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Abstract

Much, if not most, social network data is derived from informant reports; past research, however,
has indicated that such reports are in fact highly inaccurate representations of social interaction. In
this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous
inference of informant accuracy and social structure in the presence of measurement error and
missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is
outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian
modeling framework for improved data collection strategies, and the validity of the criterion graph
are also discussed.
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1. Introduction

Despite the considerable success of modern network analysis, a number of basic foun-
dational issues remain to be addressed. Especially problematic is the lack of a systematic
treatment of error in network data. Though it is widely understood among network analysts
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both that network data is subject to non-trivial levels of error and that network analytic tech-
niques are generally quite sensitive to such error, there is currently no general, agreed-upon
framework for dealing with this problem. In this paper, we shall demonstrate a fairly general
approach to modeling certain kinds of error which can be used generically to assess posterior
uncertainty in any classical network measure or comparison. This approach can ultimately
be extended to account for other sources of error (by modifying the error model), and can
be utilized to facilitate network sampling, robustness testing, and analysis of incomplete
data sets. It is hoped that this work will serve as the basis for further growth of a generic
approach to error modeling in social network analysis.

1.1. Self-report data and informant accuracy

The ultimate foundation of any scientific endeavor is the data from which inferences are to
be drawn. In the field of social network analysis, the quality of this foundation has long been
in question. A large literature on informant accuracy in network analysis—most notably
that written by and in response to the work of Bernard, Killworth, and Sailer (BKS)—
has debated the question of the extent to which the most common form of network data
(informant self-reports) can be considered to represent anything beyond the cognitions of the
informants in question (see, for instance,Killworth and Bernard, 1976, 1979; Bernard and
Killworth, 1977; Bernard et al., 1979, 1984; Freeman et al., 1987; Hildum, 1986; Romney
and Faust, 1982; Romney et al., 1986). Indeed,Bernard et al. (1979)go so far as to posit
that, “We are now convinced that cognitive data about communication can not be used as a
proxy for behavioral data,” a position which is rejected by researchers such asRomney et al.
(1986)andRomney and Faust (1982). While the dust has not yet settled on this debate, the
present state of knowledge within the field of network analysis strongly favors the position
that informant self-reports contain considerable noise at the dyadic level (Bernard et al.,
1984; Krackhardt and Kilduff, 1999). Whether the level of error observed is severe enough
to warrant the assertion that self-report data is unusable for inference of interaction patterns
appears to depend on a number of factors (including the time scale of the interaction,
the application to which the data is to be put, and (arguably) the degree of optimism on
the part of the researcher (Freeman et al., 1987; Freeman, 1992; Krackhardt and Kilduff,
1999; Bernard et al., 1979)), but unquestionably there is a non-trivial level of uncertainty
inherent in self-report network data. The recognition that informants’ reports of interaction
are not in fact exact proxies for observed behavior has lead to two general approaches to
the interpretation of such data. The first approach, which we shall here call the “classical”
or “criterion/error” perspective, conceptualizes the data generation process in terms of a
hypothesized “real” (or criterion) structure which is imperfectly reported by informants.
This perspective is most clearly in line with the broader literature on informant accuracy
(the notion of “accuracy” itself requiring the assumption of a criterion from which informant
reports are assumed to deviate in some fashion), and is followed both by BKS and by later
work seeking to identify the determinants of (in)accurate perception by socially embedded
actors (see, for instance,Killworth and Bernard, 1976; Krackhardt, 1990; Calloway et al.,
1993). The second approach, here referred to as the “cognitivist” perspective, has focused on
identifying the determinants of actors’ perceptions of social structure per se (e.g.Krackhardt,
1987a; Carley and Krackhardt, 1996; Freeman et al., 1987; Hammer, 1985; Hildum, 1986).



C.T. Butts / Social Networks 25 (2003) 103–140 105

This perspective has tended to de-emphasize the role of the criterion structure, and indeed
has in some cases questioned the relevance or even meaningfulness of such a construct (e.g.
Krackhardt, 1987a). From a cognitivist point of view, the language of “error” and “accuracy”
reflects a clear bias toward third-party observability (which may or may not be relevant to
dyadic perceptions, particularly for private or tacit interactions) and non-attributive relations
(Hildum, 1986). From the classical perspective, by contrast, these are critical considerations:
inference regarding the criterion structures which are the objects of classical theorizing
depends on the accuracy of informant reports, and the minimization of error is thus of
central concern (Bernard et al., 1979).

It is beyond the scope of this paper to conduct a detailed consideration of the assumptions,
applicability, and justification of the classical and cognitivist perspectives on self-report data.
For our purposes, we shall adopt the language and assumptions of the classical approach,
including the notions of the criterion graph, informant accuracy, and reporting error. Though
the usefulness of that which follows for any given application is dependent upon the validity
of these assumptions, we do not take them to be universally unproblematic; this issue is
revisited in the discussion section below.

1.2. The enduring problem of error in social network analysis

While the informant accuracy question, then, has been considered from a variety of
perspectives, at least four basic problems confront us with respect to dealing with error in
social network analysis (from a classical point of view):

1. Determining the extent of error in existing data.
2. Determining the mechanisms by which error is produced.
3. Finding means of collecting higher quality data.
4. Minimizing and accounting for the uncertainty associated with existing data in network

analyses.

All of these problems, of course, are of critical importance to social network analysis.
Without knowing the degree of uncertainty with which we should regard present data, we
have no way of evaluating the reliability (or even validity) of present or past work. Without
knowing how or why errors are produced, we are at a loss to predict which data will be
most heavily compromised. With no means of collecting clean data, we continue to be
vulnerable to error and uncertainty, and without techniques for minimizing and assessing
that uncertainty, we are unable to draw appropriate inferences. This paper, then, will touch
at least briefly on all four issues, although the primary emphasis will be on the fourth
problem.

1.3. A Bayesian approach

Given that social network analysis is heavily dependent upon informant reports, and that
informants are known to err in their reporting of network ties, how are we to proceed? As
noted above, a number of approaches are possible; in this paper, our primary interest is in the
development of inferential techniques which can address the informant accuracy problem.
Such techniques, clearly, must simultaneously accomplish two goals: first, they must allow
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us to infer the criterion graph from informant reports; and second, they must allow us to infer
the accuracy of each informant. Though solving both such problems at once would seem
a difficult task, it is inescapable; inferences regarding informant accuracy will necessarily
affect inferences regarding the criterion graph, and vice versa (seeBatchelder and Romney
(1988)andRomney et al. (1986)for additional treatment of this issue). This implies, further,
that whatever approach is employed must scale effectively to high-dimensional inference
problems. Assuming a criterion graph onN vertices, the number of informants (whose
accuracy is in question) grows on orderN and the number of ties in the criterion graph
grows on orderN2; thus, the problem dimension is at least orderN2. Relative to this fairly
large number of parameters, the data available is likely to be modest. For the best standard
case in which all members of the network report on all ties—a cognitive social structure
(CSS)—we have access toN observations per arc andN2 observations per actor. While the
total number of data points thus grows on orderN3, the small size of most CSSs provides
us with relatively few observations per parameter. Our technique, then, must not only scale
well, but must also be data-efficient. Methods which are justified only in the large-N limit
are unlikely to be of practical value for this particular problem.

All of the above factors suggest the efficacy of a hierarchical Bayesian modeling approach
to the network inference/informant accuracy problem (Gelman et al., 1995). Hierarchical
Bayesian models can readily represent complex interrelated stochastic processes, scale well,
and are not dependent on limit arguments for their justification. Furthermore, use of the
Bayesian paradigm permits us to draw direct inferences regarding posterior probabilities,
and grounds our inferential framework on an axiomatic basis.2 Finally, the hierarchical
Bayesian modeling framework readily facilitates expansion and modification of existing
models to account for new information or to take advantage of the features of particular
situations. Given these advantages, we here employ the aforesaid approach in examining
the network inference/informant accuracy problem.

The models pursued here belong to a broader class of Bayesian models for binary data
(Evans et al., 1995), although our development is informed by the particular concerns of
network analysis. Likewise, it is important to note that their development builds on the
growing tradition of statistical modeling within network analysis itself. In addition to the
development of latent structural parameter models such asp∗ (Wasserman and Pattison,
1996; Pattison and Wasserman, 1999; Robins et al., 1999), the past two decades have pro-
duced a growing battery of null hypothesis testing (Krackhardt, 1987b; Pattison et al., 2000;
Anderson et al., 1999a), sampling (Frank, 1988; Marsden, 1990), and graph comparison
(Krackhardt, 1988; Banks and Carley, 1994; Butts and Carley, 2001) techniques.Batchelder
and Romney’s 1988consensus model is particularly similar in spirit to our approach (see
alsoRomney et al., 1986); setting out to examine a closely related question of determining
cultural “facts” from multiple informants’ reports, they postulate an error model for indi-
vidual accounts and derive point estimates for “facts” and individual competencies via max-
imum likelihood. The Romney/Batchelder notion of “competency” is a one-dimensional
construct (borrowed from educational testing theory) which, in effect, treats errors sym-
metrically. (More precisely, Romney and Batchelder parameterize the problem in terms of
“competency” and “bias” (in the direction of errors), but assume the latter to be absent

2 For an examination of some of the foundational strengths of the Bayesian paradigm, seeRobert (1994).
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for their application.) By contrast, the parameterization employed here (see below) follows
the logic of diagnostic testing in discriminating between false positive and false negative
reports. While we regard this latter parameterization as more intuitive for this application,
it should be noted that the two likelihoods can be made equivalent (up to a transformation)
by freeing the Romney and Batchelder bias parameter. This implies, further, that the hier-
archical prior structures explored here could be adapted to the Romney/Batchelder model,
although this would potentially require modifying some of the latter’s assumptions (e.g.
the impossibility of perversely informative accounts). One way in which the present work
differs from these approaches is that it emphasizes the evaluation of a variety of posterior
quantities, in addition to point estimates. Thus, we are as concerned with quantifying (resid-
ual) uncertainty as with reducing it. Given that we analyze imperfect data in an imperfect
world, we generally cannot claim to be completely certain of the quantities with which we
work; a realistic approach to data analysis, then, cannot afford to simply brush problems of
uncertainty under the proverbial rug. Arguably, however, much of traditional social network
analysis has done exactly that: by failing to account for error in network data, we have put
the quality of our inferences at risk. Even where the models presented here do not provide
substantial uncertainty reduction (e.g. where only one observation is available per arc), they
may still be of use in their ability to provide a concrete treatment of uncertainty in network
data.

2. Bayesian models of the network inference/informant accuracy problem

As we have argued, an integrated, formal approach is required to simultaneously address
the problems of network inference and informant accuracy. In this section, then, we develop
a family of hierarchical Bayesian models (closely related to those ofEvans et al. (1995))
which allow for inference on these two problems, and demonstrate the use of these models
in determining posterior quantities of interest.

2.1. Notation and background assumptions

Before constructing a formal model of the data generation process, we first outline the
basic notation which will be used in the discussion which follows. Given vertex setV and
edge setE, the graph formed byE onV is denotedG = (V,E); the functionsV(G) andE(G)
should be understood as returning the vertex and edge sets ofG, respectively. Throughout
this paper, we shall treat the criterion graph (G) as a digraph; although the term may be
used generically to refer to any sort of graph (e.g. simple, signed, valued, etc.) which acts as
the criterion (“true value”) for informant reports, we will not treat these cases here.3 Thus,
the directed edges (or arcs) of the criterion are synonymous with ordered pairs (i, j) where
i, j ∈ V(G).

For the purposes of the present model, we assume thatV(G) is known, and that the
vertices in question are uniquely labeled (i.e. are identifiable). Thus, we treatG as a random
digraph of (known) orderN = |V(G)|. For convenience, it will generally be more useful to

3 Although we include the undirected case (with or without loops) as a special case involving missing data.
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refer toG by way of its adjacency matrix,Θ, whose elements are defined as follows:

Θij =
{

1 if (i, j) ∈ E(G)

0 if (i, j) /∈ E(G)
(1)

Obviously,Θ is itself a random matrix whose elements serve as indicator variables for the
arcs ofG; it is the distribution of this matrix in which we are most interested. Our notation
for observed graphs is similar. Let (G1, . . . ,GM) be an ordered tuple of reported graphs.
We then takeY to be theN ×N ×M adjacency array with elements

Yijk =
{

1 if (i, j) ∈ E(Gk)

0 if (i, j) /∈ E(Gk)
(2)

In the case of missing observations, we treat the corresponding cells as missing data.
Where loops (i.e. (i, i) arcs) are undefined, the diagonals ofY andΘ are ignorably missing
by design, and are simply omitted from all relevant calculations. Similarly (and without
loss of generality), we represent undirected graphs by means of coding the upper or lower
triangle ofΘ as missing. For concreteness, we represent this missing data via the inclusion
arraysIΘ andIY . IΘ is anN ×N matrix whose elements are given by

IΘij =
{

1 if Θij is observed

0 if Θij is missing
(3)

Note that inclusion/exclusion forIΘ must be by design, sinceΘ is the parameter matrix
for the criterion graph. (It is in this sense that we use the term “observed” above.)IY is
similarly anN ×N ×M array with elements

IYijk =
{

1 if Yijk is observed andIΘij = 1

0 otherwise
(4)

Exclusion inIY obviously need not be by design: arcs which are missing for more con-
ventional reasons may be excluded as well. Throughout this paper, it will be assumed that
inference forΘ and other relevant parameters is ignorable with respect to the inclusion
matrices. That is, we assume that inference for parameters of interest depends only on
the observed-data likelihood, and not on the inclusion structure itself.4 Some discussion
of sampling designs which satisfy this criterion is provided below; note, however, that a
complete graph census omitting only undefined arcs (e.g. loops) immediately qualifies as
an ignorable design.

Prior to discussing the data generation model, a final note is in order regarding notation for
random variables and their distributions. For a random variablex, the functionp(x) should
be interpreted either as the probability density function or as the probability mass function
of x, for continuous or discretex (respectively). The terms “density” and “distribution” are
used somewhat loosely to refer to both of the above, where there is no danger of confusion.
Conditional notation (e.g.p(x|y) for the density ofx giveny) is used to distinguish prior and

4 Note that we may use the inclusion structure as a convenience in calculating the observed-data likelihood; the
requirement is rather that it does not play a role in our inference per se.
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posterior densities, and likelihoods are similarly given in terms of the probability density of
observations conditional on model parameters. When making reference to standard para-
metric densities, an abbreviation of the name will be used. Thusp(x|α, β) = Unif (x|α, β)
implies thatx is uniformly distributed conditional on parametersα andβ, a situation which
may be equivalently denotedx ∼ Unif (α, β) (where∼ is read “is distributed as”). These
abbreviations will be defined where initially deployed within the text.

2.1.1. General informant accuracy model
As argued above, one cannot address the problem of informant accuracy without hav-

ing some prior conception of the manner in which the hypothesized criterion structure is
related to the pattern of informant accounts. This is not a trivial matter: the relationship in
question has been argued to be mediated by cognitive mechanisms, instrument design, infor-
mant experience, and even the informant’s position in the social structure itself (Freeman,
1992; Freeman et al., 1987; Carley and Krackhardt, 1996; Krackhardt, 1990; Hildum, 1986;
Krackhardt and Kilduff, 1999). Plainly, one can propose models with varying degrees of
sophistication, which take into account a greater or lesser number of influences on accu-
racy, and which model those influences in more or less sophisticated ways. In this paper,
our primary purpose is to introduce a reasonably simple family of models which are eas-
ily utilized in network research; our secondary purpose is to formulate these models in
such a way as to make them as compatible as possible with the prior empirical work on
informant accuracy within the context of social network analysis. For this reason, we shall
utilize a general informant accuracy framework which follows that implicitly utilized (we
shall argue) by Bernard, Killworth, Sailer, and others in their informant accuracy studies.
Although this framework is reasonably flexible, it is not asserted that this approach will
be optimal in all cases; as will be discussed, some applications may be better suited by
alternative formulations. If we are to treat informant accuracy in such a way as to main-
tain compatibility with prior work, it behooves us to consider the models which have been
(explicitly or implicitly) invoked in the past. Fortunately, the most common approach has
been described fairly clearly by BKS. With respect to the basic structure of the problem, the
version articulated here is quite typical: “Social structure is assumed to be built up out of
the interaction of the members of the group. Then, the plausible leap is made whereby the
answers to [a] sociometric question reflect the pattern of interactions” (Bernard et al., 1979).
Thus, it is assumed that there exists a criterion network which is formed from “actual” inter-
actions between actors, and accuracy is measured with respect to the degree that informant
responses on sociometric instruments match this network. More explicitly, BKS state, “At
its simplest level, network data are ‘accurate’ if, wheni says he talked toj by some amount,
then he did” (Bernard et al., 1979). Though this statement may seem to be self-evident at
first blush, its implications are non-trivial. For instance, the BKS model requires that the
“actual” network be in some sense verifiable—and hence defined—beyond the individual
perceptions or testimonials of those involved in the proposed relation.5 This sets the scope

5 BKS, indeed, repeatedly question the meaningfulness of any structure which does not have this feature, even
going so far as to argue that networks are “real” insofar as they “have some external correlate like performance
in problem solving” (Killworth and Bernard, 1979). It is not our intention to make arguments for or against
this position in this paper, but the issue is obviously one of great relevance to the continued theoretical and
methodological development of network analysis.
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of the accuracy question (from this perspective) in such a way as to exclude purely ascriptive
relations (e.g.: individual perceptions of influence, love, or power; reputation and prestige;6

and some notions of friendship7), at least on a first-order basis.8 As the BKS statement
makes clear, the focus here is not on accounting for informant responses to sociometric in-
struments, but rather on determining the degree to which these responses are consistent with
a pre-defined observable (but unobserved) relation. Although the former has been consid-
ered to be an interesting question in its own right at least since Krackhardt’s introduction of
the cognitive social structure concept (Krackhardt, 1987a), this is not our primary interest in
this case.

The base assumption which is made, then, is that each observer is exposed to the under-
lying “real” network and reports observed ties which are, with some probability, erroneous.
It should be emphasized that we are unconcerned at present with whether the errors in
question are the result of inaccurate observation by the informant, errors in the cognitive
coding of the relation, difficulties with retrieval of this information upon exposure to the
appropriate instrument, or informant malfeasance. These error sources are folded together
in the present model, and we are concerned only with the aggregate result. As there are
by assumption two states which may be taken by each arc (present and absent), there
are clearly two ways in which observers can report incorrectly: an observer may report
present ties as being absent (false negatives) or may report absent ties as being present
(false positives). We then model the data generation process via the following Bernoulli
mixture,

p(Yijk|Θij, e
+, e−) =

{
B(Yijk|1 − e−) if Θij = 1

B(Yijk|e+) if Θij = 0
(5)

whereY andΘ are defined as per the previous section, wheree+ and e− represent the
probabilities of false positives and false negatives (respectively) for theijkth arc report,
and whereB is the Bernoulli density. The above provides the core likelihood for a single
observer/arc/criterion network combination—it provides the probability density associated
with a given report, conditional on the (uncertain) parameters. In general, of course, we are
interested in drawing inferences regarding these parameters, and we will need to draw upon
multiple informant reports regarding multiple arcs. In the sections which follow, we will
build onEq. (5)to form models which can account for these complications.

2.1.2. Assignment of network priors
To infer the criterion, we must know two things: the likelihood for informant reports, and

the (joint) prior distribution of the model parameters. While any number of assumptions
are possible regarding this latter distribution, it seems reasonable—as a starting point, at
least—to treat the criterion graph and error parameters as a priori independent. Likewise,
we will here make the simplifying assumption that our prior knowledge of the criterion

6 Note that unlike dominance and power, which can be fairly readily defined beyond their ascriptions (though
perceptions of such are always ascriptive), reputation and prestige are by nature ascribed relations.

7 See, for instance,Carley and Krackhardt (1996).
8 E.g. one can still ask whether a given actor’s account of the ascriptions of others matches their actual ascriptions,

but this is a second-order rather than a first-order question.
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graph can be roughly summarized by the distribution

p(Θ) =
N∏
i=1

N∏
j=1

p(Θij) (6)

p(Θ) =
N∏
i=1

N∏
j=1

((1 − IΘij )+ IΘij B(Θij|Φij)) (7)

i.e. the Bernoulli graph distribution with hyperparameter matrixΦ (Wasserman and Faust,
1994) under inclusion matrixIΘ. The Bernoulli graph distribution is a natural baseline model
for network structure, and (particularly whenΦ is chosen based on external covariates) can
incorporate considerable prior information. On the other hand, as this distribution does
not incorporate dependency constraints between arcs (conditional onΦ), it may also be
employed as an “overdispersed” prior for purposes of robustness. While there may be
special circumstances in which the Bernoulli prior is clearly inappropriate, it is expected
that these will be uncommon; posterior inference with arbitrary exponential random graph
priors will be briefly outlined below. Assuming, then, a Bernoulli graph prior, we must
specify values forΦ which reflect our initial information regarding the criterion graph.
This must, of necessity, depend on the particular problem at hand, the existing literature
regarding said problem, etc. Nevertheless, it is useful to provide some basic strategies for
assigning network priors, which may be utilized in a range of contexts. Two heuristics, then,
are here presented which are expected to have wide applicability; each researcher, however,
should be careful to select network priors which are accurate depictions of his or her prior
information, and should avoid blind reliance on pre-packaged choices.

The first, and perhaps most obvious, heuristic for assignment of network priors is that of
an uninformative distribution on the arc set ofG. Such a prior distribution is given simply by

Φij = 0.5∀i, j ∈ (1, . . . , N) (8)

and corresponds to a uniform distribution on the set of all digraphs of orderN. This prior
is obviously somewhat attractive in that it has a clear interpretation, and that it does not
depend on any idiosyncratic knowledge of the researcher. In general, however, an uninfor-
mative prior on the set of digraphs is a poor reflection of one’s prior information, and better
options are available; researchers should question whether or not they are in fact completely
ignorant as to the structure of the criterion graph before selecting such a prior.

One specific example of the weakness of an uninformative network prior is the matter
of network density. While the uniform distribution over digraphs favors graphs of density
approximately equal to 0.5,9 most social structures (particularly large ones) are considerably
less dense. If a researcher has reason to believe that the relation he or she is studying is of
a particular density, it behooves him or her to take this into account when selecting a prior
for the criterion graph.10 One possibility, then, for a somewhat more informative network
prior is to chose a distribution of the form

Φij = d∀i, j ∈ (1, . . . , N) (9)

9 For reasons of combinatorics: there are far more structures of moderate density than of extreme density.
10 For a discussion of the effects of size and density on network inference, seeAnderson et al. (1999a).
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whered is the median density of a set of other, similar networks examined in past research.
While this is obviously only one of many possible density-based priors, it is clearly more
informative than the assumption of a uniform distribution, and is nevertheless diffuse enough
to avoid extreme sensitivity to initial assumptions. In situations for which more information
is available, researchers should not hesitate to use it: priors including homophily or distance
effects, for instance, might be reasonable in many situations, as might the edgewise marginal
posterior distribution of the same network at an earlier point in time (see below). The topic
of network prior selection is complex enough to warrant a detailed treatment on its own,
and it is hoped that future work in this area will develop more sophisticated strategies for
exploiting prior knowledge that can be discussed within the bounds of this paper.

2.2. A simple model for fixed, known error probabilities

Before we begin a consideration of the more complex cases of network inference in
the presence of unknown informant inaccuracies, it behooves us to begin with a simpler
model. As an introduction to our basic modeling framework, then, we shall first develop
a network inference model in which we assume that our error probabilities are both fixed
and known. Clearly, this does not reflect the context of most network research: we do not,
in general, know the probability of error within our data to within an arbitrary degree of
certainty. Nevertheless, there may be special cases—such as, for instance, automated data
collection procedures whose error rates may be determined exogenously—for which the
simple model may be applicable. Our reason for introducing it, however, is as much to
elucidate the concepts involved as to provide a practical tool for social research.

2.2.1. Assignment of priors
Within the simple network inference model, it is assumed that only the criterion graph

is uncertain; therefore, priors are assigned only to the network parameter matrix,Θ. As
indicated, the prior distribution of the criterion graph is determined via the hyperparameter
matrix Φ. The specific form, then, is as perEq. (7). Choice of the values ofΦ is dis-
cussed in the above section on network priors; as mentioned, these values should reflect the
researcher’s prior knowledge regarding the structure of the criterion graph.

2.2.2. Assumed likelihood
As we are assuming in this case that our error probabilities are fixed and known, the base

likelihood for an arc observation follows straightforwardly fromEq. (5)and theY inclusion
structure:

p(Yijk|Θij, e
+, e−)= (1 − IYijk)+ IYijk((1 −Θij)(Yijke

+ + (1 − Yijk)(1 − e+))

+Θij(Yijk(1 − e−)+ (1 − Yijk)e
−)) (10)

Observe that this is just the mixture fromEq. (5)(written algebraically), “filtered” by the
inclusion structure. (Our notation suppresses the dependence onIY , which is assumed to be
implicit; we will suppress dependence on any relevant hyperparameters for the same reason.)
In particular, one can readily verify that the likelihood of any missing observation is 1, that
the likelihood of a true positive is 1− e−, etc. To find the joint likelihood of the data, we
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invoke the previously stated assumption of conditional independence of arc observations;
this implies that the joint likelihood is the product of the individual arc likelihoods. Formally,
the joint likelihood of the simple model is then given by

p(Y |Θ, e+, e−) =
N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+, e−) (11)

whereY is the observed data matrix andp(Yijk|Θij, e
+, e−) is the arc likelihood ofEq. (10).

(Again, we have suppressed dependence on the inclusion structure.)

2.2.3. Computation of the posterior
Given the above, we can identify the posterior to within a normalizing constant by using

the standard result thatp(θ|y) ∝ p(θ)p(y|θ) for random variablesy andθ (i.e. the pro-
portional form of Bayes’ theorem). Thus, the unnormalized posterior ofΘ givenY and the
(known) error rates is given by

p(Θ|Y, e+, e−) ∝ p(Y |Θ, e+, e−)p(Θ) (12)

=

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+, e−)




 N∏
i=1

N∏
j=1

p(Θij)


 (13)

=
N∏
i=1

N∏
j=1

(
p(Θij)

M∏
k=1

p(Yijk|Θij, e
+, e−)

)
(14)

=
N∏
i=1

N∏
j=1

q(Θij|Yij·, e+, e−) (15)

whereq(Θij|Yij·, e+, e−) is the unnormalized posterior marginal ofΘij. Thus, we see that
the joint posterior in this case is factorable by arc, a fact which we can use to our advantage.
By applying Bayes’ theorem to each arc independently, we may derive an explicit expression
for the exact posterior. This is, in essence, possible because we do not allow inference on
any given arc to affect our inference regarding any other arc; no information is shared across
observations, and hence we can subdivide the problem into a number of simple Bernoulli
mixtures. The posterior probability for a given arc, then, is

p(Θij|Yij·, e+, e−) = (1 − IΘij )+ IΘij
p(Yij·|Θij, e

+, e−)p(Θij)∑1
�=0p(Yij·|Θij = �, e+, e−)p(Θij = �)

(16)

= (1 − IΘij )+ IΘij B


Θij

∣∣∣∣∣∣∣∣∣∣∣
Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−)]

Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−)]

+ (1 −Φij)
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|e+)]


 (17)
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and the (normalized) joint posterior of the criterion graph is hence

p(Θ|Y, e+, e−) =
N∏
i=1

N∏
j=1

p(Θij|Yij·, e+, e−) (18)

The above, of course, provides the criterion posterior forM observers. Should additional
observations become available, inference may still be drawn in the usual fashion (i.e. by
repeating the above computation with the initial posterior as prior and with the new obser-
vations asY). Furthermore, the assumption thate+ ande− be identical for all observations
may be trivially relaxed in the simple case. To accomplish this, we replace the single values
e+, e−, above, withe+ijk, e

−
ijk for each arc observation. So long as these edgewise error pa-

rameters are known, there is no requirement that they be identical for all arcs; unfortunately,
this result is limited to the simple model (as we shall see).

In considering the posterior probabilities ofEqs. (17) and (18), it is helpful to make a few
observations regarding the effect of prior knowledge. (For simplicity, we will assume here
that no missing data is present, and we will limit ourselves to the single observer case in
which Y is anN ×N matrix.) As our error ratese+ ande− simultaneously approach zero,
then clearlyΘij → Yij; by turns, fore+, e− → 0.5, p(Θ|Y) → p(Θ). This expresses the
fact that the amount of information carried byY depends on the error rates: at the extremes,
no error implies that our observations must logically dominate our prior information, and
symmetric error rates of 50% imply that observations carry no information whatsoever.
More broadly, the information carried by a given edge observation is related to 1− (e+ +
e−), with increasingly positive values indicating increasing information in the direction
of the observation, and increasingly negative values indicating increasing information in
the opposite direction (i.e. perverse or “negatively informative” observations). This general
relationship is true regardless of whethere− = e+, although unequal error rates imply that
the magnitude of effects from tie present and tie absent observations will differ accordingly.

On a practical note, it should be mentioned that the above analytical results imply that
the joint posterior of the criterion graph need not be used directly for most applications
(though its computation is obviously quite straightforward where required). To draw from
the posterior of the criterion graph in this case, one need only draw eachΘij independently
with probabilities as given byEq. (17)above. This makes estimation of posterior graph
properties (seeSection 2.6below) particularly easy for the simple error model; this ease,
however, comes at the expense of any inference regarding error probabilities (which are
presumed known on an a priori basis) and of any shared information across arcs. The simple
error model, then, is generally useful only when the accuracy of observers can he established
ex ante, a condition which is rarely encountered in a typical social network analysis setting.
It nevertheless serves as a reasonable prelude to the more sophisticated models which follow.

2.3. Pooled error probabilities (single observer model)

Having considered a simple model of network inference in the special case for which
error probabilities are fixed and known, we can now proceed to a more sophisticated—
and useful—model. In particular, one reasonable elaboration of the fixed error probability
model is the case in which error probabilities are uncertain, but assumed to be constant
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across observations.11 Such a pooled error probability model readily represents a situation
in which a single observer or informant (e.g. an ethnographer) provides reports on all ties
within a given network (e.g. the observers in the data sets ofBernard et al. (1979)); we may
be willing to presume that his or her accuracy is more or less constant across cases, but we
are uncertain regarding the degree of accuracy itself.

2.3.1. Assignment of priors
Unlike the simple error model, the single observer model treats error probabilities as

uncertain; hence, we must assign priors to them. While a wide range of distributions are
possible here, we have elected to represent the error probabilitiese+ ande− as being drawn
independently from two Beta distributions. Specifically:

e+ ∼ Beta(α+, β+) (19)

e− ∼ Beta(α−, β−) (20)

where Beta(x|α, β) = ((Γ(α+ β))/(Γ(α)Γ(β)))xα−1(1− x)β−1 for x ∈ [0,1]. The choice
of the Beta for the form of the error prior requires some justification; indeed, it may not
be appropriate in all cases. The Beta distribution is the conjugate prior for the Binomial
likelihood, with the uninformative prior distribution on [0, 1] being a special case.12 As a
result, the outcome of any set of success/failure Bernoulli experiments which begins with an
uninformative prior distribution will be Beta distributed, and the Beta is thus a logical choice
when one’s prior information can be summarized in this form. In general, prior knowledge
regarding informant accuracy is likely to come from error rates derived from earlier studies
(e.g. BKS), and hence it is not unreasonable to suppose that, for many researchers, the Beta
will be an appropriate representation by this argument. Those drawing prior knowledge from
other sources may need to consider alternative forms; these are not pursued within this paper.
Given the choice of Beta distributions fore+ ande−, there remains the question of selecting
the four hyperparametersα+,β+,α−, andβ−. While these could, in principle, be themselves
drawn from a hyperprior distribution, we here treat them as known from prior data. As
noted, the choiceα = β = 1 provides an uninformative prior for the Beta distribution;
however, it isstrongly recommended that researchers avoid this choice of prior. The reason
for this is simple: the assumption of a uniform distribution of error parameters is highly
unreasonable for most applications (given previous research in this area) and leads to highly
counterintuitive (and improbable) inferences. Note, for instance, that (by Bayes theorem)
the conditione+ + e− > 1 leads to a condition ofperverse inferences, in which informant
testimony causes one to update one’s belief in theopposite direction of the report. Clearly,
this is an unlikely event: even at their worst, it is hard to imagine that most informants’ reports
would benegatively informative!13 (This is not strictly impossible, however, particularly

11 Recall that constant overall error rates were initially assumed for the fixed error probability model, but that we
were able to relax this requirement due to our ability to decompose the problem into a series of arc inferences.
12 In fact, there are no fewer than three uninformative priors for this particular problem: the uniform distribution

(α = β = 1), the Jeffrey’s prior (α = β = 1/2), and the improper prior which is uniform in the natural parameter of
the exponential family (α = β = 0) (Gelman et al., 1995). We assume the uniform distribution as an uninformative
prior unless otherwise indicated.
13 This has other implications as well: for instance, the posterior construction of two basic scenarios such that in

one scenario informant reports are nearly all versed in implication.
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where malfeasance cannot be ruled out.) Under a uniform prior, the a priori probability of
such an occurrence is 0.5—unacceptably high for most applications. In general, then,α and
β parameters should be chosen so as to cause the distribution of error probabilities to remain
sensible, and to prevent the perverse inference condition from being highly probable. In
examining a number of stylized facts from the BKS studies (i.e. apparent tendencies in error
rates across relations), a prior resembling Beta(3, 9) for both false negative and false positive
error parameters has thusfar seemed reasonable for communication-like relations; individual
researchers, however, should base their choices of hyperparameters on the particular data
available. Given the choice of priors for the two error parameters, the form of the network
prior is as for the simple error model, specificallyEq. (7). (Note that we presume that the
joint prior forΘ, e+, ande− is factorable, i.e. thatp(Θ, e+, e−) = p(Θ)p(e+)p(e−).) As
the issues in selecting the network hyperparameters are not distinct in this case, the reader
is directed to the previous discussion regarding choice ofΦ.

2.3.2. Assumed likelihood
While our model has been changed by the introduction of uncertainty regarding our error

parameters, the likelihood of the data is unaltered from our previous formulation. Thus,
our arc likelihood is given byEq. (10)and the joint likelihood for the entire data set is, as
before, the product of the arc likelihoods (Eq. (11)).

Note that while the assumption of uncertainty in error parameters does not alter our like-
lihood, it will nevertheless affect posterior inference (as we shall see presently). Intuitively,
the reason for the former is that the likelihood of the observed data already conditions on
the error parameters, and hence treats them as “fixed”. The role of stochasticity in errors,
then, is seen in the computation of the posterior.

2.3.3. Computation of the posterior
In the simple error model, we were able to express the posterior of the criterion graph in

very simple terms; in the single observer model, this is complicated by the stochasticity of
the error parameters,e+ ande−. To derive the unnormalized joint posterior we invoke the
proportional form of Bayes theorem, as follows:

p(Θ, e+, e−, Y) ∝ p(Y |Θ, e+, e−)p(Θ)p(e+)p(e−) (21)

=

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+, e−)




×

 N∏
i=1

N∏
j=1

p(Θij)


Beta(e+|α+, β+)Beta(e−|α−, β−) (22)

=

 N∏
i=1

N∏
j=1

(
p(Θij)

M∏
k=1

p(Yijk|Θij, e
+, e−)

)Beta(e+|α+, β+)Beta(e−|α−, β−)

(23)
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Note that (unlike inEq. (15)) we cannot factor the posterior further, due to the interaction
between the individual edge likelihoods and the error parameters. Now the impact of un-
certainty in the error parameters becomes clear: we cannot consider the probability of the
criterion graph without considering the probability of the error parameters which give rise
to that inference, and neither can we consider the probability of a particular pair of error
parameters without taking into account the probability of the structural inference such a
choice would induce. As asserted, the two problems are inseparable; this intuition is laid
bare in the form of the joint posterior.

Given thatEq. (21)does not lend itself to direct computation, how may we employ it
in practice? One approach, which is facilitated by the form of the posterior, is to simulate
posterior draws from the joint posterior using a Gibbs sampler, and to in turn use these draws
to estimate posterior quantities of interest. The Gibbs sampler—a Markov Chain Monte
Carlo (MCMC) method—works by taking a series of draws from the full conditionals of
the posterior, constructing a Markov chain whose equilibrium distribution converges to
that of the joint posterior. Details concerning the use of MCMC techniques in a Bayesian
context can be found inGamerman (1997); our discussion here will focus exclusively on
the conditional distributions which are necessary for its implementation.

The first of the conditional distributions we require is that of the criterion graph, condi-
tional on the realizations of the two error parameters and of the data matrix. As the partial
factorization ofEq. (23)indicates, this conditional density reduces to the simple product
of the arc posteriors; these were derived inEq. (17)for the simple error model. The joint
conditional of the criterion graph, then, is given by

p(Θ|e+, e−, Y)=
N∏
i=1

N∏
j=1


(1 − IΘij )+ IΘij

×B


Θij

∣∣∣∣∣∣∣∣∣∣∣
Φij
∏M

k=1[(1−IYijk)+IYijkB(Yijk|1−e−)]
Φij
∏M

k=1[(1−IYijk)+IYijkB(Yijk|1−e−)]
+(1−Φij)

∏M
k=1[(1−IYijk)+IYijkB(Yijk|e+)]





 (24)

Note that this expression is arc factorable, and hence we can readily simulateΘ by
drawing from

Θij|e+, e−, Y ∼ B


Θij

∣∣∣∣∣∣∣∣∣∣∣
Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−)]

Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−)]

+(1 −Φij)
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|e+)]


 (25)

independently for all arcs such thatIΘij = 1. (All other arcs should properly be coded as
missing, and obviously do not enter into this calculation.)
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For the conditional probability ofe+, we begin by noting an alternative factorization of
the joint posterior density:

p(Θ, e+, e−|Y) ∝

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+, e−)




 N∏
i=1

N∏
j=1

p(Θij)




×Beta(e+|α+, β+)Beta(e−|α−, β−) (26)

=

 N∏
i=1

N∏
j=1

M∏
k=1

[(1 − IYijk)+ IYijk(ΘijB(Yijk|1 − e−)+ (1 −Θij)B(Yijk|e+))]



×

 N∏
i=1

N∏
j=1

p(Θij)


Beta(e+|α+, β+)Beta(e−|α−, β−) (27)

which, by the Boolean properties ofΘ andIY , can be rewritten as

=




 ∏
(i,j,k):Θij=1,IYijk=1

B(Yijk|1 − e−)


Beta(e−|α−, β−)




×




 ∏
(i,j,k):Θij=0,IYijk=1

B(Yijk|e+)


Beta(e+|α+, β+)




 N∏
i=1

N∏
j=1

p(Θij)


 (28)

Observe that this expression allows us to separate observations into true positive/false neg-
ative and true negative/false positive categories. When conditioning onΘ, then, we are left
with a factorable joint conditional:

p(e+, e−|Θ,Y) ∝




 ∏
(i,j,k):Θij=1,IYijk=1

B(Yijk|1 − e−)


Beta(e−|α−, β−)




×




 ∏
(i,j,k):Θij=0,IYijk=1

B(Yijk|e+)


Beta(e+|α+, β+)


 (29)

which establishes the conditional independence ofe+ ande− givenΘ. Thus, to obtain the
conditionals for the two error parameters, we need only focus on their respective terms in
Eq. (29).

Beginning with the false positive probability, we note that

p(e+, e−|Θ,Y) ∝


 ∏
(i,j,k):Θij=0,IYijk=1

B(Yijk|e+)


Beta(e+|α+, β+) (30)
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∝
[
(e+)

∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijk(1−Θij)Yijk(1 − e+)

∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijk(1−Θij)(1−Yijk)

]
×(e+)α+−1(1 − e+)β

+−1 (31)

= (e+)α
++

(∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijk(1−Θij)Yijk

)
−1

×(1 − e+)β
++

(∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijk(1−Θij)(1−Yijk)

)
−1

(32)

Eq. (32)is recognizable as the unnormalized form of a Beta distribution, and thus we
may take conditional posterior draws ofe+ via

e+|e−,Θ, Y

∼ Beta


α+ +

N∑
i=1

N∑
j=1

M∑
k=1

IYijk(1 −Θij)Yijk, β
+ +

N∑
i=1

N∑
j=1

M∑
k=1

IYijk(1−Θij)(1−Yijk)




(33)

Note that the parameters of the conditional posterior are simple counts of successful
and unsuccessful identifications of the non-existence of ties, combined with the prior pa-
rameters. As it happens, this is precisely what we would expect: conditional onΘij =
0, edge reports are binomial, and the Beta density forms a conjugate prior for the bino-
mial likelihood. The same logic, then, would be expected to hold for the false negative
probability:

p(e−|e+,Θ, Y) ∝


 ∏
(i,j,k):Θij=1,IYijk=1

B(Yijk|1 − e−)


Beta(e−|α−, β−) (34)

∝
[
(e−)

∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijkΘij(1−Yijk)(1 − e−)

∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijkΘijYijk

]
×(e−)α−−1(1 − e−)β

−−1 (35)

= (e−)α
−+

(∑N
i=1
∑N

j=1
∑M

k=1I
Y
ijkΘij(1−Yijk)

)
−1
(1−e−)β

−+
(∑N

i=1
∑N

j=1
∑M

k=1I
Y
ijkΘijYijk

)
−1

(36)

and we find that a similar pattern indeed holds. Here, our binomial is determined by the arc
reports associated with arcs for whichΘij = 1, and the corresponding Beta distribution can
be written

e−|e+,Θ, Y ∼ Beta


α−+

N∑
i=1

N∑
j=1

M∑
k=1

IYijkΘij(1−Yijk), β
−+

N∑
i=1

N∑
j=1

M∑
k=1

IYijkΘijYijk




(37)

In both cases, one would simulate draws from the respective posterior conditional distri-
butions by taking independent Beta draws with the parameters given byEqs. (33) and (37).
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This is readily accomplished using most statistical computing packages, either directly or
by drawing from the two distributions using the following two step procedure:

1. procedure Draw from Beta(a, β)
2. Drawa ∼ χ2

2α, b ∼ χ2
2β

3. return a/(a+ b)

(χ2 deviates themselves can be drawn in a variety of ways, including as sums of squared
standard uniform deviates. SeeEvans et al. (2000)or Gentle (1998)for details.)

We now have all of the necessary ingredients for posterior simulation via the Gibbs
sampler. By iteratively drawing from the conditional posteriors of the criterion graph (Θ),
e+, ande−, one can obtain a series of deviates which, in the limit, converge to the true joint
posterior. These draws may, in turn, be used to simulate posterior quantities and/or to draw
from posterior predictive distributions. While a thorough discussion of this procedure is
beyond the scope of this paper, the following provides a simple description of the general
algorithm:

1. procedure Draw fromΘ, e+, e−|Y (Single Observer Model)
2. DrawΘ(1) from p(Θ)
3. Drawe+(1) from p(e+)
4. Drawe−(1) from p(e−)
5. i := 2
6. repeat
7. DrawΘ(i) from p(Θ|e+(i−1), e−(i−1), Y)

8. Drawe+(i) from p(e+|Θ(i), e−(i−1), Y)

9. Drawe−(i) from p(e−|Θ(i), e+(i), Y)
10. i := i+ 1
11. until Θ(·), e+(·), e−(·) ∼ Θ, e+, e−|Y
12. return Θ(·), e+(·), e−(·)

It should be cautioned that, depending on the nature of the stochastic process, many
iterations may be required prior to convergence (the point at which the sample draws ade-
quately approximate the true distribution).14 The length of this initial period (known as the
“burn-in” time of the chain) may be assessed using a variety of diagnostics; seeGamerman
(1997)for an accessible review. Draws taken prior to burn-in are generally dependent upon
the starting position of the chain, and hence are typically discarded. Numerous other con-
siderations (including choice of starting value, multiple versus single chain methods, etc.)
may also enter into implementation of a MCMC routine, and the reader is referred to the
above references for details.

2.4. Multiple error probabilities (multiple observer model)

Having developed models for both fixed and pooled error probabilities, we are now ready
to proceed to the more general case in which our network data is generated by a process

14 Technically, convergence occurs only asymptotically, but a finite-sample approximation is satisfactory for most
applications.



C.T. Butts / Social Networks 25 (2003) 103–140 121

involving multiple uncertain error probabilities. The canonical example of such a situation
is that of a cognitive social structure, in which each actor within the structure reports the
full set of relations among actors (presumably with uncertain error probabilities which
vary by informant). Such a data set provides us with multiple observations across both
arcs and actors; thus, we have a fair amount of leverage in drawing inferences regarding
both informant accuracy and the criterion graph. Alternately, such data may emerge from a
random sample of informants recruited by the researcher, or from the combined accounts
of multiple third-party observers. By allowing each observer’s pattern of error generation
to vary, we greatly expand our ability to integrate network data from a variety of sources.

2.4.1. Assignment of priors
The priors required for the multiple observer model are, as one would expect, a simple

generalization of those employed in the single observer model. Whereas before we had only
two sets of hyperparameters, here we have twice as many sets as the number of observers; the
e+ priors, for instance, under the assumptions of conjugacy and conditional independence,
are given by

e+i ∼ Beta(α+
i , β

+
i ), i ∈ {1,2, . . . ,M} (38)

p(e+) =
M∏
i=1

p(e+i ) (39)

Note that the hyperparameters are not required to be identical for all actors. Indeed, if
individuating information (e.g. from past observation of a particular informant) is available,
it should clearly be employed. Again with the same assumptions, we take the form of the
e− priors to be identical:

e−i ∼ Beta(α−
i , β

−
i ), i ∈ {1,2, . . . ,M} (40)

p(e−) =
M∏
i=1

p(e−i ) (41)

It is worth pointing out, with respect to the above, that implicit in our assumptions is
the requirement that inferences regarding individual error parameters affect each other
only indirectly via the estimation of the criterion graph. A reasonable extension of this
model might relax this assumption by taking the hyperparameters for the individual ac-
tors as being drawn from a hyperprior distribution; one candidate for such a distribu-
tion would be a Gamma, which has a number of desirable properties in such a role.
An extension of this type, of course, would add yet another layer to the hierarchical
model, and will not be pursued here. Nevertheless, it is a promising direction for future
research.

In addition to the choice of prior distributions for the error parameters, we are still left
with the usual problem of defining priors for the criterion graph. The form for the criterion
prior is unchanged from its previous incarnations, and followsEq. (7).
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2.4.2. Assumed likelihood
The assumed likelihood for the multiple observer medel is a straightforward extension

of the likelihood for the single observer model. Each observation is, as usual, a Bernoulli
mixture, with the distinction in this case being the use of separate error probabilities for
each observer. FollowingEq. (10), then, the arc likelihood is given by

p(Yijk|Θij, e
+
k , e

−
k )= (1 − IYijk)+ IYijk((1 −Θij)(Yijke

+
k + (1 − Yijk)(1 − e+k ))

+Θij(Yijk(1 − e−k )+ (1 − Yijk)e
−
k )) (42)

Under our standard assumption of conditional independence, the joint likelihood of the
data is simply the product of the individual arc likelihoods:

p(Y |Θ, e+, e−) =
N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+
k , e

−
k ) (43)

which can be seen quite readily to be a simple generalization ofEq. (11)to the multiple
observer case.

2.4.3. Computation of the posterior
Having determined the joint likelihood of the data, we are now in a position to write

down the posterior. UsingEq. (43)and Bayes’ theorem:

p(Θ, e+, e−|Y) ∝ p(Y |Θ, e+, e−)p(Θ)p(e+)p(e−) (44)

=

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+
k , e

−
k )




 N∏
i=1

N∏
j=1

p(Θij)


( M∏

i=1

Beta(e+i |α+
i , β

+
i )

)

×
(

M∏
i=1

Beta(e−i |α−
i , β

−
i )

)
(45)

=

 N∏
i=1

N∏
j=1

p(Θij)

M∏
k=1

p(Yijk|Θij, e
+
k , e

−
k )


( M∏

i=1

Beta(e+i |α+
i , β

+
i )

)

×
(

M∏
i=1

Beta(e−i |α−
i , β

−
i )

)
(46)

Analytically, the joint posterior given byEq. (44)is somewhat difficult to work with.
However, as in the case of the single observer model, we can exploit the factorability of
the posterior to easily derive the full conditionals of the model, which in turn happen to
be appropriate for the straightforward implementation of a Gibbs sampler. In the case of
the criterion graph, for instance,Eq. (46)already demonstrates the factorization needed to
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derive the conditional distribution:

p(Θ|e+, e−, Y)=
N∏
i=1

N∏
j=1


(1 − IΘij )+ IΘij

×B


Θij

∣∣∣∣∣∣∣∣∣∣∣
Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−k )]

Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−k )]

+(1 −Φij)
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|e+k )]






(47)

Note that the presence of multiple error parameters does not interfere with the condi-
tional independence of arcs. Hence, we can decomposeEq. (47)to provide the conditional
distribution for any given arc subject toIΘij = 1:

Θij|e+, e−, Y ∼ B


Θij

∣∣∣∣∣∣∣∣∣∣∣
Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−k )]

Φij
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|1 − e−k )]

+(1 −Φij)
∏M

k=1[(1 − IYijk)+ IYijkB(Yijk|e+k )]


 (48)

To find the full conditionals for the various error parameters, we follow a very similar
procedure to that pursued for the single observer model; the difference in this case is that
we must decompose the posterior into separate factors for each of the 2M parameters.

p(Θ, e+, e−|Y) ∝

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+
k , e

−
k )




 N∏
i=1

N∏
j=1

p(Θij)




×
(

M∏
i=1

Beta(e+i |α+
i , β

+
i )

)(
M∏
i=1

Beta(e−i |α−
i , β

−
i )

)
(49)

=

 N∏
i=1

N∏
j=1

M∏
k=1

[(1 − IYijk)+ IYijk(ΘijB(Yijk|1 − e−k )+ (1 −Θij)B(Yijk|e+k ))]



×
(

M∏
i=1

Beta(e−i |α−
i , β

−
i )

)(
M∏
i=1

Beta(e+i |α+
i , β

+
i )

)
(50)
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=


 M∏
k=1


 ∏
(i,j):Θij=1,IYijk=1

B(Yijk|1 − e−k )


Beta(e−i |α−

i , β
−
i )




×


 M∏
k=1


 ∏
(i,j):Θij=0,IYijk=1

B(Yijk|e+k )


Beta(e+i |α+

i , β
+
i )




 N∏
i=1

N∏
j=1

p(Θij)


 (51)

Conditioning onΘ, the network prior is now a constant, and each error parameter is
conditionally independent. This allows us, as before, to accumulate correct and incorrect
edge observations by parameter. For instance, the conditional for an arbitrarye+k is as
follows:

p(e+k |e+−k, e−,Θ, Y) ∝


 ∏
(i,j):Θij=0,IYijk=1

B(Yijk|e+k )


Beta(e+k |α+

k , β
+
k ) (52)

∝
[
(e+k )

∑N
i=1
∑N

j=1I
Y
ijk(1−Θij)Yijk(1 − e+k )

∑N
i=1
∑N

j=1I
Y
ijk(1−Θij)(1−Yijk)

]
×((e+k )α

+
k

−1(1 − e+k )
β+
k

−1) (53)

= (e+k )
α+
k

+
(∑N

i=1
∑N

j=1I
Y
ijk(1−Θij)Yijk

)
−1
(1 − e+k )

β+
k

+
(∑N

i=1
∑N

j=1I
Y
ijk(1−Θij)(1−Yijk)

)
−1

(54)

wheree+−k is the vector of all false positive parameters other thane+k . (The conditional
independence of the error parameters implies that explicit conditioning on the other false
positive (or false negative) error parameters is not actually required, but the notation is
retained for clarity.) Once again, we observe that the unnormalized conditional distribution
for each false positive parameter is proportional to the Beta density, which gives us the exact
conditional:

e+k |e+−k, e−,Θ, Y

∼ Beta


α+

k +
N∑
i=1

N∑
j=1

IYijk(1 −Θij)Yijk, β
+
k +

N∑
i=1

N∑
j=1

IYijk(1 −Θij)(1 − Yijk)


 (55)

For the false negative parameters, we factor the conditional in a similar way:

p(e−k |e−−k, e+,Θ, Y) ∝


 ∏
(i,j):Θij=1,IYijk=1

B(Yijk|1 − e−k )


Beta(e−k |α−

k , β
−
k ) (56)

∝
[
(e−k )

∑N
i=1
∑N

j=1I
Y
ijkΘij(1−Yijk)(1 − e−k )

∑N
i=1
∑N

j=1I
Y
ijkΘijYijk

]
×(e−k )α

−
k

−1(1 − e−k )
β−
k

−1 (57)
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= (e−k )
α−
k

+
(∑N

i=1
∑N

j=1I
Y
ijkΘij(1−Yijk)

)
−1
(1 − e−k )

β−
k

+
(∑N

i=1
∑N

j=1I
Y
ijkΘijYijk

)
−1

(58)

leading to the Beta distribution

e−k |e−−k, e+,Θ, Y∼Beta


α−

k +
N∑
i=1

N∑
j=1

IYijkΘij(1 − Yijk),β
−
k +

N∑
i=1

N∑
j=1

IYijkΘijYijk


 (59)

This completes the full conditionals for the multiple observer model. To implement the
Gibbs sampler, we follow the same general procedure as was employed for the single
observer model, with the slight modification of separate draws for each error parameter.
One potential implementation of such a scheme is the following:

1. procedure Draw fromΘ, e+, e−|Y (Multiple Observer Model)
2. DrawΘ(1) from p(Θ)
3. for j ∈ (1, . . . ,M) do
4. Drawe+(1)j from p(e+j )
5. Drawe−(1)j from p(e−j )
6. end for
7. i := 2
8. repeat
9. DrawΘ(i) from p(Θ|e+(i−1), e−(i−1), Y)

10. for j ∈ (1, . . . ,M) do
11. Drawe+(i)j from p(e+j |Θ(i), e−(i−1), Y)

12. Drawe−(i)j from p(e−j |Θ(i), e+(i−1), Y)

13. end for
14. i := i+ 1
15. until Θ(·), e+(·), e−(·) ∼ Θ, e+, e−|Y
16. return Θ(·), e+(·), e−(·)

Note that the usual provisos regarding chain convergence apply here; in particular, a
longer burn-in time may be required due to the increased number of dimensions for the
multiple observer case.

2.5. Multiple error probabilities with exponential random graph priors

Although we have focused thusfar exclusively on the case of Bernoulli graph priors, the
error models shown here can be used under arbitrary exponential random graph priors as
well. The price for this generality is a certain loss of analytical and computational simplicity;
nevertheless, we shall here outline the basic results needed to use the multiple observer
model with such a prior.

2.5.1. Assignment of priors
Error priors in this case are unchanged from our earlier treatment, and we continue to

assume that error rates are a priori independent of the criterion graph. As for the network
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prior, we now assume that it takes the form

p(Θ) =




e
∑�

i=1φiti(Θ)∑
Θ′∈Qe

∑�
i=1φiti(Θ)

if Θ ∈ Q

0 otherwise

(60)

= IQ(Θ)
e
∑�

i=1φiti(Θ)

κ(φ, t)
(61)

whereφ ∈ R
�, t is a vector of real-valued functions ofΘ (and, implicitly,IΘ), Q is the set

of all realizable adjacency matrices forG, andIQ is given by

IQ =
{

1 if Θ ∈ Q

0 otherwise
(62)

Eq. (60)is the exponential random graph (ERG) distribution (also called thep∗ model
(Wasserman and Pattison, 1996)), a general form which takes the Bernoulli graph dis-
tribution as a special case. By appropriate choice ofφ and t, one can parameterize any
Q-conditioned graph distribution in this manner; thus, for our purposes, this distribution
serves as a fully generic prior family for the criterion graph.

The conventional difficulty in working withEq. (60)lies in the calculation of the normal-
izing factor,κ(φ, t). Unlike the normalizing constants with which we have been working,
κ varies with the choice ofφ and t, making inference for these parameters difficult. (See
Anderson et al. (1999b)for a very accessible introduction to estimation of exponential ran-
dom graph models using pseudo-likelihood methods, andSnijders (2002)for more recent
work using a Monte Carlo Maximum Likelihood (MCML) approach.) Fortunately, this par-
ticular problem does not present an obstacle to us, as our inferences are onΘ conditional
onφ andt rather than onφ conditional onΘ andt. For our purposes, then, we will be able
to use the unnormalized exponential random graph density, relying on MCMC simulation
to carry out implicit normalization.

A secondary difficulty with the ERG distribution is that of selecting values ofφ and t
which adequately represent our prior knowledge regarding the criterion graph. Unlike the
“overdispersed” case of the Bernoulli prior, arbitrary ERG distributions are often highly
concentrated (Snijders, 2002) and their properties are not completely understood at this
time. Appropriate use of a non-trivial ERG prior may considerably improve inference, but
inappropriate use of the same may substantially degrade it; researchers are (as always)
encouraged to select ERG hyperparameters carefully, and to err on the side of more diffuse
models where available. Subject to this caveat, an obvious source for reasonable prior
information would be ERG estimates for other, similar networks having the same size as
G. Provided that a diffuse model can be chosen within the range of prior estimates, such a
model would be expected to form a reasonable a priori distribution for the criterion graph.
Having chosen an ERG prior forΘ, we select error rate priors as per the multiple observer
model treated above. Under the prior independence assumption, changing the network prior
does not impact our initial beliefs regarding error rates, and, indeed, much of this component
of the analysis will carry forward into the present case.
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2.5.2. Assumed likelihood
Like the error priors, the likelihood for this model is unchanged from the multiple observer

model with Bernoulli network priors. Specifically, we continue to employEqs. (42) and
(43) to represent the data generation process.

2.5.3. Computation of the posterior
Following the familiar drill, we derive the joint posterior for the multiple observer model

with exponential random graph priors:

p(Θ, e+, e−|Y) ∝ p(Y |Θ, e+, e−)p(Θ)p(e+)p(e−) (63)

=

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+
k , e

−
k )


p(Θ)

(
M∏
i=1

Beta(e+i |α+
i , β

+
i )

)

×
(

M∏
i=1

Beta(e−i |α−
i , β

−
i )

)
(64)

Factorization of the posterior for the error parameters can be performed precisely as per
the earlier multiple observer model, andEqs. (55) and (59)can be used to take posterior
conditional draws for the false positive and false negative error parameters (respectively).
We cannot, however, factor the posterior in such a way as to allow us to draw easily from
the conditional ofΘ, as was possible under the Bernoulli prior. The unnormalized density
with which we are left is

p(Θ|e+, e−, Y) ∝

 N∏
i=1

N∏
j=1

M∏
k=1

p(Yijk|Θij, e
+
k , e

−
k )


(IQ(Θ)e∑�

i=1φiti(Θ)
)

(65)

which, for reference, we name explicitly as

= q(Θ|e+, e−, Y) (66)

While we cannot sample directly from this density, we may nevertheless use it as part
of an overall sampling scheme to take posterior draws. In particular, we may employ a
Metropolis–Hastings algorithm which combines a “Gibbs step” to sample error parameters
with a “Metropolis step” to sampleΘ. While the Gibbs step always accepts new proposals
(since it draws directly from the full conditionals), the Metropolis step first makes a proposal
based on a perturbation of the current graph and then accepts the proposal with a probability
equal to the ratio of the unnormalized conditional densities of the proposed and current
graphs (respectively). Such an algorithm can be implemented as follows:

1. procedure Draw fromΘ, e+, e−|Y (ERG Network Prior)
2. DrawΘ(1) from p(Θ)
3. for j ∈ (1, . . . ,M) do
4. Drawe+(1)j from p(e+j )
5. Drawe−(1)j from p(e−j )
6. end for
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7. i := 2
8. repeat
9. for j ∈ (1, . . . , N) do

10. for k ∈ (1, . . . , N) do
11. if IΘjk = 1 then

12. DrawΘ(i)
jk ∼ B((1 − τ)Θ

(i−1)
jk + τ(1 −Θ

(i−1)
jk ))

13. end if
14. end for
15. end for
16. Drawu ∼ Unif (0,1)
17. if u > (q(Θ(i)|e+, e−, Y))/(q(Θ(i−1)|e+, e−, Y)) then
18. Θ(i) := Θ(i−1)

19. end if
20. for j ∈ (1, . . . ,M) do
21. Drawe+(i)j from p(e+j |Θ(i), e−(i−1), Y)

22. Drawe−(i)j from p(e−j |Θ(i), e+(i−1), Y)

23. end for
24. i := i+ 1
25. until Θ(·), e+(·), e−(·) ∼ Θ, e+, e−|Y
26. return Θ(·), e+(·), e−(·)

Note thatτ is assumed to be chosen from the (0, 1) interval; higher values ofτ re-
flect larger “jumps” in the space of graphs, but can also result in the chain’s becoming
“stuck” in a particular configuration. In general, experimentation will be required to iden-
tify values ofτ which provide optimal convergence for a given model. It is important to
note, too, that the particular algorithm shown above is not the only MCMC which can
be used to generate posterior draws for this model: in addition to alternative jumping
rules, Metropolis–Hastings can be employed jointly for all parameters, rather than merely
a subset as shown here. Identification of optimal algorithms for drawing from error mod-
els with exponential random graph priors would seem to be an important area for future
research.

2.6. Estimating network variables from posterior distributions

We have now developed four different Bayesian models of the network inference/infor-
mant accuracy problem, and have shown in each case how we may simulate draws from
the relevant posterior distribution. For certain applications (e.g. estimating the accuracy of
particular actors) this may be sufficient; in general, however, our primary interest will be
in various quantities which are derived from the criterion graph itself. Given that we are
uncertain about the criterion graph, these quantities will necessarily be random variables,
with distributions which depend upon the posterior of the criterion. In the following section,
then, we shall demonstrate the application of the network posterior to two standard inference
problems: point estimation of the criterion graph, and inference regarding graph and node
level indices for the criterion graph.
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To illustrate these procedures, we will utilize posterior draws from a CSS ofKrackhardt
(1987a)under the multiple observer model. The data set in question contains reported friend-
ship and advice-seeking relations among 21 management personnel within a high-tech firm,
and is a “classic” CSS study. For purposes of illustration, posterior draws were taken in-
dependently for both relations. The network prior for this analysis was chosen such that
Φij = 0.3 for all arcs, and all individual error parameters were given Beta(3, 5) priors. Pos-
terior draws were taken using a Gibbs sampler, with three Markov chains being employed,
each having a burn-in of 500 iterations. (Chain convergence for each scalar estimand was

also assessed using theGelman and Rubin (1992)
√
R̂ measure.) After burn-in, 500 draws

were taken from each chain.15 The 1500 posterior draws derived from this process were
then used in the analyses below.

2.6.1. Network estimators
Given the joint posterior, a problem of obvious interest is that of estimating the criterion

graph. Numerous estimators ofΘ are possible, two being the joint posterior mode and the
(marginal) edgewise posterior mode. The first of these is obtained by numerical maximiza-
tion of p(Θ, e+, e−|Y); given the discrete nature and high dimensionality of the parameter
space, heuristic optimization (e.g. simulated annealing, genetic algorithms) will generally
be required to identify this estimator.

The second estimator—the edgewise posterior mode—differs from the first in that it seeks
modal states for each arc of the criterion graph, rather than the graph as a whole. Formally:

Θ̂ij =
{

1 if p(Θij|Y) ≥ 0.5

0 if p(Θij|Y) < 0.5
(67)

and the correspondinĝΘ is simply the collection of the individual arc estimators. This
estimator has the advantage of being quite simple to obtain, being well-approximated by
the dichotomized graph mean of a series of posterior draws. The principal disadvantage of
this estimator is that it averages across any dependence between arcs, and hence may be
misleading in some cases. For our illustrative data set, the adjacency matrix of the edgewise
modal graph is shown inTable 1. A visualization of the edgewise modal graph for the
Krackhardt advice network is shown inFig. 1.

It should be noted that both modes described above are point estimates, and as such
necessarily discard much of the full information of the posterior distribution. For many
applications, then, it may be more prudent to use the posterior distribution, rather than a
graph estimator. Nevertheless, when it is desirable to have some particular estimate of the
criterion structure, these may often be reasonable options. For special cases in which an
estimator is required which meets particular criteria (e.g. minimizing some convex function
of differences in graph statistics vis a vis the true criterion), it may also be desirable to
identify a particular graph which minimizes a posterior predictive loss function. For a given
loss,L, such an estimator̂ΘL can be obtained by numerical minimization of

L(Θ̂L,Θ
∗), Θ∗ ∼ Θ|Y (68)

15 S code (written for theR statistical computing system) to fit this model is available from the author.
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Table 1
Edgewise modal graph for advice (adjacency matrix)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21

a1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0
a2 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1
a3 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
a4 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
a5 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0
a6 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1
a7 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1
a8 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1
a9 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

a10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0
a11 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
a12 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a13 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0
a14 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1
a15 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0
a16 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
a17 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
a18 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1
a19 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0
a20 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
a21 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0

Fig. 1. Edgewise modal graph, advice network.
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Note that the posterior mode minimizes the 0–1 loss, and its edgewise counterpart min-
imizes absolute errors (summed across arcs). Investigation of more complex losses (e.g.
those motivated by applied problems) is an important avenue for further study.

2.6.2. Graph and node level indices
The vast majority of classical network analysis is founded on substantively important

secondary indices such as degree, betweenness, and closeness (at the nodal level) and
centralization, hierarchy, and connectedness (at the graph level). Many of these indices are
highly sensitive to minor changes in network structure; yet, traditional network analysis
has generally examined these indices under the assumption of error-free data. One useful
application of the network posterior, then, is to permit estimation of graph and node level
indices in the presence of measurement error. The quantification of uncertainty, in particular,
is useful here: even where the posterior is diffuse, knowledge of this fact may illuminate
subsequent analysis. This last is particularly true ofcomparisons of network indices, where
changes in the uncertainty associated with point estimates may lead to substantively distinct
conclusions.

By way of illustration, then, we here provide summaries of posterior intervals for Freeman
degree centralization and nodal degree for the Krackhardt advice network (seeTable 2). Note
how, even for a simple measure such as degree, quantification of the uncertainty associated
with the criterion graph can clearly affect posterior inference. In addition to the simple

Table 2
Posterior predictive distribution of Freeman degree, advice network

Index Minimum 1stQ Median Mean 3rdQ Maximum

Degree, a1 7 9 10 10.21 11 14
Degree, a2 23 24 25 25.05 26 29
Degree, a2 6 8 8 8.18 9 12
Degree, a4 8 10 10 9.88 10 11
Degree, a5 9 12 12 12.28 13 14
Degree, a6 6 7 8 7.87 8 10
Degree, a7 16 19 20 19.61 20 23
Degree, a8 5 7 8 7.94 8 12
Degree, a9 6 7 7 7.34 8 10
Degree, a10 3 5 6 6.15 7 12
Degree, a11 12 14 15 14.72 15 17
Degree, a12 4 6 7 6.57 7 9
Degree, a13 7 7 8 7.99 8 11
Degree, a14 19 21 22 21.99 23 25
Degree, a15 5 6 7 7.05 8 10
Degree, a16 5 7 7 7.23 8 10
Degree, a17 5 6 7 6.8 7 9
Degree, a18 22 24 24 24.13 24 27
Degree, a19 10 13 13 13.01 13 16
Degree, a20 6 11 11 11.45 12 16
Degree, a21 13 15 15 15.13 16 17

Centralization 0.31 0.35 0.36 0.37 0.38 0.45
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summaries shown here, it is fairly trivial to compute quantities such as, for instance, the
posterior probability that actor 5 has a higher Freeman degree than actor 4 (in this case, the
probability in question is approximately 0.985). Such an approach is clearly more powerful
than classical methods (which can only examine relative likelihoods), and is obviously
more robust than traditional network techniques which treat the data under examination as
error-free. The Bayesian modeling approach, then, is useful not only because of the ease
with which it allows us to construct theoretically motivated models, but also because of the
inferential uses to which the output of those models can be put.

2.6.3. Estimated informant accuracy
While we may often be interested solely in the criterion graph (in which case we estimate

individual accuracy parameters only because such are necessary for the previous problem),
this is not always the case; in some cases, it is the accuracy of individuals which is of interest
(e.g.Krackhardt (1990)). Given a series of draws from the posterior distribution, it is quite
trivial to examine the posterior distribution of individual error parameters, and thereby to
gain a sense of actors’ abilities to perceive their social surroundings. These distributions may
in turn be used to create point estimates which may be employed in subsequent analyses,
though as always it is preferable to employ posterior draws for this purpose where possible
so as to avoid losing the distributional information contained therein.

For our advice network, then, the estimated posterior quantiles for each parameter are
given in Tables 3 and 4. Note that while the above represent quantiles of the posterior
marginals, it is important to bear in mind that the error parameters are not independent in the

Table 3
Posterior marginal probability of false positives (e+) by observe, advice network

Observer Minimum 1stQ Median Mean 3rdQ Maximum

a1 0.45 0.54 0.56 0.55 0.57 0.66
a2 0.05 0.1 0.12 0.12 0.13 0.19
a3 0.22 0.3 0.32 0.32 0.34 0.41
a4 0.21 0.29 0.31 0.31 0.33 0.41
a5 0.19 0.27 0.29 0.29 0.31 0.38
a6 0 0.02 0.02 0.03 0.03 0.07
a7 0.15 0.2 0.22 0.22 0.24 0.3
a8 0.06 0.1 0.12 0.12 0.13 0.18
a9 0.15 0.21 0.22 0.22 0.24 0.3

a10 0.12 0.18 0.19 0.19 0.21 0.28
a11 0.02 0.05 0.06 0.06 0.07 0.12
a12 0.08 0.14 0.15 0.15 0.17 0.28
a13 0 0.02 0.02 0.02 0.03 0.06
a14 0.14 0.2 0.21 0.21 0.23 0.3
a15 0.06 0.11 0.12 0.12 0.13 0.21
a16 0 0.01 0.01 0.01 0.02 0.06
a17 0 0.02 0.02 0.02 0.03 0.05
a18 0.08 0.14 0.16 0.16 0.17 0.24
a19 0.02 0.05 0.06 0.06 0.07 0.12
a20 0.05 0.07 0.08 0.09 0.1 0.17
a21 0.21 0.28 0.3 0.3 0.32 0.38
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Table 4
Posterior marginal probability of false negatives (e−) by observer, advice network

Observer Minimum 1stQ Median Mean 3rdQ Maximum

a1 0.05 0.1 0.12 0.12 0.14 0.23
a2 0.24 0.35 0.38 0.38 0.41 0.55
a3 0.13 0.21 0.23 0.23 0.26 0.37
a4 0.08 0.14 0.16 0.16 0.18 0.32
a5 0.08 0.15 0.17 0.17 0.2 0.29
a6 0.47 0.58 0.61 0.61 0.64 0.74
a7 0.14 0.23 0.26 0.26 0.29 0.4
a8 0.08 0.17 0.19 0.2 0.22 0.33
a6 0.17 0.26 0.29 0.29 0.32 0.42

a10 0.13 0.22 0.25 0.25 0.28 0.37
a11 0.36 0.47 0.5 0.5 0.53 0.69
a12 0.17 0.28 0.3 0.3 0.33 0.43
a13 0.48 0.59 0.62 0.62 0.66 0.76
a14 0.24 0.36 0.39 0.39 0.42 0.52
a15 0.3 0.43 0.46 0.46 0.49 0.6
a16 0.46 0.57 0.6 0.6 0.63 0.72
a17 0.5 0.64 0.67 0.67 0.7 0.79
a18 0.11 0.19 0.21 0.21 0.24 0.34
a19 0.17 0.27 0.3 0.3 0.33 0.44
a20 0.35 0.46 0.49 0.49 0.52 0.62
a21 0.04 0.11 0.13 0.13 0.15 0.26

posterior. Thus, contrary to what one might at first blush expect, we find that the probability
of any actor within the advice network having error parameters leading to perverse inferences
is vanishingly small (indeed, this was not observed for any actor for any draws in the advice
network, and was observed on only 3 out of 31,500 possible occasions (and then only weakly
so) for draws concerning the friendship network). Similarly, the fact that the probability
of false negatives exceeds that of false positives in approximately 74% of cases in advice
network draws (and in over 99% of cases in friendship network draws) is an important and
interesting observation which follows from direct examination of the draws themselves.
This suggests, for instance, a general asymmetry between positive and negative errors:
quite possibly, informants are reasonably accurate when reporting ties, but generally quite
inaccurate when reporting holes. Such a finding is consistent with a model which assumes
that informant inaccuracy is largely the result of limited information, and that ties are not
uniformly visible; if this is the case, we should expect to see an even stronger asymmetry
with private relationships (such as friendship) than with public ones.16 Using the present
model, then, we can not only gain general estimates of informant accuracy, but also ask
broader questions regarding the types of mistakes made by actors, the informativeness of
individual responses, and the like; these questions are easily assessed by examination of
posterior draws.

16 In fact, precisely this relationship is found in the present data set, with the median per-draw difference in error
scores being 0.14 for advice and 0.56 for friendship.
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3. Discussion

We have, in previous sections of this paper, outlined a Bayesian modeling approach to
(some aspects of) the problem of informant accuracy in social network analysis. In the course
of this development, a number of deeper issues have arisen which, while important to the
progress of our research, are somewhat tangential to the specific focus of the present work.
Despite this, it behooves us to give at least some consideration to three particularly important
issues: the robustness of the modeling approach to structurally-correlated errors; the problem
of improving data collection for informant self-reports in social network research; and the
concept validity of the criterion graph (on which the present enterprise obviously depends).
This section, then, will initiate a discussion of these four matters which, if insufficient to
resolve them, will hopefully serve to highlight them for subsequent research.

3.1. Robustness to structurally correlated accuracy parameters

A common finding of a variety of network accuracy studies (e.g.Romney and Faust,
1982; Freeman et al., 1987; Krackhardt, 1990; Freeman, 1992; Krackhardt and Kilduff,
1999) is that network position is differentially associated with informant accuracy. While
the specific relationships involved are only partially understood at present,17 the existence
(or at least plausibility) of a distance/accuracy effect is generally agreed upon by network
analysts. Given this, it is important to note that the models presented here do not directly
incorporate such information into the joint prior distribution ofΘ, e+, ande−. This raises
a question of robustness: if real-world data were, in fact, to contain structurally correlated
error rates, to what extent would this degrade model performance? Clearly, our simple
models cannot beoptimal in such circumstances, as we omit the possibility of allowing
knowledge regarding structure/error associations to inform our inferences. Nevertheless,
the models may berobust in the sense that their accuracy is not diminished substantially in
the presence of these dependencies. Before we seek to deploy these models in a real-world
context, it behooves us to assess this possibility.

As a preliminary measure, Monte Carlo tests of these models were conducted for small
(N = M = 15) CSS data sets with centrality-correlated error rates. Overall, the basic
finding of this robustness testing was that even when informants’ accuracy parameters were
perfectly (inversely) correlated with criterion centrality,18 there was little degradation in
model performance. Estimates of individual accuracy parameters, in particular, did not ap-
pear to suffer under structurally correlated accuracy, and errors in estimation were similarly
distributed in uniform and correlated cases. Estimates of the criterion graph did show some
increase in error, but this increase was small (affecting only 1% of arcs on average) and
similarly distributed across different correlation models. Given that we would expect the
real-world relationship between centrality and accuracy to be weaker than those tested, this

17 It has been argued variously that centrality, transitivity, and social distance (among other factors) may affect
accuracy in a variety of ways; unfortunately, these inferences are based on a small number of data sets and, in
some cases, the criterion graph has been inferred via ad hoc methods such as the Locally Aggregated Structure
(Krackhardt, 1987a).
18 A repetition of this experiment with correlations reversed (high centrality leading to low accuracy) produced

the same qualitative results.
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test allows us to be at least marginally confident that such factors will not interfere with the
use of the informant accuracy/network inference models thusfar presented. Of course, this
simple test does not demonstrate robustness to all potential structure/accuracy relationships,
but it does suggest that one of the broadest and most commonly hypothesized associations
is unlikely to seriously impair model performance.

3.2. Suggestions for improved data collection

In the introduction to this paper, four general problems relating to the informant accuracy
in network research were mentioned. As indicated, we have focused primarily on the last,
namely the development of inferential techniques for quantifying (and hopefully reducing)
the uncertainty inherent in this form of data. This endeavor, however, is strongly related to
another: the development and deployment of data collection strategies which facilitate the re-
duction of uncertainty regarding quantities of interest. While a variety of issues are involved
in this pursuit, we shall here constrain ourselves to two matters, namely sampling strategies
employed in eliciting network data from informants and the handling of missing data.

3.2.1. Sampling strategies
The standard procedure for eliciting informant reports regarding social structure is gen-

erally to provide each member of the social network with a survey instrument which elicits
his or her ties to others within the group. In some cases, this is extended by link-tracing
(Thompson and Frank, 2000), inquiring into the existence of incoming ties from non-group
members, or (as in ego net research) asking for ties among adjacent alters; nevertheless,
these approaches are less uniformly deployed than the first. The sub-optimality of this stan-
dard procedure from the point of view of network inference can easily be appreciated by
counting the number of repeated observations accorded each arc: plainly, the standard pro-
cedure counts each arc but once, and even extending this to incoming ties provides only two
observations. With so few observations, it is hardly surprising that our ability to infer social
structure is so problematic! Given even minor deviations from perfect reporting, procedures
which supply only one to two replications per arc are unlikely to provide sufficient data for
reasonable inference on the criterion graph.

One alternative to this procedure is the elicitation of cognitive social structures. Though
developed explicitly as a cognitivist tool, the CSS instrument is highly desirable from
a classical perspective due to the fact that it provides a reasonable number of repeated
observations—N, to be precise—on each arc. Further, the fact that the CSS elicits observa-
tions from all network members means that it can be considered to be an ignorable design
so long as the complete data set is defined in terms of all participant observations. CSS
data, then, is of much greater potential value to the network analyst than traditional data,
particularly when employed in conjunction with inferential tools which allow for inference
across arcs and across actors.

For all its benefits, there is a clear drawback to the CSS design: due to the fact that each
informant is asked to report on all arcs, the number of items on a CSS instrument increases
on the order ofN2. This polynomial growth stands in sharp contrast to the linear growth of
instrument complexity for traditional approaches, and severely limits the size of networks
which can be examined in this fashion. A 50 node network, for instance, requires each
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subject to consider 2500 items for every relation examined; plainly this stretches the limits
of informant endurance. Unfortunately, we are often interested in networks which are of
even larger sizes, which all but eliminates the CSS from use in a wide range of settings.

Given the above problems, it may be sensible to consider alternatives to both the traditional
and CSS data collection strategies, particularly for large networks. Such an alternative
should be ignorable, should provide multiple observations on each arc, and should provide
multiple observations on each informant, while maintaining linear complexity in network
size. One data collection strategy which fulfills these requirements is what we shall here
call a K-replication balanced arc sampling design; while we will not consider all of its
properties in detail, we shall outline the basic procedure by which it may be employed.

The core intuition of theK-replication balanced arc sampling design is that if one desires
to haveK observations on each arc in a directed graph, one need only ask each informant
to supplyKN observations. (This follows from the fact thatN subjects reportingKN arcs
results inKN2 observations, enough to allowK per arc.) The challenge, then, is to allocate
the arcs sampled in such a way as to maintain ignorability. One simple means of doing so
is to randomly allocate arcs to instruments such that (A) each informant is given exactly
KN arcs on which to report, and (B) each arc is reported on exactlyK times. Such a design
is then ignorable, as observations not included are missing at random (seeGelman et al.
(1995)), and balanced (as each informant and arc contribute equally to the joint likelihood).
With theK-replication balanced arc sampling design, one can gain many of the advantages
of a CSS design (albeit on a more limited basis) without incurring the same complexity
penalty. Inferential methods such as those discussed here can then be employed to estimate
the criterion graph, which can subsequently be used for classical network analysis purposes.

3.2.2. Elicitation and missing data
If, on the one hand, standard practice in network research prompts us to collect too little

data on ties between actors, one might also argue that it occasionally prompts us to collect
too much: because it is customary (even in CSS research) to obtain informants’ assess-
ments of ties in forced-choice framework, we generally have no means of separating out
informant assessments based on strong personal information from those made in near-total
ignorance. This is a consequential omission. If, for instance, informants knowing nothing
of the interactions between two actors A and B generally respond to a question of the form
“does A go to B for help or advice at work?” with a “no” response, then we may expect
to find very high rates of false negatives in populations where actors are not well-informed
regarding each others’ behaviors. Such a conclusion may be very misleading: it may well be
that informants who are confident that A does not go to B for help or advice (i.e. those who
would choose a “no” option if given a “do not know” alternative) are quite accurate, but
that we cannot discern this fact due to the large number of informants who are using “no”
as a default option. Allowing informants to indicate their ignorance thus has the potential
to substantially improve our assessments of informant accuracy, and by extension to draw
stronger network inferences.

This insight regarding the difficulties of forced-choice questions for judgment tasks in
which informant information varies is hardly novel; results linking inappropriate use of
forced choice to measurement problems are well-established in the methodological literature
(Schwarz, 1999; Schwarz et al., 1998) and mention of it can be found even in introductory
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texts (e.g.DeVellis (1991); Bailey (1987)). Given this, why have network analysts continued
to employ forced choice when eliciting judgments from informants? A likely possibility
is simply that there have been, historically, very few alternatives.19 Without methods for
dealing with missing data in network research, “do not know” responses would likely be
coded as tie-missing,20 thus removing much of the potential benefit of departing from
forced-choice in the first place. A potential side benefit, then, of the models presented here
is that (by allowing inferences in the presence of missing data) they facilitate the use of
elicitation methods which do not force informants to provide responses for ties of which
they are ignorant.

Another side benefit of the ability to draw inferences with missing data lies in robustness
testing: by expanding the data set to include hypothetical actors whose ties are unobserved
(missing), but for whose ties we may still have prior knowledge, we can get some sense of
the uncertainty associated with accidentally omitting members of the network. By drawing
from the combined network posterior, we can compare probability intervals for graph and
node level indices (for instance) with those derived from draws from the initial (non-missing)
posterior; if our initial conclusions continue to hold, then we may reasonably assume that
they would likely be unaltered by the addition of the hypothetical actors. Clearly, certain
assumptions must be made in such an analysis (e.g. unobserved actors must be ignorably
missing, we must have network priors for the unobserved arcs), but the approach does
provide a simple initial robustness test and can be performed using existing tools. Like the
implications of the Bayesian network inference/informant accuracy models for elicitation
techniques, the potential applications for robustness testing bear further investigation.

3.3. Concept validity of the criterion graph

“If a group of 10 persons were all asleep and each person were dreaming of talking to
at least one other person in the group, then is there a group structure to be uncovered?”
(Killworth and Bernard, 1979).

As we have noted, the modeling approach utilized here depends critically upon the as-
sumption that there existssome unique structure which accounts for the commonalities
in informant responses. Rather than enmeshing ourselves in a larger debate about what it
means to speak of “real” social structures (and whether some might be more “real” than
others), we have taken the more restrained position of asserting the notion of the criterion
graph purely as a useful construct which is hypothesized to account for shared variance.
Even this, however, does not entirely extricate us from the dilemma raised by the Killworth
and Bernard comment above. If we find that we are dealing with relations which are purely
ascriptive—which are defined purely in terms of actor reports—can we say that we are deal-
ing with social networks at all? From the cognitivist perspective, the answer to this question
is clearly yes: if the perceptions (or, from a slightly more behavioristic stance, reports) of
individuals are of potential interest to us, then the question of whether an independently
verifiable criterion structure can be said to exist is irrelevant. This raises some difficult

19 Indeed, the most comprehensive reference on network analysis techniques (Wasserman and Faust, 1994)
contains no explicit discussion of missing data techniques.
20 Under the common assumption that no tie is an acceptable “default” condition for dyads.
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epistemological (and hence methodological) questions, however. Whenis it sensible to
speak of the existence (in at least a hypothetical sense) of the criterion graph? The question
is not an idle one. If we, for instance, apply models which presume informant reports to be
related to a central structure in situations for which such an assumption is invalid, then the
inferences drawn from such an application will he highly misleading at best. On the other
hand, ignoring the possibility of a criterion structure where one may be reasonable asserted
may substantially limit our ability to draw predictive inferences regarding the social world.
As Bernard et al. (1979)note, many processes of interest (e.g. diffusion of information or
disease) depend on behavioral, not cognitive, networks. Despite the gloomy prognosis of
BKS, work byRomney et al. (1986),Romney and Faust (1982), andFreeman (1992)(among
others) suggests that it should be possible to extract at least some useful information about
such networks from informant reports. The present work is in this tradition, but recommends
caution: we do not consider the existence of the criterion graph to be a trivial assumption, and
recognize that the applicability of our approach depends upon the validity of the criterion
concept. Further theoretical and empirical development of the foundations of network anal-
ysis per se—and, most importantly, of the conceptual foundations of our proposed subject
matter—will be necessary if fruitful methodological work in this area is to continue.

4. Conclusion

The dual problems of network inference and informant accuracy pose central method-
ological challenges for network analysis. While the particular approach employed in dealing
with these problems depends on underlying epistemological assumptions, models which as-
sume that informant reports stem from a single criterion graph may be useful in a wide range
of circumstances. Given the dimensionality and data efficiency challenges posed by simul-
taneous estimation of the criterion graph and individual accuracy parameters, a hierarchical
Bayesian approach has much to recommend it. Here, we have developed a family of such
models, and have shown how they may be applied to the analysis of network data, both
for the purposes of direct estimation and for the quantification of uncertainty in derived
quantities such as network indices. We have discussed the assumptions implicit in the use
of these or other models, and have suggested data collection strategies which will facilitate
estimation of network variables. Clearly, the network inference/informant accuracy prob-
lem is a serious one, which will require a combination of theoretical, methodological, and
empirical research to address. It is hoped that the present work will contribute to this de-
velopment by providing a suite of theoretically motivated methods with clear applicability
to basic problems of empirical research in the field of network analysis.
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