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Modern graph neural networks do worse 
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The recent work by Schuetz et al.1 ‘Combinatorial optimization with 
physics-inspired graph neural networks’ introduces a physics-inspired 
unsupervised graph neural network (GNN) to solve combinatorial 
optimization problems on sparse graphs. To test the performances of 
these GNNs, the authors show numerical results for two fundamental 
problems: the maximum cut and the maximum independent set (MIS), 
concluding “that the graph neural network optimizer performs on par 
or outperforms existing solvers, with the ability to scale beyond the 
state of the art to problems with millions of variables”. Here we show 
that a simple greedy algorithm, running in almost linear time, can find 
solutions for the MIS problem of much better quality than the GNN in 
a much shorter time. In general, many claims of superiority of neural 
networks in solving combinatorial problems are at risk of being not 
solid enough, as we lack standard benchmarks based on really hard 
problems. We propose one of such hard benchmarks, and we hope to 
see future neural network optimizers tested on these problems before 
any claim of superiority is made.

Recent years have seen an incredible increase in the use of neural 
networks to solve all kinds of problems, both in applications and in 
fundamental science; discrete combinatorial optimization problems 
make no exception2–4 and are extremely relevant, given that they are 
often at the basis of our understanding of the fundamental computa-
tional limits.

For these reasons, the proposal made by Schuetz et al.1 to use 
physics-inspired unsupervised GNNs to solve combinatorial optimi-
zation problems defined on a graph seemed very promising and got 
published in a journal with high impact. The authors tested the perfor-
mance of the GNN on two standard optimization problems: the maxi-
mum cut and the MIS. A very good property of this newly introduced 
GNN optimizer is that it can scale to problem instances much larger 
than what many previous deep-learning approaches could handle5–7.

Let us focus on the MIS problem, which is defined as follows. Given 
an undirected random regular graph of fixed degree d (d-RRG) with n 
nodes, an independent set (IS) is a subset of vertices not containing any 
pair of nearest neighbours. The MIS problem then requires finding the 
largest IS, whose size is called α. The distribution of the MIS density α/n 
among different d-RRG concentrates for large n to a value ρ(d), which 
depends only on the degree d. The MIS is an NP-hard problem; however, 
one can hope to find an algorithm that finds in polynomial time an IS 
whose size is as close as possible to the maximal one. Moreover, the 
performances of a good algorithm should not degrade for larger n.

The GNN of ref. 1 can find the IS for graphs of very large sizes 
(n ≤ 106): the runtime is proportional to a small power of the prob-
lem size, t ≈ n1.7, and the performances are stable with n (this is highly 
non-trivial, looking at previous neural network approaches to optimiza-
tion problems5–7). The size of the IS found by the GNN and the running 
times are reported with open symbols in Fig. 1.

Problems in ref. 1 arise when comparing the GNN performances 
with other available algorithms and thus claiming the superiority 
of the approach based on GNN. Schuetz et al.1 consider only the  
Boppana–Halldorsson (BH) approximated algorithm8 that shows a 
runtime scaling as t ≈ n2.9 in the range n ≤ 500.

Comparison with simple greedy algorithms
However, there exist many other algorithms for computing ISs, that 
work much faster than BH, and the new GNN optimizer should be com-
pared with these too.

The simplest possible algorithm that one can design to solve the 
MIS problem is the greedy algorithm (GA)9, which takes a time to reach 
a solution that is linear in the problem size n. GA works as follows. It 
starts from an empty IS and G0 being the original graph. At each step t, 
a node is chosen at random from the graph Gt and added to the IS.  
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can be found in ref. 13. For completeness, we just report here the AR 
achieved by some of them (addressing the reader to ref. 13 for further 
details). Both simulated annealing and parallel tempering, two very 
effective algorithms based on Markov chain Monte Carlo (MCMC), 
reach ARMCMC(d = 3) ≈ 0.984 and ARMCMC(d = 5) ≈ 0.981. While belief 
propagation with reinforcement, a very effective message passing 
algorithm, can reach ARBPR(d = 3) ≈ 0.987 and ARBPR(d = 5) ≈ 0.981.

Not only are the performances of these standard algorithms 
overwhelming better than the GNN of ref. 1 but also they approach 
closely the supposedly optimal AR computed via the replica method, 
AR1RSB(d = 3) ≈ 0.990 and AR1RSB(d = 5) ≈ 0.987 (ref. 12). This observa-
tion suggests that finding the optimal MIS in d-RRG with d = 3, 5 is not 
a really hard problem and the optimum can be well approximated by 
algorithms running in polynomial time in n. Indeed, a statistical phys-
ics study investigating the structure of IS in d-RRG12 found that only 
for d > 16, increasing the IS size, the space of IS undergoes a clustering 
transition, which is usually related to hardness in sampling. For d < 16, 
the structure of IS is such that the MIS is likely to be easy to approximate.

A fundamental question at the time of evaluating a new optimiza-
tion algorithm is the following: ‘What are the really hard problems that 
should be used as a benchmark to test algorithmic performances?’.

We have argued that for the MIS using d-RRG with d < 16 is likely to 
be an easy problem and the test would be not very selective. However, 
for larger d, we expect the optimization to become much more demand-
ing because the clustering of the IS of large size is likely to create rele-
vant barriers that affect any algorithm searching for the MIS. This 
picture is supported by analytical results in the large d limit, where no 
algorithm is known to find ISs of density larger than ρalg(d) = log(d)/d, 
even if the MIS is known to have density ρmax(d) = 2 log(d)/d (ref. 14): 
that is, no algorithm achieves an AR better than 0.5 in this limit.

So, a possible answer to the fundamental question above is to 
study MIS on d-RRG with d > 16. And start by comparing with the results 
presented in ref. 13 for d = 20 and d = 100. Obviously, a good optimiza-
tion algorithm should run in a time polynomial (better if linear) in n, 
and the quality of solutions found should be better than simple existing 
algorithms and should not degrade with increasing n.

In our opinion, at present, optimizers based on neural networks 
(like the one presented in ref. 1) do not satisfy the above requirements 
and are not able to compete with simple standard algorithms to solve 
hard optimization problems. We showed that this is true for the GNN 
introduced in ref. 1 applied to the MIS problem and the same conclusion 
holds also in the case of the maximum-cut problem on sparse graphs, 
as shown in the concurrent comment by Boettcher15.

One could argue that both these examples are analysing prob-
lems on sparse graphs, and neural networks can be more effective on 
denser graphs. However, there are already results allowing for such 
a comparison in dense combinatorial problems: for example, in the 

All its neighbours are removed from the graph Gt, thus getting a new 
graph Gt+1. At the time t* such that Gt∗ is empty, the process stops.

One can also construct an improved version of the GA by exploit-
ing the degrees of the nodes. In the degree-based GA (DGA), at each 
step, one chooses the node with the smallest degree in Gt (ref. 10). This 
algorithm runs in a time almost linear in n if the degree-based ordering 
of the nodes is managed smartly.

In Fig. 1, we compare the performances of the GNN of ref. 1 (empty 
symbols) and the DGA (full symbols) in finding MIS on d-RRG with 
d = 3, 5. In the left panel, we report the quality of the solutions found 
by the two algorithms, shown as the approximation ratio (AR) to the 
current best upper bounds ρUB(d = 3) = 0.45537 and ρUB(d = 5) = 0.38443 
(ref. 11). These bounds are likely to be not strict as the replica method 
provides an optimal AR smaller than 1, namely AR1RSB(d = 3) ≈ 0.990 and 
AR1RSB(d = 5) ≈ 0.987 (ref. 12). The DGA clearly outperforms the GNN of 
ref. 1, especially in the case d = 5, where the ISs found by the DGA are 6% 
larger than those found by the GNN.

In the right panel, we show the running times for both algorithms: 
data for the DGA have been collected by running on a 2.3 GHz MacBook 
Pro while data for the GNN have been extracted from Fig. 5 in ref. 1. 
The latter correspond to the aggregated runtime that includes the 
post-processing, because the authors furnish no additional informa-
tion on the time needed for the different steps of the computation. 
However, the post-processing time to check whether the output con-
figuration is an IS should be linear in n, so most of the time should be 
dedicated to the GNN computation. The scaling of the running times 
with the problem size is much better for the DGA than for the GNN, with 
the former being almost linear in n (the exponent 1.15 is probably due 
to pre-asymptotic effects), whereas the last data points for the GNN 
scale close to quadratically in n. Not only is the scaling better for the 
DGA but also the actual running times are orders of magnitude faster. 
For example, for n = 106, the DGA shows a speed-up with respect to the 
GNN by a factor larger than 104.

We thus think that the claim in ref. 1 “We find that the graph neural 
network optimizer performs on par or outperforms existing solvers, 
with the ability to scale beyond the state of the art to problems with 
millions of variables.” is not supported by the data shown here and 
should be modified.

Discussion
We have reported in detail the performances of the DGA because we 
believe that such a simple GA should be considered as a minimal bench-
mark and any new algorithm must perform at least better than the DGA 
to be taken into serious consideration.

But the DGA is not the end of the story. There exist many other 
standard algorithms that do better than the DGA. A thorough study 
of the performances of these algorithms to solve the MIS problem 
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Fig. 1 | Comparison of the GNN and a simple DGA in computing ISs in d-RRGs. 
Left: the size of the IS found by the DGA (full symbols) and by the GNN of ref. 1 
(empty symbols), reported as an approximation ratio with respect to the known 
theoretical upper bounds. The DGA finds much better solutions than the GNN. 

Right: running time in seconds for the DGA (full symbols) and the GNN (empty 
symbols). The DGA scaling is much better than the one for GNN. At n = 106, the 
speed-up of the DGA is larger than a factor 104 with respect to the GNN.
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problem of recovering a planted clique in a dense graph, the neural  
networks introduced in ref. 16 do not reach the performances of 
message passing algorithms17 or those of the Monte Carlo parallel  
tempering method18.

In conclusion, we believe that it is of primary importance to under-
stand whether and when neural networks can become competitive 
in solving hard problems or whether there is any deeper reason for 
 their failure.
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