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Effects of hidden nodes on the reconstruction of bidirectional networks
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Much research effort has been devoted to developing methods for reconstructing the links of a network from
dynamics of its nodes. Many current methods require the measurements of the dynamics of all the nodes to
be known. In real-world problems, it is common that either some nodes of a network of interest are unknown
or the measurements of some nodes are unavailable. These nodes, either unknown or whose measurements are
unavailable, are called hidden nodes. In this paper, we derive analytical results that explain the effects of hidden
nodes on the reconstruction of bidirectional networks. These theoretical results and their implications are verified
by numerical studies.
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I. INTRODUCTION

Many systems of interest in physics and biology are repre-
sented by complex networks of a large number of elementary
units or nodes that interact or link with each other [1]. A
substantial amount of data has been obtained for various
networks, especially biological networks, and a grand chal-
lenge is to reveal the structure of these networks, namely the
links, their direction, and relative coupling strength, from the
measured data. It is expected that [2] the structure of a network
controls its dynamics and thus one might be able to uncover
information about the structure of a network from its dy-
namics. Much research effort has been devoted to developing
methods for reconstructing a network from the dynamics of
the nodes (see, e.g., Refs. [3,4] for review). Counterintuitively,
it has been demonstrated that the presence of noise acting on
the network can be beneficial for network reconstruction as
the noise induces a relation between measurable quantities
from dynamics and the network structure [5]. Making use of
different relations of this kind, a number of methods [6–12]
have been proposed for reconstructing networks solely from
the dynamics of the nodes. In all these methods, to calculate
the quantities that are related to the network structure, the
measurements of the dynamics of all the nodes are required.

In real-world problems, it is common that either some
nodes of a network of interest are unknown or the measure-
ments of some nodes are unavailable. These nodes, either
unknown or whose measurements are unavailable, are called
hidden nodes. It is thus important to study and understand
the effects of hidden nodes on the reconstruction of networks
[13–19]. This task is highly challenging and, as of today, there
is not yet a general and analytical understanding of the effects
of hidden nodes.

A usual practice infers links from the correlation of the
measurements, with a larger correlation coefficient interpreted
as a higher probability of link [20–22]. However, correlation
between measurements of two nodes cannot be equated with
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direct interactions between the two nodes. In fact, it has
been clearly shown that for networks of neurons, the spiking
dynamics of neurons can have weak pairwise correlations
even though they are strongly coupled [23]. This study further
shows that the spiking dynamics of neurons are quantitatively
captured by the probability distribution PIsing(σ̂1, . . . , σ̂N ) ∝
exp[

∑N
i<j Jij σ̂i σ̂j + ∑

i hi σ̂i] of an Ising model, which is the
maximum entropy distribution of a system of N nodes with
binary state variables σ̂i = ±1 that is consistent with the
measured averages and covariances. This leads to extensive
studies of the inverse Ising problem: the inference of the
couplings Jij , which are interpreted as effective interactions
between nodes i and j , from measured averages and covari-
ances of the data (see, e.g., Ref. [24] for review).

In general, systems of interest have nodes with continuous
state variables. In this case, the maximum entropy distribution
consistent with the measured averages and covariances is the
multivariate Gaussian distribution [25]

PG(x1, . . . , xN ) = exp[−(x − m)T �−1(x − m)/2]

(2π )N/2
√

det(�)
, (1)

where x = (x1, x2, . . . , xN )T , m = (m1, . . . , mN )T with mi

being the measured average of xi , � is the measured co-
variance matrix, and the superscript T denotes the transpose.
Equation (1) suggests that information of links in bidirectional
networks is contained in �−1, the inverse of the covariance
matrix. A mathematical relation between the weighted ad-
jacency matrix of the network and the inverse of the co-
variance matrix has indeed been derived [7,12] for a model
class of bidirectional networks with diffusivelike coupling and
subjected to Gaussian white noise. Based on this theoretical
result, a method that reconstructs bidirectional networks from
�−1 has been developed [12].

In this paper, we address the question of how hidden nodes
affect the reconstruction of bidirectional networks. Using
the same model class of bidirectional networks studied in
Refs. [7,12], we derive analytical results relating quantities
involving the hidden nodes to the inverse of the covariance
matrix of the measured data and use these results to explain
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the effects of hidden nodes on the reconstruction results. Then
we carry out numerical studies to verify these theoretical
results and their implications.

II. FORMULATION OF THE PROBLEM

We consider weighted bidirectional networks of N nodes
with nonlinear dynamics and diffusivelike coupling. The dy-
namics of each node is described by a variable xi (t ), i =
1, 2, . . . , N , and the time evolution of xi (t ) is given by

dxi

dt
= f (xi ) +

∑
j �=i

gijAijh(xj − xi ) + ηi. (2)

The adjacency matrix element Aij is 1 when node j is
linked to node i by the diffusivelike coupling function h with
coupling strength gij ; otherwise, Aij = gij = 0. The coupling
is bidirectional so Aij = Aji and gij = gji , and the graph of
the networks has no self-loops, that is, Aii ≡ 0. As discussed
[7,12], f describes the intrinsic dynamics that is generally
nonlinear and identical for all the nodes, and the diffusivelike
coupling function h satisfies h(−z) = −h(z) and h′(0) > 0.
Thus, excitatory or activating links have gij > 0, whereas in-
hibitory links have gij < 0. Here we take h′(0) = 1. External
influences are modeled by a Gaussian white noise η with zero
mean and variance σ 2

n :

ηi (t )ηj (t ′) = σ 2
n δij δ(t − t ′), (3)

where the overbar is an ensemble average over different
realizations of the noise.

The weighted Laplacian matrix of the network, L, is given
by

Lij = siδij − gijAij , si ≡
N∑

k=1

gikAik (4)

and contains connectivity information of the network. Here
si is the weighted degree or the strength of node i. For these
networks, xi (t )’s approach X0 with f ′(X0) < 0 in the absence
of noise. Let δxi (t ) = xi (t ) − X0, then the linearized system
around the noise-free steady state is given by

d

dt
δxi = −

∑
j

(Lij + aδij )δxj + ηi, (5)

where a ≡ −f ′(X0) > 0. We consider systems that have sta-
tionary dynamics and this implies L + a I is positive definite
[26]. Using Eq. (5), it has been derived [12] that the covariance
matrix �, defined by

� ≡ lim
t→∞ [x(t ) − x(t )] [x(t ) − x(t )]T , (6)

is related to L by

�−1 = 2

σ 2
n

(L + a IN ), (7)

where IN is the N × N identity matrix. Equation (7) is an
exact result for the linearized system [Eq. (5)] and a good
approximation for the original nonlinear network [governed
by Eq. (2)] when the noise is weak. All the theoretical results

presented in this paper should be understood in this manner.
An important consequence of Eq. (7) is

�−1
ij = − 2

σ 2
n

gijAij , i �= j, (8)

which indicates that the off-diagonal elements of �−1
ij would

separate into two groups according to Aij = 0 or 1. Making
use of this result, a reconstruction method of the adjacency
matrix and thus the links of the network by performing
clustering analysis of the off-diagonal elements of �−1 has
been developed [12]. In this method, � is evaluated by ap-
proximating the ensemble average by time average:

�ij ≈ 〈[xi (t ) − 〈xi (t )〉][xj (t ) − 〈xj (t )〉]〉, (9)

where 〈· · · 〉 denotes a time average. To evaluate �−1, the
measurements of x(t ) from all the N nodes are required.

We study the problem of network reconstruction when
there are nh hidden nodes and only measurements from
n = N − nh < N nodes are available. We call these n nodes
the measured nodes and, for clarity, denote their measured
dynamics by yi (t ), i = 1, 2, . . . , n and the corresponding
covariance matrix of the measured data by �m:

�m ≡ lim
t→∞ [ y(t ) − y(t )] [ y(t ) − y(t )]T , (10)

where y(t ) ≡ (y1, y2, · · · , yn)T . Similarly,

(�m)ij ≈ 〈[yi (t ) − 〈yi (t )〉][yj (t ) − 〈yj (t )〉]〉. (11)

We would like to answer the following questions: How would
the hidden nodes affect the reconstruction results based on
�−1

m ? Can the links among the n measured nodes be recon-
structed from the measured yi (t )’s and when?

III. THEORETICAL RELATION FOR �−1
m

Without loss of generality, we let yi (t ) = xi (t ), i =
1, 2, . . . , n. Then we partition � into four block matrices

� =
(

�m U
U T �h

)
, (12)

where the n × n block matrix is �m, the nh × nh block matrix
�h is the covariance matrix of the hidden nodes given by

(�h)μν = lim
t→∞ [xμ+n(t ) − xμ+n(t )] [xν+n(t ) − xν+n(t )],

(13)
and the n × nh block matrix U measures the covariance
between the measured and hidden nodes with

Uiμ = lim
t→∞ [yi (t ) − yi (t )] [xμ+n(t ) − xμ+n(t )]. (14)

For clarity, we use Roman subscripts i, j, . . . for the measured
nodes and Greek subscripts μ, ν, . . . for the hidden nodes. We
partition the weighted Laplacian matrix in a similar fashion:

L =
(

Lm E
ET Lh

)
. (15)

The n × n block matrix Lm and the nh × nh block matrix Lh,
with elements (Lm)ij = Lij and (Lh)μν = Lμ+n,ν+n, contain
information of the connectivity among the measured nodes
and among the hidden nodes respectively while the n × nh
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block matrix E contains information of the connectivity be-
tween the measured and hidden nodes with elements

Eiμ = −gi,μ+nAi,μ+n. (16)

Using Eq. (7), we obtain

In = 2

σ 2
n

[�m(Lm + a In) + U ET ], (17)

0 = �m E + U (Lh + a Inh
), (18)

which imply

�−1
m = 2

σ 2
n

[Lm + a In − E(Lh + a Inh
)−1 ET ]. (19)

As L + a IN is positive definite, Lh + a Inh
is also positive

definite and is thus invertible. We define

C ≡ E(Lh + a Inh
)−1 ET , (20)

then the off-diagonal elements of Eq. (19) can be written as

(
�−1

m

)
ij

= − 2

σ 2
n

(gijAij + Cij ), i �= j, (21)

which shows that the hidden nodes affect the reconstruction
results based on �−1

m by introducing corrections given by C.
This can be seen directly by using Eq. (7) to rewrite Eq. (19)
as (

�−1
m

)
ij

= �−1
ij − 2

σ 2
n

Cij i, j = 1, . . . , n. (22)

Equations (19) and (22) are our major theoretical results and
we shall use them to answer the questions of interest.

IV. CORRECTIONS DUE TO HIDDEN NODES

From Eq. (20) and using Eq. (16), we immediately see
that Cij = 0 when gi,μ+n = 0 or gj,μ+n = 0 for all μ =
1, 2, . . . , nh, that is when at least one of the measured nodes
i and j is not connected to any hidden node. We let M ≡
Lh + a Inh

≡ S − W , where S and W are defined by

Sμν = (sμ+n + a)δμν, (23)

Wμν = gμ+n,ν+nAμ+n,ν+n, (24)

for μ, ν = 1, 2, . . . , nh. S is a diagonal matrix with the diag-
onal elements related to the strength of the hidden nodes and
W is the weighted adjacency matrix of the hidden nodes. Then
we obtain (see Appendix)

Cij =
nh∑

μ1=1

F0Wiμ1Wμ1j +
nh∑

μ1,μ2=1

F1Wiμ1Wμ1μ2Wμ2j

+
nh−1∑
k=3

nh∑
μ1,··· ,μk+1=1

FkWiμ1

⎛
⎝ k∏

j=1

Wμj μj+1

⎞
⎠Wμk+1j , (25)

where Fk generally depends on sμl+n + a, l = 2, . . . , k

and the eigenvalues of M. We have also similarly defined
Wiμ ≡ gi,μ+nAi,μ+n for i = 1, 2, . . . , n, μ = 1, 2, . . . , nh

and Wμi = Wiμ. The product Wiμ1Wμ1μ2 · · · Wμm−1μm
Wμmj is

nonzero only if there is a path connecting the measured

FIG. 1. A path connecting the measured nodes i and j (open
circles) via the hidden nodes μ1, μ2, . . . , μm−1, μm (closed circles).

node i and the measured node j via hidden nodes
μ1, μ2, . . . , μm−1, μm (see Fig. 1). Thus, Cij would be
zero if there does not exist any path connecting the measured
nodes i and j via hidden nodes only. In general, we expect
Cij to be nonzero for some pairs of measured nodes i and j .

As indicated by Eq. (8), the distribution of the off-diagonal
elements of �−1

ij for i, j = 1, 2, . . . , n can be written as

P
(
�−1

ij = x
) = (1 − r )P0(x) + rP1(x), (26)

where r is the fraction of connected pairs among the measured
nodes and is equal to the number of connected pairs of
measured nodes divided by n(n − 1)/2, P0 and P1 are the
distributions of �−1

ij with Aij = 0 and Aij = 1, respectively.
If the positive and negative coupling strength of the links are
described by two different distributions, P1 can further be a
mixture of two distributions P1+ and P1−, which correspond
to gij > 0 and gij < 0 respectively [cf. Eq. (48)]. In the limit
of infinite number of data, P0(x) approaches δ(x). For a finite
number of data points, numerical studies [12] show that P0(x)
is well-approximated by a Gaussian distribution of mean
m0 = 0 and standard deviation σ0, and σ0 decreases when
the number of data points increases. Equation (8) implies that
P1(x) would have a mean m1 and standard deviation σ1 given
by

m1 = − 2

σ 2
n

〈g〉, σ1 = 2

σ 2
n

σg, (27)

where 〈g〉 and σg are the average and standard deviation of
the coupling strength gij of the links. In the presence of hidden
nodes, the corrections Cij will modify the distributions P0 and
P1 to P̃0 and P̃1:

P
((

�−1
m

)
ij

= x
) = (1 − r )P̃0(x) + rP̃1(x), i �= j, (28)

The mean and standard deviation of P̃i , denoted by
m̃i, σ̃i , i = 0 and 1, would be modified. Using Eq. (21) and
the results for P0(x), we obtain

m̃0 = − 2

σ 2
n

μC,0, (29)

σ̃ 2
0 ≈ σ 2

0 + 4

σ 4
n

σ 2
C,0, (30)

m̃1 = m1 − 2

σ 2
n

μC,1, (31)

σ̃ 2
1 = σ 2

1 + 4

σ 4
n

[
σ 2

C,1 + K (gij , Cij )
]
, (32)
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where

μC,0 ≡ 〈Cij |Aij = 0〉, (33)

μC,1 ≡ 〈Cij |Aij = 1〉, (34)

σ 2
C,0 ≡ 〈

C2
ij |Aij = 0

〉 − 〈Cij |Aij = 0〉2, (35)

σ 2
C,1 ≡ 〈

C2
ij |Aij = 1

〉 − 〈Cij |Aij = 1〉2, (36)

K (gij , Cij ) ≡ 〈gijCij |Aij = 1〉 − 〈g〉〈Cij |Aij = 1〉. (37)

Here μC,i and σC,i for i = 1, 2 are the conditional average and
conditional standard deviation of Cij for Aij = 0 and Aij =
1, respectively, and K (gij , Cij ) measures the correlation of
Cij with the coupling strength gij for measured nodes i and j

that are connected. Hence, the corrections Cij would shift the
means, broaden and distort the distributions of P0 and P1 to
P̃0 and P̃1.

Suppose P0 and P1 are distinguishable. If P̃0 and P̃1

remain distinguishable even though with a larger extent of
overlap, then the links among the measured nodes can still be
reconstructed amid with a larger error rate. For a mixture of
two general distributions, there is no simple criterion on when
the component distributions are distinguishable. Nonetheless,
the component distributions are likely to be distinguishable
when the absolute value of the difference between their means
are larger than a certain multiple of the sum of their standard
deviations. Let m1 − m0 = γ (σ0 + σ1) with |γ | > 1. Using
Eqs. (29)–(32), we obtain

m̃1 − m̃0

= γ

{(
σ̃ 2

0 − 4

σ 2
n

σ 2
C,0

)1/2

+
[
σ̃ 2

1 − 4

σ 2
n

(
σ 2

C,1 + K
)]1/2

}

− 2

σ 2
n

(μC,1 − μC,0). (38)

Thus, P̃0 and P̃1 are likely to remain distinguishable (with
|m̃1 − m̃0|/(σ̃0 + σ̃1) > 1) if |μC,1 − μC,0|, σC,0, σC,1, and
|K (gij , Cij )| are sufficiently small.

To shed further light on this, we use Eq. (20) to obtain
a crude estimate of Cij . Substituting Lh + a Inh

= S − W =
S(Inh

− S−1W ) into Eq. (20), we have

C = E
(
Inh

− S−1W
)−1

S−1 ET . (39)

If the Neumann series
∑∞

k=0(S−1W )k converges, then it
converges to (Inh

− S−1W )−1. The necessary and sufficient
condition for the Neumann series to converge is that the
spectral radius of S−1W , denoted by ρ(S−1W ), is less than 1
[27]. For networks with gij � 0, one can easily show that the
infinity norm ||S−1W ||∞ ≡ maxμ{∑ν |(S−1W )μν |} < 1, and
thus ρ(S−1W ) � ||S−1W ||∞ < 1. For networks with both
positive and negative gij , we have checked numerically that
ρ(S−1W ) < 1 for all the cases studied. When the Neumann
series converges, we keep two terms in the series, namely,
(Inh

− S−1W )−1 ∼ Inh
+ S−1W , to obtain a crude estimate

of Cij :

Cij ∼
N∑

μ=n+1

giμgjμAiμAjμ

sμ + a

+
N∑

μ,ν=n+1

giμgμνgjνAiμAμνAjν

(sμ + a)(sν + a)
. (40)

Using Eq. (40), one sees that the magnitude of Cij depends on
three factors: (1) the number of paths connecting the measured
nodes i and j via the hidden nodes which determines the
number of nonzero terms in the sums, (2) the strength of
the hidden nodes, and (3) the coupling strength of the links
in these paths. Regarding the second factor, we note that
hidden nodes with larger strength actually give rise to smaller
corrections in contrary to what one might have guessed. If
these factors do not differ much between the two groups of
unconnected or connected measured nodes, then μC,1 ∼ μC,0;
if these factors do not vary much among the measured nodes
in each group, then σC,0 and σC,1 would be small; and if
these factors do not correlate with the magnitude of gij for
connected measured nodes, then |K (gij , Cij )| would be small
even when the magnitudes of the corrections Cij ’s themselves
might be large. Such situations are expected when the the hid-
den nodes are not preferentially linked to the measured nodes
in any manner. In this case, P̃0 and P̃1 remain distinguishable,
and it is possible to reconstruct the links among the measured
nodes from (�−1

m )ij , i �= j .

V. NUMERICAL RESULTS AND DISCUSSIONS

We check our theoretical results using data from numerical
simulations. We study five different networks, four of N =
100 each and one of N = 1000.

(1) Network A: it consists of two random networks, each
of 50 nodes and a connection probability of 0.2, connected
to each other by one link and gij ’s, taken from a Gaussian
distribution N (10, 22) of mean 10 and standard deviation 2,
are all positive. We take all the 50 nodes of one of the random
network as hidden nodes.

(2) Network B: it is a random network of connection
probability 0.2 and gij ’s also taken from N (10, 22) and are
all positive. We choose the hidden nodes randomly from the
network with nh � 70 such that the number of links among
the measured nodes is at least of the order of 100.

(3) Network C: it is similar to network B except that gij of
80% of the links taken from N (10, 22) and the remaining 20%
taken from N (−10, 22). As a result, about 80% of the gij ’s
are positive and about 20% are negative. The hidden nodes
are chosen randomly from the network.

(4) Network D: it is a scale-free network of N = 1000
[28] with degree distribution obeying a power law and gij ’s
taken from N (10, 22) are all positive. The hidden nodes are
chosen randomly from the network.

(5) Network E: it is constructed by linking 30 additional
nodes to a random network of 70 nodes and connection prob-
ability 0.2 with the restriction that every one of the additional
nodes is only commonly connected to randomly selected
pairs of unconnected nodes in the random network; and the
additional nodes are randomly connected among themselves
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with the same connection probability 0.2. gij ’s are taken from
N (10, 22) and are all positive. We take the 30 additional nodes
as hidden nodes.

For the dynamics, we mainly study nonlinear logistic func-
tion

f (x) = 10x(1 − x) (41)

and diffusive coupling function

h(y − x) = y − x (42)

and take σn = 1 for the noise. To explore how general our
theoretical results are, we go beyond the description by Eq. (2)
and study two additional cases. In the first additional case,
the nodes of network B have two-dimensional state vari-
ables [xi (t ), yi (t )] with nonlinear FitzHugh-Nagumo (FHN)
dynamics [29]

ẋi = (
xi − x3

i /3 − yi

)
/ε +

∑
j �=i

gijAij (xj − xi ) + ηi, (43)

ẏi = xi + α, (44)

where ε = 0.01 and α = 0.95. In the second additional case,
the nodes of network B have three-dimensional state variables
[xi (t ), yi (t ), zi (t )] with nonlinear Rössler dynamics [30] and
nonlinear coupling [7]:

ẋi = −yi − zi +
∑
j �=i

gijAij tanh(xj − xi ) + ηi, (45)

ẏi = xi + c1yi +
∑
j �=i

gijAij tanh(yj − yi ), (46)

żi = c2 + zi (xi − c3) +
∑
j �=i

gijAij tanh(zj − zi ), (47)

where c1 = c2 = 0.2 and c3 = 9. In these two additional
cases, the system does not approach a steady state in the
absence of noise and has chaotic dynamics when the nodes
are decoupled in the second case with Rössler dynamics. We
integrate the equations of motion using the Euler-Maruyama
method and record the time series xi (t ) with a sampling
interval δt = 5 × 10−4. For all the cases studied, including the
cases with FHN and Rössler dynamics, we calculate � using
xi (t )’s with a time average over Ndata = 2 × 106 data points.

For network A, since there is only one link connecting
the hidden nodes and the measured nodes, there is no path
connecting any pair of measured nodes via the hidden nodes
thus Cij = 0 for all i �= j . As a result, Eq. (22) implies
that (�−1

m )ij = �−1
ij for i �= j . We show the distributions

of P (�−1
ij ) and P [(�−1

m )ij ] for i �= j = 1, 2, . . . , n = 50 in
Fig. 2. As expected, the two distributions coincide with each
other. Moreover, P (�−1

ij ) is bimodal with the peak around
zero corresponding to P0 for unconnected nodes and the peak
around xm ≈ −20 corresponding to P1 for connected nodes
in accord with Eq. (26). Furthermore, the value of xm is
in excellent agreement with the theoretical value of μ1 =
−2〈g〉/σ 2

n [see Eq. (27)]. Hence, in this case, the links among
the measured nodes can be reconstructed from (�−1

m )ij with

-30 -20 -10 0x

10-3

10-2

10-1

P(
X=
x)

FIG. 2. Comparison of the distributions P (X = x ) of X = �−1
ij

(circles) and X = (�−1
m )ij (triangles) for i �= j = 1, 2, . . . , n = 50

for network A.

i �= j , which can be calculated using the dynamics yi (t ) of
the measured nodes only.

For network B with the hidden nodes randomly chosen,
there are nonzero Cij ’s for some pairs of measured nodes i

and j . We first consider the case with logistic dynamics and
calculate Cij using Eq. (20) and together with �−1

ij , we obtain
the theoretical results for (�−1

m )ij using Eq. (22). We compare
these theoretical results with (�−1

m )ij directly calculated from
the measured dynamics yi (t )’s in Fig. 3 and perfect agreement
is found for all the values of nh studied. For FHN and Rössler
dynamics, the system is not described by Eq. (2) thus a =
−f ′(X0) is not defined. We put a = 0 in Eq. (20) and obtain
the theoretical estimate for the off-diagonal (�−1

m )ij as �−1
ij −

(2/σ 2
n )(EL−1

h ET )ij . Interestingly, these theoretical estimates
are in good agreement with the directly calculated (�−1

m )ij ’s
in most cases, as shown in Figs. 4 and 5. For FHN dynamics
with larger nh, an improved theoretical estimate is obtained by
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FIG. 3. Comparison of distributions P (X = x ) of X = �−1
ij (cir-

cles) and X = (�−1
m )ij (triangles) for network B with logistic dynam-

ics and different number of hidden nodes: (a) nh = 10, (b) nh = 30,
(c) nh = 50, and (d) nh = 70. The dashed lines are the theoretical
results of X = �−1

ij − 2Cij /σ
2
n with Cij calculated using Eq. (20).
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FIG. 4. Same as described in the caption of Fig. 3 for net-
work B with FHN dynamics but the dashed lines are now the
theoretical estimates of X = �−1

ij − (2/σ 2
n )(EL−1

h ET )ij . The dot-
dashed lines are the improved theoretical estimates of X = �−1

ij −
(2/σ 2

n )[(EL−1
h ET )ij + b] with b = 1 for (c) and b = 3 for (d).

�−1
ij − (2/σ 2

n )[(EL−1
h ET )ij + b], where b is a constant. This

indicates the general applicability of our theoretical results
beyond the model class studied.

As shown in Figs. 3–5, the distribution P [(�−1
m )ij ] is a

mixture of the modified distributions P̃0 and P̃1, in accord
with Eq. (28), which remain distinguishable as expected since
the hidden nodes are chosen randomly. Thus, it is possible to
reconstruct the links among the measured nodes from (�−1

m )ij
with i �= j . We note that this is true for all the three kinds of
dynamics studied and even when the hidden nodes outnumber
the measured nodes. In Table I, we compare the error rates of
the reconstruction results obtained using k-means clustering
of (�−1

m )ij from the measured dynamics only and of �−1
ij

from the dynamics of the whole network. We measure the
error rates by the ratios of false negatives (FN) and false
positives (FP) over the number of actual links NL among
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FIG. 5. Same as described in the caption of Fig. 4 for network B
with Rössler dynamics.

TABLE I. Error rates of the reconstruction results using k-means
clustering of (�−1

m )ij for the various networks studied. N = 100
for networks A, B, C, and E and N = 1000 for network D. ρ =
NL/[n(n − 1)/2], where NL is the number of links among the
measured nodes and n = N − nh is the number of measured nodes.
Two clusters are used for all networks except network C where
three clusters are used. We show also the error rates using �−1

ij in
parentheses.

Network Dynamics nh ρ FN/NL (%) FP/NL (%)

A logistic 50 0.202 0.81 (0.81) 0.00 (0.00)
10 0.198 0.76 (0.88) 0.00 (0.00)

logistic 30 0.197 1.05 (1.26) 0.00 (0.00)
50 0.202 1.62 (1.62) 0.00 (0.00)
70 0.218 1.05 (3.16) 0.00 (0.00)

B 10 0.198 0.63 (0.51) 0.00 (0.00)
FHN 30 0.197 1.05 (0.84) 0.00 (0.00)

50 0.202 1.62 (1.21) 0.00 (0.00)
70 0.218 3.16 (1.05) 1.05 (0.00)

10 0.198 1.01 (0.88) 0.00 (0.00)
Rössler 30 0.197 1.10 (0.44) 0.00 (0.00)

50 0.202 0.87 (1.31) 0.00 (0.00)
70 0.218 3.57 (0.00) 5.95 (0.00)

C 20 0.198 0.96 (0.80) 0.00 (0.00)
logistic 30 0.197 0.85 (0.21) 0.00 (0.00)

40 0.199 0.85 (0.00) 1.14 (0.00)
60 0.206 2.48 (0.00) 1.86 (0.00)

D 100 0.0039 0.44 (0.50) 0.00 (0.00)
logistic 300 0.0037 0.45 (0.45) 0.11 (0.00)

500 0.0040 0.60 (0.60) 1.20 (0.00)
700 0.0017 1.05 (1.05) 3.16 (0.00)

E logistic 30 0.199 0.42 (0.42) 29.88 (0.00)

the measured nodes. These error rates are related to the
sensitivity and specificity usually used for a predictive test:
sensitivity is given by 1 − FN/NL and specificity is given by
1 − (FP/NL)ρ/(1 − ρ), where ρ = NL/[n(n − 1)/2] is the
link density of the measured nodes. For networks with low
link density ρ, the error rates can be rather high even when
specificity is close to 1 so the error rates are better measures
of the accuracy of the reconstruction results [9]. As can be
seen, the accuracy of the reconstruction results using (�−1

m )ij
from the measured nodes only is comparable to that obtained
using (�−1)ij from all the nodes.

For network C, the positive and negative gij ’s follow two
different distributions so P1 can be further decomposed into
a weighted sum of P1+ and P1−, which correspond to gij > 0
and gij < 0, respectively. Therefore, Eq. (26) can be rewritten
as

P
(
�−1

ij = x
)

= (1 − r )P0(x) + r[βP1+(x) + (1 − β )P1−(x)], (48)

where β is the fraction of the links among the measured nodes
with positive gij ’s. Similarly, Eq. (28) is also rewritten as

P
[(

�−1
m

)
ij

= x
]

= (1 − r )P̃0(x) + r[βP̃1+(x) + (1 − β )P̃1−(x)]. (49)
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FIG. 6. Similar to Fig. 3 for network C with both positive and
negative gij ’s for two different numbers of hidden nodes: (a) nh = 20
and (b) nh = 40.

As gij can now be either positive or negative, the terms
in the summations contributing to Cij [see Eq. (40)]
could cancel one another. Thus, we expect the magni-
tudes of μC,0, μC,1+ ≡ 〈Cij |Aij = 1, gij > 0〉 and μC,1− ≡
〈Cij |Aij = 1, gij < 0〉 to be smaller than the magnitudes of
μC,0 and μC,1 for network B with logistic dynamics. It can
indeed be clearly seen that the shifts of P̃0, P̃1+ and P̃1− from
P0, P1+ and P1− in Fig. 6 are smaller than the shifts of P̃0

and P̃1 from P0 and P1 in Fig. 3. Moreover, P̃0, P̃1+, and P̃1−
are again only slightly broadened as compared with P0, P1+,
and P1− because the hidden nodes are randomly chosen. Thus,
for network C, the links among the measured nodes can also
be accurately reconstructed from clustering of (�−1

m )ij with
i �= j (see Table I).

For the scale-free network D, as the link density ρ is very
small, most of the measured nodes are not linked via a path
of hidden nodes and thus most Cij ’s vanish. But as the nodes
have a power-law degree distribution, both the strength of the
hidden nodes and the number of paths connecting measured
nodes via hidden nodes could have a large variation leading to
a large variation in the magnitude of Cij ’s. This implies a large
σC,0/μC,0 and σC,1/μC,1 as compared to the case of random
network B. In particular, this results in a larger distortion from
P0 to P̃0 as seen in Fig. 7. The effect is more evident for P0

because there are far more unconnected measured nodes than
connected measured nodes due to the small ρ. Nonetheless,
P̃0 and P̃1 remain distinguishable and the error rates of the
reconstruction of the links among the measured nodes remain
low (see Table I).

In network E, every one of the nh = 30 hidden nodes is
only commonly linked to randomly selected pairs of uncon-
nected measured nodes. We first randomly choose a pair of
unconnected measured nodes and link all the nh hidden nodes
to both of them. Then we link the hidden nodes to a second
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FIG. 7. Similar to Fig. 3 for scale-free network D with (a) nh =
100 and (b) nh = 700.
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FIG. 8. Comparison of distributions P (X = x ) of X = �−1
ij (cir-

cles) and X = (�−1
m )ij (triangles) for network E with nh = 30 hidden

nodes that are preferentially linked to measured nodes that are
unconnected. The dashed line is the theoretical result of X = �−1

ij −
2Cij /σ

2
n with Cij calculated using Eq. (20).

pair of unconnected measured nodes with the restriction that
no hidden nodes are commonly linked to connected measured
nodes that might exist among the first and second pairs of
unconnected nodes. Therefore, the number of hidden nodes
commonly linked to the second pair can be less than nh. We
repeat the process for all the remaining pairs of unconnected
measured nodes. In this way, the number of hidden nodes
commonly linked to a given pair of measured nodes i and j

or the number of nonzero terms in the first sum in Eq. (40)
is identically zero for i and j that are connected, and varies
among i and j that are unconnected. This preferential connec-
tion of the hidden nodes to unconnected measured nodes gives
rise to μC,0 > μC,1 and σC,0 > σC,1. Thus, the distortion of P0

is large leading to a larger overlap of P̃0 and P̃1 as shown in
Fig. 8. As expected, the error rates of the reconstruction results
are larger with FP/NL ≈ 30% (see Table I). However, we note
that even with this error rate, the specificity is above 90%.
Moreover, the error rate FN/NL remains less than 1% and thus
more than 99% of the actual links among the measured nodes
are correctly reconstructed.

VI. CONCLUSIONS

We have addressed the interesting question of how hid-
den nodes affect reconstruction of bidirectional networks.
By using a model class of bidirectional networks with non-
linear dynamics and diffusivelike coupling and subjected to
a Gaussian white noise, as described by Eq. (2), we have
derived analytical results, Eqs. (19) and (22), that allow us
to answer this question precisely. Hidden nodes affect the
reconstruction results by introducing corrections Cij . These
corrections Cij are nonzero when the measured nodes i and
j are connected via a path of hidden nodes as depicted in
Fig. 1. Our estimate of Cij , as shown in Eq. (40), shows that
three factors determine Cij ’s, namely, the number of paths
of hidden nodes connecting the two measured nodes i and
j , the coupling strength of the links, and the strength of
the hidden nodes in these paths. Interestingly, hidden nodes
with larger strength give rise to smaller corrections when the
other two factors remain the same. When the hidden nodes
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are not preferentially linked to the measured nodes in any
manner, these three factors would not differ much between
or among the two groups of connected and unconnected
measured nodes and, as a result, the hidden nodes would
have little effects on the reconstruction of the links among
the measured nodes. This is true even when the hidden nodes
outnumber the measured nodes. In the event that the hidden
nodes are preferentially linked to the measured nodes such
that one or more of the above three factors vary significantly
either between or among the two groups, the accuracy of the
reconstruction results would deteriorate. Yet useful informa-
tion can still be uncovered. We have verified our theoretical
results and their implications using numerical simulations
and our numerical results indicate the applicability of our
results and analytical understanding beyond the model class
of bidirectional networks studied.

Hence, our work shows that the method based on the
inverse of covariance is useful for reconstructing bidirectional
networks even when there are hidden nodes. Most networks of
interest in real-world problems are directed. It is highly chal-
lenging to derive analytical results for the effects of hidden
nodes on the reconstruction of general directed networks. It
would thus be interesting to investigate whether and how the
present results and understanding for bidirectional networks
can be extended to general directed networks.
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APPENDIX: DERIVATION OF EQ. (25)

Denote the eigenvalues of M ≡ Lh + a Inh
by λk, k =

1, . . . , nh. By Cayley-Hamilton theorem, M satisfies its own
characteristic equation. Therefore,

0 =
N−n∏
k=1

(
M − λk Inh

)

= Mnh +
nh∑

m=1

(−1)mem Mnh−m, (A1)

where M0 = Inh
and em(λ1, . . . , λk ), 1 � m � nh, are the

elementary symmetric polynomials of λk’s. For example, e1 =∑nh

k=1 λk and enh
= ∏nh

k=1 λk . Multiplying M−1 to Eq. (A1)
and rearranging terms, we express M−1 as a finite polynomial
of M:

M−1 =
nh−1∑
m=0

(−1)m
enh−1−m

enh

Mm. (A2)

Using M ≡ S − W with S and W defined in Eqs. (23) and
(24), we obtain the elements of Mm in terms of the elements
of S and W . For m = 1 and 2:

Mμν = f
(1)

0 δμν + f
(1)

1 Wμν, (A3)

(M2)μν = f
(2)

0 δμν + f
(2)

1 Wμν +
nh∑

α=1

f
(2)

2 WμαWαν. (A4)

For 3 � m � nh − 1:

(Mm)μν = f
(m)

0 δμν + f
(m)

1 Wμν +
nh∑

α=1

f
(m)

2 WμαWαν

+
m∑

k=3

nh∑
α1,··· ,αk−1=1

f
(m)
k Wμα1

⎛
⎝k−2∏

j=1

Wαj αj+1

⎞
⎠Wαk−1ν .

(A5)

Here, f
(m)

0 = (sμ+n + a)m and f (m)
m = (−1)m for m =

1, . . . , nh − 1. For m � 2, f
(m)
k , 1 � k � m − 1, generally

depends on ŝμ+n ≡ sμ+n + a, ŝν+n and ŝαi+n, i = 1, . . . , k −
1. Explicit results for f

(m)
k , 1 � k � m − 1, for m = 2 and 3

are

f
(2)

1 = −(ŝμ+n + ŝν+n), (A6)

f
(3)

1 = −[(ŝμ+n)2 + (ŝν+n)2 + ŝμ+nŝν+n], (A7)

f
(3)

2 = ŝμ+n + ŝν+n + ŝα+n. (A8)

Substituting Eqs. (A3)–(A5) into Eq. (A2), we obtain

(M−1)μν = F0δμν + F1Wμν +
nh∑

α=1

F2WμαWαν

+
nh−1∑
k=3

nh∑
α1,··· ,αk−1=1

FkWμα1

⎛
⎝k−2∏

j=1

Wαj αj+1

⎞
⎠Wαk−1ν,

(A9)

where

Fk =
nh−1∑
m=k

(−1)m
enh−1−m

enh

f
(m)
k , 0 � k � nh − 1, (A10)

depends generally on ŝμ+n, ŝν+n, ŝαi+n, i = 1, . . . , k − 1 and
λk . Putting Eq. (A9) into Eq. (20), we thus obtain

Cij =
nh∑

μ,ν=1

Eiμ(M−1)μνEjν

=
nh∑

μ1=1

F0Wiμ1Wμ1j +
nh∑

μ1,μ2=1

F1Wiμ1Wμ1μ2Wμ2j

+
nh−1∑
k=3

nh∑
μ1,··· ,μk+1=1

FkWiμ1

⎛
⎝ k∏

j=1

Wμj μj+1

⎞
⎠Wμk+1j ,

(A11)

which is just Eq. (25).
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