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Summary. Statistical node clustering in discrete time dynamic networks is an emerging field that
raises many challenges. Here, we explore statistical properties and frequentist inference in a
model that combines a stochastic block model for its static part with independent Markov chains
for the evolution of the nodes groups through time. We model binary data as well as weighted
dynamic random graphs (with discrete or continuous edges values). Our approach, motivated
by the importance of controlling for label switching issues across the different time steps, fo-
cuses on detecting groups characterized by a stable within-group connectivity behaviour. We
study identifiability of the model parameters and propose an inference procedure based on a
variational expectation–maximization algorithm as well as a model selection criterion to select
the number of groups. We carefully discuss our initialization strategy which plays an important
role in the method and we compare our procedure with existing procedures on synthetic data
sets. We also illustrate our approach on dynamic contact networks: one of encounters between
high school students and two others on animal interactions. An implementation of the method
is available as an R package called dynsbm.

Keywords: Contact network; Dynamic random graph; Graph clustering; Stochastic block
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1. Introduction

Statistical network analysis has become a major field of research, with applications as diverse as
sociology, ecology, biology and the Internet. General references on statistical modelling of ran-
dom graphs include Kolaczyk (2009) and Goldenberg et al. (2010) and Snijders (2011). Whereas
static approaches were developed as early as in the 1960s (mostly in the field of sociology), the
literature concerning dynamic models is much more recent. Modelling discrete time dynamic
networks is an emerging field that raises many challenges and we refer to Holme (2015) for a
most recent review.

An important part of the literature on static network analysis is dedicated to clustering meth-
ods, with both aims of taking into account the intrinsic heterogeneity of the data and summariz-
ing these data through node classification. Among clustering approaches, community detection
methods form a smaller class of methods that aim at finding groups of highly connected nodes.
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Our focus here is not only on community detection but also more generally on node classifica-
tion based on connectivity behaviour, with a particular interest on model-based approaches (see
for example Matias and Robin (2014)). When considering a sequence of snapshots of a network
at different time steps, these static clustering approaches will give rise to classifications that are
difficult to compare through time and thus difficult to interpret. Important to note is that label
switching between two successive time steps may not be solved without an extra assumption,
e.g. that most of the nodes do not change group across two different time steps. However, to
our knowledge, this kind of assumption has never been discussed in the literature. In this work,
we are interested in statistical models for discrete time dynamic random graphs, with the aim
of providing a node classification varying with time, while controlling for label switching issues
across the different time steps. Our answer to this challenge will be to focus on the detection
of groups that are characterized by stable within-group connectivity behaviour. We believe that
this is particularly suited to dynamic contact networks.

Stochastic block models (SBMs) form a widely used class of statistical (and static) random
graph models that provide a clustering of the nodes. SBMs introduce latent (i.e. unobserved)
random variables on the nodes of the graph, taking values in a finite set. These latent variables
represent the node groups and interaction between two nodes is governed by these correspond-
ing groups. The model includes (but is not restricted to) the specific case of community detection,
where within-group connections have higher probability than across-group connections. Com-
bining SBMs with a Markov structure on the latent part of the process (the nodes classification)
is a natural way of ensuring a smooth evolution of the groups across time and has already been
considered in the literature. Yang et al. (2011) considered undirected, either binary or finitely
valued, discrete time dynamic random graphs. The static aspect of the data is handled through
SBMs, whereas its dynamic aspect is as follows. For each node, its group membership forms a
Markov chain, independent of the values of the other node memberships. There, only the group
membership is allowed to vary across time whereas connectivity parameters among groups stay
constant through time. Yang et al. (2011) proposed a method to infer these parameters (either
on line or off line), based on a combination of Gibbs sampling and simulated annealing. For
binary random graphs, Xu and Hero (2014) proposed to introduce a state space model through
time on (the logit transform of) the probability of connection between groups. In contrast with
previous work, both group membership and connectivity parameters across groups may vary
through time. As such, we shall see below that this model has a strong identifiability problem.
Their (on-line) iterative estimation procedure is based on alternating two steps: a label switching
method to explore the space of node group configurations, and the (extended) Kalman filter
that optimizes the likelihood when the group memberships are known. Note that neither Yang
et al. (2011) nor Xu and Hero (2014) proposed to infer the number of clusters. Bayesian variants
of these dynamic SBMs may be found for instance in Ishiguro et al. (2010) and Herlau et al.
(2013).

Surprisingly, we noted that the above-mentioned methods were evaluated on synthetic data
sets in terms of the averaged value over the time steps of a clustering quality index computed at a
fixed time step. Naturally, those indices do not penalize for label switching and two classifications
that are identical up to a permutation have the highest quality index value. Computing an index
for each time step, the label switching issue between different time steps disappears and the
classification task becomes easier. Indeed, such criteria do not control for a smoothed recovery
of groups along different time points. It should also be noted that the synthetic experiments from
these works were performed under the dynamic version of the binary affiliation SBM, which has
non-identifiable parameters. The affiliation SBM, also known as the planted partition model,
corresponds to the case where the connectivity parameter matrix has only two different values: a
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diagonal value that drives within-group connections and an off-diagonal value for across-group
connections. In particular, the label switching issue between different time steps may not be
easily removed in this particular case.

Other approaches for model-based clustering of dynamic random graphs do not rely directly
on SBMs but rather on variants of the SBM. We mention the random subgraph model that
combines SBMs with the a priori knowledge of a nodes partition (inducing subgraphs), by au-
thorizing the group proportions to differ in the different subgraphs. A dynamic version of the
random subgraph model that builds on the approach of Xu and Hero (2014) appears in Zreik
et al. (2016). Detection of persistent communities has been proposed in Liu et al. (2014) for di-
rected and dynamic graphs of call counts between individuals. Here the static underlying model
is a time- and degree-corrected SBM with Poisson distribution on the call counts. Group mem-
berships are independent through time instead of Markov, but smoothness in the classification
is obtained by imposing that within-group expected call volumes are constant through time.
Inference is performed through a heuristic greedy search in the space of group memberships.
Only real data sets and no synthetic experiments have been explored in this latter work.

Another very popular statistical method for analysing static networks is based on latent space
models. Each node is associated with a point in a latent space and probability of connection is
higher for nodes whose latent points are closer (Hoff et al., 2002). In Sarkar and Moore (2005) a
dynamic version of the latent space model is proposed, where the latent points follow a (contin-
uous state space) Markov chain, with transition kernel given by a Gaussian perturbation on the
current position with zero mean and small variance. Latent position inference is performed in
two steps: a first initial guess is obtained through multi-dimensional scaling. Then, non-linear
optimization is used to maximize the model likelihood. The work by Xu and Zheng (2009)
is very similar, adding a clustering step on the nodes. Finally, Heaukulani and Ghahramani
(2013) relied on Markov chain Monte Carlo methods to perform a Bayesian inference in a more
complicated set-up where the latent positions of the nodes are not independent.

Mixed membership models (Airoldi et al., 2008) are also explored in a dynamic context. The
work by Xing et al. (2010) relies on a state space model for the evolution of the parameters
of the priors of both the mixed membership vector of a node and the connectivity behaviour.
Inference is carried out through a variational Bayes expectation–maximization (EM) algorithm
e.g. Jordan et al. (1999).

This non-exhaustive bibliography on model-based clustering methods for dynamic random
graphs shows both the importance and the huge interest in the topic.

In the present work, we explore statistical properties and frequentist inference in a model that
combines an SBM for its static part with independent Markov chains for the evolution of the
node groups through time. Our approach aims to achieve both interpretability and statistical
accuracy. Our set-up is very close to those of Yang et al. (2011) and Xu and Hero (2014), the
first and main difference being that we allow for both group memberships and connectivity
parameters to vary through time. By focusing on groups that are characterized by a stable
within-group connectivity behaviour, we can ensure parameter identifiability and thus valid
statistical inference. Indeed, whereas Yang et al. (2011) used the strong constraint of fixed
connectivity parameters through time, Xu and Hero (2014) entirely relaxed this assumption at
the (not acknowledged) cost of a label switching issue between time steps. Second, we model
binary data as well as weighted random graphs, whether they are dense or sparse, with discrete
or continuous edges. Third, we propose a model selection criterion to choose the number of
clusters. To simplify the notation, we restrict our model to undirected random graphs with
no self-loops but easy generalizations would handle directed data sets and/or including self-
loops.
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The paper is organized as follows. Section 2.1 describes the model and sets the notation.
Section 2.2 gives intuition about the identifiability issues that are raised by authorizing both
group memberships and connectivity parameters to vary freely with time. This was not pointed
out by Xu and Hero (2014) although they worked in this context. The section motivates our focus
on groups that are characterized by a stable within-group connectivity behaviour. Section 2.3
then establishes our identifiability results. To our knowledge, it is the first dynamic random graph
model where parameter identifiability (up to label switching) is discussed and established. Then,
Section 3 describes a variational expectation–maximization (VEM) procedure for inferring the
model parameters and clustering the nodes. The VEM procedure works with a fixed number of
groups and an integrated classification likelihood (Biernacki et al., 2000) criterion is proposed for
estimating the number of groups. We also discuss initialization of the algorithm—an important
but rarely discussed step, in Section 3.2. Synthetic experiments are presented in Section 4.
There, we discuss classification performances without neglecting the label switching issue that
may occur between time steps. In Section 5, we illustrate our approach with the analysis of real
life contact networks: a data set of encounters between high school students and two other data
sets of animal interactions. We believe that our model is particularly suited to handling this type
of data. We mention that the methods are implemented in an R package that is available from
http://lbbe.univ-lyon1.fr/dynsbm. On-line supplementary materials complete the
paper.

2. Set-up and notation

2.1. Model description
We consider weighted interactions between N individuals recorded through time in a set of data
matrices Y = .Y t/1�t�T . Here T is the number of time points and, for each value t ∈{1, : : : , T},
the adjacency matrix Yt = .Y t

ij/1�i�=j�N contains real values measuring interactions between
individuals i, j ∈{1, : : : , N}2. Without loss of generality, we consider undirected random graphs
without self-loops, so that Yt is a symmetric matrix with no diagonal elements.

We assume that the N individuals are split into Q latent (unobserved) groups that may
vary through time, as encoded by the random variables Z = .Zt

i/1�t�T ,1�i�N with values in
QNT :={1, : : : , Q}NT . This process is modelled as follows. Across individuals, random variables
.Zi/1�i�N are independent and identically distributed. Now, for each individual i∈{1, : : : , N},
the process Zi = .Zt

i/1�t�T is an irreducible, aperiodic stationary Markov chain with transi-
tion matrix π = .πqq′/1�q,q′�Q and initial stationary distribution α= .α1, : : : , αQ/. When no
confusion occurs, we may alternatively consider Zt

i as a value in Q or as a random vector
Zt

i = .Zt
i1, : : : , Zt

iQ/∈{0, 1}Q constrained to ΣqZt
iq =1.

Given latent groups Z, the time varying random graphs Y = .Y t/1�t�T are independent,
the conditional distribution of each Yt depending only on Zt . Then, for fixed 1� t �T , random
graph Yt follows an SBM. In other words, for each time t, conditionally on Zt , random variables
.Y t

ij/1�i<j�N are independent and the distribution of each Yt
ij depends on only Zt

i and Zt
j. For

now, we assume a very general parametric form for this distribution on R. Following Ambroise
and Matias (2012), to take into account possible sparse weighted graphs, we explicitly introduce
a Dirac mass at 0, denoted by δ0, as a component of this distribution. More precisely, we assume
that

Yt
ij|{Zt

iqZt
jl =1}∼ .1−βt

ql/δ0.·/+βt
ql F.·, γt

ql/, .1/

where {F.·, γ/, γ ∈Γ} is a parametric family of distributions with no point mass at 0 and densities
(with respect to Lebesgue or counting measure) denoted by f.·, γ/. This could be the Gaussian
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family with unknown mean and variance, the truncated Poisson family on N\{0} (leading to
a 0-inflated or 0-deflated distribution on the edges of the graph), a finite space distribution on
M-values (a case which comprises non-parametric approximations of continuous distributions
through discretization into a finite number of M bins), etc. The binary case is encompassed in
this set-up with F.·, γ/=δ1.·/, namely the parametric family of laws is reduced to a single point,
the Dirac mass at 1 and conditional distribution of Yt

ij is simply a Bernoulli B.βt
ql/ distribution.

In what follows and in contrast with the ‘binary case’, we shall call the ‘weighted case’ any
set-up where the set of distributions F is parameterized and not reduced to a single point. Here,
the sparsity parameters βt = .βt

ql/1�q,l�Q satisfy βt
ql ∈ [0, 1], with βt ≡ 1 corresponding to the

particular case of a complete weighted graph. As a result of considering undirected graphs,
the parameters βt

ql and γt
ql moreover satisfy βt

ql =βt
lq and γt

ql = γt
lq for all 1 � q, l � Q. For the

moment, SBM parameters may be different across time points. We shall return to this point in
the next sections. The model is thus parameterized by

θ = .π, β, γ/= .π, {βt , γt}1�t�T /= .{πqq′}1�q,q′�Q, {βt
ql, γ

t
ql}1�t�T , 1�q�l�Q/∈Θ,

and we let Pθ denote the probability distribution on the whole space QN × RN. We also let
φ.·;β, γ/ denote the density of the distribution given by expression (1), namely

∀y ∈R, φ.y;β, γ/= .1−β/1{y =0}+β f.y, γ/1{y �=0},

where 1{A} is the indicator function of set A. With some abuse of notation and when no
confusion occurs, we shorten φ.·;βt

ql, γ
t
ql/ to φt

ql.·/ or φt
ql.·; θ/. Directed acyclic graphs describing

the dependence structure of the variables in the model with different levels of detail are given in
Fig. 1. Note that the model assumes that the individuals are present at any time in the data set.
An extension that covers the case where some nodes are not present at every time point is given
in section S.5 in the on-line supplementary materials and used in analysing the animal data sets
from Section 5.2.

2.2. Varying connectivity parameters versus varying group membership
In this section, we give some intuition into why it is not possible to let both connectivity param-
eters and group membership vary through time without entering label switching issues between
time steps. For this, we consider the toy example in Fig. 2.

Fig. 2 shows a graph between N =12 nodes at two different time points t1 and t2. Node 1 is a
hub (namely a highly connected node), nodes 2–6 form a community at time t1 (they tend to form
a clique) and are peripheral nodes at time t2 and finally nodes 7–12 are peripheral at time t1 and
become a community at time t2. In observing those two graphs (without the clusters indicated
by the shading of the nodes), there are at least two possible statistical interpretations relying on
a clustering with Q = 3 groups. The first (which is illustrated in Fig. 2) is to consider that the
three different groups at stake are hubs (in white), a community (light grey) and peripheral nodes
(dark grey) and that the nodes 2–6 change group from a community to peripheral group between
time t1 and t2 whereas nodes 7–12 change from peripheral group to a community between those
same time points (node 1 stays a hub, in white, for both time points). Another point of view
would rather be to consider that nodes 2–6 stayed in the same group that was organized as a
community at time t1 and is now characterized by peripheral behaviour at time t2, whereas nodes
7–12 also stayed in the same group, behaving peripherally at time t1 and now as a community at
time t2. Obviously neither of these two interpretations is better than the other. Without adding
constraints on the model, the label switching phenomenon will randomly output one of these
two interpretations (clustering at time t2 is the same when permuting light grey and dark grey
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Fig. 1. Dependence structures of the model: (a) general view corresponding to a hidden Markov model
structure; (b) details on latent structure organization corresponding to N different independent and identically
distributed Markov chains Zi D .Zt

i /1�t�T across individuals; (c) details for fixed time point t corresponding
to an SBM structure
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Fig. 2. Connectivity parameters or group membership variation—a toy example: (a) t D t1; (b) t D t2

colours). In this context, it is thus impossible to recover group membership trajectories. We
formalize these ideas in the next section through the concept of parameter identifiability.

The main problem with the previous example comes from the possibility of arbitrarily re-
labelling the groups between two time steps. We mentioned in Section 1 that a natural idea
would be that most of the individuals should not change groups between successive time steps.
However, imposing constraints on the transition matrix π (for example it has large diagonal
elements) is useless because estimation would then be unfeasible. Indeed, without imposing 0-
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values on the off-diagonal elements of π (i.e. Zt
i does not depend on t), it can happen that there is

no labelling of the groups that ensures that most individuals stay in the same group. Thus it is not
always possible to label the groups so that, between two successive time steps, estimation of the
transition parameters would be constrained to have large diagonal elements. Thus we choose to
focus our attention on groups that are characterized through their stable within-group connec-
tivity parameter. This choice is reminiscent of work on detection of persistent communities (Liu
et al., 2014), except that we do not restrict our attention to communities (i.e. groups of highly
connected individuals). In this toy example, this corresponds to the first interpretation rather
than the second. Other choices could be made and we believe that this one is particularly suited
to model social networks or contact data where the groups are defined as structures exhibiting
stable within-group connectivity behaviour and individuals may change groups through time
(see Section 5 for applications on real data sets).

2.3. Parameter identifiability
Recall that, with discrete latent random variables, identifiability can only be obtained up to label
switching on the node groups Q. For any permutation σ in SQ (the set of permutations on Q)
and any θ ∈Θ, we define

σ.θ/ := .{πσ.q/σ.q′/}1�q,q′�Q, {βt
σ.q/σ.l/, γ

t
σ.q/σ.l/}1�t�T , 1�q�l�Q/:

It should be noted that, here, the permutation σ acts globally, meaning that it is the same at
each time point t. Now, if we let PY

θ denote the marginal of Pθ on the set of observations Y,
identifiability of the parameterization, up to label switching, means that

∀θ, θ̃ ∈Θ, PY
θ =PY

θ̃
⇒∃σ ∈SQ, θ =σ.θ̃/:

Without additional constraints on the transition matrix π or on the parameters .β, γ/, the
parameters may not be recovered up to label switching. However, it could be that the static SBM
part of the parameter is recovered up to local label switching. Local label switching on the SBM
part of the parameter is the weaker property

∀θ, θ̃ ∈Θ, PY
θ =PY

θ̃
⇒∃σ1, : : : , σT ∈ST

Q, ∀ t, .βt , γt/=σt.β̃
t
, γ̃t/:

This property is not satisfactory since clustering in models that satisfy only local identifiability
of the SBM part of the parameter prevents us from obtaining a picture of the evolution of the
groups across time.

A formal example of the fact that, if both Zt and .βt , γt/ may vary through time, then the
parameter cannot be identified up to label switching without additional constraints is given in
section S.1 in the on-line supplementary materials. We stress that this example implies that a
dynamic affiliation SBM (or planted partition model) does not have identifiable parameters and
groups may not be recovered consistently across time. This is an important point as previous
researchers have tried to recover groups from this type of synthetic data sets and evaluated their
estimated classification in a non-natural way.

As a consequence and following the ideas that were developed in Section 2.2, we choose to
impose the following constraints on the parameter θ:

∀q∈Q, ∀ t, t′ ∈{1, : : : , T},
{

binary case, βt
qq =βt′

qq :=βqq,

weighted case, γt
qq =γt′

qq :=γqq:
.2/

Under this condition, we focus on groups that are characterized by stable within-group
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connectivity behaviour (βqq or γqq is constant with time). This constraint could in fact be
weakened as follows:

∀q∈Q, ∀ t, t′ ∈{1, : : : , T}, ∃ l∈{1, : : : , T},
{

binary case, βt
ql =βt′

ql,

weighted case, γt
ql =γt′

ql:
.3/

In this condition, the group l that helps to characterize the group q between the two different
time points t and t′ may depend on q, t and t′. Such a constraint may be useful if groups are
not characterized by stable within-group connectivity but rather by their connectivity to at least
one specific other group. For estimation, this group l needs to be known in advance (for each
q, t and t′) which requires more complex a priori modelling of the data. In what follows, we
choose to restrict our attention to constraint (2) only but our theoretical results remain valid
under constraint (3). We prove below that these constraints, combined with the same conditions
that are used for identifiability in the static case, are sufficient to ensure identifiability of the
parameterization in our dynamic set-up.

Assumption 1 (weighted case). We assume that

(a) for any t �1, the Q.Q+1/=2 values {γt
ql, 1�q� l�Q} are distinct and

(b) the family of distributions F = {f.·, γ/, γ ∈ Γ} is such that all elements f.·, γ/ have no
point mass at 0 and the parameters of finite mixtures of distributions in F are identifiable,
up to label switching.

Assumption 1 is the condition that ensures identifiability of static weighted SBMs (see theorem
12 in Allman et al. (2011)). Note that it does not impose any constraint on the sparsity parameters
βt

ql in the weighted case. In particular and for parsimony, these may be chosen identical (to some
βt or some constant β) or set to two different values, e.g. βt

qq =βt
in and βt

ql =βt
out whenever q �= l

at each time point (or even constant with time).

Proposition 1. Considering the distribution PY
θ on the set of observations and assuming

constraint (2), the parameter θ = .π, β, γ/ satisfies the following conditions.

(a) Binary case: θ is generically identified from PY
θ , up to label switching, as soon as N is not

too small with respect to Q.
(b) Weighted case: under additional assumption 1, the parameter θ is identified from PY

θ , up
to label switching, as soon as N �3.

Generic identifiability means ‘up to excluding a subset of zero Lebesgue measure of the
parameter set’. We refer to Allman et al. (2009, 2011) for more details. In particular for the
binary case, assuming that the matrix of Bernoulli parameters β has distinct rows is a generic
constraint (meaning that it removes a subset of zero Lebesgue measure of the parameter set).
As we do not specify the whole generic constraint that is needed here, we do not stress that one
either. But the reader should have it in mind in the binary set-up. Finally, note that the condition
on the number of nodes N being not too small in the binary case is given precisely in theorem
2 from Allman et al. (2011). The particular affiliation case (planted partition) is not covered by
these results and is further discussed in section S.2 in the on-line supplementary materials.

Proof. The proof combines the approaches of Leroux (1992) for proving identifiability of
hidden Markov model parameters and Allman et al. (2011) that studies identifiability for (static)
SBMs.

First, we fix a time point t � 1 and consider the marginal distribution Pθ.Y t/. According to
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theorems 1 and 2 (binary case with Q = 2 and Q � 3 respectively) and theorem 12 (weighted
case) in Allman et al. (2011) on parameter identifiability in static SBMs, there is a permutation
σt on the group labels Q such that we can identify .βt , γt/ as well as the marginal distribution
α, up to this permutation. This result stands generically in the binary case only.

Now, for two different time points t and t′, we use constraint (2) and the assumption of distinct
parameter values to identify the parameters {.βt , γt/, t � 1} up to a (common) permutation σ
on Q. Indeed, in the binary case, assuming that the within-groups Bernoulli parameters satisfy
βt

qq = βt′
qq and that the set {βt

qq; 1 � q � Q} contains Q distinct values (a generic constraint)
suffices to obtain a global permutationσ, not depending on time t, up to which{.βt , γt/, t �1}are
identified. The same applies in the weighted case, by assuming equality between the parameter
γt

qq =γt′
qq for any t and t′.

It remains to identify the transition matrix π (up to the same permutation σ). We fix an
edge .i, j/ and, following Leroux (1992), consider the bivariate distribution Pθ.Y t

ij, Yt+1
ij /. This

is given by

Pθ.Y t
ij, Yt+1

ij /= ∑
q1,q2,l1,l2∈Q

αq1αl1πq1q2πl1l2 φt
q1l1

.Y t
ij/φt+1

q2l2
.Y t+1

ij /: .4/

Note that Teicher (1967) has proved the equivalence between parameter identifiability for the
mixtures of a family of distributions and parameter identifiability for the mixtures of finite
products from this same family. For clarity, we develop his proof adapted to our context. We
thus write

Pθ.Y t
ij, Yt+1

ij /= ∑
q2,l2∈Q

{ ∑
q1,l1∈Q

αq1αl1πq1q2πl1l2 φt
q1l1

.Y t
ij/

}
φt+1

q2l2
.Y t+1

ij /:

As the mixtures from the family {φt+1
ql , 1�q� l�Q} have identifiable parameters (assumption

1, part (b)), we can identify the mixing distribution

∑
q2,l2∈Q

{ ∑
q1,l1∈Q

αq1αl1πq1q2πl1l2 φt
q1l1

.Y t
ij/

}
δ

.βt+1
q2 l2

,γt+1
q2 l2

/
.·/:

Now, applying again this identifiability at time t and constraint (1), we can identify the whole
mixing distribution∑

q2,l2∈Q
∑

q1, l1∈Q
αq1αl1πq1q2πl1l2 δ.βt

q1l1
, γt

q1l1
/.·/⊗ δ

.βt+1
q2 l2

,γt+1
q2, l2

/
.·/:

This proves that the mixture given by equation (4) has identifiable components. From this mixture
and the fact that we have already identified the parameters .β, γ/ up to a global permutation,
we can extract the set of coefficients {α2

qπ
2
qq′ , 1�q, q′ �Q} that corresponds to the components

φt
qqφ

t+1
q′q′ in equation (4). As we have also already obtained the values {αq, 1�q�Q}, this now

identifies the parameters {πqq′ , 1�q, q′ �Q}. This concludes the proof.

3. Inference algorithm

3.1. General description
As usual with latent variables, the log-likelihood log{Pθ.Y/} contains a sum over all possible
latent configurations Z and thus may not be computed except for small values of N and T . A
classical solution is to rely on an EM algorithm (Dempster et al., 1977), which is an iterative
procedure that finds local maxima of the log-likelihood. The use of the EM algorithm relies
on the computation of the conditional distribution of the latent variables Z given the observed
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variables Y. However, in the context of SBMs, this distribution does not have a factored form
and thus may not be computed efficiently. A classical solution is to rely on variational approxi-
mations of the EM algorithm: the VEM algorithm (see for instance Jordan et al. (1999)). These
approximations were first proposed in the context of SBMs in Daudin et al. (2008) and later
developed in many directions, such as on-line procedures (Zanghi et al., 2008, 2010) or Bayesian
VEM algorithms (Latouche et al., 2012). We refer to Matias and Robin (2014) for more details
about the VEM algorithm (in particular a presentation of the EM algorithm viewed as a spe-
cial instance of the VEM algorithm) and its comparison with other estimation procedures in
SBMs. Note that convergence properties of VEM algorithms are discussed in full generality in
Gunawardana and Byrne (2005) and in the special case of SBMs in Celisse et al. (2012) and
Bickel et al. (2013).

3.1.1. Variational expectation–maximization for dynamic stochastic block models
In our context of dynamic random graphs, we start by writing the complete-data log-likelihood
of the model

log{Pθ.Y, Z/}=
N∑

i=1

Q∑
q=1

Z1
iq log.αq/+

T∑
t=2

N∑
i=1

∑
1�q,q′�Q

Zt−1
iq Zt

iq′ log.πqq′/

+
T∑

t=1

∑
1�i<j�N

∑
1�q,l�Q

Zt
iqZt

jl log{φ.Y t
ij;βt

ql, γ
t
ql/}: .5/

We now explore the dependence structure of the conditional distribution Pθ.Z|Y/. First, note
that it can be easily deduced from the directed acyclic graph of the model (Fig. (1a)) that

Pθ.Z|Y/=Pθ.Z1|Y1/
T∏

t=2
Pθ.Zt|Zt−1, Yt/:

However, the distribution Pθ.Zt|Zt−1, Yt/ = Pθ{.Zt
i/1�i�N |Zt−1, Yt} cannot be further fac-

tored. Indeed, for any i �= j, the variables Zt
i and Zt

j are not independent when conditioned
on Yt . Our variational approximation naturally considers the following class of probability
distributions Q :=Qτ parameterized by τ :

Qτ .Z/=
N∏

i=1
Qτ .Zi/=

N∏
i=1

Qτ .Z1
i /

T∏
t=2

Qτ .Zt
i|Zt−1

i /

=
N∏

i=1

{
Q∏

q=1
τ .i, q/

Z1
iq

}
×

T∏
t=2

∏
1�q,q′�Q

τ .t, i, q, q′/Zt−1
iq Zt

iq′ ,

where, for any values .t, i, q, q′/, we have τ .i, q/ and τ .t, i, q, q′/ both belong to the set [0, 1] and
are constrained by Σqτ .i, q/ = 1 and Σq′τ .t, i, q, q′/ = 1. This class of probability distributions
Qτ corresponds to considering independent laws through individuals, whereas, for each i ∈
{1, : : : , N}, the distribution of Zi under Qτ is the distribution of a Markov chain (through time
t), with inhomogeneous transition τ .t, i, q, q′/ = Qτ .Zt

i = q′|Zt−1
i = q/ and initial distribution

τ .i, q/=Qτ .Z1
i =q/.

We shall need the marginal components of Qτ , namely τmarg.t, i, q/ := Qτ .Zt
i = q/. These

quantities are computed recursively by

τmarg.1, i, q/= τ .i, q/ and ∀t �2,

τmarg.t, i, q/=
Q∑

q′=1
τmarg.t −1, i, q′/τ .t, i, q′, q/:
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Note also that all the values τmarg.t, i, q/ depend on the initial distribution τ .i, q/. The entropy
of Qτ is denoted by H.Qτ /. Using this class of probability distributions on QN, the VEM
algorithm is an iterative procedure to optimize the criterion

J.θ, τ / :=EQτ
[log{Pθ.Y, Z/}]+H.Qτ /

=
N∑

i=1

Q∑
q=1

τ .i, q/[log.αq/− log{τ .i, q/}]

+
T∑

t=2

N∑
i=1

∑
1�q,q′�Q

τmarg.t −1, i, q/τ .t, i, q, q′/[log.πqq′/− log{τ .t, i, q, q′/}]

+
T∑

t=1

∑
1�i<j�N

∑
1�q,l�Q

τmarg.t, i, q/τmarg.t, j, l/ log{φt
ql.Y

t
ij/}: .6/

It consists of iterating the following two steps. At the kth iteration, with current parameter value
.τ .k/, θ.k//, we do the following steps.

(a) VE step: compute τ .k+1/ =arg maxτ J.θ.k/, τ /.
(b) M-step: compute θ.k+1/ =arg maxθ J.θ, τ .k+1//.

Proposition 2. The value τ̂ that maximizes in τ the function J.θ, τ / satisfies the fixed point
equation

∀ t �2, ∀ i�1, ∀q, q′ ∈Q, τ̂ .t, i, q, q′/∝πqq′
N∏

j=1

Q∏
l′=1

φt
q′l′.Y

t
ij/τ̂marg.t,j,l′/

where ‘∝’ means ‘proportional to’ (the constants are obtained by the constraints on τ ). More-
over, the value .π̂, β̂/ that maximizes in .π, β/ the function J.θ, τ / satisfies

∀.q, q′/∈Q2, π̂qq′ ∝
T∑

t=2

N∑
i=1

τmarg.t −1, i, q/τ .t, i, q, q′/,

∀ t, ∀q �= l∈Q2, β̂
t

ql =

∑
i,j

τmarg.t, i, q/τmarg.t, j, l/1Yt
ij �=0

∑
i,j

τmarg .t, i, q/τmarg.t, j, l/
,

∀q∈Q, β̂qq =

∑
t

∑
i,j

τmarg.t, i, q/τmarg.t, j, q/1Yt
ij �=0

∑
t,i,j

τmarg.t, i, q/τmarg.t, j, q/
:

The proof of this result is immediate and has been omitted. Note that we have given a formula
with constant (through time) values βqq for any group q ∈ Q. Whereas this assumption is an
identifiability requirement in the binary set-up, it is not necessary in the weighted case. In the
weighted case, we use it only for parsimony. The corresponding formula when this parameter is
not assumed to be constant may be easily obtained.

To complete the algorithm’s description, we provide equations to update the parameters τ .i, q/

and αq of initial distributions as well as the connectivity parameter γ. First, optimization of
J.θ, τ / with respect to the initialization parameters τ .i, q/ is a little more involved. By neglecting
the dependence on τ .i, q/ of some terms appearing in criterion J , we choose to update this value
by solving the fixed point equation
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∀ i�1, ∀q∈Q, τ̂ .i, q/∝αq

N∏
j=1

Q∏
l=1

φ1
ql.Y

1
ij/τ̂ .j,l/: .7/

Our experiments show that this is a reasonable approximation (Section 4). For completeness,
we provide in section S.3 in the on-line supplementary materials the exact equation satisfied by
the solution.

Now parameter α is not obtained from maximizing J as it is not a free parameter but rather
the stationary distribution associated with transition π. Thus, α is obtained from the empirical
mean of the marginal distribution τ̂marg over all data points

∀q∈Q, α̂q = 1
NT

T∑
t=1

N∑
i=1

τ̂marg.t, i, q/:

Finally, optimization with respect toγ depends on the choice of the parametric family{f.·, γ/, γ∈
Γ}. We provide explicit formulae for the most widely used families of conditional distributions
on the edges (binary or weighted case) in section S.4 in the on-line supplementary materials.
More precisely, we give these formulae for Bernoulli, finite space, (zero-inflated or deflated)
Poisson and Gaussian homoscedastic distributions.

Remark 1. Performing the EM algorithm in a hidden Markov model (Fig. 1(a)) requires
the use of forward–backward equations to deal with transition terms Zt−1

iq Zt
iq appearing in

the complete-data log-likelihood (5). In our set-up, forward–backward equations are useless
and replaced by a variational approximation. Indeed, it can be seen from Fig. 1(b) that the
conditional distribution of Zt−1

iq Zt
iq given the data cannot be computed exactly through such

forward–backward equations. This is because the variables Yt = {Yt
ij}i,j depend on all hidden

variables Zt
1, : : : , Zt

N and focusing only on Zt
i is not sufficient to determine their distribution.

Remark 2. Yang et al. (2011) derived a VEM procedure in a similar (slightly less general)
set-up, but their variational approximation uses independent marginals (through individuals
and also time points). As a consequence, the VE step that they derive is more involved than
ours (see section 4 in Yang et al. (2011)).

3.1.2. Model selection
Model selection on the number of groups Q is an important step. In the case of latent variables,
when the true data likelihood may not be easily computed, model selection may be done by
maximizing an integrated classification likelihood (ICL) criterion (Biernacki et al., 2000). For
any number of groups Q�1, let θ̂Q be the estimated parameter value with Q groups and Ẑ the
corresponding maximum a posteriori classification at θ̂Q. In our case, the general form of the
ICL is given by

ICL.Q/= log{Pθ̂Q
.Y, Ẑ/}− 1

2 Q.Q−1/ log{N.T −1/}−pen.N, T , β, γ/, .8/

where the first penalization term accounts for transition matrix π and pen.N, T , β, γ/ is a penal-
izing term for the connectivity parameters .β, γ/. As the number of parameters .β, γ/ depends
on the specific form of the family {f.·;γ/, γ ∈Γ}, we provide context-dependent expressions for
the ICL in section S.4 in the on-line supplementary materials (along with the expressions of
parameter estimates from the M-step for each case considered). Note that the first penalization
term accounts for N.T −1/ latent transitions whereas the number of observations correspond-
ing to the SBM part of the parameter in pen.N, T , β, γ/ will be different. We refer to Daudin
et al. (2008) for an expression of the ICL in the static SBM that shows an analogous difference



Statistical Clustering of Temporal Networks 1131

in penalizing group proportions or connectivity parameters. Note that there are no theoretical
results on the convergence of the ICL procedure (nor in simple mixture models nor in the SBM
case). However, the criterion shows very good performances on synthetic experiments and is
widely used (see Section 4 for experiments in our set-up). Nonetheless we mention that the cri-
terion is not suited to the case of a finite space conditional distribution (see example 2 in section
S.4 in the supplementary materials for more details).

3.2. Algorithm initialization
All EM-based procedures look for local maxima of their objective function and careful initial-
ization is a key in their success. For the static SBM, VEM procedures often rely on a k-means
algorithm on the adjacency matrix to obtain an initial clustering of the individuals. In our con-
text, the dynamic aspect of the data needs to be properly handled. We choose to initialize our
VEM procedure by running k-means on the rows of a concatenated data matrix containing
all the adjacency time step matrices Yt stacked in consecutive column blocks. As a result, our
initial clustering of the individuals is constant across time (namely Zt

i does not depend on t).
A consequence of this choice is that this initialization works well when the group memberships
do not vary too much across time (see Section 4 where we explore different values of transition
matrix π). In practice, real life contact networks will either exhibit nodes that do not change
group at all (see Section 5) or nodes that leave a group and then come back to this group. Our
initialization is efficient in these cases. Another consequence is that, whereas we would expect
the performances of the procedure to increase with the number T of time steps, we sometimes
observe on the contrary a decrease in these performances. This is because increasing T also
increases the probability for an individual to change group at some point in time and thus,
starting with a constant-in-time clustering of the individuals, it becomes more difficult to infer
the group memberships at each time point correctly (see in Section 4 the difference between
results for T =5 and T =10).

To conclude this section, we mention that initialization is also a crucial point for other methods
and we discuss in the next section its effect on the algorithm that was proposed in Yang et al.
(2011).

4. Synthetic experiments

The methods that are presented in this paper are implemented in an R package which is available
from http://lbbe.univ-lyon1.fr/dynsbm. Although the complexity of the estimation
algorithm is O.TQ2N2/, the computation time remains acceptable for networks with a few
thousand nodes (see the on-line supplementary Fig. 1).

4.1. Clustering performances
In this section, we explore the performances of our method for clustering the nodes across the
different time steps. For this, we shall consider two different criteria. We rely on the adjusted
Rand index (ARI) (Hubert and Arabie, 1985) to evaluate the agreement between the estimated
and the true latent structure. This index is smaller than 1, two identical latent structures (up to
label switching) having an ARI equal to 1. Note that it can take negative values and is built on
the Rand index with a correction for chance. Now there are two different ways of using the ARI
in a dynamic set-up. Following Yang et al. (2011) and Xu and Hero (2014) we first consider
an averaged value over the different time steps 1 � t � T of ARIt computed at time t. In this
approach the dynamic set-up may be viewed as a way of improving the node clustering at each
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Table 1. Bernoulli parameter values in four
cases, plus an affiliation example

Easiness β11 β12 β22

Low− 0.2 0.1 0.15
Low+ 0.25 0.1 0.2
Medium− 0.3 0.1 0.2
Medium+ 0.4 0.1 0.2
Medium with 0.3 0.1 0.3

affiliation

time step over a method that would cluster separately the nodes at each time step. However, this
averaged index does not say anything about the smooth recovery of group memberships along
time. In particular, it is invariant under local switching on the SBM part of the parameter (see
Section 2.3). Thus we also consider the global ARI value that compares the clustering of the
set of nodes for all time points with the true latent structure. Obviously, good performances for
this criterion are more difficult to obtain.

We use synthetic data sets created as follows. We consider binary graphs with N =100 nodes
and T ∈{5; 10} different time steps. We assume Q=2 latent groups with three different values
for the transition matrix π:

πlow =
(

0:6 0:4
0:4 0:6

)
;

πmedium =
(

0:75 0:25
0:25 0:75

)
;

πhigh =
(

0:9 0:1
0:1 0:9

)
:

These three cases correspond respectively to low, medium and high group stability. Namely,
in the first case, individuals are more likely to change group across time, resulting in a more
difficult problem from the point of view of the initialization of our algorithm (see Section 3.2).
The stationary distribution in those three cases is α = . 1

2 , 1
2 / so the two groups have similar

proportions.
As for the Bernoulli parameters β, we explore four different cases (Table 1) representing

different levels of difficulty, plus a specific example of affiliation for which we recall that the
parameters are not identifiable in the dynamic setting. We note that the affiliation case satisfies
the separability condition that was established for sparse planted partition models (see Mossel
et al. (2014) for more details). This means that static reconstruction of the groups is conjectured
to be possible (and we consider that this static problem corresponds to medium difficulty).

For each combination of .π, β/, we generate 100 data sets, estimate their parameters, cluster
their nodes and report in Fig. 3 boxplots of a global and of an averaged ARI value.

Fig. 3 confirms that it is more difficult to obtain a smooth recovery of the groups (measured
through the global ARI) than a local recovery (measured through the averaged ARI), the former
values being globally smaller than the latter. In particular in the affiliation model, we observe
that, whereas the averaged ARI is quite good (all values close to 1), the global ARI can be low
(e.g. with low group stability or medium group stability and T =10 time points). However, in the
identifiable cases, we obtain good performances for this global index (values above 0.8) when
group stability is not too low or when connectivity parameters are sufficiently well separated
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(medium β-values). As expected, the clustering performances increase (i.e. ARI values increase)
with group stability (from π low to high) and with a better separation between the group
connectivity behaviours (from low− to medium+ easiness). When increasing the number of
time points from five to 10, clustering indices tend to be slightly larger, exhibiting a smaller
variance. However, this is not always so: for instance, with low or medium group stability and
β = low+, we observe that the performances decrease from five to 10 time points (smaller ARI
values). We believe that this is due to the initialization of our procedure: with T = 10 time
points, it is more likely that the group memberships differ from their initial value. As we use as a
starting point a constant with time value for these memberships, our algorithm is farther from
the optimal value.

Mean-squared errors (MSEs) for estimation of the transition parameter π are given in the
on-line supplementary Fig. 2. We show MSEs for π only, as the MSEs for .β, γ/ are strongly
correlated with the clustering results. This figure shows that, when groups are not globally
recovered, the MSE values may be high (up to 15%). However, in most of the cases, these MSEs
are rather small (less than 2%) so that the dynamics of the group memberships is captured.

Now, we compare our results with those of other procedures. The models of Yang et al.
(2011) and Xu and Hero (2014) are the closest to our set-up. Since Xu and Hero (2014) obtained
performances that were comparable with those of Yang et al. (2011), we focus on the latter here.
(In fact, Xu and Hero’s method is faster, with slightly lower clustering performances than that of
Yang et al. (2011).) Thus, we use the off-line version of the algorithm that was proposed in Yang
et al. (2011) (MATLAB code is available from homepage.cs.uiowa.edu/∼tymg/codes).
We ran their code on the same set-up as above. When relying on default values of the algorithm,
the results obtained are very poor, with ARI values that are smaller than 10−2 in general (the
data are not shown). We note that Yang et al. (2011) did not discuss initialization and simply
proposed to start with a random partition of the nodes, which proves to be a bad strategy.
To make fair comparisons, we thus decided to combine their algorithm with our initialization
strategy. Results are presented in the on-line supplementary Fig. 3.

From Fig. 3 in the supplementary material we can see that, putting apart our initializa-
tion strategy, our procedure outperforms that of Yang et al. (2011) (they globally have much
lower ARI). Indeed, their method obtains good performances only in a few cases: .πhigh,
β∈{medium+; medium with affiliation}, T ∈{5, 10}/, .πhigh, β∈{low+; medium−}, T =5/ and
.πmedium, β ∈{medium+; medium with affiliation}, T =5/. In all these cases, we can see that the
method’s performances are due to very good initialization. Now, when the true classification is
farther from initialization, the performances considerably drop. In particular, for intermediate
cases (e.g. medium group stability or high group stability with T = 10), we can see that our
method still succeeds in obtaining a good partition (Fig. 3) whereas this is not so for the method
of Yang et al. (2011) (supplementary Fig. 3).

4.2. Model selection
We simulate a binary dynamic data set with Q=4 groups, the transition matrix between states
satisfies πqq = 0:91 and πql = 0:03 for q �= l. Bernoulli parameters are chosen as follows: we
draw independent and identically distributed random variables {εql}1�q�l�4 ∈ [−1, 1] and then
choose

∀q∈Q, βqq =0:4+0:1εqq,

∀q �= l∈Q2, βql =0:1+0:1εql:

We generate 100 data sets under this model and estimate the number of groups relying on the
ICL criterion. Results are presented in Fig. 4. We observe that the correct number of groups
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Fig. 4. Estimation of the number of groups via the ICL criterion: (a) frequency of the selected number of
groups; (b) ARI of the classification obtained with four groups depending on the number of groups selected

is recovered in 88% of the cases (Fig. 4(a)). Moreover, Fig. 4(b) shows that, when ICL selects
only three groups, the ARI of the classification with four groups is rather low (less than 80%).
This shows that, in those cases, classification with four groups is not the correct classification,
so the VEM algorithm seems responsible for bad results (the optimum has not been reached)
more than the penalization term.

5. Revealing social structure in dynamic contact networks

Dynamic network analysis has recently emerged as an efficient method for revealing social
structure and organization in humans and animals. Indeed, many studies are now beyond the
analysis of static networks and take advantage of longitudinal data in the long term, for instance
during days or years of observations, that allow for constructing dynamic social networks. In
particular, contact networks built from field observations of association between animals or
from sensor-based measurements are now currently available in ecology or sociology. In this
section, we show that our statistical approach is a suitable tool to analyse dynamic contact
networks from the literature.

5.1. Encounters among high school students
Describing face-to-face contacts in a population (in our case, a classroom) can play an important
role in

(a) understanding whether there is a peculiar non-random mixing of individuals that would
be a sign for a social organization and

(b) predicting how infectious diseases can spread, by studying the cross-link between the
contact dynamics and the disease dynamics.

As a first step, it is therefore mandatory to find an appropriate model to analyse these contacts
and we propose to use our dynamic SBM to achieve this step.

The data set consists of face-to-face encounters of high school students (measured through
the use of wearable sensors) of a class from a French high school (see Fournet and Barrat
(2014) for a complete description of the experiment). In this class called ‘PC’ (as students
focus on physics and chemistry), interactions were recorded during 4 days (Tuesday–Friday) in
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q=1 q=2 q=3 q=4

l=1

γ(high)

γ(medium)

γ(low) l=2

D1 D2 D3 D4

l=3

{

β

l=4

Fig. 5. Summary of the interaction parameters β̂ and γ̂ estimated by our model with Q D 4 groups on the
data set of interactions in the PC class (Fournet and Barrat, 2014): in each cell .q, l/ with 1�q� l �4, there
are T D 4 bar plots corresponding to the four measurements (Tuesday–Friday); each bar plot represents the
distribution of the parameter γt

ql for the three categories of interaction frequency (low, medium and high);
the width of each bar plot is proportional to the sparsity parameter βt

ql ; we recall that, when considering the
diagonal cells .q, q/, parameters do not depend on t anymore

December 2011. We kept only the 27 (out of 31) students who appear every day, i.e. that have
at least one interaction with another student during each of the 4 days. Interaction times were
aggregated by days to form a sequence of four different networks. These are undirected and
weighted networks, the weight of an interaction between two individuals being the number of
interactions between these two individuals divided by the number of time points for which at least
two individuals interacted; thus a non-negative real number that we call interaction frequency.
After examination of the distribution of these weights, we choose to discretize these data into
M =3 bins (see example 2 in section S.4 in the on-line supplementary materials) corresponding
to low, medium and high interaction frequency. As already mentioned, our model selection
criterion is not fitted to this case (see section S.4 in the supplementary materials for more
details). We thus choose to rely instead on the ‘elbow’ method, applied to the complete-data
log-likelihood. It consists of identifying a change of slope in the curve that represents this
complete-data log-likelihood for different values of Q. The method selects Q = 4 groups (see
supplementary Fig. 4) and we now present the results that were obtained with our model fitted
with Q=4 groups.

We observe that groups 2 and 3 are composed of students who are likely to interact (i.e. β̂22 and
β̂33 are close to 1; Fig. 5). Furthermore, the frequency of their interactions inside their groups is
higher than in the rest of the network (γ̂qq.low/ < γ̂qq.medium/ < γ̂qq.high/ for q=2, 3 in Fig.
5). These two groups form two communities such as defined in Fortunato (2010). Moreover,
we observe that both groups include a certain number of individuals (3 and 4 respectively)
who permanently stay in the group over time (Fig. 6). These individuals may play the role of
‘social attractors’ or ’core leaders’ around which the other students are likely to gravitate. Group
4 displays a similar pattern of community structure, with much less interaction (intermediate
value of β̂44) but also a significant level of interaction with group 2 (Fig. 5). Interestingly, groups
2 and 4 also exchange students over time (see the fluxes between groups in Fig. 6) and this could
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Fig. 6. Alluvial plot showing the dynamics of the group membership estimated by our model on the data
set of interactions in the PC class (Fournet and Barrat, 2014): each curve is a flux that represents the move
of one or more students from a group to another group (Di–k indicates group k for day i); the thickness of
the curves is proportional to the number of students and the total height represents the 27 students

reflect some co-operation or affinity between the students of these two groups. Group 1 is quite
stable over time (seven permanent members; see Fig. 6) and is characterized by a low rate of
interaction inside and outside the group (low β̂

t

1q-values in Fig. 5). It clearly gathers isolated
students, but this does not mean that they do not interact with any student; they usually do so,
but with a small number of partners. Therefore, we not only reveal evolving communities (such
as in Yang et al. (2011)) but we also highlight the dynamics of aloneness inside this class.

We now investigate whether gender differences may help in (a posteriori) explaining or refining
the interaction patterns that we reveal. We first note that group 3 is exclusively composed of male
students (on-line supplementary Fig. 5). This observation along with the previous conclusions
suggests that group 3 may be a closed or exclusive male community. Meanwhile, some of these
male students move to group 1 which is partly composed of a ‘backbone’ of female students
who stay in group 1 (supplementary Fig. 5). Moreover, we clearly observe that female students
are likely to stay in their group (most of the moves between groups are realized by males), and
that a majority of them are in low interacting groups 1 and 4. But no female students move
between these two groups, which supports a clear dichotomy pattern in the female organization
with respect to male organization. In summary, we show evidence for some gender homophily
(see Fournet and Barrat (2014) for a precise definition), i.e. gender is a key factor for explaining
the dynamics of the interactions between these young adults.

Lastly, we note that both details captured by our model (say β and γ) are often convergent
or correlated in this case, but we note that studying this network with a binary model (i.e. not
considering the interaction frequency) does not allow us to capture interesting structure (the
data are not shown). Therefore, the presence or absence of an interaction as well as its frequency
are important and require explicit modelling such as in our approach.

5.2. Social interactions between animals
Interactions between animals are dynamic processes. How and why the topology of the network
changes (or not) over time is of primary interest to understand animal societies. Here we analyse
two data sets of animal contact networks: the first dealing with migratory birds (sparrows) and
the second with Indian equids (onagers). Both data sets are analysed with the extended model
presented in section S.5 of the on-line supplementary materials.

Sparrows were captured and marked during the winters of 2010–2012 in a small area (the
University of California, Santa Cruz Arboretum; Shizuka et al. (2014)). During these three
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Fig. 7. Summary of the interaction parameters β̂ and γ̂ estimated by our model with (a) Q D 4 groups on
the data set of sparrows (Shizuka et al., 2014) and (b) QD3 groups on the data set of onagers (Rubenstein
et al., 2015) (same principle as in Fig. 5)

seasons, Shizuka and colleagues recorded bird interactions (into flocks, i.e. individuals in the
same place at the same time) and they aggregated their observations by season. They observed 69
birds in total, but there was a significant turnover of birds due to mortality and recruitment and
only some of these 69 birds are present at each season (31, 46 and 27 birds in the first, second and
third seasons respectively). The data set is therefore composed of T =3 undirected and weighted
networks, with specified presence or absence of nodes at each of the three time steps. Edges are
weighted by the number of times that pairs of birds have been seen together at the same place
and time (if 0, there is no edge). Shizuka et al. (2014) identified reassembly of same communities
(as defined previously) across seasons despite the turnover of birds. This stability is due to social
preferences across years between individuals that rejoin the community in the same area of the
site (Shizuka et al., 2014). Our model is a perfect candidate to fit these observations: indeed,
constraints from equation (2) are appropriate in this case where the communities keep existing
over time (and therefore the parameters remain stable over time) but the membership is evolving
(in particular, due to the presence or absence of birds in the three seasons). As previously, we
discretized the edge weights into M = 3 bins (low, medium and high interaction level) and we
selected Q = 4 groups with the ‘elbow’ method (the data are not shown). Examination of the
estimated parameters β̂ and γ̂ (Fig. 7(a)) reveals that groups 2, 3 and 4 are clear communities
(with different intragroup behaviours) that eventually correspond to those revealed by Shizuka
et al. (2014). For most of that, our method proposes to gather peripheral birds into group 1.
Clearly, we observe some stability across years with individuals staying in communities 2, 3
and 4 over time (see the horizontal fluxes in Fig. 8(a)) and that are joined by incoming birds
(see fluxes from the fake group 0 of absent birds in Fig. 8). All these observations confirm the
analysis in Shizuka et al. (2014) and demonstrate that our modelling approach is particularly
suited to such data sets.

Onagers were observed in the Little Rann of Kutch, which is a desert in Gujarat, India
(Rubenstein et al., 2015). Each time a herd (group) was encountered, association between each
pair of individuals in the group was recorded. We retained the data association of 23 individuals
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Fig. 8. Alluvial plot showing the dynamics of the group membership estimated by our model on the data
sets of interactions between (a) 69 sparrows (Shizuka et al., 2014) and (b) 23 onagers (Rubenstein et al.,
2015) (same principle as in Fig. 6 (with Si�k and Mi�k indicating group k at season or month i)): a fake
group (group 0) gathers absent animals at a specific time step and fuzzy fluxes represent arrival or departure
to or from a group from or to group 0 respectively

that were present at least once between February and May 2003 and we aggregated interactions
by month. The data set contains therefore T =4 undirected and weighted networks, with specified
presence or absence of nodes each month. Edges are weighted by the number of times that pairs
of onagers belong to the same herd (if 0, there is no edge). Again, we discretized the edge weights
into M =3 bins (low, medium and high interaction level) and we selected Q=3 groups. Visual
inspection of the estimated parameters (Fig. 7 (b)) shows that cluster 1 gathers peripheral onagers
that can actually stay away from the others because predators have been extirpated from this
habitat (and so, no collective protection strategy is required; Rubenstein et al. (2015)). Cluster
2 is composed of followers onagers which have some interactions between them and much more
with those of group 3 whereas onagers in group 3 form a rich club community (i.e. a clique of
hubs as defined in Colizza et al. (2006)), with high values of estimates β̂33 and γ̂33.high/. This
community is evolving over time by integrating one or two onagers during successive months.
Interestingly, the social integration process is revealed and is somewhat hierarchical: previously
absent onagers (fake group 0 in Fig. 8(b)) are likely to integrate with group 1, onagers of group
1 can possibly move to the followers group (i.e. group 2) and a few followers can be integrated
over time with the central rich club community (group 3). Again, the structure of the onagers
social network remains persistent over time (see similar conclusions in Rubenstein et al. (2015))
and our model is therefore particularly adapted and efficient in this case.
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