape of the plots remained basically unchanged, which suggests
that same sets of nodes achieve relatively similar scores regardless
of which particular notion of community score is used (conduc-
tance, expansion, normalized cut, or Average-ODF). This shows
that these four community scores are highly correlated and in prac-
tice prefer practically the same clusters.

4.2 Single criterion scores
Next we also consider community scores that consider a single

criteria. One such example is Modularity [28], which is one of the
most widely used methods to evaluate the quality of a division of
a network into modules or communities. For a given partition of a
network into clusters, modularity measures the number of within-
community edges, relative to a null model of a random graph with
the same degree distribution.

Here we consider the following four notions of a quality of the
community that are based on using one or the other of the two cri-
teria of the previous subsection:

• Modularity: 1
4m

(mS − E(mS)), where E(mS) is the ex-
pected number of edges between the nodes in set S in a ran-
dom graph with the same node degree sequence.

• Modularity ratio: mS
E(mS)

is alternative definition of the
modularity, where we take the ratio of the number of edges
between the nodes of S and the expected number of such
edges under the null-model.

• Volume:
∑

u∈S d(u) is sum of degrees of nodes in S.
• Edges cut: cS is number of edges needed to be removed to

disconnect nodes in S from the rest of the network.

Figure 6 shows the analog of the NCP plot where now instead
of conductance we use these four measures. A general observation
is that modularity tends to increase roughly monotonically towards
the bisection of the network. This should not be surprising since
modularity measures the “volume” of communities, with (empir-
ically, for large real-world networks) a small additive correction,
and the volume clearly increases with community size. On the
other hand, the modularity ratio tends to decrease towards the bi-
section of the network. This too should not be surprising, since
it involves dividing the volume by a relatively small number. Re-
sults in Figure 6 demonstrate that, with respect to the modularity,
the “best” community in any of these networks has about half of
all nodes; while, with respect to the modularity ratio, the “best”
community in any of these networks has two or three nodes.

Leaving aside debates about community-quality objective func-
tions, note that, whereas the conductance and related measures are
discriminative, in that they prefer different kinds of clusters, de-
pending on the type of network being considered, modularity tends
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Figure 5: Various notions of community score as a function of
cluster size. All community scores (see main text for descrip-
tions) have qualitatively similar behaviors. They tend to de-
crease at first, which means clusters get increasingly more com-
munity like as their size increases. After that the score tends to
degrade (it increases), which means clusters larger than about
100 nodes get progressively less community like.

to follow the same general pattern for all of these classes of net-
works. That is, even aside from community-related interpretations,
conductance (as well as several of the other bi-criterion objectives
considered in Section 4.1) has qualitatively different types of be-
haviors for very different types of graphs (e.g., low-dimensional
graphs, expanders, large real-world social and information networks),

whereas modularity and other single-criterion objectives behave in
qualitatively similar ways for all these diverse classes of graphs.

5. COMPUTING LOWER BOUNDS
So far we have examined various heuristics and approximation

algorithms for community detection and graph partitioning. Com-
mon to these approaches is that they all only approximately find
good cuts, i.e., they only approximately optimize the value of the
objective function. Thus the clusters they identify provide only an
upper bound on the true minimum best clusters. To get a better
idea of how good those upper bounds are, we compute theoretical
lower bounds. Here we discuss the spectral lower bound [6] on
the conductance of cuts of arbitrary balance, and a related SDP-
based lower bound [5] on the conductance of any cut that divides
the graph into two pieces of equal volume.

Lower bounds are usually not computed for practical reasons,
but instead are used to gain insights into partitioning algorithms
and properties of graphs where algorithms perform well or poorly.
Also, note that the lower bounds are “loose,” in the sense that they
do not guarantee that a cluster of a particular score exists; rather
they are just saying that there exists no cluster of better score.

First, we introduce the notation: �d is a column vector of the
graph’s node degrees; D is a square matrix whose only nonzero
entries are the graph’s node degrees on the diagonal; A is the adja-
cency matrix of G; L = D −A is then the non-normalized Lapla-
cian matrix of G; 1 is vector of 1’s; and A • B = trace(ATB)
is the matrix dot-product operator. Now, consider the following
optimization problem (which is well known to be equivalent to an
eigenproblem):

λG = min

{
xTLx

xTDx
: x ⊥ �d, x �= 0

}
.

Let x̂ be a vector achieving the minimum value λG. Then λG
2

is the
spectral lower bound on the conductance of any cut in the graph,
regardless of balance, while x̂ defines a spectral embedding of the
graph on a line, to which rounding algorithms can be applied to
obtain actual cuts that can serve as upper bounds at various sizes.

Next, we discuss an SDP-based lower bound on cuts which par-
tition the graph into two sets of exactly equal volume. Consider:

CG = min

{
1

4
L • Y : diag(Y ) = 1, Y • (�d �d T ) = 0, Y � 0

}
,

and let Ŷ be a matrix achieving the minimum value CG. Then
CG is a lower bound on the weight of any cut with perfect volume
balance, and 2CG/Vol(G) is a lower bound on the conductance of
any cut with perfect volume balance. We briefly mention that since
Y � 0, we can view Y as a Gram matrix that can be factored as
RRT . Then the rows of R are the coordinates of an embedding
of the graph on a hypersphere. Again, rounding algorithms can be
applied to the embedding to obtain actual cuts that can serve as
upper bounds.

The spectral and SDP embeddings defined here were the ba-
sis for the extensive experiments with global spectral partitioning
methods that were alluded to in Section 3. In this section, it is the
lower bounds that concern us. Figure 7 shows the spectral and SDP
lower bounds for three example graphs. The spectral lower bound,
which applies to cuts of any balance, is drawn as a horizontal red
line which appears near the bottom of each plot. The SDP lower
bound, which only applies to cuts separating a specific volume,
namely Vol(G)/2, appears as an red triangle near the right side
of the each plot. (Note that plotting this point required us to use
volume rather than number of nodes for the x-axis of these plots.)
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Figure 6: Four notions of community quality based on modularity. The curves do not exhibit any particularly interesting non-
monotonic trends. Partitions of roughly half the network tend to have best modularity.

Clearly, for these graphs, the lower bound at Vol(G)/2, is higher
than the spectral lower bound which applies at smaller scales. More
importantly, the lower bound at Vol(G)/2, is higher than our up-
per bounds at many smaller scales. This demonstrates two impor-
tant points: (1) It shows that best conductance clusters are orders
of magnitude better than best clusters consisting of half the edges;
and (2) It demonstrates that graph partitioning algorithms perform
well at various size scales. For all graph partitioning algorithms, the
minimum of their NCP plot is close to the spectral lower bound, and
the clusters at half the volume are again close to theoretically best
possible clusters. This suggests that graph partitioning algorithms
we considered here do a good job both at finding best possible clus-
ters and at bisecting the network.

Take, for example, the first plot of Figure 7, where in black we
plot the conductance curves obtained by our (Local Spectral and
Metis+MQI) algorithms. With a red dashed line we plot the lower
bound on the best possible cut in the network, and with red triangle
we plot the lower bound for the cut that separates the graph in two
equal volume parts. Thus, the true conductance curve (which is in-
tractable to compute) lies below black but above red line and red tri-
angle. From practical perspective this demonstrates that the graph
partitioning algorithms (Local Spectral and Metis+MQI in particu-
lar) do a good job of extracting clusters at all size scales. The lower
bounds tell us that the conductance curve which starts at upper left
corner first has to go down and reach the minimum close to the
horizontal dashed line (Spectral lower bound) and then sharply rise
and ends up above the red triangle (SDP lower bound). This verifies
several things: (1) graph partitioning algorithms perform well at all
size scales, as the extracted clusters have scores close to the theoret-
ical optimum; (2) the qualitative shape of the NCP is not an artifact
of graph partitioning algorithms or particular objective functions,
but rather it is an intrinsic property of these large networks; and (3)
the lower bounds at half the size of the graph indicate that our in-
ability to find large good-conductance communities is not a failings
of our algorithms. Instead such large good-conductance “commu-
nities” simply do not exist in these networks.

6. CONCLUSION
In this paper we examined in a systematic way a wide range of

network community detection methods originating from theoretical
computer science, scientific computing, and statistical physics. Our
empirical results demonstrate that determining the clustering struc-
ture of large networks is surprisingly intricate. In general, algo-
rithms nicely optimize the community score function over a range
of size scales, and the scores of obtained clusters are relatively
close to theoretical lower bounds. However, there are classes of
networks where certain algorithms perform sub-optimally. In addi-

tion, although many common community quality objectives tend to
exhibit similar qualitative behavior, with very small clusters achiev-
ing the best scores, several community quality metrics such as the
commonly-used modularity behave in qualitatively different ways.

Interestingly, intuitive notions of cluster quality tend to fail as
one aggressively optimizes the community score. For instance, by
aggressively optimizing conductance, one obtains disconnected or
barely-connected clusters that do not correspond to intuitive com-
munities. This suggests the rather interesting point (that we de-
scribed in Section 3.1) that approximate optimization of the com-
munity score introduces a systematic bias into the extracted clus-
ters, relative to the combinatorial optimum. Many times, as in case
of Local Spectral, such bias is in fact preferred since the resulting
clusters are more compact and thus correspond to more intuitive
communities. This connects very nicely to regularization concepts
in machine learning and data analysis, where separate penalty terms
are introduced in order to trade-off the fit of the function to the data
and its smoothness. In our case here, one is trading off the conduc-
tance of the bounding cut of the cluster and the internal cluster com-
pactness. Effects of regularization by approximate computation are
pronounced due to the extreme sparsity of real networks. How to
formalize a notion of regularization by approximate computation
more generally is an intriguing question raised by our findings.
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